diff options
Diffstat (limited to 'src/share')
-rw-r--r-- | src/share/algebra/browse.daase | 2750 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 5174 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 1326 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 10280 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 34109 |
5 files changed, 26830 insertions, 26809 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 475a0ed8..4950f799 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2282896 . 3444870410) +(2283151 . 3449148017) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4405 . T) (-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4401 . T) (-4406 . T) (-4400 . T)) +((-4408 . T) (-4406 . T) (-4405 . T) ((-4413 "*") . T) (-4404 . T) (-4409 . T) (-4403 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2036) +(-32 R -3510) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) +((|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4408))) +((|HasAttribute| |#1| (QUOTE -4411))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4408 . T) (-4409 . T)) +((-4411 . T) (-4412 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2036 UP UPUP -1646) +(-40 -3510 UP UPUP -1983) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2811 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2811 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2811 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-2811 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) -(-41 R -2036) +((-4404 |has| (-407 |#2|) (-363)) (-4409 |has| (-407 |#2|) (-363)) (-4403 |has| (-407 |#2|) (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4030 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4030 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4030 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4030 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) +(-41 R -3510) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-307)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T)) -((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) +((-4408 |has| |#1| (-556)) (-4406 . T) (-4405 . T)) +((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4408 . T) (-4409 . T)) -((-2811 (-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|))))))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|))))))) +((-4411 . T) (-4412 . T)) +((-4030 (-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|))))))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563))))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4405 . T)) +((-4408 . T)) NIL (-51 S) ((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2036) +(-54 |Base| R -3510) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -158,7 +158,7 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4408 . T) (-4409 . T)) +((-4411 . T) (-4412 . T)) NIL (-58 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -166,65 +166,65 @@ NIL NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) -(-61 -3359) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-61 -4324) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3359) +(-62 -4324) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -3359) +(-63 -4324) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3359) +(-64 -4324) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3359) +(-65 -4324) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3359) +(-66 -4324) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3359) +(-67 -4324) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3359) +(-68 -4324) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3359) +(-69 -4324) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3359) +(-70 -4324) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3359) +(-71 -4324) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3359) +(-72 -4324) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3359) +(-73 -4324) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3359) +(-74 -4324) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -3359) +(-77 -4324) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -3359) +(-78 -4324) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3359) +(-79 -4324) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3359) +(-80 -4324) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3359) +(-81 -4324) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3359) +(-82 -4324) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3359) +(-83 -4324) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3359) +(-84 -4324) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3359) +(-85 -4324) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3359) +(-86 -4324) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3359) +(-87 -4324) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -3359) +(-88 -4324) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -3359) +(-89 -4324) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-363)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4408 . T)) +((-4411 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4408 . T) ((-4410 "*") . T) (-4409 . T) (-4405 . T) (-4403 . T) (-4402 . T) (-4401 . T) (-4406 . T) (-4400 . T) (-4399 . T) (-4398 . T) (-4397 . T) (-4396 . T) (-4404 . T) (-4407 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4395 . T)) +((-4411 . T) ((-4413 "*") . T) (-4412 . T) (-4408 . T) (-4406 . T) (-4405 . T) (-4404 . T) (-4409 . T) (-4403 . T) (-4402 . T) (-4401 . T) (-4400 . T) (-4399 . T) (-4407 . T) (-4410 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4398 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4405 . T)) +((-4408 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4410 "*")))) +((|HasAttribute| |#1| (QUOTE (-4413 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4408 . T)) +((-4411 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4409 . T)) +((-4412 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-2811 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145))))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4030 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-858))))) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-859))))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) NIL (-112) ((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) @@ -383,27 +383,27 @@ NIL (-113 A) ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise."))) NIL -((|HasCategory| |#1| (QUOTE (-846)))) +((|HasCategory| |#1| (QUOTE (-847)))) (-114) ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-115 -2036 UP) +(-115 -3510 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-116 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-117 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-116 |#1|) (QUOTE (-905))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1018))) (|HasCategory| (-116 |#1|) (QUOTE (-816))) (-2811 (|HasCategory| (-116 |#1|) (QUOTE (-816))) (|HasCategory| (-116 |#1|) (QUOTE (-846)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-1144))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-116 |#1|) (QUOTE (-906))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1019))) (|HasCategory| (-116 |#1|) (QUOTE (-817))) (-4030 (|HasCategory| (-116 |#1|) (QUOTE (-817))) (|HasCategory| (-116 |#1|) (QUOTE (-847)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-1145))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-906)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))))) (-118 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4409))) +((|HasAttribute| |#1| (QUOTE -4412))) (-119 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -414,15 +414,15 @@ NIL NIL (-121 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-122 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-123) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL (-124 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -430,20 +430,20 @@ NIL NIL (-125 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4408 . T) (-4409 . T)) +((-4411 . T) (-4412 . T)) NIL (-126 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-128) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-2811 (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093)))) (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4030 (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-129) (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094)))) (|HasCategory| (-129) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-129) (QUOTE (-1094))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-129) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -466,13 +466,13 @@ NIL NIL (-134) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) -(((-4410 "*") . T)) +(((-4413 "*") . T)) NIL -(-135 |minix| -3807 S T$) +(-135 |minix| -2781 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-136 |minix| -3807 R) +(-136 |minix| -2781 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -494,8 +494,8 @@ NIL NIL (-141) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4408 . T) (-4398 . T) (-4409 . T)) -((-2811 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +((-4411 . T) (-4401 . T) (-4412 . T)) +((-4030 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-142 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -510,7 +510,7 @@ NIL NIL (-145) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4405 . T)) +((-4408 . T)) NIL (-146 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}."))) @@ -518,9 +518,9 @@ NIL NIL (-147) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4405 . T)) +((-4408 . T)) NIL -(-148 -2036 UP UPUP) +(-148 -3510 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -531,14 +531,14 @@ NIL (-150 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasAttribute| |#1| (QUOTE -4408))) +((|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasAttribute| |#1| (QUOTE -4411))) (-151 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-152 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4403 . T) (-4402 . T) (-4405 . T)) +((-4406 . T) (-4405 . T) (-4408 . T)) NIL (-153) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -560,7 +560,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-158 R -2036) +(-158 R -3510) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -591,10 +591,10 @@ NIL (-165 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-846)))) +((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-999))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4407)) (|HasAttribute| |#2| (QUOTE -4410)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-847)))) (-166 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4401 -2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4407 |has| |#1| (-6 -4407)) (-1786 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 -4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4407 |has| |#1| (-6 -4407)) (-4410 |has| |#1| (-6 -4410)) (-2315 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-167 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -606,8 +606,8 @@ NIL NIL (-169 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4401 -2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4407 |has| |#1| (-6 -4407)) (-1786 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-824)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1193)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| |#1| (QUOTE (-1054))) (-12 (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4407)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-349))))) +((-4404 -4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4407 |has| |#1| (-6 -4407)) (-4410 |has| |#1| (-6 -4410)) (-2315 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-825)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1194)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-906))))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| |#1| (QUOTE (-1055))) (-12 (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-1194)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasAttribute| |#1| (QUOTE -4407)) (|HasAttribute| |#1| (QUOTE -4410)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-349))))) (-170 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -618,7 +618,7 @@ NIL NIL (-172) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-173) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -626,10 +626,10 @@ NIL NIL (-174 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4410 "*") . T) (-4401 . T) (-4406 . T) (-4400 . T) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") . T) (-4404 . T) (-4409 . T) (-4403 . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-175) -((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) NIL NIL (-176 R) @@ -643,7 +643,7 @@ NIL (-178 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-948 |#2|) (LIST (QUOTE -882) (|devaluate| |#1|)))) +((|HasCategory| (-949 |#2|) (LIST (QUOTE -883) (|devaluate| |#1|)))) (-179 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}"))) NIL @@ -680,7 +680,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-188 R -2036) +(-188 R -3510) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -788,23 +788,23 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-215 -2036 UP UPUP R) +(-215 -3510 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-216 -2036 FP) +(-216 -3510 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-217) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-2811 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145))))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4030 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) (-218) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-219 R -2036) +(-219 R -3510) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -818,19 +818,19 @@ NIL NIL (-222 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-223 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4405 . T)) +((-4408 . T)) NIL -(-224 R -2036) +(-224 R -3510) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-225) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-1775 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-2305 . T) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-226) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -838,23 +838,23 @@ NIL NIL (-227 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4413 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-228 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-229 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4409 . T)) +((-4412 . T)) NIL (-230 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) +((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (-231 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) -((-4405 . T)) +((-4408 . T)) NIL (-232 S) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) @@ -862,36 +862,36 @@ NIL NIL (-233) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified."))) -((-4405 . T)) +((-4408 . T)) NIL (-234 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4408))) +((|HasAttribute| |#1| (QUOTE -4411))) (-235 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4409 . T)) +((-4412 . T)) NIL (-236) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-237 S -3807 R) +(-237 S -2781 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasAttribute| |#3| (QUOTE -4405)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093)))) -(-238 -3807 R) +((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasAttribute| |#3| (QUOTE -4408)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) +(-238 -2781 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T)) +((-4405 |has| |#2| (-1046)) (-4406 |has| |#2| (-1046)) (-4408 |has| |#2| (-6 -4408)) ((-4413 "*") |has| |#2| (-172)) (-4411 . T)) NIL -(-239 -3807 A B) +(-239 -2781 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-240 -3807 R) +(-240 -2781 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2811 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-2811 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +((-4405 |has| |#2| (-1046)) (-4406 |has| |#2| (-1046)) (-4408 |has| |#2| (-6 -4408)) ((-4413 "*") |has| |#2| (-172)) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4030 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4030 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-241) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -902,7 +902,7 @@ NIL NIL (-243) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4401 . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-244 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -910,16 +910,16 @@ NIL NIL (-245 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-246 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-247 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-905))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-906))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) (-248) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -930,23 +930,23 @@ NIL NIL (-250 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4405 -2811 (-3743 (|has| |#4| (-1045)) (|has| |#4| (-233))) (-3743 (|has| |#4| (-1045)) (|has| |#4| (-896 (-1169)))) (|has| |#4| (-6 -4405)) (-3743 (|has| |#4| (-1045)) (|has| |#4| (-636 (-563))))) (-4402 |has| |#4| (-1045)) (-4403 |has| |#4| (-1045)) ((-4410 "*") |has| |#4| (-172)) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-363))) (-2811 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1045)))) (-2811 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (QUOTE (-789))) (-2811 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-844)))) (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (QUOTE (-172))) (-2811 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (-2811 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-722)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-789)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-844)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093))))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-2811 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-722))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-2811 (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093)))) (-2811 (|HasAttribute| |#4| (QUOTE -4405)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) +((-4408 -4030 (-4267 (|has| |#4| (-1046)) (|has| |#4| (-233))) (-4267 (|has| |#4| (-1046)) (|has| |#4| (-897 (-1170)))) (|has| |#4| (-6 -4408)) (-4267 (|has| |#4| (-1046)) (|has| |#4| (-637 (-564))))) (-4405 |has| |#4| (-1046)) (-4406 |has| |#4| (-1046)) ((-4413 "*") |has| |#4| (-172)) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4030 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4030 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (QUOTE (-790))) (-4030 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (QUOTE (-845)))) (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (QUOTE (-172))) (-4030 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4030 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-723)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-790)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-845)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094))))) (-4030 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-723))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-790))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-845))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-4030 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (|HasCategory| |#4| (QUOTE (-723))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4030 (|HasCategory| |#4| (QUOTE (-1046))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (QUOTE (-1094)))) (-4030 (|HasAttribute| |#4| (QUOTE -4408)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1046)))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#4| (QUOTE (-1046))) (|HasCategory| |#4| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))))) (-251 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4405 -2811 (-3743 (|has| |#3| (-1045)) (|has| |#3| (-233))) (-3743 (|has| |#3| (-1045)) (|has| |#3| (-896 (-1169)))) (|has| |#3| (-6 -4405)) (-3743 (|has| |#3| (-1045)) (|has| |#3| (-636 (-563))))) (-4402 |has| |#3| (-1045)) (-4403 |has| |#3| (-1045)) ((-4410 "*") |has| |#3| (-172)) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-363))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-2811 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2811 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-722))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-2811 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-2811 (|HasAttribute| |#3| (QUOTE -4405)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) +((-4408 -4030 (-4267 (|has| |#3| (-1046)) (|has| |#3| (-233))) (-4267 (|has| |#3| (-1046)) (|has| |#3| (-897 (-1170)))) (|has| |#3| (-6 -4408)) (-4267 (|has| |#3| (-1046)) (|has| |#3| (-637 (-564))))) (-4405 |has| |#3| (-1046)) (-4406 |has| |#3| (-1046)) ((-4413 "*") |has| |#3| (-172)) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4030 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4030 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4030 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4030 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4030 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4030 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4030 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-723))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4030 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4030 (|HasAttribute| |#3| (QUOTE -4408)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (-252 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-233)))) (-253 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) NIL (-254 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4408 . T) (-4409 . T)) +((-4411 . T) (-4412 . T)) NIL (-255) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -986,8 +986,8 @@ NIL NIL (-264 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-265 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1032,11 +1032,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-276 R -2036) +(-276 R -3510) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-277 R -2036) +(-277 R -3510) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1055,10 +1055,10 @@ NIL (-281 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093)))) +((|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094)))) (-282 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4409 . T)) +((-4412 . T)) NIL (-283 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1079,21 +1079,21 @@ NIL (-287 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4409))) +((|HasAttribute| |#1| (QUOTE -4412))) (-288 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-289 S R |Mod| -2299 -2383 |exactQuo|) +(-289 S R |Mod| -4172 -2164 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-290) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4401 . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-291) -((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|List| (|Property|)) (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `nothing.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) NIL NIL (-292 R) @@ -1106,21 +1106,21 @@ NIL NIL (-294 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4405 -2811 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-1045)) (-4403 |has| |#1| (-1045))) -((|HasCategory| |#1| (QUOTE (-363))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2811 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722)))) (|HasCategory| |#1| (QUOTE (-473))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-1093)))) (-2811 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-302))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722)))) (-2811 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-172)))) +((-4408 -4030 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4405 |has| |#1| (-1046)) (-4406 |has| |#1| (-1046))) +((|HasCategory| |#1| (QUOTE (-363))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4030 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723)))) (|HasCategory| |#1| (QUOTE (-473))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4030 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-302))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4030 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723)))) (-4030 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-172)))) (-295 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|)))))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) (-296) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-297 -2036 S) +(-297 -3510 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-298 E -2036) +(-298 E -3510) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL @@ -1135,7 +1135,7 @@ NIL (-301 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-1045)))) +((|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1046)))) (-302) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1158,7 +1158,7 @@ NIL NIL (-307) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-308 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1168,7 +1168,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-310 -2036) +(-310 -3510) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1182,8 +1182,8 @@ NIL NIL (-313 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1018))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (-2811 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1144))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))) (-2811 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1019))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (-4030 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-817))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-1145))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1245) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-847))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))) (-4030 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1245 |#1| |#2| |#3| |#4|) (QUOTE (-906))) (|HasCategory| $ (QUOTE (-145)))))) (-314 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1194,9 +1194,9 @@ NIL NIL (-316 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4405 -2811 (-3743 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-12 (|has| |#1| (-555)) (-2811 (-3743 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (|has| |#1| (-1045)) (|has| |#1| (-473)))) (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-555)) (-4400 |has| |#1| (-555))) -((-2811 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (-2811 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-2811 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-2811 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-2811 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563))))) -(-317 R -2036) +((-4408 -4030 (-4267 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-12 (|has| |#1| (-556)) (-4030 (-4267 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (|has| |#1| (-1046)) (|has| |#1| (-473)))) (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) ((-4413 "*") |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-556)) (-4403 |has| |#1| (-556))) +((-4030 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (-4030 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1106)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4030 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4030 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1106)))) (-4030 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))))) (-4030 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1046)))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1106))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) +(-317 R -3510) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1206,8 +1206,8 @@ NIL NIL (-319 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-320 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1218,8 +1218,8 @@ NIL NIL (-322 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative."))) -((-4403 . T) (-4402 . T)) -((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-788)))) +((-4406 . T) (-4405 . T)) +((|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-789)))) (-323 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1227,26 +1227,26 @@ NIL (-324 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-767) (QUOTE (-788)))) +((|HasCategory| (-768) (QUOTE (-789)))) (-325 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL -((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172)))) +((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172)))) (-326 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-327 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-328 S -2036) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-328 S -3510) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-368)))) -(-329 -2036) +(-329 -3510) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-330) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1264,54 +1264,54 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-334 S -2036 UP UPUP R) +(-334 S -3510 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-335 -2036 UP UPUP R) +(-335 -3510 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-336 -2036 UP UPUP R) +(-336 -3510 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL (-337 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-338 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-339 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563))))) +((-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) (-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-341 S -2036 UP UPUP) +(-341 S -3510 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363)))) -(-342 -2036 UP UPUP) +(-342 -3510 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 |has| (-407 |#2|) (-363)) (-4409 |has| (-407 |#2|) (-363)) (-4403 |has| (-407 |#2|) (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-343 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) (-344 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-345 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-346 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1326,33 +1326,33 @@ NIL NIL (-349) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-350 R UP -2036) +(-350 R UP -3510) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-351 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) (-352 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-353 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-354 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| (-907 |#1|) (QUOTE (-145))) (|HasCategory| (-907 |#1|) (QUOTE (-368)))) (|HasCategory| (-907 |#1|) (QUOTE (-147))) (|HasCategory| (-907 |#1|) (QUOTE (-368))) (|HasCategory| (-907 |#1|) (QUOTE (-145)))) (-355 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) -(-356 -2036 GF) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +(-356 -3510 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1360,21 +1360,21 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-358 -2036 FP FPP) +(-358 -3510 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-359 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145)))) (-360 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL NIL (-361 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4405 . T)) +((-4408 . T)) NIL (-362 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1382,7 +1382,7 @@ NIL NIL (-363) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-364 |Name| S) ((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input."))) @@ -1395,10 +1395,10 @@ NIL (-366 S R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) NIL -((|HasCategory| |#2| (QUOTE (-555)))) +((|HasCategory| |#2| (QUOTE (-556)))) (-367 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T)) +((-4408 |has| |#1| (-556)) (-4406 . T) (-4405 . T)) NIL (-368) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1410,7 +1410,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-363)))) (-370 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) NIL (-371 S A R B) ((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1419,14 +1419,14 @@ NIL (-372 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093)))) +((|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094)))) (-373 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4408 . T)) +((-4411 . T)) NIL (-374 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4403 . T) (-4402 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4406 . T) (-4405 . T)) NIL (-375 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1435,10 +1435,10 @@ NIL (-376 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) +((|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-377 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) -((-4405 . T)) +((-4408 . T)) NIL (-378 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1446,7 +1446,7 @@ NIL NIL (-379) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4391 . T) (-4399 . T) (-1775 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4394 . T) (-4402 . T) (-2305 . T) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-380 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1454,11 +1454,11 @@ NIL NIL (-381 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) (-382 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) NIL (-383) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1470,15 +1470,15 @@ NIL NIL (-385 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) ((|HasCategory| |#1| (QUOTE (-172)))) (-386 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL -((|HasCategory| |#1| (QUOTE (-846)))) +((|HasCategory| |#1| (QUOTE (-847)))) (-387) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-388) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1490,13 +1490,13 @@ NIL NIL (-390 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) NIL (-391) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-392 -2036 UP UPUP R) +(-392 -3510 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1520,11 +1520,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-398 -3359 |returnType| -3975 |symbols|) +(-398 -4324 |returnType| -2692 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-399 -2036 UP) +(-399 -3510 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1538,15 +1538,15 @@ NIL NIL (-402) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-403 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4391)) (|HasAttribute| |#1| (QUOTE -4399))) +((|HasAttribute| |#1| (QUOTE -4394)) (|HasAttribute| |#1| (QUOTE -4402))) (-404) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-1775 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-2305 . T) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-405 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1558,20 +1558,20 @@ NIL NIL (-407 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4395 -12 (|has| |#1| (-6 -4406)) (|has| |#1| (-452)) (|has| |#1| (-6 -4395))) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-816))) (-2811 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-846)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4395)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) +((-4398 -12 (|has| |#1| (-6 -4409)) (|has| |#1| (-452)) (|has| |#1| (-6 -4398))) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-817))) (-4030 (|HasCategory| |#1| (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-847)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-825)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4409)) (|HasAttribute| |#1| (QUOTE -4398)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-408 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL NIL (-409 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) NIL (-410 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) +((|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-411 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1580,14 +1580,14 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-413 R -2036 UP A) +(-413 R -3510 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) -((-4405 . T)) +((-4408 . T)) NIL -(-414 R -2036 UP A |ibasis|) +(-414 R -3510 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL -((|HasCategory| |#4| (LIST (QUOTE -1034) (|devaluate| |#2|)))) +((|HasCategory| |#4| (LIST (QUOTE -1035) (|devaluate| |#2|)))) (-415 AR R AS S) ((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1598,12 +1598,12 @@ NIL ((|HasCategory| |#2| (QUOTE (-363)))) (-417 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T)) +((-4408 |has| |#1| (-556)) (-4406 . T) (-4405 . T)) NIL (-418 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1212))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452)))) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1213))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1213)))) (|HasCategory| |#1| (QUOTE (-1019))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452)))) (-419 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL @@ -1627,40 +1627,40 @@ NIL (-424 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368)))) +((|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-368)))) (-425 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4408 . T) (-4398 . T) (-4409 . T)) +((-4411 . T) (-4401 . T) (-4412 . T)) NIL -(-426 R -2036) +(-426 R -3510) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-427 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4395 -12 (|has| |#1| (-6 -4395)) (|has| |#2| (-6 -4395))) (-4402 . T) (-4403 . T) (-4405 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4395)) (|HasAttribute| |#2| (QUOTE -4395)))) -(-428 R -2036) +((-4398 -12 (|has| |#1| (-6 -4398)) (|has| |#2| (-6 -4398))) (-4405 . T) (-4406 . T) (-4408 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4398)) (|HasAttribute| |#2| (QUOTE -4398)))) +(-428 R -3510) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL (-429 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) +((|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1106))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-430 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4405 -2811 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-555)) (-4400 |has| |#1| (-555))) +((-4408 -4030 (|has| |#1| (-1046)) (|has| |#1| (-473))) (-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) ((-4413 "*") |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-556)) (-4403 |has| |#1| (-556))) NIL -(-431 R -2036) +(-431 R -3510) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-432 R -2036) +(-432 R -3510) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-433 R -2036) +(-433 R -3510) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1668,10 +1668,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-435 R -2036 UP) +(-435 R -3510 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-48))))) +((|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-48))))) (-436) ((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}."))) NIL @@ -1700,7 +1700,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-443 R UP -2036) +(-443 R UP -3510) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1738,16 +1738,16 @@ NIL NIL (-452) ((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-453 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4405 |has| (-407 (-948 |#1|)) (-555)) (-4403 . T) (-4402 . T)) -((|HasCategory| (-407 (-948 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| (-407 (-948 |#1|)) (QUOTE (-555)))) +((-4408 |has| (-407 (-949 |#1|)) (-556)) (-4406 . T) (-4405 . T)) +((|HasCategory| (-407 (-949 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-407 (-949 |#1|)) (QUOTE (-556)))) (-454 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-905))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) +(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-906))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) (-455 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1774,7 +1774,7 @@ NIL NIL (-461 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) NIL (-462 E V R P Q) ((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1782,8 +1782,8 @@ NIL NIL (-463 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}."))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) (-464 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1812,7 +1812,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-471 |lv| -2036 R) +(-471 |lv| -3510 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1822,23 +1822,23 @@ NIL NIL (-473) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4405 . T)) +((-4408 . T)) NIL (-474 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) (-475 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093)))) +((-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|)))))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094)))) (-476 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) (-477) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-478) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1846,29 +1846,29 @@ NIL NIL (-479 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|)))))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) (-480) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-481 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-905))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-482 -3807 S) +(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-906))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-482 -2781 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2811 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-2811 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +((-4405 |has| |#2| (-1046)) (-4406 |has| |#2| (-1046)) (-4408 |has| |#2| (-6 -4408)) ((-4413 "*") |has| |#2| (-172)) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4030 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4030 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) (-483) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header."))) NIL NIL (-484 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) -(-485 -2036 UP UPUP R) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-485 -3510 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1878,12 +1878,12 @@ NIL NIL (-487) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-2811 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145))))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4030 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) (-488 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) +((|HasAttribute| |#1| (QUOTE -4411)) (|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (-489 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1904,34 +1904,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-494 -2036 UP |AlExt| |AlPol|) +(-494 -3510 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-495) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563))))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| $ (QUOTE (-1046))) (|HasCategory| $ (LIST (QUOTE -1035) (QUOTE (-564))))) (-496 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-497 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-498 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-499 R UP -2036) +(-499 R UP -3510) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-500 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-858))))) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-112) (QUOTE (-1094))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-859))))) (-501 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1944,10 +1944,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-504 -2036 |Expon| |VarSet| |DPoly|) +(-504 -3510 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-1169))))) +((|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-1170))))) (-505 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -1991,39 +1991,39 @@ NIL (-515 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-788)))) +((|HasCategory| |#2| (QUOTE (-789)))) (-516 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-517) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-518 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| (-580 |#1|) (QUOTE (-145))) (|HasCategory| (-580 |#1|) (QUOTE (-368)))) (|HasCategory| (-580 |#1|) (QUOTE (-147))) (|HasCategory| (-580 |#1|) (QUOTE (-368))) (|HasCategory| (-580 |#1|) (QUOTE (-145)))) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| (-581 |#1|) (QUOTE (-145))) (|HasCategory| (-581 |#1|) (QUOTE (-368)))) (|HasCategory| (-581 |#1|) (QUOTE (-147))) (|HasCategory| (-581 |#1|) (QUOTE (-368))) (|HasCategory| (-581 |#1|) (QUOTE (-145)))) (-519 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-520 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-521 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4409))) +((|HasAttribute| |#3| (QUOTE -4412))) (-522 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4409))) +((|HasAttribute| |#7| (QUOTE -4412))) (-523 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4413 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (-524) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2056,7 +2056,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL NIL -(-532 K -2036 |Par|) +(-532 K -3510 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2080,7 +2080,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-538 K -2036 |Par|) +(-538 K -3510 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2110,7 +2110,7 @@ NIL NIL (-545) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4409 . T) (-4410 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL (-546) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2121,2956 +2121,2964 @@ NIL NIL NIL (-548) +((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 64 bits."))) +NIL +NIL +(-549) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 8 bits."))) NIL NIL -(-549 |Key| |Entry| |addDom|) +(-550 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) -(-550 R -2036) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|)))))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +(-551 R -3510) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-551 R0 -2036 UP UPUP R) +(-552 R0 -3510 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL -(-552) +(-553) ((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})"))) NIL NIL -(-553 R) +(-554 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-1775 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-2305 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-554 S) +(-555 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) NIL NIL -(-555) +(-556) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-556 R -2036) +(-557 R -3510) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL -(-557 I) +(-558 I) ((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}"))) NIL NIL -(-558) +(-559) ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-559 R -2036 L) +(-560 R -3510 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|)))) -(-560) +((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|)))) +(-561) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-561 -2036 UP UPUP R) +(-562 -3510 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-562 -2036 UP) +(-563 -3510 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL -(-563) +(-564) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}."))) -((-4390 . T) (-4396 . T) (-4400 . T) (-4395 . T) (-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4393 . T) (-4399 . T) (-4403 . T) (-4398 . T) (-4409 . T) (-4410 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-564) +(-565) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-565 R -2036 L) +(-566 R -3510 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|)))) -(-566 R -2036) +((|HasCategory| |#3| (LIST (QUOTE -652) (|devaluate| |#2|)))) +(-567 R -3510) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-626))))) -(-567 -2036 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1133)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-627))))) +(-568 -3510 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL -(-568 S) +(-569 S) ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-569 -2036) +(-570 -3510) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL -(-570 R) +(-571 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-1775 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-2305 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-571) +(-572) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-572 R -2036) +(-573 R -3510) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-626))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-555)))) -(-573 -2036 UP) +((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-627))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-556)))) +(-574 -3510 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-574 R -2036) +(-575 R -3510) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL -(-575) +(-576) ((|constructor| (NIL "This category describes byte stream conduits supporting both input and output operations."))) NIL NIL -(-576) +(-577) ((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file."))) NIL NIL -(-577) +(-578) ((|constructor| (NIL "This domain provides constants to describe directions of IO conduits (file,{} etc) mode of operations.")) (|bothWays| (($) "`bothWays' indicates that an IO conduit is for both input and output.")) (|output| (($) "`output' indicates that an IO conduit is for output")) (|input| (($) "`input' indicates that an IO conduit is for input."))) NIL NIL -(-578) +(-579) ((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'."))) NIL NIL -(-579 |p| |unBalanced?|) +(-580 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-580 |p|) +(-581 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) ((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368)))) -(-581) +(-582) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-582 R -2036) +(-583 R -3510) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-583 E -2036) +(-584 E -3510) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-584 -2036) +(-585 -3510) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4403 . T) (-4402 . T)) -((|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169))))) -(-585 I) +((-4406 . T) (-4405 . T)) +((|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-1170))))) +(-586 I) ((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise"))) NIL NIL -(-586 GF) +(-587 GF) ((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field."))) NIL NIL -(-587 R) +(-588 R) ((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL ((|HasCategory| |#1| (QUOTE (-147)))) -(-588) +(-589) ((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented."))) NIL NIL -(-589 R E V P TS) +(-590 R E V P TS) ((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial."))) NIL NIL -(-590) +(-591) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-591 |mn|) +(-592 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-2811 (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) -(-592 E V R P) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4030 (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +(-593 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-593 |Coef|) -((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))) (|HasCategory| (-563) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563)))))) (-594 |Coef|) +((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))) (|HasCategory| (-564) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564)))))) +(-595 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -((-4403 |has| |#1| (-555)) (-4402 |has| |#1| (-555)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-555)))) -(-595 A B) +((-4406 |has| |#1| (-556)) (-4405 |has| |#1| (-556)) ((-4413 "*") |has| |#1| (-556)) (-4404 |has| |#1| (-556)) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-556)))) +(-596 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-596 A B C) +(-597 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-597 R -2036 FG) +(-598 R -3510 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-598 S) +(-599 S) ((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-599 R |mn|) +(-600 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-600 S |Index| |Entry|) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-601 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-846))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#3| (QUOTE (-1093)))) -(-601 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-847))) (|HasAttribute| |#1| (QUOTE -4411)) (|HasCategory| |#3| (QUOTE (-1094)))) +(-602 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-602) +(-603) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes."))) NIL NIL -(-603) +(-604) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-604 R A) +(-605 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4405 -2811 (-3743 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4403 . T) (-4402 . T)) -((-2811 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) -(-605 |Entry|) +((-4408 -4030 (-4267 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4406 . T) (-4405 . T)) +((-4030 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) +(-606 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (LIST (QUOTE -610) (QUOTE (-858))))) -(-606 S |Key| |Entry|) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (LIST (QUOTE -611) (QUOTE (-859))))) +(-607 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-607 |Key| |Entry|) +(-608 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4409 . T)) +((-4412 . T)) NIL -(-608 R S) +(-609 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-609 S) +(-610 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) -(-610 S) +((|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) +(-611 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-611 S) +(-612 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-612 -2036 UP) +(-613 -3510 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-613 S) +(-614 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-614) +(-615) ((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|true| (($) "the definite truth value")) (|unknown| (($) "the indefinite `unknown'")) (|false| (($) "the definite falsehood value"))) NIL NIL -(-615 S) +(-616 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'."))) NIL NIL -(-616 S R) +(-617 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-617 R) +(-618 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4405 . T)) +((-4408 . T)) NIL -(-618 A R S) +(-619 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-844)))) -(-619 R -2036) +((-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-845)))) +(-620 R -3510) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL -(-620 R UP) +(-621 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4401 . T) (-4405 . T)) -((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) -(-621 R E V P TS ST) +((-4406 . T) (-4405 . T) ((-4413 "*") . T) (-4404 . T) (-4408 . T)) +((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) +(-622 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional."))) NIL NIL -(-622 OV E Z P) +(-623 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-623) +(-624) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-624 |VarSet| R |Order|) +(-625 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4405 . T)) +((-4408 . T)) NIL -(-625 R |ls|) +(-626 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}."))) NIL NIL -(-626) +(-627) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-627 R -2036) +(-628 R -3510) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-628 |lv| -2036) +(-629 |lv| -3510) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-629) +(-630) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -3704) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1151) (QUOTE (-846))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (QUOTE (-1093)))) -(-630 S R) +((-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2423) (QUOTE (-52))))))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1152) (QUOTE (-847))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (QUOTE (-1094)))) +(-631 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-363)))) -(-631 R) +(-632 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4403 . T) (-4402 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4406 . T) (-4405 . T)) NIL -(-632 R A) +(-633 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4405 -2811 (-3743 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4403 . T) (-4402 . T)) -((-2811 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) -(-633 R FE) +((-4408 -4030 (-4267 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))) (-4406 . T) (-4405 . T)) +((-4030 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) +(-634 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL NIL -(-634 R) +(-635 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-635 S R) +(-636 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-3730 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363)))) -(-636 R) +((-4255 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363)))) +(-637 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) -((-4405 . T)) +((-4408 . T)) NIL -(-637 A B) +(-638 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-638 A B) +(-639 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}."))) NIL NIL -(-639 A B C) +(-640 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-640 S) +(-641 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-641 T$) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-825))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-642 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-642 S) +(-643 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) -(-643 R) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-644 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-644 S E |un|) +(-645 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-645 A S) +(-646 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4409))) -(-646 S) +((|HasAttribute| |#1| (QUOTE -4412))) +(-647 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-647 R -2036 L) +(-648 R -3510 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-648 A) +(-649 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-649 A M) +((-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-650 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-650 S A) +((-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-651 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-363)))) -(-651 A) +(-652 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-652 -2036 UP) +(-653 -3510 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-653 A -2312) +(-654 A -2919) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-654 A L) +((-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-655 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-655 S) +(-656 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-656) +(-657) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-657 M R S) +(-658 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4403 . T) (-4402 . T)) -((|HasCategory| |#1| (QUOTE (-787)))) -(-658 R) +((-4406 . T) (-4405 . T)) +((|HasCategory| |#1| (QUOTE (-788)))) +(-659 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-659 |VarSet| R) +(-660 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4403 . T) (-4402 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4406 . T) (-4405 . T)) ((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-172)))) -(-660 A S) +(-661 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-661 S) +(-662 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-662 -2036) +(-663 -3510) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-663 -2036 |Row| |Col| M) +(-664 -3510 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-664 R E OV P) +(-665 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-665 |n| R) +(-666 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4405 . T) (-4408 . T) (-4402 . T) (-4403 . T)) -((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555))) (-2811 (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-666) +((-4408 . T) (-4411 . T) (-4405 . T) (-4406 . T)) +((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556))) (-4030 (|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-667) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-667 |VarSet|) +(-668 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-668 A S) +(-669 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-669 S) +(-670 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) NIL NIL -(-670 R) +(-671 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-671) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-672) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-672 |VarSet|) +(-673 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-673 A) +(-674 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-674 A C) +(-675 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument."))) NIL NIL -(-675 A B C) +(-676 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}."))) NIL NIL -(-676) +(-677) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,{}t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-677 A) +(-678 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-678 A C) +(-679 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-679 A B C) +(-680 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}"))) NIL NIL -(-680 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-681 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-681 S R |Row| |Col|) +(-682 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555)))) -(-682 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-556)))) +(-683 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4408 . T) (-4409 . T)) +((-4411 . T) (-4412 . T)) NIL -(-683 R |Row| |Col| M) +(-684 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL -((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555)))) -(-684 R) -((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4408 . T) (-4409 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556)))) (-685 R) +((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) +((-4411 . T) (-4412 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-556))) (|HasAttribute| |#1| (QUOTE (-4413 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-686 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-686 T$) +(-687 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-687 S -2036 FLAF FLAS) +(-688 S -3510 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-688 R Q) +(-689 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-689) +(-690) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4401 . T) (-4406 |has| (-694) (-363)) (-4400 |has| (-694) (-363)) (-1786 . T) (-4407 |has| (-694) (-6 -4407)) (-4404 |has| (-694) (-6 -4404)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-694) (QUOTE (-147))) (|HasCategory| (-694) (QUOTE (-145))) (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-368))) (|HasCategory| (-694) (QUOTE (-363))) (-2811 (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-233))) (-2811 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (LIST (QUOTE -286) (QUOTE (-694)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -309) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-2811 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-694) (QUOTE (-1018))) (|HasCategory| (-694) (QUOTE (-1193))) (-12 (|HasCategory| (-694) (QUOTE (-998))) (|HasCategory| (-694) (QUOTE (-1193)))) (-2811 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (-2811 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (|HasCategory| (-694) (QUOTE (-545))) (-12 (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-1193)))) (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905))) (-2811 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363)))) (-2811 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-555)))) (-12 (|HasCategory| (-694) (QUOTE (-233))) (|HasCategory| (-694) (QUOTE (-363)))) (-12 (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-846))) (|HasCategory| (-694) (QUOTE (-555))) (|HasAttribute| (-694) (QUOTE -4407)) (|HasAttribute| (-694) (QUOTE -4404)) (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-145)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-349))))) -(-690 S) +((-4404 . T) (-4409 |has| (-695) (-363)) (-4403 |has| (-695) (-363)) (-2315 . T) (-4410 |has| (-695) (-6 -4410)) (-4407 |has| (-695) (-6 -4407)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-695) (QUOTE (-147))) (|HasCategory| (-695) (QUOTE (-145))) (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-368))) (|HasCategory| (-695) (QUOTE (-363))) (-4030 (|HasCategory| (-695) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-233))) (-4030 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (LIST (QUOTE -286) (QUOTE (-695)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -309) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-695)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-695) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-695) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (-4030 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-349)))) (|HasCategory| (-695) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-695) (QUOTE (-1019))) (|HasCategory| (-695) (QUOTE (-1194))) (-12 (|HasCategory| (-695) (QUOTE (-999))) (|HasCategory| (-695) (QUOTE (-1194)))) (-4030 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (-4030 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-363))) (|HasCategory| (-695) (QUOTE (-906)))) (-12 (|HasCategory| (-695) (QUOTE (-349))) (|HasCategory| (-695) (QUOTE (-906))))) (|HasCategory| (-695) (QUOTE (-545))) (-12 (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-1194)))) (|HasCategory| (-695) (QUOTE (-1055))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906))) (-4030 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-363)))) (-4030 (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-556)))) (-12 (|HasCategory| (-695) (QUOTE (-233))) (|HasCategory| (-695) (QUOTE (-363)))) (-12 (|HasCategory| (-695) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-695) (QUOTE (-363)))) (|HasCategory| (-695) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-695) (QUOTE (-847))) (|HasCategory| (-695) (QUOTE (-556))) (|HasAttribute| (-695) (QUOTE -4410)) (|HasAttribute| (-695) (QUOTE -4407)) (-12 (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-145)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-695) (QUOTE (-307))) (|HasCategory| (-695) (QUOTE (-906)))) (|HasCategory| (-695) (QUOTE (-349))))) +(-691 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4409 . T)) +((-4412 . T)) NIL -(-691 U) +(-692 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-692) +(-693) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-693 OV E -2036 PG) +(-694 OV E -3510 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-694) +(-695) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-1775 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-2305 . T) (-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-695 R) +(-696 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-696) +(-697) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4407 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4410 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-697 S D1 D2 I) +(-698 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-698 S) +(-699 S) ((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set."))) NIL NIL -(-699 S) +(-700 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-700 S) +(-701 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-701 S T$) +(-702 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-702 S -4191 I) +(-703 S -2124 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-703 E OV R P) +(-704 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented"))) NIL NIL -(-704 R) +(-705 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-705 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-706 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-706) +(-707) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-707 R |Mod| -2299 -2383 |exactQuo|) +(-708 R |Mod| -4172 -2164 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-708 R |Rep|) +(-709 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-709 IS E |ff|) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4407 |has| |#1| (-363)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-710 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-710 R M) +(-711 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T)) +((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-711 R |Mod| -2299 -2383 |exactQuo|) +(-712 R |Mod| -4172 -2164 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4405 . T)) +((-4408 . T)) NIL -(-712 S R) +(-713 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-713 R) +(-714 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) NIL -(-714 -2036) +(-715 -3510) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) -((-4405 . T)) +((-4408 . T)) NIL -(-715 S) +(-716 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-716) +(-717) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-717 S) +(-718 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-718) +(-719) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-719 S R UP) +(-720 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368)))) -(-720 R UP) +(-721 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4401 |has| |#1| (-363)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 |has| |#1| (-363)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-721 S) +(-722 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-722) +(-723) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-723 -2036 UP) +(-724 -3510 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-724 |VarSet| E1 E2 R S PR PS) +(-725 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-725 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-726 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-726 E OV R PPR) +(-727 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-727 |vl| R) +(-728 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-905))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-728 E OV R PRF) +(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-906))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-861 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-729 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-729 E OV R P) +(-730 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-730 R S M) +(-731 R S M) ((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-731 R M) +(-732 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-846)))) -(-732 S) +((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-847)))) +(-733 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4398 . T) (-4409 . T)) +((-4401 . T) (-4412 . T)) NIL -(-733 S) +(-734 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4408 . T) (-4398 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) -(-734) +((-4411 . T) (-4401 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-735) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-735 S) +(-736 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-736 |Coef| |Var|) +(-737 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4406 . T) (-4405 . T) (-4408 . T)) NIL -(-737 OV E R P) +(-738 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-738 E OV R P) +(-739 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-739 S R) +(-740 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-740 R) +(-741 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) NIL -(-741) +(-742) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-742) +(-743) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-743) +(-744) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-744) +(-745) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-745) +(-746) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-746) +(-747) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-747) +(-748) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-748) +(-749) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-749) +(-750) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-750) +(-751) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-751) +(-752) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-752) +(-753) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-753) +(-754) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-754) +(-755) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-755) +(-756) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-756 S) +(-757 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-757) +(-758) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-758 S) +(-759 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-759) +(-760) ((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-760 |Par|) +(-761 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-761 -2036) +(-762 -3510) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-762 P -2036) +(-763 P -3510) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-763 T$) +(-764 T$) NIL NIL NIL -(-764 UP -2036) +(-765 UP -3510) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-765) +(-766) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-766 R) +(-767 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-767) +(-768) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4410 "*") . T)) +(((-4413 "*") . T)) NIL -(-768 R -2036) +(-769 R -3510) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-769 S) +(-770 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-770) +(-771) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-771 R |PolR| E |PolE|) +(-772 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-772 R E V P TS) +(-773 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-773 -2036 |ExtF| |SUEx| |ExtP| |n|) +(-774 -3510 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-774 BP E OV R P) +(-775 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-775 |Par|) +(-776 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable."))) NIL NIL -(-776 R |VarSet|) +(-777 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-3730 (|HasCategory| |#1| (QUOTE (-545)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563))))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-3730 (|HasCategory| |#1| (LIST (QUOTE -988) (QUOTE (-563))))))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-777 R S) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4255 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4255 (|HasCategory| |#1| (QUOTE (-545)))) (-4255 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4255 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-564))))) (-4255 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-1170)))) (-4255 (|HasCategory| |#1| (LIST (QUOTE -989) (QUOTE (-564))))))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-778 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-778 R) -((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) (-779 R) +((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4407 |has| |#1| (-363)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-780 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) -(-780 R E V P) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) +(-781 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-781 S) +(-782 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-172)))) -(-782) +((-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-847)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-1046))) (|HasCategory| |#1| (QUOTE (-172)))) +(-783) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-783) +(-784) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-784) +(-785) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-785) +(-786) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-786 |Curve|) +(-787 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-787) +(-788) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering."))) NIL NIL -(-788) +(-789) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-789) +(-790) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-790) +(-791) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-791) +(-792) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-792 S R) +(-793 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368)))) -(-793 R) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-368)))) +(-794 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-794 -2811 R OS S) +(-795 -4030 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-795 R) +(-796 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-2811 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (-2811 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) -(-796) +((-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4030 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4030 (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-996 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) +(-797) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-797 R -2036 L) +(-798 R -3510 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-798 R -2036) +(-799 R -3510) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-799) +(-800) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-800 R -2036) +(-801 R -3510) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-801) +(-802) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-802 -2036 UP UPUP R) +(-803 -3510 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-803 -2036 UP L LQ) +(-804 -3510 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-804) +(-805) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-805 -2036 UP L LQ) +(-806 -3510 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-806 -2036 UP) +(-807 -3510 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-807 -2036 L UP A LO) +(-808 -3510 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-808 -2036 UP) +(-809 -3510 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-809 -2036 LO) +(-810 -3510 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-810 -2036 LODO) +(-811 -3510 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-811 -3807 S |f|) +(-812 -2781 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-2811 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-2811 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) -(-812 R) +((-4405 |has| |#2| (-1046)) (-4406 |has| |#2| (-1046)) (-4408 |has| |#2| (-6 -4408)) ((-4413 "*") |has| |#2| (-172)) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-363))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-790))) (-4030 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845)))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-172))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1046)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-845)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-790))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-845))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1046)))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4030 (|HasCategory| |#2| (QUOTE (-1046))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-1094)))) (|HasAttribute| |#2| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))))) +(-813 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-813 |Kernels| R |var|) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-815 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-814 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4410 "*") |has| |#2| (-363)) (-4401 |has| |#2| (-363)) (-4406 |has| |#2| (-363)) (-4400 |has| |#2| (-363)) (-4405 . T) (-4403 . T) (-4402 . T)) +(((-4413 "*") |has| |#2| (-363)) (-4404 |has| |#2| (-363)) (-4409 |has| |#2| (-363)) (-4403 |has| |#2| (-363)) (-4408 . T) (-4406 . T) (-4405 . T)) ((|HasCategory| |#2| (QUOTE (-363)))) -(-814 S) +(-815 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-815 S) +(-816 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) NIL NIL -(-816) +(-817) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-817) +(-818) ((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}"))) NIL NIL -(-818) +(-819) ((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}."))) NIL NIL -(-819) +(-820) ((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device."))) NIL NIL -(-820) +(-821) ((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error."))) NIL NIL -(-821) +(-822) ((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents."))) NIL NIL -(-822 R) +(-823 R) ((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath."))) NIL NIL -(-823 P R) +(-824 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) ((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233)))) -(-824) +(-825) ((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object."))) NIL NIL -(-825) +(-826) ((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM."))) NIL NIL -(-826 S) +(-827 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4408 . T) (-4398 . T) (-4409 . T)) +((-4411 . T) (-4401 . T) (-4412 . T)) NIL -(-827) +(-828) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) NIL NIL -(-828 R S) +(-829 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-829 R) +(-830 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4405 |has| |#1| (-844))) -((|HasCategory| |#1| (QUOTE (-844))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-2811 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) -(-830 A S) +((-4408 |has| |#1| (-845))) +((|HasCategory| |#1| (QUOTE (-845))) (-4030 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4030 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) +(-831 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL NIL -(-831 S) +(-832 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of `op'."))) NIL NIL -(-832 R) +(-833 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T)) +((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147)))) -(-833) +(-834) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages)."))) NIL NIL -(-834) +(-835) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,{}sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}."))) NIL NIL -(-835) +(-836) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-836) +(-837) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-837) +(-838) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-838 R S) +(-839 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-839 R) +(-840 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4405 |has| |#1| (-844))) -((|HasCategory| |#1| (QUOTE (-844))) (-2811 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-2811 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) -(-840) +((-4408 |has| |#1| (-845))) +((|HasCategory| |#1| (QUOTE (-845))) (-4030 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-845)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4030 (|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21)))) +(-841) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-841 -3807 S) +(-842 -2781 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-842) +(-843) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-843 S) +(-844 S) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) NIL NIL -(-844) +(-845) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0."))) -((-4405 . T)) +((-4408 . T)) NIL -(-845 S) +(-846 S) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-846) +(-847) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set."))) NIL NIL -(-847 S R) +(-848 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) NIL -((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172)))) -(-848 R) +((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172)))) +(-849 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}"))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-849 R C) +(-850 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL -((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) -(-850 R |sigma| -2016) +((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) +(-851 R |sigma| -3178) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) -(-851 |x| R |sigma| -2016) +((-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363)))) +(-852 |x| R |sigma| -3178) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363)))) -(-852 R) +((-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363)))) +(-853 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}."))) NIL -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) -(-853) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) +(-854) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-854) +(-855) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-855 S) +(-856 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-856) +(-857) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,{}b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,{}b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,{}b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,{}b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-857) +(-858) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file."))) NIL NIL -(-858) +(-859) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-859) +(-860) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-860 |VariableList|) +(-861 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-861) +(-862) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-862 R |vl| |wl| |wtlevel|) +(-863 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T)) +((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) -(-863 R PS UP) +(-864 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-864 R |x| |pt|) +(-865 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-865 |p|) +(-866 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-866 |p|) +(-867 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-867 |p|) +(-868 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-866 |#1|) (QUOTE (-905))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-147))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-866 |#1|) (QUOTE (-1018))) (|HasCategory| (-866 |#1|) (QUOTE (-816))) (-2811 (|HasCategory| (-866 |#1|) (QUOTE (-816))) (|HasCategory| (-866 |#1|) (QUOTE (-846)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-1144))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-233))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -866) (|devaluate| |#1|)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (QUOTE (-307))) (|HasCategory| (-866 |#1|) (QUOTE (-545))) (|HasCategory| (-866 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))))) -(-868 |p| PADIC) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-867 |#1|) (QUOTE (-906))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-147))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-867 |#1|) (QUOTE (-1019))) (|HasCategory| (-867 |#1|) (QUOTE (-817))) (-4030 (|HasCategory| (-867 |#1|) (QUOTE (-817))) (|HasCategory| (-867 |#1|) (QUOTE (-847)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-1145))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| (-867 |#1|) (QUOTE (-233))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -867) (|devaluate| |#1|)) (LIST (QUOTE -867) (|devaluate| |#1|)))) (|HasCategory| (-867 |#1|) (QUOTE (-307))) (|HasCategory| (-867 |#1|) (QUOTE (-545))) (|HasCategory| (-867 |#1|) (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-867 |#1|) (QUOTE (-906)))) (|HasCategory| (-867 |#1|) (QUOTE (-145))))) +(-869 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (-2811 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-869 S T$) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (-4030 (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-847))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-870 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))) -(-870) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))))) +(-871) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL NIL -(-871) +(-872) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-872 CF1 CF2) +(-873 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-873 |ComponentFunction|) +(-874 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-874 CF1 CF2) +(-875 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-875 |ComponentFunction|) +(-876 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-876) +(-877) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-877 CF1 CF2) +(-878 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented"))) NIL NIL -(-878 |ComponentFunction|) +(-879 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-879) +(-880) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}"))) NIL NIL -(-880 R) +(-881 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-881 R S L) +(-882 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-882 S) +(-883 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-883 |Base| |Subject| |Pat|) +(-884 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-3730 (|HasCategory| |#2| (QUOTE (-1045)))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (-3730 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) -(-884 R A B) +((-12 (-4255 (|HasCategory| |#2| (QUOTE (-1046)))) (-4255 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#2| (QUOTE (-1046))) (-4255 (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) +(-885 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL NIL -(-885 R S) +(-886 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-886 R -4191) +(-887 R -2124) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-887 R S) +(-888 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-888 R) +(-889 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-889 |VarSet|) +(-890 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-890 UP R) +(-891 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented"))) NIL NIL -(-891) +(-892) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-892 UP -2036) +(-893 UP -3510) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-893) +(-894) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}"))) NIL NIL -(-894) +(-895) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-895 A S) +(-896 A S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-896 S) +(-897 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) -((-4405 . T)) +((-4408 . T)) NIL -(-897 S) +(-898 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) -(-898 |n| R) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-899 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-899 S) +(-900 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4405 . T)) +((-4408 . T)) NIL -(-900 S) +(-901 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-901 S) +(-902 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4405 . T)) -((-2811 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) -(-902 R E |VarSet| S) +((-4408 . T)) +((-4030 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-847)))) +(-903 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-903 R S) +(-904 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-904 S) +(-905 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-145)))) -(-905) +(-906) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-906 |p|) +(-907 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) ((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368)))) -(-907 R0 -2036 UP UPUP R) +(-908 R0 -3510 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-908 UP UPUP R) +(-909 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-909 UP UPUP) +(-910 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-910 R) +(-911 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-911 R) +(-912 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-912 E OV R P) +(-913 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-913) +(-914) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-914 -2036) +(-915 -3510) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-915 R) +(-916 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-916) +(-917) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-917) +(-918) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4410 "*") . T)) +(((-4413 "*") . T)) NIL -(-918 -2036 P) +(-919 -3510 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-919 |xx| -2036) +(-920 |xx| -3510) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL -(-920 R |Var| |Expon| GR) +(-921 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-921 S) +(-922 S) ((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-922) +(-923) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-923) +(-924) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}."))) NIL NIL -(-924) +(-925) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-925 R -2036) +(-926 R -3510) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-926) +(-927) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-927 S A B) +(-928 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-928 S R -2036) +(-929 S R -3510) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-929 I) +(-930 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-930 S E) +(-931 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-931 S R L) +(-932 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-932 S E V R P) +(-933 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (LIST (QUOTE -882) (|devaluate| |#1|)))) -(-933 R -2036 -4191) +((|HasCategory| |#3| (LIST (QUOTE -883) (|devaluate| |#1|)))) +(-934 R -3510 -2124) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-934 -4191) +(-935 -2124) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-935 S R Q) +(-936 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-936 S) +(-937 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-937 S R P) +(-938 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-938) +(-939) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}."))) NIL NIL -(-939 R) +(-940 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-940 |lv| R) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-941 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-941 |TheField| |ThePols|) +(-942 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-844)))) -(-942 R S) +((|HasCategory| |#1| (QUOTE (-845)))) +(-943 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-943 |x| R) +(-944 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-944 S R E |VarSet|) +(-945 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-905))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846)))) -(-945 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-906))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-847)))) +(-946 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) NIL -(-946 E V R P -2036) +(-947 E V R P -3510) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-947 E |Vars| R P S) +(-948 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-948 R) +(-949 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-949 E V R P -2036) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1170) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-950 E V R P -3510) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-452)))) -(-950) +(-951) ((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}."))) NIL NIL -(-951) +(-952) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-952 R L) +(-953 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}."))) NIL NIL -(-953 A B) +(-954 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) NIL NIL -(-954 S) +(-955 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-955) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-956) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-956 -2036) +(-957 -3510) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL -(-957 I) +(-958 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-958) +(-959) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-959 R E) +(-960 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4406))) -(-960 A B) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4409))) +(-961 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) -((-4405 -12 (|has| |#2| (-473)) (|has| |#1| (-473)))) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) -(-961) +((-4408 -12 (|has| |#2| (-473)) (|has| |#1| (-473)))) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-790))) (|HasCategory| |#2| (QUOTE (-790))))) (-12 (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-723)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-847))))) +(-962) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-962 T$) +(-963 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL NIL -(-963) +(-964) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}."))) NIL NIL -(-964 S) +(-965 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4408 . T) (-4409 . T)) +((-4411 . T) (-4412 . T)) NIL -(-965 R |polR|) +(-966 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-452)))) -(-966) +(-967) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-967) +(-968) ((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-968 S |Coef| |Expon| |Var|) +(-969 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) NIL NIL -(-969 |Coef| |Expon| |Var|) +(-970 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-970) +(-971) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-971 S R E |VarSet| P) +(-972 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL -((|HasCategory| |#2| (QUOTE (-555)))) -(-972 R E |VarSet| P) +((|HasCategory| |#2| (QUOTE (-556)))) +(-973 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4408 . T)) +((-4411 . T)) NIL -(-973 R E V P) +(-974 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-452)))) -(-974 K) +(-975 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-975 |VarSet| E RC P) +(-976 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-976 R) +(-977 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-977 R1 R2) +(-978 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) NIL NIL -(-978 R) +(-979 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-979 K) +(-980 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-980 R E OV PPR) +(-981 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-981 K R UP -2036) +(-982 K R UP -3510) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-982 |vl| |nv|) +(-983 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-983 R |Var| |Expon| |Dpoly|) +(-984 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-307))))) -(-984 R E V P TS) +(-985 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-985) +(-986) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation."))) NIL NIL -(-986 A B R S) +(-987 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-987 A S) +(-988 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144)))) -(-988 S) +((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1019))) (|HasCategory| |#2| (QUOTE (-817))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-1145)))) +(-989 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-989 |n| K) +(-990 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-990) +(-991) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-991 S) +(-992 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4408 . T) (-4409 . T)) +((-4411 . T) (-4412 . T)) NIL -(-992 S R) +(-993 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-290)))) -(-993 R) +((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1055))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-290)))) +(-994 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4401 |has| |#1| (-290)) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 |has| |#1| (-290)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-994 QR R QS S) +(-995 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-995 R) +(-996 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4401 |has| |#1| (-290)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-2811 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545)))) -(-996 S) -((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) +((-4404 |has| |#1| (-290)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4030 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-1055))) (|HasCategory| |#1| (QUOTE (-545)))) (-997 S) +((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-998 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-998) +(-999) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-999 -2036 UP UPUP |radicnd| |n|) +(-1000 -3510 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-2811 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-2811 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-2811 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-2811 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) -(-1000 |bb|) +((-4404 |has| (-407 |#2|) (-363)) (-4409 |has| (-407 |#2|) (-363)) (-4403 |has| (-407 |#2|) (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4030 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4030 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4030 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -637) (QUOTE (-564)))) (-4030 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363))))) +(-1001 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-2811 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145))))) -(-1001) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-564) (QUOTE (-906))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| (-564) (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-147))) (|HasCategory| (-564) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-1019))) (|HasCategory| (-564) (QUOTE (-817))) (-4030 (|HasCategory| (-564) (QUOTE (-817))) (|HasCategory| (-564) (QUOTE (-847)))) (|HasCategory| (-564) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-1145))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| (-564) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| (-564) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| (-564) (QUOTE (-233))) (|HasCategory| (-564) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| (-564) (LIST (QUOTE -514) (QUOTE (-1170)) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -309) (QUOTE (-564)))) (|HasCategory| (-564) (LIST (QUOTE -286) (QUOTE (-564)) (QUOTE (-564)))) (|HasCategory| (-564) (QUOTE (-307))) (|HasCategory| (-564) (QUOTE (-545))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-564) (LIST (QUOTE -637) (QUOTE (-564)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-564) (QUOTE (-906)))) (|HasCategory| (-564) (QUOTE (-145))))) +(-1002) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1002) +(-1003) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1003 RP) +(-1004 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1004 S) +(-1005 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1005 A S) +(-1006 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-1093)))) -(-1006 S) +((|HasAttribute| |#1| (QUOTE -4412)) (|HasCategory| |#2| (QUOTE (-1094)))) +(-1007 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1007 S) +(-1008 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1008) +(-1009) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4401 . T) (-4406 . T) (-4400 . T) (-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4405 . T)) +((-4404 . T) (-4409 . T) (-4403 . T) (-4406 . T) (-4405 . T) ((-4413 "*") . T) (-4408 . T)) NIL -(-1009 R -2036) +(-1010 R -3510) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1010 R -2036) +(-1011 R -3510) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1011 -2036 UP) +(-1012 -3510 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1012 -2036 UP) +(-1013 -3510 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1013 S) +(-1014 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1014 F1 UP UPUP R F2) +(-1015 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented"))) NIL NIL -(-1015) +(-1016) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1016 |Pol|) +(-1017 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1017 |Pol|) +(-1018 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1018) +(-1019) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1019) +(-1020) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1020 |TheField|) +(-1021 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4401 . T) (-4406 . T) (-4400 . T) (-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4405 . T)) -((-2811 (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563))))) -(-1021 -2036 L) +((-4404 . T) (-4409 . T) (-4403 . T) (-4406 . T) (-4405 . T) ((-4413 "*") . T) (-4408 . T)) +((-4030 (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-407 (-564)) (LIST (QUOTE -1035) (QUOTE (-564))))) +(-1022 -3510 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1022 S) +(-1023 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1093)))) -(-1023 R E V P) +((|HasCategory| |#1| (QUOTE (-1094)))) +(-1024 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) -(-1024 R) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) +(-1025 R) ((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4410 "*")))) -(-1025 R) +((|HasAttribute| |#1| (QUOTE (-4413 "*")))) +(-1026 R) ((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307)))) -(-1026 S) +(-1027 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1027) +(-1028) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1028 S) +(-1029 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1029 S) +(-1030 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1030 -2036 |Expon| |VarSet| |FPol| |LFPol|) +(-1031 -3510 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1031) -((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -3704) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858))))) (-1032) +((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -2423) (QUOTE (-52))))))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859))))) +(-1033) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1033 A S) +(-1034 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1034 S) +(-1035 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1035 Q R) +(-1036 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1036) +(-1037) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1037 UP) +(-1038 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1038 R) +(-1039 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1039 R) +(-1040 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1040 T$) +(-1041 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}."))) NIL NIL -(-1041 T$) +(-1042 T$) ((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1042 R |ls|) +(-1043 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1093))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -776) (|devaluate| |#1|) (LIST (QUOTE -860) (|devaluate| |#2|)))))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| (-860 |#2|) (QUOTE (-368))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) -(-1043) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| (-777 |#1| (-861 |#2|)) (QUOTE (-1094))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -777) (|devaluate| |#1|) (LIST (QUOTE -861) (|devaluate| |#2|)))))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-777 |#1| (-861 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| (-861 |#2|) (QUOTE (-368))) (|HasCategory| (-777 |#1| (-861 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +(-1044) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1044 S) +(-1045 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1045) +(-1046) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4405 . T)) +((-4408 . T)) NIL -(-1046 |xx| -2036) +(-1047 |xx| -3510) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1047 S |m| |n| R |Row| |Col|) +(-1048 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL -((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-555))) (|HasCategory| |#4| (QUOTE (-172)))) -(-1048 |m| |n| R |Row| |Col|) +((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-556))) (|HasCategory| |#4| (QUOTE (-172)))) +(-1049 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4408 . T) (-4403 . T) (-4402 . T)) +((-4411 . T) (-4406 . T) (-4405 . T)) NIL -(-1049 |m| |n| R) +(-1050 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4408 . T) (-4403 . T) (-4402 . T)) -((-2811 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858))))) -(-1050 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4411 . T) (-4406 . T) (-4405 . T)) +((-4030 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) +(-1051 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1051 R) +(-1052 R) ((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL NIL -(-1052) +(-1053) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1053 S) +(-1054 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1054) +(-1055) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1055 |TheField| |ThePolDom|) +(-1056 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1056) +(-1057) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4396 . T) (-4400 . T) (-4395 . T) (-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4399 . T) (-4403 . T) (-4398 . T) (-4409 . T) (-4410 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1057) +(-1058) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -3704) (QUOTE (-52))))))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (LIST (QUOTE -610) (QUOTE (-858))))) -(-1058 S R E V) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (QUOTE (-1170))) (LIST (QUOTE |:|) (QUOTE -2423) (QUOTE (-52))))))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-52) (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1094))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (QUOTE (-1094))) (|HasCategory| (-1170) (QUOTE (-847))) (|HasCategory| (-52) (QUOTE (-1094))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-52) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (LIST (QUOTE -611) (QUOTE (-859))))) +(-1059 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -988) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-1169))))) -(-1059 R E V) +((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -989) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-1170))))) +(-1060 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) NIL -(-1060) +(-1061) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1061 S |TheField| |ThePols|) +(-1062 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1062 |TheField| |ThePols|) +(-1063 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1063 R E V P TS) +(-1064 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1064 S R E V P) +(-1065 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1065 R E V P) +(-1066 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-1066 R E V P TS) +(-1067 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1067) +(-1068) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1068 |f|) +(-1069 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1069 |Base| R -2036) +(-1070 |Base| R -3510) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1070 |Base| R -2036) +(-1071 |Base| R -3510) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL -(-1071 R |ls|) +(-1072 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1072 UP SAE UPA) +(-1073 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1073 R UP M) +(-1074 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4401 |has| |#1| (-363)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))))) -(-1074 UP SAE UPA) +((-4404 |has| |#1| (-363)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))))) +(-1075 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1075) +(-1076) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1076) +(-1077) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1077 S) +(-1078 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1078) -((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) +(-1079) +((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1079 R) +(-1080 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1080 R) +(-1081 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1081 S) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1082 (-1170)) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1082 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1082 R S) +(-1083 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-844)))) -(-1083) +((|HasCategory| |#1| (QUOTE (-845)))) +(-1084) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1084 R S) +(-1085 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1085 S) +(-1086 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1093)))) -(-1086 S) +((|HasCategory| |#1| (QUOTE (-1094)))) +(-1087 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1087 S) +(-1088 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1093)))) -(-1088 S L) +((|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1094)))) +(-1089 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) NIL NIL -(-1089) +(-1090) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1090 A S) +(-1091 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1091 S) +(-1092 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4398 . T)) +((-4401 . T)) NIL -(-1092 S) +(-1093 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1093) +(-1094) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1094 |m| |n|) +(-1095 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1095 S) +(-1096 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) -((-4408 . T) (-4398 . T) (-4409 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-1096 |Str| |Sym| |Int| |Flt| |Expr|) +((-4411 . T) (-4401 . T) (-4412 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-1097 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL NIL -(-1097) +(-1098) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1098 |Str| |Sym| |Int| |Flt| |Expr|) +(-1099 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1099 R FS) +(-1100 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1100 R E V P TS) +(-1101 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1101 R E V P TS) +(-1102 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1102 R E V P) +(-1103 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-1103) +(-1104) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1104 S) +(-1105 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1105) +(-1106) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1106 |dimtot| |dim1| S) +(-1107 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4402 |has| |#3| (-1045)) (-4403 |has| |#3| (-1045)) (-4405 |has| |#3| (-6 -4405)) ((-4410 "*") |has| |#3| (-172)) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#3| (QUOTE (-363))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-2811 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-2811 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-2811 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-2811 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (|HasAttribute| |#3| (QUOTE -4405)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) -(-1107 R |x|) +((-4405 |has| |#3| (-1046)) (-4406 |has| |#3| (-1046)) (-4408 |has| |#3| (-6 -4408)) ((-4413 "*") |has| |#3| (-172)) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4030 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#3| (QUOTE (-363))) (-4030 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4030 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-790))) (-4030 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845)))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-172))) (-4030 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (-4030 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (QUOTE (-1094)))) (-4030 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4030 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4030 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1046)))) (-4030 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-723)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-790)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-845)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094))))) (-4030 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-723))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-790))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-845))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (|HasCategory| (-564) (QUOTE (-847))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1046)))) (-12 (|HasCategory| |#3| (QUOTE (-1046))) (|HasCategory| |#3| (LIST (QUOTE -897) (QUOTE (-1170))))) (-4030 (|HasCategory| |#3| (QUOTE (-1046))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564)))))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#3| (QUOTE (-1094)))) (|HasAttribute| |#3| (QUOTE -4408)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#3| (QUOTE (-1094))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) +(-1108 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-452)))) -(-1108) +(-1109) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1109 R -2036) +(-1110 R -3510) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1110 R) +(-1111 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1111) +(-1112) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}."))) NIL NIL -(-1112) +(-1113) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1113) +(-1114) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4396 . T) (-4400 . T) (-4395 . T) (-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4399 . T) (-4403 . T) (-4398 . T) (-4409 . T) (-4410 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1114 S) +(-1115 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4408 . T) (-4409 . T)) +((-4411 . T) (-4412 . T)) NIL -(-1115 S |ndim| R |Row| |Col|) +(-1116 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4410 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) -(-1116 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4413 "*"))) (|HasCategory| |#3| (QUOTE (-172)))) +(-1117 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-4408 . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4411 . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1117 R |Row| |Col| M) +(-1118 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1118 R |VarSet|) +(-1119 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1119 |Coef| |Var| SMP) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1120 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363)))) -(-1120 R E V P) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) +(-1121 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-1121 UP -2036) +(-1122 UP -3510) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1122 R) +(-1123 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1123 R) +(-1124 R) ((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1124 R) +(-1125 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1125 S A) +(-1126 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-846)))) -(-1126 R) +((|HasCategory| |#1| (QUOTE (-847)))) +(-1127 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1127 R) +(-1128 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1128) +(-1129) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1129) +(-1130) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1130) +(-1131) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement."))) NIL NIL -(-1131) +(-1132) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1132) +(-1133) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1133 V C) +(-1134 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1134 V C) +(-1135 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))) (-2811 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))))) (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858))))) -(-1135 |ndim| R) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))) (-4030 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1134) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1134 |#1| |#2|) (QUOTE (-1094))))) (|HasCategory| (-1134 |#1| |#2|) (LIST (QUOTE -611) (QUOTE (-859))))) +(-1136 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4405 . T) (-4397 |has| |#2| (-6 (-4410 "*"))) (-4408 . T) (-4402 . T) (-4403 . T)) -((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (-2811 (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) -(-1136 S) +((-4408 . T) (-4400 |has| |#2| (-6 (-4413 "*"))) (-4411 . T) (-4405 . T) (-4406 . T)) +((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-363))) (-4030 (|HasAttribute| |#2| (QUOTE (-4413 "*"))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172)))) +(-1137 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1137) +(-1138) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-1138 R E V P TS) +(-1139 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1139 R E V P) +(-1140 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) -(-1140 S) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) +(-1141 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) -(-1141 A S) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-1142 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1142 S) +(-1143 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1143 |Key| |Ent| |dent|) +(-1144 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093)))) -(-1144) +((-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|)))))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-847))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094)))) +(-1145) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1145 |Coef|) +(-1146 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1146 S) +(-1147 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}."))) NIL NIL -(-1147 A B) +(-1148 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}."))) NIL NIL -(-1148 A B C) +(-1149 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}."))) NIL NIL -(-1149 S) +(-1150 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4409 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) -(-1150) +((-4412 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-1151) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-1151) +(-1152) NIL -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) -(-1152 |Entry|) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| (-144) (QUOTE (-1094))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) +(-1153 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#1|)))))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (LIST (QUOTE -610) (QUOTE (-858))))) -(-1153 A) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (QUOTE (-1152))) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#1|)))))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (QUOTE (-1094))) (|HasCategory| (-1152) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (LIST (QUOTE -611) (QUOTE (-859))))) +(-1154 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) -(-1154 |Coef|) +((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) +(-1155 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1155 |Coef|) +(-1156 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1156 R UP) +(-1157 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-307)))) -(-1157 |n| R) +(-1158 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1158 S1 S2) +(-1159 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}"))) NIL NIL -(-1159) +(-1160) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1160 |Coef| |var| |cen|) +(-1161 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4410 "*") -2811 (-3743 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-3743 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4401 -2811 (-3743 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-3743 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1161 R -2036) +(((-4413 "*") -4030 (-4267 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4267 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4404 -4030 (-4267 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4267 (|has| |#1| (-363)) (|has| (-1168 |#1| |#2| |#3|) (-906)))) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1168) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1168 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1162 R -3510) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1162 R) +(-1163 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1163 R S) +(-1164 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1164 E OV R P) +(-1165 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1165 R) +(-1166 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1166 |Coef| |var| |cen|) -((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4407 |has| |#1| (-363)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1145))) (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))))) (-1167 |Coef| |var| |cen|) +((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +(-1168 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) -(-1168) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +(-1169) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1169) +(-1170) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1170 R) +(-1171 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}."))) NIL NIL -(-1171 R) +(-1172 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-967) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasAttribute| |#1| (QUOTE -4406))) -(-1172) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-6 -4409)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-968) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasAttribute| |#1| (QUOTE -4409))) +(-1173) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1173) +(-1174) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1174) +(-1175) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{symbols,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: Integer,{} DoubleFloat,{} Symbol,{} String,{} SExpression. See Also: SExpression. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1175 N) +(-1176 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1176 N) +(-1177 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}."))) NIL NIL -(-1177 R) +(-1178 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1178) +(-1179) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1179 S) +(-1180 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1180 S) +(-1181 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1181 |Key| |Entry|) +(-1182 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4408 . T) (-4409 . T)) -((-12 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3320) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3704) (|devaluate| |#2|)))))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-2811 (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (LIST (QUOTE -610) (QUOTE (-858))))) -(-1182 R) +((-4411 . T) (-4412 . T)) +((-12 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1327) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2423) (|devaluate| |#2|)))))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#2| (QUOTE (-1094)))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -612) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1094))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#2| (QUOTE (-1094))) (-4030 (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-859)))) (|HasCategory| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (LIST (QUOTE -611) (QUOTE (-859))))) +(-1183 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL NIL -(-1183 S |Key| |Entry|) +(-1184 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1184 |Key| |Entry|) +(-1185 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4409 . T)) +((-4412 . T)) NIL -(-1185 |Key| |Entry|) +(-1186 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1186) +(-1187) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1187 S) +(-1188 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1188) +(-1189) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1189) +(-1190) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1190 R) +(-1191 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1191) +(-1192) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1192 S) +(-1193 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1193) +(-1194) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}."))) NIL NIL -(-1194 S) -((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (-1195 S) +((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1094))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-1196 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1196) +(-1197) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1197 R -2036) +(-1198 R -3510) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1198 R |Row| |Col| M) +(-1199 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1199 R -2036) +(-1200 R -3510) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -882) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -882) (|devaluate| |#1|))))) -(-1200 S R E V P) +((-12 (|HasCategory| |#1| (LIST (QUOTE -612) (LIST (QUOTE -889) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -883) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -883) (|devaluate| |#1|))))) +(-1201 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-368)))) -(-1201 R E V P) +(-1202 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-1202 |Coef|) +(-1203 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363)))) -(-1203 |Curve|) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-363)))) +(-1204 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1204) +(-1205) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1205 S) +(-1206 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) -(-1206 -2036) +((|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) +(-1207 -3510) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1207) +(-1208) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1208) +(-1209) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1209 S) +(-1210 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) NIL -((|HasCategory| |#1| (QUOTE (-846)))) -(-1210) +((|HasCategory| |#1| (QUOTE (-847)))) +(-1211) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1211 S) +(-1212 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1212) +(-1213) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1213) +(-1214) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1214) +(-1215) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1215) +(-1216) +((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) +NIL +NIL +(-1217) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1216 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1218 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1217 |Coef|) +(-1219 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1218 S |Coef| UTS) +(-1220 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-363)))) -(-1219 |Coef| UTS) +(-1221 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1220 |Coef| UTS) +(-1222 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-2811 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))))) (-2811 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-905))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145)))))) -(-1221 |Coef| |var| |cen|) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4030 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847))))) (-4030 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-817)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1019)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-1170)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1170)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-847)))) (|HasCategory| |#2| (QUOTE (-906))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145)))))) +(-1223 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4410 "*") -2811 (-3743 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-3743 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4401 -2811 (-3743 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-3743 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) -((-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) -(-1222 ZP) +(((-4413 "*") -4030 (-4267 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-172)) (-4267 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4404 -4030 (-4267 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-817))) (|has| |#1| (-556)) (-4267 (|has| |#1| (-363)) (|has| (-1251 |#1| |#2| |#3|) (-906)))) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) +((-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|)))))) (-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-564)) (|devaluate| |#1|))))) (|HasCategory| (-564) (QUOTE (-1106))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-1170)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1019))) (|HasCategory| |#1| (QUOTE (-363)))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-1145))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1170)) (LIST (QUOTE -1251) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-564))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-817))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-906))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1251 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145))))) +(-1224 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1223 R S) +(-1225 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-844)))) -(-1224 S) +((|HasCategory| |#1| (QUOTE (-845)))) +(-1226 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-1093)))) -(-1225 |x| R |y| S) +((|HasCategory| |#1| (QUOTE (-845))) (|HasCategory| |#1| (QUOTE (-1094)))) +(-1227 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1226 R Q UP) +(-1228 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1227 R UP) +(-1229 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1228 R UP) +(-1230 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1229 R U) +(-1231 R U) ((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all."))) NIL NIL -(-1230 |x| R) +(-1232 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4404 |has| |#2| (-363)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-2811 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-2811 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-2811 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145))))) -(-1231 R PR S PS) +(((-4413 "*") |has| |#2| (-172)) (-4404 |has| |#2| (-556)) (-4407 |has| |#2| (-363)) (-4409 |has| |#2| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-906))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-556)))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-379))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -883) (QUOTE (-564)))) (|HasCategory| |#2| (LIST (QUOTE -883) (QUOTE (-564))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-379)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -612) (LIST (QUOTE -889) (QUOTE (-564)))))) (-12 (|HasCategory| (-1076) (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -612) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-847))) (|HasCategory| |#2| (LIST (QUOTE -637) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (QUOTE (-564)))) (-4030 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| |#2| (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (-4030 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1145))) (|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (-4030 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-906)))) (|HasCategory| |#2| (QUOTE (-145))))) +(-1233 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1232 S R) +(-1234 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1144)))) -(-1233 R) +((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-556))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1145)))) +(-1235 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4407 |has| |#1| (-363)) (-4409 |has| |#1| (-6 -4409)) (-4406 . T) (-4405 . T) (-4408 . T)) NIL -(-1234 S |Coef| |Expon|) +(-1236 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1105))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2062) (LIST (|devaluate| |#2|) (QUOTE (-1169)))))) -(-1235 |Coef| |Expon|) +((|HasCategory| |#2| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1106))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3742) (LIST (|devaluate| |#2|) (QUOTE (-1170)))))) +(-1237 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1236 RC P) +(-1238 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1237 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(-1239 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1238 |Coef|) +(-1240 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1239 S |Coef| ULS) +(-1241 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1240 |Coef| ULS) +(-1242 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1241 |Coef| ULS) +(-1243 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) -(-1242 |Coef| |var| |cen|) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) +(-1244 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-2811 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) -(-1243 R FE |var| |cen|) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4409 |has| |#1| (-363)) (-4403 |has| |#1| (-363)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#1| (QUOTE (-172))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-564)) (QUOTE (-1106))) (|HasCategory| |#1| (QUOTE (-363))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-4030 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-556)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-564)))))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +(-1245 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) -(((-4410 "*") |has| (-1242 |#2| |#3| |#4|) (-172)) (-4401 |has| (-1242 |#2| |#3| |#4|) (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-172))) (-2811 (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-555)))) -(-1244 A S) +(((-4413 "*") |has| (-1244 |#2| |#3| |#4|) (-172)) (-4404 |has| (-1244 |#2| |#3| |#4|) (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-172))) (-4030 (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564)))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| (-1244 |#2| |#3| |#4|) (LIST (QUOTE -1035) (QUOTE (-564)))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1244 |#2| |#3| |#4|) (QUOTE (-556)))) +(-1246 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4409))) -(-1245 S) +((|HasAttribute| |#1| (QUOTE -4412))) +(-1247 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1246 |Coef1| |Coef2| UTS1 UTS2) +(-1248 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1247 S |Coef|) +(-1249 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasSignature| |#2| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3204) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) -(-1248 |Coef|) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#2| (QUOTE (-956))) (|HasCategory| |#2| (QUOTE (-1194))) (|HasSignature| |#2| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3128) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1170))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#2| (QUOTE (-363)))) +(-1250 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1249 |Coef| |var| |cen|) +(-1251 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-2811 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-2811 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3204) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2185) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|))))))) -(-1250 |Coef| UTS) +(((-4413 "*") |has| |#1| (-172)) (-4404 |has| |#1| (-556)) (-4405 . T) (-4406 . T) (-4408 . T)) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasCategory| |#1| (QUOTE (-556))) (-4030 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-556)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -897) (QUOTE (-1170)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-768)) (|devaluate| |#1|)))) (|HasCategory| (-768) (QUOTE (-1106))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasSignature| |#1| (LIST (QUOTE -3742) (LIST (|devaluate| |#1|) (QUOTE (-1170)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-768))))) (|HasCategory| |#1| (QUOTE (-363))) (-4030 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-564)))) (|HasCategory| |#1| (QUOTE (-956))) (|HasCategory| |#1| (QUOTE (-1194))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasSignature| |#1| (LIST (QUOTE -3128) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1170))))) (|HasSignature| |#1| (LIST (QUOTE -4269) (LIST (LIST (QUOTE -641) (QUOTE (-1170))) (|devaluate| |#1|))))))) +(-1252 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1251 -2036 UP L UTS) +(-1253 -3510 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL -((|HasCategory| |#1| (QUOTE (-555)))) -(-1252) +((|HasCategory| |#1| (QUOTE (-556)))) +(-1254) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1253 |sym|) +(-1255 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1254 S R) +(-1256 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1255 R) +((|HasCategory| |#2| (QUOTE (-999))) (|HasCategory| |#2| (QUOTE (-1046))) (|HasCategory| |#2| (QUOTE (-723))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1257 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4409 . T) (-4408 . T)) +((-4412 . T) (-4411 . T)) NIL -(-1256 A B) +(-1258 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1257 R) +(-1259 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4409 . T) (-4408 . T)) -((-2811 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-2811 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-2811 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) -(-1258) +((-4412 . T) (-4411 . T)) +((-4030 (-12 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4030 (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859))))) (|HasCategory| |#1| (LIST (QUOTE -612) (QUOTE (-536)))) (-4030 (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094)))) (|HasCategory| |#1| (QUOTE (-847))) (|HasCategory| (-564) (QUOTE (-847))) (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-723))) (|HasCategory| |#1| (QUOTE (-1046))) (-12 (|HasCategory| |#1| (QUOTE (-999))) (|HasCategory| |#1| (QUOTE (-1046)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-859)))) (-12 (|HasCategory| |#1| (QUOTE (-1094))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) +(-1260) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1259) +(-1261) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1260) +(-1262) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1261) +(-1263) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1262) +(-1264) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1263 A S) +(-1265 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1264 S) +(-1266 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4403 . T) (-4402 . T)) +((-4406 . T) (-4405 . T)) NIL -(-1265 R) +(-1267 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1266 K R UP -2036) +(-1268 K R UP -3510) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL -(-1267) +(-1269) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1268) +(-1270) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1269 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1271 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T)) +((-4406 |has| |#1| (-172)) (-4405 |has| |#1| (-172)) (-4408 . T)) ((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) -(-1270 R E V P) +(-1272 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}."))) -((-4409 . T) (-4408 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858))))) -(-1271 R) +((-4412 . T) (-4411 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -612) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1094))) (|HasCategory| |#1| (QUOTE (-556))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-859))))) +(-1273 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})"))) -((-4402 . T) (-4403 . T) (-4405 . T)) +((-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1272 |vl| R) +(-1274 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4405 . T) (-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4401))) -(-1273 R |VarSet| XPOLY) +((-4408 . T) (-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4404))) +(-1275 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1274 |vl| R) +(-1276 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T)) +((-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T)) NIL -(-1275 S -2036) +(-1277 S -3510) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147)))) -(-1276 -2036) +(-1278 -3510) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +((-4403 . T) (-4409 . T) (-4404 . T) ((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL -(-1277 |VarSet| R) +(-1279 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -713) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasAttribute| |#2| (QUOTE -4401))) -(-1278 |vl| R) +((-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -714) (LIST (QUOTE -407) (QUOTE (-564))))) (|HasAttribute| |#2| (QUOTE -4404))) +(-1280 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T)) +((-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T)) NIL -(-1279 R) +(-1281 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4401 |has| |#1| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4401))) -(-1280 R E) +((-4404 |has| |#1| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4404))) +(-1282 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4405 . T) (-4406 |has| |#1| (-6 -4406)) (-4401 |has| |#1| (-6 -4401)) (-4403 . T) (-4402 . T)) -((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4401))) -(-1281 |VarSet| R) +((-4408 . T) (-4409 |has| |#1| (-6 -4409)) (-4404 |has| |#1| (-6 -4404)) (-4406 . T) (-4405 . T)) +((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4409)) (|HasAttribute| |#1| (QUOTE -4404))) +(-1283 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T)) -((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4401))) -(-1282 A) +((-4404 |has| |#2| (-6 -4404)) (-4406 . T) (-4405 . T) (-4408 . T)) +((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4404))) +(-1284 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1283 R |ls| |ls2|) +(-1285 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1284 R) +(-1286 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1285 |p|) +(-1287 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T)) +(((-4413 "*") . T) (-4405 . T) (-4406 . T) (-4408 . T)) NIL NIL NIL @@ -5088,4 +5096,4 @@ NIL NIL NIL NIL -((-3 NIL 2282876 2282881 2282886 2282891) (-2 NIL 2282856 2282861 2282866 2282871) (-1 NIL 2282836 2282841 2282846 2282851) (0 NIL 2282816 2282821 2282826 2282831) (-1285 "ZMOD.spad" 2282625 2282638 2282754 2282811) (-1284 "ZLINDEP.spad" 2281669 2281680 2282615 2282620) (-1283 "ZDSOLVE.spad" 2271518 2271540 2281659 2281664) (-1282 "YSTREAM.spad" 2271011 2271022 2271508 2271513) (-1281 "XRPOLY.spad" 2270231 2270251 2270867 2270936) (-1280 "XPR.spad" 2268022 2268035 2269949 2270048) (-1279 "XPOLY.spad" 2267577 2267588 2267878 2267947) (-1278 "XPOLYC.spad" 2266894 2266910 2267503 2267572) (-1277 "XPBWPOLY.spad" 2265331 2265351 2266674 2266743) (-1276 "XF.spad" 2263792 2263807 2265233 2265326) (-1275 "XF.spad" 2262233 2262250 2263676 2263681) (-1274 "XFALG.spad" 2259257 2259273 2262159 2262228) (-1273 "XEXPPKG.spad" 2258508 2258534 2259247 2259252) (-1272 "XDPOLY.spad" 2258122 2258138 2258364 2258433) (-1271 "XALG.spad" 2257782 2257793 2258078 2258117) (-1270 "WUTSET.spad" 2253621 2253638 2257428 2257455) (-1269 "WP.spad" 2252820 2252864 2253479 2253546) (-1268 "WHILEAST.spad" 2252618 2252627 2252810 2252815) (-1267 "WHEREAST.spad" 2252289 2252298 2252608 2252613) (-1266 "WFFINTBS.spad" 2249852 2249874 2252279 2252284) (-1265 "WEIER.spad" 2248066 2248077 2249842 2249847) (-1264 "VSPACE.spad" 2247739 2247750 2248034 2248061) (-1263 "VSPACE.spad" 2247432 2247445 2247729 2247734) (-1262 "VOID.spad" 2247109 2247118 2247422 2247427) (-1261 "VIEW.spad" 2244731 2244740 2247099 2247104) (-1260 "VIEWDEF.spad" 2239928 2239937 2244721 2244726) (-1259 "VIEW3D.spad" 2223763 2223772 2239918 2239923) (-1258 "VIEW2D.spad" 2211500 2211509 2223753 2223758) (-1257 "VECTOR.spad" 2210175 2210186 2210426 2210453) (-1256 "VECTOR2.spad" 2208802 2208815 2210165 2210170) (-1255 "VECTCAT.spad" 2206702 2206713 2208770 2208797) (-1254 "VECTCAT.spad" 2204410 2204423 2206480 2206485) (-1253 "VARIABLE.spad" 2204190 2204205 2204400 2204405) (-1252 "UTYPE.spad" 2203834 2203843 2204180 2204185) (-1251 "UTSODETL.spad" 2203127 2203151 2203790 2203795) (-1250 "UTSODE.spad" 2201315 2201335 2203117 2203122) (-1249 "UTS.spad" 2196104 2196132 2199782 2199879) (-1248 "UTSCAT.spad" 2193555 2193571 2196002 2196099) (-1247 "UTSCAT.spad" 2190650 2190668 2193099 2193104) (-1246 "UTS2.spad" 2190243 2190278 2190640 2190645) (-1245 "URAGG.spad" 2184875 2184886 2190233 2190238) (-1244 "URAGG.spad" 2179471 2179484 2184831 2184836) (-1243 "UPXSSING.spad" 2177114 2177140 2178552 2178685) (-1242 "UPXS.spad" 2174262 2174290 2175246 2175395) (-1241 "UPXSCONS.spad" 2172019 2172039 2172394 2172543) (-1240 "UPXSCCA.spad" 2170584 2170604 2171865 2172014) (-1239 "UPXSCCA.spad" 2169291 2169313 2170574 2170579) (-1238 "UPXSCAT.spad" 2167872 2167888 2169137 2169286) (-1237 "UPXS2.spad" 2167413 2167466 2167862 2167867) (-1236 "UPSQFREE.spad" 2165825 2165839 2167403 2167408) (-1235 "UPSCAT.spad" 2163418 2163442 2165723 2165820) (-1234 "UPSCAT.spad" 2160717 2160743 2163024 2163029) (-1233 "UPOLYC.spad" 2155695 2155706 2160559 2160712) (-1232 "UPOLYC.spad" 2150565 2150578 2155431 2155436) (-1231 "UPOLYC2.spad" 2150034 2150053 2150555 2150560) (-1230 "UP.spad" 2147191 2147206 2147584 2147737) (-1229 "UPMP.spad" 2146081 2146094 2147181 2147186) (-1228 "UPDIVP.spad" 2145644 2145658 2146071 2146076) (-1227 "UPDECOMP.spad" 2143881 2143895 2145634 2145639) (-1226 "UPCDEN.spad" 2143088 2143104 2143871 2143876) (-1225 "UP2.spad" 2142450 2142471 2143078 2143083) (-1224 "UNISEG.spad" 2141803 2141814 2142369 2142374) (-1223 "UNISEG2.spad" 2141296 2141309 2141759 2141764) (-1222 "UNIFACT.spad" 2140397 2140409 2141286 2141291) (-1221 "ULS.spad" 2130949 2130977 2132042 2132471) (-1220 "ULSCONS.spad" 2123343 2123363 2123715 2123864) (-1219 "ULSCCAT.spad" 2121072 2121092 2123189 2123338) (-1218 "ULSCCAT.spad" 2118909 2118931 2121028 2121033) (-1217 "ULSCAT.spad" 2117125 2117141 2118755 2118904) (-1216 "ULS2.spad" 2116637 2116690 2117115 2117120) (-1215 "UINT8.spad" 2116514 2116523 2116627 2116632) (-1214 "UINT32.spad" 2116390 2116399 2116504 2116509) (-1213 "UINT16.spad" 2116266 2116275 2116380 2116385) (-1212 "UFD.spad" 2115331 2115340 2116192 2116261) (-1211 "UFD.spad" 2114458 2114469 2115321 2115326) (-1210 "UDVO.spad" 2113305 2113314 2114448 2114453) (-1209 "UDPO.spad" 2110732 2110743 2113261 2113266) (-1208 "TYPE.spad" 2110664 2110673 2110722 2110727) (-1207 "TYPEAST.spad" 2110583 2110592 2110654 2110659) (-1206 "TWOFACT.spad" 2109233 2109248 2110573 2110578) (-1205 "TUPLE.spad" 2108717 2108728 2109132 2109137) (-1204 "TUBETOOL.spad" 2105554 2105563 2108707 2108712) (-1203 "TUBE.spad" 2104195 2104212 2105544 2105549) (-1202 "TS.spad" 2102784 2102800 2103760 2103857) (-1201 "TSETCAT.spad" 2089911 2089928 2102752 2102779) (-1200 "TSETCAT.spad" 2077024 2077043 2089867 2089872) (-1199 "TRMANIP.spad" 2071390 2071407 2076730 2076735) (-1198 "TRIMAT.spad" 2070349 2070374 2071380 2071385) (-1197 "TRIGMNIP.spad" 2068866 2068883 2070339 2070344) (-1196 "TRIGCAT.spad" 2068378 2068387 2068856 2068861) (-1195 "TRIGCAT.spad" 2067888 2067899 2068368 2068373) (-1194 "TREE.spad" 2066459 2066470 2067495 2067522) (-1193 "TRANFUN.spad" 2066290 2066299 2066449 2066454) (-1192 "TRANFUN.spad" 2066119 2066130 2066280 2066285) (-1191 "TOPSP.spad" 2065793 2065802 2066109 2066114) (-1190 "TOOLSIGN.spad" 2065456 2065467 2065783 2065788) (-1189 "TEXTFILE.spad" 2064013 2064022 2065446 2065451) (-1188 "TEX.spad" 2061145 2061154 2064003 2064008) (-1187 "TEX1.spad" 2060701 2060712 2061135 2061140) (-1186 "TEMUTL.spad" 2060256 2060265 2060691 2060696) (-1185 "TBCMPPK.spad" 2058349 2058372 2060246 2060251) (-1184 "TBAGG.spad" 2057385 2057408 2058329 2058344) (-1183 "TBAGG.spad" 2056429 2056454 2057375 2057380) (-1182 "TANEXP.spad" 2055805 2055816 2056419 2056424) (-1181 "TABLE.spad" 2054216 2054239 2054486 2054513) (-1180 "TABLEAU.spad" 2053697 2053708 2054206 2054211) (-1179 "TABLBUMP.spad" 2050480 2050491 2053687 2053692) (-1178 "SYSTEM.spad" 2049708 2049717 2050470 2050475) (-1177 "SYSSOLP.spad" 2047181 2047192 2049698 2049703) (-1176 "SYSNNI.spad" 2046361 2046372 2047171 2047176) (-1175 "SYSINT.spad" 2045765 2045776 2046351 2046356) (-1174 "SYNTAX.spad" 2042035 2042044 2045755 2045760) (-1173 "SYMTAB.spad" 2040091 2040100 2042025 2042030) (-1172 "SYMS.spad" 2036076 2036085 2040081 2040086) (-1171 "SYMPOLY.spad" 2035083 2035094 2035165 2035292) (-1170 "SYMFUNC.spad" 2034558 2034569 2035073 2035078) (-1169 "SYMBOL.spad" 2031985 2031994 2034548 2034553) (-1168 "SWITCH.spad" 2028742 2028751 2031975 2031980) (-1167 "SUTS.spad" 2025641 2025669 2027209 2027306) (-1166 "SUPXS.spad" 2022776 2022804 2023773 2023922) (-1165 "SUP.spad" 2019545 2019556 2020326 2020479) (-1164 "SUPFRACF.spad" 2018650 2018668 2019535 2019540) (-1163 "SUP2.spad" 2018040 2018053 2018640 2018645) (-1162 "SUMRF.spad" 2017006 2017017 2018030 2018035) (-1161 "SUMFS.spad" 2016639 2016656 2016996 2017001) (-1160 "SULS.spad" 2007178 2007206 2008284 2008713) (-1159 "SUCHTAST.spad" 2006947 2006956 2007168 2007173) (-1158 "SUCH.spad" 2006627 2006642 2006937 2006942) (-1157 "SUBSPACE.spad" 1998634 1998649 2006617 2006622) (-1156 "SUBRESP.spad" 1997794 1997808 1998590 1998595) (-1155 "STTF.spad" 1993893 1993909 1997784 1997789) (-1154 "STTFNC.spad" 1990361 1990377 1993883 1993888) (-1153 "STTAYLOR.spad" 1982759 1982770 1990242 1990247) (-1152 "STRTBL.spad" 1981264 1981281 1981413 1981440) (-1151 "STRING.spad" 1980673 1980682 1980687 1980714) (-1150 "STRICAT.spad" 1980461 1980470 1980641 1980668) (-1149 "STREAM.spad" 1977319 1977330 1979986 1980001) (-1148 "STREAM3.spad" 1976864 1976879 1977309 1977314) (-1147 "STREAM2.spad" 1975932 1975945 1976854 1976859) (-1146 "STREAM1.spad" 1975636 1975647 1975922 1975927) (-1145 "STINPROD.spad" 1974542 1974558 1975626 1975631) (-1144 "STEP.spad" 1973743 1973752 1974532 1974537) (-1143 "STBL.spad" 1972269 1972297 1972436 1972451) (-1142 "STAGG.spad" 1971344 1971355 1972259 1972264) (-1141 "STAGG.spad" 1970417 1970430 1971334 1971339) (-1140 "STACK.spad" 1969768 1969779 1970024 1970051) (-1139 "SREGSET.spad" 1967472 1967489 1969414 1969441) (-1138 "SRDCMPK.spad" 1966017 1966037 1967462 1967467) (-1137 "SRAGG.spad" 1961114 1961123 1965985 1966012) (-1136 "SRAGG.spad" 1956231 1956242 1961104 1961109) (-1135 "SQMATRIX.spad" 1953847 1953865 1954763 1954850) (-1134 "SPLTREE.spad" 1948399 1948412 1953283 1953310) (-1133 "SPLNODE.spad" 1944987 1945000 1948389 1948394) (-1132 "SPFCAT.spad" 1943764 1943773 1944977 1944982) (-1131 "SPECOUT.spad" 1942314 1942323 1943754 1943759) (-1130 "SPADXPT.spad" 1934453 1934462 1942304 1942309) (-1129 "spad-parser.spad" 1933918 1933927 1934443 1934448) (-1128 "SPADAST.spad" 1933619 1933628 1933908 1933913) (-1127 "SPACEC.spad" 1917632 1917643 1933609 1933614) (-1126 "SPACE3.spad" 1917408 1917419 1917622 1917627) (-1125 "SORTPAK.spad" 1916953 1916966 1917364 1917369) (-1124 "SOLVETRA.spad" 1914710 1914721 1916943 1916948) (-1123 "SOLVESER.spad" 1913230 1913241 1914700 1914705) (-1122 "SOLVERAD.spad" 1909240 1909251 1913220 1913225) (-1121 "SOLVEFOR.spad" 1907660 1907678 1909230 1909235) (-1120 "SNTSCAT.spad" 1907260 1907277 1907628 1907655) (-1119 "SMTS.spad" 1905520 1905546 1906825 1906922) (-1118 "SMP.spad" 1902959 1902979 1903349 1903476) (-1117 "SMITH.spad" 1901802 1901827 1902949 1902954) (-1116 "SMATCAT.spad" 1899912 1899942 1901746 1901797) (-1115 "SMATCAT.spad" 1897954 1897986 1899790 1899795) (-1114 "SKAGG.spad" 1896915 1896926 1897922 1897949) (-1113 "SINT.spad" 1895741 1895750 1896781 1896910) (-1112 "SIMPAN.spad" 1895469 1895478 1895731 1895736) (-1111 "SIG.spad" 1894797 1894806 1895459 1895464) (-1110 "SIGNRF.spad" 1893905 1893916 1894787 1894792) (-1109 "SIGNEF.spad" 1893174 1893191 1893895 1893900) (-1108 "SIGAST.spad" 1892555 1892564 1893164 1893169) (-1107 "SHP.spad" 1890473 1890488 1892511 1892516) (-1106 "SHDP.spad" 1880184 1880211 1880693 1880824) (-1105 "SGROUP.spad" 1879792 1879801 1880174 1880179) (-1104 "SGROUP.spad" 1879398 1879409 1879782 1879787) (-1103 "SGCF.spad" 1872279 1872288 1879388 1879393) (-1102 "SFRTCAT.spad" 1871207 1871224 1872247 1872274) (-1101 "SFRGCD.spad" 1870270 1870290 1871197 1871202) (-1100 "SFQCMPK.spad" 1864907 1864927 1870260 1870265) (-1099 "SFORT.spad" 1864342 1864356 1864897 1864902) (-1098 "SEXOF.spad" 1864185 1864225 1864332 1864337) (-1097 "SEX.spad" 1864077 1864086 1864175 1864180) (-1096 "SEXCAT.spad" 1861628 1861668 1864067 1864072) (-1095 "SET.spad" 1859928 1859939 1861049 1861088) (-1094 "SETMN.spad" 1858362 1858379 1859918 1859923) (-1093 "SETCAT.spad" 1857847 1857856 1858352 1858357) (-1092 "SETCAT.spad" 1857330 1857341 1857837 1857842) (-1091 "SETAGG.spad" 1853851 1853862 1857310 1857325) (-1090 "SETAGG.spad" 1850380 1850393 1853841 1853846) (-1089 "SEQAST.spad" 1850083 1850092 1850370 1850375) (-1088 "SEGXCAT.spad" 1849205 1849218 1850073 1850078) (-1087 "SEG.spad" 1849018 1849029 1849124 1849129) (-1086 "SEGCAT.spad" 1847925 1847936 1849008 1849013) (-1085 "SEGBIND.spad" 1846997 1847008 1847880 1847885) (-1084 "SEGBIND2.spad" 1846693 1846706 1846987 1846992) (-1083 "SEGAST.spad" 1846407 1846416 1846683 1846688) (-1082 "SEG2.spad" 1845832 1845845 1846363 1846368) (-1081 "SDVAR.spad" 1845108 1845119 1845822 1845827) (-1080 "SDPOL.spad" 1842498 1842509 1842789 1842916) (-1079 "SCPKG.spad" 1840577 1840588 1842488 1842493) (-1078 "SCOPE.spad" 1839722 1839731 1840567 1840572) (-1077 "SCACHE.spad" 1838404 1838415 1839712 1839717) (-1076 "SASTCAT.spad" 1838313 1838322 1838394 1838399) (-1075 "SAOS.spad" 1838185 1838194 1838303 1838308) (-1074 "SAERFFC.spad" 1837898 1837918 1838175 1838180) (-1073 "SAE.spad" 1836073 1836089 1836684 1836819) (-1072 "SAEFACT.spad" 1835774 1835794 1836063 1836068) (-1071 "RURPK.spad" 1833415 1833431 1835764 1835769) (-1070 "RULESET.spad" 1832856 1832880 1833405 1833410) (-1069 "RULE.spad" 1831060 1831084 1832846 1832851) (-1068 "RULECOLD.spad" 1830912 1830925 1831050 1831055) (-1067 "RSTRCAST.spad" 1830629 1830638 1830902 1830907) (-1066 "RSETGCD.spad" 1827007 1827027 1830619 1830624) (-1065 "RSETCAT.spad" 1816791 1816808 1826975 1827002) (-1064 "RSETCAT.spad" 1806595 1806614 1816781 1816786) (-1063 "RSDCMPK.spad" 1805047 1805067 1806585 1806590) (-1062 "RRCC.spad" 1803431 1803461 1805037 1805042) (-1061 "RRCC.spad" 1801813 1801845 1803421 1803426) (-1060 "RPTAST.spad" 1801515 1801524 1801803 1801808) (-1059 "RPOLCAT.spad" 1780875 1780890 1801383 1801510) (-1058 "RPOLCAT.spad" 1759949 1759966 1780459 1780464) (-1057 "ROUTINE.spad" 1755812 1755821 1758596 1758623) (-1056 "ROMAN.spad" 1755140 1755149 1755678 1755807) (-1055 "ROIRC.spad" 1754220 1754252 1755130 1755135) (-1054 "RNS.spad" 1753123 1753132 1754122 1754215) (-1053 "RNS.spad" 1752112 1752123 1753113 1753118) (-1052 "RNG.spad" 1751847 1751856 1752102 1752107) (-1051 "RMODULE.spad" 1751485 1751496 1751837 1751842) (-1050 "RMCAT2.spad" 1750893 1750950 1751475 1751480) (-1049 "RMATRIX.spad" 1749717 1749736 1750060 1750099) (-1048 "RMATCAT.spad" 1745250 1745281 1749673 1749712) (-1047 "RMATCAT.spad" 1740673 1740706 1745098 1745103) (-1046 "RINTERP.spad" 1740561 1740581 1740663 1740668) (-1045 "RING.spad" 1740031 1740040 1740541 1740556) (-1044 "RING.spad" 1739509 1739520 1740021 1740026) (-1043 "RIDIST.spad" 1738893 1738902 1739499 1739504) (-1042 "RGCHAIN.spad" 1737472 1737488 1738378 1738405) (-1041 "RGBCSPC.spad" 1737253 1737265 1737462 1737467) (-1040 "RGBCMDL.spad" 1736783 1736795 1737243 1737248) (-1039 "RF.spad" 1734397 1734408 1736773 1736778) (-1038 "RFFACTOR.spad" 1733859 1733870 1734387 1734392) (-1037 "RFFACT.spad" 1733594 1733606 1733849 1733854) (-1036 "RFDIST.spad" 1732582 1732591 1733584 1733589) (-1035 "RETSOL.spad" 1731999 1732012 1732572 1732577) (-1034 "RETRACT.spad" 1731427 1731438 1731989 1731994) (-1033 "RETRACT.spad" 1730853 1730866 1731417 1731422) (-1032 "RETAST.spad" 1730665 1730674 1730843 1730848) (-1031 "RESULT.spad" 1728725 1728734 1729312 1729339) (-1030 "RESRING.spad" 1728072 1728119 1728663 1728720) (-1029 "RESLATC.spad" 1727396 1727407 1728062 1728067) (-1028 "REPSQ.spad" 1727125 1727136 1727386 1727391) (-1027 "REP.spad" 1724677 1724686 1727115 1727120) (-1026 "REPDB.spad" 1724382 1724393 1724667 1724672) (-1025 "REP2.spad" 1713954 1713965 1724224 1724229) (-1024 "REP1.spad" 1707944 1707955 1713904 1713909) (-1023 "REGSET.spad" 1705741 1705758 1707590 1707617) (-1022 "REF.spad" 1705070 1705081 1705696 1705701) (-1021 "REDORDER.spad" 1704246 1704263 1705060 1705065) (-1020 "RECLOS.spad" 1703029 1703049 1703733 1703826) (-1019 "REALSOLV.spad" 1702161 1702170 1703019 1703024) (-1018 "REAL.spad" 1702033 1702042 1702151 1702156) (-1017 "REAL0Q.spad" 1699315 1699330 1702023 1702028) (-1016 "REAL0.spad" 1696143 1696158 1699305 1699310) (-1015 "RDUCEAST.spad" 1695864 1695873 1696133 1696138) (-1014 "RDIV.spad" 1695515 1695540 1695854 1695859) (-1013 "RDIST.spad" 1695078 1695089 1695505 1695510) (-1012 "RDETRS.spad" 1693874 1693892 1695068 1695073) (-1011 "RDETR.spad" 1691981 1691999 1693864 1693869) (-1010 "RDEEFS.spad" 1691054 1691071 1691971 1691976) (-1009 "RDEEF.spad" 1690050 1690067 1691044 1691049) (-1008 "RCFIELD.spad" 1687236 1687245 1689952 1690045) (-1007 "RCFIELD.spad" 1684508 1684519 1687226 1687231) (-1006 "RCAGG.spad" 1682420 1682431 1684498 1684503) (-1005 "RCAGG.spad" 1680259 1680272 1682339 1682344) (-1004 "RATRET.spad" 1679619 1679630 1680249 1680254) (-1003 "RATFACT.spad" 1679311 1679323 1679609 1679614) (-1002 "RANDSRC.spad" 1678630 1678639 1679301 1679306) (-1001 "RADUTIL.spad" 1678384 1678393 1678620 1678625) (-1000 "RADIX.spad" 1675285 1675299 1676851 1676944) (-999 "RADFF.spad" 1673699 1673735 1673817 1673973) (-998 "RADCAT.spad" 1673293 1673301 1673689 1673694) (-997 "RADCAT.spad" 1672885 1672895 1673283 1673288) (-996 "QUEUE.spad" 1672228 1672238 1672492 1672519) (-995 "QUAT.spad" 1670810 1670820 1671152 1671217) (-994 "QUATCT2.spad" 1670429 1670447 1670800 1670805) (-993 "QUATCAT.spad" 1668594 1668604 1670359 1670424) (-992 "QUATCAT.spad" 1666510 1666522 1668277 1668282) (-991 "QUAGG.spad" 1665336 1665346 1666478 1666505) (-990 "QQUTAST.spad" 1665105 1665113 1665326 1665331) (-989 "QFORM.spad" 1664568 1664582 1665095 1665100) (-988 "QFCAT.spad" 1663271 1663281 1664470 1664563) (-987 "QFCAT.spad" 1661565 1661577 1662766 1662771) (-986 "QFCAT2.spad" 1661256 1661272 1661555 1661560) (-985 "QEQUAT.spad" 1660813 1660821 1661246 1661251) (-984 "QCMPACK.spad" 1655560 1655579 1660803 1660808) (-983 "QALGSET.spad" 1651635 1651667 1655474 1655479) (-982 "QALGSET2.spad" 1649631 1649649 1651625 1651630) (-981 "PWFFINTB.spad" 1646941 1646962 1649621 1649626) (-980 "PUSHVAR.spad" 1646270 1646289 1646931 1646936) (-979 "PTRANFN.spad" 1642396 1642406 1646260 1646265) (-978 "PTPACK.spad" 1639484 1639494 1642386 1642391) (-977 "PTFUNC2.spad" 1639305 1639319 1639474 1639479) (-976 "PTCAT.spad" 1638554 1638564 1639273 1639300) (-975 "PSQFR.spad" 1637861 1637885 1638544 1638549) (-974 "PSEUDLIN.spad" 1636719 1636729 1637851 1637856) (-973 "PSETPK.spad" 1622152 1622168 1636597 1636602) (-972 "PSETCAT.spad" 1616072 1616095 1622132 1622147) (-971 "PSETCAT.spad" 1609966 1609991 1616028 1616033) (-970 "PSCURVE.spad" 1608949 1608957 1609956 1609961) (-969 "PSCAT.spad" 1607716 1607745 1608847 1608944) (-968 "PSCAT.spad" 1606573 1606604 1607706 1607711) (-967 "PRTITION.spad" 1605518 1605526 1606563 1606568) (-966 "PRTDAST.spad" 1605237 1605245 1605508 1605513) (-965 "PRS.spad" 1594799 1594816 1605193 1605198) (-964 "PRQAGG.spad" 1594230 1594240 1594767 1594794) (-963 "PROPLOG.spad" 1593633 1593641 1594220 1594225) (-962 "PROPFRML.spad" 1591551 1591562 1593623 1593628) (-961 "PROPERTY.spad" 1591045 1591053 1591541 1591546) (-960 "PRODUCT.spad" 1588725 1588737 1589011 1589066) (-959 "PR.spad" 1587111 1587123 1587816 1587943) (-958 "PRINT.spad" 1586863 1586871 1587101 1587106) (-957 "PRIMES.spad" 1585114 1585124 1586853 1586858) (-956 "PRIMELT.spad" 1583095 1583109 1585104 1585109) (-955 "PRIMCAT.spad" 1582718 1582726 1583085 1583090) (-954 "PRIMARR.spad" 1581723 1581733 1581901 1581928) (-953 "PRIMARR2.spad" 1580446 1580458 1581713 1581718) (-952 "PREASSOC.spad" 1579818 1579830 1580436 1580441) (-951 "PPCURVE.spad" 1578955 1578963 1579808 1579813) (-950 "PORTNUM.spad" 1578730 1578738 1578945 1578950) (-949 "POLYROOT.spad" 1577559 1577581 1578686 1578691) (-948 "POLY.spad" 1574856 1574866 1575373 1575500) (-947 "POLYLIFT.spad" 1574117 1574140 1574846 1574851) (-946 "POLYCATQ.spad" 1572219 1572241 1574107 1574112) (-945 "POLYCAT.spad" 1565625 1565646 1572087 1572214) (-944 "POLYCAT.spad" 1558333 1558356 1564797 1564802) (-943 "POLY2UP.spad" 1557781 1557795 1558323 1558328) (-942 "POLY2.spad" 1557376 1557388 1557771 1557776) (-941 "POLUTIL.spad" 1556317 1556346 1557332 1557337) (-940 "POLTOPOL.spad" 1555065 1555080 1556307 1556312) (-939 "POINT.spad" 1553904 1553914 1553991 1554018) (-938 "PNTHEORY.spad" 1550570 1550578 1553894 1553899) (-937 "PMTOOLS.spad" 1549327 1549341 1550560 1550565) (-936 "PMSYM.spad" 1548872 1548882 1549317 1549322) (-935 "PMQFCAT.spad" 1548459 1548473 1548862 1548867) (-934 "PMPRED.spad" 1547928 1547942 1548449 1548454) (-933 "PMPREDFS.spad" 1547372 1547394 1547918 1547923) (-932 "PMPLCAT.spad" 1546442 1546460 1547304 1547309) (-931 "PMLSAGG.spad" 1546023 1546037 1546432 1546437) (-930 "PMKERNEL.spad" 1545590 1545602 1546013 1546018) (-929 "PMINS.spad" 1545166 1545176 1545580 1545585) (-928 "PMFS.spad" 1544739 1544757 1545156 1545161) (-927 "PMDOWN.spad" 1544025 1544039 1544729 1544734) (-926 "PMASS.spad" 1543037 1543045 1544015 1544020) (-925 "PMASSFS.spad" 1542006 1542022 1543027 1543032) (-924 "PLOTTOOL.spad" 1541786 1541794 1541996 1542001) (-923 "PLOT.spad" 1536617 1536625 1541776 1541781) (-922 "PLOT3D.spad" 1533037 1533045 1536607 1536612) (-921 "PLOT1.spad" 1532178 1532188 1533027 1533032) (-920 "PLEQN.spad" 1519394 1519421 1532168 1532173) (-919 "PINTERP.spad" 1519010 1519029 1519384 1519389) (-918 "PINTERPA.spad" 1518792 1518808 1519000 1519005) (-917 "PI.spad" 1518399 1518407 1518766 1518787) (-916 "PID.spad" 1517355 1517363 1518325 1518394) (-915 "PICOERCE.spad" 1517012 1517022 1517345 1517350) (-914 "PGROEB.spad" 1515609 1515623 1517002 1517007) (-913 "PGE.spad" 1506862 1506870 1515599 1515604) (-912 "PGCD.spad" 1505744 1505761 1506852 1506857) (-911 "PFRPAC.spad" 1504887 1504897 1505734 1505739) (-910 "PFR.spad" 1501544 1501554 1504789 1504882) (-909 "PFOTOOLS.spad" 1500802 1500818 1501534 1501539) (-908 "PFOQ.spad" 1500172 1500190 1500792 1500797) (-907 "PFO.spad" 1499591 1499618 1500162 1500167) (-906 "PF.spad" 1499165 1499177 1499396 1499489) (-905 "PFECAT.spad" 1496831 1496839 1499091 1499160) (-904 "PFECAT.spad" 1494525 1494535 1496787 1496792) (-903 "PFBRU.spad" 1492395 1492407 1494515 1494520) (-902 "PFBR.spad" 1489933 1489956 1492385 1492390) (-901 "PERM.spad" 1485614 1485624 1489763 1489778) (-900 "PERMGRP.spad" 1480350 1480360 1485604 1485609) (-899 "PERMCAT.spad" 1478902 1478912 1480330 1480345) (-898 "PERMAN.spad" 1477434 1477448 1478892 1478897) (-897 "PENDTREE.spad" 1476773 1476783 1477063 1477068) (-896 "PDRING.spad" 1475264 1475274 1476753 1476768) (-895 "PDRING.spad" 1473763 1473775 1475254 1475259) (-894 "PDEPROB.spad" 1472778 1472786 1473753 1473758) (-893 "PDEPACK.spad" 1466780 1466788 1472768 1472773) (-892 "PDECOMP.spad" 1466242 1466259 1466770 1466775) (-891 "PDECAT.spad" 1464596 1464604 1466232 1466237) (-890 "PCOMP.spad" 1464447 1464460 1464586 1464591) (-889 "PBWLB.spad" 1463029 1463046 1464437 1464442) (-888 "PATTERN.spad" 1457460 1457470 1463019 1463024) (-887 "PATTERN2.spad" 1457196 1457208 1457450 1457455) (-886 "PATTERN1.spad" 1455498 1455514 1457186 1457191) (-885 "PATRES.spad" 1453045 1453057 1455488 1455493) (-884 "PATRES2.spad" 1452707 1452721 1453035 1453040) (-883 "PATMATCH.spad" 1450864 1450895 1452415 1452420) (-882 "PATMAB.spad" 1450289 1450299 1450854 1450859) (-881 "PATLRES.spad" 1449373 1449387 1450279 1450284) (-880 "PATAB.spad" 1449137 1449147 1449363 1449368) (-879 "PARTPERM.spad" 1446499 1446507 1449127 1449132) (-878 "PARSURF.spad" 1445927 1445955 1446489 1446494) (-877 "PARSU2.spad" 1445722 1445738 1445917 1445922) (-876 "script-parser.spad" 1445242 1445250 1445712 1445717) (-875 "PARSCURV.spad" 1444670 1444698 1445232 1445237) (-874 "PARSC2.spad" 1444459 1444475 1444660 1444665) (-873 "PARPCURV.spad" 1443917 1443945 1444449 1444454) (-872 "PARPC2.spad" 1443706 1443722 1443907 1443912) (-871 "PAN2EXPR.spad" 1443118 1443126 1443696 1443701) (-870 "PALETTE.spad" 1442088 1442096 1443108 1443113) (-869 "PAIR.spad" 1441071 1441084 1441676 1441681) (-868 "PADICRC.spad" 1438401 1438419 1439576 1439669) (-867 "PADICRAT.spad" 1436416 1436428 1436637 1436730) (-866 "PADIC.spad" 1436111 1436123 1436342 1436411) (-865 "PADICCT.spad" 1434652 1434664 1436037 1436106) (-864 "PADEPAC.spad" 1433331 1433350 1434642 1434647) (-863 "PADE.spad" 1432071 1432087 1433321 1433326) (-862 "OWP.spad" 1431311 1431341 1431929 1431996) (-861 "OVERSET.spad" 1430884 1430892 1431301 1431306) (-860 "OVAR.spad" 1430665 1430688 1430874 1430879) (-859 "OUT.spad" 1429749 1429757 1430655 1430660) (-858 "OUTFORM.spad" 1419045 1419053 1429739 1429744) (-857 "OUTBFILE.spad" 1418463 1418471 1419035 1419040) (-856 "OUTBCON.spad" 1417461 1417469 1418453 1418458) (-855 "OUTBCON.spad" 1416457 1416467 1417451 1417456) (-854 "OSI.spad" 1415932 1415940 1416447 1416452) (-853 "OSGROUP.spad" 1415850 1415858 1415922 1415927) (-852 "ORTHPOL.spad" 1414311 1414321 1415767 1415772) (-851 "OREUP.spad" 1413764 1413792 1413991 1414030) (-850 "ORESUP.spad" 1413063 1413087 1413444 1413483) (-849 "OREPCTO.spad" 1410882 1410894 1412983 1412988) (-848 "OREPCAT.spad" 1404939 1404949 1410838 1410877) (-847 "OREPCAT.spad" 1398886 1398898 1404787 1404792) (-846 "ORDSET.spad" 1398052 1398060 1398876 1398881) (-845 "ORDSET.spad" 1397216 1397226 1398042 1398047) (-844 "ORDRING.spad" 1396606 1396614 1397196 1397211) (-843 "ORDRING.spad" 1396004 1396014 1396596 1396601) (-842 "ORDMON.spad" 1395859 1395867 1395994 1395999) (-841 "ORDFUNS.spad" 1394985 1395001 1395849 1395854) (-840 "ORDFIN.spad" 1394805 1394813 1394975 1394980) (-839 "ORDCOMP.spad" 1393270 1393280 1394352 1394381) (-838 "ORDCOMP2.spad" 1392555 1392567 1393260 1393265) (-837 "OPTPROB.spad" 1391193 1391201 1392545 1392550) (-836 "OPTPACK.spad" 1383578 1383586 1391183 1391188) (-835 "OPTCAT.spad" 1381253 1381261 1383568 1383573) (-834 "OPSIG.spad" 1380905 1380913 1381243 1381248) (-833 "OPQUERY.spad" 1380454 1380462 1380895 1380900) (-832 "OP.spad" 1380196 1380206 1380276 1380343) (-831 "OPERCAT.spad" 1379784 1379794 1380186 1380191) (-830 "OPERCAT.spad" 1379370 1379382 1379774 1379779) (-829 "ONECOMP.spad" 1378115 1378125 1378917 1378946) (-828 "ONECOMP2.spad" 1377533 1377545 1378105 1378110) (-827 "OMSERVER.spad" 1376535 1376543 1377523 1377528) (-826 "OMSAGG.spad" 1376323 1376333 1376491 1376530) (-825 "OMPKG.spad" 1374935 1374943 1376313 1376318) (-824 "OM.spad" 1373900 1373908 1374925 1374930) (-823 "OMLO.spad" 1373325 1373337 1373786 1373825) (-822 "OMEXPR.spad" 1373159 1373169 1373315 1373320) (-821 "OMERR.spad" 1372702 1372710 1373149 1373154) (-820 "OMERRK.spad" 1371736 1371744 1372692 1372697) (-819 "OMENC.spad" 1371080 1371088 1371726 1371731) (-818 "OMDEV.spad" 1365369 1365377 1371070 1371075) (-817 "OMCONN.spad" 1364778 1364786 1365359 1365364) (-816 "OINTDOM.spad" 1364541 1364549 1364704 1364773) (-815 "OFMONOID.spad" 1360728 1360738 1364531 1364536) (-814 "ODVAR.spad" 1359989 1359999 1360718 1360723) (-813 "ODR.spad" 1359633 1359659 1359801 1359950) (-812 "ODPOL.spad" 1356979 1356989 1357319 1357446) (-811 "ODP.spad" 1346826 1346846 1347199 1347330) (-810 "ODETOOLS.spad" 1345409 1345428 1346816 1346821) (-809 "ODESYS.spad" 1343059 1343076 1345399 1345404) (-808 "ODERTRIC.spad" 1339000 1339017 1343016 1343021) (-807 "ODERED.spad" 1338387 1338411 1338990 1338995) (-806 "ODERAT.spad" 1335938 1335955 1338377 1338382) (-805 "ODEPRRIC.spad" 1332829 1332851 1335928 1335933) (-804 "ODEPROB.spad" 1332086 1332094 1332819 1332824) (-803 "ODEPRIM.spad" 1329360 1329382 1332076 1332081) (-802 "ODEPAL.spad" 1328736 1328760 1329350 1329355) (-801 "ODEPACK.spad" 1315338 1315346 1328726 1328731) (-800 "ODEINT.spad" 1314769 1314785 1315328 1315333) (-799 "ODEIFTBL.spad" 1312164 1312172 1314759 1314764) (-798 "ODEEF.spad" 1307531 1307547 1312154 1312159) (-797 "ODECONST.spad" 1307050 1307068 1307521 1307526) (-796 "ODECAT.spad" 1305646 1305654 1307040 1307045) (-795 "OCT.spad" 1303784 1303794 1304500 1304539) (-794 "OCTCT2.spad" 1303428 1303449 1303774 1303779) (-793 "OC.spad" 1301202 1301212 1303384 1303423) (-792 "OC.spad" 1298701 1298713 1300885 1300890) (-791 "OCAMON.spad" 1298549 1298557 1298691 1298696) (-790 "OASGP.spad" 1298364 1298372 1298539 1298544) (-789 "OAMONS.spad" 1297884 1297892 1298354 1298359) (-788 "OAMON.spad" 1297745 1297753 1297874 1297879) (-787 "OAGROUP.spad" 1297607 1297615 1297735 1297740) (-786 "NUMTUBE.spad" 1297194 1297210 1297597 1297602) (-785 "NUMQUAD.spad" 1285056 1285064 1297184 1297189) (-784 "NUMODE.spad" 1276192 1276200 1285046 1285051) (-783 "NUMINT.spad" 1273750 1273758 1276182 1276187) (-782 "NUMFMT.spad" 1272590 1272598 1273740 1273745) (-781 "NUMERIC.spad" 1264662 1264672 1272395 1272400) (-780 "NTSCAT.spad" 1263164 1263180 1264630 1264657) (-779 "NTPOLFN.spad" 1262709 1262719 1263081 1263086) (-778 "NSUP.spad" 1255719 1255729 1260259 1260412) (-777 "NSUP2.spad" 1255111 1255123 1255709 1255714) (-776 "NSMP.spad" 1251306 1251325 1251614 1251741) (-775 "NREP.spad" 1249678 1249692 1251296 1251301) (-774 "NPCOEF.spad" 1248924 1248944 1249668 1249673) (-773 "NORMRETR.spad" 1248522 1248561 1248914 1248919) (-772 "NORMPK.spad" 1246424 1246443 1248512 1248517) (-771 "NORMMA.spad" 1246112 1246138 1246414 1246419) (-770 "NONE.spad" 1245853 1245861 1246102 1246107) (-769 "NONE1.spad" 1245529 1245539 1245843 1245848) (-768 "NODE1.spad" 1244998 1245014 1245519 1245524) (-767 "NNI.spad" 1243885 1243893 1244972 1244993) (-766 "NLINSOL.spad" 1242507 1242517 1243875 1243880) (-765 "NIPROB.spad" 1241048 1241056 1242497 1242502) (-764 "NFINTBAS.spad" 1238508 1238525 1241038 1241043) (-763 "NETCLT.spad" 1238482 1238493 1238498 1238503) (-762 "NCODIV.spad" 1236680 1236696 1238472 1238477) (-761 "NCNTFRAC.spad" 1236322 1236336 1236670 1236675) (-760 "NCEP.spad" 1234482 1234496 1236312 1236317) (-759 "NASRING.spad" 1234078 1234086 1234472 1234477) (-758 "NASRING.spad" 1233672 1233682 1234068 1234073) (-757 "NARNG.spad" 1233016 1233024 1233662 1233667) (-756 "NARNG.spad" 1232358 1232368 1233006 1233011) (-755 "NAGSP.spad" 1231431 1231439 1232348 1232353) (-754 "NAGS.spad" 1220956 1220964 1231421 1231426) (-753 "NAGF07.spad" 1219349 1219357 1220946 1220951) (-752 "NAGF04.spad" 1213581 1213589 1219339 1219344) (-751 "NAGF02.spad" 1207390 1207398 1213571 1213576) (-750 "NAGF01.spad" 1202993 1203001 1207380 1207385) (-749 "NAGE04.spad" 1196453 1196461 1202983 1202988) (-748 "NAGE02.spad" 1186795 1186803 1196443 1196448) (-747 "NAGE01.spad" 1182679 1182687 1186785 1186790) (-746 "NAGD03.spad" 1180599 1180607 1182669 1182674) (-745 "NAGD02.spad" 1173130 1173138 1180589 1180594) (-744 "NAGD01.spad" 1167243 1167251 1173120 1173125) (-743 "NAGC06.spad" 1163030 1163038 1167233 1167238) (-742 "NAGC05.spad" 1161499 1161507 1163020 1163025) (-741 "NAGC02.spad" 1160754 1160762 1161489 1161494) (-740 "NAALG.spad" 1160289 1160299 1160722 1160749) (-739 "NAALG.spad" 1159844 1159856 1160279 1160284) (-738 "MULTSQFR.spad" 1156802 1156819 1159834 1159839) (-737 "MULTFACT.spad" 1156185 1156202 1156792 1156797) (-736 "MTSCAT.spad" 1154219 1154240 1156083 1156180) (-735 "MTHING.spad" 1153876 1153886 1154209 1154214) (-734 "MSYSCMD.spad" 1153310 1153318 1153866 1153871) (-733 "MSET.spad" 1151252 1151262 1153016 1153055) (-732 "MSETAGG.spad" 1151097 1151107 1151220 1151247) (-731 "MRING.spad" 1148068 1148080 1150805 1150872) (-730 "MRF2.spad" 1147636 1147650 1148058 1148063) (-729 "MRATFAC.spad" 1147182 1147199 1147626 1147631) (-728 "MPRFF.spad" 1145212 1145231 1147172 1147177) (-727 "MPOLY.spad" 1142647 1142662 1143006 1143133) (-726 "MPCPF.spad" 1141911 1141930 1142637 1142642) (-725 "MPC3.spad" 1141726 1141766 1141901 1141906) (-724 "MPC2.spad" 1141368 1141401 1141716 1141721) (-723 "MONOTOOL.spad" 1139703 1139720 1141358 1141363) (-722 "MONOID.spad" 1139022 1139030 1139693 1139698) (-721 "MONOID.spad" 1138339 1138349 1139012 1139017) (-720 "MONOGEN.spad" 1137085 1137098 1138199 1138334) (-719 "MONOGEN.spad" 1135853 1135868 1136969 1136974) (-718 "MONADWU.spad" 1133867 1133875 1135843 1135848) (-717 "MONADWU.spad" 1131879 1131889 1133857 1133862) (-716 "MONAD.spad" 1131023 1131031 1131869 1131874) (-715 "MONAD.spad" 1130165 1130175 1131013 1131018) (-714 "MOEBIUS.spad" 1128851 1128865 1130145 1130160) (-713 "MODULE.spad" 1128721 1128731 1128819 1128846) (-712 "MODULE.spad" 1128611 1128623 1128711 1128716) (-711 "MODRING.spad" 1127942 1127981 1128591 1128606) (-710 "MODOP.spad" 1126601 1126613 1127764 1127831) (-709 "MODMONOM.spad" 1126330 1126348 1126591 1126596) (-708 "MODMON.spad" 1123089 1123105 1123808 1123961) (-707 "MODFIELD.spad" 1122447 1122486 1122991 1123084) (-706 "MMLFORM.spad" 1121307 1121315 1122437 1122442) (-705 "MMAP.spad" 1121047 1121081 1121297 1121302) (-704 "MLO.spad" 1119474 1119484 1121003 1121042) (-703 "MLIFT.spad" 1118046 1118063 1119464 1119469) (-702 "MKUCFUNC.spad" 1117579 1117597 1118036 1118041) (-701 "MKRECORD.spad" 1117181 1117194 1117569 1117574) (-700 "MKFUNC.spad" 1116562 1116572 1117171 1117176) (-699 "MKFLCFN.spad" 1115518 1115528 1116552 1116557) (-698 "MKCHSET.spad" 1115383 1115393 1115508 1115513) (-697 "MKBCFUNC.spad" 1114868 1114886 1115373 1115378) (-696 "MINT.spad" 1114307 1114315 1114770 1114863) (-695 "MHROWRED.spad" 1112808 1112818 1114297 1114302) (-694 "MFLOAT.spad" 1111324 1111332 1112698 1112803) (-693 "MFINFACT.spad" 1110724 1110746 1111314 1111319) (-692 "MESH.spad" 1108456 1108464 1110714 1110719) (-691 "MDDFACT.spad" 1106649 1106659 1108446 1108451) (-690 "MDAGG.spad" 1105936 1105946 1106629 1106644) (-689 "MCMPLX.spad" 1101910 1101918 1102524 1102725) (-688 "MCDEN.spad" 1101118 1101130 1101900 1101905) (-687 "MCALCFN.spad" 1098220 1098246 1101108 1101113) (-686 "MAYBE.spad" 1097504 1097515 1098210 1098215) (-685 "MATSTOR.spad" 1094780 1094790 1097494 1097499) (-684 "MATRIX.spad" 1093484 1093494 1093968 1093995) (-683 "MATLIN.spad" 1090810 1090834 1093368 1093373) (-682 "MATCAT.spad" 1082395 1082417 1090778 1090805) (-681 "MATCAT.spad" 1073852 1073876 1082237 1082242) (-680 "MATCAT2.spad" 1073120 1073168 1073842 1073847) (-679 "MAPPKG3.spad" 1072019 1072033 1073110 1073115) (-678 "MAPPKG2.spad" 1071353 1071365 1072009 1072014) (-677 "MAPPKG1.spad" 1070171 1070181 1071343 1071348) (-676 "MAPPAST.spad" 1069484 1069492 1070161 1070166) (-675 "MAPHACK3.spad" 1069292 1069306 1069474 1069479) (-674 "MAPHACK2.spad" 1069057 1069069 1069282 1069287) (-673 "MAPHACK1.spad" 1068687 1068697 1069047 1069052) (-672 "MAGMA.spad" 1066477 1066494 1068677 1068682) (-671 "MACROAST.spad" 1066056 1066064 1066467 1066472) (-670 "M3D.spad" 1063752 1063762 1065434 1065439) (-669 "LZSTAGG.spad" 1060980 1060990 1063742 1063747) (-668 "LZSTAGG.spad" 1058206 1058218 1060970 1060975) (-667 "LWORD.spad" 1054911 1054928 1058196 1058201) (-666 "LSTAST.spad" 1054695 1054703 1054901 1054906) (-665 "LSQM.spad" 1052921 1052935 1053319 1053370) (-664 "LSPP.spad" 1052454 1052471 1052911 1052916) (-663 "LSMP.spad" 1051294 1051322 1052444 1052449) (-662 "LSMP1.spad" 1049098 1049112 1051284 1051289) (-661 "LSAGG.spad" 1048767 1048777 1049066 1049093) (-660 "LSAGG.spad" 1048456 1048468 1048757 1048762) (-659 "LPOLY.spad" 1047410 1047429 1048312 1048381) (-658 "LPEFRAC.spad" 1046667 1046677 1047400 1047405) (-657 "LO.spad" 1046068 1046082 1046601 1046628) (-656 "LOGIC.spad" 1045670 1045678 1046058 1046063) (-655 "LOGIC.spad" 1045270 1045280 1045660 1045665) (-654 "LODOOPS.spad" 1044188 1044200 1045260 1045265) (-653 "LODO.spad" 1043572 1043588 1043868 1043907) (-652 "LODOF.spad" 1042616 1042633 1043529 1043534) (-651 "LODOCAT.spad" 1041274 1041284 1042572 1042611) (-650 "LODOCAT.spad" 1039930 1039942 1041230 1041235) (-649 "LODO2.spad" 1039203 1039215 1039610 1039649) (-648 "LODO1.spad" 1038603 1038613 1038883 1038922) (-647 "LODEEF.spad" 1037375 1037393 1038593 1038598) (-646 "LNAGG.spad" 1033177 1033187 1037365 1037370) (-645 "LNAGG.spad" 1028943 1028955 1033133 1033138) (-644 "LMOPS.spad" 1025679 1025696 1028933 1028938) (-643 "LMODULE.spad" 1025321 1025331 1025669 1025674) (-642 "LMDICT.spad" 1024604 1024614 1024872 1024899) (-641 "LITERAL.spad" 1024510 1024521 1024594 1024599) (-640 "LIST.spad" 1022228 1022238 1023657 1023684) (-639 "LIST3.spad" 1021519 1021533 1022218 1022223) (-638 "LIST2.spad" 1020159 1020171 1021509 1021514) (-637 "LIST2MAP.spad" 1017036 1017048 1020149 1020154) (-636 "LINEXP.spad" 1016468 1016478 1017016 1017031) (-635 "LINDEP.spad" 1015245 1015257 1016380 1016385) (-634 "LIMITRF.spad" 1013159 1013169 1015235 1015240) (-633 "LIMITPS.spad" 1012042 1012055 1013149 1013154) (-632 "LIE.spad" 1010056 1010068 1011332 1011477) (-631 "LIECAT.spad" 1009532 1009542 1009982 1010051) (-630 "LIECAT.spad" 1009036 1009048 1009488 1009493) (-629 "LIB.spad" 1007084 1007092 1007695 1007710) (-628 "LGROBP.spad" 1004437 1004456 1007074 1007079) (-627 "LF.spad" 1003356 1003372 1004427 1004432) (-626 "LFCAT.spad" 1002375 1002383 1003346 1003351) (-625 "LEXTRIPK.spad" 997878 997893 1002365 1002370) (-624 "LEXP.spad" 995881 995908 997858 997873) (-623 "LETAST.spad" 995580 995588 995871 995876) (-622 "LEADCDET.spad" 993964 993981 995570 995575) (-621 "LAZM3PK.spad" 992668 992690 993954 993959) (-620 "LAUPOL.spad" 991357 991370 992261 992330) (-619 "LAPLACE.spad" 990930 990946 991347 991352) (-618 "LA.spad" 990370 990384 990852 990891) (-617 "LALG.spad" 990146 990156 990350 990365) (-616 "LALG.spad" 989930 989942 990136 990141) (-615 "KVTFROM.spad" 989665 989675 989920 989925) (-614 "KTVLOGIC.spad" 989088 989096 989655 989660) (-613 "KRCFROM.spad" 988826 988836 989078 989083) (-612 "KOVACIC.spad" 987539 987556 988816 988821) (-611 "KONVERT.spad" 987261 987271 987529 987534) (-610 "KOERCE.spad" 986998 987008 987251 987256) (-609 "KERNEL.spad" 985533 985543 986782 986787) (-608 "KERNEL2.spad" 985236 985248 985523 985528) (-607 "KDAGG.spad" 984339 984361 985216 985231) (-606 "KDAGG.spad" 983450 983474 984329 984334) (-605 "KAFILE.spad" 982413 982429 982648 982675) (-604 "JORDAN.spad" 980240 980252 981703 981848) (-603 "JOINAST.spad" 979934 979942 980230 980235) (-602 "JAVACODE.spad" 979800 979808 979924 979929) (-601 "IXAGG.spad" 977923 977947 979790 979795) (-600 "IXAGG.spad" 975901 975927 977770 977775) (-599 "IVECTOR.spad" 974672 974687 974827 974854) (-598 "ITUPLE.spad" 973817 973827 974662 974667) (-597 "ITRIGMNP.spad" 972628 972647 973807 973812) (-596 "ITFUN3.spad" 972122 972136 972618 972623) (-595 "ITFUN2.spad" 971852 971864 972112 972117) (-594 "ITAYLOR.spad" 969644 969659 971688 971813) (-593 "ISUPS.spad" 962055 962070 968618 968715) (-592 "ISUMP.spad" 961552 961568 962045 962050) (-591 "ISTRING.spad" 960555 960568 960721 960748) (-590 "ISAST.spad" 960274 960282 960545 960550) (-589 "IRURPK.spad" 958987 959006 960264 960269) (-588 "IRSN.spad" 956947 956955 958977 958982) (-587 "IRRF2F.spad" 955422 955432 956903 956908) (-586 "IRREDFFX.spad" 955023 955034 955412 955417) (-585 "IROOT.spad" 953354 953364 955013 955018) (-584 "IR.spad" 951143 951157 953209 953236) (-583 "IR2.spad" 950163 950179 951133 951138) (-582 "IR2F.spad" 949363 949379 950153 950158) (-581 "IPRNTPK.spad" 949123 949131 949353 949358) (-580 "IPF.spad" 948688 948700 948928 949021) (-579 "IPADIC.spad" 948449 948475 948614 948683) (-578 "IP4ADDR.spad" 948006 948014 948439 948444) (-577 "IOMODE.spad" 947627 947635 947996 948001) (-576 "IOBFILE.spad" 946988 946996 947617 947622) (-575 "IOBCON.spad" 946853 946861 946978 946983) (-574 "INVLAPLA.spad" 946498 946514 946843 946848) (-573 "INTTR.spad" 939744 939761 946488 946493) (-572 "INTTOOLS.spad" 937455 937471 939318 939323) (-571 "INTSLPE.spad" 936761 936769 937445 937450) (-570 "INTRVL.spad" 936327 936337 936675 936756) (-569 "INTRF.spad" 934691 934705 936317 936322) (-568 "INTRET.spad" 934123 934133 934681 934686) (-567 "INTRAT.spad" 932798 932815 934113 934118) (-566 "INTPM.spad" 931161 931177 932441 932446) (-565 "INTPAF.spad" 928929 928947 931093 931098) (-564 "INTPACK.spad" 919239 919247 928919 928924) (-563 "INT.spad" 918600 918608 919093 919234) (-562 "INTHERTR.spad" 917866 917883 918590 918595) (-561 "INTHERAL.spad" 917532 917556 917856 917861) (-560 "INTHEORY.spad" 913945 913953 917522 917527) (-559 "INTG0.spad" 907408 907426 913877 913882) (-558 "INTFTBL.spad" 901437 901445 907398 907403) (-557 "INTFACT.spad" 900496 900506 901427 901432) (-556 "INTEF.spad" 898811 898827 900486 900491) (-555 "INTDOM.spad" 897426 897434 898737 898806) (-554 "INTDOM.spad" 896103 896113 897416 897421) (-553 "INTCAT.spad" 894356 894366 896017 896098) (-552 "INTBIT.spad" 893859 893867 894346 894351) (-551 "INTALG.spad" 893041 893068 893849 893854) (-550 "INTAF.spad" 892533 892549 893031 893036) (-549 "INTABL.spad" 891051 891082 891214 891241) (-548 "INT8.spad" 890931 890939 891041 891046) (-547 "INT32.spad" 890810 890818 890921 890926) (-546 "INT16.spad" 890689 890697 890800 890805) (-545 "INS.spad" 888156 888164 890591 890684) (-544 "INS.spad" 885709 885719 888146 888151) (-543 "INPSIGN.spad" 885143 885156 885699 885704) (-542 "INPRODPF.spad" 884209 884228 885133 885138) (-541 "INPRODFF.spad" 883267 883291 884199 884204) (-540 "INNMFACT.spad" 882238 882255 883257 883262) (-539 "INMODGCD.spad" 881722 881752 882228 882233) (-538 "INFSP.spad" 880007 880029 881712 881717) (-537 "INFPROD0.spad" 879057 879076 879997 880002) (-536 "INFORM.spad" 876218 876226 879047 879052) (-535 "INFORM1.spad" 875843 875853 876208 876213) (-534 "INFINITY.spad" 875395 875403 875833 875838) (-533 "INETCLTS.spad" 875372 875380 875385 875390) (-532 "INEP.spad" 873904 873926 875362 875367) (-531 "INDE.spad" 873633 873650 873894 873899) (-530 "INCRMAPS.spad" 873054 873064 873623 873628) (-529 "INBFILE.spad" 872126 872134 873044 873049) (-528 "INBFF.spad" 867896 867907 872116 872121) (-527 "INBCON.spad" 866184 866192 867886 867891) (-526 "INBCON.spad" 864470 864480 866174 866179) (-525 "INAST.spad" 864135 864143 864460 864465) (-524 "IMPTAST.spad" 863843 863851 864125 864130) (-523 "IMATRIX.spad" 862788 862814 863300 863327) (-522 "IMATQF.spad" 861882 861926 862744 862749) (-521 "IMATLIN.spad" 860487 860511 861838 861843) (-520 "ILIST.spad" 859143 859158 859670 859697) (-519 "IIARRAY2.spad" 858531 858569 858750 858777) (-518 "IFF.spad" 857941 857957 858212 858305) (-517 "IFAST.spad" 857555 857563 857931 857936) (-516 "IFARRAY.spad" 855042 855057 856738 856765) (-515 "IFAMON.spad" 854904 854921 854998 855003) (-514 "IEVALAB.spad" 854293 854305 854894 854899) (-513 "IEVALAB.spad" 853680 853694 854283 854288) (-512 "IDPO.spad" 853478 853490 853670 853675) (-511 "IDPOAMS.spad" 853234 853246 853468 853473) (-510 "IDPOAM.spad" 852954 852966 853224 853229) (-509 "IDPC.spad" 851888 851900 852944 852949) (-508 "IDPAM.spad" 851633 851645 851878 851883) (-507 "IDPAG.spad" 851380 851392 851623 851628) (-506 "IDENT.spad" 851152 851160 851370 851375) (-505 "IDECOMP.spad" 848389 848407 851142 851147) (-504 "IDEAL.spad" 843312 843351 848324 848329) (-503 "ICDEN.spad" 842463 842479 843302 843307) (-502 "ICARD.spad" 841652 841660 842453 842458) (-501 "IBPTOOLS.spad" 840245 840262 841642 841647) (-500 "IBITS.spad" 839444 839457 839881 839908) (-499 "IBATOOL.spad" 836319 836338 839434 839439) (-498 "IBACHIN.spad" 834806 834821 836309 836314) (-497 "IARRAY2.spad" 833794 833820 834413 834440) (-496 "IARRAY1.spad" 832839 832854 832977 833004) (-495 "IAN.spad" 831052 831060 832655 832748) (-494 "IALGFACT.spad" 830653 830686 831042 831047) (-493 "HYPCAT.spad" 830077 830085 830643 830648) (-492 "HYPCAT.spad" 829499 829509 830067 830072) (-491 "HOSTNAME.spad" 829307 829315 829489 829494) (-490 "HOMOTOP.spad" 829050 829060 829297 829302) (-489 "HOAGG.spad" 826318 826328 829040 829045) (-488 "HOAGG.spad" 823361 823373 826085 826090) (-487 "HEXADEC.spad" 821463 821471 821828 821921) (-486 "HEUGCD.spad" 820478 820489 821453 821458) (-485 "HELLFDIV.spad" 820068 820092 820468 820473) (-484 "HEAP.spad" 819460 819470 819675 819702) (-483 "HEADAST.spad" 818991 818999 819450 819455) (-482 "HDP.spad" 808834 808850 809211 809342) (-481 "HDMP.spad" 806010 806025 806628 806755) (-480 "HB.spad" 804247 804255 806000 806005) (-479 "HASHTBL.spad" 802717 802748 802928 802955) (-478 "HASAST.spad" 802433 802441 802707 802712) (-477 "HACKPI.spad" 801916 801924 802335 802428) (-476 "GTSET.spad" 800855 800871 801562 801589) (-475 "GSTBL.spad" 799374 799409 799548 799563) (-474 "GSERIES.spad" 796541 796568 797506 797655) (-473 "GROUP.spad" 795810 795818 796521 796536) (-472 "GROUP.spad" 795087 795097 795800 795805) (-471 "GROEBSOL.spad" 793575 793596 795077 795082) (-470 "GRMOD.spad" 792146 792158 793565 793570) (-469 "GRMOD.spad" 790715 790729 792136 792141) (-468 "GRIMAGE.spad" 783320 783328 790705 790710) (-467 "GRDEF.spad" 781699 781707 783310 783315) (-466 "GRAY.spad" 780158 780166 781689 781694) (-465 "GRALG.spad" 779205 779217 780148 780153) (-464 "GRALG.spad" 778250 778264 779195 779200) (-463 "GPOLSET.spad" 777704 777727 777932 777959) (-462 "GOSPER.spad" 776969 776987 777694 777699) (-461 "GMODPOL.spad" 776107 776134 776937 776964) (-460 "GHENSEL.spad" 775176 775190 776097 776102) (-459 "GENUPS.spad" 771277 771290 775166 775171) (-458 "GENUFACT.spad" 770854 770864 771267 771272) (-457 "GENPGCD.spad" 770438 770455 770844 770849) (-456 "GENMFACT.spad" 769890 769909 770428 770433) (-455 "GENEEZ.spad" 767829 767842 769880 769885) (-454 "GDMP.spad" 764847 764864 765623 765750) (-453 "GCNAALG.spad" 758742 758769 764641 764708) (-452 "GCDDOM.spad" 757914 757922 758668 758737) (-451 "GCDDOM.spad" 757148 757158 757904 757909) (-450 "GB.spad" 754666 754704 757104 757109) (-449 "GBINTERN.spad" 750686 750724 754656 754661) (-448 "GBF.spad" 746443 746481 750676 750681) (-447 "GBEUCLID.spad" 744317 744355 746433 746438) (-446 "GAUSSFAC.spad" 743614 743622 744307 744312) (-445 "GALUTIL.spad" 741936 741946 743570 743575) (-444 "GALPOLYU.spad" 740382 740395 741926 741931) (-443 "GALFACTU.spad" 738547 738566 740372 740377) (-442 "GALFACT.spad" 728680 728691 738537 738542) (-441 "FVFUN.spad" 725703 725711 728670 728675) (-440 "FVC.spad" 724755 724763 725693 725698) (-439 "FUNDESC.spad" 724433 724441 724745 724750) (-438 "FUNCTION.spad" 724282 724294 724423 724428) (-437 "FT.spad" 722575 722583 724272 724277) (-436 "FTEM.spad" 721738 721746 722565 722570) (-435 "FSUPFACT.spad" 720638 720657 721674 721679) (-434 "FST.spad" 718724 718732 720628 720633) (-433 "FSRED.spad" 718202 718218 718714 718719) (-432 "FSPRMELT.spad" 717026 717042 718159 718164) (-431 "FSPECF.spad" 715103 715119 717016 717021) (-430 "FS.spad" 709165 709175 714878 715098) (-429 "FS.spad" 703005 703017 708720 708725) (-428 "FSINT.spad" 702663 702679 702995 703000) (-427 "FSERIES.spad" 701850 701862 702483 702582) (-426 "FSCINT.spad" 701163 701179 701840 701845) (-425 "FSAGG.spad" 700280 700290 701119 701158) (-424 "FSAGG.spad" 699359 699371 700200 700205) (-423 "FSAGG2.spad" 698058 698074 699349 699354) (-422 "FS2UPS.spad" 692541 692575 698048 698053) (-421 "FS2.spad" 692186 692202 692531 692536) (-420 "FS2EXPXP.spad" 691309 691332 692176 692181) (-419 "FRUTIL.spad" 690251 690261 691299 691304) (-418 "FR.spad" 683945 683955 689275 689344) (-417 "FRNAALG.spad" 679032 679042 683887 683940) (-416 "FRNAALG.spad" 674131 674143 678988 678993) (-415 "FRNAAF2.spad" 673585 673603 674121 674126) (-414 "FRMOD.spad" 672979 673009 673516 673521) (-413 "FRIDEAL.spad" 672174 672195 672959 672974) (-412 "FRIDEAL2.spad" 671776 671808 672164 672169) (-411 "FRETRCT.spad" 671287 671297 671766 671771) (-410 "FRETRCT.spad" 670664 670676 671145 671150) (-409 "FRAMALG.spad" 668992 669005 670620 670659) (-408 "FRAMALG.spad" 667352 667367 668982 668987) (-407 "FRAC.spad" 664451 664461 664854 665027) (-406 "FRAC2.spad" 664054 664066 664441 664446) (-405 "FR2.spad" 663388 663400 664044 664049) (-404 "FPS.spad" 660197 660205 663278 663383) (-403 "FPS.spad" 657034 657044 660117 660122) (-402 "FPC.spad" 656076 656084 656936 657029) (-401 "FPC.spad" 655204 655214 656066 656071) (-400 "FPATMAB.spad" 654966 654976 655194 655199) (-399 "FPARFRAC.spad" 653439 653456 654956 654961) (-398 "FORTRAN.spad" 651945 651988 653429 653434) (-397 "FORT.spad" 650874 650882 651935 651940) (-396 "FORTFN.spad" 648044 648052 650864 650869) (-395 "FORTCAT.spad" 647728 647736 648034 648039) (-394 "FORMULA.spad" 645192 645200 647718 647723) (-393 "FORMULA1.spad" 644671 644681 645182 645187) (-392 "FORDER.spad" 644362 644386 644661 644666) (-391 "FOP.spad" 643563 643571 644352 644357) (-390 "FNLA.spad" 642987 643009 643531 643558) (-389 "FNCAT.spad" 641574 641582 642977 642982) (-388 "FNAME.spad" 641466 641474 641564 641569) (-387 "FMTC.spad" 641264 641272 641392 641461) (-386 "FMONOID.spad" 638319 638329 641220 641225) (-385 "FM.spad" 638014 638026 638253 638280) (-384 "FMFUN.spad" 635044 635052 638004 638009) (-383 "FMC.spad" 634096 634104 635034 635039) (-382 "FMCAT.spad" 631750 631768 634064 634091) (-381 "FM1.spad" 631107 631119 631684 631711) (-380 "FLOATRP.spad" 628828 628842 631097 631102) (-379 "FLOAT.spad" 622116 622124 628694 628823) (-378 "FLOATCP.spad" 619533 619547 622106 622111) (-377 "FLINEXP.spad" 619245 619255 619513 619528) (-376 "FLINEXP.spad" 618911 618923 619181 619186) (-375 "FLASORT.spad" 618231 618243 618901 618906) (-374 "FLALG.spad" 615877 615896 618157 618226) (-373 "FLAGG.spad" 612895 612905 615857 615872) (-372 "FLAGG.spad" 609814 609826 612778 612783) (-371 "FLAGG2.spad" 608495 608511 609804 609809) (-370 "FINRALG.spad" 606524 606537 608451 608490) (-369 "FINRALG.spad" 604479 604494 606408 606413) (-368 "FINITE.spad" 603631 603639 604469 604474) (-367 "FINAALG.spad" 592612 592622 603573 603626) (-366 "FINAALG.spad" 581605 581617 592568 592573) (-365 "FILE.spad" 581188 581198 581595 581600) (-364 "FILECAT.spad" 579706 579723 581178 581183) (-363 "FIELD.spad" 579112 579120 579608 579701) (-362 "FIELD.spad" 578604 578614 579102 579107) (-361 "FGROUP.spad" 577213 577223 578584 578599) (-360 "FGLMICPK.spad" 576000 576015 577203 577208) (-359 "FFX.spad" 575375 575390 575716 575809) (-358 "FFSLPE.spad" 574864 574885 575365 575370) (-357 "FFPOLY.spad" 566116 566127 574854 574859) (-356 "FFPOLY2.spad" 565176 565193 566106 566111) (-355 "FFP.spad" 564573 564593 564892 564985) (-354 "FF.spad" 564021 564037 564254 564347) (-353 "FFNBX.spad" 562533 562553 563737 563830) (-352 "FFNBP.spad" 561046 561063 562249 562342) (-351 "FFNB.spad" 559511 559532 560727 560820) (-350 "FFINTBAS.spad" 556925 556944 559501 559506) (-349 "FFIELDC.spad" 554500 554508 556827 556920) (-348 "FFIELDC.spad" 552161 552171 554490 554495) (-347 "FFHOM.spad" 550909 550926 552151 552156) (-346 "FFF.spad" 548344 548355 550899 550904) (-345 "FFCGX.spad" 547191 547211 548060 548153) (-344 "FFCGP.spad" 546080 546100 546907 547000) (-343 "FFCG.spad" 544872 544893 545761 545854) (-342 "FFCAT.spad" 537899 537921 544711 544867) (-341 "FFCAT.spad" 531005 531029 537819 537824) (-340 "FFCAT2.spad" 530750 530790 530995 531000) (-339 "FEXPR.spad" 522459 522505 530506 530545) (-338 "FEVALAB.spad" 522165 522175 522449 522454) (-337 "FEVALAB.spad" 521656 521668 521942 521947) (-336 "FDIV.spad" 521098 521122 521646 521651) (-335 "FDIVCAT.spad" 519140 519164 521088 521093) (-334 "FDIVCAT.spad" 517180 517206 519130 519135) (-333 "FDIV2.spad" 516834 516874 517170 517175) (-332 "FCPAK1.spad" 515387 515395 516824 516829) (-331 "FCOMP.spad" 514766 514776 515377 515382) (-330 "FC.spad" 504681 504689 514756 514761) (-329 "FAXF.spad" 497616 497630 504583 504676) (-328 "FAXF.spad" 490603 490619 497572 497577) (-327 "FARRAY.spad" 488749 488759 489786 489813) (-326 "FAMR.spad" 486869 486881 488647 488744) (-325 "FAMR.spad" 484973 484987 486753 486758) (-324 "FAMONOID.spad" 484623 484633 484927 484932) (-323 "FAMONC.spad" 482845 482857 484613 484618) (-322 "FAGROUP.spad" 482451 482461 482741 482768) (-321 "FACUTIL.spad" 480647 480664 482441 482446) (-320 "FACTFUNC.spad" 479823 479833 480637 480642) (-319 "EXPUPXS.spad" 476656 476679 477955 478104) (-318 "EXPRTUBE.spad" 473884 473892 476646 476651) (-317 "EXPRODE.spad" 470756 470772 473874 473879) (-316 "EXPR.spad" 466031 466041 466745 467152) (-315 "EXPR2UPS.spad" 462123 462136 466021 466026) (-314 "EXPR2.spad" 461826 461838 462113 462118) (-313 "EXPEXPAN.spad" 458764 458789 459398 459491) (-312 "EXIT.spad" 458435 458443 458754 458759) (-311 "EXITAST.spad" 458171 458179 458425 458430) (-310 "EVALCYC.spad" 457629 457643 458161 458166) (-309 "EVALAB.spad" 457193 457203 457619 457624) (-308 "EVALAB.spad" 456755 456767 457183 457188) (-307 "EUCDOM.spad" 454297 454305 456681 456750) (-306 "EUCDOM.spad" 451901 451911 454287 454292) (-305 "ESTOOLS.spad" 443741 443749 451891 451896) (-304 "ESTOOLS2.spad" 443342 443356 443731 443736) (-303 "ESTOOLS1.spad" 443027 443038 443332 443337) (-302 "ES.spad" 435574 435582 443017 443022) (-301 "ES.spad" 428027 428037 435472 435477) (-300 "ESCONT.spad" 424800 424808 428017 428022) (-299 "ESCONT1.spad" 424549 424561 424790 424795) (-298 "ES2.spad" 424044 424060 424539 424544) (-297 "ES1.spad" 423610 423626 424034 424039) (-296 "ERROR.spad" 420931 420939 423600 423605) (-295 "EQTBL.spad" 419403 419425 419612 419639) (-294 "EQ.spad" 414277 414287 417076 417188) (-293 "EQ2.spad" 413993 414005 414267 414272) (-292 "EP.spad" 410307 410317 413983 413988) (-291 "ENV.spad" 409009 409017 410297 410302) (-290 "ENTIRER.spad" 408677 408685 408953 409004) (-289 "EMR.spad" 407878 407919 408603 408672) (-288 "ELTAGG.spad" 406118 406137 407868 407873) (-287 "ELTAGG.spad" 404322 404343 406074 406079) (-286 "ELTAB.spad" 403769 403787 404312 404317) (-285 "ELFUTS.spad" 403148 403167 403759 403764) (-284 "ELEMFUN.spad" 402837 402845 403138 403143) (-283 "ELEMFUN.spad" 402524 402534 402827 402832) (-282 "ELAGG.spad" 400467 400477 402504 402519) (-281 "ELAGG.spad" 398347 398359 400386 400391) (-280 "ELABEXPR.spad" 397278 397286 398337 398342) (-279 "EFUPXS.spad" 394054 394084 397234 397239) (-278 "EFULS.spad" 390890 390913 394010 394015) (-277 "EFSTRUC.spad" 388845 388861 390880 390885) (-276 "EF.spad" 383611 383627 388835 388840) (-275 "EAB.spad" 381887 381895 383601 383606) (-274 "E04UCFA.spad" 381423 381431 381877 381882) (-273 "E04NAFA.spad" 381000 381008 381413 381418) (-272 "E04MBFA.spad" 380580 380588 380990 380995) (-271 "E04JAFA.spad" 380116 380124 380570 380575) (-270 "E04GCFA.spad" 379652 379660 380106 380111) (-269 "E04FDFA.spad" 379188 379196 379642 379647) (-268 "E04DGFA.spad" 378724 378732 379178 379183) (-267 "E04AGNT.spad" 374566 374574 378714 378719) (-266 "DVARCAT.spad" 371251 371261 374556 374561) (-265 "DVARCAT.spad" 367934 367946 371241 371246) (-264 "DSMP.spad" 365365 365379 365670 365797) (-263 "DROPT.spad" 359310 359318 365355 365360) (-262 "DROPT1.spad" 358973 358983 359300 359305) (-261 "DROPT0.spad" 353800 353808 358963 358968) (-260 "DRAWPT.spad" 351955 351963 353790 353795) (-259 "DRAW.spad" 344555 344568 351945 351950) (-258 "DRAWHACK.spad" 343863 343873 344545 344550) (-257 "DRAWCX.spad" 341305 341313 343853 343858) (-256 "DRAWCURV.spad" 340842 340857 341295 341300) (-255 "DRAWCFUN.spad" 330014 330022 340832 340837) (-254 "DQAGG.spad" 328182 328192 329982 330009) (-253 "DPOLCAT.spad" 323523 323539 328050 328177) (-252 "DPOLCAT.spad" 318950 318968 323479 323484) (-251 "DPMO.spad" 311176 311192 311314 311615) (-250 "DPMM.spad" 303415 303433 303540 303841) (-249 "DOMCTOR.spad" 303307 303315 303405 303410) (-248 "DOMAIN.spad" 302438 302446 303297 303302) (-247 "DMP.spad" 299660 299675 300232 300359) (-246 "DLP.spad" 299008 299018 299650 299655) (-245 "DLIST.spad" 297587 297597 298191 298218) (-244 "DLAGG.spad" 295998 296008 297577 297582) (-243 "DIVRING.spad" 295540 295548 295942 295993) (-242 "DIVRING.spad" 295126 295136 295530 295535) (-241 "DISPLAY.spad" 293306 293314 295116 295121) (-240 "DIRPROD.spad" 282886 282902 283526 283657) (-239 "DIRPROD2.spad" 281694 281712 282876 282881) (-238 "DIRPCAT.spad" 280636 280652 281558 281689) (-237 "DIRPCAT.spad" 279307 279325 280231 280236) (-236 "DIOSP.spad" 278132 278140 279297 279302) (-235 "DIOPS.spad" 277116 277126 278112 278127) (-234 "DIOPS.spad" 276074 276086 277072 277077) (-233 "DIFRING.spad" 275366 275374 276054 276069) (-232 "DIFRING.spad" 274666 274676 275356 275361) (-231 "DIFEXT.spad" 273825 273835 274646 274661) (-230 "DIFEXT.spad" 272901 272913 273724 273729) (-229 "DIAGG.spad" 272531 272541 272881 272896) (-228 "DIAGG.spad" 272169 272181 272521 272526) (-227 "DHMATRIX.spad" 270473 270483 271626 271653) (-226 "DFSFUN.spad" 263881 263889 270463 270468) (-225 "DFLOAT.spad" 260602 260610 263771 263876) (-224 "DFINTTLS.spad" 258811 258827 260592 260597) (-223 "DERHAM.spad" 256721 256753 258791 258806) (-222 "DEQUEUE.spad" 256039 256049 256328 256355) (-221 "DEGRED.spad" 255654 255668 256029 256034) (-220 "DEFINTRF.spad" 253179 253189 255644 255649) (-219 "DEFINTEF.spad" 251675 251691 253169 253174) (-218 "DEFAST.spad" 251043 251051 251665 251670) (-217 "DECIMAL.spad" 249149 249157 249510 249603) (-216 "DDFACT.spad" 246948 246965 249139 249144) (-215 "DBLRESP.spad" 246546 246570 246938 246943) (-214 "DBASE.spad" 245200 245210 246536 246541) (-213 "DATAARY.spad" 244662 244675 245190 245195) (-212 "D03FAFA.spad" 244490 244498 244652 244657) (-211 "D03EEFA.spad" 244310 244318 244480 244485) (-210 "D03AGNT.spad" 243390 243398 244300 244305) (-209 "D02EJFA.spad" 242852 242860 243380 243385) (-208 "D02CJFA.spad" 242330 242338 242842 242847) (-207 "D02BHFA.spad" 241820 241828 242320 242325) (-206 "D02BBFA.spad" 241310 241318 241810 241815) (-205 "D02AGNT.spad" 236114 236122 241300 241305) (-204 "D01WGTS.spad" 234433 234441 236104 236109) (-203 "D01TRNS.spad" 234410 234418 234423 234428) (-202 "D01GBFA.spad" 233932 233940 234400 234405) (-201 "D01FCFA.spad" 233454 233462 233922 233927) (-200 "D01ASFA.spad" 232922 232930 233444 233449) (-199 "D01AQFA.spad" 232368 232376 232912 232917) (-198 "D01APFA.spad" 231792 231800 232358 232363) (-197 "D01ANFA.spad" 231286 231294 231782 231787) (-196 "D01AMFA.spad" 230796 230804 231276 231281) (-195 "D01ALFA.spad" 230336 230344 230786 230791) (-194 "D01AKFA.spad" 229862 229870 230326 230331) (-193 "D01AJFA.spad" 229385 229393 229852 229857) (-192 "D01AGNT.spad" 225444 225452 229375 229380) (-191 "CYCLOTOM.spad" 224950 224958 225434 225439) (-190 "CYCLES.spad" 221782 221790 224940 224945) (-189 "CVMP.spad" 221199 221209 221772 221777) (-188 "CTRIGMNP.spad" 219689 219705 221189 221194) (-187 "CTOR.spad" 219384 219392 219679 219684) (-186 "CTORKIND.spad" 218987 218995 219374 219379) (-185 "CTORCAT.spad" 218236 218244 218977 218982) (-184 "CTORCAT.spad" 217483 217493 218226 218231) (-183 "CTORCALL.spad" 217063 217071 217473 217478) (-182 "CSTTOOLS.spad" 216306 216319 217053 217058) (-181 "CRFP.spad" 210010 210023 216296 216301) (-180 "CRCEAST.spad" 209730 209738 210000 210005) (-179 "CRAPACK.spad" 208773 208783 209720 209725) (-178 "CPMATCH.spad" 208273 208288 208698 208703) (-177 "CPIMA.spad" 207978 207997 208263 208268) (-176 "COORDSYS.spad" 202871 202881 207968 207973) (-175 "CONTOUR.spad" 202273 202281 202861 202866) (-174 "CONTFRAC.spad" 197885 197895 202175 202268) (-173 "CONDUIT.spad" 197643 197651 197875 197880) (-172 "COMRING.spad" 197317 197325 197581 197638) (-171 "COMPPROP.spad" 196831 196839 197307 197312) (-170 "COMPLPAT.spad" 196598 196613 196821 196826) (-169 "COMPLEX.spad" 190622 190632 190866 191127) (-168 "COMPLEX2.spad" 190335 190347 190612 190617) (-167 "COMPFACT.spad" 189937 189951 190325 190330) (-166 "COMPCAT.spad" 188005 188015 189671 189932) (-165 "COMPCAT.spad" 185766 185778 187434 187439) (-164 "COMMUPC.spad" 185512 185530 185756 185761) (-163 "COMMONOP.spad" 185045 185053 185502 185507) (-162 "COMM.spad" 184854 184862 185035 185040) (-161 "COMMAAST.spad" 184617 184625 184844 184849) (-160 "COMBOPC.spad" 183522 183530 184607 184612) (-159 "COMBINAT.spad" 182267 182277 183512 183517) (-158 "COMBF.spad" 179635 179651 182257 182262) (-157 "COLOR.spad" 178472 178480 179625 179630) (-156 "COLONAST.spad" 178138 178146 178462 178467) (-155 "CMPLXRT.spad" 177847 177864 178128 178133) (-154 "CLLCTAST.spad" 177509 177517 177837 177842) (-153 "CLIP.spad" 173601 173609 177499 177504) (-152 "CLIF.spad" 172240 172256 173557 173596) (-151 "CLAGG.spad" 168725 168735 172230 172235) (-150 "CLAGG.spad" 165081 165093 168588 168593) (-149 "CINTSLPE.spad" 164406 164419 165071 165076) (-148 "CHVAR.spad" 162484 162506 164396 164401) (-147 "CHARZ.spad" 162399 162407 162464 162479) (-146 "CHARPOL.spad" 161907 161917 162389 162394) (-145 "CHARNZ.spad" 161660 161668 161887 161902) (-144 "CHAR.spad" 159528 159536 161650 161655) (-143 "CFCAT.spad" 158844 158852 159518 159523) (-142 "CDEN.spad" 158002 158016 158834 158839) (-141 "CCLASS.spad" 156151 156159 157413 157452) (-140 "CATEGORY.spad" 155241 155249 156141 156146) (-139 "CATCTOR.spad" 155132 155140 155231 155236) (-138 "CATAST.spad" 154759 154767 155122 155127) (-137 "CASEAST.spad" 154473 154481 154749 154754) (-136 "CARTEN.spad" 149576 149600 154463 154468) (-135 "CARTEN2.spad" 148962 148989 149566 149571) (-134 "CARD.spad" 146251 146259 148936 148957) (-133 "CAPSLAST.spad" 146025 146033 146241 146246) (-132 "CACHSET.spad" 145647 145655 146015 146020) (-131 "CABMON.spad" 145200 145208 145637 145642) (-130 "BYTEORD.spad" 144875 144883 145190 145195) (-129 "BYTE.spad" 144300 144308 144865 144870) (-128 "BYTEBUF.spad" 142157 142165 143469 143496) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2283131 2283136 2283141 2283146) (-2 NIL 2283111 2283116 2283121 2283126) (-1 NIL 2283091 2283096 2283101 2283106) (0 NIL 2283071 2283076 2283081 2283086) (-1287 "ZMOD.spad" 2282880 2282893 2283009 2283066) (-1286 "ZLINDEP.spad" 2281924 2281935 2282870 2282875) (-1285 "ZDSOLVE.spad" 2271773 2271795 2281914 2281919) (-1284 "YSTREAM.spad" 2271266 2271277 2271763 2271768) (-1283 "XRPOLY.spad" 2270486 2270506 2271122 2271191) (-1282 "XPR.spad" 2268277 2268290 2270204 2270303) (-1281 "XPOLY.spad" 2267832 2267843 2268133 2268202) (-1280 "XPOLYC.spad" 2267149 2267165 2267758 2267827) (-1279 "XPBWPOLY.spad" 2265586 2265606 2266929 2266998) (-1278 "XF.spad" 2264047 2264062 2265488 2265581) (-1277 "XF.spad" 2262488 2262505 2263931 2263936) (-1276 "XFALG.spad" 2259512 2259528 2262414 2262483) (-1275 "XEXPPKG.spad" 2258763 2258789 2259502 2259507) (-1274 "XDPOLY.spad" 2258377 2258393 2258619 2258688) (-1273 "XALG.spad" 2258037 2258048 2258333 2258372) (-1272 "WUTSET.spad" 2253876 2253893 2257683 2257710) (-1271 "WP.spad" 2253075 2253119 2253734 2253801) (-1270 "WHILEAST.spad" 2252873 2252882 2253065 2253070) (-1269 "WHEREAST.spad" 2252544 2252553 2252863 2252868) (-1268 "WFFINTBS.spad" 2250107 2250129 2252534 2252539) (-1267 "WEIER.spad" 2248321 2248332 2250097 2250102) (-1266 "VSPACE.spad" 2247994 2248005 2248289 2248316) (-1265 "VSPACE.spad" 2247687 2247700 2247984 2247989) (-1264 "VOID.spad" 2247364 2247373 2247677 2247682) (-1263 "VIEW.spad" 2244986 2244995 2247354 2247359) (-1262 "VIEWDEF.spad" 2240183 2240192 2244976 2244981) (-1261 "VIEW3D.spad" 2224018 2224027 2240173 2240178) (-1260 "VIEW2D.spad" 2211755 2211764 2224008 2224013) (-1259 "VECTOR.spad" 2210430 2210441 2210681 2210708) (-1258 "VECTOR2.spad" 2209057 2209070 2210420 2210425) (-1257 "VECTCAT.spad" 2206957 2206968 2209025 2209052) (-1256 "VECTCAT.spad" 2204665 2204678 2206735 2206740) (-1255 "VARIABLE.spad" 2204445 2204460 2204655 2204660) (-1254 "UTYPE.spad" 2204089 2204098 2204435 2204440) (-1253 "UTSODETL.spad" 2203382 2203406 2204045 2204050) (-1252 "UTSODE.spad" 2201570 2201590 2203372 2203377) (-1251 "UTS.spad" 2196359 2196387 2200037 2200134) (-1250 "UTSCAT.spad" 2193810 2193826 2196257 2196354) (-1249 "UTSCAT.spad" 2190905 2190923 2193354 2193359) (-1248 "UTS2.spad" 2190498 2190533 2190895 2190900) (-1247 "URAGG.spad" 2185130 2185141 2190488 2190493) (-1246 "URAGG.spad" 2179726 2179739 2185086 2185091) (-1245 "UPXSSING.spad" 2177369 2177395 2178807 2178940) (-1244 "UPXS.spad" 2174517 2174545 2175501 2175650) (-1243 "UPXSCONS.spad" 2172274 2172294 2172649 2172798) (-1242 "UPXSCCA.spad" 2170839 2170859 2172120 2172269) (-1241 "UPXSCCA.spad" 2169546 2169568 2170829 2170834) (-1240 "UPXSCAT.spad" 2168127 2168143 2169392 2169541) (-1239 "UPXS2.spad" 2167668 2167721 2168117 2168122) (-1238 "UPSQFREE.spad" 2166080 2166094 2167658 2167663) (-1237 "UPSCAT.spad" 2163673 2163697 2165978 2166075) (-1236 "UPSCAT.spad" 2160972 2160998 2163279 2163284) (-1235 "UPOLYC.spad" 2155950 2155961 2160814 2160967) (-1234 "UPOLYC.spad" 2150820 2150833 2155686 2155691) (-1233 "UPOLYC2.spad" 2150289 2150308 2150810 2150815) (-1232 "UP.spad" 2147446 2147461 2147839 2147992) (-1231 "UPMP.spad" 2146336 2146349 2147436 2147441) (-1230 "UPDIVP.spad" 2145899 2145913 2146326 2146331) (-1229 "UPDECOMP.spad" 2144136 2144150 2145889 2145894) (-1228 "UPCDEN.spad" 2143343 2143359 2144126 2144131) (-1227 "UP2.spad" 2142705 2142726 2143333 2143338) (-1226 "UNISEG.spad" 2142058 2142069 2142624 2142629) (-1225 "UNISEG2.spad" 2141551 2141564 2142014 2142019) (-1224 "UNIFACT.spad" 2140652 2140664 2141541 2141546) (-1223 "ULS.spad" 2131204 2131232 2132297 2132726) (-1222 "ULSCONS.spad" 2123598 2123618 2123970 2124119) (-1221 "ULSCCAT.spad" 2121327 2121347 2123444 2123593) (-1220 "ULSCCAT.spad" 2119164 2119186 2121283 2121288) (-1219 "ULSCAT.spad" 2117380 2117396 2119010 2119159) (-1218 "ULS2.spad" 2116892 2116945 2117370 2117375) (-1217 "UINT8.spad" 2116769 2116778 2116882 2116887) (-1216 "UINT64.spad" 2116645 2116654 2116759 2116764) (-1215 "UINT32.spad" 2116521 2116530 2116635 2116640) (-1214 "UINT16.spad" 2116397 2116406 2116511 2116516) (-1213 "UFD.spad" 2115462 2115471 2116323 2116392) (-1212 "UFD.spad" 2114589 2114600 2115452 2115457) (-1211 "UDVO.spad" 2113436 2113445 2114579 2114584) (-1210 "UDPO.spad" 2110863 2110874 2113392 2113397) (-1209 "TYPE.spad" 2110795 2110804 2110853 2110858) (-1208 "TYPEAST.spad" 2110714 2110723 2110785 2110790) (-1207 "TWOFACT.spad" 2109364 2109379 2110704 2110709) (-1206 "TUPLE.spad" 2108848 2108859 2109263 2109268) (-1205 "TUBETOOL.spad" 2105685 2105694 2108838 2108843) (-1204 "TUBE.spad" 2104326 2104343 2105675 2105680) (-1203 "TS.spad" 2102915 2102931 2103891 2103988) (-1202 "TSETCAT.spad" 2090042 2090059 2102883 2102910) (-1201 "TSETCAT.spad" 2077155 2077174 2089998 2090003) (-1200 "TRMANIP.spad" 2071521 2071538 2076861 2076866) (-1199 "TRIMAT.spad" 2070480 2070505 2071511 2071516) (-1198 "TRIGMNIP.spad" 2068997 2069014 2070470 2070475) (-1197 "TRIGCAT.spad" 2068509 2068518 2068987 2068992) (-1196 "TRIGCAT.spad" 2068019 2068030 2068499 2068504) (-1195 "TREE.spad" 2066590 2066601 2067626 2067653) (-1194 "TRANFUN.spad" 2066421 2066430 2066580 2066585) (-1193 "TRANFUN.spad" 2066250 2066261 2066411 2066416) (-1192 "TOPSP.spad" 2065924 2065933 2066240 2066245) (-1191 "TOOLSIGN.spad" 2065587 2065598 2065914 2065919) (-1190 "TEXTFILE.spad" 2064144 2064153 2065577 2065582) (-1189 "TEX.spad" 2061276 2061285 2064134 2064139) (-1188 "TEX1.spad" 2060832 2060843 2061266 2061271) (-1187 "TEMUTL.spad" 2060387 2060396 2060822 2060827) (-1186 "TBCMPPK.spad" 2058480 2058503 2060377 2060382) (-1185 "TBAGG.spad" 2057516 2057539 2058460 2058475) (-1184 "TBAGG.spad" 2056560 2056585 2057506 2057511) (-1183 "TANEXP.spad" 2055936 2055947 2056550 2056555) (-1182 "TABLE.spad" 2054347 2054370 2054617 2054644) (-1181 "TABLEAU.spad" 2053828 2053839 2054337 2054342) (-1180 "TABLBUMP.spad" 2050611 2050622 2053818 2053823) (-1179 "SYSTEM.spad" 2049839 2049848 2050601 2050606) (-1178 "SYSSOLP.spad" 2047312 2047323 2049829 2049834) (-1177 "SYSNNI.spad" 2046492 2046503 2047302 2047307) (-1176 "SYSINT.spad" 2045896 2045907 2046482 2046487) (-1175 "SYNTAX.spad" 2042166 2042175 2045886 2045891) (-1174 "SYMTAB.spad" 2040222 2040231 2042156 2042161) (-1173 "SYMS.spad" 2036207 2036216 2040212 2040217) (-1172 "SYMPOLY.spad" 2035214 2035225 2035296 2035423) (-1171 "SYMFUNC.spad" 2034689 2034700 2035204 2035209) (-1170 "SYMBOL.spad" 2032116 2032125 2034679 2034684) (-1169 "SWITCH.spad" 2028873 2028882 2032106 2032111) (-1168 "SUTS.spad" 2025772 2025800 2027340 2027437) (-1167 "SUPXS.spad" 2022907 2022935 2023904 2024053) (-1166 "SUP.spad" 2019676 2019687 2020457 2020610) (-1165 "SUPFRACF.spad" 2018781 2018799 2019666 2019671) (-1164 "SUP2.spad" 2018171 2018184 2018771 2018776) (-1163 "SUMRF.spad" 2017137 2017148 2018161 2018166) (-1162 "SUMFS.spad" 2016770 2016787 2017127 2017132) (-1161 "SULS.spad" 2007309 2007337 2008415 2008844) (-1160 "SUCHTAST.spad" 2007078 2007087 2007299 2007304) (-1159 "SUCH.spad" 2006758 2006773 2007068 2007073) (-1158 "SUBSPACE.spad" 1998765 1998780 2006748 2006753) (-1157 "SUBRESP.spad" 1997925 1997939 1998721 1998726) (-1156 "STTF.spad" 1994024 1994040 1997915 1997920) (-1155 "STTFNC.spad" 1990492 1990508 1994014 1994019) (-1154 "STTAYLOR.spad" 1982890 1982901 1990373 1990378) (-1153 "STRTBL.spad" 1981395 1981412 1981544 1981571) (-1152 "STRING.spad" 1980804 1980813 1980818 1980845) (-1151 "STRICAT.spad" 1980592 1980601 1980772 1980799) (-1150 "STREAM.spad" 1977450 1977461 1980117 1980132) (-1149 "STREAM3.spad" 1976995 1977010 1977440 1977445) (-1148 "STREAM2.spad" 1976063 1976076 1976985 1976990) (-1147 "STREAM1.spad" 1975767 1975778 1976053 1976058) (-1146 "STINPROD.spad" 1974673 1974689 1975757 1975762) (-1145 "STEP.spad" 1973874 1973883 1974663 1974668) (-1144 "STBL.spad" 1972400 1972428 1972567 1972582) (-1143 "STAGG.spad" 1971475 1971486 1972390 1972395) (-1142 "STAGG.spad" 1970548 1970561 1971465 1971470) (-1141 "STACK.spad" 1969899 1969910 1970155 1970182) (-1140 "SREGSET.spad" 1967603 1967620 1969545 1969572) (-1139 "SRDCMPK.spad" 1966148 1966168 1967593 1967598) (-1138 "SRAGG.spad" 1961245 1961254 1966116 1966143) (-1137 "SRAGG.spad" 1956362 1956373 1961235 1961240) (-1136 "SQMATRIX.spad" 1953978 1953996 1954894 1954981) (-1135 "SPLTREE.spad" 1948530 1948543 1953414 1953441) (-1134 "SPLNODE.spad" 1945118 1945131 1948520 1948525) (-1133 "SPFCAT.spad" 1943895 1943904 1945108 1945113) (-1132 "SPECOUT.spad" 1942445 1942454 1943885 1943890) (-1131 "SPADXPT.spad" 1934584 1934593 1942435 1942440) (-1130 "spad-parser.spad" 1934049 1934058 1934574 1934579) (-1129 "SPADAST.spad" 1933750 1933759 1934039 1934044) (-1128 "SPACEC.spad" 1917763 1917774 1933740 1933745) (-1127 "SPACE3.spad" 1917539 1917550 1917753 1917758) (-1126 "SORTPAK.spad" 1917084 1917097 1917495 1917500) (-1125 "SOLVETRA.spad" 1914841 1914852 1917074 1917079) (-1124 "SOLVESER.spad" 1913361 1913372 1914831 1914836) (-1123 "SOLVERAD.spad" 1909371 1909382 1913351 1913356) (-1122 "SOLVEFOR.spad" 1907791 1907809 1909361 1909366) (-1121 "SNTSCAT.spad" 1907391 1907408 1907759 1907786) (-1120 "SMTS.spad" 1905651 1905677 1906956 1907053) (-1119 "SMP.spad" 1903090 1903110 1903480 1903607) (-1118 "SMITH.spad" 1901933 1901958 1903080 1903085) (-1117 "SMATCAT.spad" 1900043 1900073 1901877 1901928) (-1116 "SMATCAT.spad" 1898085 1898117 1899921 1899926) (-1115 "SKAGG.spad" 1897046 1897057 1898053 1898080) (-1114 "SINT.spad" 1895872 1895881 1896912 1897041) (-1113 "SIMPAN.spad" 1895600 1895609 1895862 1895867) (-1112 "SIG.spad" 1894928 1894937 1895590 1895595) (-1111 "SIGNRF.spad" 1894036 1894047 1894918 1894923) (-1110 "SIGNEF.spad" 1893305 1893322 1894026 1894031) (-1109 "SIGAST.spad" 1892686 1892695 1893295 1893300) (-1108 "SHP.spad" 1890604 1890619 1892642 1892647) (-1107 "SHDP.spad" 1880315 1880342 1880824 1880955) (-1106 "SGROUP.spad" 1879923 1879932 1880305 1880310) (-1105 "SGROUP.spad" 1879529 1879540 1879913 1879918) (-1104 "SGCF.spad" 1872410 1872419 1879519 1879524) (-1103 "SFRTCAT.spad" 1871338 1871355 1872378 1872405) (-1102 "SFRGCD.spad" 1870401 1870421 1871328 1871333) (-1101 "SFQCMPK.spad" 1865038 1865058 1870391 1870396) (-1100 "SFORT.spad" 1864473 1864487 1865028 1865033) (-1099 "SEXOF.spad" 1864316 1864356 1864463 1864468) (-1098 "SEX.spad" 1864208 1864217 1864306 1864311) (-1097 "SEXCAT.spad" 1861759 1861799 1864198 1864203) (-1096 "SET.spad" 1860059 1860070 1861180 1861219) (-1095 "SETMN.spad" 1858493 1858510 1860049 1860054) (-1094 "SETCAT.spad" 1857978 1857987 1858483 1858488) (-1093 "SETCAT.spad" 1857461 1857472 1857968 1857973) (-1092 "SETAGG.spad" 1853982 1853993 1857441 1857456) (-1091 "SETAGG.spad" 1850511 1850524 1853972 1853977) (-1090 "SEQAST.spad" 1850214 1850223 1850501 1850506) (-1089 "SEGXCAT.spad" 1849336 1849349 1850204 1850209) (-1088 "SEG.spad" 1849149 1849160 1849255 1849260) (-1087 "SEGCAT.spad" 1848056 1848067 1849139 1849144) (-1086 "SEGBIND.spad" 1847128 1847139 1848011 1848016) (-1085 "SEGBIND2.spad" 1846824 1846837 1847118 1847123) (-1084 "SEGAST.spad" 1846538 1846547 1846814 1846819) (-1083 "SEG2.spad" 1845963 1845976 1846494 1846499) (-1082 "SDVAR.spad" 1845239 1845250 1845953 1845958) (-1081 "SDPOL.spad" 1842629 1842640 1842920 1843047) (-1080 "SCPKG.spad" 1840708 1840719 1842619 1842624) (-1079 "SCOPE.spad" 1839861 1839870 1840698 1840703) (-1078 "SCACHE.spad" 1838543 1838554 1839851 1839856) (-1077 "SASTCAT.spad" 1838452 1838461 1838533 1838538) (-1076 "SAOS.spad" 1838324 1838333 1838442 1838447) (-1075 "SAERFFC.spad" 1838037 1838057 1838314 1838319) (-1074 "SAE.spad" 1836212 1836228 1836823 1836958) (-1073 "SAEFACT.spad" 1835913 1835933 1836202 1836207) (-1072 "RURPK.spad" 1833554 1833570 1835903 1835908) (-1071 "RULESET.spad" 1832995 1833019 1833544 1833549) (-1070 "RULE.spad" 1831199 1831223 1832985 1832990) (-1069 "RULECOLD.spad" 1831051 1831064 1831189 1831194) (-1068 "RSTRCAST.spad" 1830768 1830777 1831041 1831046) (-1067 "RSETGCD.spad" 1827146 1827166 1830758 1830763) (-1066 "RSETCAT.spad" 1816930 1816947 1827114 1827141) (-1065 "RSETCAT.spad" 1806734 1806753 1816920 1816925) (-1064 "RSDCMPK.spad" 1805186 1805206 1806724 1806729) (-1063 "RRCC.spad" 1803570 1803600 1805176 1805181) (-1062 "RRCC.spad" 1801952 1801984 1803560 1803565) (-1061 "RPTAST.spad" 1801654 1801663 1801942 1801947) (-1060 "RPOLCAT.spad" 1781014 1781029 1801522 1801649) (-1059 "RPOLCAT.spad" 1760088 1760105 1780598 1780603) (-1058 "ROUTINE.spad" 1755951 1755960 1758735 1758762) (-1057 "ROMAN.spad" 1755279 1755288 1755817 1755946) (-1056 "ROIRC.spad" 1754359 1754391 1755269 1755274) (-1055 "RNS.spad" 1753262 1753271 1754261 1754354) (-1054 "RNS.spad" 1752251 1752262 1753252 1753257) (-1053 "RNG.spad" 1751986 1751995 1752241 1752246) (-1052 "RMODULE.spad" 1751624 1751635 1751976 1751981) (-1051 "RMCAT2.spad" 1751032 1751089 1751614 1751619) (-1050 "RMATRIX.spad" 1749856 1749875 1750199 1750238) (-1049 "RMATCAT.spad" 1745389 1745420 1749812 1749851) (-1048 "RMATCAT.spad" 1740812 1740845 1745237 1745242) (-1047 "RINTERP.spad" 1740700 1740720 1740802 1740807) (-1046 "RING.spad" 1740170 1740179 1740680 1740695) (-1045 "RING.spad" 1739648 1739659 1740160 1740165) (-1044 "RIDIST.spad" 1739032 1739041 1739638 1739643) (-1043 "RGCHAIN.spad" 1737611 1737627 1738517 1738544) (-1042 "RGBCSPC.spad" 1737392 1737404 1737601 1737606) (-1041 "RGBCMDL.spad" 1736922 1736934 1737382 1737387) (-1040 "RF.spad" 1734536 1734547 1736912 1736917) (-1039 "RFFACTOR.spad" 1733998 1734009 1734526 1734531) (-1038 "RFFACT.spad" 1733733 1733745 1733988 1733993) (-1037 "RFDIST.spad" 1732721 1732730 1733723 1733728) (-1036 "RETSOL.spad" 1732138 1732151 1732711 1732716) (-1035 "RETRACT.spad" 1731566 1731577 1732128 1732133) (-1034 "RETRACT.spad" 1730992 1731005 1731556 1731561) (-1033 "RETAST.spad" 1730804 1730813 1730982 1730987) (-1032 "RESULT.spad" 1728864 1728873 1729451 1729478) (-1031 "RESRING.spad" 1728211 1728258 1728802 1728859) (-1030 "RESLATC.spad" 1727535 1727546 1728201 1728206) (-1029 "REPSQ.spad" 1727264 1727275 1727525 1727530) (-1028 "REP.spad" 1724816 1724825 1727254 1727259) (-1027 "REPDB.spad" 1724521 1724532 1724806 1724811) (-1026 "REP2.spad" 1714093 1714104 1724363 1724368) (-1025 "REP1.spad" 1708083 1708094 1714043 1714048) (-1024 "REGSET.spad" 1705880 1705897 1707729 1707756) (-1023 "REF.spad" 1705209 1705220 1705835 1705840) (-1022 "REDORDER.spad" 1704385 1704402 1705199 1705204) (-1021 "RECLOS.spad" 1703168 1703188 1703872 1703965) (-1020 "REALSOLV.spad" 1702300 1702309 1703158 1703163) (-1019 "REAL.spad" 1702172 1702181 1702290 1702295) (-1018 "REAL0Q.spad" 1699454 1699469 1702162 1702167) (-1017 "REAL0.spad" 1696282 1696297 1699444 1699449) (-1016 "RDUCEAST.spad" 1696003 1696012 1696272 1696277) (-1015 "RDIV.spad" 1695654 1695679 1695993 1695998) (-1014 "RDIST.spad" 1695217 1695228 1695644 1695649) (-1013 "RDETRS.spad" 1694013 1694031 1695207 1695212) (-1012 "RDETR.spad" 1692120 1692138 1694003 1694008) (-1011 "RDEEFS.spad" 1691193 1691210 1692110 1692115) (-1010 "RDEEF.spad" 1690189 1690206 1691183 1691188) (-1009 "RCFIELD.spad" 1687375 1687384 1690091 1690184) (-1008 "RCFIELD.spad" 1684647 1684658 1687365 1687370) (-1007 "RCAGG.spad" 1682559 1682570 1684637 1684642) (-1006 "RCAGG.spad" 1680398 1680411 1682478 1682483) (-1005 "RATRET.spad" 1679758 1679769 1680388 1680393) (-1004 "RATFACT.spad" 1679450 1679462 1679748 1679753) (-1003 "RANDSRC.spad" 1678769 1678778 1679440 1679445) (-1002 "RADUTIL.spad" 1678523 1678532 1678759 1678764) (-1001 "RADIX.spad" 1675424 1675438 1676990 1677083) (-1000 "RADFF.spad" 1673837 1673874 1673956 1674112) (-999 "RADCAT.spad" 1673431 1673439 1673827 1673832) (-998 "RADCAT.spad" 1673023 1673033 1673421 1673426) (-997 "QUEUE.spad" 1672366 1672376 1672630 1672657) (-996 "QUAT.spad" 1670948 1670958 1671290 1671355) (-995 "QUATCT2.spad" 1670567 1670585 1670938 1670943) (-994 "QUATCAT.spad" 1668732 1668742 1670497 1670562) (-993 "QUATCAT.spad" 1666648 1666660 1668415 1668420) (-992 "QUAGG.spad" 1665474 1665484 1666616 1666643) (-991 "QQUTAST.spad" 1665243 1665251 1665464 1665469) (-990 "QFORM.spad" 1664706 1664720 1665233 1665238) (-989 "QFCAT.spad" 1663409 1663419 1664608 1664701) (-988 "QFCAT.spad" 1661703 1661715 1662904 1662909) (-987 "QFCAT2.spad" 1661394 1661410 1661693 1661698) (-986 "QEQUAT.spad" 1660951 1660959 1661384 1661389) (-985 "QCMPACK.spad" 1655698 1655717 1660941 1660946) (-984 "QALGSET.spad" 1651773 1651805 1655612 1655617) (-983 "QALGSET2.spad" 1649769 1649787 1651763 1651768) (-982 "PWFFINTB.spad" 1647079 1647100 1649759 1649764) (-981 "PUSHVAR.spad" 1646408 1646427 1647069 1647074) (-980 "PTRANFN.spad" 1642534 1642544 1646398 1646403) (-979 "PTPACK.spad" 1639622 1639632 1642524 1642529) (-978 "PTFUNC2.spad" 1639443 1639457 1639612 1639617) (-977 "PTCAT.spad" 1638692 1638702 1639411 1639438) (-976 "PSQFR.spad" 1637999 1638023 1638682 1638687) (-975 "PSEUDLIN.spad" 1636857 1636867 1637989 1637994) (-974 "PSETPK.spad" 1622290 1622306 1636735 1636740) (-973 "PSETCAT.spad" 1616210 1616233 1622270 1622285) (-972 "PSETCAT.spad" 1610104 1610129 1616166 1616171) (-971 "PSCURVE.spad" 1609087 1609095 1610094 1610099) (-970 "PSCAT.spad" 1607854 1607883 1608985 1609082) (-969 "PSCAT.spad" 1606711 1606742 1607844 1607849) (-968 "PRTITION.spad" 1605656 1605664 1606701 1606706) (-967 "PRTDAST.spad" 1605375 1605383 1605646 1605651) (-966 "PRS.spad" 1594937 1594954 1605331 1605336) (-965 "PRQAGG.spad" 1594368 1594378 1594905 1594932) (-964 "PROPLOG.spad" 1593771 1593779 1594358 1594363) (-963 "PROPFRML.spad" 1591689 1591700 1593761 1593766) (-962 "PROPERTY.spad" 1591183 1591191 1591679 1591684) (-961 "PRODUCT.spad" 1588863 1588875 1589149 1589204) (-960 "PR.spad" 1587249 1587261 1587954 1588081) (-959 "PRINT.spad" 1587001 1587009 1587239 1587244) (-958 "PRIMES.spad" 1585252 1585262 1586991 1586996) (-957 "PRIMELT.spad" 1583233 1583247 1585242 1585247) (-956 "PRIMCAT.spad" 1582856 1582864 1583223 1583228) (-955 "PRIMARR.spad" 1581861 1581871 1582039 1582066) (-954 "PRIMARR2.spad" 1580584 1580596 1581851 1581856) (-953 "PREASSOC.spad" 1579956 1579968 1580574 1580579) (-952 "PPCURVE.spad" 1579093 1579101 1579946 1579951) (-951 "PORTNUM.spad" 1578868 1578876 1579083 1579088) (-950 "POLYROOT.spad" 1577697 1577719 1578824 1578829) (-949 "POLY.spad" 1574994 1575004 1575511 1575638) (-948 "POLYLIFT.spad" 1574255 1574278 1574984 1574989) (-947 "POLYCATQ.spad" 1572357 1572379 1574245 1574250) (-946 "POLYCAT.spad" 1565763 1565784 1572225 1572352) (-945 "POLYCAT.spad" 1558471 1558494 1564935 1564940) (-944 "POLY2UP.spad" 1557919 1557933 1558461 1558466) (-943 "POLY2.spad" 1557514 1557526 1557909 1557914) (-942 "POLUTIL.spad" 1556455 1556484 1557470 1557475) (-941 "POLTOPOL.spad" 1555203 1555218 1556445 1556450) (-940 "POINT.spad" 1554042 1554052 1554129 1554156) (-939 "PNTHEORY.spad" 1550708 1550716 1554032 1554037) (-938 "PMTOOLS.spad" 1549465 1549479 1550698 1550703) (-937 "PMSYM.spad" 1549010 1549020 1549455 1549460) (-936 "PMQFCAT.spad" 1548597 1548611 1549000 1549005) (-935 "PMPRED.spad" 1548066 1548080 1548587 1548592) (-934 "PMPREDFS.spad" 1547510 1547532 1548056 1548061) (-933 "PMPLCAT.spad" 1546580 1546598 1547442 1547447) (-932 "PMLSAGG.spad" 1546161 1546175 1546570 1546575) (-931 "PMKERNEL.spad" 1545728 1545740 1546151 1546156) (-930 "PMINS.spad" 1545304 1545314 1545718 1545723) (-929 "PMFS.spad" 1544877 1544895 1545294 1545299) (-928 "PMDOWN.spad" 1544163 1544177 1544867 1544872) (-927 "PMASS.spad" 1543175 1543183 1544153 1544158) (-926 "PMASSFS.spad" 1542144 1542160 1543165 1543170) (-925 "PLOTTOOL.spad" 1541924 1541932 1542134 1542139) (-924 "PLOT.spad" 1536755 1536763 1541914 1541919) (-923 "PLOT3D.spad" 1533175 1533183 1536745 1536750) (-922 "PLOT1.spad" 1532316 1532326 1533165 1533170) (-921 "PLEQN.spad" 1519532 1519559 1532306 1532311) (-920 "PINTERP.spad" 1519148 1519167 1519522 1519527) (-919 "PINTERPA.spad" 1518930 1518946 1519138 1519143) (-918 "PI.spad" 1518537 1518545 1518904 1518925) (-917 "PID.spad" 1517493 1517501 1518463 1518532) (-916 "PICOERCE.spad" 1517150 1517160 1517483 1517488) (-915 "PGROEB.spad" 1515747 1515761 1517140 1517145) (-914 "PGE.spad" 1507000 1507008 1515737 1515742) (-913 "PGCD.spad" 1505882 1505899 1506990 1506995) (-912 "PFRPAC.spad" 1505025 1505035 1505872 1505877) (-911 "PFR.spad" 1501682 1501692 1504927 1505020) (-910 "PFOTOOLS.spad" 1500940 1500956 1501672 1501677) (-909 "PFOQ.spad" 1500310 1500328 1500930 1500935) (-908 "PFO.spad" 1499729 1499756 1500300 1500305) (-907 "PF.spad" 1499303 1499315 1499534 1499627) (-906 "PFECAT.spad" 1496969 1496977 1499229 1499298) (-905 "PFECAT.spad" 1494663 1494673 1496925 1496930) (-904 "PFBRU.spad" 1492533 1492545 1494653 1494658) (-903 "PFBR.spad" 1490071 1490094 1492523 1492528) (-902 "PERM.spad" 1485752 1485762 1489901 1489916) (-901 "PERMGRP.spad" 1480488 1480498 1485742 1485747) (-900 "PERMCAT.spad" 1479040 1479050 1480468 1480483) (-899 "PERMAN.spad" 1477572 1477586 1479030 1479035) (-898 "PENDTREE.spad" 1476911 1476921 1477201 1477206) (-897 "PDRING.spad" 1475402 1475412 1476891 1476906) (-896 "PDRING.spad" 1473901 1473913 1475392 1475397) (-895 "PDEPROB.spad" 1472916 1472924 1473891 1473896) (-894 "PDEPACK.spad" 1466918 1466926 1472906 1472911) (-893 "PDECOMP.spad" 1466380 1466397 1466908 1466913) (-892 "PDECAT.spad" 1464734 1464742 1466370 1466375) (-891 "PCOMP.spad" 1464585 1464598 1464724 1464729) (-890 "PBWLB.spad" 1463167 1463184 1464575 1464580) (-889 "PATTERN.spad" 1457598 1457608 1463157 1463162) (-888 "PATTERN2.spad" 1457334 1457346 1457588 1457593) (-887 "PATTERN1.spad" 1455636 1455652 1457324 1457329) (-886 "PATRES.spad" 1453183 1453195 1455626 1455631) (-885 "PATRES2.spad" 1452845 1452859 1453173 1453178) (-884 "PATMATCH.spad" 1451002 1451033 1452553 1452558) (-883 "PATMAB.spad" 1450427 1450437 1450992 1450997) (-882 "PATLRES.spad" 1449511 1449525 1450417 1450422) (-881 "PATAB.spad" 1449275 1449285 1449501 1449506) (-880 "PARTPERM.spad" 1446637 1446645 1449265 1449270) (-879 "PARSURF.spad" 1446065 1446093 1446627 1446632) (-878 "PARSU2.spad" 1445860 1445876 1446055 1446060) (-877 "script-parser.spad" 1445380 1445388 1445850 1445855) (-876 "PARSCURV.spad" 1444808 1444836 1445370 1445375) (-875 "PARSC2.spad" 1444597 1444613 1444798 1444803) (-874 "PARPCURV.spad" 1444055 1444083 1444587 1444592) (-873 "PARPC2.spad" 1443844 1443860 1444045 1444050) (-872 "PAN2EXPR.spad" 1443256 1443264 1443834 1443839) (-871 "PALETTE.spad" 1442226 1442234 1443246 1443251) (-870 "PAIR.spad" 1441209 1441222 1441814 1441819) (-869 "PADICRC.spad" 1438539 1438557 1439714 1439807) (-868 "PADICRAT.spad" 1436554 1436566 1436775 1436868) (-867 "PADIC.spad" 1436249 1436261 1436480 1436549) (-866 "PADICCT.spad" 1434790 1434802 1436175 1436244) (-865 "PADEPAC.spad" 1433469 1433488 1434780 1434785) (-864 "PADE.spad" 1432209 1432225 1433459 1433464) (-863 "OWP.spad" 1431449 1431479 1432067 1432134) (-862 "OVERSET.spad" 1431022 1431030 1431439 1431444) (-861 "OVAR.spad" 1430803 1430826 1431012 1431017) (-860 "OUT.spad" 1429887 1429895 1430793 1430798) (-859 "OUTFORM.spad" 1419183 1419191 1429877 1429882) (-858 "OUTBFILE.spad" 1418601 1418609 1419173 1419178) (-857 "OUTBCON.spad" 1417599 1417607 1418591 1418596) (-856 "OUTBCON.spad" 1416595 1416605 1417589 1417594) (-855 "OSI.spad" 1416070 1416078 1416585 1416590) (-854 "OSGROUP.spad" 1415988 1415996 1416060 1416065) (-853 "ORTHPOL.spad" 1414449 1414459 1415905 1415910) (-852 "OREUP.spad" 1413902 1413930 1414129 1414168) (-851 "ORESUP.spad" 1413201 1413225 1413582 1413621) (-850 "OREPCTO.spad" 1411020 1411032 1413121 1413126) (-849 "OREPCAT.spad" 1405077 1405087 1410976 1411015) (-848 "OREPCAT.spad" 1399024 1399036 1404925 1404930) (-847 "ORDSET.spad" 1398190 1398198 1399014 1399019) (-846 "ORDSET.spad" 1397354 1397364 1398180 1398185) (-845 "ORDRING.spad" 1396744 1396752 1397334 1397349) (-844 "ORDRING.spad" 1396142 1396152 1396734 1396739) (-843 "ORDMON.spad" 1395997 1396005 1396132 1396137) (-842 "ORDFUNS.spad" 1395123 1395139 1395987 1395992) (-841 "ORDFIN.spad" 1394943 1394951 1395113 1395118) (-840 "ORDCOMP.spad" 1393408 1393418 1394490 1394519) (-839 "ORDCOMP2.spad" 1392693 1392705 1393398 1393403) (-838 "OPTPROB.spad" 1391331 1391339 1392683 1392688) (-837 "OPTPACK.spad" 1383716 1383724 1391321 1391326) (-836 "OPTCAT.spad" 1381391 1381399 1383706 1383711) (-835 "OPSIG.spad" 1381043 1381051 1381381 1381386) (-834 "OPQUERY.spad" 1380592 1380600 1381033 1381038) (-833 "OP.spad" 1380334 1380344 1380414 1380481) (-832 "OPERCAT.spad" 1379922 1379932 1380324 1380329) (-831 "OPERCAT.spad" 1379508 1379520 1379912 1379917) (-830 "ONECOMP.spad" 1378253 1378263 1379055 1379084) (-829 "ONECOMP2.spad" 1377671 1377683 1378243 1378248) (-828 "OMSERVER.spad" 1376673 1376681 1377661 1377666) (-827 "OMSAGG.spad" 1376461 1376471 1376629 1376668) (-826 "OMPKG.spad" 1375073 1375081 1376451 1376456) (-825 "OM.spad" 1374038 1374046 1375063 1375068) (-824 "OMLO.spad" 1373463 1373475 1373924 1373963) (-823 "OMEXPR.spad" 1373297 1373307 1373453 1373458) (-822 "OMERR.spad" 1372840 1372848 1373287 1373292) (-821 "OMERRK.spad" 1371874 1371882 1372830 1372835) (-820 "OMENC.spad" 1371218 1371226 1371864 1371869) (-819 "OMDEV.spad" 1365507 1365515 1371208 1371213) (-818 "OMCONN.spad" 1364916 1364924 1365497 1365502) (-817 "OINTDOM.spad" 1364679 1364687 1364842 1364911) (-816 "OFMONOID.spad" 1360866 1360876 1364669 1364674) (-815 "ODVAR.spad" 1360127 1360137 1360856 1360861) (-814 "ODR.spad" 1359771 1359797 1359939 1360088) (-813 "ODPOL.spad" 1357117 1357127 1357457 1357584) (-812 "ODP.spad" 1346964 1346984 1347337 1347468) (-811 "ODETOOLS.spad" 1345547 1345566 1346954 1346959) (-810 "ODESYS.spad" 1343197 1343214 1345537 1345542) (-809 "ODERTRIC.spad" 1339138 1339155 1343154 1343159) (-808 "ODERED.spad" 1338525 1338549 1339128 1339133) (-807 "ODERAT.spad" 1336076 1336093 1338515 1338520) (-806 "ODEPRRIC.spad" 1332967 1332989 1336066 1336071) (-805 "ODEPROB.spad" 1332224 1332232 1332957 1332962) (-804 "ODEPRIM.spad" 1329498 1329520 1332214 1332219) (-803 "ODEPAL.spad" 1328874 1328898 1329488 1329493) (-802 "ODEPACK.spad" 1315476 1315484 1328864 1328869) (-801 "ODEINT.spad" 1314907 1314923 1315466 1315471) (-800 "ODEIFTBL.spad" 1312302 1312310 1314897 1314902) (-799 "ODEEF.spad" 1307669 1307685 1312292 1312297) (-798 "ODECONST.spad" 1307188 1307206 1307659 1307664) (-797 "ODECAT.spad" 1305784 1305792 1307178 1307183) (-796 "OCT.spad" 1303922 1303932 1304638 1304677) (-795 "OCTCT2.spad" 1303566 1303587 1303912 1303917) (-794 "OC.spad" 1301340 1301350 1303522 1303561) (-793 "OC.spad" 1298839 1298851 1301023 1301028) (-792 "OCAMON.spad" 1298687 1298695 1298829 1298834) (-791 "OASGP.spad" 1298502 1298510 1298677 1298682) (-790 "OAMONS.spad" 1298022 1298030 1298492 1298497) (-789 "OAMON.spad" 1297883 1297891 1298012 1298017) (-788 "OAGROUP.spad" 1297745 1297753 1297873 1297878) (-787 "NUMTUBE.spad" 1297332 1297348 1297735 1297740) (-786 "NUMQUAD.spad" 1285194 1285202 1297322 1297327) (-785 "NUMODE.spad" 1276330 1276338 1285184 1285189) (-784 "NUMINT.spad" 1273888 1273896 1276320 1276325) (-783 "NUMFMT.spad" 1272728 1272736 1273878 1273883) (-782 "NUMERIC.spad" 1264800 1264810 1272533 1272538) (-781 "NTSCAT.spad" 1263302 1263318 1264768 1264795) (-780 "NTPOLFN.spad" 1262847 1262857 1263219 1263224) (-779 "NSUP.spad" 1255857 1255867 1260397 1260550) (-778 "NSUP2.spad" 1255249 1255261 1255847 1255852) (-777 "NSMP.spad" 1251444 1251463 1251752 1251879) (-776 "NREP.spad" 1249816 1249830 1251434 1251439) (-775 "NPCOEF.spad" 1249062 1249082 1249806 1249811) (-774 "NORMRETR.spad" 1248660 1248699 1249052 1249057) (-773 "NORMPK.spad" 1246562 1246581 1248650 1248655) (-772 "NORMMA.spad" 1246250 1246276 1246552 1246557) (-771 "NONE.spad" 1245991 1245999 1246240 1246245) (-770 "NONE1.spad" 1245667 1245677 1245981 1245986) (-769 "NODE1.spad" 1245136 1245152 1245657 1245662) (-768 "NNI.spad" 1244023 1244031 1245110 1245131) (-767 "NLINSOL.spad" 1242645 1242655 1244013 1244018) (-766 "NIPROB.spad" 1241186 1241194 1242635 1242640) (-765 "NFINTBAS.spad" 1238646 1238663 1241176 1241181) (-764 "NETCLT.spad" 1238620 1238631 1238636 1238641) (-763 "NCODIV.spad" 1236818 1236834 1238610 1238615) (-762 "NCNTFRAC.spad" 1236460 1236474 1236808 1236813) (-761 "NCEP.spad" 1234620 1234634 1236450 1236455) (-760 "NASRING.spad" 1234216 1234224 1234610 1234615) (-759 "NASRING.spad" 1233810 1233820 1234206 1234211) (-758 "NARNG.spad" 1233154 1233162 1233800 1233805) (-757 "NARNG.spad" 1232496 1232506 1233144 1233149) (-756 "NAGSP.spad" 1231569 1231577 1232486 1232491) (-755 "NAGS.spad" 1221094 1221102 1231559 1231564) (-754 "NAGF07.spad" 1219487 1219495 1221084 1221089) (-753 "NAGF04.spad" 1213719 1213727 1219477 1219482) (-752 "NAGF02.spad" 1207528 1207536 1213709 1213714) (-751 "NAGF01.spad" 1203131 1203139 1207518 1207523) (-750 "NAGE04.spad" 1196591 1196599 1203121 1203126) (-749 "NAGE02.spad" 1186933 1186941 1196581 1196586) (-748 "NAGE01.spad" 1182817 1182825 1186923 1186928) (-747 "NAGD03.spad" 1180737 1180745 1182807 1182812) (-746 "NAGD02.spad" 1173268 1173276 1180727 1180732) (-745 "NAGD01.spad" 1167381 1167389 1173258 1173263) (-744 "NAGC06.spad" 1163168 1163176 1167371 1167376) (-743 "NAGC05.spad" 1161637 1161645 1163158 1163163) (-742 "NAGC02.spad" 1160892 1160900 1161627 1161632) (-741 "NAALG.spad" 1160427 1160437 1160860 1160887) (-740 "NAALG.spad" 1159982 1159994 1160417 1160422) (-739 "MULTSQFR.spad" 1156940 1156957 1159972 1159977) (-738 "MULTFACT.spad" 1156323 1156340 1156930 1156935) (-737 "MTSCAT.spad" 1154357 1154378 1156221 1156318) (-736 "MTHING.spad" 1154014 1154024 1154347 1154352) (-735 "MSYSCMD.spad" 1153448 1153456 1154004 1154009) (-734 "MSET.spad" 1151390 1151400 1153154 1153193) (-733 "MSETAGG.spad" 1151235 1151245 1151358 1151385) (-732 "MRING.spad" 1148206 1148218 1150943 1151010) (-731 "MRF2.spad" 1147774 1147788 1148196 1148201) (-730 "MRATFAC.spad" 1147320 1147337 1147764 1147769) (-729 "MPRFF.spad" 1145350 1145369 1147310 1147315) (-728 "MPOLY.spad" 1142785 1142800 1143144 1143271) (-727 "MPCPF.spad" 1142049 1142068 1142775 1142780) (-726 "MPC3.spad" 1141864 1141904 1142039 1142044) (-725 "MPC2.spad" 1141506 1141539 1141854 1141859) (-724 "MONOTOOL.spad" 1139841 1139858 1141496 1141501) (-723 "MONOID.spad" 1139160 1139168 1139831 1139836) (-722 "MONOID.spad" 1138477 1138487 1139150 1139155) (-721 "MONOGEN.spad" 1137223 1137236 1138337 1138472) (-720 "MONOGEN.spad" 1135991 1136006 1137107 1137112) (-719 "MONADWU.spad" 1134005 1134013 1135981 1135986) (-718 "MONADWU.spad" 1132017 1132027 1133995 1134000) (-717 "MONAD.spad" 1131161 1131169 1132007 1132012) (-716 "MONAD.spad" 1130303 1130313 1131151 1131156) (-715 "MOEBIUS.spad" 1128989 1129003 1130283 1130298) (-714 "MODULE.spad" 1128859 1128869 1128957 1128984) (-713 "MODULE.spad" 1128749 1128761 1128849 1128854) (-712 "MODRING.spad" 1128080 1128119 1128729 1128744) (-711 "MODOP.spad" 1126739 1126751 1127902 1127969) (-710 "MODMONOM.spad" 1126468 1126486 1126729 1126734) (-709 "MODMON.spad" 1123227 1123243 1123946 1124099) (-708 "MODFIELD.spad" 1122585 1122624 1123129 1123222) (-707 "MMLFORM.spad" 1121445 1121453 1122575 1122580) (-706 "MMAP.spad" 1121185 1121219 1121435 1121440) (-705 "MLO.spad" 1119612 1119622 1121141 1121180) (-704 "MLIFT.spad" 1118184 1118201 1119602 1119607) (-703 "MKUCFUNC.spad" 1117717 1117735 1118174 1118179) (-702 "MKRECORD.spad" 1117319 1117332 1117707 1117712) (-701 "MKFUNC.spad" 1116700 1116710 1117309 1117314) (-700 "MKFLCFN.spad" 1115656 1115666 1116690 1116695) (-699 "MKCHSET.spad" 1115521 1115531 1115646 1115651) (-698 "MKBCFUNC.spad" 1115006 1115024 1115511 1115516) (-697 "MINT.spad" 1114445 1114453 1114908 1115001) (-696 "MHROWRED.spad" 1112946 1112956 1114435 1114440) (-695 "MFLOAT.spad" 1111462 1111470 1112836 1112941) (-694 "MFINFACT.spad" 1110862 1110884 1111452 1111457) (-693 "MESH.spad" 1108594 1108602 1110852 1110857) (-692 "MDDFACT.spad" 1106787 1106797 1108584 1108589) (-691 "MDAGG.spad" 1106074 1106084 1106767 1106782) (-690 "MCMPLX.spad" 1102048 1102056 1102662 1102863) (-689 "MCDEN.spad" 1101256 1101268 1102038 1102043) (-688 "MCALCFN.spad" 1098358 1098384 1101246 1101251) (-687 "MAYBE.spad" 1097642 1097653 1098348 1098353) (-686 "MATSTOR.spad" 1094918 1094928 1097632 1097637) (-685 "MATRIX.spad" 1093622 1093632 1094106 1094133) (-684 "MATLIN.spad" 1090948 1090972 1093506 1093511) (-683 "MATCAT.spad" 1082533 1082555 1090916 1090943) (-682 "MATCAT.spad" 1073990 1074014 1082375 1082380) (-681 "MATCAT2.spad" 1073258 1073306 1073980 1073985) (-680 "MAPPKG3.spad" 1072157 1072171 1073248 1073253) (-679 "MAPPKG2.spad" 1071491 1071503 1072147 1072152) (-678 "MAPPKG1.spad" 1070309 1070319 1071481 1071486) (-677 "MAPPAST.spad" 1069622 1069630 1070299 1070304) (-676 "MAPHACK3.spad" 1069430 1069444 1069612 1069617) (-675 "MAPHACK2.spad" 1069195 1069207 1069420 1069425) (-674 "MAPHACK1.spad" 1068825 1068835 1069185 1069190) (-673 "MAGMA.spad" 1066615 1066632 1068815 1068820) (-672 "MACROAST.spad" 1066194 1066202 1066605 1066610) (-671 "M3D.spad" 1063890 1063900 1065572 1065577) (-670 "LZSTAGG.spad" 1061118 1061128 1063880 1063885) (-669 "LZSTAGG.spad" 1058344 1058356 1061108 1061113) (-668 "LWORD.spad" 1055049 1055066 1058334 1058339) (-667 "LSTAST.spad" 1054833 1054841 1055039 1055044) (-666 "LSQM.spad" 1053059 1053073 1053457 1053508) (-665 "LSPP.spad" 1052592 1052609 1053049 1053054) (-664 "LSMP.spad" 1051432 1051460 1052582 1052587) (-663 "LSMP1.spad" 1049236 1049250 1051422 1051427) (-662 "LSAGG.spad" 1048905 1048915 1049204 1049231) (-661 "LSAGG.spad" 1048594 1048606 1048895 1048900) (-660 "LPOLY.spad" 1047548 1047567 1048450 1048519) (-659 "LPEFRAC.spad" 1046805 1046815 1047538 1047543) (-658 "LO.spad" 1046206 1046220 1046739 1046766) (-657 "LOGIC.spad" 1045808 1045816 1046196 1046201) (-656 "LOGIC.spad" 1045408 1045418 1045798 1045803) (-655 "LODOOPS.spad" 1044326 1044338 1045398 1045403) (-654 "LODO.spad" 1043710 1043726 1044006 1044045) (-653 "LODOF.spad" 1042754 1042771 1043667 1043672) (-652 "LODOCAT.spad" 1041412 1041422 1042710 1042749) (-651 "LODOCAT.spad" 1040068 1040080 1041368 1041373) (-650 "LODO2.spad" 1039341 1039353 1039748 1039787) (-649 "LODO1.spad" 1038741 1038751 1039021 1039060) (-648 "LODEEF.spad" 1037513 1037531 1038731 1038736) (-647 "LNAGG.spad" 1033315 1033325 1037503 1037508) (-646 "LNAGG.spad" 1029081 1029093 1033271 1033276) (-645 "LMOPS.spad" 1025817 1025834 1029071 1029076) (-644 "LMODULE.spad" 1025459 1025469 1025807 1025812) (-643 "LMDICT.spad" 1024742 1024752 1025010 1025037) (-642 "LITERAL.spad" 1024648 1024659 1024732 1024737) (-641 "LIST.spad" 1022366 1022376 1023795 1023822) (-640 "LIST3.spad" 1021657 1021671 1022356 1022361) (-639 "LIST2.spad" 1020297 1020309 1021647 1021652) (-638 "LIST2MAP.spad" 1017174 1017186 1020287 1020292) (-637 "LINEXP.spad" 1016606 1016616 1017154 1017169) (-636 "LINDEP.spad" 1015383 1015395 1016518 1016523) (-635 "LIMITRF.spad" 1013297 1013307 1015373 1015378) (-634 "LIMITPS.spad" 1012180 1012193 1013287 1013292) (-633 "LIE.spad" 1010194 1010206 1011470 1011615) (-632 "LIECAT.spad" 1009670 1009680 1010120 1010189) (-631 "LIECAT.spad" 1009174 1009186 1009626 1009631) (-630 "LIB.spad" 1007222 1007230 1007833 1007848) (-629 "LGROBP.spad" 1004575 1004594 1007212 1007217) (-628 "LF.spad" 1003494 1003510 1004565 1004570) (-627 "LFCAT.spad" 1002513 1002521 1003484 1003489) (-626 "LEXTRIPK.spad" 998016 998031 1002503 1002508) (-625 "LEXP.spad" 996019 996046 997996 998011) (-624 "LETAST.spad" 995718 995726 996009 996014) (-623 "LEADCDET.spad" 994102 994119 995708 995713) (-622 "LAZM3PK.spad" 992806 992828 994092 994097) (-621 "LAUPOL.spad" 991495 991508 992399 992468) (-620 "LAPLACE.spad" 991068 991084 991485 991490) (-619 "LA.spad" 990508 990522 990990 991029) (-618 "LALG.spad" 990284 990294 990488 990503) (-617 "LALG.spad" 990068 990080 990274 990279) (-616 "KVTFROM.spad" 989803 989813 990058 990063) (-615 "KTVLOGIC.spad" 989226 989234 989793 989798) (-614 "KRCFROM.spad" 988964 988974 989216 989221) (-613 "KOVACIC.spad" 987677 987694 988954 988959) (-612 "KONVERT.spad" 987399 987409 987667 987672) (-611 "KOERCE.spad" 987136 987146 987389 987394) (-610 "KERNEL.spad" 985671 985681 986920 986925) (-609 "KERNEL2.spad" 985374 985386 985661 985666) (-608 "KDAGG.spad" 984477 984499 985354 985369) (-607 "KDAGG.spad" 983588 983612 984467 984472) (-606 "KAFILE.spad" 982551 982567 982786 982813) (-605 "JORDAN.spad" 980378 980390 981841 981986) (-604 "JOINAST.spad" 980072 980080 980368 980373) (-603 "JAVACODE.spad" 979938 979946 980062 980067) (-602 "IXAGG.spad" 978061 978085 979928 979933) (-601 "IXAGG.spad" 976039 976065 977908 977913) (-600 "IVECTOR.spad" 974810 974825 974965 974992) (-599 "ITUPLE.spad" 973955 973965 974800 974805) (-598 "ITRIGMNP.spad" 972766 972785 973945 973950) (-597 "ITFUN3.spad" 972260 972274 972756 972761) (-596 "ITFUN2.spad" 971990 972002 972250 972255) (-595 "ITAYLOR.spad" 969782 969797 971826 971951) (-594 "ISUPS.spad" 962193 962208 968756 968853) (-593 "ISUMP.spad" 961690 961706 962183 962188) (-592 "ISTRING.spad" 960693 960706 960859 960886) (-591 "ISAST.spad" 960412 960420 960683 960688) (-590 "IRURPK.spad" 959125 959144 960402 960407) (-589 "IRSN.spad" 957085 957093 959115 959120) (-588 "IRRF2F.spad" 955560 955570 957041 957046) (-587 "IRREDFFX.spad" 955161 955172 955550 955555) (-586 "IROOT.spad" 953492 953502 955151 955156) (-585 "IR.spad" 951281 951295 953347 953374) (-584 "IR2.spad" 950301 950317 951271 951276) (-583 "IR2F.spad" 949501 949517 950291 950296) (-582 "IPRNTPK.spad" 949261 949269 949491 949496) (-581 "IPF.spad" 948826 948838 949066 949159) (-580 "IPADIC.spad" 948587 948613 948752 948821) (-579 "IP4ADDR.spad" 948144 948152 948577 948582) (-578 "IOMODE.spad" 947765 947773 948134 948139) (-577 "IOBFILE.spad" 947126 947134 947755 947760) (-576 "IOBCON.spad" 946991 946999 947116 947121) (-575 "INVLAPLA.spad" 946636 946652 946981 946986) (-574 "INTTR.spad" 939882 939899 946626 946631) (-573 "INTTOOLS.spad" 937593 937609 939456 939461) (-572 "INTSLPE.spad" 936899 936907 937583 937588) (-571 "INTRVL.spad" 936465 936475 936813 936894) (-570 "INTRF.spad" 934829 934843 936455 936460) (-569 "INTRET.spad" 934261 934271 934819 934824) (-568 "INTRAT.spad" 932936 932953 934251 934256) (-567 "INTPM.spad" 931299 931315 932579 932584) (-566 "INTPAF.spad" 929067 929085 931231 931236) (-565 "INTPACK.spad" 919377 919385 929057 929062) (-564 "INT.spad" 918738 918746 919231 919372) (-563 "INTHERTR.spad" 918004 918021 918728 918733) (-562 "INTHERAL.spad" 917670 917694 917994 917999) (-561 "INTHEORY.spad" 914083 914091 917660 917665) (-560 "INTG0.spad" 907546 907564 914015 914020) (-559 "INTFTBL.spad" 901575 901583 907536 907541) (-558 "INTFACT.spad" 900634 900644 901565 901570) (-557 "INTEF.spad" 898949 898965 900624 900629) (-556 "INTDOM.spad" 897564 897572 898875 898944) (-555 "INTDOM.spad" 896241 896251 897554 897559) (-554 "INTCAT.spad" 894494 894504 896155 896236) (-553 "INTBIT.spad" 893997 894005 894484 894489) (-552 "INTALG.spad" 893179 893206 893987 893992) (-551 "INTAF.spad" 892671 892687 893169 893174) (-550 "INTABL.spad" 891189 891220 891352 891379) (-549 "INT8.spad" 891069 891077 891179 891184) (-548 "INT64.spad" 890948 890956 891059 891064) (-547 "INT32.spad" 890827 890835 890938 890943) (-546 "INT16.spad" 890706 890714 890817 890822) (-545 "INS.spad" 888173 888181 890608 890701) (-544 "INS.spad" 885726 885736 888163 888168) (-543 "INPSIGN.spad" 885160 885173 885716 885721) (-542 "INPRODPF.spad" 884226 884245 885150 885155) (-541 "INPRODFF.spad" 883284 883308 884216 884221) (-540 "INNMFACT.spad" 882255 882272 883274 883279) (-539 "INMODGCD.spad" 881739 881769 882245 882250) (-538 "INFSP.spad" 880024 880046 881729 881734) (-537 "INFPROD0.spad" 879074 879093 880014 880019) (-536 "INFORM.spad" 876235 876243 879064 879069) (-535 "INFORM1.spad" 875860 875870 876225 876230) (-534 "INFINITY.spad" 875412 875420 875850 875855) (-533 "INETCLTS.spad" 875389 875397 875402 875407) (-532 "INEP.spad" 873921 873943 875379 875384) (-531 "INDE.spad" 873650 873667 873911 873916) (-530 "INCRMAPS.spad" 873071 873081 873640 873645) (-529 "INBFILE.spad" 872143 872151 873061 873066) (-528 "INBFF.spad" 867913 867924 872133 872138) (-527 "INBCON.spad" 866201 866209 867903 867908) (-526 "INBCON.spad" 864487 864497 866191 866196) (-525 "INAST.spad" 864152 864160 864477 864482) (-524 "IMPTAST.spad" 863860 863868 864142 864147) (-523 "IMATRIX.spad" 862805 862831 863317 863344) (-522 "IMATQF.spad" 861899 861943 862761 862766) (-521 "IMATLIN.spad" 860504 860528 861855 861860) (-520 "ILIST.spad" 859160 859175 859687 859714) (-519 "IIARRAY2.spad" 858548 858586 858767 858794) (-518 "IFF.spad" 857958 857974 858229 858322) (-517 "IFAST.spad" 857572 857580 857948 857953) (-516 "IFARRAY.spad" 855059 855074 856755 856782) (-515 "IFAMON.spad" 854921 854938 855015 855020) (-514 "IEVALAB.spad" 854310 854322 854911 854916) (-513 "IEVALAB.spad" 853697 853711 854300 854305) (-512 "IDPO.spad" 853495 853507 853687 853692) (-511 "IDPOAMS.spad" 853251 853263 853485 853490) (-510 "IDPOAM.spad" 852971 852983 853241 853246) (-509 "IDPC.spad" 851905 851917 852961 852966) (-508 "IDPAM.spad" 851650 851662 851895 851900) (-507 "IDPAG.spad" 851397 851409 851640 851645) (-506 "IDENT.spad" 851169 851177 851387 851392) (-505 "IDECOMP.spad" 848406 848424 851159 851164) (-504 "IDEAL.spad" 843329 843368 848341 848346) (-503 "ICDEN.spad" 842480 842496 843319 843324) (-502 "ICARD.spad" 841669 841677 842470 842475) (-501 "IBPTOOLS.spad" 840262 840279 841659 841664) (-500 "IBITS.spad" 839461 839474 839898 839925) (-499 "IBATOOL.spad" 836336 836355 839451 839456) (-498 "IBACHIN.spad" 834823 834838 836326 836331) (-497 "IARRAY2.spad" 833811 833837 834430 834457) (-496 "IARRAY1.spad" 832856 832871 832994 833021) (-495 "IAN.spad" 831069 831077 832672 832765) (-494 "IALGFACT.spad" 830670 830703 831059 831064) (-493 "HYPCAT.spad" 830094 830102 830660 830665) (-492 "HYPCAT.spad" 829516 829526 830084 830089) (-491 "HOSTNAME.spad" 829324 829332 829506 829511) (-490 "HOMOTOP.spad" 829067 829077 829314 829319) (-489 "HOAGG.spad" 826335 826345 829057 829062) (-488 "HOAGG.spad" 823378 823390 826102 826107) (-487 "HEXADEC.spad" 821480 821488 821845 821938) (-486 "HEUGCD.spad" 820495 820506 821470 821475) (-485 "HELLFDIV.spad" 820085 820109 820485 820490) (-484 "HEAP.spad" 819477 819487 819692 819719) (-483 "HEADAST.spad" 819008 819016 819467 819472) (-482 "HDP.spad" 808851 808867 809228 809359) (-481 "HDMP.spad" 806027 806042 806645 806772) (-480 "HB.spad" 804264 804272 806017 806022) (-479 "HASHTBL.spad" 802734 802765 802945 802972) (-478 "HASAST.spad" 802450 802458 802724 802729) (-477 "HACKPI.spad" 801933 801941 802352 802445) (-476 "GTSET.spad" 800872 800888 801579 801606) (-475 "GSTBL.spad" 799391 799426 799565 799580) (-474 "GSERIES.spad" 796558 796585 797523 797672) (-473 "GROUP.spad" 795827 795835 796538 796553) (-472 "GROUP.spad" 795104 795114 795817 795822) (-471 "GROEBSOL.spad" 793592 793613 795094 795099) (-470 "GRMOD.spad" 792163 792175 793582 793587) (-469 "GRMOD.spad" 790732 790746 792153 792158) (-468 "GRIMAGE.spad" 783337 783345 790722 790727) (-467 "GRDEF.spad" 781716 781724 783327 783332) (-466 "GRAY.spad" 780175 780183 781706 781711) (-465 "GRALG.spad" 779222 779234 780165 780170) (-464 "GRALG.spad" 778267 778281 779212 779217) (-463 "GPOLSET.spad" 777721 777744 777949 777976) (-462 "GOSPER.spad" 776986 777004 777711 777716) (-461 "GMODPOL.spad" 776124 776151 776954 776981) (-460 "GHENSEL.spad" 775193 775207 776114 776119) (-459 "GENUPS.spad" 771294 771307 775183 775188) (-458 "GENUFACT.spad" 770871 770881 771284 771289) (-457 "GENPGCD.spad" 770455 770472 770861 770866) (-456 "GENMFACT.spad" 769907 769926 770445 770450) (-455 "GENEEZ.spad" 767846 767859 769897 769902) (-454 "GDMP.spad" 764864 764881 765640 765767) (-453 "GCNAALG.spad" 758759 758786 764658 764725) (-452 "GCDDOM.spad" 757931 757939 758685 758754) (-451 "GCDDOM.spad" 757165 757175 757921 757926) (-450 "GB.spad" 754683 754721 757121 757126) (-449 "GBINTERN.spad" 750703 750741 754673 754678) (-448 "GBF.spad" 746460 746498 750693 750698) (-447 "GBEUCLID.spad" 744334 744372 746450 746455) (-446 "GAUSSFAC.spad" 743631 743639 744324 744329) (-445 "GALUTIL.spad" 741953 741963 743587 743592) (-444 "GALPOLYU.spad" 740399 740412 741943 741948) (-443 "GALFACTU.spad" 738564 738583 740389 740394) (-442 "GALFACT.spad" 728697 728708 738554 738559) (-441 "FVFUN.spad" 725720 725728 728687 728692) (-440 "FVC.spad" 724772 724780 725710 725715) (-439 "FUNDESC.spad" 724450 724458 724762 724767) (-438 "FUNCTION.spad" 724299 724311 724440 724445) (-437 "FT.spad" 722592 722600 724289 724294) (-436 "FTEM.spad" 721755 721763 722582 722587) (-435 "FSUPFACT.spad" 720655 720674 721691 721696) (-434 "FST.spad" 718741 718749 720645 720650) (-433 "FSRED.spad" 718219 718235 718731 718736) (-432 "FSPRMELT.spad" 717043 717059 718176 718181) (-431 "FSPECF.spad" 715120 715136 717033 717038) (-430 "FS.spad" 709182 709192 714895 715115) (-429 "FS.spad" 703022 703034 708737 708742) (-428 "FSINT.spad" 702680 702696 703012 703017) (-427 "FSERIES.spad" 701867 701879 702500 702599) (-426 "FSCINT.spad" 701180 701196 701857 701862) (-425 "FSAGG.spad" 700297 700307 701136 701175) (-424 "FSAGG.spad" 699376 699388 700217 700222) (-423 "FSAGG2.spad" 698075 698091 699366 699371) (-422 "FS2UPS.spad" 692558 692592 698065 698070) (-421 "FS2.spad" 692203 692219 692548 692553) (-420 "FS2EXPXP.spad" 691326 691349 692193 692198) (-419 "FRUTIL.spad" 690268 690278 691316 691321) (-418 "FR.spad" 683962 683972 689292 689361) (-417 "FRNAALG.spad" 679049 679059 683904 683957) (-416 "FRNAALG.spad" 674148 674160 679005 679010) (-415 "FRNAAF2.spad" 673602 673620 674138 674143) (-414 "FRMOD.spad" 672996 673026 673533 673538) (-413 "FRIDEAL.spad" 672191 672212 672976 672991) (-412 "FRIDEAL2.spad" 671793 671825 672181 672186) (-411 "FRETRCT.spad" 671304 671314 671783 671788) (-410 "FRETRCT.spad" 670681 670693 671162 671167) (-409 "FRAMALG.spad" 669009 669022 670637 670676) (-408 "FRAMALG.spad" 667369 667384 668999 669004) (-407 "FRAC.spad" 664468 664478 664871 665044) (-406 "FRAC2.spad" 664071 664083 664458 664463) (-405 "FR2.spad" 663405 663417 664061 664066) (-404 "FPS.spad" 660214 660222 663295 663400) (-403 "FPS.spad" 657051 657061 660134 660139) (-402 "FPC.spad" 656093 656101 656953 657046) (-401 "FPC.spad" 655221 655231 656083 656088) (-400 "FPATMAB.spad" 654983 654993 655211 655216) (-399 "FPARFRAC.spad" 653456 653473 654973 654978) (-398 "FORTRAN.spad" 651962 652005 653446 653451) (-397 "FORT.spad" 650891 650899 651952 651957) (-396 "FORTFN.spad" 648061 648069 650881 650886) (-395 "FORTCAT.spad" 647745 647753 648051 648056) (-394 "FORMULA.spad" 645209 645217 647735 647740) (-393 "FORMULA1.spad" 644688 644698 645199 645204) (-392 "FORDER.spad" 644379 644403 644678 644683) (-391 "FOP.spad" 643580 643588 644369 644374) (-390 "FNLA.spad" 643004 643026 643548 643575) (-389 "FNCAT.spad" 641591 641599 642994 642999) (-388 "FNAME.spad" 641483 641491 641581 641586) (-387 "FMTC.spad" 641281 641289 641409 641478) (-386 "FMONOID.spad" 638336 638346 641237 641242) (-385 "FM.spad" 638031 638043 638270 638297) (-384 "FMFUN.spad" 635061 635069 638021 638026) (-383 "FMC.spad" 634113 634121 635051 635056) (-382 "FMCAT.spad" 631767 631785 634081 634108) (-381 "FM1.spad" 631124 631136 631701 631728) (-380 "FLOATRP.spad" 628845 628859 631114 631119) (-379 "FLOAT.spad" 622133 622141 628711 628840) (-378 "FLOATCP.spad" 619550 619564 622123 622128) (-377 "FLINEXP.spad" 619262 619272 619530 619545) (-376 "FLINEXP.spad" 618928 618940 619198 619203) (-375 "FLASORT.spad" 618248 618260 618918 618923) (-374 "FLALG.spad" 615894 615913 618174 618243) (-373 "FLAGG.spad" 612912 612922 615874 615889) (-372 "FLAGG.spad" 609831 609843 612795 612800) (-371 "FLAGG2.spad" 608512 608528 609821 609826) (-370 "FINRALG.spad" 606541 606554 608468 608507) (-369 "FINRALG.spad" 604496 604511 606425 606430) (-368 "FINITE.spad" 603648 603656 604486 604491) (-367 "FINAALG.spad" 592629 592639 603590 603643) (-366 "FINAALG.spad" 581622 581634 592585 592590) (-365 "FILE.spad" 581205 581215 581612 581617) (-364 "FILECAT.spad" 579723 579740 581195 581200) (-363 "FIELD.spad" 579129 579137 579625 579718) (-362 "FIELD.spad" 578621 578631 579119 579124) (-361 "FGROUP.spad" 577230 577240 578601 578616) (-360 "FGLMICPK.spad" 576017 576032 577220 577225) (-359 "FFX.spad" 575392 575407 575733 575826) (-358 "FFSLPE.spad" 574881 574902 575382 575387) (-357 "FFPOLY.spad" 566133 566144 574871 574876) (-356 "FFPOLY2.spad" 565193 565210 566123 566128) (-355 "FFP.spad" 564590 564610 564909 565002) (-354 "FF.spad" 564038 564054 564271 564364) (-353 "FFNBX.spad" 562550 562570 563754 563847) (-352 "FFNBP.spad" 561063 561080 562266 562359) (-351 "FFNB.spad" 559528 559549 560744 560837) (-350 "FFINTBAS.spad" 556942 556961 559518 559523) (-349 "FFIELDC.spad" 554517 554525 556844 556937) (-348 "FFIELDC.spad" 552178 552188 554507 554512) (-347 "FFHOM.spad" 550926 550943 552168 552173) (-346 "FFF.spad" 548361 548372 550916 550921) (-345 "FFCGX.spad" 547208 547228 548077 548170) (-344 "FFCGP.spad" 546097 546117 546924 547017) (-343 "FFCG.spad" 544889 544910 545778 545871) (-342 "FFCAT.spad" 537916 537938 544728 544884) (-341 "FFCAT.spad" 531022 531046 537836 537841) (-340 "FFCAT2.spad" 530767 530807 531012 531017) (-339 "FEXPR.spad" 522476 522522 530523 530562) (-338 "FEVALAB.spad" 522182 522192 522466 522471) (-337 "FEVALAB.spad" 521673 521685 521959 521964) (-336 "FDIV.spad" 521115 521139 521663 521668) (-335 "FDIVCAT.spad" 519157 519181 521105 521110) (-334 "FDIVCAT.spad" 517197 517223 519147 519152) (-333 "FDIV2.spad" 516851 516891 517187 517192) (-332 "FCPAK1.spad" 515404 515412 516841 516846) (-331 "FCOMP.spad" 514783 514793 515394 515399) (-330 "FC.spad" 504698 504706 514773 514778) (-329 "FAXF.spad" 497633 497647 504600 504693) (-328 "FAXF.spad" 490620 490636 497589 497594) (-327 "FARRAY.spad" 488766 488776 489803 489830) (-326 "FAMR.spad" 486886 486898 488664 488761) (-325 "FAMR.spad" 484990 485004 486770 486775) (-324 "FAMONOID.spad" 484640 484650 484944 484949) (-323 "FAMONC.spad" 482862 482874 484630 484635) (-322 "FAGROUP.spad" 482468 482478 482758 482785) (-321 "FACUTIL.spad" 480664 480681 482458 482463) (-320 "FACTFUNC.spad" 479840 479850 480654 480659) (-319 "EXPUPXS.spad" 476673 476696 477972 478121) (-318 "EXPRTUBE.spad" 473901 473909 476663 476668) (-317 "EXPRODE.spad" 470773 470789 473891 473896) (-316 "EXPR.spad" 466048 466058 466762 467169) (-315 "EXPR2UPS.spad" 462140 462153 466038 466043) (-314 "EXPR2.spad" 461843 461855 462130 462135) (-313 "EXPEXPAN.spad" 458781 458806 459415 459508) (-312 "EXIT.spad" 458452 458460 458771 458776) (-311 "EXITAST.spad" 458188 458196 458442 458447) (-310 "EVALCYC.spad" 457646 457660 458178 458183) (-309 "EVALAB.spad" 457210 457220 457636 457641) (-308 "EVALAB.spad" 456772 456784 457200 457205) (-307 "EUCDOM.spad" 454314 454322 456698 456767) (-306 "EUCDOM.spad" 451918 451928 454304 454309) (-305 "ESTOOLS.spad" 443758 443766 451908 451913) (-304 "ESTOOLS2.spad" 443359 443373 443748 443753) (-303 "ESTOOLS1.spad" 443044 443055 443349 443354) (-302 "ES.spad" 435591 435599 443034 443039) (-301 "ES.spad" 428044 428054 435489 435494) (-300 "ESCONT.spad" 424817 424825 428034 428039) (-299 "ESCONT1.spad" 424566 424578 424807 424812) (-298 "ES2.spad" 424061 424077 424556 424561) (-297 "ES1.spad" 423627 423643 424051 424056) (-296 "ERROR.spad" 420948 420956 423617 423622) (-295 "EQTBL.spad" 419420 419442 419629 419656) (-294 "EQ.spad" 414294 414304 417093 417205) (-293 "EQ2.spad" 414010 414022 414284 414289) (-292 "EP.spad" 410324 410334 414000 414005) (-291 "ENV.spad" 409000 409008 410314 410319) (-290 "ENTIRER.spad" 408668 408676 408944 408995) (-289 "EMR.spad" 407869 407910 408594 408663) (-288 "ELTAGG.spad" 406109 406128 407859 407864) (-287 "ELTAGG.spad" 404313 404334 406065 406070) (-286 "ELTAB.spad" 403760 403778 404303 404308) (-285 "ELFUTS.spad" 403139 403158 403750 403755) (-284 "ELEMFUN.spad" 402828 402836 403129 403134) (-283 "ELEMFUN.spad" 402515 402525 402818 402823) (-282 "ELAGG.spad" 400458 400468 402495 402510) (-281 "ELAGG.spad" 398338 398350 400377 400382) (-280 "ELABEXPR.spad" 397269 397277 398328 398333) (-279 "EFUPXS.spad" 394045 394075 397225 397230) (-278 "EFULS.spad" 390881 390904 394001 394006) (-277 "EFSTRUC.spad" 388836 388852 390871 390876) (-276 "EF.spad" 383602 383618 388826 388831) (-275 "EAB.spad" 381878 381886 383592 383597) (-274 "E04UCFA.spad" 381414 381422 381868 381873) (-273 "E04NAFA.spad" 380991 380999 381404 381409) (-272 "E04MBFA.spad" 380571 380579 380981 380986) (-271 "E04JAFA.spad" 380107 380115 380561 380566) (-270 "E04GCFA.spad" 379643 379651 380097 380102) (-269 "E04FDFA.spad" 379179 379187 379633 379638) (-268 "E04DGFA.spad" 378715 378723 379169 379174) (-267 "E04AGNT.spad" 374557 374565 378705 378710) (-266 "DVARCAT.spad" 371242 371252 374547 374552) (-265 "DVARCAT.spad" 367925 367937 371232 371237) (-264 "DSMP.spad" 365356 365370 365661 365788) (-263 "DROPT.spad" 359301 359309 365346 365351) (-262 "DROPT1.spad" 358964 358974 359291 359296) (-261 "DROPT0.spad" 353791 353799 358954 358959) (-260 "DRAWPT.spad" 351946 351954 353781 353786) (-259 "DRAW.spad" 344546 344559 351936 351941) (-258 "DRAWHACK.spad" 343854 343864 344536 344541) (-257 "DRAWCX.spad" 341296 341304 343844 343849) (-256 "DRAWCURV.spad" 340833 340848 341286 341291) (-255 "DRAWCFUN.spad" 330005 330013 340823 340828) (-254 "DQAGG.spad" 328173 328183 329973 330000) (-253 "DPOLCAT.spad" 323514 323530 328041 328168) (-252 "DPOLCAT.spad" 318941 318959 323470 323475) (-251 "DPMO.spad" 311167 311183 311305 311606) (-250 "DPMM.spad" 303406 303424 303531 303832) (-249 "DOMCTOR.spad" 303298 303306 303396 303401) (-248 "DOMAIN.spad" 302429 302437 303288 303293) (-247 "DMP.spad" 299651 299666 300223 300350) (-246 "DLP.spad" 298999 299009 299641 299646) (-245 "DLIST.spad" 297578 297588 298182 298209) (-244 "DLAGG.spad" 295989 295999 297568 297573) (-243 "DIVRING.spad" 295531 295539 295933 295984) (-242 "DIVRING.spad" 295117 295127 295521 295526) (-241 "DISPLAY.spad" 293297 293305 295107 295112) (-240 "DIRPROD.spad" 282877 282893 283517 283648) (-239 "DIRPROD2.spad" 281685 281703 282867 282872) (-238 "DIRPCAT.spad" 280627 280643 281549 281680) (-237 "DIRPCAT.spad" 279298 279316 280222 280227) (-236 "DIOSP.spad" 278123 278131 279288 279293) (-235 "DIOPS.spad" 277107 277117 278103 278118) (-234 "DIOPS.spad" 276065 276077 277063 277068) (-233 "DIFRING.spad" 275357 275365 276045 276060) (-232 "DIFRING.spad" 274657 274667 275347 275352) (-231 "DIFEXT.spad" 273816 273826 274637 274652) (-230 "DIFEXT.spad" 272892 272904 273715 273720) (-229 "DIAGG.spad" 272522 272532 272872 272887) (-228 "DIAGG.spad" 272160 272172 272512 272517) (-227 "DHMATRIX.spad" 270464 270474 271617 271644) (-226 "DFSFUN.spad" 263872 263880 270454 270459) (-225 "DFLOAT.spad" 260593 260601 263762 263867) (-224 "DFINTTLS.spad" 258802 258818 260583 260588) (-223 "DERHAM.spad" 256712 256744 258782 258797) (-222 "DEQUEUE.spad" 256030 256040 256319 256346) (-221 "DEGRED.spad" 255645 255659 256020 256025) (-220 "DEFINTRF.spad" 253170 253180 255635 255640) (-219 "DEFINTEF.spad" 251666 251682 253160 253165) (-218 "DEFAST.spad" 251034 251042 251656 251661) (-217 "DECIMAL.spad" 249140 249148 249501 249594) (-216 "DDFACT.spad" 246939 246956 249130 249135) (-215 "DBLRESP.spad" 246537 246561 246929 246934) (-214 "DBASE.spad" 245191 245201 246527 246532) (-213 "DATAARY.spad" 244653 244666 245181 245186) (-212 "D03FAFA.spad" 244481 244489 244643 244648) (-211 "D03EEFA.spad" 244301 244309 244471 244476) (-210 "D03AGNT.spad" 243381 243389 244291 244296) (-209 "D02EJFA.spad" 242843 242851 243371 243376) (-208 "D02CJFA.spad" 242321 242329 242833 242838) (-207 "D02BHFA.spad" 241811 241819 242311 242316) (-206 "D02BBFA.spad" 241301 241309 241801 241806) (-205 "D02AGNT.spad" 236105 236113 241291 241296) (-204 "D01WGTS.spad" 234424 234432 236095 236100) (-203 "D01TRNS.spad" 234401 234409 234414 234419) (-202 "D01GBFA.spad" 233923 233931 234391 234396) (-201 "D01FCFA.spad" 233445 233453 233913 233918) (-200 "D01ASFA.spad" 232913 232921 233435 233440) (-199 "D01AQFA.spad" 232359 232367 232903 232908) (-198 "D01APFA.spad" 231783 231791 232349 232354) (-197 "D01ANFA.spad" 231277 231285 231773 231778) (-196 "D01AMFA.spad" 230787 230795 231267 231272) (-195 "D01ALFA.spad" 230327 230335 230777 230782) (-194 "D01AKFA.spad" 229853 229861 230317 230322) (-193 "D01AJFA.spad" 229376 229384 229843 229848) (-192 "D01AGNT.spad" 225435 225443 229366 229371) (-191 "CYCLOTOM.spad" 224941 224949 225425 225430) (-190 "CYCLES.spad" 221773 221781 224931 224936) (-189 "CVMP.spad" 221190 221200 221763 221768) (-188 "CTRIGMNP.spad" 219680 219696 221180 221185) (-187 "CTOR.spad" 219375 219383 219670 219675) (-186 "CTORKIND.spad" 218978 218986 219365 219370) (-185 "CTORCAT.spad" 218227 218235 218968 218973) (-184 "CTORCAT.spad" 217474 217484 218217 218222) (-183 "CTORCALL.spad" 217054 217062 217464 217469) (-182 "CSTTOOLS.spad" 216297 216310 217044 217049) (-181 "CRFP.spad" 210001 210014 216287 216292) (-180 "CRCEAST.spad" 209721 209729 209991 209996) (-179 "CRAPACK.spad" 208764 208774 209711 209716) (-178 "CPMATCH.spad" 208264 208279 208689 208694) (-177 "CPIMA.spad" 207969 207988 208254 208259) (-176 "COORDSYS.spad" 202862 202872 207959 207964) (-175 "CONTOUR.spad" 202273 202281 202852 202857) (-174 "CONTFRAC.spad" 197885 197895 202175 202268) (-173 "CONDUIT.spad" 197643 197651 197875 197880) (-172 "COMRING.spad" 197317 197325 197581 197638) (-171 "COMPPROP.spad" 196831 196839 197307 197312) (-170 "COMPLPAT.spad" 196598 196613 196821 196826) (-169 "COMPLEX.spad" 190622 190632 190866 191127) (-168 "COMPLEX2.spad" 190335 190347 190612 190617) (-167 "COMPFACT.spad" 189937 189951 190325 190330) (-166 "COMPCAT.spad" 188005 188015 189671 189932) (-165 "COMPCAT.spad" 185766 185778 187434 187439) (-164 "COMMUPC.spad" 185512 185530 185756 185761) (-163 "COMMONOP.spad" 185045 185053 185502 185507) (-162 "COMM.spad" 184854 184862 185035 185040) (-161 "COMMAAST.spad" 184617 184625 184844 184849) (-160 "COMBOPC.spad" 183522 183530 184607 184612) (-159 "COMBINAT.spad" 182267 182277 183512 183517) (-158 "COMBF.spad" 179635 179651 182257 182262) (-157 "COLOR.spad" 178472 178480 179625 179630) (-156 "COLONAST.spad" 178138 178146 178462 178467) (-155 "CMPLXRT.spad" 177847 177864 178128 178133) (-154 "CLLCTAST.spad" 177509 177517 177837 177842) (-153 "CLIP.spad" 173601 173609 177499 177504) (-152 "CLIF.spad" 172240 172256 173557 173596) (-151 "CLAGG.spad" 168725 168735 172230 172235) (-150 "CLAGG.spad" 165081 165093 168588 168593) (-149 "CINTSLPE.spad" 164406 164419 165071 165076) (-148 "CHVAR.spad" 162484 162506 164396 164401) (-147 "CHARZ.spad" 162399 162407 162464 162479) (-146 "CHARPOL.spad" 161907 161917 162389 162394) (-145 "CHARNZ.spad" 161660 161668 161887 161902) (-144 "CHAR.spad" 159528 159536 161650 161655) (-143 "CFCAT.spad" 158844 158852 159518 159523) (-142 "CDEN.spad" 158002 158016 158834 158839) (-141 "CCLASS.spad" 156151 156159 157413 157452) (-140 "CATEGORY.spad" 155241 155249 156141 156146) (-139 "CATCTOR.spad" 155132 155140 155231 155236) (-138 "CATAST.spad" 154759 154767 155122 155127) (-137 "CASEAST.spad" 154473 154481 154749 154754) (-136 "CARTEN.spad" 149576 149600 154463 154468) (-135 "CARTEN2.spad" 148962 148989 149566 149571) (-134 "CARD.spad" 146251 146259 148936 148957) (-133 "CAPSLAST.spad" 146025 146033 146241 146246) (-132 "CACHSET.spad" 145647 145655 146015 146020) (-131 "CABMON.spad" 145200 145208 145637 145642) (-130 "BYTEORD.spad" 144875 144883 145190 145195) (-129 "BYTE.spad" 144300 144308 144865 144870) (-128 "BYTEBUF.spad" 142157 142165 143469 143496) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index caf5be53..7f8cdd52 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,997 +1,997 @@ -(162113 . 3444870415) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) #0#) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) -((((-563)) . T) (($) -2811 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T)) +(162149 . 3449148023) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) #0#) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) +((((-564)) . T) (($) -4030 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T)) (((|#2| |#2|) . T)) -((((-563)) . T)) -((($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2| |#2|) . T) ((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563))))) +((((-564)) . T)) +((($ $) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564))))) ((($) . T)) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#2|) . T)) -((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563))))) -(|has| |#1| (-905)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((($) . T) (((-407 (-563))) . T)) +((($) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) +(|has| |#1| (-906)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((($) . T) (((-407 (-564))) . T)) ((($) . T)) ((($) . T)) (((|#2| |#2|) . T)) ((((-144)) . T)) -((((-536)) . T) (((-1151)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) -(((|#1|) . T)) -((((-225)) . T) (((-858)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-844))) -((($ $) . T) ((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) -(-2811 (|has| |#1| (-816)) (|has| |#1| (-846))) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(|has| |#1| (-844)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-536)) . T) (((-1152)) . T) (((-225)) . T) (((-379)) . T) (((-889 (-379))) . T)) +(((|#1|) . T)) +((((-225)) . T) (((-859)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) . T)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-845))) +((($ $) . T) ((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) +(-4030 (|has| |#1| (-817)) (|has| |#1| (-847))) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +((((-859)) . T)) +((((-859)) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(|has| |#1| (-845)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#2| |#3|) . T)) -((((-1174)) . T)) -((((-563)) . T) (((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -((($) . T) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-858)) . T)) -((((-1174)) . T)) +((((-1175)) . T)) +((((-564)) . T) (((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((($) . T) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-859)) . T)) +((((-1175)) . T)) (((|#4|) . T)) -((((-858)) . T)) -((((-858)) |has| |#1| (-1093))) -((((-858)) . T) (((-1174)) . T)) +((((-859)) . T)) +((((-859)) |has| |#1| (-1094))) +((((-859)) . T) (((-1175)) . T)) (((|#1|) . T) ((|#2|) . T)) -((((-1174)) . T)) -(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(((|#2| (-482 (-1708 |#1|) (-767))) . T)) -(((|#1| (-531 (-1169))) . T)) -(((#0=(-866 |#1|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) -((((-1151)) . T) (((-954 (-129))) . T) (((-858)) . T)) -((((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-1175)) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(((|#2| (-482 (-2641 |#1|) (-768))) . T)) +(((|#1| (-531 (-1170))) . T)) +(((#0=(-867 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +((((-1152)) . T) (((-955 (-129))) . T) (((-859)) . T)) +((((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) (|has| |#4| (-368)) (|has| |#3| (-368)) (((|#1|) . T)) ((((-506)) . T)) -((((-866 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -((((-858)) . T)) -((((-858)) . T)) +((((-867 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-859)) . T)) +((((-859)) . T)) (((|#1| |#2|) . T)) ((($) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(|has| |#1| (-555)) -((((-563)) . T) (((-407 (-563))) -2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -((((-2 (|:| -3491 |#1|) (|:| -2631 |#2|))) . T)) -((($) . T)) -((((-563)) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1169)) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -((((-1169)) . T)) -((((-563)) . T) (($) . T)) -((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) -((($) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-858)) . T)) -((((-858)) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) -((((-858)) . T)) -(((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) -(((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T)) +(|has| |#1| (-556)) +((((-564)) . T) (((-407 (-564))) -4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +((((-2 (|:| -1495 |#1|) (|:| -2515 |#2|))) . T)) +((($) . T)) +((((-564)) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1170)) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +((((-1170)) . T)) +((((-564)) . T) (($) . T)) +((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) +((($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-859)) . T)) +((((-859)) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +((((-859)) . T)) +(((|#1|) . T)) +((((-859)) . T)) +((((-859)) . T)) +(((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) (((|#1| |#2|) . T)) -((((-858)) . T)) +((((-859)) . T)) (((|#1|) . T)) -(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) (((|#1|) . T)) -(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -((((-407 (-563))) . T) (($) . T) (((-563)) . T)) -(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) +(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +((((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) (((|#2|) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) ((($ $) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-368)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-858)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-859)) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) (((|#1| |#1|) . T)) -((((-858)) . T)) -(|has| |#1| (-555)) -(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1169) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|)))) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-844))) -((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(|has| |#1| (-1093)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(|has| |#1| (-1093)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(|has| |#1| (-844)) -((($) . T) (((-407 (-563))) . T)) -(((|#1|) . T)) -((((-563) (-129)) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-859)) . T)) +(|has| |#1| (-556)) +(((|#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) (((-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|)))) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-845))) +((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(|has| |#1| (-1094)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(|has| |#1| (-1094)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(|has| |#1| (-845)) +((($) . T) (((-407 (-564))) . T)) +(((|#1|) . T)) +((((-564) (-129)) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((((-129)) . T)) -((((-1174)) . T)) -(-2811 (|has| |#4| (-789)) (|has| |#4| (-844))) -(-2811 (|has| |#4| (-789)) (|has| |#4| (-844))) -(-2811 (|has| |#3| (-789)) (|has| |#3| (-844))) -(-2811 (|has| |#3| (-789)) (|has| |#3| (-844))) +((((-1175)) . T)) +(-4030 (|has| |#4| (-790)) (|has| |#4| (-845))) +(-4030 (|has| |#4| (-790)) (|has| |#4| (-845))) +(-4030 (|has| |#3| (-790)) (|has| |#3| (-845))) +(-4030 (|has| |#3| (-790)) (|has| |#3| (-845))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-1093)) -(|has| |#1| (-1093)) -(((|#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) . T)) -((((-563) |#1|) . T)) -((((-563)) . T)) -((((-563)) . T)) -((((-906 |#1|)) . T)) +(|has| |#1| (-1094)) +(|has| |#1| (-1094)) +(((|#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) . T)) +((((-564) |#1|) . T)) +((((-564)) . T)) +((((-564)) . T)) +((((-907 |#1|)) . T)) (((|#1| (-531 |#2|)) . T)) -((((-563)) . T)) -((((-563)) . T)) -(((|#1|) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(((|#1| (-767)) . T)) -(|has| |#2| (-789)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) -(|has| |#2| (-844)) +((((-564)) . T)) +((((-564)) . T)) +(((|#1|) . T)) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(((|#1| (-768)) . T)) +(|has| |#2| (-790)) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) +(|has| |#2| (-845)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-1151) |#1|) . T)) -((((-563) (-129)) . T)) +((((-1152) |#1|) . T)) +((((-564) (-129)) . T)) (((|#1|) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(((|#3| (-767)) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(((|#3| (-768)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) -(|has| |#1| (-1093)) -((((-407 (-563))) . T) (((-563)) . T)) -((((-563)) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -((((-563)) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#2|) . T)) -((((-1169) |#2|) |has| |#2| (-514 (-1169) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|))) -((((-407 (-563))) . T) (((-563)) . T)) -((((-563)) . T) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(|has| |#1| (-1094)) +((((-407 (-564))) . T) (((-564)) . T)) +((((-564)) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((((-564)) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#2|) . T)) +((((-1170) |#2|) |has| |#2| (-514 (-1170) |#2|)) ((|#2| |#2|) |has| |#2| (-309 |#2|))) +((((-407 (-564))) . T) (((-564)) . T)) +((((-564)) . T) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (((|#1|) . T) (($) . T)) -((((-563)) . T)) -((((-563)) . T)) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -((((-563)) . T)) -((((-563)) . T)) -(((#0=(-694) (-1165 #0#)) . T)) -((((-407 (-563))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -((((-563) |#1|) . T)) +((((-564)) . T)) +((((-564)) . T)) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((((-564)) . T)) +((((-564)) . T)) +(((#0=(-695) (-1166 #0#)) . T)) +((((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +((((-564) |#1|) . T)) (((|#1|) . T)) (|has| |#2| (-363)) -((($) . T) (((-563)) . T) (((-407 (-563))) . T)) +((($) . T) (((-564)) . T) (((-407 (-564))) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-858)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-1151) |#1|) . T)) +((((-859)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-1152) |#1|) . T)) (((|#3| |#3|) . T)) -((((-858)) . T)) -((((-858)) . T)) +((((-859)) . T)) +((((-859)) . T)) (((|#1| |#1|) . T)) -(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-563) |#1|) . T)) -((((-858)) . T)) -((((-169 (-225))) |has| |#1| (-1018)) (((-169 (-379))) |has| |#1| (-1018)) (((-536)) |has| |#1| (-611 (-536))) (((-1165 |#1|)) . T) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379))))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-844))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-844))) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046)))) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-564) |#1|) . T)) +((((-859)) . T)) +((((-169 (-225))) |has| |#1| (-1019)) (((-169 (-379))) |has| |#1| (-1019)) (((-536)) |has| |#1| (-612 (-536))) (((-1166 |#1|)) . T) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379))))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) . T)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-845))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-845))) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) (|has| |#1| (-363)) -((((-858)) . T)) +((((-859)) . T)) ((((-129)) . T)) -(-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) -(-2811 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -((((-858)) . T) (((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-858)) . T)) -(((|#1|) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) -(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) -(((|#2|) . T) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(((|#1|) . T) (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -(|has| |#1| (-555)) -((((-563)) -2811 (|has| |#4| (-172)) (|has| |#4| (-844)) (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (|has| |#4| (-1045))) ((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-1093))) (((-407 (-563))) -12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093)))) -((((-563)) -2811 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(|has| |#1| (-555)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(((|#1|) . T)) -(|has| |#1| (-555)) -(|has| |#1| (-555)) -(|has| |#1| (-555)) -((((-694)) . T)) -(((|#1|) . T)) -(-12 (|has| |#1| (-998)) (|has| |#1| (-1193))) -(((|#2|) . T) (($) . T) (((-407 (-563))) . T)) -(-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))) -((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T)) -(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) -(((|#4| |#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($ $) |has| |#4| (-172))) -(((|#3| |#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563))))) -((((-858)) . T)) +(-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) +(-4030 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046))) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +((((-859)) . T) (((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-859)) . T)) +(((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) +(((|#2|) . T) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(((|#1|) . T) (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +(|has| |#1| (-556)) +((((-564)) -4030 (|has| |#4| (-172)) (|has| |#4| (-845)) (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1046))) ((|#4|) -4030 (|has| |#4| (-172)) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094)))) +((((-564)) -4030 (|has| |#3| (-172)) (|has| |#3| (-845)) (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046))) ((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(|has| |#1| (-556)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(((|#1|) . T)) +(|has| |#1| (-556)) +(|has| |#1| (-556)) +(|has| |#1| (-556)) +((((-695)) . T)) +(((|#1|) . T)) +(-12 (|has| |#1| (-999)) (|has| |#1| (-1194))) +(((|#2|) . T) (($) . T) (((-407 (-564))) . T)) +(-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))) +((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) +(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) +(((|#4| |#4|) -4030 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))) (($ $) |has| |#4| (-172))) +(((|#3| |#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($ $) |has| |#3| (-172))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564))))) +((((-859)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-2 (|:| -3491 |#1|) (|:| -2631 |#2|))) . T) (((-858)) . T)) -((((-536)) |has| |#1| (-611 (-536))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563))))) -(((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045))) (($) |has| |#4| (-172))) -(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172))) -((((-2 (|:| -3491 |#1|) (|:| -2631 |#2|))) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) -((((-640 |#1|)) . T)) -(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T)) -((((-407 $) (-407 $)) |has| |#2| (-555)) (($ $) . T) ((|#2| |#2|) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) . T)) -(((|#1|) . T)) -(|has| |#2| (-905)) -((((-1151) (-52)) . T)) -((((-563)) |has| #0=(-407 |#2|) (-636 (-563))) ((#0#) . T)) -((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) -((((-858)) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +((((-2 (|:| -1495 |#1|) (|:| -2515 |#2|))) . T) (((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564))))) +(((|#4|) -4030 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046))) (($) |has| |#4| (-172))) +(((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($) |has| |#3| (-172))) +((((-2 (|:| -1495 |#1|) (|:| -2515 |#2|))) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-641 |#1|)) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) +((((-407 $) (-407 $)) |has| |#2| (-556)) (($ $) . T) ((|#2| |#2|) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) . T)) +(((|#1|) . T)) +(|has| |#2| (-906)) +((((-1152) (-52)) . T)) +((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T)) +((((-536)) . T) (((-225)) . T) (((-379)) . T) (((-889 (-379))) . T)) +((((-859)) . T)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) (((|#1|) |has| |#1| (-172))) (((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-858)) . T)) -((((-858)) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-858)) . T)) -(|has| |#1| (-846)) -(((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T)) -(|has| |#1| (-1093)) -(((|#1|) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) . T) (((-1174)) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((((-1174)) . T)) -((($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-859)) . T)) +((((-859)) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-859)) . T)) +(|has| |#1| (-847)) +(((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T)) +(|has| |#1| (-1094)) +(((|#1|) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) . T) (((-1175)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-1175)) . T)) +((($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-233)) -((($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#1| (-531 (-814 (-1169)))) . T)) -(((|#1| (-967)) . T)) -(((#0=(-866 |#1|) $) |has| #0# (-286 #0# #0#))) -((((-563) |#4|) . T)) -((((-563) |#3|) . T)) +((($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1| (-531 (-815 (-1170)))) . T)) +(((|#1| (-968)) . T)) +(((#0=(-867 |#1|) $) |has| #0# (-286 #0# #0#))) +((((-564) |#4|) . T)) +((((-564) |#3|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) -(|has| |#1| (-1144)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -(|has| (-1243 |#1| |#2| |#3| |#4|) (-145)) -(|has| (-1243 |#1| |#2| |#3| |#4|) (-147)) +(|has| |#1| (-1145)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +(|has| (-1245 |#1| |#2| |#3| |#4|) (-145)) +(|has| (-1245 |#1| |#2| |#3| |#4|) (-147)) (|has| |#1| (-145)) (|has| |#1| (-147)) (((|#1|) |has| |#1| (-172))) -((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) -(|has| |#1| (-1093)) -((((-1151) |#1|) . T)) +((((-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) +(|has| |#1| (-1094)) +((((-1152) |#1|) . T)) (((|#2|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) -((((-1118 |#1| (-1169))) . T) (((-563)) . T) (((-814 (-1169))) . T) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-1169)) . T)) +(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) +((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-815 (-1170))) . T) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-1170)) . T)) (|has| |#2| (-368)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((($) . T) ((|#1|) . T)) -(((|#2|) |has| |#2| (-1045))) -((((-858)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) #0#) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) +(((|#2|) |has| |#2| (-1046))) +((((-859)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) #0#) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) (((|#1|) . T)) -((((-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694)))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((#0=(-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) #0#) |has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))))) -((((-858)) . T)) -((((-563) |#1|) . T)) -((((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536)))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379))))) (((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) +((((-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695)))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) #0#) |has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))))) +((((-859)) . T)) +((((-564) |#1|) . T)) +((((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))) (((-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379))))) (((-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) ((($) . T)) -((((-858)) . T)) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -((((-858)) . T)) +((((-859)) . T)) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((((-859)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-858)) . T)) -((((-858)) . T)) -(|has| (-1242 |#2| |#3| |#4|) (-147)) -(|has| (-1242 |#2| |#3| |#4|) (-145)) -(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-859)) . T)) +((((-859)) . T)) +(|has| (-1244 |#2| |#3| |#4|) (-147)) +(|has| (-1244 |#2| |#3| |#4|) (-145)) +(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#1|) . T)) -(|has| |#1| (-1093)) -((((-858)) . T)) +(|has| |#1| (-1094)) +((((-859)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) (((|#1|) . T)) -((((-563) |#1|) . T)) +((((-564) |#1|) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-844))) -((((-858)) |has| |#1| (-1093))) -(-2811 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-906 |#1|)) . T)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-845))) +((((-859)) |has| |#1| (-1094))) +(-4030 (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-907 |#1|)) . T)) ((((-407 |#2|) |#3|) . T)) -(|has| |#1| (-15 * (|#1| (-563) |#1|))) -((((-407 (-563))) . T) (($) . T)) -(|has| |#1| (-846)) +(|has| |#1| (-15 * (|#1| (-564) |#1|))) +((((-407 (-564))) . T) (($) . T)) +(|has| |#1| (-847)) (((|#1|) . T) (($) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-858)) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-859)) . T)) (((|#1|) . T)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) (|has| |#1| (-363)) -(-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))) -(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) +(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-363)) -((((-563)) . T)) -(|has| |#1| (-15 * (|#1| (-767) |#1|))) -((((-1135 |#2| (-407 (-948 |#1|)))) . T) (((-407 (-948 |#1|))) . T)) +((((-564)) . T)) +(|has| |#1| (-15 * (|#1| (-768) |#1|))) +((((-1136 |#2| (-407 (-949 |#1|)))) . T) (((-407 (-949 |#1|))) . T)) ((($) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) -(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) -(((|#1|) . T)) -((((-563) |#1|) . T)) -((((-858)) . T)) -(((|#2|) . T)) -(-2811 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) -((($) |has| |#1| (-555)) (((-563)) . T)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) -((((-1249 |#1| |#2| |#3|)) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172))) -((((-1253 |#2|)) . T) (((-1249 |#1| |#2| |#3|)) . T) (((-1221 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (((-563)) . T)) -(((|#1|) . T)) -((((-1169)) -12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) -(-2811 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) -(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-555)))) -((($ $) |has| |#1| (-555))) -(((#0=(-694) (-1165 #0#)) . T)) -((((-858)) . T) (((-1257 |#4|)) . T)) -((((-858)) . T) (((-1257 |#3|)) . T)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-555)))) -((($) |has| |#1| (-555))) -((((-858)) . T)) -((($) . T)) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((#1=(-1249 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) -(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) -(((|#3|) |has| |#3| (-1045))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(|has| |#1| (-1093)) -(((|#2| (-815 |#1|)) . T)) +(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) +(((|#1|) . T)) +((((-564) |#1|) . T)) +((((-859)) . T)) +(((|#2|) . T)) +(-4030 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) +((($) |has| |#1| (-556)) (((-564)) . T)) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) +((((-1251 |#1| |#2| |#3|)) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) +((((-1255 |#2|)) . T) (((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T)) +(((|#1|) . T)) +((((-1170)) -12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) +(-4030 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((($ $) |has| |#1| (-556))) +(((#0=(-695) (-1166 #0#)) . T)) +((((-859)) . T) (((-1259 |#4|)) . T)) +((((-859)) . T) (((-1259 |#3|)) . T)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((($) |has| |#1| (-556))) +((((-859)) . T)) +((($) . T)) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1251 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) +(((|#1|) . T) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +(((|#3|) |has| |#3| (-1046))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(|has| |#1| (-1094)) +(((|#2| (-816 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-363)) -((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T)) -(((#0=(-1075) |#2|) . T) ((#0# $) . T) (($ $) . T)) -((((-858)) . T)) -((((-906 |#1|)) . T)) +((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) +(((#0=(-1076) |#2|) . T) ((#0# $) . T) (($ $) . T)) +((((-859)) . T)) +((((-907 |#1|)) . T)) ((((-144)) . T)) ((((-144)) . T)) -(((|#3|) |has| |#3| (-1093)) (((-563)) -12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) -((((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) +((((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) (((|#1|) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) . T)) (|has| |#1| (-363)) -((((-1174)) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-844))) -((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(|has| |#2| (-816)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-844)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -((((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-536)) |has| |#1| (-611 (-536)))) +((((-1175)) . T)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-845))) +((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) +(|has| |#2| (-817)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-845)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +((((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-536)) |has| |#1| (-612 (-536)))) (((|#1| |#2|) . T)) -((((-1169)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) -((((-1151) |#1|) . T)) +((((-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) +((((-1152) |#1|) . T)) (((|#1| |#2| |#3| (-531 |#3|)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -((((-858)) . T)) +((((-859)) . T)) (((|#1|) . T)) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (|has| |#1| (-368)) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((((-563)) . T)) -((((-563)) . T)) -(((|#1|) . T) (((-563)) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -((((-858)) . T)) -((((-858)) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) -((((-1169) #0=(-866 |#1|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) -(((|#1|) . T)) -((((-563) |#4|) . T)) -((((-563) |#3|) . T)) -(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -((((-1243 |#1| |#2| |#3| |#4|)) . T)) -((((-407 (-563))) . T) (((-563)) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-564)) . T)) +((((-564)) . T)) +(((|#1|) . T) (((-564)) . T)) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +((((-859)) . T)) +((((-859)) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1046))) +((((-1170) #0=(-867 |#1|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) +(((|#1|) . T)) +((((-564) |#4|) . T)) +((((-564) |#3|) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +((((-1245 |#1| |#2| |#3| |#4|)) . T)) +((((-407 (-564))) . T) (((-564)) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) (((|#1| |#1|) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) (((|#1|) . T)) -((($) . T) (((-563)) . T) (((-407 (-563))) . T)) -((((-563)) . T)) -((((-563)) . T)) -((($) . T) (((-563)) . T) (((-407 (-563))) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -((((-563)) -2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) +((($) . T) (((-564)) . T) (((-407 (-564))) . T)) +((((-564)) . T)) +((((-564)) . T)) +((($) . T) (((-564)) . T) (((-407 (-564))) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +((((-564)) -4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) -(((|#1|) |has| |#1| (-555))) -((((-563) |#4|) . T)) -((((-563) |#3|) . T)) -((((-858)) . T)) -((((-563)) . T) (((-407 (-563))) . T) (($) . T)) -((((-858)) . T)) -((((-563) |#1|) . T)) +(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) +(((|#1|) |has| |#1| (-556))) +((((-564) |#4|) . T)) +((((-564) |#3|) . T)) +((((-859)) . T)) +((((-564)) . T) (((-407 (-564))) . T) (($) . T)) +((((-859)) . T)) +((((-564) |#1|) . T)) (((|#1|) . T)) -((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) +((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T)) ((($) . T)) -((($ $) . T) ((#0=(-1169) $) . T) ((#0# |#1|) . T)) +((($ $) . T) ((#0=(-1170) $) . T) ((#0# |#1|) . T)) (((|#2|) |has| |#2| (-172))) -((($) -2811 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-563))) |has| |#2| (-38 (-407 (-563))))) -(((|#2| |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) +((($) -4030 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) +(((|#2| |#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172))) ((((-144)) . T)) (((|#1|) . T)) (-12 (|has| |#1| (-368)) (|has| |#2| (-368))) -((((-858)) . T)) -(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) +((((-859)) . T)) +(((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172))) (((|#1|) . T)) -((((-858)) . T)) -(|has| |#1| (-1093)) +((((-859)) . T)) +(|has| |#1| (-1094)) (|has| $ (-147)) -((((-1174)) . T)) -((((-563) |#1|) . T)) -((($) -2811 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-1175)) . T)) +((((-564) |#1|) . T)) +((($) -4030 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (|has| |#1| (-363)) -(-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))) -(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) +(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-363)) -(|has| |#1| (-15 * (|#1| (-767) |#1|))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -((((-858)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -(((|#2| (-531 (-860 |#1|))) . T)) -((((-858)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((((-580 |#1|)) . T)) -((($) . T)) -((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) +(|has| |#1| (-15 * (|#1| (-768) |#1|))) +(((|#1|) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +((((-859)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(((|#2| (-531 (-861 |#1|))) . T)) +((((-859)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-581 |#1|)) . T)) +((($) . T)) +((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) (((|#1|) . T) (($) . T)) -((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) -((((-1167 |#1| |#2| |#3|)) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172))) -((((-1253 |#2|)) . T) (((-1167 |#1| |#2| |#3|)) . T) (((-1160 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) +((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) +((((-1168 |#1| |#2| |#3|)) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) +((((-1255 |#2|)) . T) (((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) (((|#4|) . T)) (((|#3|) . T)) -((((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (((-563)) . T)) -((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) -(((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-563)) . T) (((-407 (-563))) -2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) -((((-563) |#2|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) +((((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (((-564)) . T)) +((((-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) +(((|#1|) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-564)) . T) (((-407 (-564))) -4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T)) +((((-564) |#2|) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-555)))) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((#1=(-1167 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -((((-858)) . T)) -(((|#2|) |has| |#2| (-1045))) -(|has| |#1| (-1093)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-555)))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) -(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((#1=(-1168 |#1| |#2| |#3|) #1#) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((((-859)) . T)) +(((|#2|) |has| |#2| (-1046))) +(|has| |#1| (-1094)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) . T)) +(((|#1|) . T) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1|) |has| |#1| (-172)) (($) . T)) (((|#1|) . T)) -(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((((-858)) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-859)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) -(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +(((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) ((($) . T)) -(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) +(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((|#2|) |has| |#1| (-363))) -((((-563) |#1|) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-858)) . T)) +((((-564) |#1|) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-859)) . T)) ((((-407 |#2|) |#3|) . T)) -(((|#1| (-407 (-563))) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-407 (-563))) . T) (($) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -((((-858)) . T) (((-1174)) . T)) +(((|#1| (-407 (-564))) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-407 (-564))) . T) (($) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-859)) . T) (((-1175)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-1174)) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-407 (-563))) . T) (($) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-407 (-563))) . T) (($) . T)) -(((|#2| |#3| (-860 |#1|)) . T)) -((((-1169)) |has| |#2| (-896 (-1169)))) +((((-1175)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-407 (-564))) . T) (($) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-407 (-564))) . T) (($) . T)) +(((|#2| |#3| (-861 |#1|)) . T)) +((((-1170)) |has| |#2| (-897 (-1170)))) (((|#1|) . T)) (((|#1| (-531 |#2|) |#2|) . T)) -(((|#1| (-767) (-1075)) . T)) -((((-407 (-563))) |has| |#2| (-363)) (($) . T)) -(((|#1| (-531 (-1081 (-1169))) (-1081 (-1169))) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(((|#1|) . T)) -((((-995 |#1|)) . T) (((-563)) . T) ((|#1|) . T) (((-407 (-563))) -2811 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(|has| |#2| (-789)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) +(((|#1| (-768) (-1076)) . T)) +((((-407 (-564))) |has| |#2| (-363)) (($) . T)) +(((|#1| (-531 (-1082 (-1170))) (-1082 (-1170))) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(((|#1|) . T)) +((((-996 |#1|)) . T) (((-564)) . T) ((|#1|) . T) (((-407 (-564))) -4030 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(|has| |#2| (-790)) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -(|has| |#2| (-844)) -((((-889 |#1|)) . T) (((-815 |#1|)) . T)) -((((-815 (-1169))) . T)) +(|has| |#2| (-845)) +((((-890 |#1|)) . T) (((-816 |#1|)) . T)) +((((-816 (-1170))) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-640 (-563))) . T)) -((((-640 (-563))) . T) (((-858)) . T)) -((((-407 (-563))) . T) (((-858)) . T)) -((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-641 (-564))) . T)) +((((-641 (-564))) . T) (((-859)) . T)) +((((-407 (-564))) . T) (((-859)) . T)) +((((-536)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) (|has| |#1| (-233)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((($ $) . T)) (((|#1| |#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-1249 |#1| |#2| |#3|) $) -12 (|has| (-1249 |#1| |#2| |#3|) (-286 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-1251 |#1| |#2| |#3|) $) -12 (|has| (-1251 |#1| |#2| |#3|) (-286 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1|) . T)) -((((-1133 |#1| |#2|)) |has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|)))) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) -(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) +((((-1134 |#1| |#2|)) |has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|)))) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +(((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) (((|#1|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($) . T)) (((|#2|) . T)) (((|#3|) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) (((|#2|) . T)) -((((-858)) -2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T) (($) . T)) +((((-859)) -4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T) (($) . T)) (((|#1|) |has| |#1| (-172))) -((((-563)) . T)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-563) (-144)) . T)) -((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) -((((-563)) . T)) -(((|#1|) . T) ((|#2|) . T) (((-563)) . T)) -((($) |has| |#1| (-555)) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) -(((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) +((((-564)) . T)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-564) (-144)) . T)) +((($) -4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046)))) +((((-564)) . T)) +(((|#1|) . T) ((|#2|) . T) (((-564)) . T)) +((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) +(((|#1|) . T)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) (((|#2|) |has| |#1| (-363))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#1|) . T) (($ $) . T)) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-1174)) . T)) -(((|#1| (-531 #0=(-1169)) #0#) . T)) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-1175)) . T)) +(((|#1| (-531 #0=(-1170)) #0#) . T)) (((|#1|) . T) (($) . T)) (|has| |#4| (-172)) (|has| |#3| (-172)) -(((#0=(-407 (-948 |#1|)) #0#) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(|has| |#1| (-1093)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(|has| |#1| (-1093)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) +(((#0=(-407 (-949 |#1|)) #0#) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(|has| |#1| (-1094)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(|has| |#1| (-1094)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) (((|#1| |#1|) |has| |#1| (-172))) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) -((((-407 (-948 |#1|))) . T)) +((((-407 (-949 |#1|))) . T)) (((|#1|) |has| |#1| (-172))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((((-858)) . T)) -((((-1243 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1045)) (((-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-859)) . T)) +((((-1245 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1046)) (((-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((|#1| |#2|) . T)) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -(|has| |#3| (-789)) -(-2811 (|has| |#3| (-789)) (|has| |#3| (-844))) -(|has| |#3| (-844)) -(((|#1|) . T)) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) -(((|#2|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -(((|#1| (-1149 |#1|)) |has| |#1| (-844))) -((((-563) |#2|) . T)) -(|has| |#1| (-1093)) -(((|#1|) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-1144))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(|has| |#1| (-1093)) -(((|#2|) . T)) -((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563))))) -(((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-363)))) -(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)))) -((((-858)) . T)) -(((|#1|) . T)) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-905))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) -((($ $) . T) ((#0=(-1169) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-814 (-1169)) |#1|) . T) ((#1# $) . T)) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-905))) -((((-563) |#2|) . T)) -((((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((($) -2811 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045)))) -((((-563) |#1|) . T)) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +(|has| |#3| (-790)) +(-4030 (|has| |#3| (-790)) (|has| |#3| (-845))) +(|has| |#3| (-845)) +(((|#1|) . T)) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#2|) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) +(((|#2|) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +(((|#1| (-1150 |#1|)) |has| |#1| (-845))) +((((-564) |#2|) . T)) +(|has| |#1| (-1094)) +(((|#1|) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-1145))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(|has| |#1| (-1094)) +(((|#2|) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564))))) +(((|#4|) -4030 (|has| |#4| (-172)) (|has| |#4| (-363)))) +(((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)))) +((((-859)) . T)) +(((|#1|) . T)) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-906))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906))) +((($ $) . T) ((#0=(-1170) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-815 (-1170)) |#1|) . T) ((#1# $) . T)) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-906))) +((((-564) |#2|) . T)) +((((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((($) -4030 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) ((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046)))) +((((-564) |#1|) . T)) (|has| (-407 |#2|) (-147)) (|has| (-407 |#2|) (-145)) (((|#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|)))) -(|has| |#1| (-38 (-407 (-563)))) -(((|#1|) . T)) -(((|#2|) . T) (($) . T) (((-407 (-563))) . T)) -((((-858)) . T)) -(|has| |#1| (-555)) -(|has| |#1| (-555)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-858)) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -(|has| |#1| (-38 (-407 (-563)))) -((((-388) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#2| (-1144)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -((((-858)) . T) (((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-1207)) . T) (((-858)) . T) (((-1174)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(((|#1|) . T)) +(((|#2|) . T) (($) . T) (((-407 (-564))) . T)) +((((-859)) . T)) +(|has| |#1| (-556)) +(|has| |#1| (-556)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-859)) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +(|has| |#1| (-38 (-407 (-564)))) +((((-388) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#2| (-1145)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +((((-859)) . T) (((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-1208)) . T) (((-859)) . T) (((-1175)) . T)) ((((-116 |#1|)) . T)) -((((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -(((|#1|) . T)) -((((-388) (-1151)) . T)) -(|has| |#1| (-555)) -((((-563) |#1|) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -(((|#2|) . T)) -((((-858)) . T)) -((((-815 |#1|)) . T)) +((((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +(((|#1|) . T)) +((((-388) (-1152)) . T)) +(|has| |#1| (-556)) +((((-564) |#1|) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +(((|#2|) . T)) +((((-859)) . T)) +((((-816 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) -((((-1169) (-52)) . T)) +((((-1170) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-555)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-556)) (((|#1|) |has| |#1| (-172))) -((((-640 |#1|)) . T)) -((((-858)) . T)) -((((-536)) |has| |#1| (-611 (-536)))) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) +((((-641 |#1|)) . T)) +((((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536)))) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) (((|#2|) |has| |#2| (-309 |#2|))) -(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) +(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) (((|#1|) . T)) -(((|#1| (-1165 |#1|)) . T)) +(((|#1| (-1166 |#1|)) . T)) (|has| $ (-147)) (((|#2|) . T)) -(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) -((($) . T) (((-563)) . T) (((-407 (-563))) . T)) +(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +((($) . T) (((-564)) . T) (((-407 (-564))) . T)) (|has| |#2| (-368)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -((((-563)) . T) (((-407 (-563))) . T) (($) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +((((-564)) . T) (((-407 (-564))) . T) (($) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-563)) . T) (((-407 (-563))) . T) (($) . T)) -((((-1167 |#1| |#2| |#3|) $) -12 (|has| (-1167 |#1| |#2| |#3|) (-286 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((($) . T) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-564)) . T) (((-407 (-564))) . T) (($) . T)) +((((-1168 |#1| |#2| |#3|) $) -12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))) (($ $) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((($) . T) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) ((($ $) . T)) -((((-858)) . T)) +((((-859)) . T)) ((($ $) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((#0=(-1249 |#1| |#2| |#3|) #0#) -12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1169) #0#) -12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -(-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((#0=(-1251 |#1| |#2| |#3|) #0#) -12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1170) #0#) -12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) +(-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-407 (-563))) . T) (((-563)) . T)) -((((-563) (-144)) . T)) +((($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-407 (-564))) . T) (((-564)) . T)) +((((-564) (-144)) . T)) ((((-144)) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) ((((-112)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-112)) . T)) (((|#1|) . T)) -((((-536)) |has| |#1| (-611 (-536))) (((-225)) . #0=(|has| |#1| (-1018))) (((-379)) . #0#)) -((((-858)) . T)) -((((-1174)) . T)) -(|has| |#1| (-816)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(|has| |#1| (-846)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-555))) -(|has| |#1| (-555)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T)) -(|has| |#1| (-905)) -(((|#1|) . T)) -(|has| |#1| (-1093)) -((((-858)) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-555))) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -(((|#1| (-1257 |#1|) (-1257 |#1|)) . T)) -((((-563) (-144)) . T)) -((($) . T)) -(-2811 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -((((-1174)) . T) (((-858)) . T)) -((((-1174)) . T)) -((((-858)) . T)) -(|has| |#1| (-1093)) -(((|#1| (-967)) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-225)) . #0=(|has| |#1| (-1019))) (((-379)) . #0#)) +((((-859)) . T)) +((((-1175)) . T)) +(|has| |#1| (-817)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(|has| |#1| (-847)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-556))) +(|has| |#1| (-556)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) +(|has| |#1| (-906)) +(((|#1|) . T)) +(|has| |#1| (-1094)) +((((-859)) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-556))) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +(((|#1| (-1259 |#1|) (-1259 |#1|)) . T)) +((((-564) (-144)) . T)) +((($) . T)) +(-4030 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046))) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +((((-1175)) . T) (((-859)) . T)) +((((-1175)) . T)) +((((-859)) . T)) +(|has| |#1| (-1094)) +(((|#1| (-968)) . T)) (((|#1| |#1|) . T)) ((($) . T)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(-2811 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-4030 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) (((|#1|) . T)) -(|has| |#2| (-789)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) +(|has| |#2| (-790)) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(|has| |#2| (-844)) -(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) -(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(|has| |#2| (-845)) +(-12 (|has| |#1| (-790)) (|has| |#2| (-790))) +(-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (((|#1| |#2|) . T)) -(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-563)) . T)) +(((|#1|) |has| |#1| (-172)) ((|#4|) . T) (((-564)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -((((-858)) . T)) +((((-859)) . T)) (|has| |#1| (-349)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-407 (-563))) . T) (($) . T)) -((($) |has| |#1| (-555)) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T)) -((($) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) . T)) -(|has| |#1| (-824)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) -(|has| |#1| (-1093)) +((((-407 (-564))) . T) (($) . T)) +((($) |has| |#1| (-556)) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T)) +((($) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) +(|has| |#1| (-825)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +(|has| |#1| (-1094)) (((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) -((($) |has| |#1| (-555))) -(((|#4|) |has| |#4| (-1093))) -(((|#3|) |has| |#3| (-1093))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) +((($) |has| |#1| (-556))) +(((|#4|) |has| |#4| (-1094))) +(((|#3|) |has| |#3| (-1094))) (|has| |#3| (-368)) -(((|#1|) . T) (((-858)) . T)) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) . T) (((-859)) . T)) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) +((((-859)) . T)) +((((-859)) . T)) (((|#1| |#2|) . T)) (((|#2|) . T)) -(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1| |#1|) |has| |#1| (-172))) (|has| |#2| (-363)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -((((-407 (-563))) . T) (((-563)) . T)) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-555))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +((((-407 (-564))) . T) (((-564)) . T)) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-556))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) ((((-144)) . T)) (((|#1|) . T)) -((($) -2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045)))) +((($) -4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046)))) ((((-144)) . T)) ((((-144)) . T)) -((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#) ((|#2|) . T) (((-563)) . T)) +((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#) ((|#2|) . T) (((-564)) . T)) (((|#1| |#2| |#3|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) (|has| $ (-147)) (|has| $ (-147)) -((((-1174)) . T)) -(|has| |#1| (-1093)) -((((-858)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-555)) (|has| |#1| (-1045)) (|has| |#1| (-1105))) +((((-1175)) . T)) +(|has| |#1| (-1094)) +((((-859)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1046)) (|has| |#1| (-1106))) ((($ $) |has| |#1| (-286 $ $)) ((|#1| $) |has| |#1| (-286 |#1| |#1|))) -(((|#1| (-407 (-563))) . T)) -(((|#1|) . T)) -((((-1169)) . T)) -(|has| |#1| (-555)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(|has| |#1| (-555)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -((((-858)) . T)) +(((|#1| (-407 (-564))) . T)) +(((|#1|) . T)) +((((-1170)) . T)) +(|has| |#1| (-556)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(|has| |#1| (-556)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-859)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (((|#2|) . T) (($) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -(|has| |#4| (-844)) -(((|#2| (-240 (-1708 |#1|) (-767)) (-860 |#1|)) . T)) -(|has| |#3| (-844)) +(|has| |#4| (-845)) +(((|#2| (-240 (-2641 |#1|) (-768)) (-861 |#1|)) . T)) +(|has| |#3| (-845)) (((|#1| (-531 |#3|) |#3|) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -(((#0=(-407 (-563)) #0#) |has| |#2| (-363)) (($ $) . T)) -((((-866 |#1|)) . T)) +(((#0=(-407 (-564)) #0#) |has| |#2| (-363)) (($ $) . T)) +((((-867 |#1|)) . T)) (|has| |#1| (-147)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -((((-858)) . T)) +((((-859)) . T)) (|has| |#1| (-145)) -((((-407 (-563))) |has| |#2| (-363)) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -(-2811 (|has| |#1| (-349)) (|has| |#1| (-368))) -((((-1135 |#2| |#1|)) . T) ((|#1|) . T)) +((((-407 (-564))) |has| |#2| (-363)) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-4030 (|has| |#1| (-349)) (|has| |#1| (-368))) +((((-1136 |#2| |#1|)) . T) ((|#1|) . T)) (|has| |#2| (-172)) (((|#1| |#2|) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) -(((|#2|) . T) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(-2811 (|has| |#3| (-789)) (|has| |#3| (-844))) -(-2811 (|has| |#3| (-789)) (|has| |#3| (-844))) -((((-858)) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1046))) +(((|#2|) . T) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(-4030 (|has| |#3| (-790)) (|has| |#3| (-845))) +(-4030 (|has| |#3| (-790)) (|has| |#3| (-845))) +((((-859)) . T)) (((|#1|) . T)) (((|#2|) . T) (($) . T)) -((((-694)) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(|has| |#1| (-555)) +((((-695)) . T)) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(|has| |#1| (-556)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -999,335 +999,335 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1169) (-52)) . T)) +((((-1170) (-52)) . T)) (((|#1|) . T) (($) . T)) -((((-1000 10)) . T) (((-407 (-563))) . T) (((-858)) . T)) -((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) -(((|#1|) . T)) -((((-1000 16)) . T) (((-407 (-563))) . T) (((-858)) . T)) -((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) -(((|#1| (-563)) . T)) -((((-858)) . T)) -((((-858)) . T)) +((((-1001 10)) . T) (((-407 (-564))) . T) (((-859)) . T)) +((((-536)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +(((|#1|) . T)) +((((-1001 16)) . T) (((-407 (-564))) . T) (((-859)) . T)) +((((-536)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +(((|#1| (-564)) . T)) +((((-859)) . T)) +((((-859)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-407 (-563))) . T)) -(((|#3|) . T) (((-609 $)) . T)) +(((|#1| (-407 (-564))) . T)) +(((|#3|) . T) (((-610 $)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-563)) -2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-564)) -4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) ((($ $) . T) ((|#2| $) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -(((#0=(-1167 |#1| |#2| |#3|) #0#) -12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1169) #0#) -12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -((((-858)) . T)) -((((-858)) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +(((#0=(-1168 |#1| |#2| |#3|) #0#) -12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))) (((-1170) #0#) -12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) +((((-859)) . T)) +((((-859)) . T)) (((|#1| |#1|) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) |has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))))) -((((-858)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) |has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))))) +((((-859)) . T)) (((|#1|) . T)) (((|#3| |#3|) . T)) (((|#1|) . T)) ((($) . T) ((|#2|) . T)) -((((-1169) (-52)) . T)) +((((-1170) (-52)) . T)) (((|#3|) . T)) -((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) -(|has| |#1| (-824)) -(|has| |#1| (-1093)) -(((|#2| |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) -(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)))) -((((-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T) ((|#1| |#2|) . T)) -(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) -((((-1174)) . T)) -((((-767)) . T)) -(|has| |#1| (-555)) -((((-563)) . T)) -((((-858)) . T)) -(((|#1| (-407 (-563)) (-1075)) . T)) +((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T)) +(|has| |#1| (-825)) +(|has| |#1| (-1094)) +(((|#2| |#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172))) +(((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)))) +((((-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T) ((|#1| |#2|) . T)) +(((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172))) +((((-1175)) . T)) +((((-768)) . T)) +(|has| |#1| (-556)) +((((-564)) . T)) +((((-859)) . T)) +(((|#1| (-407 (-564)) (-1076)) . T)) (|has| |#1| (-145)) (((|#1|) . T)) -(|has| |#1| (-555)) -((((-563)) . T)) +(|has| |#1| (-556)) +((((-564)) . T)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-147)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-555))) -((((-888 (-563))) . T) (((-888 (-379))) . T) (((-536)) . T) (((-1169)) . T)) -((((-858)) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((($) . T)) -((((-858)) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-556))) +((((-889 (-564))) . T) (((-889 (-379))) . T) (((-536)) . T) (((-1170)) . T)) +((((-859)) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((($) . T)) +((((-859)) . T)) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((|#2|) |has| |#2| (-172))) -((($) -2811 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) ((|#2|) |has| |#2| (-172)) (((-407 (-563))) |has| |#2| (-38 (-407 (-563))))) -((((-866 |#1|)) . T)) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) -(-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) -(|has| |#2| (-1144)) -(((#0=(-52)) . T) (((-2 (|:| -3320 (-1169)) (|:| -3704 #0#))) . T)) +((($) -4030 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) ((|#2|) |has| |#2| (-172)) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) +((((-867 |#1|)) . T)) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) +(-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) +(|has| |#2| (-1145)) +(((#0=(-52)) . T) (((-2 (|:| -1327 (-1170)) (|:| -2423 #0#))) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -(((|#1| (-563) (-1075)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1| (-407 (-563)) (-1075)) . T)) -((($) -2811 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-563) |#2|) . T)) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +(((|#1| (-564) (-1076)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1| (-407 (-564)) (-1076)) . T)) +((($) -4030 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-564) |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#2| (-368)) (-12 (|has| |#1| (-368)) (|has| |#2| (-368))) -((((-858)) . T)) -((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) -(((|#1|) . T)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((((-859)) . T)) +((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) +(((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#4|) . T)) (|has| |#1| (-349)) -((((-563)) -2811 (|has| |#3| (-172)) (|has| |#3| (-844)) (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) +((((-564)) -4030 (|has| |#3| (-172)) (|has| |#3| (-845)) (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046))) ((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (((|#1|) . T)) -(((|#4|) . T) (((-858)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) #0#) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) -(|has| |#1| (-555)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-858)) . T)) +(((|#4|) . T) (((-859)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) #0#) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) +(|has| |#1| (-556)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-859)) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-905))) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-905))) -((((-407 (-563))) . T) (((-563)) . T)) -((((-563)) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((($) . T)) -((((-858)) . T)) -(((|#1|) . T)) -((((-866 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -((((-858)) . T)) -(((|#3| |#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($ $) |has| |#3| (-172))) -(|has| |#1| (-1018)) -((((-858)) . T)) -(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045))) (($) |has| |#3| (-172))) -((((-563) (-112)) . T)) -((((-1174)) . T)) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-906))) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-906))) +((((-407 (-564))) . T) (((-564)) . T)) +((((-564)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((($) . T)) +((((-859)) . T)) +(((|#1|) . T)) +((((-867 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-859)) . T)) +(((|#3| |#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($ $) |has| |#3| (-172))) +(|has| |#1| (-1019)) +((((-859)) . T)) +(((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046))) (($) |has| |#3| (-172))) +((((-564) (-112)) . T)) +((((-1175)) . T)) (((|#1|) |has| |#1| (-309 |#1|))) -((((-1174)) . T)) +((((-1175)) . T)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -((((-1169) $) |has| |#1| (-514 (-1169) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|))) -((((-1169)) |has| |#1| (-896 (-1169)))) -(-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349))) +((((-1170) $) |has| |#1| (-514 (-1170) $)) (($ $) |has| |#1| (-309 $)) ((|#1| |#1|) |has| |#1| (-309 |#1|)) (((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|))) +((((-1170)) |has| |#1| (-897 (-1170)))) +(-4030 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349))) (((|#1| |#4|) . T)) (((|#1| |#3|) . T)) ((((-388) |#1|) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-1093)) -(((|#2|) . T) (((-858)) . T)) -((((-858)) . T)) -(((|#2|) . T)) -((((-906 |#1|)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-1094)) +(((|#2|) . T) (((-859)) . T)) +((((-859)) . T)) +(((|#2|) . T)) +((((-907 |#1|)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) (((|#1| |#1|) . T)) -(((#0=(-866 |#1|)) |has| #0# (-309 #0#))) -((((-563)) . T) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1034 (-407 (-563))))) ((|#1|) . T)) +(((#0=(-867 |#1|)) |has| #0# (-309 #0#))) +((((-564)) . T) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-1035 (-407 (-564))))) ((|#1|) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) -(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) (((|#1|) . T)) -(-12 (|has| |#1| (-789)) (|has| |#2| (-789))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-12 (|has| |#1| (-790)) (|has| |#2| (-790))) +(-12 (|has| |#1| (-790)) (|has| |#2| (-790))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) (((|#2|) . T) (($) . T)) -(((|#2|) . T) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(|has| |#1| (-1193)) -(((#0=(-563) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) -((((-407 (-563))) . T) (($) . T)) -(((|#4|) |has| |#4| (-1045))) -(((|#3|) |has| |#3| (-1045))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(((|#2|) . T) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(|has| |#1| (-1194)) +(((#0=(-564) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +((((-407 (-564))) . T) (($) . T)) +(((|#4|) |has| |#4| (-1046))) +(((|#3|) |has| |#3| (-1046))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (|has| |#1| (-363)) -((((-563)) . T) (((-407 (-563))) . T) (($) . T)) -((($ $) . T) ((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) -((((-858)) . T)) -((((-858)) . T)) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-563) |#3|) . T)) -((((-858)) . T)) -((((-536)) |has| |#3| (-611 (-536)))) -((((-684 |#3|)) . T) (((-858)) . T)) +((((-564)) . T) (((-407 (-564))) . T) (($) . T)) +((($ $) . T) ((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1| |#1|) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) +((((-859)) . T)) +((((-859)) . T)) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-564) |#3|) . T)) +((((-859)) . T)) +((((-536)) |has| |#3| (-612 (-536)))) +((((-685 |#3|)) . T) (((-859)) . T)) (((|#1| |#2|) . T)) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -((($) . T) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-555))) -((($) . T)) -(((#0=(-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) #0#) |has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))))) -(|has| |#2| (-846)) -((($) . T)) -(((|#2|) |has| |#2| (-1093))) -((((-858)) -2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T)) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -((((-1151) (-52)) . T)) -(|has| |#1| (-846)) -((((-858)) . T)) -((((-563)) |has| #0=(-407 |#2|) (-636 (-563))) ((#0#) . T)) -((($) . T) (((-563)) . T)) -((((-563) (-144)) . T)) -((((-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T) ((|#1| |#2|) . T)) -((((-407 (-563))) . T) (($) . T)) -(((|#1|) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-858)) . T)) -((((-906 |#1|)) . T)) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +((($) . T) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-556))) +((($) . T)) +(((#0=(-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) #0#) |has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))))) +(|has| |#2| (-847)) +((($) . T)) +(((|#2|) |has| |#2| (-1094))) +((((-859)) -4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) +(|has| |#1| (-847)) +(|has| |#1| (-847)) +((((-1152) (-52)) . T)) +(|has| |#1| (-847)) +((((-859)) . T)) +((((-564)) |has| #0=(-407 |#2|) (-637 (-564))) ((#0#) . T)) +((($) . T) (((-564)) . T)) +((((-564) (-144)) . T)) +((((-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T) ((|#1| |#2|) . T)) +((((-407 (-564))) . T) (($) . T)) +(((|#1|) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-859)) . T)) +((((-907 |#1|)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| |#1| (-363)) -(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) -(|has| |#1| (-844)) +(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) +(|has| |#1| (-845)) (|has| |#1| (-363)) -(|has| |#1| (-844)) +(|has| |#1| (-845)) (((|#1|) . T) (($) . T)) -(|has| |#1| (-844)) -((((-1169)) |has| |#1| (-896 (-1169)))) +(|has| |#1| (-845)) +((((-1170)) |has| |#1| (-897 (-1170)))) ((((-506)) . T)) -(((|#1| (-1169)) . T)) -(((|#1| (-1257 |#1|) (-1257 |#1|)) . T)) -((((-858)) . T) (((-1174)) . T)) +(((|#1| (-1170)) . T)) +(((|#1| (-1259 |#1|) (-1259 |#1|)) . T)) +((((-859)) . T) (((-1175)) . T)) (((|#1| |#2|) . T)) ((($ $) . T)) -((((-1174)) . T)) -(|has| |#1| (-1093)) -(((|#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) . T)) -((((-407 (-948 |#1|))) . T)) +((((-1175)) . T)) +(|has| |#1| (-1094)) +(((|#1| (-1170) (-815 (-1170)) (-531 (-815 (-1170)))) . T)) +((((-407 (-949 |#1|))) . T)) ((((-536)) . T)) -((((-858)) . T)) +((((-859)) . T)) ((($) . T)) (((|#2|) . T) (($) . T)) -((((-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T) ((|#1| |#2|) . T)) +((((-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#3|) . T)) (((|#1|) |has| |#1| (-172))) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905)))) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906)))) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-536)) |has| |#1| (-611 (-536))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563))))) -((((-858)) . T)) -(((|#2|) . T) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564))))) +((((-859)) . T)) +(((|#2|) . T) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) ((((-506)) . T)) -(|has| |#2| (-844)) +(|has| |#2| (-845)) ((((-506)) . T)) -(-12 (|has| |#2| (-233)) (|has| |#2| (-1045))) -(|has| |#1| (-555)) -((((-1151) |#1|) . T)) -(|has| |#1| (-1144)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -((((-954 |#1|)) . T)) -(((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1| |#1|) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-563))) (((-563)) |has| |#1| (-1034 (-563))) (((-1169)) |has| |#1| (-1034 (-1169))) ((|#1|) . T)) -((((-563) |#2|) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) -((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379)))) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1|) . T)) -(((|#1|) . T)) -((((-640 |#4|)) . T) (((-858)) . T)) -((((-536)) |has| |#4| (-611 (-536)))) -((((-536)) |has| |#4| (-611 (-536)))) -((((-858)) . T) (((-640 |#4|)) . T)) -((($) |has| |#1| (-844))) -((((-563)) -2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045))) ((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) -(((|#1|) . T)) -((((-640 |#4|)) . T) (((-858)) . T)) -((((-536)) |has| |#4| (-611 (-536)))) -(((|#1|) . T)) -(((|#2|) . T)) -((((-1169)) |has| (-407 |#2|) (-896 (-1169)))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) #0#) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) -((($) . T)) -((($) . T)) -(((|#2|) . T)) -((((-858)) -2811 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-610 (-858))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093))) (((-1257 |#3|)) . T)) -((((-563) |#2|) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(((|#2| |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($ $) |has| |#2| (-172))) -(((|#2|) . T) (((-563)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T) ((|#2|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-1151) (-1169) (-563) (-225) (-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -((((-858)) . T)) -((((-563) (-112)) . T)) -(((|#1|) . T)) -((((-858)) . T)) +(-12 (|has| |#2| (-233)) (|has| |#2| (-1046))) +(|has| |#1| (-556)) +((((-1152) |#1|) . T)) +(|has| |#1| (-1145)) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +((((-955 |#1|)) . T)) +(((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-564))) (((-564)) |has| |#1| (-1035 (-564))) (((-1170)) |has| |#1| (-1035 (-1170))) ((|#1|) . T)) +((((-564) |#2|) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379)))) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) +(((|#1|) . T)) +((((-641 |#4|)) . T) (((-859)) . T)) +((((-536)) |has| |#4| (-612 (-536)))) +((((-536)) |has| |#4| (-612 (-536)))) +((((-859)) . T) (((-641 |#4|)) . T)) +((($) |has| |#1| (-845))) +((((-564)) -4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046))) ((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +(((|#1|) . T)) +((((-641 |#4|)) . T) (((-859)) . T)) +((((-536)) |has| |#4| (-612 (-536)))) +(((|#1|) . T)) +(((|#2|) . T)) +((((-1170)) |has| (-407 |#2|) (-897 (-1170)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) #0#) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) +((($) . T)) +((($) . T)) +(((|#2|) . T)) +((((-859)) -4030 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-611 (-859))) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094))) (((-1259 |#3|)) . T)) +((((-564) |#2|) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(((|#2| |#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($ $) |has| |#2| (-172))) +(((|#2|) . T) (((-564)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T) ((|#2|) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-1152) (-1170) (-564) (-225) (-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-859)) . T)) +((((-564) (-112)) . T)) +(((|#1|) . T)) +((((-859)) . T)) ((((-112)) . T)) ((((-112)) . T)) -((((-858)) . T)) -((((-858)) . T)) +((((-859)) . T)) +((((-859)) . T)) ((((-112)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -((((-858)) . T)) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1045))) (($) |has| |#2| (-172))) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-1046))) (($) |has| |#2| (-172))) (|has| $ (-147)) ((((-407 |#2|)) . T)) -((((-889 |#1|)) . T) ((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T)) -((((-407 (-563))) |has| #0=(-407 |#2|) (-1034 (-407 (-563)))) (((-563)) |has| #0# (-1034 (-563))) ((#0#) . T)) +((((-890 |#1|)) . T) ((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T)) +((((-407 (-564))) |has| #0=(-407 |#2|) (-1035 (-407 (-564)))) (((-564)) |has| #0# (-1035 (-564))) ((#0#) . T)) (((|#2| |#2|) . T)) (((|#4|) |has| |#4| (-172))) (|has| |#2| (-145)) @@ -1335,185 +1335,185 @@ (((|#3|) |has| |#3| (-172))) (|has| |#1| (-147)) (|has| |#1| (-145)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) (((|#1|) . T)) (|has| |#2| (-233)) (((|#2|) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-1169) (-52)) . T)) -((((-858)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-1170) (-52)) . T)) +((((-859)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) (((|#1| |#1|) . T)) -((((-1169)) |has| |#2| (-896 (-1169)))) +((((-1170)) |has| |#2| (-897 (-1170)))) ((((-129)) . T)) -((((-563) (-112)) . T)) -(|has| |#1| (-555)) -(((|#1|) . T) (((-563)) . T) (((-815 (-1169))) . T)) +((((-564) (-112)) . T)) +(|has| |#1| (-556)) +(((|#1|) . T) (((-564)) . T) (((-816 (-1170))) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) (((|#3|) . T)) -(|has| |#1| (-38 (-407 (-563)))) -((((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) -(((|#1|) . T)) -((((-1000 2)) . T) (((-407 (-563))) . T) (((-858)) . T)) -((((-536)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-995 |#1|)) . T) ((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-407 (-563))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T)) -(((|#1| (-1165 |#1|)) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +(|has| |#1| (-38 (-407 (-564)))) +((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +(((|#1|) . T)) +((((-1001 2)) . T) (((-407 (-564))) . T) (((-859)) . T)) +((((-536)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-996 |#1|)) . T) ((|#1|) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T) (($) . T)) +(((|#1| (-1166 |#1|)) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) (((|#3|) . T) (($) . T)) -(|has| |#1| (-846)) -(((|#2|) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -((((-563) |#2|) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(((|#2|) . T)) -((((-563) |#3|) . T)) -(((|#2|) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -((((-858)) . T)) -((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) -(|has| |#1| (-1093)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) #0#) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) +(|has| |#1| (-847)) +(((|#2|) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +((((-564) |#2|) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(((|#2|) . T)) +((((-564) |#3|) . T)) +(((|#2|) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-859)) . T)) +((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) +(|has| |#1| (-1094)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) #0#) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) (((|#2| |#2|) . T)) -(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-564)))) (((|#2|) . T)) (|has| |#2| (-363)) -(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) +(((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) (((|#1|) . T)) (((|#2|) . T)) -((((-1151) (-52)) . T)) +((((-1152) (-52)) . T)) (((|#2|) |has| |#2| (-172))) -((((-563) |#3|) . T)) -((((-563) (-144)) . T)) +((((-564) |#3|) . T)) +((((-564) (-144)) . T)) ((((-144)) . T)) -((((-858)) . T)) -((((-1174)) . T)) +((((-859)) . T)) +((((-1175)) . T)) ((((-112)) . T)) (|has| |#1| (-147)) (((|#1|) . T)) (|has| |#1| (-145)) ((($) . T)) -(|has| |#1| (-555)) +(|has| |#1| (-556)) ((($) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) -(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) ((((-144)) . T)) -((((-858)) . T)) -((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) -((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) -((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) -((((-1151) (-52)) . T)) +((((-859)) . T)) +((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) +((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) +((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) +((((-1152) (-52)) . T)) (((|#1|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#2|) . T)) -((((-563) (-144)) . T)) -(((#0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) #0#) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) -((($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(|has| |#1| (-846)) -(((|#2| (-767) (-1075)) . T)) +((((-564) (-144)) . T)) +(((#0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) #0#) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) +((($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(|has| |#1| (-847)) +(((|#2| (-768) (-1076)) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-555))) -(|has| |#1| (-787)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-556))) +(|has| |#1| (-788)) (((|#1|) |has| |#1| (-172))) (((|#4|) . T)) (((|#4|) . T)) (((|#1| |#2|) . T)) -(-2811 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147)))) -(-2811 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145)))) +(-4030 (|has| |#1| (-147)) (-12 (|has| |#1| (-363)) (|has| |#2| (-147)))) +(-4030 (|has| |#1| (-145)) (-12 (|has| |#1| (-363)) (|has| |#2| (-145)))) (((|#4|) . T)) (|has| |#1| (-145)) -((((-1151) |#1|) . T)) +((((-1152) |#1|) . T)) (|has| |#1| (-147)) (((|#1|) . T)) -((((-563)) . T)) -((((-858)) . T)) +((((-564)) . T)) +((((-859)) . T)) (((|#1| |#2|) . T)) -((((-858)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-859)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#3|) . T)) -((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-858)) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(((|#1|) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093))) (((-954 |#1|)) . T)) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-954 |#1|)) . T)) +((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-859)) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(((|#1|) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094))) (((-955 |#1|)) . T)) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-955 |#1|)) . T)) (|has| |#2| (-363)) (((|#1|) |has| |#1| (-172))) -(((|#2|) |has| |#2| (-1045))) -((((-1151) |#1|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) -(((|#2| (-889 |#1|)) . T)) -((($) . T)) -((((-388) (-1151)) . T)) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-858)) -2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-610 (-858))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) (((-1257 |#2|)) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3320 (-1151)) (|:| -3704 #0#))) . T)) -(((|#1|) . T)) -((((-858)) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +(((|#2|) |has| |#2| (-1046))) +((((-1152) |#1|) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) +(((|#2| (-890 |#1|)) . T)) +((($) . T)) +((((-388) (-1152)) . T)) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-859)) -4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-611 (-859))) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((-1259 |#2|)) . T)) +(((#0=(-52)) . T) (((-2 (|:| -1327 (-1152)) (|:| -2423 #0#))) . T)) +(((|#1|) . T)) +((((-859)) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) ((((-144)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (|has| |#1| (-473)) -(-2811 (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) +(-4030 (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) (|has| |#1| (-363)) -((((-858)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) -((($) |has| |#1| (-555))) -((((-1174)) . T)) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -((((-858)) . T)) -(((|#2|) . T)) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1249 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#2|) . T) (((-563)) . T) (((-815 |#1|)) . T)) +((((-859)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) +((($) |has| |#1| (-556))) +((((-1175)) . T)) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +((((-859)) . T)) +(((|#2|) . T)) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1251 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#2|) . T) (((-564)) . T) (((-816 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1169)) |has| |#1| (-896 (-1169)))) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -((((-858)) . T)) -((((-858)) . T)) -(|has| |#1| (-1093)) -(((|#2| (-482 (-1708 |#1|) (-767)) (-860 |#1|)) . T)) -((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#)) -(((|#1| (-531 (-1169)) (-1169)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) +((((-1170)) |has| |#1| (-897 (-1170)))) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-859)) . T)) +((((-859)) . T)) +(|has| |#1| (-1094)) +(((|#2| (-482 (-2641 |#1|) (-768)) (-861 |#1|)) . T)) +((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#)) +(((|#1| (-531 (-1170)) (-1170)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-859)) . T)) +((((-859)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#1|) . T)) @@ -1527,66 +1527,67 @@ (|has| |#1| (-147)) (((|#1|) . T)) (((|#2|) . T)) -(((|#1|) . T) (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) . T)) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-1169) (-52)) . T)) +(((|#1|) . T) (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) . T)) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-1170) (-52)) . T)) ((($ $) . T)) -(((|#1| (-563)) . T)) -((((-906 |#1|)) . T)) -(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045))) (($) -2811 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))) -(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -((((-563) |#2|) . T)) -((((-563)) . T)) -((((-1249 |#1| |#2| |#3|)) -12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -(|has| |#1| (-846)) -((((-684 |#2|)) . T) (((-858)) . T)) -((((-407 (-563))) . T) (((-563)) . T) (($) . T)) +(((|#1| (-564)) . T)) +((((-907 |#1|)) . T)) +(((|#1|) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046))) (($) -4030 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))) +(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +(|has| |#1| (-847)) +(|has| |#1| (-847)) +((((-564) |#2|) . T)) +((((-564)) . T)) +((((-859)) . T)) +((((-1251 |#1| |#2| |#3|)) -12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) +(|has| |#1| (-847)) +((((-685 |#2|)) . T) (((-859)) . T)) +((((-407 (-564))) . T) (((-564)) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-407 (-948 |#1|))) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +((((-407 (-949 |#1|))) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (((|#1|) |has| |#1| (-172))) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -(|has| |#2| (-846)) -(|has| |#1| (-846)) -(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)))) -(-2811 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-905))) -((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -((((-563) |#2|) . T)) -(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)))) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +(|has| |#2| (-847)) +(|has| |#1| (-847)) +(((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)))) +(-4030 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-906))) +((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +((((-564) |#2|) . T)) +(((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)))) (|has| |#1| (-349)) -(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) -(((|#2|) . T) (((-563)) . T)) -((($) . T) (((-407 (-563))) . T)) -((((-563) (-112)) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -(((|#1|) . T)) -(-2811 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -(|has| |#1| (-38 (-407 (-563)))) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-38 (-407 (-563)))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T)) -(((|#1|) . T)) -(|has| |#1| (-844)) -(((#0=(-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) #0#) |has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(|has| |#1| (-1093)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) +(((|#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) +(((|#2|) . T) (((-564)) . T)) +((($) . T) (((-407 (-564))) . T)) +((((-564) (-112)) . T)) +(|has| |#1| (-817)) +(|has| |#1| (-817)) +(((|#1|) . T)) +(-4030 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(|has| |#1| (-38 (-407 (-564)))) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-38 (-407 (-564)))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-1170)) |has| |#1| (-897 (-1170))) (((-1076)) . T)) +(((|#1|) . T)) +(|has| |#1| (-845)) +(((#0=(-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) #0#) |has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(|has| |#1| (-1094)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) (((|#1|) . T)) (((|#2| |#2|) . T)) (((|#1|) . T)) @@ -1596,16 +1597,16 @@ (((|#2|) . T)) (((|#1|) . T)) (((|#1| (-531 |#2|) |#2|) . T)) -((((-858)) . T)) -((((-144)) . T) (((-858)) . T)) -(((|#1| (-767) (-1075)) . T)) +((((-859)) . T)) +((((-144)) . T) (((-859)) . T)) +(((|#1| (-768) (-1076)) . T)) (((|#3|) . T)) ((((-144)) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) -2811 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))) ((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) -4030 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))) ((|#1|) . T)) (((|#1|) . T)) ((((-144)) . T)) (((|#2|) |has| |#2| (-172))) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) (((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) @@ -1614,452 +1615,452 @@ (((|#3|) |has| |#3| (-363))) (((|#1|) . T)) (((|#2|) |has| |#1| (-363))) -((((-858)) . T)) +((((-859)) . T)) (((|#2|) . T)) -(((|#1| (-1165 |#1|)) . T)) -((((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -((($) . T) ((|#1|) . T) (((-407 (-563))) . T)) +(((|#1| (-1166 |#1|)) . T)) +((((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((($) . T) ((|#1|) . T) (((-407 (-564))) . T)) (((|#2|) . T)) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) -((($) |has| |#1| (-844))) -(|has| |#1| (-905)) -((((-1169)) . T)) -((((-858)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) +((($) |has| |#1| (-845))) +(|has| |#1| (-906)) +((((-1170)) . T)) +((((-859)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((#0=(-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) #0#) |has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))))) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-905))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-905))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((#0=(-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) #0#) |has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))))) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-906))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-906))) (((|#1|) . T) (($) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)))) -(|has| |#1| (-846)) -(|has| |#1| (-555)) -((((-580 |#1|)) . T)) +(((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)))) +(|has| |#1| (-847)) +(|has| |#1| (-556)) +((((-581 |#1|)) . T)) ((($) . T)) (((|#2|) . T)) -(-2811 (-12 (|has| |#1| (-363)) (|has| |#2| (-816))) (-12 (|has| |#1| (-363)) (|has| |#2| (-846)))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -((((-906 |#1|)) . T)) +(-4030 (-12 (|has| |#1| (-363)) (|has| |#2| (-817))) (-12 (|has| |#1| (-363)) (|has| |#2| (-847)))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +((((-907 |#1|)) . T)) (((|#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) . T)) (((|#1| |#4| |#5|) . T)) -(((|#1| (-767)) . T)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-1167 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) -(((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) . T)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) -((((-667 |#1|)) . T)) +(((|#1| (-768)) . T)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-1168 |#1| |#2| |#3|)) |has| |#1| (-363)) ((|#1|) |has| |#1| (-172))) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) . T)) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-668 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-858)) . T) (((-1174)) . T)) +((((-859)) . T) (((-1175)) . T)) ((((-536)) . T)) -((((-858)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-858)) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((((-1174)) . T)) -((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-563)) . T)) -(((|#3|) . T) (((-563)) . T) (((-609 $)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -(((|#2|) . T)) -(-2811 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) -(|has| |#1| (-1193)) -(|has| |#1| (-1193)) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) -(|has| |#1| (-1193)) -(|has| |#1| (-1193)) +((((-859)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-859)) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((((-1175)) . T)) +((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T) (((-564)) . T)) +(((|#3|) . T) (((-564)) . T) (((-610 $)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +(((|#2|) . T)) +(-4030 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +(|has| |#1| (-1194)) +(|has| |#1| (-1194)) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) +(|has| |#1| (-1194)) +(|has| |#1| (-1194)) (((|#3| |#3|) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -((($ $) . T) ((#0=(-407 (-563)) #0#) . T) ((#1=(-407 |#1|) #1#) . T) ((|#1| |#1|) . T)) -((($) . T) (((-407 (-563))) . T) (((-407 |#1|)) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +((($ $) . T) ((#0=(-407 (-564)) #0#) . T) ((#1=(-407 |#1|) #1#) . T) ((|#1| |#1|) . T)) +((($) . T) (((-407 (-564))) . T) (((-407 |#1|)) . T) ((|#1|) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) (((|#3|) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -((((-1151) (-52)) . T)) -(|has| |#1| (-1093)) -(-2811 (|has| |#2| (-816)) (|has| |#2| (-846))) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +((((-1152) (-52)) . T)) +(|has| |#1| (-1094)) +(-4030 (|has| |#2| (-817)) (|has| |#2| (-847))) (((|#1|) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((($) . T)) -((((-1167 |#1| |#2| |#3|)) -12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) -((((-858)) . T)) -((((-563)) . T) (($) . T)) -((((-767)) . T)) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-858)) . T)) -((($) . T) (((-563)) . T)) -((($) . T)) -(|has| |#2| (-905)) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((($) . T)) +((((-1168 |#1| |#2| |#3|)) -12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) +((((-859)) . T)) +((((-564)) . T) (($) . T)) +((((-768)) . T)) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-859)) . T)) +((($) . T) (((-564)) . T)) +((($) . T)) +(|has| |#2| (-906)) (|has| |#1| (-363)) -(((|#2|) |has| |#2| (-1093))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((((-536)) . T) (((-407 (-1165 (-563)))) . T) (((-225)) . T) (((-379)) . T)) -((((-379)) . T) (((-225)) . T) (((-858)) . T)) -(|has| |#1| (-905)) -(|has| |#1| (-905)) -(|has| |#1| (-905)) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-905))) +(((|#2|) |has| |#2| (-1094))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-536)) . T) (((-407 (-1166 (-564)))) . T) (((-225)) . T) (((-379)) . T)) +((((-379)) . T) (((-225)) . T) (((-859)) . T)) +(|has| |#1| (-906)) +(|has| |#1| (-906)) +(|has| |#1| (-906)) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-906))) ((($) . T) ((|#2|) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) -((((-858)) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906))) +((((-859)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) ((($ $) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) ((($ $) . T)) -((((-563) (-112)) . T)) +((((-564) (-112)) . T)) ((($) . T)) (((|#1|) . T)) -((((-563)) . T)) +((((-564)) . T)) ((((-112)) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) -(|has| |#1| (-38 (-407 (-563)))) -(((|#1| (-563)) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) +(|has| |#1| (-38 (-407 (-564)))) +(((|#1| (-564)) . T)) ((($) . T)) -(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) -((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) +(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) +((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) (((|#1|) . T)) -((((-563)) . T)) +((((-564)) . T)) (((|#1| |#2|) . T)) -((((-1169)) |has| |#1| (-1045))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) +((((-1170)) |has| |#1| (-1046))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) (((|#1|) . T)) -((((-858)) . T)) -(((|#1| (-563)) . T)) -(((|#1| (-1249 |#1| |#2| |#3|)) . T)) +((((-859)) . T)) +(((|#1| (-564)) . T)) +(((|#1| (-1251 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) -(((|#1| (-407 (-563))) . T)) -(((|#1| (-1221 |#1| |#2| |#3|)) . T)) -(((|#1| (-767)) . T)) +(((|#1| (-407 (-564))) . T)) +(((|#1| (-1223 |#1| |#2| |#3|)) . T)) +(((|#1| (-768)) . T)) (((|#1|) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-858)) . T)) -(|has| |#1| (-1093)) -((((-1151) |#1|) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-859)) . T)) +(|has| |#1| (-1094)) +((((-1152) |#1|) . T)) ((($) . T)) (|has| |#2| (-147)) (|has| |#2| (-145)) -(((|#1| (-531 (-814 (-1169))) (-814 (-1169))) . T)) -((((-858)) . T)) -((((-1243 |#1| |#2| |#3| |#4|)) . T)) -((((-1243 |#1| |#2| |#3| |#4|)) . T)) -(((|#1|) |has| |#1| (-1045))) -((((-563) (-112)) . T)) -((((-858)) |has| |#1| (-1093))) +(((|#1| (-531 (-815 (-1170))) (-815 (-1170))) . T)) +((((-859)) . T)) +((((-1245 |#1| |#2| |#3| |#4|)) . T)) +((((-1245 |#1| |#2| |#3| |#4|)) . T)) +(((|#1|) |has| |#1| (-1046))) +((((-564) (-112)) . T)) +((((-859)) |has| |#1| (-1094))) (|has| |#2| (-172)) -((((-563)) . T)) -(|has| |#2| (-844)) +((((-564)) . T)) +(|has| |#2| (-845)) (((|#1|) . T)) -((((-563)) . T)) -((((-858)) . T)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-349))) +((((-564)) . T)) +((((-859)) . T)) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-349))) (|has| |#1| (-147)) -((((-858)) . T)) +((((-859)) . T)) (((|#3|) . T)) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -((((-858)) . T)) -((((-1242 |#2| |#3| |#4|)) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T)) -((((-858)) . T)) -((((-48)) -12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (((-609 $)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) -2811 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-407 (-948 |#1|))) |has| |#1| (-555)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1169)) . T)) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +((((-859)) . T)) +((((-1244 |#2| |#3| |#4|)) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T)) +((((-859)) . T)) +((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (((-610 $)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) -4030 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-407 (-949 |#1|))) |has| |#1| (-556)) (((-949 |#1|)) |has| |#1| (-1046)) (((-1170)) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-767)) . T)) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +(((|#1| (-768)) . T)) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) (((|#1|) |has| |#1| (-309 |#1|))) -((((-1243 |#1| |#2| |#3| |#4|)) . T)) -((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379)))) +((((-1245 |#1| |#2| |#3| |#4|)) . T)) +((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379)))) (((|#1|) . T)) -(|has| |#1| (-555)) +(|has| |#1| (-556)) (((|#1|) . T)) -((((-858)) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) +((((-859)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) (((|#1|) |has| |#1| (-172))) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) -(((|#1|) . T)) -(((|#3|) |has| |#3| (-1093))) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -(((|#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-363)))) -((((-1242 |#2| |#3| |#4|)) . T)) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) +(((|#1|) . T)) +(((|#3|) |has| |#3| (-1094))) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(((|#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-363)))) +((((-1244 |#2| |#3| |#4|)) . T)) ((((-112)) . T)) -(|has| |#1| (-816)) -(|has| |#1| (-816)) -(((|#1| (-563) (-1075)) . T)) +(|has| |#1| (-817)) +(|has| |#1| (-817)) +(((|#1| (-564) (-1076)) . T)) ((($) |has| |#1| (-309 $)) ((|#1|) |has| |#1| (-309 |#1|))) -(|has| |#1| (-844)) -(|has| |#1| (-844)) -(((|#1| (-563) (-1075)) . T)) -(-2811 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(((|#1| (-407 (-563)) (-1075)) . T)) -(((|#1| (-767) (-1075)) . T)) -(|has| |#1| (-846)) -(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T)) +(|has| |#1| (-845)) +(|has| |#1| (-845)) +(((|#1| (-564) (-1076)) . T)) +(-4030 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(((|#1| (-407 (-564)) (-1076)) . T)) +(((|#1| (-768) (-1076)) . T)) +(|has| |#1| (-847)) +(((#0=(-907 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) (((|#2|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -(|has| |#1| (-1093)) -((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -(|has| |#1| (-1093)) -((((-563)) -2811 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)))) -(((|#1|) . T)) -(|has| |#1| (-1093)) -((((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-636 (-563)))) ((|#2|) |has| |#1| (-363))) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) -((((-684 (-339 (-2074) (-2074 (QUOTE X) (QUOTE HESS)) (-694)))) . T)) +(|has| |#1| (-1094)) +((((-907 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +(|has| |#1| (-1094)) +((((-564)) -4030 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)))) +(((|#1|) . T)) +(|has| |#1| (-1094)) +((((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((|#2|) |has| |#1| (-363))) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) +((((-685 (-339 (-3753) (-3753 (QUOTE X) (QUOTE HESS)) (-695)))) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -((((-858)) . T)) -(|has| |#3| (-844)) -((((-858)) . T)) -((((-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) -((((-858)) . T)) -(((|#1| |#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045)))) -(((|#1|) . T)) -((((-563)) . T)) -((((-563)) . T)) -(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1045)))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +((((-859)) . T)) +(|has| |#3| (-845)) +((((-859)) . T)) +((((-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) +((((-859)) . T)) +(((|#1| |#1|) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046)))) +(((|#1|) . T)) +((((-564)) . T)) +((((-564)) . T)) +(((|#1|) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-1046)))) (((|#2|) |has| |#2| (-363))) -((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-363))) -(|has| |#1| (-846)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(((|#2|) . T)) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) |has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-905))) -(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) -((((-858)) . T)) -((((-858)) . T)) -((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) -((((-858)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) +((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) +(|has| |#1| (-847)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(((|#2|) . T)) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) |has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-906))) +(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) +((((-859)) . T)) +((((-859)) . T)) +((((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-859)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) (|has| |#1| (-233)) (((|#1|) . T)) -(((|#1| (-563)) . T)) -(|has| |#1| (-844)) -(((|#1| (-1167 |#1| |#2| |#3|)) . T)) +(((|#1| (-564)) . T)) +(|has| |#1| (-845)) +(((|#1| (-1168 |#1| |#2| |#3|)) . T)) (((|#1| |#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-407 (-563))) . T)) -(((|#1| (-1160 |#1| |#2| |#3|)) . T)) -(((|#1| (-767)) . T)) -(((|#1|) . T)) +(((|#1| (-407 (-564))) . T)) +(((|#1| (-1161 |#1| |#2| |#3|)) . T)) +(((|#1| (-768)) . T)) (((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) +(((|#1|) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-563)) . T) ((|#1|) . T) (($) . T) (((-407 (-563))) . T) (((-1169)) |has| |#1| (-1034 (-1169)))) +((((-564)) . T) ((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#1| (-1035 (-1170)))) (((|#1| |#2|) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) -2811 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))) ((|#1|) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) -4030 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))) ((|#1|) . T)) ((((-144)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(((|#1|) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) . T) (($ $) . T)) -(((|#2|) . T) ((|#1|) . T) (((-563)) . T)) -((((-858)) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(((|#1|) . T)) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T)) +(((|#2|) . T) ((|#1|) . T) (((-564)) . T)) +((((-859)) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| (-407 |#2|) (-233)) -((((-640 |#1|)) . T)) -(|has| |#1| (-905)) -(((|#2|) |has| |#2| (-1045))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) +((((-641 |#1|)) . T)) +(|has| |#1| (-906)) +(((|#2|) |has| |#2| (-1046))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) (|has| |#1| (-363)) (((|#1|) |has| |#1| (-172))) (((|#1| |#1|) . T)) -((((-866 |#1|)) . T)) -((((-858)) . T)) +((((-867 |#1|)) . T)) +((((-859)) . T)) (((|#1|) . T)) -(((|#2|) |has| |#2| (-1093))) -(|has| |#2| (-846)) +(((|#2|) |has| |#2| (-1094))) +(|has| |#2| (-847)) (((|#1|) . T)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -((((-640 $)) . T) (((-1151)) . T) (((-1169)) . T) (((-563)) . T) (((-225)) . T) (((-858)) . T)) -((((-407 (-563))) . T) (((-563)) . T) (((-609 $)) . T)) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +((((-641 $)) . T) (((-1152)) . T) (((-1170)) . T) (((-564)) . T) (((-225)) . T) (((-859)) . T)) +((((-407 (-564))) . T) (((-564)) . T) (((-610 $)) . T)) (((|#1|) . T)) -((((-858)) . T)) +((((-859)) . T)) ((($) . T)) -(|has| |#1| (-846)) -((((-858)) . T)) +(|has| |#1| (-847)) +((((-859)) . T)) (((|#1| (-531 |#2|) |#2|) . T)) -(((|#1| (-563) (-1075)) . T)) -((((-906 |#1|)) . T)) -((((-858)) . T)) +(((|#1| (-564) (-1076)) . T)) +((((-907 |#1|)) . T)) +((((-859)) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(((|#1| (-407 (-563)) (-1075)) . T)) -(((|#1| (-767) (-1075)) . T)) -(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) -(((|#1|) . T) (((-563)) -2811 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))) (((-407 (-563))) . T)) -(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T)) +(((|#1| (-407 (-564)) (-1076)) . T)) +(((|#1| (-768) (-1076)) . T)) +(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +(((|#1|) . T) (((-564)) -4030 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))) (((-407 (-564))) . T)) +(((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) (|has| |#2| (-233)) -(((|#2| (-531 (-860 |#1|)) (-860 |#1|)) . T)) -((((-858)) . T)) -((($) |has| |#1| (-555)) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-858)) . T)) +(((|#2| (-531 (-861 |#1|)) (-861 |#1|)) . T)) +((((-859)) . T)) +((($) |has| |#1| (-556)) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-859)) . T)) (((|#1| |#3|) . T)) -((((-858)) . T)) -(((|#1|) |has| |#1| (-172)) (((-948 |#1|)) . T) (((-563)) . T)) +((((-859)) . T)) +(((|#1|) |has| |#1| (-172)) (((-949 |#1|)) . T) (((-564)) . T)) (((|#1|) |has| |#1| (-172))) -((((-694)) . T)) -((((-694)) . T)) +((((-695)) . T)) +((((-695)) . T)) (((|#2|) |has| |#2| (-172))) -(|has| |#2| (-844)) -((((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) -((((-112)) |has| |#1| (-1093)) (((-858)) -2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093)))) +(|has| |#2| (-845)) +((((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +((((-112)) |has| |#1| (-1094)) (((-859)) -4030 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094)))) (((|#1|) . T) (($) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) . T)) -((((-858)) . T)) -((((-563) |#1|) . T)) -((((-858)) . T)) -((((-694)) . T) (((-407 (-563))) . T) (((-563)) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) . T)) +((((-859)) . T)) +((((-564) |#1|) . T)) +((((-859)) . T)) +((((-695)) . T) (((-407 (-564))) . T) (((-564)) . T)) (((|#1| |#1|) |has| |#1| (-172))) (((|#2|) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) ((((-379)) . T)) -((((-694)) . T)) -((((-407 (-563))) . #0=(|has| |#2| (-363))) (($) . #0#)) +((((-695)) . T)) +((((-407 (-564))) . #0=(|has| |#2| (-363))) (($) . #0#)) (((|#1|) |has| |#1| (-172))) -((((-407 (-948 |#1|))) . T)) +((((-407 (-949 |#1|))) . T)) (((|#2| |#2|) . T)) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((|#1|) . T)) (((|#2|) . T)) -(|has| |#2| (-846)) -(|has| |#2| (-905)) -(|has| |#1| (-905)) +(|has| |#2| (-847)) +(|has| |#2| (-906)) +(|has| |#1| (-906)) (|has| |#1| (-363)) -(|has| |#1| (-846)) -(((|#3|) |has| |#3| (-1045))) -((((-1169)) |has| |#2| (-896 (-1169)))) -((((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-407 (-563))) . T) (($) . T)) +(|has| |#1| (-847)) +(((|#3|) |has| |#3| (-1046))) +((((-1170)) |has| |#2| (-897 (-1170)))) +((((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-407 (-564))) . T) (($) . T)) (|has| |#1| (-473)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-363)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-555)) (|has| |#1| (-1045)) (|has| |#1| (-1105))) -(|has| |#1| (-38 (-407 (-563)))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-473)) (|has| |#1| (-556)) (|has| |#1| (-1046)) (|has| |#1| (-1106))) +(|has| |#1| (-38 (-407 (-564)))) ((((-116 |#1|)) . T)) ((((-116 |#1|)) . T)) (|has| |#1| (-349)) ((((-144)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -((($) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(((|#2|) . T) (((-858)) . T)) -(((|#2|) . T) (((-858)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-846)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) +(|has| |#1| (-38 (-407 (-564)))) +((($) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(((|#2|) . T) (((-859)) . T)) +(((|#2|) . T) (((-859)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-847)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) ((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((|#2|) . T)) (((|#3|) . T)) ((((-116 |#1|)) . T)) (|has| |#1| (-368)) -(|has| |#1| (-846)) -(((|#2|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) +(|has| |#1| (-847)) +(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) ((((-116 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) . T)) -((((-563)) . T)) +((((-564)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) -((((-858)) . T)) -((((-858)) . T)) -((((-536)) |has| |#1| (-611 (-536))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379)))) (((-379)) . #0=(|has| |#1| (-1018))) (((-225)) . #0#)) +((((-859)) . T)) +((((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379)))) (((-379)) . #0=(|has| |#1| (-1019))) (((-225)) . #0#)) (((|#1|) |has| |#1| (-363))) -((((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((($ $) . T) (((-609 $) $) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -((($) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T) (((-407 (-563))) . T)) -((($) -2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-555))) +((((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((($ $) . T) (((-610 $) $) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +((($) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T)) +((($) -4030 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556))) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| |#1| (-363)) -((((-379)) . T) (((-563)) . T) (((-407 (-563))) . T)) -((((-640 (-776 |#1| (-860 |#2|)))) . T) (((-858)) . T)) -((((-536)) |has| (-776 |#1| (-860 |#2|)) (-611 (-536)))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-379)) . T) (((-564)) . T) (((-407 (-564))) . T)) +((((-641 (-777 |#1| (-861 |#2|)))) . T) (((-859)) . T)) +((((-536)) |has| (-777 |#1| (-861 |#2|)) (-612 (-536)))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) ((((-379)) . T)) -(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) -((((-858)) . T)) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-905))) -(((|#1|) . T)) -(|has| |#1| (-846)) -(|has| |#1| (-846)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) -((((-767)) . T)) -(|has| |#1| (-1093)) -((((-858)) . T)) -((((-1169)) . T) (((-858)) . T)) -((((-407 (-563))) . T) (((-563)) . T) (((-609 $)) . T)) +(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) +((((-859)) . T)) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-906))) +(((|#1|) . T)) +(|has| |#1| (-847)) +(|has| |#1| (-847)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) +((((-768)) . T)) +(|has| |#1| (-1094)) +((((-859)) . T)) +((((-1170)) . T) (((-859)) . T)) +((((-407 (-564))) . T) (((-564)) . T) (((-610 $)) . T)) (|has| |#1| (-145)) (|has| |#1| (-147)) -((((-563)) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(((#0=(-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| #0# (-38 (-407 (-563)))) (($) . T)) -((((-563)) . T)) +((((-564)) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(((#0=(-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564)))) (($) . T)) +((((-564)) . T)) (|has| |#1| (-363)) -(-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) -(-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) +(-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) +(-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) (|has| |#1| (-363)) (|has| |#1| (-145)) (|has| |#1| (-147)) @@ -2068,1476 +2069,1477 @@ (|has| |#1| (-233)) (|has| |#1| (-363)) (((|#3|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-563)) |has| |#2| (-636 (-563))) ((|#2|) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-564)) |has| |#2| (-637 (-564))) ((|#2|) . T)) (((|#2|) . T)) -(|has| |#1| (-1093)) +(|has| |#1| (-1094)) (((|#1| |#2|) . T)) -((((-563)) . T) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563)))))) -(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) +((((-564)) . T) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) +(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) (((|#3|) |has| |#3| (-172))) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) -((((-858)) . T)) -((((-563)) . T)) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) +((((-859)) . T)) +((((-564)) . T)) (((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) -((((-948 |#1|)) . T) (((-858)) . T)) +((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) +((((-949 |#1|)) . T) (((-859)) . T)) (((|#3|) . T)) -(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-563)) #0#) |has| |#1| (-363))) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) . T)) -((((-948 |#1|)) . T)) -((($) . T)) -((((-563) |#1|) . T)) -((((-1169)) |has| (-407 |#2|) (-896 (-1169)))) -(((|#1|) . T) (($) -2811 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-563))) |has| |#1| (-363))) -((((-536)) |has| |#2| (-611 (-536)))) -((((-684 |#2|)) . T) (((-858)) . T)) -(((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -((((-866 |#1|)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(-2811 (|has| |#4| (-789)) (|has| |#4| (-844))) -(-2811 (|has| |#3| (-789)) (|has| |#3| (-844))) -((((-858)) . T)) -((((-858)) . T)) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -(((|#2|) |has| |#2| (-1045))) +(((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-290)) (|has| |#1| (-363))) ((#0=(-407 (-564)) #0#) |has| |#1| (-363))) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) . T)) +((((-949 |#1|)) . T)) +((($) . T)) +((((-564) |#1|) . T)) +((((-1170)) |has| (-407 |#2|) (-897 (-1170)))) +(((|#1|) . T) (($) -4030 (|has| |#1| (-290)) (|has| |#1| (-363))) (((-407 (-564))) |has| |#1| (-363))) +((((-536)) |has| |#2| (-612 (-536)))) +((((-685 |#2|)) . T) (((-859)) . T)) +(((|#1|) . T)) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +((((-867 |#1|)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(-4030 (|has| |#4| (-790)) (|has| |#4| (-845))) +(-4030 (|has| |#3| (-790)) (|has| |#3| (-845))) +((((-859)) . T)) +((((-859)) . T)) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +(((|#2|) |has| |#2| (-1046))) (((|#1|) . T)) ((((-407 |#2|)) . T)) (((|#1|) . T)) -(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) -((((-563) |#1|) . T)) -(((|#1|) . T)) -((($) . T)) -((((-563)) . T) (($) . T) (((-407 (-563))) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-407 (-563))) . T) (($) . T)) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-1212))) -((($) . T)) -((((-407 (-563))) |has| #0=(-407 |#2|) (-1034 (-407 (-563)))) (((-563)) |has| #0# (-1034 (-563))) ((#0#) . T)) -(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) -(((|#1| (-767)) . T)) -(|has| |#1| (-846)) -(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-563)) . T)) -(|has| |#1| (-38 (-407 (-563)))) -((((-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) |has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(|has| |#1| (-844)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) +(((|#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) +((((-564) |#1|) . T)) +(((|#1|) . T)) +((($) . T)) +((((-564)) . T) (($) . T) (((-407 (-564))) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-407 (-564))) . T) (($) . T)) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-1213))) +((($) . T)) +((((-407 (-564))) |has| #0=(-407 |#2|) (-1035 (-407 (-564)))) (((-564)) |has| #0# (-1035 (-564))) ((#0#) . T)) +(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) +(((|#1| (-768)) . T)) +(|has| |#1| (-847)) +(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-564)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +((((-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) |has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(|has| |#1| (-845)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-349)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -((((-1151)) . T) (((-1169)) . T) (((-225)) . T) (((-563)) . T)) -(((|#2|) . T) (((-563)) . T) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-1152)) . T) (((-1170)) . T) (((-225)) . T) (((-564)) . T)) +((((-859)) . T)) +(((|#2|) . T) (((-564)) . T) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (((|#1| |#2|) . T)) ((((-144)) . T)) -((((-776 |#1| (-860 |#2|))) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(|has| |#1| (-1193)) -((((-858)) . T)) -(((|#1|) . T)) -(-2811 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-722)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045)) (|has| |#3| (-1093))) -((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|))) -(((|#2|) . T)) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -((((-906 |#1|)) . T)) -((($) . T)) -((((-407 (-948 |#1|))) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-536)) |has| |#4| (-611 (-536)))) -((((-858)) . T) (((-640 |#4|)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(((|#1|) . T)) -(|has| |#1| (-844)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) |has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))))) -(|has| |#1| (-1093)) +((((-777 |#1| (-861 |#2|))) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(|has| |#1| (-1194)) +((((-859)) . T)) +(((|#1|) . T)) +(-4030 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-368)) (|has| |#3| (-723)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046)) (|has| |#3| (-1094))) +((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|))) +(((|#2|) . T)) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((((-907 |#1|)) . T)) +((($) . T)) +((((-407 (-949 |#1|))) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-536)) |has| |#4| (-612 (-536)))) +((((-859)) . T) (((-641 |#4|)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(((|#1|) . T)) +(|has| |#1| (-845)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) |has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))))) +(|has| |#1| (-1094)) (|has| |#1| (-363)) -(|has| |#1| (-846)) +(|has| |#1| (-847)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-667 |#1|)) . T)) -((($) . T) (((-407 (-563))) . T)) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((((-668 |#1|)) . T)) +((($) . T) (((-407 (-564))) . T)) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) (|has| |#1| (-145)) (|has| |#1| (-147)) -(-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) -(-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) +(-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-147)) (|has| |#1| (-363))) (|has| |#1| (-147))) +(-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) -(|has| |#1| (-844)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) +(|has| |#1| (-845)) (((|#1| |#2|) . T)) -(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) -((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -(|has| |#1| (-1093)) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T) (((-563)) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) +((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +(|has| |#1| (-1094)) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T) (((-564)) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) (|has| |#2| (-145)) (|has| |#2| (-147)) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -(|has| |#1| (-1093)) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +(|has| |#1| (-1094)) (((|#2|) |has| |#2| (-172))) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#3|) |has| |#3| (-363))) ((((-407 |#2|)) . T)) -((((-858)) . T)) -(((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-536)) |has| |#1| (-611 (-536)))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -(((|#1|) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)))) +((((-859)) . T)) +(((|#1|) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536)))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) +(((|#1|) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)))) ((((-316 |#1|)) . T)) (((|#2|) |has| |#2| (-363))) (((|#2|) . T)) -((((-407 (-563))) . T) (((-694)) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((#0=(-776 |#1| (-860 |#2|)) #0#) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|))))) -((((-563)) . T) (($) . T)) -((((-860 |#1|)) . T)) +((((-407 (-564))) . T) (((-695)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((#0=(-777 |#1| (-861 |#2|)) #0#) |has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|))))) +((((-564)) . T) (($) . T)) +((((-861 |#1|)) . T)) (((|#2|) |has| |#2| (-172))) (((|#1|) |has| |#1| (-172))) (((|#2|) . T)) -((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T)) -((((-1169)) |has| |#1| (-896 (-1169))) (((-1081 (-1169))) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(|has| |#1| (-38 (-407 (-563)))) -(((|#4|) |has| |#4| (-1045)) (((-563)) -12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045)))) -(((|#3|) |has| |#3| (-1045)) (((-563)) -12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) +((((-1170)) |has| |#1| (-897 (-1170))) (((-1076)) . T)) +((((-1170)) |has| |#1| (-897 (-1170))) (((-1082 (-1170))) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(|has| |#1| (-38 (-407 (-564)))) +(((|#4|) |has| |#4| (-1046)) (((-564)) -12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046)))) +(((|#3|) |has| |#3| (-1046)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (|has| |#1| (-145)) (|has| |#1| (-147)) ((($ $) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093))) -(|has| |#1| (-555)) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094))) +(|has| |#1| (-556)) (((|#2|) . T)) -((((-563)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-564)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) (((|#1| (-59 |#1|) (-59 |#1|)) . T)) -((((-580 |#1|)) . T)) +((((-581 |#1|)) . T)) ((($) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) (((|#1|) . T)) -((((-858)) . T)) -(((|#2|) |has| |#2| (-6 (-4410 "*")))) +((((-859)) . T)) +(((|#2|) |has| |#2| (-6 (-4413 "*")))) (((|#1|) . T)) (((|#1|) . T)) (((|#3|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1242 |#2| |#3| |#4|)) . T) (((-563)) . T) (((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T)) -((((-48)) -12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (((-563)) -2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))) (|has| |#1| (-1045))) ((|#1|) . T) (((-609 $)) . T) (($) |has| |#1| (-555)) (((-407 (-563))) -2811 (|has| |#1| (-555)) (|has| |#1| (-1034 (-407 (-563))))) (((-407 (-948 |#1|))) |has| |#1| (-555)) (((-948 |#1|)) |has| |#1| (-1045)) (((-1169)) . T)) -((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T)) -((($) . T) (((-116 |#1|)) . T) (((-407 (-563))) . T)) -((((-1118 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -((((-1165 |#1|)) . T) (((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -((((-1118 |#1| (-1169))) . T) (((-1081 (-1169))) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-1169)) . T)) -(|has| |#1| (-1093)) +((((-1244 |#2| |#3| |#4|)) . T) (((-564)) . T) (((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-48)) -12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (((-564)) -4030 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))) (|has| |#1| (-1046))) ((|#1|) . T) (((-610 $)) . T) (($) |has| |#1| (-556)) (((-407 (-564))) -4030 (|has| |#1| (-556)) (|has| |#1| (-1035 (-407 (-564))))) (((-407 (-949 |#1|))) |has| |#1| (-556)) (((-949 |#1|)) |has| |#1| (-1046)) (((-1170)) . T)) +((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T)) +((($) . T) (((-116 |#1|)) . T) (((-407 (-564))) . T)) +((((-1119 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((((-1166 |#1|)) . T) (((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((((-1119 |#1| (-1170))) . T) (((-1082 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-1170)) . T)) +(|has| |#1| (-1094)) ((($) . T)) -(|has| |#1| (-1093)) -((((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) +(|has| |#1| (-1094)) +((((-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))) (((-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((|#1| |#2|) . T)) -((((-1169) |#1|) . T)) +((((-1170) |#1|) . T)) (((|#4|) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-1169) (-52)) . T)) -((((-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T)) -((((-858)) . T)) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-722)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045)) (|has| |#2| (-1093))) -(((#0=(-1243 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) -(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-407 (-563)) #0#) |has| |#1| (-555)) (($ $) |has| |#1| (-555))) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-1170) (-52)) . T)) +((((-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T)) +((((-859)) . T)) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-368)) (|has| |#2| (-723)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046)) (|has| |#2| (-1094))) +(((#0=(-1245 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +(((|#1| |#1|) |has| |#1| (-172)) ((#0=(-407 (-564)) #0#) |has| |#1| (-556)) (($ $) |has| |#1| (-556))) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (((|#1| $) |has| |#1| (-286 |#1| |#1|))) -((((-1243 |#1| |#2| |#3| |#4|)) . T) (((-407 (-563))) . T) (($) . T)) -(((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-555)) (($) |has| |#1| (-555))) +((((-1245 |#1| |#2| |#3| |#4|)) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-556)) (($) |has| |#1| (-556))) (|has| |#1| (-363)) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((((-407 (-563))) . T) (($) . T)) +((((-407 (-564))) . T) (($) . T)) (((|#3|) |has| |#3| (-363))) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) -((((-1169)) . T)) -((($) . T) (((-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563)))) (((-563)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) +((((-1170)) . T)) +((($) . T) (((-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))) (((-564)) . T)) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (((|#2| |#3|) . T)) -(-2811 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(-4030 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((|#1| (-531 |#2|)) . T)) -(((|#1| (-767)) . T)) -(((|#1| (-531 (-1081 (-1169)))) . T)) +(((|#1| (-768)) . T)) +(((|#1| (-531 (-1082 (-1170)))) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(|has| |#2| (-905)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) -((((-858)) . T)) -((($ $) . T) ((#0=(-1242 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-563)) #1#) |has| #0# (-38 (-407 (-563))))) -((((-906 |#1|)) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) -((($) . T) (((-407 (-563))) . T)) -((((-858)) . T)) +(|has| |#2| (-906)) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) +((((-859)) . T)) +((($ $) . T) ((#0=(-1244 |#2| |#3| |#4|) #0#) . T) ((#1=(-407 (-564)) #1#) |has| #0# (-38 (-407 (-564))))) +((((-907 |#1|)) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) +((($) . T) (((-407 (-564))) . T)) +((((-859)) . T)) ((($) . T)) ((($) . T)) -(-2811 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-555))) +(-4030 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349)) (|has| |#1| (-556))) (|has| |#1| (-363)) (|has| |#1| (-363)) (((|#1| |#2|) . T)) -((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) . T) (((-407 (-563))) |has| #0# (-38 (-407 (-563))))) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) -(-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363)) (|has| |#1| (-349))) -(-2811 (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045))) -((((-563)) |has| |#1| (-636 (-563))) ((|#1|) . T)) +((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) . T) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) +(-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363)) (|has| |#1| (-349))) +(-4030 (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046))) +((((-564)) |has| |#1| (-637 (-564))) ((|#1|) . T)) (((|#1| |#2|) . T)) -((((-858)) . T)) -((((-858)) . T)) +((((-859)) . T)) +((((-859)) . T)) ((((-112)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) +(((|#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) . T)) (|has| |#2| (-363)) -(|has| |#1| (-846)) +(|has| |#1| (-847)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-563)) . T)) -((((-858)) . T)) -(|has| |#1| (-1093)) +((((-564)) . T)) +((((-859)) . T)) +(|has| |#1| (-1094)) (((|#4|) . T)) (((|#4|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T)) -(|has| |#2| (-816)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) +(|has| |#2| (-817)) (((|#4|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) -((((-858)) . T)) -(((|#1| (-531 (-1169))) . T)) +((((-859)) . T)) +(((|#1| (-531 (-1170))) . T)) (((|#1|) |has| |#1| (-172))) -((((-858)) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -(((|#2|) -2811 (|has| |#2| (-6 (-4410 "*"))) (|has| |#2| (-172)))) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(|has| |#2| (-846)) -(|has| |#2| (-905)) -(|has| |#1| (-905)) +((((-859)) . T)) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +(((|#2|) -4030 (|has| |#2| (-6 (-4413 "*"))) (|has| |#2| (-172)))) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(|has| |#2| (-847)) +(|has| |#2| (-906)) +(|has| |#1| (-906)) (((|#2|) |has| |#2| (-172))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-858)) . T)) -((((-858)) . T)) -((((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-859)) . T)) +((((-859)) . T)) +((((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) . T)) (((|#1|) . T)) -((((-858)) . T)) +((((-859)) . T)) (((|#1| |#2|) . T)) -(((|#1| (-407 (-563))) . T)) +(((|#1| (-407 (-564))) . T)) (((|#1|) . T)) -(-2811 (|has| |#1| (-290)) (|has| |#1| (-363))) +(-4030 (|has| |#1| (-290)) (|has| |#1| (-363))) ((((-144)) . T)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) -(|has| |#1| (-844)) -((((-858)) . T)) -((((-858)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) +(|has| |#1| (-845)) +((((-859)) . T)) +((((-859)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1| |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-187)) . T) (((-858)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-187)) . T) (((-859)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-536)) |has| |#1| (-611 (-536))) (((-888 (-563))) |has| |#1| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#1| (-611 (-888 (-379))))) -((((-1169) (-52)) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-640 (-144))) . T) (((-1151)) . T)) -((((-858)) . T)) -((((-1151)) . T)) -((((-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) -((((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -(|has| |#1| (-846)) -((((-858)) . T)) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536))) (((-889 (-564))) |has| |#1| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#1| (-612 (-889 (-379))))) +((((-1170) (-52)) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-641 (-144))) . T) (((-1152)) . T)) +((((-859)) . T)) +((((-1152)) . T)) +((((-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((|#1| |#1|) |has| |#1| (-309 |#1|))) +((((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +(|has| |#1| (-847)) +((((-859)) . T)) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) . T)) (((|#2|) |has| |#2| (-363))) -((((-858)) . T)) -((((-536)) |has| |#4| (-611 (-536)))) -((((-858)) . T) (((-640 |#4|)) . T)) -(((|#2|) . T)) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -((($) . T) (((-563)) . T) (((-407 (-563))) . T) (((-609 $)) . T)) -(-2811 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045))) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -((((-1169) (-52)) . T)) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(|has| |#1| (-905)) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -(|has| |#1| (-905)) -(((|#1|) . T) (((-563)) . T) (((-407 (-563))) . T) (($) . T)) -(((|#2|) . T)) -(((|#1|) . T)) -((((-858)) . T)) -((((-563)) . T)) -(((#0=(-407 (-563)) #0#) . T) (($ $) . T)) -((((-407 (-563))) . T) (($) . T)) -(((|#1| (-407 (-563)) (-1075)) . T)) -(|has| |#1| (-1093)) -(|has| |#1| (-555)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(|has| |#1| (-816)) -(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T)) +((((-859)) . T)) +((((-536)) |has| |#4| (-612 (-536)))) +((((-859)) . T) (((-641 |#4|)) . T)) +(((|#2|) . T)) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T)) +(-4030 (|has| |#4| (-172)) (|has| |#4| (-723)) (|has| |#4| (-845)) (|has| |#4| (-1046))) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +((((-1170) (-52)) . T)) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(|has| |#1| (-906)) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(|has| |#1| (-906)) +(((|#1|) . T) (((-564)) . T) (((-407 (-564))) . T) (($) . T)) +(((|#2|) . T)) +(((|#1|) . T)) +((((-859)) . T)) +((((-564)) . T)) +(((#0=(-407 (-564)) #0#) . T) (($ $) . T)) +((((-407 (-564))) . T) (($) . T)) +(((|#1| (-407 (-564)) (-1076)) . T)) +(|has| |#1| (-1094)) +(|has| |#1| (-556)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(|has| |#1| (-817)) +(((#0=(-907 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) ((((-407 |#2|)) . T)) -(|has| |#1| (-844)) -((((-1194 |#1|)) . T) (((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) . T) ((#1=(-563) #1#) . T) (($ $) . T)) -((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) -(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T)) +(|has| |#1| (-845)) +((((-1195 |#1|)) . T) (((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) . T) ((#1=(-564) #1#) . T) (($ $) . T)) +((((-907 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) +(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) (((|#1| |#2| |#3| |#4|) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) (((|#2|) . T)) -((((-858)) . T)) -((((-407 (-563))) . T) (((-694)) . T) (($) . T) (((-563)) . T)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) . T)) -(((#0=(-52)) . T) (((-2 (|:| -3320 (-1169)) (|:| -3704 #0#))) . T)) +((((-859)) . T)) +((((-407 (-564))) . T) (((-695)) . T) (($) . T) (((-564)) . T)) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) . T)) +(((#0=(-52)) . T) (((-2 (|:| -1327 (-1170)) (|:| -2423 #0#))) . T)) (|has| |#1| (-349)) -((((-563)) . T)) -((((-858)) . T)) +((((-564)) . T)) +((((-859)) . T)) (((|#1|) . T)) -(((#0=(-1243 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#))) +(((#0=(-1245 |#1| |#2| |#3| |#4|) $) |has| #0# (-286 #0# #0#))) (|has| |#1| (-363)) -(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -(((#0=(-407 (-563)) #0#) . T) ((#1=(-694) #1#) . T) (($ $) . T)) +(((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +(((#0=(-407 (-564)) #0#) . T) ((#1=(-695) #1#) . T) (($ $) . T)) ((((-316 |#1|)) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) |has| |#1| (-363))) -((((-858)) . T)) -(|has| |#1| (-1093)) +(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) +((((-859)) . T)) +(|has| |#1| (-1094)) (((|#1|) . T)) -(((|#1|) -2811 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) -(((|#1|) -2811 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) +(((|#1|) -4030 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) +(((|#1|) -4030 (|has| |#2| (-367 |#1|)) (|has| |#2| (-417 |#1|)))) (((|#2|) . T)) -((((-407 (-563))) . T) (((-694)) . T) (($) . T)) -((((-578)) . T)) +((((-407 (-564))) . T) (((-695)) . T) (($) . T)) +((((-579)) . T)) (((|#3| |#3|) . T)) (|has| |#2| (-233)) -((((-860 |#1|)) . T)) -((((-1169)) |has| |#1| (-896 (-1169))) ((|#3|) . T)) -((((-640 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-1018))) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-858)) . T)) +((((-861 |#1|)) . T)) +((((-1170)) |has| |#1| (-897 (-1170))) ((|#3|) . T)) +((((-641 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-1019))) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-859)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) -((((-407 (-563))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) -((((-563)) . T) (((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -((((-563)) . T)) +((((-407 (-564))) . T) (($) . T) (((-407 |#1|)) . T) ((|#1|) . T)) +((((-564)) . T) (((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-564)) . T)) (((|#3|) . T)) -(|has| |#1| (-1093)) +(|has| |#1| (-1094)) (((|#2|) . T)) (((|#1|) . T)) -((((-563)) . T)) -(((|#2|) . T) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (($) . T) (((-563)) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +((((-564)) . T)) +(((|#2|) . T) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (($) . T) (((-564)) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) (((|#1| |#2|) . T)) ((($) . T)) -((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -((($) . T) (((-407 (-563))) . T)) +((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((($) . T) (((-407 (-564))) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T) (($) . T)) -(((|#1| (-1257 |#1|) (-1257 |#1|)) . T)) +(((|#1| (-1259 |#1|) (-1259 |#1|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-858)) . T)) -((((-858)) . T)) -(((#0=(-116 |#1|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) -((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T)) -((((-1118 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#2|) . T)) +((((-859)) . T)) +((((-859)) . T)) +(((#0=(-116 |#1|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T)) +((((-1119 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($ $) . T)) -((((-667 |#1|)) . T)) -((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T)) -((((-116 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -((((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) (((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379))))) +((((-668 |#1|)) . T)) +((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) +((((-116 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) (((-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379))))) (((|#2|) . T) ((|#6|) . T)) -(((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) (($) . T)) +(((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) (($) . T)) ((((-144)) . T)) ((($) . T)) -((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-379)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) +((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-379)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) (((|#1|) . T)) -(|has| |#2| (-905)) -(|has| |#1| (-905)) -(|has| |#1| (-905)) +(|has| |#2| (-906)) +(|has| |#1| (-906)) +(|has| |#1| (-906)) (((|#4|) . T)) -(|has| |#2| (-1018)) +(|has| |#2| (-1019)) ((($) . T)) -(|has| |#1| (-905)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +(|has| |#1| (-906)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) ((($) . T)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) ((($) . T)) (|has| |#1| (-363)) -((((-906 |#1|)) . T)) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -(-2811 (|has| |#1| (-368)) (|has| |#1| (-846))) -(((|#1|) . T)) -((((-767)) . T)) -((((-858)) . T)) -((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-907 |#1|)) . T)) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +(-4030 (|has| |#1| (-368)) (|has| |#1| (-847))) +(((|#1|) . T)) +((((-768)) . T)) +((((-859)) . T)) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) ((((-407 |#2|) |#3|) . T)) -((($) . T) (((-407 (-563))) . T)) -((($) . T) (((-563)) . T) (((-407 (-563))) . T) (((-609 $)) . T)) -((((-563)) . T) (($) . T)) -((((-563)) . T) (($) . T)) -((((-767) |#1|) . T)) -(((|#2| (-240 (-1708 |#1|) (-767))) . T)) +((($) . T) (((-407 (-564))) . T)) +((($) . T) (((-564)) . T) (((-407 (-564))) . T) (((-610 $)) . T)) +((((-564)) . T) (($) . T)) +((((-564)) . T) (($) . T)) +((((-768) |#1|) . T)) +(((|#2| (-240 (-2641 |#1|) (-768))) . T)) (((|#1| (-531 |#3|)) . T)) -((((-407 (-563))) . T)) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((((-1151)) . T) (((-858)) . T)) -(((#0=(-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) #0#) |has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))))) -((((-1151)) . T)) -(|has| |#1| (-905)) +((((-407 (-564))) . T)) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-1152)) . T) (((-859)) . T)) +(((#0=(-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) #0#) |has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))))) +((((-1152)) . T)) +(|has| |#1| (-906)) (|has| |#2| (-363)) -(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-4030 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) ((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T)) -((((-858)) . T)) +((((-859)) . T)) (((|#1|) . T)) -((((-379)) . T) (((-563)) . T)) -(((#0=(-407 (-563)) #0#) . T) (($ $) . T)) +((((-379)) . T) (((-564)) . T)) +(((#0=(-407 (-564)) #0#) . T) (($ $) . T)) ((($ $) . T)) ((($ $) . T)) (((|#1| |#1|) . T)) -((((-858)) . T)) -(|has| |#1| (-555)) -((((-407 (-563))) . T) (($) . T)) -((($) . T)) -((($) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(-2811 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) -(|has| |#1| (-38 (-407 (-563)))) -(-12 (|has| |#1| (-545)) (|has| |#1| (-824))) -((((-858)) . T)) -((((-1169)) -2811 (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))))) +((((-859)) . T)) +(|has| |#1| (-556)) +((((-407 (-564))) . T) (($) . T)) +((($) . T)) +((($) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(-4030 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +(|has| |#1| (-38 (-407 (-564)))) +(-12 (|has| |#1| (-545)) (|has| |#1| (-825))) +((((-859)) . T)) +((((-1170)) -4030 (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))) (-12 (|has| |#1| (-363)) (|has| |#2| (-897 (-1170)))))) (|has| |#1| (-363)) -((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (|has| |#1| (-363)) -((((-407 (-563))) . T) (($) . T)) -((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) -((((-563) |#1|) . T)) +((((-407 (-564))) . T) (($) . T)) +((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) +((((-564) |#1|) . T)) (((|#1|) . T)) (((|#2|) |has| |#1| (-363))) (((|#2|) |has| |#1| (-363))) -((((-563)) . T) (($) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-564)) . T) (($) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) -(((|#2|) . T) (((-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) (((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) (((-407 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563))))) +(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) (((-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564))))) (((|#2|) . T)) -((((-1169) #0=(-1243 |#1| |#2| |#3| |#4|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) -((((-609 $) $) . T) (($ $) . T)) -((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1165 (-694))) . T) (((-888 (-379))) . T)) -((((-858)) . T)) -(|has| |#1| (-555)) -(|has| |#1| (-555)) +((((-1170) #0=(-1245 |#1| |#2| |#3| |#4|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) +((((-610 $) $) . T) (($ $) . T)) +((((-169 (-225))) . T) (((-169 (-379))) . T) (((-1166 (-695))) . T) (((-889 (-379))) . T)) +((((-859)) . T)) +(|has| |#1| (-556)) +(|has| |#1| (-556)) (|has| (-407 |#2|) (-233)) -(((|#1| (-407 (-563))) . T)) +(((|#1| (-407 (-564))) . T)) ((($ $) . T)) -((((-1169)) |has| |#2| (-896 (-1169)))) +((((-1170)) |has| |#2| (-897 (-1170)))) ((($) . T)) -((((-858)) . T)) -((((-407 (-563))) . T) (($) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-858)) . T)) +((((-859)) . T)) +((((-407 (-564))) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-859)) . T)) (((|#2|) |has| |#1| (-363))) -((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) (((-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-563))))) +((((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-379)))) (((-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-564))))) (|has| |#1| (-363)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (|has| |#1| (-363)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (|has| |#1| (-363)) -(|has| |#1| (-555)) +(|has| |#1| (-556)) (((|#1|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (((|#3|) . T)) -((((-1151)) . T) (((-1169)) . T) (((-225)) . T) (((-563)) . T)) +((((-1152)) . T) (((-1170)) . T) (((-225)) . T) (((-564)) . T)) (((|#1|) . T)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(-4030 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) (((|#2|) . T)) (((|#2|) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(|has| |#1| (-38 (-407 (-563)))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(|has| |#1| (-38 (-407 (-564)))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) +(|has| |#1| (-38 (-407 (-564)))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) -((((-1151) |#1|) . T)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) +((((-1152) |#1|) . T)) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-368))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-368))) (|has| |#1| (-147)) -((((-580 |#1|)) . T)) +((((-581 |#1|)) . T)) ((($) . T)) ((((-407 |#2|)) . T)) -(|has| |#1| (-555)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-349))) +(|has| |#1| (-556)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-349))) (|has| |#1| (-147)) -((((-858)) . T)) +((((-859)) . T)) ((($) . T)) -((((-407 (-563))) |has| |#2| (-1034 (-563))) (((-563)) |has| |#2| (-1034 (-563))) (((-1169)) |has| |#2| (-1034 (-1169))) ((|#2|) . T)) -(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-563)) #1#) . T) (($ $) . T)) -((((-1133 |#1| |#2|)) . T)) -(((|#1| (-563)) . T)) -(((|#1| (-407 (-563))) . T)) -((((-563)) |has| |#2| (-882 (-563))) (((-379)) |has| |#2| (-882 (-379)))) +((((-407 (-564))) |has| |#2| (-1035 (-564))) (((-564)) |has| |#2| (-1035 (-564))) (((-1170)) |has| |#2| (-1035 (-1170))) ((|#2|) . T)) +(((#0=(-407 |#2|) #0#) . T) ((#1=(-407 (-564)) #1#) . T) (($ $) . T)) +((((-1134 |#1| |#2|)) . T)) +(((|#1| (-564)) . T)) +(((|#1| (-407 (-564))) . T)) +((((-564)) |has| |#2| (-883 (-564))) (((-379)) |has| |#2| (-883 (-379)))) (((|#2|) . T)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) ((((-112)) . T)) (((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) (((|#2|) . T)) -((((-858)) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-1169) (-52)) . T)) +((((-859)) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-1170) (-52)) . T)) ((((-407 |#2|)) . T)) -((((-858)) . T)) -(((|#1|) . T)) -(|has| |#1| (-1093)) -(|has| |#1| (-787)) -(|has| |#1| (-787)) -((((-858)) . T)) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) +((((-859)) . T)) +(((|#1|) . T)) +(|has| |#1| (-1094)) +(|has| |#1| (-788)) +(|has| |#1| (-788)) +((((-859)) . T)) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) ((((-114)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-225)) . T) (((-379)) . T) (((-888 (-379))) . T)) -((((-858)) . T)) -((((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)) (((-407 (-563))) |has| |#1| (-555))) -((((-858)) . T)) -((((-858)) . T)) +((((-225)) . T) (((-379)) . T) (((-889 (-379))) . T)) +((((-859)) . T)) +((((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556))) +((((-859)) . T)) +((((-859)) . T)) (((|#2|) . T)) -((((-858)) . T)) -(((#0=(-906 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T)) +((((-859)) . T)) +(((#0=(-907 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-906 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) +((((-907 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) (|has| |#1| (-363)) -((((-858)) . T)) +((((-859)) . T)) (((|#2|) . T)) -((((-563)) . T)) -((((-858)) . T)) -((((-563)) . T)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) +((((-564)) . T)) +((((-859)) . T)) +((((-564)) . T)) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) ((((-169 (-379))) . T) (((-225)) . T) (((-379)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-1151)) . T) (((-536)) . T) (((-563)) . T) (((-888 (-563))) . T) (((-379)) . T) (((-225)) . T)) -((((-858)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-1152)) . T) (((-536)) . T) (((-564)) . T) (((-889 (-564))) . T) (((-379)) . T) (((-225)) . T)) +((((-859)) . T)) (|has| |#1| (-147)) (|has| |#1| (-145)) -((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-563))) |has| #0# (-38 (-407 (-563))))) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-722)) (|has| |#1| (-896 (-1169))) (|has| |#1| (-1045)) (|has| |#1| (-1105)) (|has| |#1| (-1093))) -(|has| |#1| (-1144)) -((((-563) |#1|) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-473)) (|has| |#1| (-723)) (|has| |#1| (-897 (-1170))) (|has| |#1| (-1046)) (|has| |#1| (-1106)) (|has| |#1| (-1094))) +(|has| |#1| (-1145)) +((((-564) |#1|) . T)) (((|#1|) . T)) (((#0=(-116 |#1|) $) |has| #0# (-286 #0# #0#))) (((|#1|) |has| |#1| (-172))) -((((-316 |#1|)) . T) (((-563)) . T)) +((((-316 |#1|)) . T) (((-564)) . T)) (((|#1|) . T)) -((((-858)) . T)) +((((-859)) . T)) ((((-114)) . T) ((|#1|) . T)) -((((-858)) . T)) +((((-859)) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-309 |#1|))) -((((-563) |#1|) . T)) -((((-1169) |#1|) . T)) +((((-564) |#1|) . T)) +((((-1170) |#1|) . T)) (((|#1|) . T)) -((((-563)) . T) (((-407 (-563))) . T)) +((((-564)) . T) (((-407 (-564))) . T)) (((|#1|) . T)) -(|has| |#1| (-555)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) +(|has| |#1| (-556)) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) ((((-379)) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) -(|has| |#1| (-555)) -(|has| |#1| (-1093)) -((((-776 |#1| (-860 |#2|))) |has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|))))) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(|has| |#1| (-556)) +(|has| |#1| (-1094)) +((((-777 |#1| (-861 |#2|))) |has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|))))) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((|#1|) . T)) (((|#2| |#3|) . T)) (((|#1|) . T)) -(|has| |#2| (-905)) +(|has| |#2| (-906)) (((|#1| (-531 |#2|)) . T)) -(((|#1| (-767)) . T)) +(((|#1| (-768)) . T)) (|has| |#1| (-233)) -(((|#1| (-531 (-1081 (-1169)))) . T)) +(((|#1| (-531 (-1082 (-1170)))) . T)) (|has| |#2| (-363)) -((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -((((-563)) . T) (((-407 (-563))) . T) (($) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) . T)) +((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +((((-564)) . T) (((-407 (-564))) . T) (($) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) . T)) (((|#1|) . T)) -(((|#1|) . T) (((-563)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-858)) . T)) -((((-858)) . T)) -(-2811 (|has| |#3| (-789)) (|has| |#3| (-844))) -((((-858)) . T)) -((((-1113)) . T) (((-858)) . T)) -((((-536)) . T) (((-858)) . T)) +(((|#1|) . T) (((-564)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-859)) . T)) +((((-859)) . T)) +(-4030 (|has| |#3| (-790)) (|has| |#3| (-845))) +((((-859)) . T)) +((((-1114)) . T) (((-859)) . T)) +((((-536)) . T) (((-859)) . T)) (((|#1|) . T)) -((($ $) . T) (((-609 $) $) . T)) +((($ $) . T) (((-610 $) $) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-563)) . T)) +((((-564)) . T)) (((|#3|) . T)) -((((-858)) . T)) -(-2811 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-563)) . T) (((-407 (-563))) -2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) -((((-1118 |#1| |#2|)) . T) ((|#2|) . T) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-563)) . T)) -((((-1165 |#1|)) . T) (((-563)) . T) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) (((-1075)) . T) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) -(-2811 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-555)) (|has| |#1| (-1045))) -((((-1118 |#1| (-1169))) . T) (((-563)) . T) (((-1081 (-1169))) . T) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) (((-1169)) . T)) -(((#0=(-580 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-563)) #1#) . T)) -((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +((((-859)) . T)) +(-4030 (|has| |#1| (-307)) (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-564)) . T) (((-407 (-564))) -4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T)) +((((-1119 |#1| |#2|)) . T) ((|#2|) . T) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-564)) . T)) +((((-1166 |#1|)) . T) (((-564)) . T) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((-1076)) . T) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) +(-4030 (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-172)) (|has| |#1| (-556)) (|has| |#1| (-1046))) +((((-1119 |#1| (-1170))) . T) (((-564)) . T) (((-1082 (-1170))) . T) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) (((-1170)) . T)) +(((#0=(-581 |#1|) #0#) . T) (($ $) . T) ((#1=(-407 (-564)) #1#) . T)) +((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (((|#1|) |has| |#1| (-172))) -(((|#1| (-1257 |#1|) (-1257 |#1|)) . T)) -((((-580 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -((($) . T) (((-407 (-563))) . T)) -((($) . T) (((-407 (-563))) . T)) -(((|#2|) |has| |#2| (-6 (-4410 "*")))) +(((|#1| (-1259 |#1|) (-1259 |#1|)) . T)) +((((-581 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((($) . T) (((-407 (-564))) . T)) +((($) . T) (((-407 (-564))) . T)) +(((|#2|) |has| |#2| (-6 (-4413 "*")))) (((|#1|) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((|#1|) . T) (((-563)) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((|#1|) . T) (((-564)) . T)) (((|#1|) . T)) -((((-858)) . T)) +((((-859)) . T)) ((((-294 |#3|)) . T)) -(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#1|) . T)) -((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T)) -((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T)) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) +((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) +((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T)) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) (((|#2|) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) (((|#2|) . T) ((|#6|) . T)) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -((((-858)) . T)) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(|has| |#2| (-905)) -(|has| |#1| (-905)) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-858)) . T)) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +((((-859)) . T)) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(|has| |#2| (-906)) +(|has| |#1| (-906)) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-859)) . T)) (((|#1|) . T)) -((((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) . T)) +((((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1093)) +(|has| |#1| (-1094)) (((|#1|) . T)) -((((-1169)) . T) ((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) -(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) -(((#0=(-407 (-563)) #0#) . T)) -((((-407 (-563))) . T)) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-1170)) . T) ((|#1|) . T)) +((((-859)) . T)) +((((-859)) . T)) +(((|#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) +(((#0=(-407 (-564)) #0#) . T)) +((((-407 (-564))) . T)) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) (((|#1|) . T)) (((|#1|) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -((((-407 (-563))) . T) (((-563)) . T) (($) . T)) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +((((-407 (-564))) . T) (((-564)) . T) (($) . T)) ((((-536)) . T)) -((((-858)) . T)) -((((-563)) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) -((((-1169)) |has| |#2| (-896 (-1169))) (((-1075)) . T)) -((((-1242 |#2| |#3| |#4|)) . T)) -((((-906 |#1|)) . T)) -((($) . T) (((-407 (-563))) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) -((((-858)) . T)) -(|has| |#1| (-1212)) -(((|#2|) . T)) -((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -((((-1169)) |has| |#1| (-896 (-1169)))) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -((($) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) . T)) -(((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563)))) ((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-555)))) -((($) . T) (((-407 (-563))) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T)) -(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-555)))) -(|has| |#1| (-555)) +((((-859)) . T)) +((((-564)) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) +((((-1170)) |has| |#2| (-897 (-1170))) (((-1076)) . T)) +((((-1244 |#2| |#3| |#4|)) . T)) +((((-907 |#1|)) . T)) +((($) . T) (((-407 (-564))) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) +((((-859)) . T)) +(|has| |#1| (-1213)) +(((|#2|) . T)) +((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +((((-1170)) |has| |#1| (-897 (-1170)))) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((($) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) . T)) +(((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564)))) ((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-556)))) +((($) . T) (((-407 (-564))) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) +(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-556)))) +(|has| |#1| (-556)) (((|#1|) |has| |#1| (-363))) -((((-563)) . T)) -(|has| |#1| (-787)) -(|has| |#1| (-787)) -((((-1169) #0=(-116 |#1|)) |has| #0# (-514 (-1169) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) -(((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) -((((-1075)) . T) ((|#2|) . T) (((-563)) |has| |#2| (-1034 (-563))) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) +((((-564)) . T)) +(|has| |#1| (-788)) +(|has| |#1| (-788)) +((((-1170) #0=(-116 |#1|)) |has| #0# (-514 (-1170) #0#)) ((#0# #0#) |has| #0# (-309 #0#))) +(((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +((((-1076)) . T) ((|#2|) . T) (((-564)) |has| |#2| (-1035 (-564))) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-563) (-767)) . T) ((|#3| (-767)) . T)) +((((-564) (-768)) . T) ((|#3| (-768)) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-858)) . T)) -(|has| |#2| (-816)) -(|has| |#2| (-816)) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) -(((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -((((-563)) |has| |#1| (-882 (-563))) (((-379)) |has| |#1| (-882 (-379)))) -(((|#1|) . T)) -((((-866 |#1|)) . T)) -((((-866 |#1|)) . T)) -(-12 (|has| |#1| (-363)) (|has| |#2| (-905))) -((((-407 (-563))) . T) (((-694)) . T) (($) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-859)) . T)) +(|has| |#2| (-817)) +(|has| |#2| (-817)) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) (($) . T) ((|#1|) . T)) +(((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((((-564)) |has| |#1| (-883 (-564))) (((-379)) |has| |#1| (-883 (-379)))) +(((|#1|) . T)) +((((-867 |#1|)) . T)) +((((-867 |#1|)) . T)) +(-12 (|has| |#1| (-363)) (|has| |#2| (-906))) +((((-407 (-564))) . T) (((-695)) . T) (($) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) (((|#1|) . T)) (((|#1|) . T)) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (|has| |#1| (-363)) (((|#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-860 |#1|)) . T)) +((((-861 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2| (-767)) . T)) -((((-1169)) . T)) -((((-866 |#1|)) . T)) -(-2811 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -((((-858)) . T)) +(((|#2| (-768)) . T)) +((((-1170)) . T)) +((((-867 |#1|)) . T)) +(-4030 (|has| |#3| (-25)) (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +((((-859)) . T)) (((|#1|) . T)) -(-2811 (|has| |#2| (-789)) (|has| |#2| (-844))) -(-2811 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))) -((((-866 |#1|)) . T)) +(-4030 (|has| |#2| (-790)) (|has| |#2| (-845))) +(-4030 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))) +((((-867 |#1|)) . T)) (((|#1|) . T)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) -((($ $) . T) (((-609 $) $) . T)) -((($) . T)) -((((-858)) . T)) -((((-563)) . T)) -(((|#2|) . T)) -((((-858)) . T)) -(((|#1|) . T) (((-407 (-563))) |has| |#1| (-363))) -((((-858)) . T)) -(((|#1|) . T)) -((((-858)) . T)) -((($) . T) ((|#2|) . T) (((-407 (-563))) . T)) -(|has| |#1| (-1093)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1|) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-858)) . T)) -(|has| |#2| (-905)) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) . T)) -((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563))))) -((((-858)) . T)) -((((-858)) . T)) -(((|#3|) |has| |#3| (-1045)) (((-563)) -12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) -((((-1118 |#1| |#2|)) . T) (((-948 |#1|)) |has| |#2| (-611 (-1169))) (((-858)) . T)) -((((-948 |#1|)) |has| |#2| (-611 (-1169))) (((-1151)) -12 (|has| |#1| (-1034 (-563))) (|has| |#2| (-611 (-1169)))) (((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563))))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536))))) -((((-1165 |#1|)) . T) (((-858)) . T)) -((((-858)) . T)) -((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T) (((-1169)) . T)) -((((-858)) . T)) -((((-563)) . T)) -(((|#1|) . T)) -((($) . T)) -((((-379)) |has| |#1| (-882 (-379))) (((-563)) |has| |#1| (-882 (-563)))) -((((-563)) . T)) -(((|#1|) . T)) -((((-858)) . T)) -(((|#1|) . T)) -((((-858)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-640 |#1|)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) +((($ $) . T) (((-610 $) $) . T)) +((($) . T)) +((((-859)) . T)) +((((-564)) . T)) +(((|#2|) . T)) +((((-859)) . T)) +(((|#1|) . T) (((-407 (-564))) |has| |#1| (-363))) +((((-859)) . T)) +(((|#1|) . T)) +((((-859)) . T)) +((($) . T) ((|#2|) . T) (((-407 (-564))) . T)) +(|has| |#1| (-1094)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1|) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-859)) . T)) +(|has| |#2| (-906)) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564))))) +((((-859)) . T)) +((((-859)) . T)) +(((|#3|) |has| |#3| (-1046)) (((-564)) -12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) +((((-1119 |#1| |#2|)) . T) (((-949 |#1|)) |has| |#2| (-612 (-1170))) (((-859)) . T)) +((((-949 |#1|)) |has| |#2| (-612 (-1170))) (((-1152)) -12 (|has| |#1| (-1035 (-564))) (|has| |#2| (-612 (-1170)))) (((-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564))))) (((-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) +((((-1166 |#1|)) . T) (((-859)) . T)) +((((-859)) . T)) +((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T) (((-1170)) . T)) +((((-859)) . T)) +((((-564)) . T)) +(((|#1|) . T)) +((($) . T)) +((((-379)) |has| |#1| (-883 (-379))) (((-564)) |has| |#1| (-883 (-564)))) +((((-564)) . T)) +(((|#1|) . T)) +((((-859)) . T)) +(((|#1|) . T)) +((((-859)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-641 |#1|)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) -((((-563)) . T) (((-407 (-563))) . T)) +((((-564)) . T) (((-407 (-564))) . T)) (((|#1|) |has| |#1| (-309 |#1|))) -((((-858)) . T)) +((((-859)) . T)) ((((-379)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-858)) . T)) -((((-407 (-563))) . T) (($) . T)) +((((-859)) . T)) +((((-407 (-564))) . T) (($) . T)) ((((-407 |#2|) |#3|) . T)) (((|#1|) . T)) -(|has| |#1| (-1093)) -(((|#2| (-482 (-1708 |#1|) (-767))) . T)) -((((-563) |#1|) . T)) -((((-1151)) . T) (((-858)) . T)) +(|has| |#1| (-1094)) +(((|#2| (-482 (-2641 |#1|) (-768))) . T)) +((((-564) |#1|) . T)) +((((-1152)) . T) (((-859)) . T)) (((|#2| |#2|) . T)) -(((|#1| (-531 (-1169))) . T)) -(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -((((-563)) . T)) +(((|#1| (-531 (-1170))) . T)) +(-4030 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +((((-564)) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1169)) |has| |#1| (-896 (-1169))) (((-1075)) . T)) -(((|#1|) . T) (((-563)) |has| |#1| (-636 (-563)))) -(|has| |#1| (-555)) -((($) . T) (((-407 (-563))) . T)) +((((-1170)) |has| |#1| (-897 (-1170))) (((-1076)) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-637 (-564)))) +(|has| |#1| (-556)) +((($) . T) (((-407 (-564))) . T)) ((($) . T)) ((($) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) (((|#1|) . T)) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-858)) . T)) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-859)) . T)) ((((-144)) . T)) -(((|#1|) . T) (((-407 (-563))) . T)) +(((|#1|) . T) (((-407 (-564))) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-858)) . T)) +((((-859)) . T)) (((|#1|) . T)) -(|has| |#1| (-1144)) -(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) +(|has| |#1| (-1145)) +(((|#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) . T)) (((|#1|) . T)) -((((-407 $) (-407 $)) |has| |#1| (-555)) (($ $) . T) ((|#1| |#1|) . T)) -(((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -((((-858)) . T)) -((((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-563)) |has| |#1| (-1034 (-563))) ((|#1|) . T) ((|#2|) . T)) -((((-1075)) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563))))) -((((-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379)))) (((-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563))))) -((((-1243 |#1| |#2| |#3| |#4|)) . T)) -((((-563) |#1|) . T)) +((((-407 $) (-407 $)) |has| |#1| (-556)) (($ $) . T) ((|#1| |#1|) . T)) +(((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((((-859)) . T)) +((((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-564)) |has| |#1| (-1035 (-564))) ((|#1|) . T) ((|#2|) . T)) +((((-1076)) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564))))) +((((-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379)))) (((-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564))))) +((((-1245 |#1| |#2| |#3| |#4|)) . T)) +((((-564) |#1|) . T)) (((|#1| |#1|) . T)) ((($) . T) ((|#2|) . T)) (((|#1|) |has| |#1| (-172)) (($) . T)) ((($) . T)) -((((-694)) . T)) -((((-776 |#1| (-860 |#2|))) . T)) +((((-695)) . T)) +((((-777 |#1| (-861 |#2|))) . T)) ((($) . T)) -((((-407 (-563))) . T) (($) . T)) -(|has| |#1| (-1093)) -(|has| |#1| (-1093)) +((((-407 (-564))) . T) (($) . T)) +(|has| |#1| (-1094)) +(|has| |#1| (-1094)) (|has| |#2| (-363)) (|has| |#1| (-363)) (|has| |#1| (-363)) -(|has| |#1| (-38 (-407 (-563)))) -((((-563)) . T)) -((((-1169)) -12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) -((((-1169)) -12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-564)) . T)) +((((-1170)) -12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) +((((-1170)) -12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (((|#1|) . T)) (|has| |#1| (-233)) (((|#1| (-531 |#3|)) . T)) -(((|#2| (-240 (-1708 |#1|) (-767))) . T)) +(((|#2| (-240 (-2641 |#1|) (-768))) . T)) (|has| |#1| (-368)) (|has| |#1| (-368)) (|has| |#1| (-368)) (((|#1|) . T) (($) . T)) (((|#1| (-531 |#2|)) . T)) -(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(((|#1| (-767)) . T)) -(|has| |#1| (-555)) -(-2811 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +(-4030 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(((|#1| (-768)) . T)) +(|has| |#1| (-556)) +(-4030 (|has| |#2| (-25)) (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-845)) (|has| |#2| (-1046))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) -((((-858)) . T)) -((((-563)) . T) (((-407 (-563))) . T) (($) . T)) -(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) -(-2811 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) +((((-859)) . T)) +((((-564)) . T) (((-407 (-564))) . T) (($) . T)) +(-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) +(-4030 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) (((|#1|) |has| |#1| (-172))) -(((|#4|) |has| |#4| (-1045))) -(((|#3|) |has| |#3| (-1045))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) -(-12 (|has| |#1| (-363)) (|has| |#2| (-816))) -((((-563)) . T) (((-407 (-563))) -2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))) ((|#2|) . T) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-860 |#1|)) . T)) -((((-1118 |#1| |#2|)) . T) (((-563)) . T) ((|#3|) . T) (($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))) ((|#2|) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (($) . T) (((-563)) . T)) -((((-1174)) . T)) -((((-667 |#1|)) . T)) -((((-407 |#2|)) . T) (((-407 (-563))) . T) (($) . T)) -((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -((((-858)) . T)) -((((-640 $)) . T) (((-1151)) . T) (((-1169)) . T) (((-563)) . T) (((-225)) . T) (((-858)) . T)) -((($) . T) (((-407 (-563))) . T)) -(((|#1|) . T)) -(((|#4|) |has| |#4| (-1093)) (((-563)) -12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (((-407 (-563))) -12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093)))) -(((|#3|) |has| |#3| (-1093)) (((-563)) -12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (((-407 (-563))) -12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) +(((|#4|) |has| |#4| (-1046))) +(((|#3|) |has| |#3| (-1046))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) +(-12 (|has| |#1| (-363)) (|has| |#2| (-817))) +((((-564)) . T) (((-407 (-564))) -4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))) ((|#2|) . T) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-861 |#1|)) . T)) +((((-1119 |#1| |#2|)) . T) (((-564)) . T) ((|#3|) . T) (($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))) ((|#2|) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (($) . T) (((-564)) . T)) +((((-1175)) . T)) +((((-668 |#1|)) . T)) +((((-407 |#2|)) . T) (((-407 (-564))) . T) (($) . T)) +((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +((((-859)) . T)) +((((-641 $)) . T) (((-1152)) . T) (((-1170)) . T) (((-564)) . T) (((-225)) . T) (((-859)) . T)) +((($) . T) (((-407 (-564))) . T)) +(((|#1|) . T)) +(((|#4|) |has| |#4| (-1094)) (((-564)) -12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (((-407 (-564))) -12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094)))) +(((|#3|) |has| |#3| (-1094)) (((-564)) -12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (((-407 (-564))) -12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (|has| |#2| (-363)) -(((|#2|) |has| |#2| (-1045)) (((-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) +(((|#2|) |has| |#2| (-1046)) (((-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((|#1|) . T)) (|has| |#2| (-363)) -(((#0=(-407 (-563)) #0#) |has| |#2| (-38 (-407 (-563)))) ((|#2| |#2|) . T) (($ $) -2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1| |#1|) . T) ((#0=(-407 (-563)) #0#) |has| |#1| (-38 (-407 (-563))))) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) -(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +(((#0=(-407 (-564)) #0#) |has| |#2| (-38 (-407 (-564)))) ((|#2| |#2|) . T) (($ $) -4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1| |#1|) . T) ((#0=(-407 (-564)) #0#) |has| |#1| (-38 (-407 (-564))))) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) +(((|#1| |#1|) . T) (($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (((|#2| |#2|) . T)) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T) (($) -2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) -(((|#1|) . T) (($) . T) (((-407 (-563))) . T)) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T) (($) -4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) +(((|#1|) . T) (($) . T) (((-407 (-564))) . T)) (((|#2|) . T)) -((((-858)) |has| |#1| (-1093))) +((((-859)) |has| |#1| (-1094))) ((($) . T)) -((((-1243 |#1| |#2| |#3| |#4|)) . T)) +((((-1245 |#1| |#2| |#3| |#4|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#2| (-816)) -(|has| |#2| (-816)) +(|has| |#2| (-817)) +(|has| |#2| (-817)) (|has| |#1| (-363)) (|has| |#1| (-363)) -(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-363)) (((|#1|) |has| |#2| (-417 |#1|))) (((|#1|) |has| |#2| (-417 |#1|))) -((((-1151)) . T)) -((((-906 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-640 |#1|)) . T) (((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-640 |#1|)) . T)) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-858)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1207)) . T) (((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) |has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))))) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -((((-563) |#1|) . T)) -((((-563) |#1|) . T)) -((((-563) |#1|) . T)) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((((-563) |#1|) . T)) -(((|#1|) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) -((((-1169)) |has| |#1| (-896 (-1169))) (((-814 (-1169))) . T)) -(-2811 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-789)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -((((-815 |#1|)) . T)) +((((-1152)) . T)) +((((-907 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-641 |#1|)) . T) (((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-641 |#1|)) . T)) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-859)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1208)) . T) (((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) |has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))))) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +((((-564) |#1|) . T)) +((((-564) |#1|) . T)) +((((-564) |#1|) . T)) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-564) |#1|) . T)) +(((|#1|) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#1|) |has| |#1| (-172))) +((((-1170)) |has| |#1| (-897 (-1170))) (((-815 (-1170))) . T)) +(-4030 (|has| |#3| (-131)) (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-790)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +((((-816 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-858)) . T)) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) +((((-859)) . T)) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046))) (((|#1| |#2|) . T)) -(|has| |#1| (-38 (-407 (-563)))) -((((-858)) . T)) -((((-1243 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-563))) . T)) -(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555)) (((-407 (-563))) |has| |#1| (-555))) -(((|#2|) . T) (((-563)) |has| |#2| (-636 (-563)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-859)) . T)) +((((-1245 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-407 (-564))) . T)) +(((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556)) (((-407 (-564))) |has| |#1| (-556))) +(((|#2|) . T) (((-564)) |has| |#2| (-637 (-564)))) (|has| |#1| (-363)) -(-2811 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233)))) -(|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) +(-4030 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (-12 (|has| |#1| (-363)) (|has| |#2| (-233)))) +(|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-363)) (((|#1|) . T)) -(((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1| |#1|) . T)) -((((-563) |#1|) . T)) +(((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1| |#1|) . T)) +((((-564) |#1|) . T)) ((((-316 |#1|)) . T)) -(((#0=(-694) (-1165 #0#)) . T)) -((((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((|#1|) . T)) +(((#0=(-695) (-1166 #0#)) . T)) +((((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(|has| |#1| (-844)) -(((|#2|) . T) (((-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555))) (((-563)) . T) ((|#1|) |has| |#1| (-172))) -(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) (((-563)) . T) (($) -2811 (|has| |#1| (-363)) (|has| |#1| (-555)))) -((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) -((((-1118 |#1| (-1169))) . T) (((-814 (-1169))) . T) ((|#1|) . T) (((-563)) |has| |#1| (-1034 (-563))) (((-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) (((-1169)) . T)) +(|has| |#1| (-845)) +(((|#2|) . T) (((-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556))) (((-564)) . T) ((|#1|) |has| |#1| (-172))) +(((|#2|) . T) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) (((-564)) . T) (($) -4030 (|has| |#1| (-363)) (|has| |#1| (-556)))) +((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T)) +((((-1119 |#1| (-1170))) . T) (((-815 (-1170))) . T) ((|#1|) . T) (((-564)) |has| |#1| (-1035 (-564))) (((-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) (((-1170)) . T)) ((($) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) -(((#0=(-1075) |#1|) . T) ((#0# $) . T) (($ $) . T)) -((($ $) . T) ((#0=(-1169) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1081 (-1169)) |#1|) . T) ((#1# $) . T)) +(((#0=(-1076) |#1|) . T) ((#0# $) . T) (($ $) . T)) +((($ $) . T) ((#0=(-1170) $) |has| |#1| (-233)) ((#0# |#1|) |has| |#1| (-233)) ((#1=(-1082 (-1170)) |#1|) . T) ((#1# $) . T)) ((($) . T) ((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563))))) -(|has| |#2| (-905)) -((($) . T) ((#0=(-1242 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-563))) |has| #0# (-38 (-407 (-563))))) -((((-563) |#1|) . T)) -((((-1174)) . T)) -(((#0=(-1243 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#))) +((($) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564))))) +(|has| |#2| (-906)) +((($) . T) ((#0=(-1244 |#2| |#3| |#4|)) |has| #0# (-172)) (((-407 (-564))) |has| #0# (-38 (-407 (-564))))) +((((-564) |#1|) . T)) +((((-1175)) . T)) +(((#0=(-1245 |#1| |#2| |#3| |#4|)) |has| #0# (-309 #0#))) ((($) . T)) (((|#1|) . T)) -((($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T)) -(((|#1| |#1|) . T) (($ $) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) ((#0=(-407 (-563)) #0#) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) +((($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2| |#2|) |has| |#1| (-363)) ((|#1| |#1|) . T)) +(((|#1| |#1|) . T) (($ $) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) ((#0=(-407 (-564)) #0#) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) (|has| |#2| (-233)) (|has| $ (-147)) -((((-858)) . T)) -((($) . T) (((-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) -((((-858)) . T)) -(|has| |#1| (-844)) +((((-859)) . T)) +((($) . T) (((-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-349))) ((|#1|) . T)) +((((-859)) . T)) +(|has| |#1| (-845)) ((((-129)) . T)) -((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) ((((-407 |#2|) |#3|) . T)) (((|#1|) . T)) ((((-129)) . T)) -((((-858)) . T)) -(((|#2| (-667 |#1|)) . T)) -(-12 (|has| |#1| (-307)) (|has| |#1| (-905))) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +((((-859)) . T)) +(((|#2| (-668 |#1|)) . T)) +(-12 (|has| |#1| (-307)) (|has| |#1| (-906))) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#4|) . T)) -(|has| |#1| (-555)) -((($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T)) -((((-1169)) -2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) -(((|#1|) . T) (($) -2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-555))) (((-407 (-563))) -2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-363)))) -((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) -((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) -(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) -((((-563) |#1|) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) +(|has| |#1| (-556)) +((($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363))) ((|#2|) |has| |#1| (-363)) ((|#1|) . T)) +((((-1170)) -4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) +(((|#1|) . T) (($) -4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-556))) (((-407 (-564))) -4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) +(((|#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) +((((-564) |#1|) . T)) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((|#1|) . T)) -(((|#1| (-531 (-814 (-1169)))) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((((-563)) . T) ((|#2|) . T) (($) . T) (((-407 (-563))) . T) (((-1169)) |has| |#2| (-1034 (-1169)))) +(((|#1| (-531 (-815 (-1170)))) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((((-564)) . T) ((|#2|) . T) (($) . T) (((-407 (-564))) . T) (((-1170)) |has| |#2| (-1035 (-1170)))) (((|#1|) . T)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) (((|#1|) . T)) -(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) -((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) -((($) . T) (((-866 |#1|)) . T) (((-407 (-563))) . T)) -((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) -(|has| |#1| (-555)) +(-4030 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) +((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) +((($) . T) (((-867 |#1|)) . T) (((-407 (-564))) . T)) +((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) +(|has| |#1| (-556)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-407 |#2|)) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(((|#1|) . T)) -(((|#2| |#2|) . T) ((#0=(-407 (-563)) #0#) . T) (($ $) . T)) -((((-563)) . T)) -(((|#2|) . T) (((-407 (-563))) . T) (($) . T)) -((((-858)) . T)) -((((-580 |#1|)) . T) (((-407 (-563))) . T) (($) . T)) -((((-858)) . T)) -((((-407 (-563))) . T) (($) . T)) -((((-563) |#1|) . T)) -((((-858)) . T)) -((($ $) . T) (((-1169) $) . T)) -((((-1249 |#1| |#2| |#3|)) . T)) -((((-536)) |has| |#2| (-611 (-536))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563))))) -((((-858)) . T)) -((((-858)) . T)) -((((-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) (((-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) (((-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536))))) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -(((|#1|) . T) (((-858)) . T) (((-1174)) . T)) -((((-858)) . T)) -((((-1174)) . T)) -((((-114)) . T) ((|#1|) . T) (((-563)) . T)) -(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(((|#1|) . T)) +(((|#2| |#2|) . T) ((#0=(-407 (-564)) #0#) . T) (($ $) . T)) +((((-564)) . T)) +(((|#2|) . T) (((-407 (-564))) . T) (($) . T)) +((((-859)) . T)) +((((-581 |#1|)) . T) (((-407 (-564))) . T) (($) . T)) +((((-859)) . T)) +((((-407 (-564))) . T) (($) . T)) +((((-564) |#1|) . T)) +((((-859)) . T)) +((($ $) . T) (((-1170) $) . T)) +((((-1251 |#1| |#2| |#3|)) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564))))) +((((-859)) . T)) +((((-859)) . T)) +((((-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) (((-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) (((-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536))))) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +(((|#1|) . T) (((-859)) . T) (((-1175)) . T)) +((((-859)) . T)) +((((-1175)) . T)) +((((-114)) . T) ((|#1|) . T) (((-564)) . T)) +(((|#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) . T)) (((|#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) . T)) ((((-129)) . T)) -((((-858)) . T)) -((((-1249 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) |has| |#2| (-172)) (($) -2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905)))) +((((-859)) . T)) +((((-1251 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) |has| |#2| (-172)) (($) -4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906)))) (((|#2|) . T) ((|#6|) . T)) -((($) . T) (((-407 (-563))) |has| |#2| (-38 (-407 (-563)))) ((|#2|) . T)) +((($) . T) (((-407 (-564))) |has| |#2| (-38 (-407 (-564)))) ((|#2|) . T)) (|has| |#1| (-363)) -((($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-1097)) . T)) -((((-858)) . T)) -((($) -2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) +((($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-1098)) . T)) +((((-859)) . T)) +((($) -4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) ((($) . T)) -((($) -2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) ((|#1|) |has| |#1| (-172)) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -((((-1249 |#1| |#2| |#3|)) . T) (((-1221 |#1| |#2| |#3|)) . T)) -((((-1169)) . T) (((-858)) . T)) -(|has| |#2| (-905)) +((($) -4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) ((|#1|) |has| |#1| (-172)) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +((((-1251 |#1| |#2| |#3|)) . T) (((-1223 |#1| |#2| |#3|)) . T)) +((((-1170)) . T) (((-859)) . T)) +(|has| |#2| (-906)) (((|#1|) . T)) -(|has| |#1| (-905)) +(|has| |#1| (-906)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) |has| |#1| (-172))) -((((-694)) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((((-1174)) . T)) +((((-695)) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-1175)) . T)) (((|#1|) |has| |#1| (-172))) -((((-1174)) . T)) -((((-1174)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) (((|#1|) |has| |#1| (-172))) -((((-407 (-563))) . T) (($) . T)) -(((|#1| (-563)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-1174)) . T)) -((((-1174)) . T)) +((((-407 (-564))) . T) (($) . T)) +(((|#1| (-564)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-1175)) . T)) +((((-1175)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) -(-2811 (|has| |#1| (-172)) (|has| |#1| (-555))) -(((|#1| (-563)) . T)) -(((|#1| (-407 (-563))) . T)) -(((|#1| (-767)) . T)) -((((-407 (-563))) . T)) +(-4030 (|has| |#1| (-172)) (|has| |#1| (-556))) +(((|#1| (-564)) . T)) +(((|#1| (-407 (-564))) . T)) +(((|#1| (-768)) . T)) +((((-407 (-564))) . T)) (((|#1| (-531 |#2|) |#2|) . T)) -((((-563) |#1|) . T)) -((((-563) |#1|) . T)) -(|has| |#1| (-1093)) -((((-563) |#1|) . T)) +((((-564) |#1|) . T)) +((((-564) |#1|) . T)) +(|has| |#1| (-1094)) +((((-564) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-888 (-379))) . T) (((-888 (-563))) . T) (((-1169)) . T) (((-536)) . T)) +((((-889 (-379))) . T) (((-889 (-564))) . T) (((-1170)) . T) (((-536)) . T)) (((|#1|) . T)) -((((-858)) . T)) -(-2811 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-789)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -(-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) -((((-563)) . T)) -((((-563)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) +((((-859)) . T)) +(-4030 (|has| |#2| (-131)) (|has| |#2| (-172)) (|has| |#2| (-363)) (|has| |#2| (-790)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +(-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) +((((-564)) . T)) +((((-564)) . T)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) -(-2811 (|has| |#2| (-172)) (|has| |#2| (-722)) (|has| |#2| (-844)) (|has| |#2| (-1045))) -((((-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) -(-2811 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) +(-4030 (|has| |#2| (-172)) (|has| |#2| (-723)) (|has| |#2| (-845)) (|has| |#2| (-1046))) +((((-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) +(-4030 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) (|has| |#1| (-145)) (|has| |#1| (-147)) (|has| |#1| (-363)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-233)) -((((-858)) . T)) -(((|#1| (-767) (-1075)) . T)) -((((-563) |#1|) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-563) |#1|) . T)) -((((-563) |#1|) . T)) +((((-859)) . T)) +(((|#1| (-768) (-1076)) . T)) +((((-564) |#1|) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-564) |#1|) . T)) +((((-564) |#1|) . T)) ((((-116 |#1|)) . T)) -((((-407 (-563))) . T) (((-563)) . T)) -(((|#2|) |has| |#2| (-1045))) -((((-407 (-563))) . T) (($) . T)) -(((|#2|) . T)) -((((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-555))) -((((-563)) . T)) -((((-563)) . T)) -((((-1151) (-1169) (-563) (-225) (-858)) . T)) +((((-407 (-564))) . T) (((-564)) . T)) +(((|#2|) |has| |#2| (-1046))) +((((-407 (-564))) . T) (($) . T)) +(((|#2|) . T)) +((((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) |has| |#1| (-172)) (($) |has| |#1| (-556))) +((((-564)) . T)) +((((-564)) . T)) +((((-1152) (-1170) (-564) (-225) (-859)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) -((((-563)) . T) ((|#2|) |has| |#2| (-172))) -((((-114)) . T) ((|#1|) . T) (((-563)) . T)) -(-2811 (|has| |#1| (-349)) (|has| |#1| (-368))) +((((-564)) . T) ((|#2|) |has| |#2| (-172))) +((((-114)) . T) ((|#1|) . T) (((-564)) . T)) +(-4030 (|has| |#1| (-349)) (|has| |#1| (-368))) (((|#1| |#2|) . T)) ((((-225)) . T)) -((((-407 (-563))) . T) (($) . T) (((-563)) . T)) -((((-858)) . T)) +((((-407 (-564))) . T) (($) . T) (((-564)) . T)) +((((-859)) . T)) ((($) . T) ((|#1|) . T)) -((($) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-407 (-563))) |has| |#1| (-38 (-407 (-563))))) -(((|#2|) |has| |#2| (-1093)) (((-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (((-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) -(((|#1|) . T)) -(((|#1|) . T)) -((((-536)) |has| |#1| (-611 (-536)))) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-846)) (|has| |#1| (-1093)))) -((($) . T) (((-407 (-563))) . T)) -(|has| |#1| (-905)) -(|has| |#1| (-905)) -((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) (((-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-379))))) (((-888 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-563))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-536))))) -((((-858)) . T)) -((((-858)) . T)) +((($) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((|#1|) . T)) +((($) . T) ((|#1|) . T) (((-407 (-564))) |has| |#1| (-38 (-407 (-564))))) +(((|#2|) |has| |#2| (-1094)) (((-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (((-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) +(((|#1|) . T)) +(((|#1|) . T)) +((((-536)) |has| |#1| (-612 (-536)))) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-847)) (|has| |#1| (-1094)))) +((($) . T) (((-407 (-564))) . T)) +(|has| |#1| (-906)) +(|has| |#1| (-906)) +((((-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) (((-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) (((-889 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-379))))) (((-889 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-564))))) (((-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536))))) +((((-859)) . T)) +((((-859)) . T)) (((|#2| |#2|) . T)) (((|#1| |#1|) |has| |#1| (-172))) -(((|#1|) . T) (((-563)) . T)) -((((-1174)) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-555))) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-844))) +(((|#1|) . T) (((-564)) . T)) +((((-1175)) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-556))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-845))) (((|#2|) . T)) -(-2811 (|has| |#1| (-21)) (|has| |#1| (-844))) +(-4030 (|has| |#1| (-21)) (|has| |#1| (-845))) (((|#1|) |has| |#1| (-172))) (((|#1|) . T)) (((|#1|) . T)) -((((-858)) -2811 (-12 (|has| |#1| (-610 (-858))) (|has| |#2| (-610 (-858)))) (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) +((((-859)) -4030 (-12 (|has| |#1| (-611 (-859))) (|has| |#2| (-611 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) ((((-407 |#2|) |#3|) . T)) -((((-407 (-563))) . T) (($) . T)) -(|has| |#1| (-38 (-407 (-563)))) +((((-407 (-564))) . T) (($) . T)) +(|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-363)) -((($ $) . T) ((#0=(-407 (-563)) #0#) . T)) +((($ $) . T) ((#0=(-407 (-564)) #0#) . T)) (|has| (-407 |#2|) (-147)) (|has| (-407 |#2|) (-145)) -((((-694)) . T)) -(((|#1|) . T) (((-407 (-563))) . T) (((-563)) . T) (($) . T)) -(((#0=(-563) #0#) . T)) -((($) . T) (((-407 (-563))) . T)) -(-2811 (|has| |#4| (-172)) (|has| |#4| (-722)) (|has| |#4| (-844)) (|has| |#4| (-1045))) -(-2811 (|has| |#3| (-172)) (|has| |#3| (-722)) (|has| |#3| (-844)) (|has| |#3| (-1045))) -((((-858)) . T) (((-1174)) . T)) -(|has| |#4| (-789)) -(-2811 (|has| |#4| (-789)) (|has| |#4| (-844))) -(|has| |#4| (-844)) -(|has| |#3| (-789)) -((((-1174)) . T)) -(-2811 (|has| |#3| (-789)) (|has| |#3| (-844))) -(|has| |#3| (-844)) -((((-563)) . T)) -(((|#2|) . T)) -((((-1169)) -2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) -((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) -((((-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) +((((-695)) . T)) +(((|#1|) . T) (((-407 (-564))) . T) (((-564)) . T) (($) . T)) +(((#0=(-564) #0#) . T)) +((($) . T) (((-407 (-564))) . T)) +(-4030 (|has| |#4| (-172)) (|has| |#4| (-723)) (|has| |#4| (-845)) (|has| |#4| (-1046))) +(-4030 (|has| |#3| (-172)) (|has| |#3| (-723)) (|has| |#3| (-845)) (|has| |#3| (-1046))) +((((-859)) . T) (((-1175)) . T)) +(|has| |#4| (-790)) +(-4030 (|has| |#4| (-790)) (|has| |#4| (-845))) +(|has| |#4| (-845)) +(|has| |#3| (-790)) +((((-1175)) . T)) +(-4030 (|has| |#3| (-790)) (|has| |#3| (-845))) +(|has| |#3| (-845)) +((((-564)) . T)) +(((|#2|) . T)) +((((-1170)) -4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) +((((-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (((|#1| |#1|) . T) (($ $) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T)) -((((-860 |#1|)) . T)) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) -((((-1133 |#1| |#2|)) . T)) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) -(((|#2|) . T) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) . T)) -((($) . T)) -(|has| |#1| (-1018)) -(((|#2|) . T) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -((((-858)) . T)) -((((-536)) |has| |#2| (-611 (-536))) (((-888 (-563))) |has| |#2| (-611 (-888 (-563)))) (((-888 (-379))) |has| |#2| (-611 (-888 (-379)))) (((-379)) . #0=(|has| |#2| (-1018))) (((-225)) . #0#)) +((((-861 |#1|)) . T)) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-1134 |#1| |#2|)) . T)) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) +(((|#2|) . T) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) . T)) +((($) . T)) +(|has| |#1| (-1019)) +(((|#2|) . T) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +((((-859)) . T)) +((((-536)) |has| |#2| (-612 (-536))) (((-889 (-564))) |has| |#2| (-612 (-889 (-564)))) (((-889 (-379))) |has| |#2| (-612 (-889 (-379)))) (((-379)) . #0=(|has| |#2| (-1019))) (((-225)) . #0#)) ((((-294 |#3|)) . T)) -((((-1169) (-52)) . T)) +((((-1170) (-52)) . T)) (((|#1|) . T)) -(|has| |#1| (-38 (-407 (-563)))) -(|has| |#1| (-38 (-407 (-563)))) -((((-858)) . T)) +(|has| |#1| (-38 (-407 (-564)))) +(|has| |#1| (-38 (-407 (-564)))) +((((-859)) . T)) (((|#2|) . T)) -((((-858)) . T)) +((((-859)) . T)) ((($ $) . T)) -((((-407 (-563))) . T) (((-694)) . T) (($) . T)) -((((-1167 |#1| |#2| |#3|)) . T)) -((((-1167 |#1| |#2| |#3|)) . T) (((-1160 |#1| |#2| |#3|)) . T)) -((((-858)) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((((-563) |#1|) . T)) -((((-1167 |#1| |#2| |#3|)) |has| |#1| (-363))) +((((-407 (-564))) . T) (((-695)) . T) (($) . T)) +((((-1168 |#1| |#2| |#3|)) . T)) +((((-1168 |#1| |#2| |#3|)) . T) (((-1161 |#1| |#2| |#3|)) . T)) +((((-859)) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-564) |#1|) . T)) +((((-1168 |#1| |#2| |#3|)) |has| |#1| (-363))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) (((|#2|) . T)) (|has| |#2| (-363)) -(((|#3|) . T) ((|#2|) . T) (($) -2811 (|has| |#4| (-172)) (|has| |#4| (-844)) (|has| |#4| (-1045))) ((|#4|) -2811 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1045)))) -(((|#2|) . T) (($) -2811 (|has| |#3| (-172)) (|has| |#3| (-844)) (|has| |#3| (-1045))) ((|#3|) -2811 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1045)))) +(((|#3|) . T) ((|#2|) . T) (($) -4030 (|has| |#4| (-172)) (|has| |#4| (-845)) (|has| |#4| (-1046))) ((|#4|) -4030 (|has| |#4| (-172)) (|has| |#4| (-363)) (|has| |#4| (-1046)))) +(((|#2|) . T) (($) -4030 (|has| |#3| (-172)) (|has| |#3| (-845)) (|has| |#3| (-1046))) ((|#3|) -4030 (|has| |#3| (-172)) (|has| |#3| (-363)) (|has| |#3| (-1046)))) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-363)) ((((-116 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) (((-563)) |has| |#2| (-1034 (-563))) ((|#2|) . T) (((-860 |#1|)) . T)) -((((-1169)) . T) ((|#1|) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) -((((-187)) . T) (((-858)) . T)) -((((-858)) . T)) +((((-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) (((-564)) |has| |#2| (-1035 (-564))) ((|#2|) . T) (((-861 |#1|)) . T)) +((((-1170)) . T) ((|#1|) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) +((((-187)) . T) (((-859)) . T)) +((((-859)) . T)) (((|#1|) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -((((-129)) . T) (((-858)) . T)) -((((-563) |#1|) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +((((-129)) . T) (((-859)) . T)) +((((-564) |#1|) . T)) ((((-129)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) (($ $) . T)) ((($ $) . T)) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-905))) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -((((-858)) . T)) -((((-858)) . T)) -((((-858)) . T)) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-452)) (|has| |#1| (-906))) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +((((-859)) . T)) +((((-859)) . T)) +((((-859)) . T)) (((|#1| (-531 |#2|)) . T)) -((((-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) . T)) -((((-563) (-129)) . T)) -(((|#1| (-563)) . T)) -(((|#1| (-407 (-563))) . T)) -(((|#1| (-767)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-116 |#1|)) . T) (($) . T) (((-407 (-563))) . T)) -((((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -(-2811 (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) -(-2811 (|has| |#1| (-452)) (|has| |#1| (-555)) (|has| |#1| (-905))) -((($) . T)) -(((|#2| (-531 (-860 |#1|))) . T)) -((((-1174)) . T)) -((((-1174)) . T)) -((((-563) |#1|) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -(((|#2|) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-858)) . T) (((-1174)) . T)) -((((-1174)) . T)) -((((-858)) -2811 (|has| |#1| (-610 (-858))) (|has| |#1| (-1093)))) -(((|#1|) . T)) -(((|#2| (-767)) . T)) +((((-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) . T)) +((((-564) (-129)) . T)) +(((|#1| (-564)) . T)) +(((|#1| (-407 (-564))) . T)) +(((|#1| (-768)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-116 |#1|)) . T) (($) . T) (((-407 (-564))) . T)) +((((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +(-4030 (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) +(-4030 (|has| |#1| (-452)) (|has| |#1| (-556)) (|has| |#1| (-906))) +((($) . T)) +(((|#2| (-531 (-861 |#1|))) . T)) +((((-1175)) . T)) +((((-1175)) . T)) +((((-564) |#1|) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +(((|#2|) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-859)) . T) (((-1175)) . T)) +((((-1175)) . T)) +((((-859)) -4030 (|has| |#1| (-611 (-859))) (|has| |#1| (-1094)))) +(((|#1|) . T)) +(((|#2| (-768)) . T)) (((|#1| |#2|) . T)) -((((-1151) |#1|) . T)) +((((-1152) |#1|) . T)) ((((-407 |#2|)) . T)) -((((-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T)) -(|has| |#1| (-555)) -(|has| |#1| (-555)) +((((-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T)) +(|has| |#1| (-556)) +(|has| |#1| (-556)) ((($) . T) ((|#2|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-563)) . T) (($) . T)) +((((-564)) . T) (($) . T)) (((|#2| $) |has| |#2| (-286 |#2| |#2|))) -(((|#1| (-640 |#1|)) |has| |#1| (-844))) -(-2811 (|has| |#1| (-233)) (|has| |#1| (-349))) -(-2811 (|has| |#1| (-363)) (|has| |#1| (-349))) -((((-1253 |#1|)) . T) (((-563)) . T) ((|#2|) . T) (((-407 (-563))) |has| |#2| (-1034 (-407 (-563))))) -(|has| |#1| (-1093)) -(((|#1|) . T)) -((((-1253 |#1|)) . T) (((-563)) . T) (($) -2811 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-555)) (|has| |#2| (-905))) (((-1075)) . T) ((|#2|) . T) (((-407 (-563))) -2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) -((((-407 (-563))) . T) (($) . T)) -((((-995 |#1|)) . T) ((|#1|) . T) (((-563)) -2811 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563)))) (((-407 (-563))) -2811 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -((((-1169)) |has| |#1| (-896 (-1169)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) -(((|#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) . T)) +(((|#1| (-641 |#1|)) |has| |#1| (-845))) +(-4030 (|has| |#1| (-233)) (|has| |#1| (-349))) +(-4030 (|has| |#1| (-363)) (|has| |#1| (-349))) +((((-1255 |#1|)) . T) (((-564)) . T) ((|#2|) . T) (((-407 (-564))) |has| |#2| (-1035 (-407 (-564))))) +(|has| |#1| (-1094)) +(((|#1|) . T)) +((((-1255 |#1|)) . T) (((-564)) . T) (($) -4030 (|has| |#2| (-363)) (|has| |#2| (-452)) (|has| |#2| (-556)) (|has| |#2| (-906))) (((-1076)) . T) ((|#2|) . T) (((-407 (-564))) -4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) +((((-407 (-564))) . T) (($) . T)) +((((-996 |#1|)) . T) ((|#1|) . T) (((-564)) -4030 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564)))) (((-407 (-564))) -4030 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +((((-1170)) |has| |#1| (-897 (-1170)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) +(((|#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) . T)) (((|#1|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -(((#0=(-1133 |#1| |#2|) #0#) |has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|)))) +(((#0=(-1134 |#1| |#2|) #0#) |has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|)))) (((|#1|) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((#0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) #0#) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) +(((|#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((#0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) #0#) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) (((#0=(-116 |#1|)) |has| #0# (-309 #0#))) ((($ $) . T)) -(-2811 (|has| |#1| (-846)) (|has| |#1| (-1093))) -((($ $) . T) ((#0=(-860 |#1|) $) . T) ((#0# |#2|) . T)) +(-4030 (|has| |#1| (-847)) (|has| |#1| (-1094))) +((($ $) . T) ((#0=(-861 |#1|) $) . T) ((#0# |#2|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-233)) ((|#2| |#1|) |has| |#1| (-233)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(((-478 . -1093) T) ((-264 . -514) 162004) ((-247 . -514) 161947) ((-245 . -1093) 161897) ((-570 . -111) 161882) ((-531 . -23) T) ((-138 . -1093) T) ((-137 . -1093) T) ((-117 . -309) 161839) ((-133 . -1093) T) ((-479 . -514) 161631) ((-672 . -613) 161615) ((-689 . -102) T) ((-1134 . -514) 161534) ((-390 . -131) T) ((-1270 . -972) 161503) ((-31 . -93) T) ((-599 . -489) 161487) ((-618 . -131) T) ((-815 . -842) T) ((-523 . -57) 161437) ((-59 . -514) 161370) ((-519 . -514) 161303) ((-418 . -896) 161262) ((-169 . -1045) T) ((-516 . -514) 161195) ((-497 . -514) 161128) ((-496 . -514) 161061) ((-795 . -1034) 160844) ((-694 . -38) 160809) ((-1230 . -613) 160557) ((-343 . -349) T) ((-1087 . -1086) 160541) ((-1087 . -1093) 160519) ((-851 . -613) 160416) ((-169 . -243) 160367) ((-169 . -233) 160318) ((-1087 . -1088) 160276) ((-868 . -286) 160234) ((-225 . -791) T) ((-225 . -788) T) ((-689 . -284) NIL) ((-570 . -613) 160206) ((-1143 . -1184) 160185) ((-407 . -988) 160169) ((-696 . -21) T) ((-696 . -25) T) ((-1272 . -643) 160143) ((-316 . -160) 160122) ((-316 . -143) 160101) ((-1143 . -107) 160051) ((-134 . -25) T) ((-40 . -231) 160028) ((-116 . -21) T) ((-116 . -25) T) ((-605 . -288) 160004) ((-475 . -288) 159983) ((-1230 . -326) 159960) ((-1230 . -1045) T) ((-851 . -1045) T) ((-795 . -338) 159944) ((-139 . -185) T) ((-117 . -1144) NIL) ((-91 . -610) 159876) ((-477 . -131) T) ((-1230 . -233) T) ((-1089 . -490) 159857) ((-1089 . -610) 159823) ((-1083 . -490) 159804) ((-1083 . -610) 159770) ((-591 . -1208) T) ((-1067 . -490) 159751) ((-570 . -1045) T) ((-1067 . -610) 159717) ((-657 . -713) 159701) ((-1060 . -490) 159682) ((-1060 . -610) 159648) ((-954 . -288) 159625) ((-60 . -34) T) ((-1056 . -791) T) ((-1056 . -788) T) ((-1032 . -490) 159606) ((-1015 . -490) 159587) ((-812 . -722) T) ((-727 . -47) 159552) ((-620 . -38) 159539) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 159470) ((-247 . -290) 159401) ((-1032 . -610) 159367) ((-1020 . -102) T) ((-1015 . -610) 159333) ((-623 . -490) 159314) ((-413 . -722) T) ((-117 . -38) 159259) ((-483 . -490) 159240) ((-623 . -610) 159206) ((-413 . -473) T) ((-218 . -490) 159187) ((-483 . -610) 159153) ((-354 . -102) T) ((-218 . -610) 159119) ((-1202 . -1052) T) ((-707 . -1052) T) ((-1167 . -47) 159096) ((-1166 . -47) 159066) ((-1160 . -47) 159043) ((-128 . -288) 159018) ((-1031 . -151) 158964) ((-906 . -290) T) ((-1119 . -47) 158936) ((-689 . -309) NIL) ((-515 . -610) 158918) ((-510 . -610) 158900) ((-508 . -610) 158882) ((-327 . -1093) 158832) ((-708 . -452) 158763) ((-48 . -102) T) ((-1241 . -286) 158748) ((-1220 . -286) 158668) ((-640 . -661) 158652) ((-640 . -646) 158636) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-640 . -373) 158620) ((-602 . -490) 158602) ((-599 . -286) 158579) ((-602 . -610) 158546) ((-388 . -102) T) ((-1113 . -143) T) ((-126 . -610) 158478) ((-870 . -1093) T) ((-653 . -411) 158462) ((-710 . -610) 158444) ((-249 . -610) 158411) ((-187 . -610) 158393) ((-162 . -610) 158375) ((-157 . -610) 158357) ((-1272 . -722) T) ((-1095 . -34) T) ((-867 . -791) NIL) ((-867 . -788) NIL) ((-854 . -846) T) ((-727 . -882) NIL) ((-1281 . -131) T) ((-381 . -131) T) ((-888 . -613) 158325) ((-900 . -102) T) ((-727 . -1034) 158201) ((-531 . -131) T) ((-1080 . -411) 158185) ((-996 . -489) 158169) ((-117 . -400) 158146) ((-1160 . -1208) 158125) ((-778 . -411) 158109) ((-776 . -411) 158093) ((-939 . -34) T) ((-689 . -1144) NIL) ((-251 . -643) 157928) ((-250 . -643) 157750) ((-813 . -916) 157729) ((-454 . -411) 157713) ((-599 . -19) 157697) ((-1139 . -1201) 157666) ((-1160 . -882) NIL) ((-1160 . -880) 157618) ((-599 . -601) 157595) ((-1194 . -610) 157527) ((-1168 . -610) 157509) ((-62 . -395) T) ((-1166 . -1034) 157444) ((-1160 . -1034) 157410) ((-689 . -38) 157360) ((-474 . -286) 157345) ((-1214 . -610) 157327) ((-727 . -377) 157311) ((-834 . -610) 157293) ((-653 . -1052) T) ((-1241 . -998) 157259) ((-1220 . -998) 157225) ((-1081 . -613) 157209) ((-1057 . -1184) 157184) ((-1069 . -613) 157161) ((-868 . -611) 156968) ((-868 . -610) 156950) ((-1181 . -489) 156887) ((-418 . -1018) 156865) ((-48 . -309) 156852) ((-1057 . -107) 156798) ((-479 . -489) 156735) ((-520 . -1208) T) ((-1160 . -338) 156687) ((-1134 . -489) 156658) ((-1160 . -377) 156610) ((-1080 . -1052) T) ((-437 . -102) T) ((-183 . -1093) T) ((-251 . -34) T) ((-250 . -34) T) ((-778 . -1052) T) ((-776 . -1052) T) ((-727 . -896) 156587) ((-454 . -1052) T) ((-59 . -489) 156571) ((-1030 . -1051) 156545) ((-519 . -489) 156529) ((-516 . -489) 156513) ((-497 . -489) 156497) ((-496 . -489) 156481) ((-245 . -514) 156414) ((-1030 . -111) 156381) ((-1167 . -896) 156294) ((-1166 . -896) 156200) ((-1160 . -896) 156033) ((-1119 . -896) 156017) ((-665 . -1105) T) ((-354 . -1144) T) ((-641 . -93) T) ((-322 . -1051) 155999) ((-251 . -787) 155978) ((-251 . -790) 155929) ((-31 . -490) 155910) ((-251 . -789) 155889) ((-250 . -787) 155868) ((-250 . -790) 155819) ((-250 . -789) 155798) ((-31 . -610) 155764) ((-50 . -1052) T) ((-251 . -722) 155674) ((-250 . -722) 155584) ((-1202 . -1093) T) ((-665 . -23) T) ((-580 . -1052) T) ((-518 . -1052) T) ((-379 . -1051) 155549) ((-322 . -111) 155524) ((-73 . -383) T) ((-73 . -395) T) ((-1020 . -38) 155461) ((-689 . -400) 155443) ((-99 . -102) T) ((-707 . -1093) T) ((-999 . -145) 155415) ((-999 . -147) 155387) ((-379 . -111) 155343) ((-319 . -1212) 155322) ((-474 . -998) 155288) ((-354 . -38) 155253) ((-40 . -370) 155225) ((-869 . -610) 155097) ((-127 . -125) 155081) ((-121 . -125) 155065) ((-832 . -1051) 155035) ((-829 . -21) 154987) ((-823 . -1051) 154971) ((-829 . -25) 154923) ((-319 . -555) 154874) ((-517 . -613) 154855) ((-563 . -824) T) ((-240 . -1208) T) ((-1030 . -613) 154824) ((-832 . -111) 154789) ((-823 . -111) 154768) ((-1241 . -610) 154750) ((-1220 . -610) 154732) ((-1220 . -611) 154403) ((-1165 . -905) 154382) ((-1118 . -905) 154361) ((-48 . -38) 154326) ((-1279 . -1105) T) ((-599 . -610) 154238) ((-599 . -611) 154199) ((-1277 . -1105) T) ((-361 . -613) 154183) ((-322 . -613) 154167) ((-240 . -1034) 153994) ((-1165 . -643) 153919) ((-1118 . -643) 153844) ((-850 . -643) 153818) ((-714 . -610) 153800) ((-546 . -368) T) ((-1279 . -23) T) ((-1277 . -23) T) ((-491 . -1093) T) ((-379 . -613) 153750) ((-379 . -615) 153732) ((-1030 . -1045) T) ((-861 . -102) T) ((-1181 . -286) 153711) ((-169 . -368) 153662) ((-1000 . -1208) T) ((-832 . -613) 153616) ((-823 . -613) 153571) ((-44 . -23) T) ((-479 . -286) 153550) ((-584 . -1093) T) ((-1139 . -1102) 153519) ((-1097 . -1096) 153471) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1105) T) ((-1285 . -102) T) ((-1000 . -880) 153453) ((-1000 . -882) 153435) ((-1202 . -713) 153332) ((-620 . -231) 153316) ((-618 . -21) T) ((-289 . -555) T) ((-618 . -25) T) ((-1188 . -1093) T) ((-707 . -713) 153281) ((-240 . -377) 153250) ((-1000 . -1034) 153210) ((-379 . -1045) T) ((-223 . -1052) T) ((-117 . -231) 153187) ((-59 . -286) 153164) ((-152 . -23) T) ((-516 . -286) 153141) ((-327 . -514) 153074) ((-496 . -286) 153051) ((-379 . -243) T) ((-379 . -233) T) ((-832 . -1045) T) ((-823 . -1045) T) ((-708 . -945) 153020) ((-696 . -846) T) ((-474 . -610) 153002) ((-823 . -233) 152981) ((-134 . -846) T) ((-653 . -1093) T) ((-1181 . -601) 152960) ((-549 . -1184) 152939) ((-336 . -1093) T) ((-319 . -363) 152918) ((-407 . -147) 152897) ((-407 . -145) 152876) ((-960 . -1105) 152775) ((-240 . -896) 152707) ((-811 . -1105) 152617) ((-649 . -848) 152601) ((-479 . -601) 152580) ((-549 . -107) 152530) ((-1000 . -377) 152512) ((-1000 . -338) 152494) ((-97 . -1093) T) ((-960 . -23) 152305) ((-477 . -21) T) ((-477 . -25) T) ((-811 . -23) 152175) ((-1169 . -610) 152157) ((-59 . -19) 152141) ((-1169 . -611) 152063) ((-1165 . -722) T) ((-1118 . -722) T) ((-516 . -19) 152047) ((-496 . -19) 152031) ((-59 . -601) 152008) ((-1080 . -1093) T) ((-897 . -102) 151986) ((-850 . -722) T) ((-778 . -1093) T) ((-516 . -601) 151963) ((-496 . -601) 151940) ((-776 . -1093) T) ((-776 . -1059) 151907) ((-461 . -1093) T) ((-454 . -1093) T) ((-584 . -713) 151882) ((-644 . -1093) T) ((-1249 . -47) 151859) ((-1243 . -102) T) ((-1242 . -47) 151829) ((-1221 . -47) 151806) ((-1202 . -172) 151757) ((-1166 . -307) 151736) ((-1000 . -896) NIL) ((-1160 . -307) 151715) ((-624 . -1105) T) ((-665 . -131) T) ((-1089 . -613) 151696) ((-1083 . -613) 151677) ((-1073 . -555) 151628) ((-1073 . -1212) 151579) ((-1067 . -613) 151560) ((-275 . -1093) T) ((-85 . -441) T) ((-85 . -395) T) ((-1060 . -613) 151541) ((-1032 . -613) 151522) ((-50 . -1093) T) ((-1015 . -613) 151503) ((-707 . -172) T) ((-593 . -47) 151480) ((-225 . -643) 151445) ((-580 . -1093) T) ((-518 . -1093) T) ((-359 . -1212) T) ((-353 . -1212) T) ((-345 . -1212) T) ((-487 . -816) T) ((-487 . -916) T) ((-319 . -1105) T) ((-108 . -1212) T) ((-710 . -1051) 151415) ((-339 . -846) T) ((-217 . -916) T) ((-217 . -816) T) ((-623 . -613) 151396) ((-359 . -555) T) ((-353 . -555) T) ((-345 . -555) T) ((-483 . -613) 151377) ((-108 . -555) T) ((-653 . -713) 151347) ((-1160 . -1018) NIL) ((-218 . -613) 151328) ((-319 . -23) T) ((-67 . -1208) T) ((-996 . -610) 151260) ((-689 . -231) 151242) ((-710 . -111) 151207) ((-640 . -34) T) ((-245 . -489) 151191) ((-1095 . -1091) 151175) ((-171 . -1093) T) ((-948 . -905) 151154) ((-515 . -613) 151138) ((-1285 . -1144) T) ((-1281 . -21) T) ((-481 . -905) 151117) ((-1281 . -25) T) ((-1279 . -131) T) ((-1277 . -131) T) ((-1270 . -102) T) ((-1253 . -610) 151083) ((-1242 . -1034) 151018) ((-1080 . -713) 150867) ((-1056 . -643) 150854) ((-948 . -643) 150779) ((-778 . -713) 150608) ((-536 . -610) 150590) ((-536 . -611) 150571) ((-776 . -713) 150420) ((-1221 . -1208) 150399) ((-1070 . -102) T) ((-381 . -25) T) ((-381 . -21) T) ((-481 . -643) 150324) ((-461 . -713) 150295) ((-454 . -713) 150144) ((-983 . -102) T) ((-1221 . -882) NIL) ((-1221 . -880) 150096) ((-1181 . -611) NIL) ((-733 . -102) T) ((-1181 . -610) 150078) ((-602 . -613) 150060) ((-1135 . -1116) 150005) ((-1042 . -1201) 149934) ((-531 . -25) T) ((-897 . -309) 149872) ((-710 . -613) 149826) ((-343 . -1052) T) ((-641 . -490) 149807) ((-141 . -102) T) ((-44 . -131) T) ((-289 . -1105) T) ((-676 . -93) T) ((-671 . -93) T) ((-659 . -610) 149789) ((-641 . -610) 149742) ((-478 . -93) T) ((-355 . -610) 149724) ((-352 . -610) 149706) ((-344 . -610) 149688) ((-264 . -611) 149436) ((-264 . -610) 149418) ((-247 . -610) 149400) ((-247 . -611) 149261) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1221 . -1034) 149227) ((-1202 . -514) 149194) ((-1134 . -610) 149176) ((-815 . -853) T) ((-815 . -722) T) ((-599 . -288) 149153) ((-580 . -713) 149118) ((-479 . -611) NIL) ((-479 . -610) 149100) ((-518 . -713) 149045) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-906 . -610) 149027) ((-386 . -722) T) ((-868 . -1051) 148979) ((-906 . -611) 148961) ((-868 . -111) 148899) ((-710 . -1045) T) ((-708 . -1233) 148883) ((-139 . -102) T) ((-136 . -102) T) ((-114 . -102) T) ((-689 . -349) NIL) ((-519 . -610) 148815) ((-379 . -791) T) ((-223 . -1093) T) ((-379 . -788) T) ((-225 . -790) T) ((-225 . -787) T) ((-59 . -611) 148776) ((-59 . -610) 148688) ((-225 . -722) T) ((-516 . -611) 148649) ((-516 . -610) 148561) ((-497 . -610) 148493) ((-496 . -611) 148454) ((-496 . -610) 148366) ((-1073 . -363) 148317) ((-40 . -411) 148294) ((-77 . -1208) T) ((-867 . -905) NIL) ((-359 . -329) 148278) ((-359 . -363) T) ((-353 . -329) 148262) ((-353 . -363) T) ((-345 . -329) 148246) ((-345 . -363) T) ((-316 . -284) 148225) ((-108 . -363) T) ((-70 . -1208) T) ((-1221 . -338) 148177) ((-867 . -643) 148122) ((-1221 . -377) 148074) ((-960 . -131) 147929) ((-811 . -131) 147799) ((-954 . -646) 147783) ((-1080 . -172) 147694) ((-954 . -373) 147678) ((-1056 . -790) T) ((-1056 . -787) T) ((-868 . -613) 147576) ((-778 . -172) 147467) ((-776 . -172) 147378) ((-812 . -47) 147340) ((-1056 . -722) T) ((-327 . -489) 147324) ((-948 . -722) T) ((-454 . -172) 147235) ((-245 . -286) 147212) ((-1270 . -309) 147150) ((-1249 . -896) 147063) ((-481 . -722) T) ((-1242 . -896) 146969) ((-1241 . -1051) 146804) ((-1221 . -896) 146637) ((-1220 . -1051) 146445) ((-1202 . -290) 146424) ((-1178 . -1208) T) ((-1176 . -368) T) ((-1175 . -368) T) ((-1139 . -151) 146408) ((-1113 . -102) T) ((-1111 . -1093) T) ((-1073 . -23) T) ((-1068 . -102) T) ((-923 . -951) T) ((-733 . -309) 146346) ((-75 . -1208) T) ((-30 . -951) T) ((-169 . -905) 146299) ((-659 . -382) 146271) ((-112 . -840) T) ((-1 . -610) 146253) ((-1073 . -1105) T) ((-128 . -646) 146235) ((-50 . -617) 146219) ((-999 . -409) 146191) ((-593 . -896) 146104) ((-438 . -102) T) ((-141 . -309) NIL) ((-128 . -373) 146086) ((-868 . -1045) T) ((-829 . -846) 146065) ((-81 . -1208) T) ((-707 . -290) T) ((-40 . -1052) T) ((-580 . -172) T) ((-518 . -172) T) ((-511 . -610) 146047) ((-169 . -643) 145957) ((-507 . -610) 145939) ((-351 . -147) 145921) ((-351 . -145) T) ((-359 . -1105) T) ((-353 . -1105) T) ((-345 . -1105) T) ((-1000 . -307) T) ((-910 . -307) T) ((-868 . -243) T) ((-108 . -1105) T) ((-868 . -233) 145900) ((-1241 . -111) 145721) ((-1220 . -111) 145510) ((-245 . -1245) 145494) ((-563 . -844) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 145481) ((-313 . -309) 145422) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1000 . -1018) T) ((-31 . -613) 145403) ((-108 . -23) T) ((-245 . -601) 145380) ((-1243 . -38) 145272) ((-1230 . -905) 145251) ((-112 . -1093) T) ((-1031 . -102) T) ((-1230 . -643) 145176) ((-867 . -790) NIL) ((-851 . -643) 145150) ((-867 . -787) NIL) ((-812 . -882) NIL) ((-867 . -722) T) ((-1080 . -514) 145023) ((-778 . -514) 144970) ((-776 . -514) 144922) ((-570 . -643) 144909) ((-812 . -1034) 144737) ((-454 . -514) 144680) ((-388 . -389) T) ((-1241 . -613) 144493) ((-1220 . -613) 144241) ((-60 . -1208) T) ((-618 . -846) 144220) ((-500 . -656) T) ((-1139 . -972) 144189) ((-999 . -452) T) ((-694 . -844) T) ((-510 . -788) T) ((-474 . -1051) 144024) ((-343 . -1093) T) ((-313 . -1144) NIL) ((-289 . -131) T) ((-394 . -1093) T) ((-689 . -370) 143991) ((-866 . -1052) T) ((-223 . -617) 143968) ((-327 . -286) 143945) ((-474 . -111) 143766) ((-1241 . -1045) T) ((-1220 . -1045) T) ((-812 . -377) 143750) ((-169 . -722) T) ((-649 . -102) T) ((-1241 . -243) 143729) ((-1241 . -233) 143681) ((-1220 . -233) 143586) ((-1220 . -243) 143565) ((-999 . -402) NIL) ((-665 . -636) 143513) ((-316 . -38) 143423) ((-313 . -38) 143352) ((-69 . -610) 143334) ((-319 . -493) 143300) ((-1181 . -288) 143279) ((-1215 . -846) T) ((-1106 . -1105) 143189) ((-83 . -1208) T) ((-61 . -610) 143171) ((-479 . -288) 143150) ((-1272 . -1034) 143127) ((-1157 . -1093) T) ((-1106 . -23) 142997) ((-812 . -896) 142933) ((-1230 . -722) T) ((-1095 . -1208) T) ((-474 . -613) 142759) ((-1080 . -290) 142690) ((-962 . -1093) T) ((-889 . -102) T) ((-778 . -290) 142601) ((-327 . -19) 142585) ((-59 . -288) 142562) ((-776 . -290) 142493) ((-851 . -722) T) ((-117 . -844) NIL) ((-516 . -288) 142470) ((-327 . -601) 142447) ((-496 . -288) 142424) ((-454 . -290) 142355) ((-1031 . -309) 142206) ((-676 . -490) 142187) ((-570 . -722) T) ((-671 . -490) 142168) ((-676 . -610) 142118) ((-671 . -610) 142084) ((-657 . -610) 142066) ((-478 . -490) 142047) ((-478 . -610) 142013) ((-245 . -611) 141974) ((-245 . -490) 141951) ((-138 . -490) 141932) ((-137 . -490) 141913) ((-133 . -490) 141894) ((-245 . -610) 141786) ((-213 . -102) T) ((-138 . -610) 141752) ((-137 . -610) 141718) ((-133 . -610) 141684) ((-1140 . -34) T) ((-939 . -1208) T) ((-343 . -713) 141629) ((-665 . -25) T) ((-665 . -21) T) ((-1169 . -613) 141610) ((-474 . -1045) T) ((-632 . -417) 141575) ((-604 . -417) 141540) ((-1113 . -1144) T) ((-580 . -290) T) ((-518 . -290) T) ((-1242 . -307) 141519) ((-474 . -233) 141471) ((-474 . -243) 141450) ((-1221 . -307) 141429) ((-1221 . -1018) NIL) ((-1073 . -131) T) ((-868 . -791) 141408) ((-144 . -102) T) ((-40 . -1093) T) ((-868 . -788) 141387) ((-640 . -1006) 141371) ((-579 . -1052) T) ((-563 . -1052) T) ((-495 . -1052) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 141355) ((-313 . -400) 141316) ((-353 . -131) T) ((-345 . -131) T) ((-1174 . -1093) T) ((-1113 . -38) 141303) ((-1087 . -610) 141270) ((-108 . -131) T) ((-950 . -1093) T) ((-917 . -1093) T) ((-767 . -1093) T) ((-667 . -1093) T) ((-696 . -147) T) ((-116 . -147) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-1277 . -21) T) ((-1277 . -25) T) ((-659 . -1051) 141254) ((-531 . -846) T) ((-500 . -846) T) ((-355 . -1051) 141206) ((-352 . -1051) 141158) ((-344 . -1051) 141110) ((-251 . -1208) T) ((-250 . -1208) T) ((-264 . -1051) 140953) ((-247 . -1051) 140796) ((-659 . -111) 140775) ((-547 . -840) T) ((-355 . -111) 140713) ((-352 . -111) 140651) ((-344 . -111) 140589) ((-264 . -111) 140418) ((-247 . -111) 140247) ((-813 . -1212) 140226) ((-620 . -411) 140210) ((-44 . -21) T) ((-44 . -25) T) ((-811 . -636) 140116) ((-813 . -555) 140095) ((-251 . -1034) 139922) ((-250 . -1034) 139749) ((-126 . -119) 139733) ((-906 . -1051) 139698) ((-708 . -102) T) ((-694 . -1052) T) ((-536 . -615) 139601) ((-343 . -172) T) ((-88 . -610) 139583) ((-152 . -21) T) ((-152 . -25) T) ((-906 . -111) 139539) ((-40 . -713) 139484) ((-866 . -1093) T) ((-659 . -613) 139461) ((-641 . -613) 139442) ((-355 . -613) 139379) ((-352 . -613) 139316) ((-547 . -1093) T) ((-344 . -613) 139253) ((-327 . -611) 139214) ((-327 . -610) 139126) ((-264 . -613) 138879) ((-247 . -613) 138664) ((-1220 . -788) 138617) ((-1220 . -791) 138570) ((-251 . -377) 138539) ((-250 . -377) 138508) ((-649 . -38) 138478) ((-605 . -34) T) ((-482 . -1105) 138388) ((-475 . -34) T) ((-1106 . -131) 138258) ((-960 . -25) 138069) ((-906 . -613) 138019) ((-870 . -610) 138001) ((-960 . -21) 137956) ((-811 . -21) 137866) ((-811 . -25) 137717) ((-1214 . -368) T) ((-620 . -1052) T) ((-1171 . -555) 137696) ((-1165 . -47) 137673) ((-355 . -1045) T) ((-352 . -1045) T) ((-482 . -23) 137543) ((-344 . -1045) T) ((-247 . -1045) T) ((-264 . -1045) T) ((-1118 . -47) 137515) ((-117 . -1052) T) ((-1030 . -643) 137489) ((-954 . -34) T) ((-355 . -233) 137468) ((-355 . -243) T) ((-352 . -233) 137447) ((-352 . -243) T) ((-344 . -233) 137426) ((-344 . -243) T) ((-247 . -326) 137383) ((-264 . -326) 137355) ((-264 . -233) 137334) ((-1149 . -151) 137318) ((-251 . -896) 137250) ((-250 . -896) 137182) ((-1075 . -846) T) ((-414 . -1105) T) ((-1049 . -23) T) ((-906 . -1045) T) ((-322 . -643) 137164) ((-1020 . -844) T) ((-1202 . -998) 137130) ((-1166 . -916) 137109) ((-1160 . -916) 137088) ((-1160 . -816) NIL) ((-906 . -243) T) ((-813 . -363) 137067) ((-385 . -23) T) ((-127 . -1093) 137045) ((-121 . -1093) 137023) ((-906 . -233) T) ((-128 . -34) T) ((-379 . -643) 136988) ((-866 . -713) 136975) ((-1042 . -151) 136940) ((-40 . -172) T) ((-689 . -411) 136922) ((-708 . -309) 136909) ((-832 . -643) 136869) ((-823 . -643) 136843) ((-319 . -25) T) ((-319 . -21) T) ((-653 . -286) 136822) ((-579 . -1093) T) ((-563 . -1093) T) ((-495 . -1093) T) ((-245 . -288) 136799) ((-313 . -231) 136760) ((-1165 . -882) NIL) ((-55 . -1093) T) ((-1118 . -882) 136619) ((-129 . -846) T) ((-1165 . -1034) 136499) ((-1118 . -1034) 136382) ((-183 . -610) 136364) ((-850 . -1034) 136260) ((-778 . -286) 136187) ((-813 . -1105) T) ((-1030 . -722) T) ((-599 . -646) 136171) ((-1042 . -972) 136100) ((-995 . -102) T) ((-813 . -23) T) ((-708 . -1144) 136078) ((-689 . -1052) T) ((-599 . -373) 136062) ((-351 . -452) T) ((-343 . -290) T) ((-1258 . -1093) T) ((-248 . -1093) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -722) T) ((-706 . -1093) T) ((-694 . -1093) T) ((-361 . -473) T) ((-1202 . -610) 136044) ((-1165 . -377) 136028) ((-1118 . -377) 136012) ((-1020 . -411) 135974) ((-141 . -229) 135956) ((-379 . -790) T) ((-379 . -787) T) ((-866 . -172) T) ((-379 . -722) T) ((-707 . -610) 135938) ((-708 . -38) 135767) ((-1257 . -1255) 135751) ((-351 . -402) T) ((-1257 . -1093) 135701) ((-579 . -713) 135688) ((-563 . -713) 135675) ((-495 . -713) 135640) ((-316 . -626) 135619) ((-832 . -722) T) ((-823 . -722) T) ((-640 . -1208) T) ((-1073 . -636) 135567) ((-1165 . -896) 135510) ((-1118 . -896) 135494) ((-657 . -1051) 135478) ((-108 . -636) 135460) ((-482 . -131) 135330) ((-1171 . -1105) T) ((-948 . -47) 135299) ((-620 . -1093) T) ((-657 . -111) 135278) ((-491 . -610) 135244) ((-327 . -288) 135221) ((-481 . -47) 135178) ((-1171 . -23) T) ((-117 . -1093) T) ((-103 . -102) 135156) ((-1269 . -1105) T) ((-1049 . -131) T) ((-1020 . -1052) T) ((-815 . -1034) 135140) ((-999 . -720) 135112) ((-1269 . -23) T) ((-694 . -713) 135077) ((-584 . -610) 135059) ((-386 . -1034) 135043) ((-354 . -1052) T) ((-385 . -131) T) ((-324 . -1034) 135027) ((-225 . -882) 135009) ((-1000 . -916) T) ((-91 . -34) T) ((-1000 . -816) T) ((-910 . -916) T) ((-1188 . -610) 134991) ((-1113 . -824) T) ((-487 . -1212) T) ((-1098 . -1093) T) ((-1073 . -21) T) ((-1073 . -25) T) ((-217 . -1212) T) ((-995 . -309) 134956) ((-225 . -1034) 134916) ((-40 . -290) T) ((-710 . -643) 134876) ((-676 . -613) 134857) ((-671 . -613) 134838) ((-487 . -555) T) ((-478 . -613) 134819) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -555) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -613) 134796) ((-138 . -613) 134777) ((-137 . -613) 134758) ((-133 . -613) 134739) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1052) T) ((-579 . -172) T) ((-563 . -172) T) ((-495 . -172) T) ((-653 . -610) 134721) ((-733 . -732) 134705) ((-336 . -610) 134687) ((-68 . -383) T) ((-68 . -395) T) ((-1095 . -107) 134671) ((-1056 . -882) 134653) ((-948 . -882) 134578) ((-648 . -1105) T) ((-620 . -713) 134565) ((-481 . -882) NIL) ((-1139 . -102) T) ((-1087 . -615) 134549) ((-1056 . -1034) 134531) ((-97 . -610) 134513) ((-477 . -147) T) ((-948 . -1034) 134393) ((-117 . -713) 134338) ((-648 . -23) T) ((-481 . -1034) 134214) ((-1080 . -611) NIL) ((-1080 . -610) 134196) ((-778 . -611) NIL) ((-778 . -610) 134157) ((-776 . -611) 133791) ((-776 . -610) 133705) ((-1106 . -636) 133611) ((-461 . -610) 133593) ((-454 . -610) 133575) ((-454 . -611) 133436) ((-1031 . -229) 133382) ((-868 . -905) 133361) ((-126 . -34) T) ((-813 . -131) T) ((-644 . -610) 133343) ((-577 . -102) T) ((-355 . -1276) 133327) ((-352 . -1276) 133311) ((-344 . -1276) 133295) ((-127 . -514) 133228) ((-121 . -514) 133161) ((-511 . -788) T) ((-511 . -791) T) ((-510 . -790) T) ((-103 . -309) 133099) ((-222 . -102) 133077) ((-689 . -1093) T) ((-694 . -172) T) ((-868 . -643) 133029) ((-65 . -384) T) ((-275 . -610) 133011) ((-65 . -395) T) ((-948 . -377) 132995) ((-866 . -290) T) ((-50 . -610) 132977) ((-995 . -38) 132925) ((-580 . -610) 132907) ((-481 . -377) 132891) ((-580 . -611) 132873) ((-518 . -610) 132855) ((-906 . -1276) 132842) ((-867 . -1208) T) ((-696 . -452) T) ((-495 . -514) 132808) ((-487 . -363) T) ((-355 . -368) 132787) ((-352 . -368) 132766) ((-344 . -368) 132745) ((-710 . -722) T) ((-217 . -363) T) ((-116 . -452) T) ((-1280 . -1271) 132729) ((-867 . -880) 132706) ((-867 . -882) NIL) ((-960 . -846) 132605) ((-811 . -846) 132556) ((-649 . -651) 132540) ((-1194 . -34) T) ((-171 . -610) 132522) ((-1106 . -21) 132432) ((-1106 . -25) 132283) ((-867 . -1034) 132260) ((-948 . -896) 132241) ((-1230 . -47) 132218) ((-906 . -368) T) ((-59 . -646) 132202) ((-516 . -646) 132186) ((-481 . -896) 132163) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -646) 132147) ((-59 . -373) 132131) ((-620 . -172) T) ((-516 . -373) 132115) ((-496 . -373) 132099) ((-823 . -704) 132083) ((-1165 . -307) 132062) ((-1171 . -131) T) ((-117 . -172) T) ((-1139 . -309) 132000) ((-169 . -1208) T) ((-632 . -740) 131984) ((-604 . -740) 131968) ((-1269 . -131) T) ((-1242 . -916) 131947) ((-1221 . -916) 131926) ((-1221 . -816) NIL) ((-689 . -713) 131876) ((-1220 . -905) 131829) ((-1020 . -1093) T) ((-867 . -377) 131806) ((-867 . -338) 131783) ((-901 . -1105) T) ((-169 . -880) 131767) ((-169 . -882) 131692) ((-487 . -1105) T) ((-354 . -1093) T) ((-217 . -1105) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1034) 131588) ((-319 . -846) T) ((-1257 . -514) 131521) ((-1241 . -643) 131418) ((-1220 . -643) 131288) ((-868 . -790) 131267) ((-868 . -787) 131246) ((-868 . -722) T) ((-487 . -23) T) ((-223 . -610) 131228) ((-174 . -452) T) ((-222 . -309) 131166) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1281 . -1274) 131145) ((-579 . -290) T) ((-563 . -290) T) ((-672 . -1034) 131129) ((-495 . -290) T) ((-136 . -470) 131084) ((-48 . -1093) T) ((-708 . -231) 131068) ((-867 . -896) NIL) ((-1230 . -882) NIL) ((-885 . -102) T) ((-881 . -102) T) ((-388 . -1093) T) ((-169 . -377) 131052) ((-169 . -338) 131036) ((-1230 . -1034) 130916) ((-851 . -1034) 130812) ((-1135 . -102) T) ((-648 . -131) T) ((-117 . -514) 130720) ((-657 . -788) 130699) ((-657 . -791) 130678) ((-570 . -1034) 130660) ((-294 . -1264) 130630) ((-862 . -102) T) ((-959 . -555) 130609) ((-1202 . -1051) 130492) ((-482 . -636) 130398) ((-900 . -1093) T) ((-1020 . -713) 130335) ((-707 . -1051) 130300) ((-614 . -102) T) ((-599 . -34) T) ((-1140 . -1208) T) ((-1202 . -111) 130169) ((-474 . -643) 130066) ((-354 . -713) 130011) ((-169 . -896) 129970) ((-694 . -290) T) ((-689 . -172) T) ((-707 . -111) 129926) ((-1285 . -1052) T) ((-1230 . -377) 129910) ((-418 . -1212) 129888) ((-1111 . -610) 129870) ((-313 . -844) NIL) ((-418 . -555) T) ((-225 . -307) T) ((-1220 . -787) 129823) ((-1220 . -790) 129776) ((-1241 . -722) T) ((-1220 . -722) T) ((-48 . -713) 129741) ((-225 . -1018) T) ((-351 . -1264) 129718) ((-1243 . -411) 129684) ((-714 . -722) T) ((-1230 . -896) 129627) ((-1202 . -613) 129509) ((-112 . -610) 129491) ((-112 . -611) 129473) ((-714 . -473) T) ((-707 . -613) 129423) ((-482 . -21) 129333) ((-127 . -489) 129317) ((-121 . -489) 129301) ((-482 . -25) 129152) ((-620 . -290) T) ((-584 . -1051) 129127) ((-437 . -1093) T) ((-1056 . -307) T) ((-117 . -290) T) ((-1097 . -102) T) ((-999 . -102) T) ((-584 . -111) 129095) ((-1135 . -309) 129033) ((-1202 . -1045) T) ((-1056 . -1018) T) ((-66 . -1208) T) ((-1049 . -25) T) ((-1049 . -21) T) ((-707 . -1045) T) ((-385 . -21) T) ((-385 . -25) T) ((-689 . -514) NIL) ((-1020 . -172) T) ((-707 . -243) T) ((-1056 . -545) T) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -610) 129015) ((-394 . -610) 128997) ((-474 . -722) T) ((-1113 . -844) T) ((-888 . -1034) 128965) ((-108 . -846) T) ((-653 . -1051) 128949) ((-487 . -131) T) ((-1243 . -1052) T) ((-217 . -131) T) ((-1149 . -102) 128927) ((-99 . -1093) T) ((-245 . -661) 128911) ((-245 . -646) 128895) ((-653 . -111) 128874) ((-584 . -613) 128858) ((-316 . -411) 128842) ((-245 . -373) 128826) ((-1152 . -235) 128773) ((-995 . -231) 128757) ((-74 . -1208) T) ((-48 . -172) T) ((-696 . -387) T) ((-696 . -143) T) ((-1280 . -102) T) ((-1188 . -613) 128739) ((-1080 . -1051) 128582) ((-264 . -905) 128561) ((-247 . -905) 128540) ((-778 . -1051) 128363) ((-776 . -1051) 128206) ((-605 . -1208) T) ((-1157 . -610) 128188) ((-1080 . -111) 128017) ((-1042 . -102) T) ((-475 . -1208) T) ((-461 . -1051) 127988) ((-454 . -1051) 127831) ((-659 . -643) 127815) ((-867 . -307) T) ((-778 . -111) 127624) ((-776 . -111) 127453) ((-355 . -643) 127405) ((-352 . -643) 127357) ((-344 . -643) 127309) ((-264 . -643) 127234) ((-247 . -643) 127159) ((-1151 . -846) T) ((-1081 . -1034) 127143) ((-461 . -111) 127104) ((-454 . -111) 126933) ((-1069 . -1034) 126910) ((-996 . -34) T) ((-962 . -610) 126892) ((-954 . -1208) T) ((-126 . -1006) 126876) ((-959 . -1105) T) ((-867 . -1018) NIL) ((-731 . -1105) T) ((-711 . -1105) T) ((-653 . -613) 126794) ((-1257 . -489) 126778) ((-1135 . -38) 126738) ((-959 . -23) T) ((-861 . -1093) T) ((-839 . -102) T) ((-813 . -21) T) ((-813 . -25) T) ((-731 . -23) T) ((-711 . -23) T) ((-110 . -656) T) ((-906 . -643) 126703) ((-580 . -1051) 126668) ((-518 . -1051) 126613) ((-227 . -57) 126571) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-689 . -290) T) ((-862 . -38) 126541) ((-580 . -111) 126497) ((-518 . -111) 126426) ((-1080 . -613) 126162) ((-418 . -1105) T) ((-316 . -1052) 126052) ((-313 . -1052) T) ((-128 . -1208) T) ((-778 . -613) 125800) ((-776 . -613) 125566) ((-653 . -1045) T) ((-1285 . -1093) T) ((-454 . -613) 125351) ((-169 . -307) 125282) ((-418 . -23) T) ((-40 . -610) 125264) ((-40 . -611) 125248) ((-108 . -988) 125230) ((-116 . -865) 125214) ((-644 . -613) 125198) ((-48 . -514) 125164) ((-1194 . -1006) 125148) ((-1174 . -610) 125115) ((-1181 . -34) T) ((-950 . -610) 125081) ((-917 . -610) 125063) ((-1106 . -846) 125014) ((-767 . -610) 124996) ((-667 . -610) 124978) ((-1149 . -309) 124916) ((-479 . -34) T) ((-1085 . -1208) T) ((-477 . -452) T) ((-1134 . -34) T) ((-1080 . -1045) T) ((-50 . -613) 124885) ((-778 . -1045) T) ((-776 . -1045) T) ((-642 . -235) 124869) ((-629 . -235) 124815) ((-580 . -613) 124765) ((-518 . -613) 124695) ((-1230 . -307) 124674) ((-1080 . -326) 124635) ((-454 . -1045) T) ((-1171 . -21) T) ((-1080 . -233) 124614) ((-778 . -326) 124591) ((-778 . -233) T) ((-776 . -326) 124563) ((-727 . -1212) 124542) ((-327 . -646) 124526) ((-1171 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 124505) ((-327 . -373) 124489) ((-497 . -34) T) ((-496 . -34) T) ((-999 . -1144) NIL) ((-727 . -555) 124420) ((-632 . -102) T) ((-604 . -102) T) ((-355 . -722) T) ((-352 . -722) T) ((-344 . -722) T) ((-264 . -722) T) ((-247 . -722) T) ((-1042 . -309) 124328) ((-897 . -1093) 124306) ((-50 . -1045) T) ((-1269 . -21) T) ((-1269 . -25) T) ((-1167 . -555) 124285) ((-1166 . -1212) 124264) ((-580 . -1045) T) ((-518 . -1045) T) ((-1160 . -1212) 124243) ((-361 . -1034) 124227) ((-322 . -1034) 124211) ((-1020 . -290) T) ((-379 . -882) 124193) ((-1166 . -555) 124144) ((-1160 . -555) 124095) ((-999 . -38) 124040) ((-795 . -1105) T) ((-906 . -722) T) ((-580 . -243) T) ((-580 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1119 . -555) 124019) ((-354 . -290) T) ((-642 . -690) 124003) ((-379 . -1034) 123963) ((-1113 . -1052) T) ((-103 . -125) 123947) ((-795 . -23) T) ((-1279 . -1274) 123923) ((-1257 . -286) 123900) ((-407 . -309) 123865) ((-1277 . -1274) 123844) ((-1243 . -1093) T) ((-866 . -610) 123826) ((-832 . -1034) 123795) ((-203 . -783) T) ((-202 . -783) T) ((-201 . -783) T) ((-200 . -783) T) ((-199 . -783) T) ((-198 . -783) T) ((-197 . -783) T) ((-196 . -783) T) ((-195 . -783) T) ((-194 . -783) T) ((-547 . -610) 123777) ((-495 . -998) T) ((-274 . -835) T) ((-273 . -835) T) ((-272 . -835) T) ((-271 . -835) T) ((-48 . -290) T) ((-270 . -835) T) ((-269 . -835) T) ((-268 . -835) T) ((-193 . -783) T) ((-609 . -846) T) ((-649 . -411) 123761) ((-223 . -613) 123723) ((-110 . -846) T) ((-648 . -21) T) ((-648 . -25) T) ((-1280 . -38) 123693) ((-117 . -286) 123644) ((-1257 . -19) 123628) ((-1257 . -601) 123605) ((-1270 . -1093) T) ((-1070 . -1093) T) ((-983 . -1093) T) ((-959 . -131) T) ((-733 . -1093) T) ((-731 . -131) T) ((-711 . -131) T) ((-511 . -789) T) ((-407 . -1144) 123583) ((-453 . -131) T) ((-511 . -790) T) ((-223 . -1045) T) ((-294 . -102) 123365) ((-141 . -1093) T) ((-694 . -998) T) ((-91 . -1208) T) ((-127 . -610) 123297) ((-121 . -610) 123229) ((-1285 . -172) T) ((-1166 . -363) 123208) ((-1160 . -363) 123187) ((-316 . -1093) T) ((-418 . -131) T) ((-313 . -1093) T) ((-407 . -38) 123139) ((-1126 . -102) T) ((-1243 . -713) 123031) ((-649 . -1052) T) ((-1128 . -1252) T) ((-319 . -145) 123010) ((-319 . -147) 122989) ((-139 . -1093) T) ((-136 . -1093) T) ((-114 . -1093) T) ((-854 . -102) T) ((-579 . -610) 122971) ((-563 . -611) 122870) ((-563 . -610) 122852) ((-495 . -610) 122834) ((-495 . -611) 122779) ((-485 . -23) T) ((-482 . -846) 122730) ((-487 . -636) 122712) ((-961 . -610) 122694) ((-217 . -636) 122676) ((-225 . -404) T) ((-657 . -643) 122660) ((-55 . -610) 122642) ((-1165 . -916) 122621) ((-727 . -1105) T) ((-351 . -102) T) ((-1207 . -1076) T) ((-1113 . -840) T) ((-814 . -846) T) ((-727 . -23) T) ((-343 . -1051) 122566) ((-1151 . -1150) T) ((-1140 . -107) 122550) ((-1167 . -1105) T) ((-1166 . -1105) T) ((-515 . -1034) 122534) ((-1160 . -1105) T) ((-1119 . -1105) T) ((-343 . -111) 122463) ((-1000 . -1212) T) ((-126 . -1208) T) ((-910 . -1212) T) ((-689 . -286) NIL) ((-1258 . -610) 122445) ((-1167 . -23) T) ((-1166 . -23) T) ((-1160 . -23) T) ((-1000 . -555) T) ((-1135 . -231) 122429) ((-910 . -555) T) ((-1119 . -23) T) ((-248 . -610) 122411) ((-1068 . -1093) T) ((-795 . -131) T) ((-706 . -610) 122393) ((-316 . -713) 122303) ((-313 . -713) 122232) ((-694 . -610) 122214) ((-694 . -611) 122159) ((-407 . -400) 122143) ((-438 . -1093) T) ((-487 . -25) T) ((-487 . -21) T) ((-1113 . -1093) T) ((-217 . -25) T) ((-217 . -21) T) ((-708 . -411) 122127) ((-710 . -1034) 122096) ((-1257 . -610) 122008) ((-1257 . -611) 121969) ((-1243 . -172) T) ((-245 . -34) T) ((-343 . -613) 121899) ((-394 . -613) 121881) ((-922 . -970) T) ((-1194 . -1208) T) ((-657 . -787) 121860) ((-657 . -790) 121839) ((-398 . -395) T) ((-523 . -102) 121817) ((-1031 . -1093) T) ((-222 . -991) 121801) ((-504 . -102) T) ((-620 . -610) 121783) ((-45 . -846) NIL) ((-620 . -611) 121760) ((-1031 . -607) 121735) ((-897 . -514) 121668) ((-343 . -1045) T) ((-117 . -611) NIL) ((-117 . -610) 121650) ((-868 . -1208) T) ((-665 . -417) 121634) ((-665 . -1116) 121579) ((-500 . -151) 121561) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1051) 121506) ((-868 . -880) 121490) ((-868 . -882) 121415) ((-708 . -1052) T) ((-689 . -998) NIL) ((-3 . |UnionCategory|) T) ((-1241 . -47) 121385) ((-1220 . -47) 121362) ((-1134 . -1006) 121333) ((-225 . -916) T) ((-40 . -111) 121262) ((-868 . -1034) 121126) ((-1113 . -713) 121113) ((-1098 . -610) 121095) ((-1073 . -147) 121074) ((-1073 . -145) 121025) ((-1000 . -363) T) ((-319 . -1196) 120991) ((-379 . -307) T) ((-319 . -1193) 120957) ((-316 . -172) 120936) ((-313 . -172) T) ((-999 . -231) 120913) ((-910 . -363) T) ((-580 . -1276) 120900) ((-518 . -1276) 120877) ((-359 . -147) 120856) ((-359 . -145) 120807) ((-353 . -147) 120786) ((-353 . -145) 120737) ((-605 . -1184) 120713) ((-345 . -147) 120692) ((-345 . -145) 120643) ((-319 . -35) 120609) ((-475 . -1184) 120588) ((0 . |EnumerationCategory|) T) ((-319 . -95) 120554) ((-379 . -1018) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 120504) ((-649 . -1093) T) ((-605 . -107) 120451) ((-485 . -131) T) ((-475 . -107) 120401) ((-240 . -1105) 120311) ((-868 . -377) 120295) ((-868 . -338) 120279) ((-240 . -23) 120149) ((-40 . -613) 120079) ((-1056 . -916) T) ((-1056 . -816) T) ((-580 . -368) T) ((-518 . -368) T) ((-351 . -1144) T) ((-327 . -34) T) ((-44 . -417) 120063) ((-1174 . -613) 119998) ((-869 . -1208) T) ((-390 . -740) 119982) ((-1270 . -514) 119915) ((-727 . -131) T) ((-667 . -613) 119899) ((-1249 . -555) 119878) ((-1242 . -1212) 119857) ((-1242 . -555) 119808) ((-1221 . -1212) 119787) ((-311 . -1076) T) ((-1221 . -555) 119738) ((-733 . -514) 119671) ((-1220 . -1208) 119650) ((-1220 . -882) 119523) ((-889 . -1093) T) ((-144 . -840) T) ((-1220 . -880) 119493) ((-686 . -610) 119475) ((-1167 . -131) T) ((-523 . -309) 119413) ((-1166 . -131) T) ((-141 . -514) NIL) ((-1160 . -131) T) ((-1119 . -131) T) ((-1020 . -998) T) ((-1000 . -23) T) ((-351 . -38) 119378) ((-1000 . -1105) T) ((-910 . -1105) T) ((-82 . -610) 119360) ((-40 . -1045) T) ((-866 . -1051) 119347) ((-999 . -349) NIL) ((-868 . -896) 119306) ((-696 . -102) T) ((-967 . -23) T) ((-599 . -1208) T) ((-910 . -23) T) ((-866 . -111) 119291) ((-427 . -1105) T) ((-213 . -1093) T) ((-474 . -47) 119261) ((-134 . -102) T) ((-40 . -233) 119233) ((-40 . -243) T) ((-116 . -102) T) ((-594 . -555) 119212) ((-593 . -555) 119191) ((-689 . -610) 119173) ((-689 . -611) 119081) ((-316 . -514) 119047) ((-313 . -514) 118939) ((-1241 . -1034) 118923) ((-1220 . -1034) 118709) ((-995 . -411) 118693) ((-427 . -23) T) ((-1113 . -172) T) ((-1243 . -290) T) ((-649 . -713) 118663) ((-144 . -1093) T) ((-48 . -998) T) ((-407 . -231) 118647) ((-295 . -235) 118597) ((-867 . -916) T) ((-867 . -816) NIL) ((-866 . -613) 118569) ((-860 . -846) T) ((-1220 . -338) 118539) ((-1220 . -377) 118509) ((-222 . -1114) 118493) ((-1257 . -288) 118470) ((-1202 . -643) 118395) ((-959 . -21) T) ((-959 . -25) T) ((-731 . -21) T) ((-731 . -25) T) ((-711 . -21) T) ((-711 . -25) T) ((-707 . -643) 118360) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-995 . -1052) T) ((-866 . -1045) T) ((-770 . -102) T) ((-1242 . -363) 118339) ((-1241 . -896) 118245) ((-1221 . -363) 118224) ((-1220 . -896) 118075) ((-1020 . -610) 118057) ((-407 . -824) 118010) ((-1167 . -493) 117976) ((-169 . -916) 117907) ((-1166 . -493) 117873) ((-1160 . -493) 117839) ((-708 . -1093) T) ((-1119 . -493) 117805) ((-579 . -1051) 117792) ((-563 . -1051) 117779) ((-495 . -1051) 117744) ((-316 . -290) 117723) ((-313 . -290) T) ((-354 . -610) 117705) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 117684) ((-579 . -111) 117669) ((-563 . -111) 117654) ((-495 . -111) 117610) ((-1169 . -882) 117577) ((-897 . -489) 117561) ((-48 . -610) 117543) ((-48 . -611) 117488) ((-240 . -131) 117358) ((-1230 . -916) 117337) ((-812 . -1212) 117316) ((-388 . -490) 117297) ((-1031 . -514) 117141) ((-388 . -610) 117107) ((-812 . -555) 117038) ((-584 . -643) 117013) ((-264 . -47) 116985) ((-247 . -47) 116942) ((-531 . -509) 116919) ((-579 . -613) 116891) ((-563 . -613) 116863) ((-495 . -613) 116796) ((-996 . -1208) T) ((-694 . -1051) 116761) ((-1249 . -23) T) ((-1249 . -1105) T) ((-1242 . -1105) T) ((-1221 . -1105) T) ((-999 . -370) 116733) ((-112 . -368) T) ((-474 . -896) 116639) ((-1242 . -23) T) ((-900 . -610) 116621) ((-55 . -613) 116603) ((-91 . -107) 116587) ((-1202 . -722) T) ((-901 . -846) 116538) ((-696 . -1144) T) ((-694 . -111) 116494) ((-1221 . -23) T) ((-594 . -1105) T) ((-593 . -1105) T) ((-708 . -713) 116323) ((-707 . -722) T) ((-1113 . -290) T) ((-1000 . -131) T) ((-487 . -846) T) ((-967 . -131) T) ((-910 . -131) T) ((-795 . -25) T) ((-217 . -846) T) ((-795 . -21) T) ((-579 . -1045) T) ((-563 . -1045) T) ((-495 . -1045) T) ((-594 . -23) T) ((-343 . -1276) 116300) ((-319 . -452) 116279) ((-339 . -309) 116266) ((-593 . -23) T) ((-427 . -131) T) ((-653 . -643) 116240) ((-245 . -1006) 116224) ((-868 . -307) T) ((-1281 . -1271) 116208) ((-767 . -788) T) ((-767 . -791) T) ((-696 . -38) 116195) ((-563 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1143 . -235) 116145) ((-1080 . -905) 116124) ((-116 . -38) 116111) ((-209 . -796) T) ((-208 . -796) T) ((-207 . -796) T) ((-206 . -796) T) ((-868 . -1018) 116089) ((-1270 . -489) 116073) ((-778 . -905) 116052) ((-776 . -905) 116031) ((-1181 . -1208) T) ((-454 . -905) 116010) ((-733 . -489) 115994) ((-1080 . -643) 115919) ((-694 . -613) 115854) ((-778 . -643) 115779) ((-620 . -1051) 115766) ((-479 . -1208) T) ((-343 . -368) T) ((-141 . -489) 115748) ((-776 . -643) 115673) ((-1134 . -1208) T) ((-548 . -846) T) ((-461 . -643) 115644) ((-264 . -882) 115503) ((-247 . -882) NIL) ((-117 . -1051) 115448) ((-454 . -643) 115373) ((-659 . -1034) 115350) ((-620 . -111) 115335) ((-355 . -1034) 115319) ((-352 . -1034) 115303) ((-344 . -1034) 115287) ((-264 . -1034) 115131) ((-247 . -1034) 115007) ((-117 . -111) 114936) ((-59 . -1208) T) ((-519 . -1208) T) ((-516 . -1208) T) ((-497 . -1208) T) ((-496 . -1208) T) ((-437 . -610) 114918) ((-434 . -610) 114900) ((-3 . -102) T) ((-1023 . -1201) 114869) ((-829 . -102) T) ((-684 . -57) 114827) ((-694 . -1045) T) ((-50 . -643) 114801) ((-289 . -452) T) ((-476 . -1201) 114770) ((0 . -102) T) ((-580 . -643) 114735) ((-518 . -643) 114680) ((-49 . -102) T) ((-906 . -1034) 114667) ((-694 . -243) T) ((-1073 . -409) 114646) ((-727 . -636) 114594) ((-995 . -1093) T) ((-708 . -172) 114485) ((-620 . -613) 114380) ((-487 . -988) 114362) ((-264 . -377) 114346) ((-247 . -377) 114330) ((-399 . -1093) T) ((-1022 . -102) 114308) ((-339 . -38) 114292) ((-217 . -988) 114274) ((-117 . -613) 114204) ((-174 . -38) 114136) ((-1241 . -307) 114115) ((-1220 . -307) 114094) ((-653 . -722) T) ((-99 . -610) 114076) ((-1160 . -636) 114028) ((-485 . -25) T) ((-485 . -21) T) ((-1220 . -1018) 113980) ((-620 . -1045) T) ((-379 . -404) T) ((-390 . -102) T) ((-1098 . -615) 113895) ((-264 . -896) 113841) ((-247 . -896) 113818) ((-117 . -1045) T) ((-812 . -1105) T) ((-1080 . -722) T) ((-620 . -233) 113797) ((-618 . -102) T) ((-778 . -722) T) ((-776 . -722) T) ((-413 . -1105) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1213 . -846) T) ((-454 . -722) T) ((-812 . -23) T) ((-727 . -25) T) ((-727 . -21) T) ((-698 . -846) T) ((-1070 . -286) 113776) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -763) 113758) ((-689 . -1051) 113708) ((-1249 . -131) T) ((-1242 . -131) T) ((-1221 . -131) T) ((-1167 . -25) T) ((-1135 . -411) 113692) ((-632 . -367) 113624) ((-604 . -367) 113556) ((-1149 . -1142) 113540) ((-103 . -1093) 113518) ((-1167 . -21) T) ((-1166 . -21) T) ((-861 . -610) 113500) ((-995 . -713) 113448) ((-223 . -643) 113415) ((-689 . -111) 113349) ((-50 . -722) T) ((-1166 . -25) T) ((-351 . -349) T) ((-1160 . -21) T) ((-1073 . -452) 113300) ((-1160 . -25) T) ((-708 . -514) 113247) ((-580 . -722) T) ((-518 . -722) T) ((-1119 . -21) T) ((-1119 . -25) T) ((-594 . -131) T) ((-593 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 113226) ((-1215 . -102) T) ((-313 . -286) 113161) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-686 . -613) 113145) ((-1285 . -610) 113127) ((-1285 . -611) 113109) ((-1073 . -402) 113088) ((-1031 . -489) 113019) ((-563 . -791) T) ((-563 . -788) T) ((-1057 . -235) 112965) ((-359 . -402) 112916) ((-353 . -402) 112867) ((-345 . -402) 112818) ((-1272 . -1105) T) ((-689 . -613) 112753) ((-1272 . -23) T) ((-1259 . -102) T) ((-175 . -610) 112735) ((-1135 . -1052) T) ((-547 . -368) T) ((-665 . -740) 112719) ((-1171 . -145) 112698) ((-1171 . -147) 112677) ((-1139 . -1093) T) ((-1139 . -1065) 112646) ((-69 . -1208) T) ((-1020 . -1051) 112583) ((-862 . -1052) T) ((-240 . -636) 112489) ((-689 . -1045) T) ((-354 . -1051) 112434) ((-61 . -1208) T) ((-1020 . -111) 112350) ((-897 . -610) 112261) ((-689 . -243) T) ((-689 . -233) NIL) ((-839 . -844) 112240) ((-694 . -791) T) ((-694 . -788) T) ((-999 . -411) 112217) ((-354 . -111) 112146) ((-379 . -916) T) ((-407 . -844) 112125) ((-708 . -290) 112036) ((-223 . -722) T) ((-1249 . -493) 112002) ((-1242 . -493) 111968) ((-1221 . -493) 111934) ((-577 . -1093) T) ((-316 . -998) 111913) ((-222 . -1093) 111891) ((-319 . -969) 111853) ((-105 . -102) T) ((-48 . -1051) 111818) ((-1281 . -102) T) ((-381 . -102) T) ((-48 . -111) 111774) ((-1000 . -636) 111756) ((-1243 . -610) 111738) ((-531 . -102) T) ((-500 . -102) T) ((-1126 . -1127) 111722) ((-152 . -1264) 111706) ((-245 . -1208) T) ((-1207 . -102) T) ((-1020 . -613) 111643) ((-1165 . -1212) 111622) ((-354 . -613) 111552) ((-1118 . -1212) 111531) ((-240 . -21) 111441) ((-240 . -25) 111292) ((-127 . -119) 111276) ((-121 . -119) 111260) ((-44 . -740) 111244) ((-1165 . -555) 111155) ((-1118 . -555) 111086) ((-1031 . -286) 111061) ((-1159 . -1076) T) ((-990 . -1076) T) ((-812 . -131) T) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1105) 110971) ((-250 . -1105) 110881) ((-1020 . -1045) T) ((-999 . -1052) T) ((-48 . -613) 110814) ((-343 . -643) 110759) ((-618 . -38) 110743) ((-1270 . -610) 110705) ((-1270 . -611) 110666) ((-1070 . -610) 110648) ((-1020 . -243) T) ((-354 . -1045) T) ((-811 . -1264) 110618) ((-251 . -23) T) ((-250 . -23) T) ((-983 . -610) 110600) ((-733 . -611) 110561) ((-733 . -610) 110543) ((-795 . -846) 110522) ((-1152 . -151) 110469) ((-995 . -514) 110381) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -613) 110362) ((-1000 . -25) T) ((-141 . -610) 110344) ((-141 . -611) 110303) ((-906 . -307) T) ((-1000 . -21) T) ((-967 . -25) T) ((-910 . -21) T) ((-910 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-839 . -411) 110287) ((-48 . -1045) T) ((-1279 . -1271) 110271) ((-1277 . -1271) 110255) ((-1031 . -601) 110230) ((-316 . -611) 110091) ((-316 . -610) 110073) ((-313 . -611) NIL) ((-313 . -610) 110055) ((-48 . -243) T) ((-48 . -233) T) ((-649 . -286) 110016) ((-549 . -235) 109966) ((-139 . -610) 109933) ((-136 . -610) 109915) ((-114 . -610) 109897) ((-477 . -38) 109862) ((-1281 . -1278) 109841) ((-1272 . -131) T) ((-1280 . -1052) T) ((-1075 . -102) T) ((-88 . -1208) T) ((-500 . -309) NIL) ((-996 . -107) 109825) ((-885 . -1093) T) ((-881 . -1093) T) ((-1257 . -646) 109809) ((-1257 . -373) 109793) ((-327 . -1208) T) ((-591 . -846) T) ((-1135 . -1093) T) ((-1135 . -1048) 109733) ((-103 . -514) 109666) ((-923 . -610) 109648) ((-343 . -722) T) ((-30 . -610) 109630) ((-862 . -1093) T) ((-839 . -1052) 109609) ((-40 . -643) 109554) ((-225 . -1212) T) ((-407 . -1052) T) ((-1151 . -151) 109536) ((-995 . -290) 109487) ((-614 . -1093) T) ((-225 . -555) T) ((-319 . -1238) 109471) ((-319 . -1235) 109441) ((-1181 . -1184) 109420) ((-1068 . -610) 109402) ((-642 . -151) 109386) ((-629 . -151) 109332) ((-1181 . -107) 109282) ((-479 . -1184) 109261) ((-487 . -147) T) ((-487 . -145) NIL) ((-1113 . -611) 109176) ((-438 . -610) 109158) ((-217 . -147) T) ((-217 . -145) NIL) ((-1113 . -610) 109140) ((-129 . -102) T) ((-52 . -102) T) ((-1221 . -636) 109092) ((-479 . -107) 109042) ((-989 . -23) T) ((-1281 . -38) 109012) ((-1165 . -1105) T) ((-1118 . -1105) T) ((-1056 . -1212) T) ((-311 . -102) T) ((-850 . -1105) T) ((-948 . -1212) 108991) ((-481 . -1212) 108970) ((-727 . -846) 108949) ((-1056 . -555) T) ((-948 . -555) 108880) ((-1165 . -23) T) ((-1118 . -23) T) ((-850 . -23) T) ((-481 . -555) 108811) ((-1135 . -713) 108743) ((-1139 . -514) 108676) ((-1031 . -611) NIL) ((-1031 . -610) 108658) ((-96 . -1076) T) ((-862 . -713) 108628) ((-1202 . -47) 108597) ((-251 . -131) T) ((-250 . -131) T) ((-1097 . -1093) T) ((-999 . -1093) T) ((-62 . -610) 108579) ((-1160 . -846) NIL) ((-1020 . -788) T) ((-1020 . -791) T) ((-1285 . -1051) 108566) ((-1285 . -111) 108551) ((-866 . -643) 108538) ((-1249 . -25) T) ((-1249 . -21) T) ((-1242 . -21) T) ((-1242 . -25) T) ((-1221 . -21) T) ((-1221 . -25) T) ((-1023 . -151) 108522) ((-868 . -816) 108501) ((-868 . -916) T) ((-708 . -286) 108428) ((-594 . -21) T) ((-594 . -25) T) ((-593 . -21) T) ((-40 . -722) T) ((-222 . -514) 108361) ((-593 . -25) T) ((-476 . -151) 108345) ((-463 . -151) 108329) ((-917 . -790) T) ((-917 . -722) T) ((-767 . -789) T) ((-767 . -790) T) ((-506 . -1093) T) ((-502 . -1093) T) ((-767 . -722) T) ((-225 . -363) T) ((-1149 . -1093) 108307) ((-867 . -1212) T) ((-649 . -610) 108289) ((-867 . -555) T) ((-689 . -368) NIL) ((-1285 . -613) 108271) ((-359 . -1264) 108255) ((-665 . -102) T) ((-353 . -1264) 108239) ((-345 . -1264) 108223) ((-1280 . -1093) T) ((-520 . -846) 108202) ((-813 . -452) 108181) ((-1042 . -1093) T) ((-1042 . -1065) 108110) ((-1023 . -972) 108079) ((-815 . -1105) T) ((-999 . -713) 108024) ((-386 . -1105) T) ((-476 . -972) 107993) ((-463 . -972) 107962) ((-110 . -151) 107944) ((-73 . -610) 107926) ((-889 . -610) 107908) ((-1073 . -720) 107887) ((-1285 . -1045) T) ((-812 . -636) 107835) ((-294 . -1052) 107777) ((-169 . -1212) 107682) ((-225 . -1105) T) ((-324 . -23) T) ((-1160 . -988) 107634) ((-839 . -1093) T) ((-1243 . -1051) 107539) ((-1119 . -736) 107518) ((-1241 . -916) 107497) ((-1220 . -916) 107476) ((-866 . -722) T) ((-169 . -555) 107387) ((-579 . -643) 107374) ((-563 . -643) 107361) ((-407 . -1093) T) ((-263 . -1093) T) ((-213 . -610) 107343) ((-495 . -643) 107308) ((-225 . -23) T) ((-1220 . -816) 107261) ((-1279 . -102) T) ((-354 . -1276) 107238) ((-1277 . -102) T) ((-1243 . -111) 107130) ((-144 . -610) 107112) ((-989 . -131) T) ((-44 . -102) T) ((-240 . -846) 107063) ((-1230 . -1212) 107042) ((-103 . -489) 107026) ((-1280 . -713) 106996) ((-1080 . -47) 106957) ((-1056 . -1105) T) ((-948 . -1105) T) ((-127 . -34) T) ((-121 . -34) T) ((-778 . -47) 106934) ((-776 . -47) 106906) ((-1230 . -555) 106817) ((-354 . -368) T) ((-481 . -1105) T) ((-1165 . -131) T) ((-1118 . -131) T) ((-454 . -47) 106796) ((-867 . -363) T) ((-850 . -131) T) ((-152 . -102) T) ((-1056 . -23) T) ((-948 . -23) T) ((-570 . -555) T) ((-812 . -25) T) ((-812 . -21) T) ((-1135 . -514) 106729) ((-590 . -1076) T) ((-584 . -1034) 106713) ((-1243 . -613) 106587) ((-481 . -23) T) ((-351 . -1052) T) ((-1202 . -896) 106568) ((-665 . -309) 106506) ((-1106 . -1264) 106476) ((-694 . -643) 106441) ((-999 . -172) T) ((-959 . -145) 106420) ((-632 . -1093) T) ((-604 . -1093) T) ((-959 . -147) 106399) ((-1000 . -846) T) ((-731 . -147) 106378) ((-731 . -145) 106357) ((-967 . -846) T) ((-474 . -916) 106336) ((-316 . -1051) 106246) ((-313 . -1051) 106175) ((-995 . -286) 106133) ((-407 . -713) 106085) ((-696 . -844) T) ((-1243 . -1045) T) ((-316 . -111) 105981) ((-313 . -111) 105894) ((-960 . -102) T) ((-811 . -102) 105684) ((-708 . -611) NIL) ((-708 . -610) 105666) ((-653 . -1034) 105562) ((-1243 . -326) 105506) ((-1031 . -288) 105481) ((-579 . -722) T) ((-563 . -790) T) ((-169 . -363) 105432) ((-563 . -787) T) ((-563 . -722) T) ((-495 . -722) T) ((-1139 . -489) 105416) ((-1080 . -882) NIL) ((-867 . -1105) T) ((-117 . -905) NIL) ((-1279 . -1278) 105392) ((-1277 . -1278) 105371) ((-778 . -882) NIL) ((-776 . -882) 105230) ((-1272 . -25) T) ((-1272 . -21) T) ((-1205 . -102) 105208) ((-1099 . -395) T) ((-620 . -643) 105195) ((-454 . -882) NIL) ((-670 . -102) 105173) ((-1080 . -1034) 105000) ((-867 . -23) T) ((-778 . -1034) 104859) ((-776 . -1034) 104716) ((-117 . -643) 104661) ((-454 . -1034) 104537) ((-316 . -613) 104101) ((-313 . -613) 103984) ((-644 . -1034) 103968) ((-624 . -102) T) ((-222 . -489) 103952) ((-1257 . -34) T) ((-136 . -613) 103936) ((-632 . -713) 103920) ((-604 . -713) 103904) ((-665 . -38) 103864) ((-319 . -102) T) ((-85 . -610) 103846) ((-50 . -1034) 103830) ((-1113 . -1051) 103817) ((-1080 . -377) 103801) ((-778 . -377) 103785) ((-694 . -722) T) ((-694 . -790) T) ((-694 . -787) T) ((-580 . -1034) 103772) ((-518 . -1034) 103749) ((-60 . -57) 103711) ((-324 . -131) T) ((-316 . -1045) 103601) ((-313 . -1045) T) ((-169 . -1105) T) ((-776 . -377) 103585) ((-45 . -151) 103535) ((-1000 . -988) 103517) ((-454 . -377) 103501) ((-407 . -172) T) ((-316 . -243) 103480) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1093) 103262) ((-225 . -131) T) ((-1113 . -111) 103247) ((-169 . -23) T) ((-795 . -147) 103226) ((-795 . -145) 103205) ((-251 . -636) 103111) ((-250 . -636) 103017) ((-319 . -284) 102983) ((-1149 . -514) 102916) ((-1126 . -1093) T) ((-225 . -1054) T) ((-811 . -309) 102854) ((-1080 . -896) 102789) ((-778 . -896) 102732) ((-776 . -896) 102716) ((-1279 . -38) 102686) ((-1277 . -38) 102656) ((-1230 . -1105) T) ((-851 . -1105) T) ((-454 . -896) 102633) ((-854 . -1093) T) ((-1230 . -23) T) ((-1113 . -613) 102605) ((-570 . -1105) T) ((-851 . -23) T) ((-620 . -722) T) ((-355 . -916) T) ((-352 . -916) T) ((-289 . -102) T) ((-344 . -916) T) ((-1056 . -131) T) ((-966 . -1076) T) ((-948 . -131) T) ((-117 . -790) NIL) ((-117 . -787) NIL) ((-117 . -722) T) ((-689 . -905) NIL) ((-1042 . -514) 102506) ((-481 . -131) T) ((-570 . -23) T) ((-670 . -309) 102444) ((-632 . -757) T) ((-604 . -757) T) ((-1221 . -846) NIL) ((-999 . -290) T) ((-251 . -21) T) ((-689 . -643) 102394) ((-351 . -1093) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 102378) ((-2 . -102) T) ((-906 . -916) T) ((-482 . -1264) 102348) ((-223 . -1034) 102325) ((-1113 . -1045) T) ((-707 . -307) T) ((-294 . -713) 102267) ((-696 . -1052) T) ((-487 . -452) T) ((-407 . -514) 102179) ((-217 . -452) T) ((-1113 . -233) T) ((-295 . -151) 102129) ((-995 . -611) 102090) ((-995 . -610) 102072) ((-985 . -610) 102054) ((-116 . -1052) T) ((-649 . -1051) 102038) ((-225 . -493) T) ((-399 . -610) 102020) ((-399 . -611) 101997) ((-1049 . -1264) 101967) ((-649 . -111) 101946) ((-1135 . -489) 101930) ((-811 . -38) 101900) ((-63 . -441) T) ((-63 . -395) T) ((-1152 . -102) T) ((-867 . -131) T) ((-484 . -102) 101878) ((-1285 . -368) T) ((-1073 . -102) T) ((-1055 . -102) T) ((-351 . -713) 101823) ((-727 . -147) 101802) ((-727 . -145) 101781) ((-649 . -613) 101699) ((-1020 . -643) 101636) ((-523 . -1093) 101614) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1093) T) ((-354 . -643) 101559) ((-1165 . -636) 101507) ((-1118 . -636) 101455) ((-385 . -509) 101434) ((-829 . -844) 101413) ((-379 . -1212) T) ((-689 . -722) T) ((-339 . -1052) T) ((-1221 . -988) 101365) ((-174 . -1052) T) ((-103 . -610) 101297) ((-1167 . -145) 101276) ((-1167 . -147) 101255) ((-379 . -555) T) ((-1166 . -147) 101234) ((-1166 . -145) 101213) ((-1160 . -145) 101120) ((-407 . -290) T) ((-1160 . -147) 101027) ((-1119 . -147) 101006) ((-1119 . -145) 100985) ((-319 . -38) 100826) ((-169 . -131) T) ((-313 . -791) NIL) ((-313 . -788) NIL) ((-649 . -1045) T) ((-48 . -643) 100791) ((-889 . -613) 100768) ((-1159 . -102) T) ((-990 . -102) T) ((-989 . -21) T) ((-127 . -1006) 100752) ((-121 . -1006) 100736) ((-989 . -25) T) ((-897 . -119) 100720) ((-1151 . -102) T) ((-812 . -846) 100699) ((-1230 . -131) T) ((-1165 . -25) T) ((-1165 . -21) T) ((-851 . -131) T) ((-1118 . -25) T) ((-1118 . -21) T) ((-850 . -25) T) ((-850 . -21) T) ((-778 . -307) 100678) ((-642 . -102) 100656) ((-629 . -102) T) ((-1152 . -309) 100451) ((-570 . -131) T) ((-618 . -844) 100430) ((-1149 . -489) 100414) ((-1143 . -151) 100364) ((-1139 . -610) 100326) ((-1139 . -611) 100287) ((-1020 . -787) T) ((-1020 . -790) T) ((-1020 . -722) T) ((-708 . -1051) 100110) ((-484 . -309) 100048) ((-453 . -417) 100018) ((-351 . -172) T) ((-289 . -38) 100005) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1034) 99982) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -722) T) ((-708 . -111) 99791) ((-665 . -231) 99775) ((-580 . -307) T) ((-518 . -307) T) ((-294 . -514) 99724) ((-108 . -309) NIL) ((-72 . -395) T) ((-1106 . -102) 99514) ((-829 . -411) 99498) ((-1113 . -791) T) ((-1113 . -788) T) ((-696 . -1093) T) ((-577 . -610) 99480) ((-379 . -363) T) ((-169 . -493) 99458) ((-222 . -610) 99390) ((-134 . -1093) T) ((-116 . -1093) T) ((-48 . -722) T) ((-1042 . -489) 99355) ((-141 . -425) 99337) ((-141 . -368) T) ((-1023 . -102) T) ((-512 . -509) 99316) ((-708 . -613) 99072) ((-476 . -102) T) ((-463 . -102) T) ((-1030 . -1105) T) ((-1174 . -1034) 99007) ((-1167 . -35) 98973) ((-1167 . -95) 98939) ((-1167 . -1196) 98905) ((-1167 . -1193) 98871) ((-1151 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1073 . -1144) 98850) ((-1166 . -1193) 98816) ((-1166 . -1196) 98782) ((-1030 . -23) T) ((-1166 . -95) 98748) ((-570 . -493) T) ((-1166 . -35) 98714) ((-1160 . -1193) 98680) ((-1160 . -1196) 98646) ((-1160 . -95) 98612) ((-361 . -1105) T) ((-359 . -1144) 98591) ((-353 . -1144) 98570) ((-345 . -1144) 98549) ((-1160 . -35) 98515) ((-1119 . -35) 98481) ((-1119 . -95) 98447) ((-108 . -1144) T) ((-1119 . -1196) 98413) ((-829 . -1052) 98392) ((-642 . -309) 98330) ((-629 . -309) 98181) ((-1119 . -1193) 98147) ((-708 . -1045) T) ((-1056 . -636) 98129) ((-1073 . -38) 97997) ((-948 . -636) 97945) ((-1000 . -147) T) ((-1000 . -145) NIL) ((-379 . -1105) T) ((-324 . -25) T) ((-322 . -23) T) ((-939 . -846) 97924) ((-708 . -326) 97901) ((-481 . -636) 97849) ((-40 . -1034) 97737) ((-708 . -233) T) ((-696 . -713) 97724) ((-339 . -1093) T) ((-174 . -1093) T) ((-331 . -846) T) ((-418 . -452) 97674) ((-379 . -23) T) ((-359 . -38) 97639) ((-353 . -38) 97604) ((-345 . -38) 97569) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-832 . -1105) T) ((-108 . -38) 97519) ((-823 . -1105) T) ((-770 . -1093) T) ((-116 . -713) 97506) ((-667 . -1034) 97490) ((-609 . -102) T) ((-832 . -23) T) ((-823 . -23) T) ((-1149 . -286) 97467) ((-1106 . -309) 97405) ((-1095 . -235) 97389) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-40 . -377) 97366) ((-96 . -102) T) ((-648 . -848) 97350) ((-1128 . -1076) T) ((-1056 . -21) T) ((-1056 . -25) T) ((-811 . -231) 97319) ((-948 . -25) T) ((-948 . -21) T) ((-618 . -1052) T) ((-1113 . -368) T) ((-481 . -25) T) ((-481 . -21) T) ((-1023 . -309) 97257) ((-885 . -610) 97239) ((-881 . -610) 97221) ((-251 . -846) 97172) ((-250 . -846) 97123) ((-523 . -514) 97056) ((-867 . -636) 97033) ((-476 . -309) 96971) ((-463 . -309) 96909) ((-351 . -290) T) ((-1149 . -1245) 96893) ((-1135 . -610) 96855) ((-1135 . -611) 96816) ((-1133 . -102) T) ((-995 . -1051) 96712) ((-40 . -896) 96664) ((-1149 . -601) 96641) ((-1285 . -643) 96628) ((-862 . -490) 96605) ((-1057 . -151) 96551) ((-868 . -1212) T) ((-995 . -111) 96433) ((-339 . -713) 96417) ((-862 . -610) 96379) ((-174 . -713) 96311) ((-407 . -286) 96269) ((-868 . -555) T) ((-108 . -400) 96251) ((-84 . -384) T) ((-84 . -395) T) ((-696 . -172) T) ((-614 . -610) 96233) ((-99 . -722) T) ((-482 . -102) 96023) ((-99 . -473) T) ((-116 . -172) T) ((-1106 . -38) 95993) ((-169 . -636) 95941) ((-1049 . -102) T) ((-995 . -613) 95831) ((-867 . -25) T) ((-811 . -238) 95810) ((-867 . -21) T) ((-814 . -102) T) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 95788) ((-127 . -1208) T) ((-121 . -1208) T) ((-1030 . -131) T) ((-665 . -367) 95772) ((-995 . -1045) T) ((-1230 . -636) 95720) ((-1097 . -610) 95702) ((-999 . -610) 95684) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1093) T) ((-999 . -611) 95668) ((-995 . -243) 95647) ((-995 . -233) 95626) ((-1285 . -722) T) ((-1249 . -145) 95605) ((-829 . -1093) T) ((-1249 . -147) 95584) ((-1242 . -147) 95563) ((-1242 . -145) 95542) ((-1241 . -1212) 95521) ((-1221 . -145) 95428) ((-1221 . -147) 95335) ((-1220 . -1212) 95314) ((-379 . -131) T) ((-563 . -882) 95296) ((0 . -1093) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1093) T) ((-1243 . -643) 95201) ((-1241 . -555) 95152) ((-710 . -1105) T) ((-1220 . -555) 95103) ((-563 . -1034) 95085) ((-593 . -147) 95064) ((-593 . -145) 95043) ((-495 . -1034) 94986) ((-1128 . -1130) T) ((-87 . -384) T) ((-87 . -395) T) ((-868 . -363) T) ((-832 . -131) T) ((-823 . -131) T) ((-710 . -23) T) ((-506 . -610) 94952) ((-502 . -610) 94934) ((-1281 . -1052) T) ((-379 . -1054) T) ((-1022 . -1093) 94912) ((-55 . -1034) 94894) ((-897 . -34) T) ((-482 . -309) 94832) ((-590 . -102) T) ((-1149 . -611) 94793) ((-1149 . -610) 94725) ((-1165 . -846) 94704) ((-45 . -102) T) ((-1118 . -846) 94683) ((-813 . -102) T) ((-1230 . -25) T) ((-1230 . -21) T) ((-851 . -25) T) ((-44 . -367) 94667) ((-851 . -21) T) ((-727 . -452) 94618) ((-1280 . -610) 94600) ((-1049 . -309) 94538) ((-666 . -1076) T) ((-603 . -1076) T) ((-390 . -1093) T) ((-570 . -25) T) ((-570 . -21) T) ((-180 . -1076) T) ((-161 . -1076) T) ((-156 . -1076) T) ((-154 . -1076) T) ((-618 . -1093) T) ((-694 . -882) 94520) ((-1257 . -1208) T) ((-227 . -309) 94458) ((-144 . -368) T) ((-1042 . -611) 94400) ((-1042 . -610) 94343) ((-313 . -905) NIL) ((-1215 . -840) T) ((-694 . -1034) 94288) ((-707 . -916) T) ((-474 . -1212) 94267) ((-1166 . -452) 94246) ((-1160 . -452) 94225) ((-330 . -102) T) ((-868 . -1105) T) ((-316 . -643) 94046) ((-313 . -643) 93975) ((-474 . -555) 93926) ((-339 . -514) 93892) ((-549 . -151) 93842) ((-40 . -307) T) ((-839 . -610) 93824) ((-696 . -290) T) ((-868 . -23) T) ((-379 . -493) T) ((-1073 . -231) 93794) ((-512 . -102) T) ((-407 . -611) 93601) ((-407 . -610) 93583) ((-263 . -610) 93565) ((-116 . -290) T) ((-1243 . -722) T) ((-1241 . -363) 93544) ((-1220 . -363) 93523) ((-1270 . -34) T) ((-1215 . -1093) T) ((-117 . -1208) T) ((-108 . -231) 93505) ((-1171 . -102) T) ((-477 . -1093) T) ((-523 . -489) 93489) ((-733 . -34) T) ((-482 . -38) 93459) ((-141 . -34) T) ((-117 . -880) 93436) ((-117 . -882) NIL) ((-620 . -1034) 93319) ((-640 . -846) 93298) ((-1269 . -102) T) ((-295 . -102) T) ((-708 . -368) 93277) ((-117 . -1034) 93254) ((-390 . -713) 93238) ((-618 . -713) 93222) ((-45 . -309) 93026) ((-812 . -145) 93005) ((-812 . -147) 92984) ((-1280 . -382) 92963) ((-815 . -846) T) ((-1259 . -1093) T) ((-1152 . -229) 92910) ((-386 . -846) 92889) ((-1249 . -1196) 92855) ((-1249 . -1193) 92821) ((-1242 . -1193) 92787) ((-515 . -131) T) ((-1242 . -1196) 92753) ((-1221 . -1193) 92719) ((-1221 . -1196) 92685) ((-1249 . -35) 92651) ((-1249 . -95) 92617) ((-632 . -610) 92586) ((-604 . -610) 92555) ((-225 . -846) T) ((-1242 . -95) 92521) ((-1242 . -35) 92487) ((-1241 . -1105) T) ((-1113 . -643) 92474) ((-1221 . -95) 92440) ((-1220 . -1105) T) ((-591 . -151) 92422) ((-1073 . -349) 92401) ((-174 . -290) T) ((-117 . -377) 92378) ((-117 . -338) 92355) ((-1221 . -35) 92321) ((-866 . -307) T) ((-313 . -790) NIL) ((-313 . -787) NIL) ((-316 . -722) 92170) ((-313 . -722) T) ((-474 . -363) 92149) ((-359 . -349) 92128) ((-353 . -349) 92107) ((-345 . -349) 92086) ((-316 . -473) 92065) ((-1241 . -23) T) ((-1220 . -23) T) ((-714 . -1105) T) ((-710 . -131) T) ((-648 . -102) T) ((-477 . -713) 92030) ((-45 . -282) 91980) ((-105 . -1093) T) ((-68 . -610) 91962) ((-966 . -102) T) ((-860 . -102) T) ((-620 . -896) 91921) ((-1281 . -1093) T) ((-381 . -1093) T) ((-1207 . -1093) T) ((-1106 . -231) 91890) ((-82 . -1208) T) ((-1056 . -846) T) ((-948 . -846) 91869) ((-117 . -896) NIL) ((-778 . -916) 91848) ((-709 . -846) T) ((-531 . -1093) T) ((-500 . -1093) T) ((-355 . -1212) T) ((-352 . -1212) T) ((-344 . -1212) T) ((-264 . -1212) 91827) ((-247 . -1212) 91806) ((-533 . -856) T) ((-481 . -846) 91785) ((-1151 . -824) T) ((-1135 . -1051) 91769) ((-390 . -757) T) ((-689 . -1208) T) ((-686 . -1034) 91753) ((-355 . -555) T) ((-352 . -555) T) ((-344 . -555) T) ((-264 . -555) 91684) ((-247 . -555) 91615) ((-525 . -1076) T) ((-1135 . -111) 91594) ((-453 . -740) 91564) ((-862 . -1051) 91534) ((-813 . -38) 91476) ((-689 . -880) 91458) ((-689 . -882) 91440) ((-295 . -309) 91244) ((-906 . -1212) T) ((-665 . -411) 91228) ((-862 . -111) 91193) ((-689 . -1034) 91138) ((-1000 . -452) T) ((-906 . -555) T) ((-533 . -610) 91120) ((-580 . -916) T) ((-474 . -1105) T) ((-518 . -916) T) ((-1149 . -288) 91097) ((-910 . -452) T) ((-65 . -610) 91079) ((-629 . -229) 91025) ((-474 . -23) T) ((-1113 . -790) T) ((-868 . -131) T) ((-1113 . -787) T) ((-1272 . -1274) 91004) ((-1113 . -722) T) ((-649 . -643) 90978) ((-294 . -610) 90719) ((-1135 . -613) 90637) ((-1031 . -34) T) ((-811 . -844) 90616) ((-579 . -307) T) ((-563 . -307) T) ((-495 . -307) T) ((-1281 . -713) 90586) ((-689 . -377) 90568) ((-689 . -338) 90550) ((-477 . -172) T) ((-381 . -713) 90520) ((-862 . -613) 90455) ((-867 . -846) NIL) ((-563 . -1018) T) ((-495 . -1018) T) ((-1126 . -610) 90437) ((-1106 . -238) 90416) ((-214 . -102) T) ((-1143 . -102) T) ((-71 . -610) 90398) ((-1135 . -1045) T) ((-1171 . -38) 90295) ((-854 . -610) 90277) ((-563 . -545) T) ((-665 . -1052) T) ((-727 . -945) 90230) ((-1135 . -233) 90209) ((-1075 . -1093) T) ((-1030 . -25) T) ((-1030 . -21) T) ((-999 . -1051) 90154) ((-901 . -102) T) ((-862 . -1045) T) ((-689 . -896) NIL) ((-355 . -329) 90138) ((-355 . -363) T) ((-352 . -329) 90122) ((-352 . -363) T) ((-344 . -329) 90106) ((-344 . -363) T) ((-487 . -102) T) ((-1269 . -38) 90076) ((-546 . -846) T) ((-523 . -682) 90026) ((-217 . -102) T) ((-1020 . -1034) 89906) ((-999 . -111) 89835) ((-1167 . -969) 89804) ((-1166 . -969) 89766) ((-520 . -151) 89750) ((-1073 . -370) 89729) ((-351 . -610) 89711) ((-322 . -21) T) ((-354 . -1034) 89688) ((-322 . -25) T) ((-1160 . -969) 89657) ((-1119 . -969) 89624) ((-76 . -610) 89606) ((-694 . -307) T) ((-169 . -846) 89585) ((-129 . -840) T) ((-906 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-906 . -329) 89572) ((-86 . -610) 89554) ((-694 . -1018) T) ((-672 . -846) T) ((-1241 . -131) T) ((-1220 . -131) T) ((-897 . -1006) 89538) ((-832 . -21) T) ((-48 . -1034) 89481) ((-832 . -25) T) ((-823 . -25) T) ((-823 . -21) T) ((-1279 . -1052) T) ((-548 . -102) T) ((-1277 . -1052) T) ((-649 . -722) T) ((-1097 . -615) 89384) ((-999 . -613) 89314) ((-1280 . -1051) 89298) ((-1230 . -846) 89277) ((-811 . -411) 89246) ((-103 . -119) 89230) ((-129 . -1093) T) ((-52 . -1093) T) ((-922 . -610) 89212) ((-867 . -988) 89189) ((-819 . -102) T) ((-1280 . -111) 89168) ((-648 . -38) 89138) ((-570 . -846) T) ((-355 . -1105) T) ((-352 . -1105) T) ((-344 . -1105) T) ((-264 . -1105) T) ((-247 . -1105) T) ((-620 . -307) 89117) ((-1143 . -309) 88921) ((-524 . -1076) T) ((-311 . -1093) T) ((-659 . -23) T) ((-482 . -231) 88890) ((-152 . -1052) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-999 . -1045) T) ((-708 . -905) 88869) ((-1149 . -613) 88846) ((-999 . -233) 88818) ((-999 . -243) T) ((-117 . -1018) NIL) ((-906 . -1105) T) ((-1242 . -452) 88797) ((-1221 . -452) 88776) ((-523 . -610) 88708) ((-708 . -643) 88633) ((-407 . -1051) 88585) ((-504 . -610) 88567) ((-906 . -23) T) ((-487 . -309) NIL) ((-1280 . -613) 88523) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 88461) ((-811 . -1052) 88391) ((-733 . -1091) 88375) ((-1241 . -493) 88341) ((-1220 . -493) 88307) ((-141 . -1091) 88289) ((-477 . -290) T) ((-1280 . -1045) T) ((-1213 . -102) T) ((-1057 . -102) T) ((-839 . -613) 88157) ((-500 . -514) NIL) ((-698 . -102) T) ((-482 . -238) 88136) ((-407 . -613) 88034) ((-1165 . -145) 88013) ((-1165 . -147) 87992) ((-1118 . -147) 87971) ((-1118 . -145) 87950) ((-632 . -1051) 87934) ((-604 . -1051) 87918) ((-665 . -1093) T) ((-665 . -1048) 87858) ((-1167 . -1248) 87842) ((-1167 . -1235) 87819) ((-487 . -1144) T) ((-1166 . -1240) 87780) ((-1166 . -1235) 87750) ((-1166 . -1238) 87734) ((-217 . -1144) T) ((-343 . -916) T) ((-814 . -266) 87718) ((-632 . -111) 87697) ((-604 . -111) 87676) ((-1160 . -1219) 87637) ((-839 . -1045) 87616) ((-1160 . -1235) 87593) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-1160 . -1217) 87577) ((-407 . -1045) T) ((-319 . -1052) T) ((-689 . -307) T) ((-108 . -844) T) ((-708 . -722) T) ((-407 . -243) T) ((-407 . -233) 87556) ((-487 . -38) 87506) ((-217 . -38) 87456) ((-474 . -493) 87422) ((-1151 . -1137) T) ((-1094 . -102) T) ((-696 . -610) 87404) ((-696 . -611) 87319) ((-710 . -21) T) ((-710 . -25) T) ((-1128 . -102) T) ((-134 . -610) 87301) ((-116 . -610) 87283) ((-157 . -25) T) ((-1279 . -1093) T) ((-868 . -636) 87231) ((-1277 . -1093) T) ((-959 . -102) T) ((-731 . -102) T) ((-711 . -102) T) ((-453 . -102) T) ((-812 . -452) 87182) ((-44 . -1093) T) ((-1081 . -846) T) ((-659 . -131) T) ((-1057 . -309) 87033) ((-665 . -713) 87017) ((-289 . -1052) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-418 . -102) T) ((-152 . -1093) T) ((-45 . -229) 86967) ((-954 . -846) 86946) ((-995 . -643) 86884) ((-240 . -1264) 86854) ((-1020 . -307) T) ((-294 . -1051) 86775) ((-906 . -131) T) ((-40 . -916) T) ((-487 . -400) 86757) ((-354 . -307) T) ((-217 . -400) 86739) ((-1073 . -411) 86723) ((-294 . -111) 86639) ((-1176 . -846) T) ((-1175 . -846) T) ((-868 . -25) T) ((-868 . -21) T) ((-339 . -610) 86621) ((-1243 . -47) 86565) ((-225 . -147) T) ((-174 . -610) 86547) ((-1106 . -844) 86526) ((-770 . -610) 86508) ((-128 . -846) T) ((-605 . -235) 86455) ((-475 . -235) 86405) ((-1279 . -713) 86375) ((-48 . -307) T) ((-1277 . -713) 86345) ((-65 . -613) 86274) ((-960 . -1093) T) ((-811 . -1093) 86064) ((-312 . -102) T) ((-897 . -1208) T) ((-48 . -1018) T) ((-1220 . -636) 85972) ((-684 . -102) 85950) ((-44 . -713) 85934) ((-549 . -102) T) ((-294 . -613) 85865) ((-67 . -383) T) ((-67 . -395) T) ((-657 . -23) T) ((-665 . -757) T) ((-1205 . -1093) 85843) ((-351 . -1051) 85788) ((-670 . -1093) 85766) ((-1056 . -147) T) ((-948 . -147) 85745) ((-948 . -145) 85724) ((-795 . -102) T) ((-152 . -713) 85708) ((-481 . -147) 85687) ((-481 . -145) 85666) ((-351 . -111) 85595) ((-1073 . -1052) T) ((-322 . -846) 85574) ((-1249 . -969) 85543) ((-624 . -1093) T) ((-1242 . -969) 85505) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 85455) ((-359 . -1052) T) ((-353 . -1052) T) ((-345 . -1052) T) ((-294 . -1045) 85397) ((-1221 . -969) 85366) ((-379 . -846) T) ((-108 . -1052) T) ((-995 . -722) T) ((-866 . -916) T) ((-839 . -791) 85345) ((-839 . -788) 85324) ((-418 . -309) 85263) ((-468 . -102) T) ((-593 . -969) 85232) ((-319 . -1093) T) ((-407 . -791) 85211) ((-407 . -788) 85190) ((-500 . -489) 85172) ((-1243 . -1034) 85138) ((-1241 . -21) T) ((-1241 . -25) T) ((-1220 . -21) T) ((-1220 . -25) T) ((-811 . -713) 85080) ((-351 . -613) 85010) ((-694 . -404) T) ((-1270 . -1208) T) ((-603 . -102) T) ((-1106 . -411) 84979) ((-999 . -368) NIL) ((-666 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-733 . -1208) T) ((-44 . -757) T) ((-591 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-648 . -651) 84963) ((-141 . -1208) T) ((-867 . -147) T) ((-867 . -145) NIL) ((-1207 . -93) T) ((-351 . -1045) T) ((-70 . -383) T) ((-70 . -395) T) ((-1158 . -102) T) ((-665 . -514) 84896) ((-684 . -309) 84834) ((-959 . -38) 84731) ((-731 . -38) 84701) ((-549 . -309) 84505) ((-316 . -1208) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1208) T) ((-289 . -1093) T) ((-1173 . -610) 84487) ((-707 . -1212) T) ((-1149 . -646) 84471) ((-1202 . -555) 84450) ((-707 . -555) T) ((-316 . -880) 84434) ((-316 . -882) 84359) ((-313 . -880) 84320) ((-313 . -882) NIL) ((-795 . -309) 84285) ((-319 . -713) 84126) ((-324 . -323) 84103) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 84077) ((-316 . -1034) 83740) ((-225 . -1193) T) ((-225 . -1196) T) ((-3 . -610) 83722) ((-313 . -1034) 83652) ((-2 . -1093) T) ((-2 . |RecordCategory|) T) ((-829 . -610) 83634) ((-1106 . -1052) 83564) ((-579 . -916) T) ((-563 . -816) T) ((-563 . -916) T) ((-495 . -916) T) ((-136 . -1034) 83548) ((-225 . -95) T) ((-75 . -441) T) ((-75 . -395) T) ((0 . -610) 83530) ((-169 . -147) 83509) ((-169 . -145) 83460) ((-225 . -35) T) ((-49 . -610) 83442) ((-477 . -1052) T) ((-487 . -231) 83424) ((-484 . -964) 83408) ((-482 . -844) 83387) ((-217 . -231) 83369) ((-81 . -441) T) ((-81 . -395) T) ((-1139 . -34) T) ((-811 . -172) 83348) ((-727 . -102) T) ((-1022 . -610) 83315) ((-500 . -286) 83290) ((-316 . -377) 83259) ((-313 . -377) 83220) ((-313 . -338) 83181) ((-1078 . -610) 83163) ((-812 . -945) 83110) ((-657 . -131) T) ((-1230 . -145) 83089) ((-1230 . -147) 83068) ((-1167 . -102) T) ((-1166 . -102) T) ((-1160 . -102) T) ((-1152 . -1093) T) ((-1119 . -102) T) ((-222 . -34) T) ((-289 . -713) 83055) ((-1152 . -607) 83031) ((-591 . -309) NIL) ((-484 . -1093) 83009) ((-390 . -610) 82991) ((-510 . -846) T) ((-1143 . -229) 82941) ((-1249 . -1248) 82925) ((-1249 . -1235) 82902) ((-1242 . -1240) 82863) ((-1242 . -1235) 82833) ((-1242 . -1238) 82817) ((-1221 . -1219) 82778) ((-1221 . -1235) 82755) ((-618 . -610) 82737) ((-1221 . -1217) 82721) ((-694 . -916) T) ((-1167 . -284) 82687) ((-1166 . -284) 82653) ((-1160 . -284) 82619) ((-1073 . -1093) T) ((-1055 . -1093) T) ((-48 . -302) T) ((-316 . -896) 82585) ((-313 . -896) NIL) ((-1055 . -1062) 82564) ((-1113 . -882) 82546) ((-795 . -38) 82530) ((-264 . -636) 82478) ((-247 . -636) 82426) ((-696 . -1051) 82413) ((-593 . -1235) 82390) ((-1119 . -284) 82356) ((-319 . -172) 82287) ((-359 . -1093) T) ((-353 . -1093) T) ((-345 . -1093) T) ((-500 . -19) 82269) ((-1113 . -1034) 82251) ((-1095 . -151) 82235) ((-108 . -1093) T) ((-116 . -1051) 82222) ((-707 . -363) T) ((-500 . -601) 82197) ((-696 . -111) 82182) ((-436 . -102) T) ((-45 . -1142) 82132) ((-116 . -111) 82117) ((-632 . -716) T) ((-604 . -716) T) ((-811 . -514) 82050) ((-1031 . -1208) T) ((-939 . -151) 82034) ((-1215 . -610) 82016) ((-1165 . -452) 81947) ((-1159 . -1093) T) ((-1151 . -1093) T) ((-525 . -102) T) ((-520 . -102) 81897) ((-1135 . -643) 81871) ((-1118 . -452) 81822) ((-1080 . -1212) 81801) ((-778 . -1212) 81780) ((-776 . -1212) 81759) ((-62 . -1208) T) ((-477 . -610) 81711) ((-477 . -611) 81633) ((-1080 . -555) 81564) ((-990 . -1093) T) ((-778 . -555) 81475) ((-776 . -555) 81406) ((-482 . -411) 81375) ((-620 . -916) 81354) ((-454 . -1212) 81333) ((-727 . -309) 81320) ((-696 . -613) 81292) ((-398 . -610) 81274) ((-670 . -514) 81207) ((-659 . -25) T) ((-659 . -21) T) ((-454 . -555) 81138) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -916) T) ((-117 . -816) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -613) 81120) ((-116 . -613) 81092) ((-1259 . -610) 81074) ((-1214 . -846) T) ((-1202 . -1105) T) ((-1202 . -23) T) ((-1160 . -309) 80959) ((-1119 . -309) 80946) ((-1073 . -713) 80814) ((-862 . -643) 80774) ((-939 . -976) 80758) ((-906 . -21) T) ((-289 . -172) T) ((-906 . -25) T) ((-311 . -93) T) ((-868 . -846) 80709) ((-707 . -1105) T) ((-707 . -23) T) ((-696 . -1045) T) ((-642 . -1093) 80687) ((-629 . -1093) T) ((-580 . -1212) T) ((-518 . -1212) T) ((-696 . -233) T) ((-629 . -607) 80662) ((-580 . -555) T) ((-518 . -555) T) ((-359 . -713) 80614) ((-339 . -1051) 80598) ((-353 . -713) 80550) ((-345 . -713) 80502) ((-174 . -1051) 80434) ((-174 . -111) 80345) ((-108 . -713) 80295) ((-339 . -111) 80274) ((-274 . -1093) T) ((-273 . -1093) T) ((-272 . -1093) T) ((-271 . -1093) T) ((-270 . -1093) T) ((-269 . -1093) T) ((-268 . -1093) T) ((-212 . -1093) T) ((-211 . -1093) T) ((-169 . -1196) 80252) ((-169 . -1193) 80230) ((-209 . -1093) T) ((-208 . -1093) T) ((-116 . -1045) T) ((-207 . -1093) T) ((-206 . -1093) T) ((-203 . -1093) T) ((-202 . -1093) T) ((-201 . -1093) T) ((-200 . -1093) T) ((-199 . -1093) T) ((-198 . -1093) T) ((-197 . -1093) T) ((-196 . -1093) T) ((-195 . -1093) T) ((-194 . -1093) T) ((-193 . -1093) T) ((-240 . -102) 80020) ((-169 . -35) 79998) ((-169 . -95) 79976) ((-649 . -1034) 79872) ((-482 . -1052) 79802) ((-1106 . -1093) 79592) ((-1135 . -34) T) ((-665 . -489) 79576) ((-73 . -1208) T) ((-105 . -610) 79558) ((-1281 . -610) 79540) ((-381 . -610) 79522) ((-339 . -613) 79474) ((-174 . -613) 79391) ((-1207 . -490) 79372) ((-727 . -38) 79221) ((-570 . -1196) T) ((-570 . -1193) T) ((-531 . -610) 79203) ((-520 . -309) 79141) ((-500 . -610) 79123) ((-500 . -611) 79105) ((-1207 . -610) 79071) ((-1160 . -1144) NIL) ((-1023 . -1065) 79040) ((-1023 . -1093) T) ((-1000 . -102) T) ((-967 . -102) T) ((-910 . -102) T) ((-889 . -1034) 79017) ((-1135 . -722) T) ((-999 . -643) 78962) ((-476 . -1093) T) ((-463 . -1093) T) ((-584 . -23) T) ((-570 . -35) T) ((-570 . -95) T) ((-427 . -102) T) ((-1057 . -229) 78908) ((-1167 . -38) 78805) ((-862 . -722) T) ((-689 . -916) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1166 . -38) 78646) ((-339 . -1045) T) ((-1160 . -38) 78442) ((-1073 . -172) T) ((-174 . -1045) T) ((-1119 . -38) 78339) ((-708 . -47) 78316) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 78290) ((-497 . -57) 78240) ((-351 . -1276) 78217) ((-225 . -452) T) ((-319 . -290) 78168) ((-345 . -172) T) ((-174 . -243) T) ((-1220 . -846) 78067) ((-108 . -172) T) ((-868 . -988) 78051) ((-653 . -1105) T) ((-580 . -363) T) ((-580 . -329) 78038) ((-518 . -329) 78015) ((-518 . -363) T) ((-316 . -307) 77994) ((-313 . -307) T) ((-599 . -846) 77973) ((-1106 . -713) 77915) ((-520 . -282) 77899) ((-653 . -23) T) ((-418 . -231) 77883) ((-313 . -1018) NIL) ((-336 . -23) T) ((-103 . -1006) 77867) ((-45 . -36) 77846) ((-609 . -1093) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 77784) ((-1080 . -1105) T) ((-1280 . -643) 77758) ((-778 . -1105) T) ((-776 . -1105) T) ((-454 . -1105) T) ((-1056 . -452) T) ((-948 . -452) 77709) ((-1108 . -1076) T) ((-110 . -1093) T) ((-1080 . -23) T) ((-813 . -1052) T) ((-778 . -23) T) ((-776 . -23) T) ((-481 . -452) 77660) ((-1152 . -514) 77443) ((-381 . -382) 77422) ((-1171 . -411) 77406) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1093) T) ((-484 . -514) 77339) ((-289 . -290) T) ((-1075 . -610) 77321) ((-1075 . -611) 77302) ((-407 . -905) 77281) ((-50 . -1105) T) ((-1020 . -916) T) ((-999 . -722) T) ((-708 . -882) NIL) ((-580 . -1105) T) ((-518 . -1105) T) ((-839 . -643) 77254) ((-1202 . -131) T) ((-1160 . -400) 77206) ((-1000 . -309) NIL) ((-811 . -489) 77190) ((-354 . -916) T) ((-1149 . -34) T) ((-407 . -643) 77142) ((-50 . -23) T) ((-707 . -131) T) ((-708 . -1034) 77022) ((-580 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 76993) ((-1133 . -1093) T) ((-1272 . -1271) 76977) ((-696 . -791) T) ((-696 . -788) T) ((-1113 . -307) T) ((-379 . -147) T) ((-280 . -610) 76959) ((-1220 . -988) 76929) ((-48 . -916) T) ((-670 . -489) 76913) ((-251 . -1264) 76883) ((-250 . -1264) 76853) ((-1169 . -846) T) ((-1106 . -172) 76832) ((-1113 . -1018) T) ((-1042 . -34) T) ((-832 . -147) 76811) ((-832 . -145) 76790) ((-733 . -107) 76774) ((-609 . -132) T) ((-482 . -1093) 76564) ((-1171 . -1052) T) ((-867 . -452) T) ((-85 . -1208) T) ((-240 . -38) 76534) ((-141 . -107) 76516) ((-708 . -377) 76500) ((-829 . -613) 76368) ((-1113 . -545) T) ((-578 . -102) T) ((-129 . -490) 76350) ((-390 . -1051) 76334) ((-1280 . -722) T) ((-1165 . -945) 76303) ((-129 . -610) 76270) ((-52 . -610) 76252) ((-1118 . -945) 76219) ((-648 . -411) 76203) ((-1269 . -1052) T) ((-618 . -1051) 76187) ((-657 . -25) T) ((-657 . -21) T) ((-1151 . -514) NIL) ((-1249 . -102) T) ((-1242 . -102) T) ((-390 . -111) 76166) ((-222 . -254) 76150) ((-1221 . -102) T) ((-1049 . -1093) T) ((-1000 . -1144) T) ((-1049 . -1048) 76090) ((-814 . -1093) T) ((-343 . -1212) T) ((-632 . -643) 76074) ((-618 . -111) 76053) ((-604 . -643) 76037) ((-594 . -102) T) ((-311 . -490) 76018) ((-584 . -131) T) ((-593 . -102) T) ((-414 . -1093) T) ((-385 . -1093) T) ((-311 . -610) 75984) ((-227 . -1093) 75962) ((-642 . -514) 75895) ((-629 . -514) 75739) ((-829 . -1045) 75718) ((-640 . -151) 75702) ((-343 . -555) T) ((-708 . -896) 75645) ((-549 . -229) 75595) ((-1249 . -284) 75561) ((-1073 . -290) 75512) ((-487 . -844) T) ((-223 . -1105) T) ((-1242 . -284) 75478) ((-1221 . -284) 75444) ((-1000 . -38) 75394) ((-217 . -844) T) ((-1202 . -493) 75360) ((-910 . -38) 75312) ((-839 . -790) 75291) ((-839 . -787) 75270) ((-839 . -722) 75249) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 75180) ((-427 . -38) 75164) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -790) 75143) ((-407 . -787) 75122) ((-407 . -722) T) ((-500 . -288) 75097) ((-477 . -1051) 75062) ((-653 . -131) T) ((-618 . -613) 75031) ((-1106 . -514) 74964) ((-336 . -131) T) ((-169 . -402) 74943) ((-482 . -713) 74885) ((-811 . -286) 74862) ((-477 . -111) 74818) ((-648 . -1052) T) ((-1230 . -452) 74749) ((-1268 . -1076) T) ((-1267 . -1076) T) ((-1080 . -131) T) ((-1049 . -713) 74691) ((-264 . -846) 74670) ((-247 . -846) 74649) ((-778 . -131) T) ((-776 . -131) T) ((-570 . -452) T) ((-1023 . -514) 74582) ((-618 . -1045) T) ((-590 . -1093) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1093) T) ((-385 . -713) 74552) ((-813 . -1093) T) ((-476 . -514) 74485) ((-463 . -514) 74418) ((-453 . -367) 74388) ((-45 . -607) 74367) ((-316 . -302) T) ((-477 . -613) 74317) ((-665 . -610) 74279) ((-59 . -846) 74258) ((-1221 . -309) 74143) ((-1000 . -400) 74125) ((-811 . -601) 74102) ((-516 . -846) 74081) ((-496 . -846) 74060) ((-40 . -1212) T) ((-995 . -1034) 73956) ((-50 . -131) T) ((-580 . -131) T) ((-518 . -131) T) ((-294 . -643) 73816) ((-343 . -329) 73793) ((-343 . -363) T) ((-322 . -323) 73770) ((-319 . -286) 73755) ((-40 . -555) T) ((-379 . -1193) T) ((-379 . -1196) T) ((-1031 . -1184) 73730) ((-1181 . -235) 73680) ((-1160 . -231) 73632) ((-330 . -1093) T) ((-379 . -95) T) ((-379 . -35) T) ((-1031 . -107) 73578) ((-477 . -1045) T) ((-479 . -235) 73528) ((-1152 . -489) 73462) ((-1281 . -1051) 73446) ((-381 . -1051) 73430) ((-477 . -243) T) ((-812 . -102) T) ((-710 . -147) 73409) ((-710 . -145) 73388) ((-484 . -489) 73372) ((-485 . -335) 73341) ((-1281 . -111) 73320) ((-512 . -1093) T) ((-482 . -172) 73299) ((-995 . -377) 73283) ((-413 . -102) T) ((-381 . -111) 73262) ((-995 . -338) 73246) ((-279 . -979) 73230) ((-278 . -979) 73214) ((-1279 . -610) 73196) ((-1277 . -610) 73178) ((-110 . -514) NIL) ((-1165 . -1233) 73162) ((-850 . -848) 73146) ((-1171 . -1093) T) ((-103 . -1208) T) ((-948 . -945) 73107) ((-813 . -713) 73049) ((-1221 . -1144) NIL) ((-481 . -945) 72994) ((-1056 . -143) T) ((-60 . -102) 72972) ((-44 . -610) 72954) ((-78 . -610) 72936) ((-351 . -643) 72881) ((-1269 . -1093) T) ((-511 . -846) T) ((-343 . -1105) T) ((-295 . -1093) T) ((-995 . -896) 72840) ((-295 . -607) 72819) ((-1281 . -613) 72768) ((-1249 . -38) 72665) ((-1242 . -38) 72506) ((-1221 . -38) 72302) ((-487 . -1052) T) ((-381 . -613) 72286) ((-217 . -1052) T) ((-343 . -23) T) ((-152 . -610) 72268) ((-829 . -791) 72247) ((-829 . -788) 72226) ((-1207 . -613) 72207) ((-594 . -38) 72180) ((-593 . -38) 72077) ((-866 . -555) T) ((-223 . -131) T) ((-319 . -998) 72043) ((-79 . -610) 72025) ((-708 . -307) 72004) ((-294 . -722) 71906) ((-820 . -102) T) ((-860 . -840) T) ((-294 . -473) 71885) ((-1272 . -102) T) ((-40 . -363) T) ((-868 . -147) 71864) ((-868 . -145) 71843) ((-1151 . -489) 71825) ((-1281 . -1045) T) ((-482 . -514) 71758) ((-1139 . -1208) T) ((-960 . -610) 71740) ((-642 . -489) 71724) ((-629 . -489) 71655) ((-811 . -610) 71386) ((-48 . -27) T) ((-1171 . -713) 71283) ((-648 . -1093) T) ((-857 . -856) T) ((-436 . -364) 71257) ((-1095 . -102) T) ((-966 . -1093) T) ((-860 . -1093) T) ((-812 . -309) 71244) ((-533 . -527) T) ((-533 . -575) T) ((-1277 . -382) 71216) ((-1049 . -514) 71149) ((-1152 . -286) 71125) ((-240 . -231) 71094) ((-1269 . -713) 71064) ((-1159 . -93) T) ((-990 . -93) T) ((-813 . -172) 71043) ((-1205 . -490) 71020) ((-227 . -514) 70953) ((-618 . -791) 70932) ((-618 . -788) 70911) ((-1205 . -610) 70823) ((-222 . -1208) T) ((-670 . -610) 70755) ((-1149 . -1006) 70739) ((-939 . -102) 70689) ((-351 . -722) T) ((-857 . -610) 70671) ((-1221 . -400) 70623) ((-1106 . -489) 70607) ((-60 . -309) 70545) ((-331 . -102) T) ((-1202 . -21) T) ((-1202 . -25) T) ((-40 . -1105) T) ((-707 . -21) T) ((-624 . -610) 70527) ((-515 . -323) 70506) ((-707 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-917 . -1105) T) ((-40 . -23) T) ((-767 . -1105) T) ((-563 . -1212) T) ((-495 . -1212) T) ((-319 . -610) 70488) ((-1000 . -231) 70470) ((-169 . -166) 70454) ((-579 . -555) T) ((-563 . -555) T) ((-495 . -555) T) ((-767 . -23) T) ((-1241 . -147) 70433) ((-1152 . -601) 70409) ((-1241 . -145) 70388) ((-1023 . -489) 70372) ((-1220 . -145) 70297) ((-1220 . -147) 70222) ((-1272 . -1278) 70201) ((-476 . -489) 70185) ((-463 . -489) 70169) ((-523 . -34) T) ((-648 . -713) 70139) ((-112 . -963) T) ((-657 . -846) 70118) ((-1171 . -172) 70069) ((-365 . -102) T) ((-240 . -238) 70048) ((-251 . -102) T) ((-250 . -102) T) ((-1230 . -945) 70017) ((-245 . -846) 69996) ((-812 . -38) 69845) ((-45 . -514) 69637) ((-1151 . -286) 69612) ((-214 . -1093) T) ((-1143 . -1093) T) ((-1143 . -607) 69591) ((-584 . -25) T) ((-584 . -21) T) ((-1095 . -309) 69529) ((-959 . -411) 69513) ((-694 . -1212) T) ((-629 . -286) 69488) ((-1080 . -636) 69436) ((-778 . -636) 69384) ((-776 . -636) 69332) ((-343 . -131) T) ((-289 . -610) 69314) ((-901 . -1093) T) ((-694 . -555) T) ((-129 . -613) 69296) ((-866 . -1105) T) ((-454 . -636) 69244) ((-901 . -899) 69228) ((-379 . -452) T) ((-487 . -1093) T) ((-939 . -309) 69166) ((-696 . -643) 69153) ((-548 . -840) T) ((-217 . -1093) T) ((-316 . -916) 69132) ((-313 . -916) T) ((-313 . -816) NIL) ((-390 . -716) T) ((-866 . -23) T) ((-116 . -643) 69119) ((-474 . -145) 69098) ((-418 . -411) 69082) ((-474 . -147) 69061) ((-110 . -489) 69043) ((-311 . -613) 69024) ((-2 . -610) 69006) ((-186 . -102) T) ((-1151 . -19) 68988) ((-1151 . -601) 68963) ((-653 . -21) T) ((-653 . -25) T) ((-591 . -1137) T) ((-1106 . -286) 68940) ((-336 . -25) T) ((-336 . -21) T) ((-495 . -363) T) ((-1272 . -38) 68910) ((-1135 . -1208) T) ((-629 . -601) 68885) ((-548 . -1093) T) ((-1080 . -25) T) ((-1080 . -21) T) ((-531 . -788) T) ((-531 . -791) T) ((-117 . -1212) T) ((-959 . -1052) T) ((-620 . -555) T) ((-778 . -25) T) ((-778 . -21) T) ((-776 . -21) T) ((-776 . -25) T) ((-731 . -1052) T) ((-711 . -1052) T) ((-665 . -1051) 68869) ((-517 . -1076) T) ((-461 . -25) T) ((-117 . -555) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1279 . -1051) 68853) ((-1135 . -1034) 68749) ((-813 . -290) 68728) ((-1277 . -1051) 68712) ((-819 . -1093) T) ((-1241 . -1193) 68678) ((-962 . -963) T) ((-665 . -111) 68657) ((-295 . -514) 68449) ((-1241 . -1196) 68415) ((-1241 . -95) 68381) ((-1224 . -102) 68359) ((-251 . -309) 68297) ((-250 . -309) 68235) ((-1221 . -231) 68187) ((-1152 . -611) NIL) ((-1152 . -610) 68169) ((-1220 . -1193) 68135) ((-1220 . -1196) 68101) ((-1215 . -368) T) ((-96 . -93) T) ((-1213 . -840) T) ((-1135 . -377) 68085) ((-1113 . -816) T) ((-1113 . -916) T) ((-1106 . -601) 68062) ((-1073 . -611) 68046) ((-484 . -610) 67978) ((-811 . -288) 67955) ((-605 . -151) 67902) ((-418 . -1052) T) ((-487 . -713) 67852) ((-482 . -489) 67836) ((-327 . -846) 67815) ((-339 . -643) 67789) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -713) 67739) ((-169 . -720) 67710) ((-174 . -643) 67642) ((-580 . -21) T) ((-580 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 67592) ((-1073 . -610) 67574) ((-1055 . -610) 67556) ((-989 . -102) T) ((-858 . -102) T) ((-795 . -411) 67520) ((-40 . -131) T) ((-694 . -363) T) ((-696 . -722) T) ((-696 . -790) T) ((-696 . -787) T) ((-212 . -891) T) ((-579 . -1105) T) ((-563 . -1105) T) ((-495 . -1105) T) ((-359 . -610) 67502) ((-353 . -610) 67484) ((-345 . -610) 67466) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -611) 67396) ((-108 . -610) 67338) ((-211 . -891) T) ((-954 . -151) 67322) ((-767 . -131) T) ((-665 . -613) 67240) ((-134 . -722) T) ((-116 . -722) T) ((-1241 . -35) 67206) ((-1049 . -489) 67190) ((-579 . -23) T) ((-563 . -23) T) ((-495 . -23) T) ((-1220 . -95) 67156) ((-1220 . -35) 67122) ((-1165 . -102) T) ((-1118 . -102) T) ((-850 . -102) T) ((-227 . -489) 67106) ((-1279 . -111) 67085) ((-1277 . -111) 67064) ((-44 . -1051) 67048) ((-1230 . -1233) 67032) ((-851 . -848) 67016) ((-1279 . -613) 66962) ((-1171 . -290) 66941) ((-110 . -286) 66916) ((-1213 . -1093) T) ((-128 . -151) 66898) ((-1135 . -896) 66857) ((-44 . -111) 66836) ((-1174 . -1252) T) ((-1159 . -490) 66817) ((-1159 . -610) 66783) ((-1151 . -611) NIL) ((-665 . -1045) T) ((-1151 . -610) 66765) ((-1057 . -607) 66740) ((-1057 . -1093) T) ((-990 . -490) 66721) ((-990 . -610) 66687) ((-74 . -441) T) ((-74 . -395) T) ((-698 . -1093) T) ((-152 . -1051) 66671) ((-665 . -233) 66650) ((-570 . -553) 66634) ((-355 . -147) 66613) ((-355 . -145) 66564) ((-352 . -147) 66543) ((-352 . -145) 66494) ((-344 . -147) 66473) ((-344 . -145) 66424) ((-264 . -145) 66403) ((-264 . -147) 66382) ((-251 . -38) 66352) ((-247 . -147) 66331) ((-117 . -363) T) ((-247 . -145) 66310) ((-250 . -38) 66280) ((-152 . -111) 66259) ((-999 . -1034) 66147) ((-1160 . -844) NIL) ((-689 . -1212) T) ((-795 . -1052) T) ((-694 . -1105) T) ((-1279 . -1045) T) ((-1277 . -613) 66076) ((-1277 . -1045) T) ((-1149 . -1208) T) ((-999 . -377) 66053) ((-906 . -145) T) ((-906 . -147) 66035) ((-866 . -131) T) ((-811 . -1051) 65932) ((-689 . -555) T) ((-694 . -23) T) ((-642 . -610) 65864) ((-642 . -611) 65825) ((-629 . -611) NIL) ((-629 . -610) 65807) ((-487 . -172) T) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1196) 65773) ((-474 . -1193) 65739) ((-274 . -610) 65721) ((-273 . -610) 65703) ((-272 . -610) 65685) ((-271 . -610) 65667) ((-270 . -610) 65649) ((-500 . -646) 65631) ((-269 . -610) 65613) ((-339 . -722) T) ((-268 . -610) 65595) ((-110 . -19) 65577) ((-174 . -722) T) ((-500 . -373) 65559) ((-212 . -610) 65541) ((-520 . -1142) 65525) ((-500 . -123) T) ((-110 . -601) 65500) ((-211 . -610) 65482) ((-474 . -35) 65448) ((-474 . -95) 65414) ((-209 . -610) 65396) ((-208 . -610) 65378) ((-207 . -610) 65360) ((-206 . -610) 65342) ((-203 . -610) 65324) ((-202 . -610) 65306) ((-201 . -610) 65288) ((-200 . -610) 65270) ((-199 . -610) 65252) ((-198 . -610) 65234) ((-197 . -610) 65216) ((-536 . -1096) 65168) ((-196 . -610) 65150) ((-195 . -610) 65132) ((-45 . -489) 65069) ((-194 . -610) 65051) ((-193 . -610) 65033) ((-152 . -613) 65002) ((-1108 . -102) T) ((-811 . -111) 64892) ((-640 . -102) 64842) ((-482 . -286) 64819) ((-1106 . -610) 64550) ((-1094 . -1093) T) ((-1042 . -1208) T) ((-1280 . -1034) 64534) ((-620 . -1105) T) ((-1165 . -309) 64521) ((-1128 . -1093) T) ((-1118 . -309) 64508) ((-1089 . -1076) T) ((-1083 . -1076) T) ((-1067 . -1076) T) ((-1060 . -1076) T) ((-1032 . -1076) T) ((-1015 . -1076) T) ((-117 . -1105) T) ((-815 . -102) T) ((-623 . -1076) T) ((-620 . -23) T) ((-1143 . -514) 64300) ((-483 . -1076) T) ((-999 . -896) 64252) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1076) T) ((-959 . -1093) T) ((-152 . -1045) T) ((-727 . -411) 64236) ((-117 . -23) T) ((-731 . -1093) T) ((-711 . -1093) T) ((-698 . -132) T) ((-453 . -1093) T) ((-407 . -1208) T) ((-316 . -430) 64220) ((-590 . -93) T) ((-1023 . -611) 64181) ((-1020 . -1212) T) ((-225 . -102) T) ((-1023 . -610) 64143) ((-812 . -231) 64127) ((-811 . -613) 63857) ((-1020 . -555) T) ((-829 . -643) 63830) ((-354 . -1212) T) ((-476 . -610) 63792) ((-476 . -611) 63753) ((-463 . -611) 63714) ((-463 . -610) 63676) ((-407 . -880) 63660) ((-319 . -1051) 63495) ((-407 . -882) 63420) ((-839 . -1034) 63316) ((-487 . -514) NIL) ((-482 . -601) 63293) ((-354 . -555) T) ((-217 . -514) NIL) ((-868 . -452) T) ((-418 . -1093) T) ((-407 . -1034) 63157) ((-319 . -111) 62978) ((-689 . -363) T) ((-225 . -284) T) ((-1205 . -613) 62955) ((-48 . -1212) T) ((-811 . -1045) 62885) ((-579 . -131) T) ((-563 . -131) T) ((-495 . -131) T) ((-1165 . -1144) 62863) ((-48 . -555) T) ((-1152 . -288) 62839) ((-1056 . -102) T) ((-948 . -102) T) ((-316 . -27) 62818) ((-811 . -233) 62770) ((-249 . -831) 62752) ((-240 . -844) 62731) ((-187 . -831) 62713) ((-709 . -102) T) ((-295 . -489) 62650) ((-481 . -102) T) ((-727 . -1052) T) ((-609 . -610) 62632) ((-609 . -611) 62493) ((-407 . -377) 62477) ((-407 . -338) 62461) ((-319 . -613) 62287) ((-1165 . -38) 62116) ((-1118 . -38) 61965) ((-850 . -38) 61935) ((-390 . -643) 61919) ((-640 . -309) 61857) ((-959 . -713) 61754) ((-731 . -713) 61724) ((-222 . -107) 61708) ((-45 . -286) 61633) ((-618 . -643) 61607) ((-312 . -1093) T) ((-289 . -1051) 61594) ((-110 . -610) 61576) ((-110 . -611) 61558) ((-453 . -713) 61528) ((-812 . -253) 61467) ((-684 . -1093) 61445) ((-549 . -1093) T) ((-1167 . -1052) T) ((-1166 . -1052) T) ((-96 . -490) 61426) ((-1160 . -1052) T) ((-289 . -111) 61411) ((-1119 . -1052) T) ((-549 . -607) 61390) ((-96 . -610) 61356) ((-1000 . -844) T) ((-227 . -682) 61314) ((-689 . -1105) T) ((-1202 . -736) 61290) ((-1020 . -363) T) ((-834 . -831) 61272) ((-319 . -1045) T) ((-343 . -25) T) ((-343 . -21) T) ((-407 . -896) 61231) ((-68 . -1208) T) ((-829 . -790) 61210) ((-418 . -713) 61184) ((-795 . -1093) T) ((-829 . -787) 61163) ((-694 . -131) T) ((-708 . -916) 61142) ((-689 . -23) T) ((-487 . -290) T) ((-829 . -722) 61121) ((-319 . -233) 61073) ((-319 . -243) 61052) ((-217 . -290) T) ((-129 . -368) T) ((-1241 . -452) 61031) ((-1220 . -452) 61010) ((-354 . -329) 60987) ((-354 . -363) T) ((-1133 . -610) 60969) ((-45 . -1245) 60919) ((-867 . -102) T) ((-640 . -282) 60903) ((-694 . -1054) T) ((-1268 . -102) T) ((-1267 . -102) T) ((-477 . -643) 60868) ((-468 . -1093) T) ((-45 . -601) 60793) ((-1151 . -288) 60768) ((-289 . -613) 60740) ((-40 . -636) 60679) ((-48 . -363) T) ((-1099 . -610) 60661) ((-1080 . -846) 60640) ((-629 . -288) 60615) ((-778 . -846) 60594) ((-776 . -846) 60573) ((-482 . -610) 60304) ((-240 . -411) 60273) ((-948 . -309) 60260) ((-454 . -846) 60239) ((-65 . -1208) T) ((-1057 . -514) 60083) ((-620 . -131) T) ((-546 . -102) T) ((-481 . -309) 60070) ((-603 . -1093) T) ((-117 . -131) T) ((-666 . -1093) T) ((-289 . -1045) T) ((-180 . -1093) T) ((-161 . -1093) T) ((-156 . -1093) T) ((-154 . -1093) T) ((-453 . -757) T) ((-31 . -1076) T) ((-959 . -172) 60021) ((-966 . -93) T) ((-1073 . -1051) 59931) ((-618 . -790) 59910) ((-591 . -1093) T) ((-618 . -787) 59889) ((-618 . -722) T) ((-295 . -286) 59868) ((-294 . -1208) T) ((-1049 . -610) 59830) ((-1049 . -611) 59791) ((-1020 . -1105) T) ((-169 . -102) T) ((-275 . -846) T) ((-1158 . -1093) T) ((-814 . -610) 59773) ((-1106 . -288) 59750) ((-1095 . -229) 59734) ((-999 . -307) T) ((-795 . -713) 59718) ((-359 . -1051) 59670) ((-354 . -1105) T) ((-353 . -1051) 59622) ((-414 . -610) 59604) ((-385 . -610) 59586) ((-345 . -1051) 59538) ((-227 . -610) 59470) ((-1073 . -111) 59366) ((-1020 . -23) T) ((-108 . -1051) 59316) ((-894 . -102) T) ((-837 . -102) T) ((-804 . -102) T) ((-765 . -102) T) ((-672 . -102) T) ((-474 . -452) 59295) ((-418 . -172) T) ((-359 . -111) 59233) ((-353 . -111) 59171) ((-345 . -111) 59109) ((-251 . -231) 59078) ((-250 . -231) 59047) ((-354 . -23) T) ((-71 . -1208) T) ((-225 . -38) 59012) ((-108 . -111) 58946) ((-40 . -25) T) ((-40 . -21) T) ((-665 . -716) T) ((-169 . -284) 58924) ((-48 . -1105) T) ((-917 . -25) T) ((-767 . -25) T) ((-1143 . -489) 58861) ((-485 . -1093) T) ((-1281 . -643) 58835) ((-1230 . -102) T) ((-851 . -102) T) ((-240 . -1052) 58765) ((-1056 . -1144) T) ((-960 . -788) 58718) ((-381 . -643) 58702) ((-48 . -23) T) ((-960 . -791) 58655) ((-811 . -791) 58606) ((-811 . -788) 58557) ((-295 . -601) 58536) ((-477 . -722) T) ((-570 . -102) T) ((-1073 . -613) 58354) ((-249 . -185) T) ((-187 . -185) T) ((-867 . -309) 58311) ((-648 . -286) 58290) ((-112 . -656) T) ((-359 . -613) 58227) ((-353 . -613) 58164) ((-345 . -613) 58101) ((-76 . -1208) T) ((-108 . -613) 58051) ((-1056 . -38) 58038) ((-659 . -374) 58017) ((-948 . -38) 57866) ((-727 . -1093) T) ((-481 . -38) 57715) ((-86 . -1208) T) ((-590 . -490) 57696) ((-570 . -284) T) ((-1221 . -844) NIL) ((-590 . -610) 57662) ((-1167 . -1093) T) ((-1166 . -1093) T) ((-1073 . -1045) T) ((-351 . -1034) 57639) ((-813 . -490) 57623) ((-1000 . -1052) T) ((-45 . -610) 57605) ((-45 . -611) NIL) ((-910 . -1052) T) ((-813 . -610) 57574) ((-1160 . -1093) T) ((-1140 . -102) 57552) ((-1073 . -243) 57503) ((-427 . -1052) T) ((-359 . -1045) T) ((-365 . -364) 57480) ((-353 . -1045) T) ((-345 . -1045) T) ((-251 . -238) 57459) ((-250 . -238) 57438) ((-1073 . -233) 57363) ((-1119 . -1093) T) ((-294 . -896) 57322) ((-108 . -1045) T) ((-689 . -131) T) ((-418 . -514) 57164) ((-359 . -233) 57143) ((-359 . -243) T) ((-44 . -716) T) ((-353 . -233) 57122) ((-353 . -243) T) ((-345 . -233) 57101) ((-345 . -243) T) ((-1159 . -613) 57082) ((-169 . -309) 57047) ((-108 . -243) T) ((-108 . -233) T) ((-990 . -613) 57028) ((-319 . -788) T) ((-866 . -21) T) ((-866 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 57003) ((-1106 . -1051) 56900) ((-867 . -1144) NIL) ((-330 . -610) 56882) ((-407 . -1018) 56860) ((-1106 . -111) 56750) ((-686 . -1252) T) ((-436 . -1093) T) ((-1281 . -722) T) ((-63 . -610) 56732) ((-867 . -38) 56677) ((-523 . -1208) T) ((-599 . -151) 56661) ((-512 . -610) 56643) ((-1230 . -309) 56630) ((-727 . -713) 56479) ((-531 . -789) T) ((-531 . -790) T) ((-563 . -636) 56461) ((-495 . -636) 56421) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 56372) ((-525 . -1093) T) ((-520 . -1093) 56322) ((-247 . -452) 56273) ((-1143 . -286) 56252) ((-1171 . -610) 56234) ((-684 . -514) 56167) ((-959 . -290) 56146) ((-549 . -514) 55938) ((-1269 . -610) 55907) ((-1165 . -231) 55891) ((-1106 . -613) 55621) ((-169 . -1144) 55600) ((-1269 . -490) 55584) ((-1167 . -713) 55481) ((-1166 . -713) 55322) ((-888 . -102) T) ((-1160 . -713) 55118) ((-1119 . -713) 55015) ((-1149 . -669) 54999) ((-355 . -402) 54950) ((-352 . -402) 54901) ((-344 . -402) 54852) ((-1020 . -131) T) ((-795 . -514) 54764) ((-295 . -611) NIL) ((-295 . -610) 54746) ((-906 . -452) T) ((-960 . -368) 54699) ((-811 . -368) 54678) ((-510 . -509) 54657) ((-508 . -509) 54636) ((-487 . -286) NIL) ((-482 . -288) 54613) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-689 . -493) NIL) ((-99 . -1105) T) ((-169 . -38) 54441) ((-1241 . -969) 54403) ((-1140 . -309) 54341) ((-1220 . -969) 54310) ((-906 . -402) T) ((-1106 . -1045) 54240) ((-1243 . -555) T) ((-1143 . -601) 54219) ((-112 . -846) T) ((-1057 . -489) 54150) ((-579 . -21) T) ((-579 . -25) T) ((-563 . -21) T) ((-563 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1230 . -1144) 54128) ((-1106 . -233) 54080) ((-48 . -131) T) ((-1189 . -102) T) ((-240 . -1093) 53870) ((-867 . -400) 53847) ((-1081 . -102) T) ((-1069 . -102) T) ((-605 . -102) T) ((-475 . -102) T) ((-1230 . -38) 53676) ((-851 . -38) 53646) ((-727 . -172) 53557) ((-648 . -610) 53539) ((-641 . -1076) T) ((-570 . -38) 53526) ((-966 . -490) 53507) ((-966 . -610) 53473) ((-954 . -102) 53423) ((-860 . -610) 53405) ((-860 . -611) 53327) ((-591 . -514) NIL) ((-1249 . -1052) T) ((-1242 . -1052) T) ((-1221 . -1052) T) ((-1285 . -1105) T) ((-1176 . -102) T) ((-594 . -1052) T) ((-593 . -1052) T) ((-1175 . -102) T) ((-1167 . -172) 53278) ((-1166 . -172) 53209) ((-1160 . -172) 53140) ((-1119 . -172) 53091) ((-1000 . -1093) T) ((-967 . -1093) T) ((-910 . -1093) T) ((-1202 . -147) 53070) ((-795 . -793) 53054) ((-694 . -25) T) ((-694 . -21) T) ((-117 . -636) 53031) ((-696 . -882) 53013) ((-427 . -1093) T) ((-316 . -1212) 52992) ((-313 . -1212) T) ((-169 . -400) 52976) ((-1202 . -145) 52955) ((-474 . -969) 52917) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -610) 52899) ((-108 . -791) T) ((-108 . -788) T) ((-696 . -1034) 52881) ((-316 . -555) 52860) ((-313 . -555) T) ((-1285 . -23) T) ((-134 . -1034) 52842) ((-96 . -613) 52823) ((-482 . -1051) 52720) ((-45 . -288) 52645) ((-240 . -713) 52587) ((-517 . -102) T) ((-482 . -111) 52477) ((-1085 . -102) 52455) ((-1030 . -102) T) ((-640 . -824) 52434) ((-727 . -514) 52377) ((-1049 . -1051) 52361) ((-1128 . -93) T) ((-1057 . -286) 52336) ((-620 . -21) T) ((-620 . -25) T) ((-524 . -1093) T) ((-361 . -102) T) ((-322 . -102) T) ((-665 . -643) 52310) ((-385 . -1051) 52294) ((-1049 . -111) 52273) ((-812 . -411) 52257) ((-117 . -25) T) ((-89 . -610) 52239) ((-117 . -21) T) ((-605 . -309) 52034) ((-475 . -309) 51838) ((-1143 . -611) NIL) ((-385 . -111) 51817) ((-379 . -102) T) ((-214 . -610) 51799) ((-1143 . -610) 51781) ((-1160 . -514) 51550) ((-1000 . -713) 51500) ((-1119 . -514) 51470) ((-910 . -713) 51422) ((-482 . -613) 51152) ((-351 . -307) T) ((-1181 . -151) 51102) ((-954 . -309) 51040) ((-832 . -102) T) ((-427 . -713) 51024) ((-225 . -824) T) ((-823 . -102) T) ((-821 . -102) T) ((-479 . -151) 50974) ((-1241 . -1240) 50953) ((-1113 . -1212) T) ((-339 . -1034) 50920) ((-1241 . -1235) 50890) ((-1241 . -1238) 50874) ((-1220 . -1219) 50853) ((-80 . -610) 50835) ((-901 . -610) 50817) ((-1220 . -1235) 50794) ((-1113 . -555) T) ((-917 . -846) T) ((-767 . -846) T) ((-487 . -611) 50724) ((-487 . -610) 50665) ((-379 . -284) T) ((-667 . -846) T) ((-1220 . -1217) 50649) ((-1243 . -1105) T) ((-217 . -611) 50579) ((-217 . -610) 50520) ((-1279 . -643) 50494) ((-1057 . -601) 50469) ((-814 . -613) 50453) ((-59 . -151) 50437) ((-516 . -151) 50421) ((-496 . -151) 50405) ((-359 . -1276) 50389) ((-353 . -1276) 50373) ((-345 . -1276) 50357) ((-316 . -363) 50336) ((-313 . -363) T) ((-482 . -1045) 50266) ((-689 . -636) 50248) ((-1277 . -643) 50222) ((-128 . -309) NIL) ((-1243 . -23) T) ((-684 . -489) 50206) ((-64 . -610) 50188) ((-1106 . -791) 50139) ((-1106 . -788) 50090) ((-549 . -489) 50027) ((-665 . -34) T) ((-482 . -233) 49979) ((-295 . -288) 49958) ((-240 . -172) 49937) ((-812 . -1052) T) ((-44 . -643) 49895) ((-1073 . -368) 49846) ((-727 . -290) 49777) ((-520 . -514) 49710) ((-813 . -1051) 49661) ((-1080 . -145) 49640) ((-548 . -610) 49622) ((-359 . -368) 49601) ((-353 . -368) 49580) ((-345 . -368) 49559) ((-1080 . -147) 49538) ((-867 . -231) 49515) ((-813 . -111) 49457) ((-778 . -145) 49436) ((-778 . -147) 49415) ((-264 . -945) 49382) ((-251 . -844) 49361) ((-247 . -945) 49306) ((-250 . -844) 49285) ((-776 . -145) 49264) ((-776 . -147) 49243) ((-152 . -643) 49217) ((-578 . -1093) T) ((-454 . -147) 49196) ((-454 . -145) 49175) ((-665 . -722) T) ((-819 . -610) 49157) ((-1249 . -1093) T) ((-1242 . -1093) T) ((-1221 . -1093) T) ((-1202 . -1196) 49123) ((-1202 . -1193) 49089) ((-1167 . -290) 49068) ((-1166 . -290) 49019) ((-1160 . -290) 48970) ((-1119 . -290) 48949) ((-339 . -896) 48930) ((-1000 . -172) T) ((-910 . -172) T) ((-594 . -1093) T) ((-593 . -1093) T) ((-689 . -21) T) ((-689 . -25) T) ((-474 . -1238) 48914) ((-474 . -1235) 48884) ((-418 . -286) 48812) ((-547 . -846) T) ((-316 . -1105) 48661) ((-313 . -1105) T) ((-1202 . -35) 48627) ((-1202 . -95) 48593) ((-84 . -610) 48575) ((-91 . -102) 48553) ((-1285 . -131) T) ((-590 . -613) 48534) ((-580 . -145) T) ((-580 . -147) 48516) ((-518 . -147) 48498) ((-518 . -145) T) ((-316 . -23) 48350) ((-40 . -342) 48324) ((-313 . -23) T) ((-813 . -613) 48238) ((-1151 . -646) 48220) ((-1272 . -1052) T) ((-1151 . -373) 48202) ((-811 . -643) 48050) ((-1089 . -102) T) ((-1083 . -102) T) ((-1067 . -102) T) ((-169 . -231) 48034) ((-1060 . -102) T) ((-1032 . -102) T) ((-1015 . -102) T) ((-591 . -489) 48016) ((-623 . -102) T) ((-240 . -514) 47949) ((-483 . -102) T) ((-1279 . -722) T) ((-1277 . -722) T) ((-218 . -102) T) ((-1171 . -1051) 47832) ((-1171 . -111) 47701) ((-857 . -173) T) ((-813 . -1045) T) ((-676 . -1076) T) ((-671 . -1076) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -636) 47661) ((-508 . -102) T) ((-478 . -1076) T) ((-1269 . -1051) 47631) ((-138 . -1076) T) ((-137 . -1076) T) ((-133 . -1076) T) ((-1030 . -38) 47615) ((-813 . -233) T) ((-813 . -243) 47594) ((-1269 . -111) 47559) ((-1249 . -713) 47456) ((-1242 . -713) 47297) ((-1230 . -231) 47281) ((-549 . -286) 47260) ((-1213 . -610) 47242) ((-1057 . -611) NIL) ((-603 . -93) T) ((-1057 . -610) 47224) ((-698 . -490) 47208) ((-666 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1221 . -713) 47004) ((-999 . -916) T) ((-698 . -610) 46973) ((-152 . -722) T) ((-1106 . -368) 46952) ((-1000 . -514) NIL) ((-251 . -411) 46921) ((-250 . -411) 46890) ((-1020 . -25) T) ((-1020 . -21) T) ((-594 . -713) 46863) ((-593 . -713) 46760) ((-795 . -286) 46718) ((-126 . -102) 46696) ((-829 . -1034) 46592) ((-169 . -824) 46571) ((-319 . -643) 46468) ((-811 . -34) T) ((-710 . -102) T) ((-1171 . -613) 46321) ((-1113 . -1105) T) ((-1022 . -1208) T) ((-379 . -38) 46286) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1264) 46270) ((-352 . -1264) 46254) ((-344 . -1264) 46238) ((-169 . -349) 46217) ((-563 . -846) T) ((-495 . -846) T) ((-1113 . -23) T) ((-87 . -610) 46199) ((-696 . -307) T) ((-832 . -38) 46169) ((-823 . -38) 46139) ((-1269 . -613) 46081) ((-1243 . -131) T) ((-1143 . -288) 46060) ((-960 . -789) 46013) ((-960 . -790) 45966) ((-811 . -787) 45945) ((-116 . -307) T) ((-91 . -309) 45883) ((-670 . -34) T) ((-549 . -601) 45862) ((-48 . -25) T) ((-48 . -21) T) ((-811 . -790) 45813) ((-811 . -789) 45792) ((-696 . -1018) T) ((-648 . -1051) 45776) ((-960 . -722) 45675) ((-811 . -722) 45585) ((-960 . -473) 45538) ((-482 . -791) 45489) ((-482 . -788) 45440) ((-906 . -1264) 45427) ((-1171 . -1045) T) ((-648 . -111) 45406) ((-1171 . -326) 45383) ((-1194 . -102) 45361) ((-1094 . -610) 45343) ((-696 . -545) T) ((-812 . -1093) T) ((-1269 . -1045) T) ((-1128 . -490) 45324) ((-1214 . -102) T) ((-413 . -1093) T) ((-1128 . -610) 45290) ((-251 . -1052) 45220) ((-250 . -1052) 45150) ((-834 . -102) T) ((-289 . -643) 45137) ((-591 . -286) 45112) ((-684 . -682) 45070) ((-959 . -610) 45052) ((-868 . -102) T) ((-731 . -610) 45034) ((-711 . -610) 45016) ((-1249 . -172) 44967) ((-1242 . -172) 44898) ((-1221 . -172) 44829) ((-694 . -846) T) ((-1000 . -290) T) ((-453 . -610) 44811) ((-624 . -722) T) ((-60 . -1093) 44789) ((-245 . -151) 44773) ((-910 . -290) T) ((-1020 . -1008) T) ((-624 . -473) T) ((-708 . -1212) 44752) ((-648 . -613) 44670) ((-594 . -172) 44649) ((-593 . -172) 44600) ((-1257 . -846) 44579) ((-708 . -555) 44490) ((-407 . -916) T) ((-407 . -816) 44469) ((-319 . -790) T) ((-966 . -613) 44450) ((-319 . -722) T) ((-418 . -610) 44432) ((-418 . -611) 44339) ((-640 . -1142) 44323) ((-110 . -646) 44305) ((-174 . -307) T) ((-126 . -309) 44243) ((-110 . -373) 44225) ((-398 . -1208) T) ((-316 . -131) 44096) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 44080) ((-649 . -1105) T) ((-591 . -19) 44062) ((-61 . -441) T) ((-61 . -395) T) ((-820 . -1093) T) ((-591 . -601) 44037) ((-477 . -1034) 43997) ((-648 . -1045) T) ((-649 . -23) T) ((-1272 . -1093) T) ((-31 . -102) T) ((-812 . -713) 43846) ((-576 . -856) T) ((-117 . -846) NIL) ((-1165 . -411) 43830) ((-1118 . -411) 43814) ((-850 . -411) 43798) ((-869 . -102) 43749) ((-1241 . -102) T) ((-1221 . -514) 43518) ((-1220 . -102) T) ((-1194 . -309) 43456) ((-525 . -93) T) ((-1167 . -286) 43441) ((-312 . -610) 43423) ((-1166 . -286) 43408) ((-1095 . -1093) T) ((-1073 . -643) 43318) ((-684 . -610) 43250) ((-289 . -722) T) ((-108 . -905) NIL) ((-684 . -611) 43211) ((-598 . -610) 43193) ((-576 . -610) 43175) ((-549 . -611) NIL) ((-549 . -610) 43157) ((-529 . -610) 43139) ((-1160 . -286) 42987) ((-487 . -1051) 42937) ((-707 . -452) T) ((-511 . -509) 42916) ((-507 . -509) 42895) ((-217 . -1051) 42845) ((-359 . -643) 42797) ((-353 . -643) 42749) ((-225 . -844) T) ((-345 . -643) 42701) ((-599 . -102) 42651) ((-482 . -368) 42630) ((-108 . -643) 42580) ((-487 . -111) 42514) ((-240 . -489) 42498) ((-343 . -147) 42480) ((-343 . -145) T) ((-169 . -370) 42451) ((-939 . -1255) 42435) ((-217 . -111) 42369) ((-868 . -309) 42334) ((-939 . -1093) 42284) ((-795 . -611) 42245) ((-795 . -610) 42227) ((-714 . -102) T) ((-331 . -1093) T) ((-214 . -613) 42204) ((-1113 . -131) T) ((-710 . -38) 42174) ((-316 . -493) 42153) ((-500 . -1208) T) ((-1241 . -284) 42119) ((-1220 . -284) 42085) ((-327 . -151) 42069) ((-439 . -1093) T) ((-1057 . -288) 42044) ((-1272 . -713) 42014) ((-1152 . -34) T) ((-1281 . -1034) 41991) ((-468 . -610) 41973) ((-484 . -34) T) ((-381 . -1034) 41957) ((-1165 . -1052) T) ((-1118 . -1052) T) ((-850 . -1052) T) ((-1056 . -844) T) ((-487 . -613) 41907) ((-217 . -613) 41857) ((-812 . -172) 41768) ((-520 . -286) 41745) ((-1249 . -290) 41724) ((-1189 . -364) 41698) ((-1081 . -266) 41682) ((-666 . -490) 41663) ((-666 . -610) 41629) ((-603 . -490) 41610) ((-117 . -988) 41587) ((-603 . -610) 41537) ((-474 . -102) T) ((-180 . -490) 41518) ((-180 . -610) 41484) ((-161 . -490) 41465) ((-156 . -490) 41446) ((-154 . -490) 41427) ((-161 . -610) 41393) ((-156 . -610) 41359) ((-365 . -1093) T) ((-251 . -1093) T) ((-250 . -1093) T) ((-154 . -610) 41325) ((-1242 . -290) 41276) ((-1221 . -290) 41227) ((-868 . -1144) 41205) ((-1167 . -998) 41171) ((-605 . -364) 41111) ((-1166 . -998) 41077) ((-605 . -229) 41024) ((-591 . -610) 41006) ((-591 . -611) NIL) ((-689 . -846) T) ((-475 . -229) 40956) ((-487 . -1045) T) ((-1160 . -998) 40922) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1045) T) ((-1119 . -998) 40888) ((-1073 . -722) T) ((-708 . -1105) T) ((-594 . -290) 40867) ((-593 . -290) 40846) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1158 . -610) 40828) ((-868 . -38) 40780) ((-359 . -722) T) ((-353 . -722) T) ((-345 . -722) T) ((-108 . -790) T) ((-108 . -787) T) ((-708 . -23) T) ((-108 . -722) T) ((-520 . -1245) 40764) ((-1285 . -25) T) ((-474 . -284) 40730) ((-1285 . -21) T) ((-1220 . -309) 40669) ((-1169 . -102) T) ((-40 . -145) 40641) ((-40 . -147) 40613) ((-520 . -601) 40590) ((-1106 . -643) 40438) ((-599 . -309) 40376) ((-45 . -646) 40326) ((-45 . -661) 40276) ((-45 . -373) 40226) ((-1151 . -34) T) ((-867 . -844) NIL) ((-649 . -131) T) ((-485 . -610) 40208) ((-240 . -286) 40185) ((-186 . -1093) T) ((-642 . -34) T) ((-629 . -34) T) ((-1080 . -452) 40136) ((-812 . -514) 40010) ((-778 . -452) 39941) ((-776 . -452) 39892) ((-454 . -452) 39843) ((-948 . -411) 39827) ((-727 . -610) 39809) ((-251 . -713) 39751) ((-250 . -713) 39693) ((-727 . -611) 39554) ((-481 . -411) 39538) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -916) T) ((-996 . -102) 39516) ((-1020 . -846) T) ((-60 . -514) 39449) ((-1220 . -1144) 39401) ((-1000 . -286) NIL) ((-225 . -1052) T) ((-379 . -824) T) ((-1106 . -34) T) ((-580 . -452) T) ((-518 . -452) T) ((-1224 . -1086) 39385) ((-1224 . -1093) 39363) ((-240 . -601) 39340) ((-1224 . -1088) 39297) ((-1167 . -610) 39279) ((-1166 . -610) 39261) ((-1160 . -610) 39243) ((-1160 . -611) NIL) ((-1119 . -610) 39225) ((-868 . -400) 39209) ((-536 . -102) T) ((-1241 . -38) 39050) ((-1220 . -38) 38864) ((-866 . -147) T) ((-698 . -613) 38848) ((-580 . -402) T) ((-48 . -846) T) ((-518 . -402) T) ((-1253 . -102) T) ((-1243 . -21) T) ((-1243 . -25) T) ((-1106 . -787) 38827) ((-1106 . -790) 38778) ((-1106 . -789) 38757) ((-989 . -1093) T) ((-1023 . -34) T) ((-858 . -1093) T) ((-1106 . -722) 38667) ((-659 . -102) T) ((-641 . -102) T) ((-549 . -288) 38646) ((-1181 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1056 . -1052) T) ((-948 . -1052) T) ((-316 . -636) 38552) ((-313 . -636) 38513) ((-481 . -1052) T) ((-479 . -102) T) ((-436 . -610) 38495) ((-1165 . -1093) T) ((-1118 . -1093) T) ((-850 . -1093) T) ((-1134 . -102) T) ((-812 . -290) 38426) ((-959 . -1051) 38309) ((-477 . -1018) T) ((-731 . -1051) 38279) ((-453 . -1051) 38249) ((-1140 . -1114) 38233) ((-1095 . -514) 38166) ((-959 . -111) 38035) ((-906 . -102) T) ((-731 . -111) 38000) ((-525 . -490) 37981) ((-525 . -610) 37947) ((-59 . -102) 37897) ((-520 . -611) 37858) ((-520 . -610) 37770) ((-519 . -102) 37748) ((-516 . -102) 37698) ((-497 . -102) 37676) ((-496 . -102) 37626) ((-453 . -111) 37589) ((-251 . -172) 37568) ((-250 . -172) 37547) ((-418 . -1051) 37521) ((-1202 . -969) 37483) ((-995 . -1105) T) ((-1128 . -613) 37464) ((-939 . -514) 37397) ((-487 . -791) T) ((-474 . -38) 37238) ((-418 . -111) 37205) ((-487 . -788) T) ((-996 . -309) 37143) ((-217 . -791) T) ((-217 . -788) T) ((-995 . -23) T) ((-708 . -131) T) ((-1220 . -400) 37113) ((-316 . -25) 36965) ((-169 . -411) 36949) ((-316 . -21) 36820) ((-313 . -25) T) ((-313 . -21) T) ((-860 . -368) T) ((-959 . -613) 36673) ((-110 . -34) T) ((-731 . -613) 36629) ((-711 . -613) 36611) ((-482 . -643) 36459) ((-867 . -1052) T) ((-591 . -288) 36434) ((-579 . -147) T) ((-563 . -147) T) ((-495 . -147) T) ((-1165 . -713) 36263) ((-1118 . -713) 36112) ((-1113 . -636) 36094) ((-850 . -713) 36064) ((-665 . -1208) T) ((-1 . -102) T) ((-418 . -613) 35972) ((-240 . -610) 35703) ((-1108 . -1093) T) ((-1230 . -411) 35687) ((-1181 . -309) 35491) ((-959 . -1045) T) ((-731 . -1045) T) ((-711 . -1045) T) ((-640 . -1093) 35441) ((-1049 . -643) 35425) ((-851 . -411) 35409) ((-511 . -102) T) ((-507 . -102) T) ((-247 . -309) 35396) ((-264 . -309) 35383) ((-959 . -326) 35362) ((-385 . -643) 35346) ((-479 . -309) 35150) ((-251 . -514) 35083) ((-665 . -1034) 34979) ((-250 . -514) 34912) ((-1134 . -309) 34838) ((-815 . -1093) T) ((-795 . -1051) 34822) ((-1249 . -286) 34807) ((-1242 . -286) 34792) ((-1221 . -286) 34640) ((-386 . -1093) T) ((-324 . -1093) T) ((-418 . -1045) T) ((-169 . -1052) T) ((-59 . -309) 34578) ((-795 . -111) 34557) ((-593 . -286) 34542) ((-519 . -309) 34480) ((-516 . -309) 34418) ((-497 . -309) 34356) ((-496 . -309) 34294) ((-418 . -233) 34273) ((-482 . -34) T) ((-1000 . -611) 34203) ((-225 . -1093) T) ((-1000 . -610) 34163) ((-967 . -610) 34123) ((-967 . -611) 34098) ((-910 . -610) 34080) ((-694 . -147) T) ((-696 . -916) T) ((-696 . -816) T) ((-427 . -610) 34062) ((-1113 . -21) T) ((-1113 . -25) T) ((-665 . -377) 34046) ((-116 . -916) T) ((-868 . -231) 34030) ((-78 . -1208) T) ((-126 . -125) 34014) ((-1049 . -34) T) ((-1279 . -1034) 33988) ((-1277 . -1034) 33945) ((-1230 . -1052) T) ((-851 . -1052) T) ((-482 . -787) 33924) ((-355 . -1144) 33903) ((-352 . -1144) 33882) ((-344 . -1144) 33861) ((-482 . -790) 33812) ((-482 . -789) 33791) ((-227 . -34) T) ((-482 . -722) 33701) ((-795 . -613) 33549) ((-60 . -489) 33533) ((-570 . -1052) T) ((-1165 . -172) 33424) ((-1118 . -172) 33335) ((-1056 . -1093) T) ((-1080 . -945) 33280) ((-948 . -1093) T) ((-813 . -643) 33231) ((-778 . -945) 33200) ((-709 . -1093) T) ((-776 . -945) 33167) ((-516 . -282) 33151) ((-665 . -896) 33110) ((-481 . -1093) T) ((-454 . -945) 33077) ((-79 . -1208) T) ((-355 . -38) 33042) ((-352 . -38) 33007) ((-344 . -38) 32972) ((-264 . -38) 32821) ((-247 . -38) 32670) ((-906 . -1144) T) ((-524 . -490) 32651) ((-620 . -147) 32630) ((-620 . -145) 32609) ((-524 . -610) 32575) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -722) T) ((-795 . -1045) T) ((-343 . -452) T) ((-1249 . -998) 32541) ((-1242 . -998) 32507) ((-1221 . -998) 32473) ((-906 . -38) 32438) ((-225 . -713) 32403) ((-319 . -47) 32373) ((-40 . -409) 32345) ((-140 . -610) 32327) ((-995 . -131) T) ((-811 . -1208) T) ((-174 . -916) T) ((-548 . -368) T) ((-603 . -613) 32308) ((-343 . -402) T) ((-666 . -613) 32289) ((-180 . -613) 32270) ((-161 . -613) 32251) ((-156 . -613) 32232) ((-154 . -613) 32213) ((-520 . -288) 32190) ((-1220 . -231) 32160) ((-811 . -1034) 31987) ((-45 . -34) T) ((-676 . -102) T) ((-671 . -102) T) ((-657 . -102) T) ((-649 . -21) T) ((-649 . -25) T) ((-1095 . -489) 31971) ((-670 . -1208) T) ((-478 . -102) T) ((-245 . -102) 31921) ((-546 . -840) T) ((-138 . -102) T) ((-137 . -102) T) ((-133 . -102) T) ((-867 . -1093) T) ((-1171 . -643) 31846) ((-1056 . -713) 31833) ((-727 . -1051) 31676) ((-1165 . -514) 31623) ((-948 . -713) 31472) ((-1118 . -514) 31424) ((-1268 . -1093) T) ((-1267 . -1093) T) ((-481 . -713) 31273) ((-67 . -610) 31255) ((-727 . -111) 31084) ((-939 . -489) 31068) ((-1269 . -643) 31028) ((-813 . -722) T) ((-1167 . -1051) 30911) ((-1166 . -1051) 30746) ((-1160 . -1051) 30536) ((-1119 . -1051) 30419) ((-999 . -1212) T) ((-1087 . -102) 30397) ((-811 . -377) 30366) ((-578 . -610) 30348) ((-546 . -1093) T) ((-999 . -555) T) ((-1167 . -111) 30217) ((-1166 . -111) 30038) ((-1160 . -111) 29807) ((-1119 . -111) 29676) ((-1098 . -1096) 29640) ((-379 . -844) T) ((-1249 . -610) 29622) ((-1242 . -610) 29604) ((-1221 . -610) 29586) ((-1221 . -611) NIL) ((-240 . -288) 29563) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1093) T) ((-727 . -613) 29348) ((-689 . -147) T) ((-689 . -145) NIL) ((-594 . -610) 29330) ((-593 . -610) 29312) ((-894 . -1093) T) ((-837 . -1093) T) ((-804 . -1093) T) ((-765 . -1093) T) ((-653 . -848) 29296) ((-672 . -1093) T) ((-811 . -896) 29228) ((-1213 . -368) T) ((-40 . -402) NIL) ((-1167 . -613) 29110) ((-1113 . -656) T) ((-867 . -713) 29055) ((-251 . -489) 29039) ((-250 . -489) 29023) ((-1166 . -613) 28766) ((-1160 . -613) 28561) ((-708 . -636) 28509) ((-648 . -643) 28483) ((-1119 . -613) 28365) ((-295 . -34) T) ((-727 . -1045) T) ((-580 . -1264) 28352) ((-518 . -1264) 28329) ((-1230 . -1093) T) ((-1165 . -290) 28240) ((-1118 . -290) 28171) ((-1056 . -172) T) ((-851 . -1093) T) ((-948 . -172) 28082) ((-778 . -1233) 28066) ((-640 . -514) 27999) ((-77 . -610) 27981) ((-727 . -326) 27946) ((-1171 . -722) T) ((-570 . -1093) T) ((-481 . -172) 27857) ((-245 . -309) 27795) ((-1135 . -1105) T) ((-70 . -610) 27777) ((-1269 . -722) T) ((-1167 . -1045) T) ((-1166 . -1045) T) ((-327 . -102) 27727) ((-1160 . -1045) T) ((-1135 . -23) T) ((-1119 . -1045) T) ((-91 . -1114) 27711) ((-862 . -1105) T) ((-1167 . -233) 27670) ((-1166 . -243) 27649) ((-1166 . -233) 27601) ((-1160 . -233) 27488) ((-1160 . -243) 27467) ((-319 . -896) 27373) ((-862 . -23) T) ((-169 . -713) 27201) ((-407 . -1212) T) ((-1094 . -368) T) ((-1020 . -147) T) ((-999 . -363) T) ((-866 . -452) T) ((-939 . -286) 27178) ((-316 . -846) T) ((-313 . -846) NIL) ((-870 . -102) T) ((-708 . -25) T) ((-407 . -555) T) ((-708 . -21) T) ((-525 . -613) 27159) ((-354 . -147) 27141) ((-354 . -145) T) ((-1140 . -1093) 27119) ((-453 . -716) T) ((-75 . -610) 27101) ((-114 . -846) T) ((-245 . -282) 27085) ((-240 . -1051) 26982) ((-81 . -610) 26964) ((-731 . -368) 26917) ((-1169 . -824) T) ((-733 . -235) 26901) ((-1152 . -1208) T) ((-141 . -235) 26883) ((-240 . -111) 26773) ((-1230 . -713) 26602) ((-48 . -147) T) ((-867 . -172) T) ((-851 . -713) 26572) ((-484 . -1208) T) ((-948 . -514) 26519) ((-648 . -722) T) ((-570 . -713) 26506) ((-1030 . -1052) T) ((-481 . -514) 26449) ((-939 . -19) 26433) ((-939 . -601) 26410) ((-812 . -611) NIL) ((-812 . -610) 26392) ((-1000 . -1051) 26342) ((-413 . -610) 26324) ((-251 . -286) 26301) ((-250 . -286) 26278) ((-487 . -905) NIL) ((-316 . -29) 26248) ((-108 . -1208) T) ((-999 . -1105) T) ((-217 . -905) NIL) ((-910 . -1051) 26200) ((-1073 . -1034) 26096) ((-1000 . -111) 26030) ((-999 . -23) T) ((-733 . -690) 26014) ((-264 . -231) 25998) ((-427 . -1051) 25982) ((-379 . -1052) T) ((-240 . -613) 25712) ((-910 . -111) 25650) ((-689 . -1196) NIL) ((-487 . -643) 25600) ((-108 . -880) 25582) ((-108 . -882) 25564) ((-689 . -1193) NIL) ((-217 . -643) 25514) ((-359 . -1034) 25498) ((-353 . -1034) 25482) ((-327 . -309) 25420) ((-345 . -1034) 25404) ((-225 . -290) T) ((-427 . -111) 25383) ((-60 . -610) 25315) ((-169 . -172) T) ((-1113 . -846) T) ((-108 . -1034) 25275) ((-888 . -1093) T) ((-832 . -1052) T) ((-823 . -1052) T) ((-689 . -35) NIL) ((-689 . -95) NIL) ((-313 . -988) 25236) ((-183 . -102) T) ((-579 . -452) T) ((-563 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1045) 25166) ((-1143 . -34) T) ((-477 . -916) T) ((-995 . -636) 25114) ((-251 . -601) 25091) ((-250 . -601) 25068) ((-1073 . -377) 25052) ((-867 . -514) 24960) ((-240 . -233) 24912) ((-1151 . -1208) T) ((-1000 . -613) 24862) ((-910 . -613) 24799) ((-820 . -610) 24781) ((-1280 . -1105) T) ((-1272 . -610) 24763) ((-1230 . -172) 24654) ((-427 . -613) 24623) ((-108 . -377) 24605) ((-108 . -338) 24587) ((-1056 . -290) T) ((-948 . -290) 24518) ((-795 . -368) 24497) ((-642 . -1208) T) ((-629 . -1208) T) ((-481 . -290) 24428) ((-570 . -172) T) ((-327 . -282) 24412) ((-1280 . -23) T) ((-1202 . -102) T) ((-1189 . -1093) T) ((-1081 . -1093) T) ((-1069 . -1093) T) ((-83 . -610) 24394) ((-1176 . -840) T) ((-1175 . -840) T) ((-707 . -102) T) ((-355 . -349) 24373) ((-605 . -1093) T) ((-352 . -349) 24352) ((-344 . -349) 24331) ((-475 . -1093) T) ((-1181 . -229) 24281) ((-264 . -253) 24243) ((-1135 . -131) T) ((-605 . -607) 24219) ((-1073 . -896) 24152) ((-1000 . -1045) T) ((-910 . -1045) T) ((-475 . -607) 24131) ((-1160 . -788) NIL) ((-1160 . -791) NIL) ((-1095 . -611) 24092) ((-479 . -229) 24042) ((-1095 . -610) 24024) ((-1000 . -243) T) ((-1000 . -233) T) ((-427 . -1045) T) ((-954 . -1093) 23974) ((-910 . -243) T) ((-862 . -131) T) ((-694 . -452) T) ((-839 . -1105) 23953) ((-108 . -896) NIL) ((-1202 . -284) 23919) ((-868 . -844) 23898) ((-1106 . -1208) T) ((-901 . -722) T) ((-169 . -514) 23810) ((-995 . -25) T) ((-901 . -473) T) ((-407 . -1105) T) ((-487 . -790) T) ((-487 . -787) T) ((-906 . -349) T) ((-487 . -722) T) ((-217 . -790) T) ((-217 . -787) T) ((-995 . -21) T) ((-217 . -722) T) ((-839 . -23) 23762) ((-524 . -613) 23743) ((-1176 . -1093) T) ((-319 . -307) 23722) ((-1175 . -1093) T) ((-1031 . -235) 23668) ((-407 . -23) T) ((-939 . -611) 23629) ((-939 . -610) 23541) ((-640 . -489) 23525) ((-45 . -1006) 23475) ((-614 . -963) T) ((-491 . -102) T) ((-331 . -610) 23457) ((-1106 . -1034) 23284) ((-591 . -646) 23266) ((-130 . -1093) T) ((-128 . -1093) T) ((-591 . -373) 23248) ((-343 . -1264) 23225) ((-439 . -610) 23207) ((-1023 . -1208) T) ((-867 . -290) T) ((-1230 . -514) 23154) ((-476 . -1208) T) ((-463 . -1208) T) ((-584 . -102) T) ((-1165 . -286) 23081) ((-620 . -452) 23060) ((-996 . -991) 23044) ((-1272 . -382) 23016) ((-517 . -1093) T) ((-117 . -452) T) ((-1188 . -102) T) ((-1085 . -1093) 22994) ((-1030 . -1093) T) ((-1108 . -93) T) ((-889 . -846) T) ((-351 . -1212) T) ((-1249 . -1051) 22877) ((-1106 . -377) 22846) ((-1242 . -1051) 22681) ((-1221 . -1051) 22471) ((-1249 . -111) 22340) ((-1242 . -111) 22161) ((-1221 . -111) 21930) ((-1202 . -309) 21917) ((-351 . -555) T) ((-365 . -610) 21899) ((-289 . -307) T) ((-594 . -1051) 21872) ((-593 . -1051) 21755) ((-361 . -1093) T) ((-322 . -1093) T) ((-251 . -610) 21716) ((-250 . -610) 21677) ((-999 . -131) T) ((-632 . -23) T) ((-689 . -409) 21644) ((-604 . -23) T) ((-653 . -102) T) ((-594 . -111) 21615) ((-593 . -111) 21484) ((-379 . -1093) T) ((-336 . -102) T) ((-169 . -290) 21395) ((-1220 . -844) 21348) ((-710 . -1052) T) ((-1140 . -514) 21281) ((-1106 . -896) 21213) ((-832 . -1093) T) ((-823 . -1093) T) ((-821 . -1093) T) ((-97 . -102) T) ((-144 . -846) T) ((-609 . -880) 21197) ((-110 . -1208) T) ((-1080 . -102) T) ((-1057 . -34) T) ((-778 . -102) T) ((-776 . -102) T) ((-1249 . -613) 21079) ((-1242 . -613) 20822) ((-461 . -102) T) ((-454 . -102) T) ((-1221 . -613) 20617) ((-240 . -791) 20568) ((-240 . -788) 20519) ((-644 . -102) T) ((-594 . -613) 20477) ((-593 . -613) 20359) ((-1230 . -290) 20270) ((-659 . -631) 20254) ((-186 . -610) 20236) ((-640 . -286) 20213) ((-1030 . -713) 20197) ((-570 . -290) T) ((-959 . -643) 20122) ((-1280 . -131) T) ((-731 . -643) 20082) ((-711 . -643) 20069) ((-275 . -102) T) ((-453 . -643) 19999) ((-50 . -102) T) ((-580 . -102) T) ((-518 . -102) T) ((-1249 . -1045) T) ((-1242 . -1045) T) ((-1221 . -1045) T) ((-1249 . -233) 19958) ((-322 . -713) 19940) ((-1242 . -243) 19919) ((-1242 . -233) 19871) ((-1221 . -233) 19758) ((-1221 . -243) 19737) ((-1202 . -38) 19634) ((-1000 . -791) T) ((-594 . -1045) T) ((-593 . -1045) T) ((-1000 . -788) T) ((-967 . -791) T) ((-967 . -788) T) ((-868 . -1052) T) ((-866 . -865) 19618) ((-109 . -610) 19600) ((-689 . -452) T) ((-379 . -713) 19565) ((-418 . -643) 19539) ((-708 . -846) 19518) ((-707 . -38) 19483) ((-593 . -233) 19442) ((-40 . -720) 19414) ((-351 . -329) 19391) ((-351 . -363) T) ((-1073 . -307) 19342) ((-294 . -1105) 19223) ((-1099 . -1208) T) ((-171 . -102) T) ((-1224 . -610) 19190) ((-839 . -131) 19142) ((-640 . -1245) 19126) ((-832 . -713) 19096) ((-823 . -713) 19066) ((-482 . -1208) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-640 . -601) 19043) ((-407 . -131) T) ((-520 . -661) 19027) ((-108 . -307) T) ((-294 . -23) 18910) ((-520 . -646) 18894) ((-689 . -402) NIL) ((-520 . -373) 18878) ((-291 . -610) 18860) ((-91 . -1093) 18838) ((-108 . -1018) T) ((-563 . -143) T) ((-1257 . -151) 18822) ((-482 . -1034) 18649) ((-1243 . -145) 18610) ((-1243 . -147) 18571) ((-1049 . -1208) T) ((-989 . -610) 18553) ((-858 . -610) 18535) ((-812 . -1051) 18378) ((-1268 . -93) T) ((-1267 . -93) T) ((-1165 . -611) NIL) ((-1089 . -1093) T) ((-1083 . -1093) T) ((-1080 . -309) 18365) ((-1067 . -1093) T) ((-227 . -1208) T) ((-1060 . -1093) T) ((-1032 . -1093) T) ((-1015 . -1093) T) ((-778 . -309) 18352) ((-776 . -309) 18339) ((-1165 . -610) 18321) ((-812 . -111) 18150) ((-1118 . -610) 18132) ((-623 . -1093) T) ((-576 . -173) T) ((-529 . -173) T) ((-454 . -309) 18119) ((-483 . -1093) T) ((-1118 . -611) 17867) ((-1030 . -172) T) ((-939 . -288) 17844) ((-218 . -1093) T) ((-850 . -610) 17826) ((-605 . -514) 17609) ((-81 . -613) 17550) ((-814 . -1034) 17534) ((-475 . -514) 17326) ((-959 . -722) T) ((-731 . -722) T) ((-711 . -722) T) ((-351 . -1105) T) ((-1172 . -610) 17308) ((-223 . -102) T) ((-482 . -377) 17277) ((-515 . -1093) T) ((-510 . -1093) T) ((-508 . -1093) T) ((-795 . -643) 17251) ((-1020 . -452) T) ((-954 . -514) 17184) ((-351 . -23) T) ((-632 . -131) T) ((-604 . -131) T) ((-354 . -452) T) ((-240 . -368) 17163) ((-379 . -172) T) ((-1241 . -1052) T) ((-1220 . -1052) T) ((-225 . -998) T) ((-812 . -613) 16900) ((-694 . -387) T) ((-418 . -722) T) ((-696 . -1212) T) ((-1135 . -636) 16848) ((-579 . -865) 16832) ((-1272 . -1051) 16816) ((-1152 . -1184) 16792) ((-696 . -555) T) ((-126 . -1093) 16770) ((-710 . -1093) T) ((-482 . -896) 16702) ((-249 . -1093) T) ((-187 . -1093) T) ((-653 . -38) 16672) ((-354 . -402) T) ((-316 . -147) 16651) ((-316 . -145) 16630) ((-128 . -514) NIL) ((-116 . -555) T) ((-313 . -147) 16586) ((-313 . -145) 16542) ((-48 . -452) T) ((-162 . -1093) T) ((-157 . -1093) T) ((-1152 . -107) 16489) ((-778 . -1144) 16467) ((-684 . -34) T) ((-1272 . -111) 16446) ((-549 . -34) T) ((-484 . -107) 16430) ((-251 . -288) 16407) ((-250 . -288) 16384) ((-867 . -286) 16335) ((-45 . -1208) T) ((-1214 . -840) T) ((-812 . -1045) T) ((-1171 . -47) 16312) ((-812 . -326) 16274) ((-1080 . -38) 16123) ((-812 . -233) 16102) ((-778 . -38) 15931) ((-776 . -38) 15780) ((-1108 . -490) 15761) ((-454 . -38) 15610) ((-1108 . -610) 15576) ((-1111 . -102) T) ((-640 . -611) 15537) ((-640 . -610) 15449) ((-580 . -1144) T) ((-518 . -1144) T) ((-1140 . -489) 15433) ((-1194 . -1093) 15411) ((-1135 . -25) T) ((-1135 . -21) T) ((-1272 . -613) 15360) ((-474 . -1052) T) ((-1214 . -1093) T) ((-1221 . -788) NIL) ((-1221 . -791) NIL) ((-995 . -846) 15339) ((-834 . -1093) T) ((-815 . -610) 15321) ((-862 . -21) T) ((-862 . -25) T) ((-795 . -722) T) ((-174 . -1212) T) ((-580 . -38) 15286) ((-518 . -38) 15251) ((-386 . -610) 15233) ((-324 . -610) 15215) ((-169 . -286) 15173) ((-63 . -1208) T) ((-112 . -102) T) ((-868 . -1093) T) ((-174 . -555) T) ((-710 . -713) 15143) ((-294 . -131) 15026) ((-225 . -610) 15008) ((-225 . -611) 14938) ((-999 . -636) 14877) ((-1272 . -1045) T) ((-1113 . -147) T) ((-629 . -1184) 14852) ((-727 . -905) 14831) ((-591 . -34) T) ((-642 . -107) 14815) ((-629 . -107) 14761) ((-1230 . -286) 14688) ((-727 . -643) 14613) ((-295 . -1208) T) ((-1171 . -1034) 14509) ((-939 . -615) 14486) ((-576 . -575) T) ((-576 . -527) T) ((-529 . -527) T) ((-1160 . -905) NIL) ((-1056 . -611) 14401) ((-1056 . -610) 14383) ((-948 . -610) 14365) ((-709 . -490) 14315) ((-343 . -102) T) ((-251 . -1051) 14212) ((-250 . -1051) 14109) ((-394 . -102) T) ((-31 . -1093) T) ((-948 . -611) 13970) ((-709 . -610) 13905) ((-1270 . -1201) 13874) ((-481 . -610) 13856) ((-481 . -611) 13717) ((-247 . -411) 13701) ((-264 . -411) 13685) ((-251 . -111) 13575) ((-250 . -111) 13465) ((-1167 . -643) 13390) ((-1166 . -643) 13287) ((-1160 . -643) 13139) ((-1119 . -643) 13064) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-999 . -25) T) ((-999 . -21) T) ((-869 . -1093) 13015) ((-868 . -713) 12967) ((-379 . -290) T) ((-169 . -998) 12919) ((-689 . -387) T) ((-995 . -993) 12903) ((-696 . -1105) T) ((-689 . -166) 12885) ((-1241 . -1093) T) ((-1220 . -1093) T) ((-316 . -1193) 12864) ((-316 . -1196) 12843) ((-1157 . -102) T) ((-316 . -955) 12822) ((-134 . -1105) T) ((-116 . -1105) T) ((-599 . -1255) 12806) ((-696 . -23) T) ((-599 . -1093) 12756) ((-316 . -95) 12735) ((-91 . -514) 12668) ((-174 . -363) T) ((-251 . -613) 12398) ((-250 . -613) 12128) ((-316 . -35) 12107) ((-605 . -489) 12041) ((-134 . -23) T) ((-116 . -23) T) ((-962 . -102) T) ((-714 . -1093) T) ((-475 . -489) 11978) ((-407 . -636) 11926) ((-648 . -1034) 11822) ((-954 . -489) 11806) ((-355 . -1052) T) ((-352 . -1052) T) ((-344 . -1052) T) ((-264 . -1052) T) ((-247 . -1052) T) ((-867 . -611) NIL) ((-867 . -610) 11788) ((-1268 . -490) 11769) ((-1267 . -490) 11750) ((-1280 . -21) T) ((-1268 . -610) 11716) ((-1267 . -610) 11682) ((-570 . -998) T) ((-727 . -722) T) ((-1280 . -25) T) ((-251 . -1045) 11612) ((-250 . -1045) 11542) ((-72 . -1208) T) ((-251 . -233) 11494) ((-250 . -233) 11446) ((-40 . -102) T) ((-906 . -1052) T) ((-128 . -489) 11428) ((-1174 . -102) T) ((-1167 . -722) T) ((-1166 . -722) T) ((-1160 . -722) T) ((-1160 . -787) NIL) ((-1160 . -790) NIL) ((-950 . -102) T) ((-917 . -102) T) ((-1119 . -722) T) ((-767 . -102) T) ((-667 . -102) T) ((-546 . -610) 11410) ((-474 . -1093) T) ((-339 . -1105) T) ((-174 . -1105) T) ((-319 . -916) 11389) ((-1241 . -713) 11230) ((-868 . -172) T) ((-1220 . -713) 11044) ((-839 . -21) 10996) ((-839 . -25) 10948) ((-245 . -1142) 10932) ((-126 . -514) 10865) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -611) 10631) ((-169 . -610) 10613) ((-174 . -23) T) ((-640 . -288) 10590) ((-520 . -34) T) ((-894 . -610) 10572) ((-89 . -1208) T) ((-837 . -610) 10554) ((-804 . -610) 10536) ((-765 . -610) 10518) ((-672 . -610) 10500) ((-240 . -643) 10348) ((-1169 . -1093) T) ((-1165 . -1051) 10171) ((-1143 . -1208) T) ((-1118 . -1051) 10014) ((-850 . -1051) 9998) ((-1224 . -615) 9982) ((-1165 . -111) 9791) ((-1118 . -111) 9620) ((-850 . -111) 9599) ((-1230 . -611) NIL) ((-1230 . -610) 9581) ((-343 . -1144) T) ((-851 . -610) 9563) ((-1069 . -286) 9542) ((-80 . -1208) T) ((-1000 . -905) NIL) ((-605 . -286) 9518) ((-1194 . -514) 9451) ((-487 . -1208) T) ((-570 . -610) 9433) ((-475 . -286) 9412) ((-517 . -93) T) ((-217 . -1208) T) ((-1080 . -231) 9396) ((-1000 . -643) 9346) ((-289 . -916) T) ((-813 . -307) 9325) ((-866 . -102) T) ((-778 . -231) 9309) ((-954 . -286) 9286) ((-910 . -643) 9238) ((-632 . -21) T) ((-632 . -25) T) ((-604 . -21) T) ((-547 . -102) T) ((-343 . -38) 9203) ((-689 . -720) 9170) ((-487 . -880) 9152) ((-487 . -882) 9134) ((-474 . -713) 8975) ((-217 . -880) 8957) ((-64 . -1208) T) ((-217 . -882) 8939) ((-604 . -25) T) ((-427 . -643) 8913) ((-1165 . -613) 8682) ((-487 . -1034) 8642) ((-868 . -514) 8554) ((-1118 . -613) 8346) ((-850 . -613) 8264) ((-217 . -1034) 8224) ((-240 . -34) T) ((-996 . -1093) 8202) ((-1241 . -172) 8133) ((-1220 . -172) 8064) ((-708 . -145) 8043) ((-708 . -147) 8022) ((-696 . -131) T) ((-136 . -465) 7999) ((-1140 . -610) 7931) ((-653 . -651) 7915) ((-128 . -286) 7890) ((-116 . -131) T) ((-477 . -1212) T) ((-605 . -601) 7866) ((-475 . -601) 7845) ((-336 . -335) 7814) ((-536 . -1093) T) ((-477 . -555) T) ((-1165 . -1045) T) ((-1118 . -1045) T) ((-850 . -1045) T) ((-240 . -787) 7793) ((-240 . -790) 7744) ((-240 . -789) 7723) ((-1165 . -326) 7700) ((-240 . -722) 7610) ((-954 . -19) 7594) ((-487 . -377) 7576) ((-487 . -338) 7558) ((-1118 . -326) 7530) ((-354 . -1264) 7507) ((-217 . -377) 7489) ((-217 . -338) 7471) ((-954 . -601) 7448) ((-1165 . -233) T) ((-659 . -1093) T) ((-641 . -1093) T) ((-1253 . -1093) T) ((-1181 . -1093) T) ((-1080 . -253) 7385) ((-355 . -1093) T) ((-352 . -1093) T) ((-344 . -1093) T) ((-264 . -1093) T) ((-247 . -1093) T) ((-84 . -1208) T) ((-127 . -102) 7363) ((-121 . -102) 7341) ((-1181 . -607) 7320) ((-479 . -1093) T) ((-1134 . -1093) T) ((-479 . -607) 7299) ((-251 . -791) 7250) ((-251 . -788) 7201) ((-250 . -791) 7152) ((-40 . -1144) NIL) ((-250 . -788) 7103) ((-1108 . -613) 7084) ((-128 . -19) 7066) ((-1073 . -916) 7017) ((-1000 . -790) T) ((-1000 . -787) T) ((-1000 . -722) T) ((-967 . -790) T) ((-128 . -601) 6992) ((-910 . -722) T) ((-91 . -489) 6976) ((-487 . -896) NIL) ((-906 . -1093) T) ((-225 . -1051) 6941) ((-868 . -290) T) ((-217 . -896) NIL) ((-829 . -1105) 6920) ((-59 . -1093) 6870) ((-519 . -1093) 6848) ((-516 . -1093) 6798) ((-497 . -1093) 6776) ((-496 . -1093) 6726) ((-579 . -102) T) ((-563 . -102) T) ((-495 . -102) T) ((-474 . -172) 6657) ((-359 . -916) T) ((-353 . -916) T) ((-345 . -916) T) ((-225 . -111) 6613) ((-829 . -23) 6565) ((-427 . -722) T) ((-108 . -916) T) ((-40 . -38) 6510) ((-108 . -816) T) ((-580 . -349) T) ((-518 . -349) T) ((-1220 . -514) 6370) ((-316 . -452) 6349) ((-313 . -452) T) ((-888 . -610) 6331) ((-832 . -286) 6310) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6174) ((-294 . -21) 6057) ((-45 . -1184) 6036) ((-66 . -610) 6018) ((-55 . -102) T) ((-599 . -514) 5951) ((-45 . -107) 5901) ((-815 . -613) 5885) ((-1095 . -425) 5869) ((-1095 . -368) 5848) ((-386 . -613) 5832) ((-324 . -613) 5816) ((-1057 . -1208) T) ((-1056 . -1051) 5803) ((-948 . -1051) 5646) ((-1258 . -102) T) ((-1257 . -102) 5596) ((-1056 . -111) 5581) ((-481 . -1051) 5424) ((-659 . -713) 5408) ((-948 . -111) 5237) ((-225 . -613) 5187) ((-477 . -363) T) ((-355 . -713) 5139) ((-352 . -713) 5091) ((-344 . -713) 5043) ((-264 . -713) 4892) ((-247 . -713) 4741) ((-1249 . -643) 4666) ((-1221 . -905) NIL) ((-1089 . -93) T) ((-1083 . -93) T) ((-939 . -646) 4650) ((-1067 . -93) T) ((-481 . -111) 4479) ((-1060 . -93) T) ((-1032 . -93) T) ((-939 . -373) 4463) ((-248 . -102) T) ((-1015 . -93) T) ((-74 . -610) 4445) ((-959 . -47) 4424) ((-706 . -102) T) ((-694 . -102) T) ((-1 . -1093) T) ((-618 . -1105) T) ((-1242 . -643) 4321) ((-623 . -93) T) ((-1189 . -610) 4303) ((-1081 . -610) 4285) ((-126 . -489) 4269) ((-483 . -93) T) ((-1069 . -610) 4251) ((-390 . -23) T) ((-87 . -1208) T) ((-218 . -93) T) ((-1221 . -643) 4103) ((-906 . -713) 4068) ((-618 . -23) T) ((-605 . -610) 4050) ((-605 . -611) NIL) ((-475 . -611) NIL) ((-475 . -610) 4032) ((-511 . -1093) T) ((-507 . -1093) T) ((-351 . -25) T) ((-351 . -21) T) ((-127 . -309) 3970) ((-121 . -309) 3908) ((-594 . -643) 3895) ((-225 . -1045) T) ((-593 . -643) 3820) ((-379 . -998) T) ((-225 . -243) T) ((-225 . -233) T) ((-1056 . -613) 3792) ((-1056 . -615) 3773) ((-954 . -611) 3734) ((-954 . -610) 3646) ((-948 . -613) 3435) ((-866 . -38) 3422) ((-709 . -613) 3372) ((-1241 . -290) 3323) ((-1220 . -290) 3274) ((-481 . -613) 3059) ((-1113 . -452) T) ((-502 . -846) T) ((-316 . -1132) 3038) ((-995 . -147) 3017) ((-995 . -145) 2996) ((-495 . -309) 2983) ((-295 . -1184) 2962) ((-1176 . -610) 2944) ((-1175 . -610) 2926) ((-867 . -1051) 2871) ((-477 . -1105) T) ((-139 . -831) 2853) ((-620 . -102) T) ((-1194 . -489) 2837) ((-251 . -368) 2816) ((-250 . -368) 2795) ((-1056 . -1045) T) ((-295 . -107) 2745) ((-130 . -610) 2727) ((-128 . -611) NIL) ((-128 . -610) 2671) ((-117 . -102) T) ((-948 . -1045) T) ((-867 . -111) 2600) ((-477 . -23) T) ((-481 . -1045) T) ((-1056 . -233) T) ((-948 . -326) 2569) ((-481 . -326) 2526) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2437) ((-247 . -172) 2348) ((-959 . -1034) 2244) ((-517 . -490) 2225) ((-731 . -1034) 2196) ((-517 . -610) 2162) ((-1098 . -102) T) ((-1085 . -610) 2129) ((-1030 . -610) 2111) ((-1270 . -151) 2095) ((-1268 . -613) 2076) ((-1262 . -610) 2058) ((-1249 . -722) T) ((-1242 . -722) T) ((-1221 . -787) NIL) ((-1221 . -790) NIL) ((-169 . -1051) 1968) ((-906 . -172) T) ((-867 . -613) 1898) ((-1221 . -722) T) ((-1267 . -613) 1879) ((-999 . -342) 1853) ((-996 . -514) 1786) ((-839 . -846) 1765) ((-563 . -1144) T) ((-474 . -290) 1716) ((-594 . -722) T) ((-361 . -610) 1698) ((-322 . -610) 1680) ((-418 . -1034) 1576) ((-593 . -722) T) ((-407 . -846) 1527) ((-169 . -111) 1423) ((-829 . -131) 1375) ((-733 . -151) 1359) ((-1257 . -309) 1297) ((-487 . -307) T) ((-379 . -610) 1264) ((-520 . -1006) 1248) ((-379 . -611) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-710 . -286) 1123) ((-487 . -1018) T) ((-579 . -38) 1110) ((-563 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1018) T) ((-867 . -1045) T) ((-832 . -610) 1044) ((-823 . -610) 1026) ((-821 . -610) 1008) ((-812 . -905) 987) ((-1281 . -1105) T) ((-1230 . -1051) 810) ((-851 . -1051) 794) ((-867 . -243) T) ((-867 . -233) NIL) ((-684 . -1208) T) ((-1281 . -23) T) ((-812 . -643) 719) ((-549 . -1208) T) ((-418 . -338) 703) ((-570 . -1051) 690) ((-1230 . -111) 499) ((-696 . -636) 481) ((-851 . -111) 460) ((-381 . -23) T) ((-169 . -613) 238) ((-1181 . -514) 30) ((-657 . -1093) T) ((-676 . -1093) T) ((-671 . -1093) T))
\ No newline at end of file +(((-478 . -1094) T) ((-264 . -514) 162040) ((-247 . -514) 161983) ((-245 . -1094) 161933) ((-571 . -111) 161918) ((-531 . -23) T) ((-138 . -1094) T) ((-137 . -1094) T) ((-117 . -309) 161875) ((-133 . -1094) T) ((-479 . -514) 161667) ((-673 . -614) 161651) ((-690 . -102) T) ((-1135 . -514) 161570) ((-390 . -131) T) ((-1272 . -973) 161539) ((-31 . -93) T) ((-600 . -489) 161523) ((-619 . -131) T) ((-816 . -843) T) ((-523 . -57) 161473) ((-59 . -514) 161406) ((-519 . -514) 161339) ((-418 . -897) 161298) ((-169 . -1046) T) ((-516 . -514) 161231) ((-497 . -514) 161164) ((-496 . -514) 161097) ((-796 . -1035) 160880) ((-695 . -38) 160845) ((-1232 . -614) 160593) ((-343 . -349) T) ((-1088 . -1087) 160577) ((-1088 . -1094) 160555) ((-852 . -614) 160452) ((-169 . -243) 160403) ((-169 . -233) 160354) ((-1088 . -1089) 160312) ((-869 . -286) 160270) ((-225 . -792) T) ((-225 . -789) T) ((-690 . -284) NIL) ((-571 . -614) 160242) ((-1144 . -1185) 160221) ((-407 . -989) 160205) ((-697 . -21) T) ((-697 . -25) T) ((-1274 . -644) 160179) ((-316 . -160) 160158) ((-316 . -143) 160137) ((-1144 . -107) 160087) ((-134 . -25) T) ((-40 . -231) 160064) ((-116 . -21) T) ((-116 . -25) T) ((-606 . -288) 160040) ((-475 . -288) 160019) ((-1232 . -326) 159996) ((-1232 . -1046) T) ((-852 . -1046) T) ((-796 . -338) 159980) ((-139 . -185) T) ((-117 . -1145) NIL) ((-91 . -611) 159912) ((-477 . -131) T) ((-1232 . -233) T) ((-1090 . -490) 159893) ((-1090 . -611) 159859) ((-1084 . -490) 159840) ((-1084 . -611) 159806) ((-592 . -1209) T) ((-1068 . -490) 159787) ((-571 . -1046) T) ((-1068 . -611) 159753) ((-658 . -714) 159737) ((-1061 . -490) 159718) ((-1061 . -611) 159684) ((-955 . -288) 159661) ((-60 . -34) T) ((-1057 . -792) T) ((-1057 . -789) T) ((-1033 . -490) 159642) ((-1016 . -490) 159623) ((-813 . -723) T) ((-728 . -47) 159588) ((-621 . -38) 159575) ((-355 . -290) T) ((-352 . -290) T) ((-344 . -290) T) ((-264 . -290) 159506) ((-247 . -290) 159437) ((-1033 . -611) 159403) ((-1021 . -102) T) ((-1016 . -611) 159369) ((-624 . -490) 159350) ((-413 . -723) T) ((-117 . -38) 159295) ((-483 . -490) 159276) ((-624 . -611) 159242) ((-413 . -473) T) ((-218 . -490) 159223) ((-483 . -611) 159189) ((-354 . -102) T) ((-218 . -611) 159155) ((-1203 . -1053) T) ((-708 . -1053) T) ((-1168 . -47) 159132) ((-1167 . -47) 159102) ((-1161 . -47) 159079) ((-128 . -288) 159054) ((-1032 . -151) 159000) ((-907 . -290) T) ((-1120 . -47) 158972) ((-690 . -309) NIL) ((-515 . -611) 158954) ((-510 . -611) 158936) ((-508 . -611) 158918) ((-327 . -1094) 158868) ((-709 . -452) 158799) ((-48 . -102) T) ((-1243 . -286) 158784) ((-1222 . -286) 158704) ((-641 . -662) 158688) ((-641 . -647) 158672) ((-339 . -21) T) ((-339 . -25) T) ((-40 . -349) NIL) ((-174 . -21) T) ((-174 . -25) T) ((-641 . -373) 158656) ((-603 . -490) 158638) ((-600 . -286) 158615) ((-603 . -611) 158582) ((-388 . -102) T) ((-1114 . -143) T) ((-126 . -611) 158514) ((-871 . -1094) T) ((-654 . -411) 158498) ((-711 . -611) 158480) ((-249 . -611) 158447) ((-187 . -611) 158429) ((-162 . -611) 158411) ((-157 . -611) 158393) ((-1274 . -723) T) ((-1096 . -34) T) ((-868 . -792) NIL) ((-868 . -789) NIL) ((-855 . -847) T) ((-728 . -883) NIL) ((-1283 . -131) T) ((-381 . -131) T) ((-889 . -614) 158361) ((-901 . -102) T) ((-728 . -1035) 158237) ((-531 . -131) T) ((-1081 . -411) 158221) ((-997 . -489) 158205) ((-117 . -400) 158182) ((-1161 . -1209) 158161) ((-779 . -411) 158145) ((-777 . -411) 158129) ((-940 . -34) T) ((-690 . -1145) NIL) ((-251 . -644) 157964) ((-250 . -644) 157786) ((-814 . -917) 157765) ((-454 . -411) 157749) ((-600 . -19) 157733) ((-1140 . -1202) 157702) ((-1161 . -883) NIL) ((-1161 . -881) 157654) ((-600 . -602) 157631) ((-1195 . -611) 157563) ((-1169 . -611) 157545) ((-62 . -395) T) ((-1167 . -1035) 157480) ((-1161 . -1035) 157446) ((-690 . -38) 157396) ((-474 . -286) 157381) ((-1215 . -611) 157363) ((-728 . -377) 157347) ((-835 . -611) 157329) ((-654 . -1053) T) ((-1243 . -999) 157295) ((-1222 . -999) 157261) ((-1082 . -614) 157245) ((-1058 . -1185) 157220) ((-1070 . -614) 157197) ((-869 . -612) 157004) ((-869 . -611) 156986) ((-1182 . -489) 156923) ((-418 . -1019) 156901) ((-48 . -309) 156888) ((-1058 . -107) 156834) ((-479 . -489) 156771) ((-520 . -1209) T) ((-1161 . -338) 156723) ((-1135 . -489) 156694) ((-1161 . -377) 156646) ((-1081 . -1053) T) ((-437 . -102) T) ((-183 . -1094) T) ((-251 . -34) T) ((-250 . -34) T) ((-779 . -1053) T) ((-777 . -1053) T) ((-728 . -897) 156623) ((-454 . -1053) T) ((-59 . -489) 156607) ((-1031 . -1052) 156581) ((-519 . -489) 156565) ((-516 . -489) 156549) ((-497 . -489) 156533) ((-496 . -489) 156517) ((-245 . -514) 156450) ((-1031 . -111) 156417) ((-1168 . -897) 156330) ((-1167 . -897) 156236) ((-1161 . -897) 156069) ((-1120 . -897) 156053) ((-666 . -1106) T) ((-354 . -1145) T) ((-642 . -93) T) ((-322 . -1052) 156035) ((-251 . -788) 156014) ((-251 . -791) 155965) ((-31 . -490) 155946) ((-251 . -790) 155925) ((-250 . -788) 155904) ((-250 . -791) 155855) ((-250 . -790) 155834) ((-31 . -611) 155800) ((-50 . -1053) T) ((-251 . -723) 155710) ((-250 . -723) 155620) ((-1203 . -1094) T) ((-666 . -23) T) ((-581 . -1053) T) ((-518 . -1053) T) ((-379 . -1052) 155585) ((-322 . -111) 155560) ((-73 . -383) T) ((-73 . -395) T) ((-1021 . -38) 155497) ((-690 . -400) 155479) ((-99 . -102) T) ((-708 . -1094) T) ((-1000 . -145) 155451) ((-1000 . -147) 155423) ((-379 . -111) 155379) ((-319 . -1213) 155358) ((-474 . -999) 155324) ((-354 . -38) 155289) ((-40 . -370) 155261) ((-870 . -611) 155133) ((-127 . -125) 155117) ((-121 . -125) 155101) ((-833 . -1052) 155071) ((-830 . -21) 155023) ((-824 . -1052) 155007) ((-830 . -25) 154959) ((-319 . -556) 154910) ((-517 . -614) 154891) ((-564 . -825) T) ((-240 . -1209) T) ((-1031 . -614) 154860) ((-833 . -111) 154825) ((-824 . -111) 154804) ((-1243 . -611) 154786) ((-1222 . -611) 154768) ((-1222 . -612) 154439) ((-1166 . -906) 154418) ((-1119 . -906) 154397) ((-48 . -38) 154362) ((-1281 . -1106) T) ((-600 . -611) 154274) ((-600 . -612) 154235) ((-1279 . -1106) T) ((-361 . -614) 154219) ((-322 . -614) 154203) ((-240 . -1035) 154030) ((-1166 . -644) 153955) ((-1119 . -644) 153880) ((-851 . -644) 153854) ((-715 . -611) 153836) ((-546 . -368) T) ((-1281 . -23) T) ((-1279 . -23) T) ((-491 . -1094) T) ((-379 . -614) 153786) ((-379 . -616) 153768) ((-1031 . -1046) T) ((-862 . -102) T) ((-1182 . -286) 153747) ((-169 . -368) 153698) ((-1001 . -1209) T) ((-833 . -614) 153652) ((-824 . -614) 153607) ((-44 . -23) T) ((-479 . -286) 153586) ((-585 . -1094) T) ((-1140 . -1103) 153555) ((-1098 . -1097) 153507) ((-390 . -21) T) ((-390 . -25) T) ((-152 . -1106) T) ((-1287 . -102) T) ((-1001 . -881) 153489) ((-1001 . -883) 153471) ((-1203 . -714) 153368) ((-621 . -231) 153352) ((-619 . -21) T) ((-289 . -556) T) ((-619 . -25) T) ((-1189 . -1094) T) ((-708 . -714) 153317) ((-240 . -377) 153286) ((-1001 . -1035) 153246) ((-379 . -1046) T) ((-223 . -1053) T) ((-117 . -231) 153223) ((-59 . -286) 153200) ((-152 . -23) T) ((-516 . -286) 153177) ((-327 . -514) 153110) ((-496 . -286) 153087) ((-379 . -243) T) ((-379 . -233) T) ((-833 . -1046) T) ((-824 . -1046) T) ((-709 . -946) 153056) ((-697 . -847) T) ((-474 . -611) 153038) ((-824 . -233) 153017) ((-134 . -847) T) ((-654 . -1094) T) ((-1182 . -602) 152996) ((-550 . -1185) 152975) ((-336 . -1094) T) ((-319 . -363) 152954) ((-407 . -147) 152933) ((-407 . -145) 152912) ((-961 . -1106) 152811) ((-240 . -897) 152743) ((-812 . -1106) 152653) ((-650 . -849) 152637) ((-479 . -602) 152616) ((-550 . -107) 152566) ((-1001 . -377) 152548) ((-1001 . -338) 152530) ((-97 . -1094) T) ((-961 . -23) 152341) ((-477 . -21) T) ((-477 . -25) T) ((-812 . -23) 152211) ((-1170 . -611) 152193) ((-59 . -19) 152177) ((-1170 . -612) 152099) ((-1166 . -723) T) ((-1119 . -723) T) ((-516 . -19) 152083) ((-496 . -19) 152067) ((-59 . -602) 152044) ((-1081 . -1094) T) ((-898 . -102) 152022) ((-851 . -723) T) ((-779 . -1094) T) ((-516 . -602) 151999) ((-496 . -602) 151976) ((-777 . -1094) T) ((-777 . -1060) 151943) ((-461 . -1094) T) ((-454 . -1094) T) ((-585 . -714) 151918) ((-645 . -1094) T) ((-1251 . -47) 151895) ((-1245 . -102) T) ((-1244 . -47) 151865) ((-1223 . -47) 151842) ((-1203 . -172) 151793) ((-1167 . -307) 151772) ((-1001 . -897) NIL) ((-1161 . -307) 151751) ((-625 . -1106) T) ((-666 . -131) T) ((-1090 . -614) 151732) ((-1084 . -614) 151713) ((-1074 . -556) 151664) ((-1074 . -1213) 151615) ((-1068 . -614) 151596) ((-275 . -1094) T) ((-85 . -441) T) ((-85 . -395) T) ((-1061 . -614) 151577) ((-1033 . -614) 151558) ((-50 . -1094) T) ((-1016 . -614) 151539) ((-708 . -172) T) ((-594 . -47) 151516) ((-225 . -644) 151481) ((-581 . -1094) T) ((-518 . -1094) T) ((-359 . -1213) T) ((-353 . -1213) T) ((-345 . -1213) T) ((-487 . -817) T) ((-487 . -917) T) ((-319 . -1106) T) ((-108 . -1213) T) ((-711 . -1052) 151451) ((-339 . -847) T) ((-217 . -917) T) ((-217 . -817) T) ((-624 . -614) 151432) ((-359 . -556) T) ((-353 . -556) T) ((-345 . -556) T) ((-483 . -614) 151413) ((-108 . -556) T) ((-654 . -714) 151383) ((-1161 . -1019) NIL) ((-218 . -614) 151364) ((-319 . -23) T) ((-67 . -1209) T) ((-997 . -611) 151296) ((-690 . -231) 151278) ((-711 . -111) 151243) ((-641 . -34) T) ((-245 . -489) 151227) ((-1096 . -1092) 151211) ((-171 . -1094) T) ((-949 . -906) 151190) ((-515 . -614) 151174) ((-1287 . -1145) T) ((-1283 . -21) T) ((-481 . -906) 151153) ((-1283 . -25) T) ((-1281 . -131) T) ((-1279 . -131) T) ((-1272 . -102) T) ((-1255 . -611) 151119) ((-1244 . -1035) 151054) ((-1081 . -714) 150903) ((-1057 . -644) 150890) ((-949 . -644) 150815) ((-779 . -714) 150644) ((-536 . -611) 150626) ((-536 . -612) 150607) ((-777 . -714) 150456) ((-1223 . -1209) 150435) ((-1071 . -102) T) ((-381 . -25) T) ((-381 . -21) T) ((-481 . -644) 150360) ((-461 . -714) 150331) ((-454 . -714) 150180) ((-984 . -102) T) ((-1223 . -883) NIL) ((-1223 . -881) 150132) ((-1182 . -612) NIL) ((-734 . -102) T) ((-1182 . -611) 150114) ((-603 . -614) 150096) ((-1136 . -1117) 150041) ((-1043 . -1202) 149970) ((-531 . -25) T) ((-898 . -309) 149908) ((-711 . -614) 149862) ((-343 . -1053) T) ((-642 . -490) 149843) ((-141 . -102) T) ((-44 . -131) T) ((-289 . -1106) T) ((-677 . -93) T) ((-672 . -93) T) ((-660 . -611) 149825) ((-642 . -611) 149778) ((-478 . -93) T) ((-355 . -611) 149760) ((-352 . -611) 149742) ((-344 . -611) 149724) ((-264 . -612) 149472) ((-264 . -611) 149454) ((-247 . -611) 149436) ((-247 . -612) 149297) ((-133 . -93) T) ((-138 . -93) T) ((-137 . -93) T) ((-1223 . -1035) 149263) ((-1203 . -514) 149230) ((-1135 . -611) 149212) ((-816 . -854) T) ((-816 . -723) T) ((-600 . -288) 149189) ((-581 . -714) 149154) ((-479 . -612) NIL) ((-479 . -611) 149136) ((-518 . -714) 149081) ((-316 . -102) T) ((-313 . -102) T) ((-289 . -23) T) ((-152 . -131) T) ((-907 . -611) 149063) ((-386 . -723) T) ((-869 . -1052) 149015) ((-907 . -612) 148997) ((-869 . -111) 148935) ((-711 . -1046) T) ((-709 . -1235) 148919) ((-139 . -102) T) ((-136 . -102) T) ((-114 . -102) T) ((-690 . -349) NIL) ((-519 . -611) 148851) ((-379 . -792) T) ((-223 . -1094) T) ((-379 . -789) T) ((-225 . -791) T) ((-225 . -788) T) ((-59 . -612) 148812) ((-59 . -611) 148724) ((-225 . -723) T) ((-516 . -612) 148685) ((-516 . -611) 148597) ((-497 . -611) 148529) ((-496 . -612) 148490) ((-496 . -611) 148402) ((-1074 . -363) 148353) ((-40 . -411) 148330) ((-77 . -1209) T) ((-868 . -906) NIL) ((-359 . -329) 148314) ((-359 . -363) T) ((-353 . -329) 148298) ((-353 . -363) T) ((-345 . -329) 148282) ((-345 . -363) T) ((-316 . -284) 148261) ((-108 . -363) T) ((-70 . -1209) T) ((-1223 . -338) 148213) ((-868 . -644) 148158) ((-1223 . -377) 148110) ((-961 . -131) 147965) ((-812 . -131) 147835) ((-955 . -647) 147819) ((-1081 . -172) 147730) ((-955 . -373) 147714) ((-1057 . -791) T) ((-1057 . -788) T) ((-869 . -614) 147612) ((-779 . -172) 147503) ((-777 . -172) 147414) ((-813 . -47) 147376) ((-1057 . -723) T) ((-327 . -489) 147360) ((-949 . -723) T) ((-454 . -172) 147271) ((-245 . -286) 147248) ((-1272 . -309) 147186) ((-1251 . -897) 147099) ((-481 . -723) T) ((-1244 . -897) 147005) ((-1243 . -1052) 146840) ((-1223 . -897) 146673) ((-1222 . -1052) 146481) ((-1203 . -290) 146460) ((-1179 . -1209) T) ((-1177 . -368) T) ((-1176 . -368) T) ((-1140 . -151) 146444) ((-1114 . -102) T) ((-1112 . -1094) T) ((-1074 . -23) T) ((-1069 . -102) T) ((-924 . -952) T) ((-734 . -309) 146382) ((-75 . -1209) T) ((-30 . -952) T) ((-169 . -906) 146335) ((-660 . -382) 146307) ((-112 . -841) T) ((-1 . -611) 146289) ((-1074 . -1106) T) ((-128 . -647) 146271) ((-50 . -618) 146255) ((-1000 . -409) 146227) ((-594 . -897) 146140) ((-438 . -102) T) ((-141 . -309) NIL) ((-128 . -373) 146122) ((-869 . -1046) T) ((-830 . -847) 146101) ((-81 . -1209) T) ((-708 . -290) T) ((-40 . -1053) T) ((-581 . -172) T) ((-518 . -172) T) ((-511 . -611) 146083) ((-169 . -644) 145993) ((-507 . -611) 145975) ((-351 . -147) 145957) ((-351 . -145) T) ((-359 . -1106) T) ((-353 . -1106) T) ((-345 . -1106) T) ((-1001 . -307) T) ((-911 . -307) T) ((-869 . -243) T) ((-108 . -1106) T) ((-869 . -233) 145936) ((-1243 . -111) 145757) ((-1222 . -111) 145546) ((-245 . -1247) 145530) ((-564 . -845) T) ((-359 . -23) T) ((-354 . -349) T) ((-316 . -309) 145517) ((-313 . -309) 145458) ((-353 . -23) T) ((-319 . -131) T) ((-345 . -23) T) ((-1001 . -1019) T) ((-31 . -614) 145439) ((-108 . -23) T) ((-245 . -602) 145416) ((-1245 . -38) 145308) ((-1232 . -906) 145287) ((-112 . -1094) T) ((-1032 . -102) T) ((-1232 . -644) 145212) ((-868 . -791) NIL) ((-852 . -644) 145186) ((-868 . -788) NIL) ((-813 . -883) NIL) ((-868 . -723) T) ((-1081 . -514) 145059) ((-779 . -514) 145006) ((-777 . -514) 144958) ((-571 . -644) 144945) ((-813 . -1035) 144773) ((-454 . -514) 144716) ((-388 . -389) T) ((-1243 . -614) 144529) ((-1222 . -614) 144277) ((-60 . -1209) T) ((-619 . -847) 144256) ((-500 . -657) T) ((-1140 . -973) 144225) ((-1000 . -452) T) ((-695 . -845) T) ((-510 . -789) T) ((-474 . -1052) 144060) ((-343 . -1094) T) ((-313 . -1145) NIL) ((-289 . -131) T) ((-394 . -1094) T) ((-690 . -370) 144027) ((-867 . -1053) T) ((-223 . -618) 144004) ((-327 . -286) 143981) ((-474 . -111) 143802) ((-1243 . -1046) T) ((-1222 . -1046) T) ((-813 . -377) 143786) ((-169 . -723) T) ((-650 . -102) T) ((-1243 . -243) 143765) ((-1243 . -233) 143717) ((-1222 . -233) 143622) ((-1222 . -243) 143601) ((-1000 . -402) NIL) ((-666 . -637) 143549) ((-316 . -38) 143459) ((-313 . -38) 143388) ((-69 . -611) 143370) ((-319 . -493) 143336) ((-1182 . -288) 143315) ((-1217 . -847) T) ((-1107 . -1106) 143225) ((-83 . -1209) T) ((-61 . -611) 143207) ((-479 . -288) 143186) ((-1274 . -1035) 143163) ((-1158 . -1094) T) ((-1107 . -23) 143033) ((-813 . -897) 142969) ((-1232 . -723) T) ((-1096 . -1209) T) ((-474 . -614) 142795) ((-1081 . -290) 142726) ((-963 . -1094) T) ((-890 . -102) T) ((-779 . -290) 142637) ((-327 . -19) 142621) ((-59 . -288) 142598) ((-777 . -290) 142529) ((-852 . -723) T) ((-117 . -845) NIL) ((-516 . -288) 142506) ((-327 . -602) 142483) ((-496 . -288) 142460) ((-454 . -290) 142391) ((-1032 . -309) 142242) ((-677 . -490) 142223) ((-571 . -723) T) ((-672 . -490) 142204) ((-677 . -611) 142154) ((-672 . -611) 142120) ((-658 . -611) 142102) ((-478 . -490) 142083) ((-478 . -611) 142049) ((-245 . -612) 142010) ((-245 . -490) 141987) ((-138 . -490) 141968) ((-137 . -490) 141949) ((-133 . -490) 141930) ((-245 . -611) 141822) ((-213 . -102) T) ((-138 . -611) 141788) ((-137 . -611) 141754) ((-133 . -611) 141720) ((-1141 . -34) T) ((-940 . -1209) T) ((-343 . -714) 141665) ((-666 . -25) T) ((-666 . -21) T) ((-1170 . -614) 141646) ((-474 . -1046) T) ((-633 . -417) 141611) ((-605 . -417) 141576) ((-1114 . -1145) T) ((-581 . -290) T) ((-518 . -290) T) ((-1244 . -307) 141555) ((-474 . -233) 141507) ((-474 . -243) 141486) ((-1223 . -307) 141465) ((-1223 . -1019) NIL) ((-1074 . -131) T) ((-869 . -792) 141444) ((-144 . -102) T) ((-40 . -1094) T) ((-869 . -789) 141423) ((-641 . -1007) 141407) ((-580 . -1053) T) ((-564 . -1053) T) ((-495 . -1053) T) ((-407 . -452) T) ((-359 . -131) T) ((-316 . -400) 141391) ((-313 . -400) 141352) ((-353 . -131) T) ((-345 . -131) T) ((-1175 . -1094) T) ((-1114 . -38) 141339) ((-1088 . -611) 141306) ((-108 . -131) T) ((-951 . -1094) T) ((-918 . -1094) T) ((-768 . -1094) T) ((-668 . -1094) T) ((-697 . -147) T) ((-116 . -147) T) ((-1281 . -21) T) ((-1281 . -25) T) ((-1279 . -21) T) ((-1279 . -25) T) ((-660 . -1052) 141290) ((-531 . -847) T) ((-500 . -847) T) ((-355 . -1052) 141242) ((-352 . -1052) 141194) ((-344 . -1052) 141146) ((-251 . -1209) T) ((-250 . -1209) T) ((-264 . -1052) 140989) ((-247 . -1052) 140832) ((-660 . -111) 140811) ((-547 . -841) T) ((-355 . -111) 140749) ((-352 . -111) 140687) ((-344 . -111) 140625) ((-264 . -111) 140454) ((-247 . -111) 140283) ((-814 . -1213) 140262) ((-621 . -411) 140246) ((-44 . -21) T) ((-44 . -25) T) ((-812 . -637) 140152) ((-814 . -556) 140131) ((-251 . -1035) 139958) ((-250 . -1035) 139785) ((-126 . -119) 139769) ((-907 . -1052) 139734) ((-709 . -102) T) ((-695 . -1053) T) ((-536 . -616) 139637) ((-343 . -172) T) ((-88 . -611) 139619) ((-152 . -21) T) ((-152 . -25) T) ((-907 . -111) 139575) ((-40 . -714) 139520) ((-867 . -1094) T) ((-660 . -614) 139497) ((-642 . -614) 139478) ((-355 . -614) 139415) ((-352 . -614) 139352) ((-547 . -1094) T) ((-344 . -614) 139289) ((-327 . -612) 139250) ((-327 . -611) 139162) ((-264 . -614) 138915) ((-247 . -614) 138700) ((-1222 . -789) 138653) ((-1222 . -792) 138606) ((-251 . -377) 138575) ((-250 . -377) 138544) ((-650 . -38) 138514) ((-606 . -34) T) ((-482 . -1106) 138424) ((-475 . -34) T) ((-1107 . -131) 138294) ((-961 . -25) 138105) ((-907 . -614) 138055) ((-871 . -611) 138037) ((-961 . -21) 137992) ((-812 . -21) 137902) ((-812 . -25) 137753) ((-1215 . -368) T) ((-621 . -1053) T) ((-1172 . -556) 137732) ((-1166 . -47) 137709) ((-355 . -1046) T) ((-352 . -1046) T) ((-482 . -23) 137579) ((-344 . -1046) T) ((-247 . -1046) T) ((-264 . -1046) T) ((-1119 . -47) 137551) ((-117 . -1053) T) ((-1031 . -644) 137525) ((-955 . -34) T) ((-355 . -233) 137504) ((-355 . -243) T) ((-352 . -233) 137483) ((-352 . -243) T) ((-344 . -233) 137462) ((-344 . -243) T) ((-247 . -326) 137419) ((-264 . -326) 137391) ((-264 . -233) 137370) ((-1150 . -151) 137354) ((-251 . -897) 137286) ((-250 . -897) 137218) ((-1076 . -847) T) ((-414 . -1106) T) ((-1050 . -23) T) ((-907 . -1046) T) ((-322 . -644) 137200) ((-1021 . -845) T) ((-1203 . -999) 137166) ((-1167 . -917) 137145) ((-1161 . -917) 137124) ((-1161 . -817) NIL) ((-907 . -243) T) ((-814 . -363) 137103) ((-385 . -23) T) ((-127 . -1094) 137081) ((-121 . -1094) 137059) ((-907 . -233) T) ((-128 . -34) T) ((-379 . -644) 137024) ((-867 . -714) 137011) ((-1043 . -151) 136976) ((-40 . -172) T) ((-690 . -411) 136958) ((-709 . -309) 136945) ((-833 . -644) 136905) ((-824 . -644) 136879) ((-319 . -25) T) ((-319 . -21) T) ((-654 . -286) 136858) ((-580 . -1094) T) ((-564 . -1094) T) ((-495 . -1094) T) ((-245 . -288) 136835) ((-313 . -231) 136796) ((-1166 . -883) NIL) ((-55 . -1094) T) ((-1119 . -883) 136655) ((-129 . -847) T) ((-1166 . -1035) 136535) ((-1119 . -1035) 136418) ((-183 . -611) 136400) ((-851 . -1035) 136296) ((-779 . -286) 136223) ((-814 . -1106) T) ((-1031 . -723) T) ((-600 . -647) 136207) ((-1043 . -973) 136136) ((-996 . -102) T) ((-814 . -23) T) ((-709 . -1145) 136114) ((-690 . -1053) T) ((-600 . -373) 136098) ((-351 . -452) T) ((-343 . -290) T) ((-1260 . -1094) T) ((-248 . -1094) T) ((-399 . -102) T) ((-289 . -21) T) ((-289 . -25) T) ((-361 . -723) T) ((-707 . -1094) T) ((-695 . -1094) T) ((-361 . -473) T) ((-1203 . -611) 136080) ((-1166 . -377) 136064) ((-1119 . -377) 136048) ((-1021 . -411) 136010) ((-141 . -229) 135992) ((-379 . -791) T) ((-379 . -788) T) ((-867 . -172) T) ((-379 . -723) T) ((-708 . -611) 135974) ((-709 . -38) 135803) ((-1259 . -1257) 135787) ((-351 . -402) T) ((-1259 . -1094) 135737) ((-580 . -714) 135724) ((-564 . -714) 135711) ((-495 . -714) 135676) ((-316 . -627) 135655) ((-833 . -723) T) ((-824 . -723) T) ((-641 . -1209) T) ((-1074 . -637) 135603) ((-1166 . -897) 135546) ((-1119 . -897) 135530) ((-658 . -1052) 135514) ((-108 . -637) 135496) ((-482 . -131) 135366) ((-1172 . -1106) T) ((-949 . -47) 135335) ((-621 . -1094) T) ((-658 . -111) 135314) ((-491 . -611) 135280) ((-327 . -288) 135257) ((-481 . -47) 135214) ((-1172 . -23) T) ((-117 . -1094) T) ((-103 . -102) 135192) ((-1271 . -1106) T) ((-548 . -847) T) ((-1050 . -131) T) ((-1021 . -1053) T) ((-816 . -1035) 135176) ((-1000 . -721) 135148) ((-1271 . -23) T) ((-695 . -714) 135113) ((-585 . -611) 135095) ((-386 . -1035) 135079) ((-354 . -1053) T) ((-385 . -131) T) ((-324 . -1035) 135063) ((-225 . -883) 135045) ((-1001 . -917) T) ((-91 . -34) T) ((-1001 . -817) T) ((-911 . -917) T) ((-1189 . -611) 135027) ((-1114 . -825) T) ((-487 . -1213) T) ((-1099 . -1094) T) ((-1074 . -21) T) ((-1074 . -25) T) ((-217 . -1213) T) ((-996 . -309) 134992) ((-225 . -1035) 134952) ((-40 . -290) T) ((-711 . -644) 134912) ((-677 . -614) 134893) ((-672 . -614) 134874) ((-487 . -556) T) ((-478 . -614) 134855) ((-359 . -25) T) ((-359 . -21) T) ((-353 . -25) T) ((-217 . -556) T) ((-353 . -21) T) ((-345 . -25) T) ((-345 . -21) T) ((-245 . -614) 134832) ((-138 . -614) 134813) ((-137 . -614) 134794) ((-133 . -614) 134775) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1053) T) ((-580 . -172) T) ((-564 . -172) T) ((-495 . -172) T) ((-654 . -611) 134757) ((-734 . -733) 134741) ((-336 . -611) 134723) ((-68 . -383) T) ((-68 . -395) T) ((-1096 . -107) 134707) ((-1057 . -883) 134689) ((-949 . -883) 134614) ((-649 . -1106) T) ((-621 . -714) 134601) ((-481 . -883) NIL) ((-1140 . -102) T) ((-1088 . -616) 134585) ((-1057 . -1035) 134567) ((-97 . -611) 134549) ((-477 . -147) T) ((-949 . -1035) 134429) ((-117 . -714) 134374) ((-649 . -23) T) ((-481 . -1035) 134250) ((-1081 . -612) NIL) ((-1081 . -611) 134232) ((-779 . -612) NIL) ((-779 . -611) 134193) ((-777 . -612) 133827) ((-777 . -611) 133741) ((-1107 . -637) 133647) ((-461 . -611) 133629) ((-454 . -611) 133611) ((-454 . -612) 133472) ((-1032 . -229) 133418) ((-869 . -906) 133397) ((-126 . -34) T) ((-814 . -131) T) ((-645 . -611) 133379) ((-578 . -102) T) ((-355 . -1278) 133363) ((-352 . -1278) 133347) ((-344 . -1278) 133331) ((-127 . -514) 133264) ((-121 . -514) 133197) ((-511 . -789) T) ((-511 . -792) T) ((-510 . -791) T) ((-103 . -309) 133135) ((-222 . -102) 133113) ((-690 . -1094) T) ((-695 . -172) T) ((-869 . -644) 133065) ((-65 . -384) T) ((-275 . -611) 133047) ((-65 . -395) T) ((-949 . -377) 133031) ((-867 . -290) T) ((-50 . -611) 133013) ((-996 . -38) 132961) ((-581 . -611) 132943) ((-481 . -377) 132927) ((-581 . -612) 132909) ((-518 . -611) 132891) ((-907 . -1278) 132878) ((-868 . -1209) T) ((-697 . -452) T) ((-495 . -514) 132844) ((-487 . -363) T) ((-355 . -368) 132823) ((-352 . -368) 132802) ((-344 . -368) 132781) ((-711 . -723) T) ((-217 . -363) T) ((-116 . -452) T) ((-1282 . -1273) 132765) ((-868 . -881) 132742) ((-868 . -883) NIL) ((-961 . -847) 132641) ((-812 . -847) 132592) ((-1216 . -102) T) ((-650 . -652) 132576) ((-1195 . -34) T) ((-171 . -611) 132558) ((-1107 . -21) 132468) ((-1107 . -25) 132319) ((-868 . -1035) 132296) ((-949 . -897) 132277) ((-1232 . -47) 132254) ((-907 . -368) T) ((-59 . -647) 132238) ((-516 . -647) 132222) ((-481 . -897) 132199) ((-71 . -441) T) ((-71 . -395) T) ((-496 . -647) 132183) ((-59 . -373) 132167) ((-621 . -172) T) ((-516 . -373) 132151) ((-496 . -373) 132135) ((-824 . -705) 132119) ((-1166 . -307) 132098) ((-1172 . -131) T) ((-117 . -172) T) ((-1140 . -309) 132036) ((-169 . -1209) T) ((-633 . -741) 132020) ((-605 . -741) 132004) ((-1271 . -131) T) ((-1244 . -917) 131983) ((-1223 . -917) 131962) ((-1223 . -817) NIL) ((-690 . -714) 131912) ((-1222 . -906) 131865) ((-1021 . -1094) T) ((-868 . -377) 131842) ((-868 . -338) 131819) ((-902 . -1106) T) ((-169 . -881) 131803) ((-169 . -883) 131728) ((-487 . -1106) T) ((-354 . -1094) T) ((-217 . -1106) T) ((-76 . -441) T) ((-76 . -395) T) ((-169 . -1035) 131624) ((-319 . -847) T) ((-1259 . -514) 131557) ((-1243 . -644) 131454) ((-1222 . -644) 131324) ((-869 . -791) 131303) ((-869 . -788) 131282) ((-869 . -723) T) ((-487 . -23) T) ((-223 . -611) 131264) ((-174 . -452) T) ((-222 . -309) 131202) ((-86 . -441) T) ((-86 . -395) T) ((-217 . -23) T) ((-1283 . -1276) 131181) ((-580 . -290) T) ((-564 . -290) T) ((-673 . -1035) 131165) ((-495 . -290) T) ((-136 . -470) 131120) ((-48 . -1094) T) ((-709 . -231) 131104) ((-868 . -897) NIL) ((-1232 . -883) NIL) ((-886 . -102) T) ((-882 . -102) T) ((-388 . -1094) T) ((-169 . -377) 131088) ((-169 . -338) 131072) ((-1232 . -1035) 130952) ((-852 . -1035) 130848) ((-1136 . -102) T) ((-649 . -131) T) ((-117 . -514) 130756) ((-658 . -789) 130735) ((-658 . -792) 130714) ((-571 . -1035) 130696) ((-294 . -1266) 130666) ((-863 . -102) T) ((-960 . -556) 130645) ((-1203 . -1052) 130528) ((-482 . -637) 130434) ((-901 . -1094) T) ((-1021 . -714) 130371) ((-708 . -1052) 130336) ((-615 . -102) T) ((-600 . -34) T) ((-1141 . -1209) T) ((-1203 . -111) 130205) ((-474 . -644) 130102) ((-354 . -714) 130047) ((-169 . -897) 130006) ((-695 . -290) T) ((-690 . -172) T) ((-708 . -111) 129962) ((-1287 . -1053) T) ((-1232 . -377) 129946) ((-418 . -1213) 129924) ((-1112 . -611) 129906) ((-313 . -845) NIL) ((-418 . -556) T) ((-225 . -307) T) ((-1222 . -788) 129859) ((-1222 . -791) 129812) ((-1243 . -723) T) ((-1222 . -723) T) ((-48 . -714) 129777) ((-225 . -1019) T) ((-351 . -1266) 129754) ((-1245 . -411) 129720) ((-715 . -723) T) ((-1232 . -897) 129663) ((-1203 . -614) 129545) ((-112 . -611) 129527) ((-112 . -612) 129509) ((-715 . -473) T) ((-708 . -614) 129459) ((-482 . -21) 129369) ((-127 . -489) 129353) ((-121 . -489) 129337) ((-482 . -25) 129188) ((-621 . -290) T) ((-585 . -1052) 129163) ((-437 . -1094) T) ((-1057 . -307) T) ((-117 . -290) T) ((-1098 . -102) T) ((-1000 . -102) T) ((-585 . -111) 129131) ((-1136 . -309) 129069) ((-1203 . -1046) T) ((-1057 . -1019) T) ((-66 . -1209) T) ((-1050 . -25) T) ((-1050 . -21) T) ((-708 . -1046) T) ((-385 . -21) T) ((-385 . -25) T) ((-690 . -514) NIL) ((-1021 . -172) T) ((-708 . -243) T) ((-1057 . -545) T) ((-506 . -102) T) ((-502 . -102) T) ((-354 . -172) T) ((-343 . -611) 129051) ((-394 . -611) 129033) ((-474 . -723) T) ((-1114 . -845) T) ((-889 . -1035) 129001) ((-108 . -847) T) ((-654 . -1052) 128985) ((-487 . -131) T) ((-1245 . -1053) T) ((-217 . -131) T) ((-1150 . -102) 128963) ((-99 . -1094) T) ((-245 . -662) 128947) ((-245 . -647) 128931) ((-654 . -111) 128910) ((-585 . -614) 128894) ((-316 . -411) 128878) ((-245 . -373) 128862) ((-1153 . -235) 128809) ((-996 . -231) 128793) ((-74 . -1209) T) ((-48 . -172) T) ((-697 . -387) T) ((-697 . -143) T) ((-1282 . -102) T) ((-1189 . -614) 128775) ((-1081 . -1052) 128618) ((-264 . -906) 128597) ((-247 . -906) 128576) ((-779 . -1052) 128399) ((-777 . -1052) 128242) ((-606 . -1209) T) ((-1158 . -611) 128224) ((-1081 . -111) 128053) ((-1043 . -102) T) ((-475 . -1209) T) ((-461 . -1052) 128024) ((-454 . -1052) 127867) ((-660 . -644) 127851) ((-868 . -307) T) ((-779 . -111) 127660) ((-777 . -111) 127489) ((-355 . -644) 127441) ((-352 . -644) 127393) ((-344 . -644) 127345) ((-264 . -644) 127270) ((-247 . -644) 127195) ((-1152 . -847) T) ((-1082 . -1035) 127179) ((-461 . -111) 127140) ((-454 . -111) 126969) ((-1070 . -1035) 126946) ((-997 . -34) T) ((-963 . -611) 126928) ((-955 . -1209) T) ((-126 . -1007) 126912) ((-960 . -1106) T) ((-868 . -1019) NIL) ((-732 . -1106) T) ((-712 . -1106) T) ((-654 . -614) 126830) ((-1259 . -489) 126814) ((-1136 . -38) 126774) ((-960 . -23) T) ((-862 . -1094) T) ((-840 . -102) T) ((-814 . -21) T) ((-814 . -25) T) ((-732 . -23) T) ((-712 . -23) T) ((-110 . -657) T) ((-907 . -644) 126739) ((-581 . -1052) 126704) ((-518 . -1052) 126649) ((-227 . -57) 126607) ((-453 . -23) T) ((-407 . -102) T) ((-263 . -102) T) ((-690 . -290) T) ((-863 . -38) 126577) ((-581 . -111) 126533) ((-518 . -111) 126462) ((-1081 . -614) 126198) ((-418 . -1106) T) ((-316 . -1053) 126088) ((-313 . -1053) T) ((-128 . -1209) T) ((-779 . -614) 125836) ((-777 . -614) 125602) ((-654 . -1046) T) ((-1287 . -1094) T) ((-454 . -614) 125387) ((-169 . -307) 125318) ((-418 . -23) T) ((-40 . -611) 125300) ((-40 . -612) 125284) ((-108 . -989) 125266) ((-116 . -866) 125250) ((-645 . -614) 125234) ((-48 . -514) 125200) ((-1195 . -1007) 125184) ((-1175 . -611) 125151) ((-1182 . -34) T) ((-951 . -611) 125117) ((-918 . -611) 125099) ((-1107 . -847) 125050) ((-768 . -611) 125032) ((-668 . -611) 125014) ((-1150 . -309) 124952) ((-479 . -34) T) ((-1086 . -1209) T) ((-477 . -452) T) ((-1135 . -34) T) ((-1081 . -1046) T) ((-50 . -614) 124921) ((-779 . -1046) T) ((-777 . -1046) T) ((-643 . -235) 124905) ((-630 . -235) 124851) ((-581 . -614) 124801) ((-518 . -614) 124731) ((-1232 . -307) 124710) ((-1081 . -326) 124671) ((-454 . -1046) T) ((-1172 . -21) T) ((-1081 . -233) 124650) ((-779 . -326) 124627) ((-779 . -233) T) ((-777 . -326) 124599) ((-728 . -1213) 124578) ((-327 . -647) 124562) ((-1172 . -25) T) ((-59 . -34) T) ((-519 . -34) T) ((-516 . -34) T) ((-454 . -326) 124541) ((-327 . -373) 124525) ((-497 . -34) T) ((-496 . -34) T) ((-1000 . -1145) NIL) ((-728 . -556) 124456) ((-633 . -102) T) ((-605 . -102) T) ((-355 . -723) T) ((-352 . -723) T) ((-344 . -723) T) ((-264 . -723) T) ((-247 . -723) T) ((-1043 . -309) 124364) ((-898 . -1094) 124342) ((-50 . -1046) T) ((-1271 . -21) T) ((-1271 . -25) T) ((-1168 . -556) 124321) ((-1167 . -1213) 124300) ((-581 . -1046) T) ((-518 . -1046) T) ((-1161 . -1213) 124279) ((-361 . -1035) 124263) ((-322 . -1035) 124247) ((-1021 . -290) T) ((-379 . -883) 124229) ((-1167 . -556) 124180) ((-1161 . -556) 124131) ((-1000 . -38) 124076) ((-796 . -1106) T) ((-907 . -723) T) ((-581 . -243) T) ((-581 . -233) T) ((-518 . -233) T) ((-518 . -243) T) ((-1120 . -556) 124055) ((-354 . -290) T) ((-643 . -691) 124039) ((-379 . -1035) 123999) ((-1114 . -1053) T) ((-103 . -125) 123983) ((-796 . -23) T) ((-1281 . -1276) 123959) ((-1259 . -286) 123936) ((-407 . -309) 123901) ((-1279 . -1276) 123880) ((-1245 . -1094) T) ((-867 . -611) 123862) ((-833 . -1035) 123831) ((-203 . -784) T) ((-202 . -784) T) ((-201 . -784) T) ((-200 . -784) T) ((-199 . -784) T) ((-198 . -784) T) ((-197 . -784) T) ((-196 . -784) T) ((-195 . -784) T) ((-194 . -784) T) ((-547 . -611) 123813) ((-495 . -999) T) ((-274 . -836) T) ((-273 . -836) T) ((-272 . -836) T) ((-271 . -836) T) ((-48 . -290) T) ((-270 . -836) T) ((-269 . -836) T) ((-268 . -836) T) ((-193 . -784) T) ((-610 . -847) T) ((-650 . -411) 123797) ((-223 . -614) 123759) ((-110 . -847) T) ((-649 . -21) T) ((-649 . -25) T) ((-1282 . -38) 123729) ((-117 . -286) 123680) ((-1259 . -19) 123664) ((-1259 . -602) 123641) ((-1272 . -1094) T) ((-1071 . -1094) T) ((-984 . -1094) T) ((-960 . -131) T) ((-734 . -1094) T) ((-732 . -131) T) ((-712 . -131) T) ((-511 . -790) T) ((-407 . -1145) 123619) ((-453 . -131) T) ((-511 . -791) T) ((-223 . -1046) T) ((-294 . -102) 123401) ((-141 . -1094) T) ((-695 . -999) T) ((-91 . -1209) T) ((-127 . -611) 123333) ((-121 . -611) 123265) ((-1287 . -172) T) ((-1167 . -363) 123244) ((-1161 . -363) 123223) ((-316 . -1094) T) ((-418 . -131) T) ((-313 . -1094) T) ((-407 . -38) 123175) ((-1127 . -102) T) ((-1245 . -714) 123067) ((-650 . -1053) T) ((-1129 . -1254) T) ((-319 . -145) 123046) ((-319 . -147) 123025) ((-139 . -1094) T) ((-136 . -1094) T) ((-114 . -1094) T) ((-855 . -102) T) ((-580 . -611) 123007) ((-564 . -612) 122906) ((-564 . -611) 122888) ((-495 . -611) 122870) ((-495 . -612) 122815) ((-485 . -23) T) ((-482 . -847) 122766) ((-487 . -637) 122748) ((-962 . -611) 122730) ((-217 . -637) 122712) ((-225 . -404) T) ((-658 . -644) 122696) ((-55 . -611) 122678) ((-1166 . -917) 122657) ((-728 . -1106) T) ((-351 . -102) T) ((-1208 . -1077) T) ((-1114 . -841) T) ((-815 . -847) T) ((-728 . -23) T) ((-343 . -1052) 122602) ((-1152 . -1151) T) ((-1141 . -107) 122586) ((-1168 . -1106) T) ((-1167 . -1106) T) ((-515 . -1035) 122570) ((-1161 . -1106) T) ((-1120 . -1106) T) ((-343 . -111) 122499) ((-1001 . -1213) T) ((-126 . -1209) T) ((-911 . -1213) T) ((-690 . -286) NIL) ((-1260 . -611) 122481) ((-1168 . -23) T) ((-1167 . -23) T) ((-1161 . -23) T) ((-1001 . -556) T) ((-1136 . -231) 122465) ((-911 . -556) T) ((-1120 . -23) T) ((-248 . -611) 122447) ((-1069 . -1094) T) ((-796 . -131) T) ((-707 . -611) 122429) ((-316 . -714) 122339) ((-313 . -714) 122268) ((-695 . -611) 122250) ((-695 . -612) 122195) ((-407 . -400) 122179) ((-438 . -1094) T) ((-487 . -25) T) ((-487 . -21) T) ((-1114 . -1094) T) ((-217 . -25) T) ((-217 . -21) T) ((-709 . -411) 122163) ((-711 . -1035) 122132) ((-1259 . -611) 122044) ((-1259 . -612) 122005) ((-1245 . -172) T) ((-245 . -34) T) ((-343 . -614) 121935) ((-394 . -614) 121917) ((-923 . -971) T) ((-1195 . -1209) T) ((-658 . -788) 121896) ((-658 . -791) 121875) ((-398 . -395) T) ((-523 . -102) 121853) ((-1032 . -1094) T) ((-222 . -992) 121837) ((-504 . -102) T) ((-621 . -611) 121819) ((-45 . -847) NIL) ((-621 . -612) 121796) ((-1032 . -608) 121771) ((-898 . -514) 121704) ((-343 . -1046) T) ((-117 . -612) NIL) ((-117 . -611) 121686) ((-869 . -1209) T) ((-666 . -417) 121670) ((-666 . -1117) 121615) ((-500 . -151) 121597) ((-343 . -233) T) ((-343 . -243) T) ((-40 . -1052) 121542) ((-869 . -881) 121526) ((-869 . -883) 121451) ((-709 . -1053) T) ((-690 . -999) NIL) ((-3 . |UnionCategory|) T) ((-1243 . -47) 121421) ((-1222 . -47) 121398) ((-1135 . -1007) 121369) ((-225 . -917) T) ((-40 . -111) 121298) ((-869 . -1035) 121162) ((-1114 . -714) 121149) ((-1099 . -611) 121131) ((-1074 . -147) 121110) ((-1074 . -145) 121061) ((-1001 . -363) T) ((-319 . -1197) 121027) ((-379 . -307) T) ((-319 . -1194) 120993) ((-316 . -172) 120972) ((-313 . -172) T) ((-1000 . -231) 120949) ((-911 . -363) T) ((-581 . -1278) 120936) ((-518 . -1278) 120913) ((-359 . -147) 120892) ((-359 . -145) 120843) ((-353 . -147) 120822) ((-353 . -145) 120773) ((-606 . -1185) 120749) ((-345 . -147) 120728) ((-345 . -145) 120679) ((-319 . -35) 120645) ((-475 . -1185) 120624) ((0 . |EnumerationCategory|) T) ((-319 . -95) 120590) ((-379 . -1019) T) ((-108 . -147) T) ((-108 . -145) NIL) ((-45 . -235) 120540) ((-650 . -1094) T) ((-606 . -107) 120487) ((-485 . -131) T) ((-475 . -107) 120437) ((-240 . -1106) 120347) ((-869 . -377) 120331) ((-869 . -338) 120315) ((-240 . -23) 120185) ((-40 . -614) 120115) ((-1057 . -917) T) ((-1057 . -817) T) ((-581 . -368) T) ((-518 . -368) T) ((-351 . -1145) T) ((-327 . -34) T) ((-44 . -417) 120099) ((-1175 . -614) 120034) ((-870 . -1209) T) ((-390 . -741) 120018) ((-1272 . -514) 119951) ((-728 . -131) T) ((-668 . -614) 119935) ((-1251 . -556) 119914) ((-1244 . -1213) 119893) ((-1244 . -556) 119844) ((-1223 . -1213) 119823) ((-311 . -1077) T) ((-1223 . -556) 119774) ((-734 . -514) 119707) ((-1222 . -1209) 119686) ((-1222 . -883) 119559) ((-890 . -1094) T) ((-144 . -841) T) ((-1222 . -881) 119529) ((-687 . -611) 119511) ((-1168 . -131) T) ((-523 . -309) 119449) ((-1167 . -131) T) ((-141 . -514) NIL) ((-1161 . -131) T) ((-1120 . -131) T) ((-1021 . -999) T) ((-1001 . -23) T) ((-351 . -38) 119414) ((-1001 . -1106) T) ((-911 . -1106) T) ((-82 . -611) 119396) ((-40 . -1046) T) ((-867 . -1052) 119383) ((-1000 . -349) NIL) ((-869 . -897) 119342) ((-697 . -102) T) ((-968 . -23) T) ((-600 . -1209) T) ((-911 . -23) T) ((-867 . -111) 119327) ((-427 . -1106) T) ((-213 . -1094) T) ((-474 . -47) 119297) ((-134 . -102) T) ((-40 . -233) 119269) ((-40 . -243) T) ((-116 . -102) T) ((-595 . -556) 119248) ((-594 . -556) 119227) ((-690 . -611) 119209) ((-690 . -612) 119117) ((-316 . -514) 119083) ((-313 . -514) 118975) ((-1243 . -1035) 118959) ((-1222 . -1035) 118745) ((-996 . -411) 118729) ((-427 . -23) T) ((-1114 . -172) T) ((-1245 . -290) T) ((-650 . -714) 118699) ((-144 . -1094) T) ((-48 . -999) T) ((-407 . -231) 118683) ((-295 . -235) 118633) ((-868 . -917) T) ((-868 . -817) NIL) ((-867 . -614) 118605) ((-861 . -847) T) ((-1222 . -338) 118575) ((-1222 . -377) 118545) ((-222 . -1115) 118529) ((-1259 . -288) 118506) ((-1203 . -644) 118431) ((-960 . -21) T) ((-960 . -25) T) ((-732 . -21) T) ((-732 . -25) T) ((-712 . -21) T) ((-712 . -25) T) ((-708 . -644) 118396) ((-453 . -21) T) ((-453 . -25) T) ((-339 . -102) T) ((-174 . -102) T) ((-996 . -1053) T) ((-867 . -1046) T) ((-771 . -102) T) ((-1244 . -363) 118375) ((-1243 . -897) 118281) ((-1223 . -363) 118260) ((-1222 . -897) 118111) ((-1021 . -611) 118093) ((-407 . -825) 118046) ((-1168 . -493) 118012) ((-169 . -917) 117943) ((-1167 . -493) 117909) ((-1161 . -493) 117875) ((-709 . -1094) T) ((-1120 . -493) 117841) ((-580 . -1052) 117828) ((-564 . -1052) 117815) ((-495 . -1052) 117780) ((-316 . -290) 117759) ((-313 . -290) T) ((-354 . -611) 117741) ((-418 . -25) T) ((-418 . -21) T) ((-99 . -286) 117720) ((-580 . -111) 117705) ((-564 . -111) 117690) ((-495 . -111) 117646) ((-1170 . -883) 117613) ((-898 . -489) 117597) ((-48 . -611) 117579) ((-48 . -612) 117524) ((-240 . -131) 117394) ((-1232 . -917) 117373) ((-813 . -1213) 117352) ((-388 . -490) 117333) ((-1032 . -514) 117177) ((-388 . -611) 117143) ((-813 . -556) 117074) ((-585 . -644) 117049) ((-264 . -47) 117021) ((-247 . -47) 116978) ((-531 . -509) 116955) ((-580 . -614) 116927) ((-564 . -614) 116899) ((-495 . -614) 116832) ((-997 . -1209) T) ((-695 . -1052) 116797) ((-1251 . -23) T) ((-1251 . -1106) T) ((-1244 . -1106) T) ((-1223 . -1106) T) ((-1000 . -370) 116769) ((-112 . -368) T) ((-474 . -897) 116675) ((-1244 . -23) T) ((-901 . -611) 116657) ((-55 . -614) 116639) ((-91 . -107) 116623) ((-1203 . -723) T) ((-902 . -847) 116574) ((-697 . -1145) T) ((-695 . -111) 116530) ((-1223 . -23) T) ((-595 . -1106) T) ((-594 . -1106) T) ((-709 . -714) 116359) ((-708 . -723) T) ((-1114 . -290) T) ((-1001 . -131) T) ((-487 . -847) T) ((-968 . -131) T) ((-911 . -131) T) ((-796 . -25) T) ((-217 . -847) T) ((-796 . -21) T) ((-580 . -1046) T) ((-564 . -1046) T) ((-495 . -1046) T) ((-595 . -23) T) ((-343 . -1278) 116336) ((-319 . -452) 116315) ((-339 . -309) 116302) ((-594 . -23) T) ((-427 . -131) T) ((-654 . -644) 116276) ((-245 . -1007) 116260) ((-869 . -307) T) ((-1283 . -1273) 116244) ((-768 . -789) T) ((-768 . -792) T) ((-697 . -38) 116231) ((-564 . -233) T) ((-495 . -243) T) ((-495 . -233) T) ((-1144 . -235) 116181) ((-1081 . -906) 116160) ((-116 . -38) 116147) ((-209 . -797) T) ((-208 . -797) T) ((-207 . -797) T) ((-206 . -797) T) ((-869 . -1019) 116125) ((-1272 . -489) 116109) ((-779 . -906) 116088) ((-777 . -906) 116067) ((-1182 . -1209) T) ((-454 . -906) 116046) ((-734 . -489) 116030) ((-1081 . -644) 115955) ((-695 . -614) 115890) ((-779 . -644) 115815) ((-621 . -1052) 115802) ((-479 . -1209) T) ((-343 . -368) T) ((-141 . -489) 115784) ((-777 . -644) 115709) ((-1135 . -1209) T) ((-549 . -847) T) ((-461 . -644) 115680) ((-264 . -883) 115539) ((-247 . -883) NIL) ((-117 . -1052) 115484) ((-454 . -644) 115409) ((-660 . -1035) 115386) ((-621 . -111) 115371) ((-355 . -1035) 115355) ((-352 . -1035) 115339) ((-344 . -1035) 115323) ((-264 . -1035) 115167) ((-247 . -1035) 115043) ((-117 . -111) 114972) ((-59 . -1209) T) ((-519 . -1209) T) ((-516 . -1209) T) ((-497 . -1209) T) ((-496 . -1209) T) ((-437 . -611) 114954) ((-434 . -611) 114936) ((-3 . -102) T) ((-1024 . -1202) 114905) ((-830 . -102) T) ((-685 . -57) 114863) ((-695 . -1046) T) ((-50 . -644) 114837) ((-289 . -452) T) ((-476 . -1202) 114806) ((0 . -102) T) ((-581 . -644) 114771) ((-518 . -644) 114716) ((-49 . -102) T) ((-907 . -1035) 114703) ((-695 . -243) T) ((-1074 . -409) 114682) ((-728 . -637) 114630) ((-996 . -1094) T) ((-709 . -172) 114521) ((-621 . -614) 114416) ((-487 . -989) 114398) ((-264 . -377) 114382) ((-247 . -377) 114366) ((-399 . -1094) T) ((-1023 . -102) 114344) ((-339 . -38) 114328) ((-217 . -989) 114310) ((-117 . -614) 114240) ((-174 . -38) 114172) ((-1243 . -307) 114151) ((-1222 . -307) 114130) ((-654 . -723) T) ((-99 . -611) 114112) ((-1161 . -637) 114064) ((-485 . -25) T) ((-485 . -21) T) ((-1222 . -1019) 114016) ((-621 . -1046) T) ((-379 . -404) T) ((-390 . -102) T) ((-1099 . -616) 113931) ((-264 . -897) 113877) ((-247 . -897) 113854) ((-117 . -1046) T) ((-813 . -1106) T) ((-1081 . -723) T) ((-621 . -233) 113833) ((-619 . -102) T) ((-779 . -723) T) ((-777 . -723) T) ((-413 . -1106) T) ((-117 . -243) T) ((-40 . -368) NIL) ((-117 . -233) NIL) ((-1214 . -847) T) ((-454 . -723) T) ((-813 . -23) T) ((-728 . -25) T) ((-728 . -21) T) ((-699 . -847) T) ((-1071 . -286) 113812) ((-78 . -396) T) ((-78 . -395) T) ((-533 . -764) 113794) ((-690 . -1052) 113744) ((-1251 . -131) T) ((-1244 . -131) T) ((-1223 . -131) T) ((-1168 . -25) T) ((-1136 . -411) 113728) ((-633 . -367) 113660) ((-605 . -367) 113592) ((-1150 . -1143) 113576) ((-103 . -1094) 113554) ((-1168 . -21) T) ((-1167 . -21) T) ((-862 . -611) 113536) ((-996 . -714) 113484) ((-223 . -644) 113451) ((-690 . -111) 113385) ((-50 . -723) T) ((-1167 . -25) T) ((-351 . -349) T) ((-1161 . -21) T) ((-1074 . -452) 113336) ((-1161 . -25) T) ((-709 . -514) 113283) ((-581 . -723) T) ((-518 . -723) T) ((-1120 . -21) T) ((-1120 . -25) T) ((-595 . -131) T) ((-594 . -131) T) ((-359 . -452) T) ((-353 . -452) T) ((-345 . -452) T) ((-474 . -307) 113262) ((-1217 . -102) T) ((-313 . -286) 113197) ((-108 . -452) T) ((-79 . -441) T) ((-79 . -395) T) ((-477 . -102) T) ((-687 . -614) 113181) ((-1287 . -611) 113163) ((-1287 . -612) 113145) ((-1074 . -402) 113124) ((-1032 . -489) 113055) ((-564 . -792) T) ((-564 . -789) T) ((-1058 . -235) 113001) ((-359 . -402) 112952) ((-353 . -402) 112903) ((-345 . -402) 112854) ((-1274 . -1106) T) ((-690 . -614) 112789) ((-1274 . -23) T) ((-1261 . -102) T) ((-175 . -611) 112771) ((-1136 . -1053) T) ((-547 . -368) T) ((-666 . -741) 112755) ((-1172 . -145) 112734) ((-1172 . -147) 112713) ((-1140 . -1094) T) ((-1140 . -1066) 112682) ((-69 . -1209) T) ((-1021 . -1052) 112619) ((-863 . -1053) T) ((-240 . -637) 112525) ((-690 . -1046) T) ((-354 . -1052) 112470) ((-61 . -1209) T) ((-1021 . -111) 112386) ((-898 . -611) 112297) ((-690 . -243) T) ((-690 . -233) NIL) ((-840 . -845) 112276) ((-695 . -792) T) ((-695 . -789) T) ((-1000 . -411) 112253) ((-354 . -111) 112182) ((-379 . -917) T) ((-407 . -845) 112161) ((-709 . -290) 112072) ((-223 . -723) T) ((-1251 . -493) 112038) ((-1244 . -493) 112004) ((-1223 . -493) 111970) ((-578 . -1094) T) ((-316 . -999) 111949) ((-222 . -1094) 111927) ((-1216 . -841) T) ((-319 . -970) 111889) ((-105 . -102) T) ((-48 . -1052) 111854) ((-1283 . -102) T) ((-381 . -102) T) ((-48 . -111) 111810) ((-1001 . -637) 111792) ((-1245 . -611) 111774) ((-531 . -102) T) ((-500 . -102) T) ((-1127 . -1128) 111758) ((-152 . -1266) 111742) ((-245 . -1209) T) ((-1208 . -102) T) ((-1021 . -614) 111679) ((-1166 . -1213) 111658) ((-354 . -614) 111588) ((-1119 . -1213) 111567) ((-240 . -21) 111477) ((-240 . -25) 111328) ((-127 . -119) 111312) ((-121 . -119) 111296) ((-44 . -741) 111280) ((-1166 . -556) 111191) ((-1119 . -556) 111122) ((-1216 . -1094) T) ((-1032 . -286) 111097) ((-1160 . -1077) T) ((-991 . -1077) T) ((-813 . -131) T) ((-117 . -792) NIL) ((-117 . -789) NIL) ((-355 . -307) T) ((-352 . -307) T) ((-344 . -307) T) ((-251 . -1106) 111007) ((-250 . -1106) 110917) ((-1021 . -1046) T) ((-1000 . -1053) T) ((-48 . -614) 110850) ((-343 . -644) 110795) ((-619 . -38) 110779) ((-1272 . -611) 110741) ((-1272 . -612) 110702) ((-1071 . -611) 110684) ((-1021 . -243) T) ((-354 . -1046) T) ((-812 . -1266) 110654) ((-251 . -23) T) ((-250 . -23) T) ((-984 . -611) 110636) ((-734 . -612) 110597) ((-734 . -611) 110579) ((-796 . -847) 110558) ((-1153 . -151) 110505) ((-996 . -514) 110417) ((-354 . -233) T) ((-354 . -243) T) ((-388 . -614) 110398) ((-1001 . -25) T) ((-141 . -611) 110380) ((-141 . -612) 110339) ((-907 . -307) T) ((-1001 . -21) T) ((-968 . -25) T) ((-911 . -21) T) ((-911 . -25) T) ((-427 . -21) T) ((-427 . -25) T) ((-840 . -411) 110323) ((-48 . -1046) T) ((-1281 . -1273) 110307) ((-1279 . -1273) 110291) ((-1032 . -602) 110266) ((-316 . -612) 110127) ((-316 . -611) 110109) ((-313 . -612) NIL) ((-313 . -611) 110091) ((-48 . -243) T) ((-48 . -233) T) ((-650 . -286) 110052) ((-550 . -235) 110002) ((-139 . -611) 109969) ((-136 . -611) 109951) ((-114 . -611) 109933) ((-477 . -38) 109898) ((-1283 . -1280) 109877) ((-1274 . -131) T) ((-1282 . -1053) T) ((-1076 . -102) T) ((-88 . -1209) T) ((-500 . -309) NIL) ((-997 . -107) 109861) ((-886 . -1094) T) ((-882 . -1094) T) ((-1259 . -647) 109845) ((-1259 . -373) 109829) ((-327 . -1209) T) ((-592 . -847) T) ((-1136 . -1094) T) ((-1136 . -1049) 109769) ((-103 . -514) 109702) ((-924 . -611) 109684) ((-343 . -723) T) ((-30 . -611) 109666) ((-863 . -1094) T) ((-840 . -1053) 109645) ((-40 . -644) 109590) ((-225 . -1213) T) ((-407 . -1053) T) ((-1152 . -151) 109572) ((-996 . -290) 109523) ((-615 . -1094) T) ((-225 . -556) T) ((-319 . -1240) 109507) ((-319 . -1237) 109477) ((-1182 . -1185) 109456) ((-1069 . -611) 109438) ((-643 . -151) 109422) ((-630 . -151) 109368) ((-1182 . -107) 109318) ((-479 . -1185) 109297) ((-487 . -147) T) ((-487 . -145) NIL) ((-1114 . -612) 109212) ((-438 . -611) 109194) ((-217 . -147) T) ((-217 . -145) NIL) ((-1114 . -611) 109176) ((-129 . -102) T) ((-52 . -102) T) ((-1223 . -637) 109128) ((-479 . -107) 109078) ((-990 . -23) T) ((-1283 . -38) 109048) ((-1166 . -1106) T) ((-1119 . -1106) T) ((-1057 . -1213) T) ((-311 . -102) T) ((-851 . -1106) T) ((-949 . -1213) 109027) ((-481 . -1213) 109006) ((-728 . -847) 108985) ((-1057 . -556) T) ((-949 . -556) 108916) ((-1166 . -23) T) ((-1119 . -23) T) ((-851 . -23) T) ((-481 . -556) 108847) ((-1136 . -714) 108779) ((-1140 . -514) 108712) ((-1032 . -612) NIL) ((-1032 . -611) 108694) ((-96 . -1077) T) ((-863 . -714) 108664) ((-1203 . -47) 108633) ((-251 . -131) T) ((-250 . -131) T) ((-1098 . -1094) T) ((-1000 . -1094) T) ((-62 . -611) 108615) ((-1161 . -847) NIL) ((-1021 . -789) T) ((-1021 . -792) T) ((-1287 . -1052) 108602) ((-1287 . -111) 108587) ((-867 . -644) 108574) ((-1251 . -25) T) ((-1251 . -21) T) ((-1244 . -21) T) ((-1244 . -25) T) ((-1223 . -21) T) ((-1223 . -25) T) ((-1024 . -151) 108558) ((-869 . -817) 108537) ((-869 . -917) T) ((-709 . -286) 108464) ((-595 . -21) T) ((-595 . -25) T) ((-594 . -21) T) ((-40 . -723) T) ((-222 . -514) 108397) ((-594 . -25) T) ((-476 . -151) 108381) ((-463 . -151) 108365) ((-918 . -791) T) ((-918 . -723) T) ((-768 . -790) T) ((-768 . -791) T) ((-506 . -1094) T) ((-502 . -1094) T) ((-768 . -723) T) ((-225 . -363) T) ((-1150 . -1094) 108343) ((-868 . -1213) T) ((-650 . -611) 108325) ((-868 . -556) T) ((-690 . -368) NIL) ((-1287 . -614) 108307) ((-1282 . -1094) T) ((-359 . -1266) 108291) ((-666 . -102) T) ((-353 . -1266) 108275) ((-345 . -1266) 108259) ((-548 . -102) T) ((-520 . -847) 108238) ((-814 . -452) 108217) ((-1043 . -1094) T) ((-1043 . -1066) 108146) ((-1024 . -973) 108115) ((-816 . -1106) T) ((-1000 . -714) 108060) ((-386 . -1106) T) ((-476 . -973) 108029) ((-463 . -973) 107998) ((-110 . -151) 107980) ((-73 . -611) 107962) ((-890 . -611) 107944) ((-1074 . -721) 107923) ((-1287 . -1046) T) ((-813 . -637) 107871) ((-294 . -1053) 107813) ((-169 . -1213) 107718) ((-225 . -1106) T) ((-324 . -23) T) ((-1161 . -989) 107670) ((-840 . -1094) T) ((-1245 . -1052) 107575) ((-1120 . -737) 107554) ((-1243 . -917) 107533) ((-1222 . -917) 107512) ((-867 . -723) T) ((-169 . -556) 107423) ((-580 . -644) 107410) ((-564 . -644) 107397) ((-407 . -1094) T) ((-263 . -1094) T) ((-213 . -611) 107379) ((-495 . -644) 107344) ((-225 . -23) T) ((-1222 . -817) 107297) ((-1281 . -102) T) ((-354 . -1278) 107274) ((-1279 . -102) T) ((-1245 . -111) 107166) ((-144 . -611) 107148) ((-990 . -131) T) ((-44 . -102) T) ((-240 . -847) 107099) ((-1232 . -1213) 107078) ((-103 . -489) 107062) ((-1282 . -714) 107032) ((-1081 . -47) 106993) ((-1057 . -1106) T) ((-949 . -1106) T) ((-127 . -34) T) ((-121 . -34) T) ((-779 . -47) 106970) ((-777 . -47) 106942) ((-1232 . -556) 106853) ((-354 . -368) T) ((-481 . -1106) T) ((-1166 . -131) T) ((-1119 . -131) T) ((-454 . -47) 106832) ((-868 . -363) T) ((-851 . -131) T) ((-152 . -102) T) ((-1057 . -23) T) ((-949 . -23) T) ((-571 . -556) T) ((-813 . -25) T) ((-813 . -21) T) ((-1136 . -514) 106765) ((-591 . -1077) T) ((-585 . -1035) 106749) ((-1245 . -614) 106623) ((-481 . -23) T) ((-351 . -1053) T) ((-1203 . -897) 106604) ((-666 . -309) 106542) ((-1107 . -1266) 106512) ((-695 . -644) 106477) ((-1000 . -172) T) ((-960 . -145) 106456) ((-633 . -1094) T) ((-605 . -1094) T) ((-960 . -147) 106435) ((-1001 . -847) T) ((-732 . -147) 106414) ((-732 . -145) 106393) ((-968 . -847) T) ((-474 . -917) 106372) ((-316 . -1052) 106282) ((-313 . -1052) 106211) ((-996 . -286) 106169) ((-407 . -714) 106121) ((-697 . -845) T) ((-1245 . -1046) T) ((-316 . -111) 106017) ((-313 . -111) 105930) ((-961 . -102) T) ((-812 . -102) 105720) ((-709 . -612) NIL) ((-709 . -611) 105702) ((-654 . -1035) 105598) ((-1245 . -326) 105542) ((-1032 . -288) 105517) ((-580 . -723) T) ((-564 . -791) T) ((-169 . -363) 105468) ((-564 . -788) T) ((-564 . -723) T) ((-495 . -723) T) ((-1140 . -489) 105452) ((-1081 . -883) NIL) ((-868 . -1106) T) ((-117 . -906) NIL) ((-1281 . -1280) 105428) ((-1279 . -1280) 105407) ((-779 . -883) NIL) ((-777 . -883) 105266) ((-1274 . -25) T) ((-1274 . -21) T) ((-1206 . -102) 105244) ((-1100 . -395) T) ((-621 . -644) 105231) ((-454 . -883) NIL) ((-671 . -102) 105209) ((-1081 . -1035) 105036) ((-868 . -23) T) ((-779 . -1035) 104895) ((-777 . -1035) 104752) ((-117 . -644) 104697) ((-454 . -1035) 104573) ((-316 . -614) 104137) ((-313 . -614) 104020) ((-645 . -1035) 104004) ((-625 . -102) T) ((-222 . -489) 103988) ((-1259 . -34) T) ((-136 . -614) 103972) ((-633 . -714) 103956) ((-605 . -714) 103940) ((-666 . -38) 103900) ((-319 . -102) T) ((-85 . -611) 103882) ((-50 . -1035) 103866) ((-1114 . -1052) 103853) ((-1081 . -377) 103837) ((-779 . -377) 103821) ((-695 . -723) T) ((-695 . -791) T) ((-695 . -788) T) ((-581 . -1035) 103808) ((-518 . -1035) 103785) ((-60 . -57) 103747) ((-324 . -131) T) ((-316 . -1046) 103637) ((-313 . -1046) T) ((-169 . -1106) T) ((-777 . -377) 103621) ((-45 . -151) 103571) ((-1001 . -989) 103553) ((-454 . -377) 103537) ((-407 . -172) T) ((-316 . -243) 103516) ((-313 . -243) T) ((-313 . -233) NIL) ((-294 . -1094) 103298) ((-225 . -131) T) ((-1114 . -111) 103283) ((-169 . -23) T) ((-796 . -147) 103262) ((-796 . -145) 103241) ((-251 . -637) 103147) ((-250 . -637) 103053) ((-319 . -284) 103019) ((-1150 . -514) 102952) ((-1127 . -1094) T) ((-225 . -1055) T) ((-812 . -309) 102890) ((-1081 . -897) 102825) ((-779 . -897) 102768) ((-777 . -897) 102752) ((-1281 . -38) 102722) ((-1279 . -38) 102692) ((-1232 . -1106) T) ((-852 . -1106) T) ((-454 . -897) 102669) ((-855 . -1094) T) ((-1232 . -23) T) ((-1114 . -614) 102641) ((-571 . -1106) T) ((-852 . -23) T) ((-621 . -723) T) ((-355 . -917) T) ((-352 . -917) T) ((-289 . -102) T) ((-344 . -917) T) ((-1057 . -131) T) ((-967 . -1077) T) ((-949 . -131) T) ((-117 . -791) NIL) ((-117 . -788) NIL) ((-117 . -723) T) ((-690 . -906) NIL) ((-1043 . -514) 102542) ((-481 . -131) T) ((-571 . -23) T) ((-671 . -309) 102480) ((-633 . -758) T) ((-605 . -758) T) ((-1223 . -847) NIL) ((-1000 . -290) T) ((-251 . -21) T) ((-690 . -644) 102430) ((-351 . -1094) T) ((-251 . -25) T) ((-250 . -21) T) ((-250 . -25) T) ((-152 . -38) 102414) ((-2 . -102) T) ((-907 . -917) T) ((-482 . -1266) 102384) ((-223 . -1035) 102361) ((-1114 . -1046) T) ((-708 . -307) T) ((-294 . -714) 102303) ((-697 . -1053) T) ((-487 . -452) T) ((-407 . -514) 102215) ((-217 . -452) T) ((-1114 . -233) T) ((-295 . -151) 102165) ((-996 . -612) 102126) ((-996 . -611) 102108) ((-986 . -611) 102090) ((-116 . -1053) T) ((-650 . -1052) 102074) ((-225 . -493) T) ((-399 . -611) 102056) ((-399 . -612) 102033) ((-1050 . -1266) 102003) ((-650 . -111) 101982) ((-1136 . -489) 101966) ((-812 . -38) 101936) ((-63 . -441) T) ((-63 . -395) T) ((-1153 . -102) T) ((-868 . -131) T) ((-484 . -102) 101914) ((-1287 . -368) T) ((-1074 . -102) T) ((-1056 . -102) T) ((-351 . -714) 101859) ((-728 . -147) 101838) ((-728 . -145) 101817) ((-650 . -614) 101735) ((-1021 . -644) 101672) ((-523 . -1094) 101650) ((-359 . -102) T) ((-353 . -102) T) ((-345 . -102) T) ((-108 . -102) T) ((-504 . -1094) T) ((-354 . -644) 101595) ((-1166 . -637) 101543) ((-1119 . -637) 101491) ((-385 . -509) 101470) ((-830 . -845) 101449) ((-379 . -1213) T) ((-690 . -723) T) ((-339 . -1053) T) ((-1223 . -989) 101401) ((-174 . -1053) T) ((-103 . -611) 101333) ((-1168 . -145) 101312) ((-1168 . -147) 101291) ((-379 . -556) T) ((-1167 . -147) 101270) ((-1167 . -145) 101249) ((-1161 . -145) 101156) ((-407 . -290) T) ((-1161 . -147) 101063) ((-1120 . -147) 101042) ((-1120 . -145) 101021) ((-319 . -38) 100862) ((-169 . -131) T) ((-313 . -792) NIL) ((-313 . -789) NIL) ((-650 . -1046) T) ((-48 . -644) 100827) ((-890 . -614) 100804) ((-1160 . -102) T) ((-991 . -102) T) ((-990 . -21) T) ((-127 . -1007) 100788) ((-121 . -1007) 100772) ((-990 . -25) T) ((-898 . -119) 100756) ((-1152 . -102) T) ((-813 . -847) 100735) ((-1232 . -131) T) ((-1166 . -25) T) ((-1166 . -21) T) ((-852 . -131) T) ((-1119 . -25) T) ((-1119 . -21) T) ((-851 . -25) T) ((-851 . -21) T) ((-779 . -307) 100714) ((-643 . -102) 100692) ((-630 . -102) T) ((-1153 . -309) 100487) ((-571 . -131) T) ((-619 . -845) 100466) ((-1150 . -489) 100450) ((-1144 . -151) 100400) ((-1140 . -611) 100362) ((-1140 . -612) 100323) ((-1021 . -788) T) ((-1021 . -791) T) ((-1021 . -723) T) ((-709 . -1052) 100146) ((-484 . -309) 100084) ((-453 . -417) 100054) ((-351 . -172) T) ((-289 . -38) 100041) ((-274 . -102) T) ((-273 . -102) T) ((-272 . -102) T) ((-271 . -102) T) ((-270 . -102) T) ((-269 . -102) T) ((-343 . -1035) 100018) ((-268 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-209 . -102) T) ((-208 . -102) T) ((-207 . -102) T) ((-206 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-195 . -102) T) ((-194 . -102) T) ((-193 . -102) T) ((-354 . -723) T) ((-709 . -111) 99827) ((-666 . -231) 99811) ((-581 . -307) T) ((-518 . -307) T) ((-294 . -514) 99760) ((-108 . -309) NIL) ((-72 . -395) T) ((-1107 . -102) 99550) ((-830 . -411) 99534) ((-1114 . -792) T) ((-1114 . -789) T) ((-697 . -1094) T) ((-578 . -611) 99516) ((-379 . -363) T) ((-169 . -493) 99494) ((-222 . -611) 99426) ((-134 . -1094) T) ((-116 . -1094) T) ((-48 . -723) T) ((-1043 . -489) 99391) ((-141 . -425) 99373) ((-141 . -368) T) ((-1024 . -102) T) ((-512 . -509) 99352) ((-709 . -614) 99108) ((-476 . -102) T) ((-463 . -102) T) ((-1031 . -1106) T) ((-1216 . -611) 99090) ((-1175 . -1035) 99025) ((-1168 . -35) 98991) ((-1168 . -95) 98957) ((-1168 . -1197) 98923) ((-1168 . -1194) 98889) ((-1152 . -309) NIL) ((-89 . -396) T) ((-89 . -395) T) ((-1074 . -1145) 98868) ((-1167 . -1194) 98834) ((-1167 . -1197) 98800) ((-1031 . -23) T) ((-1167 . -95) 98766) ((-571 . -493) T) ((-1167 . -35) 98732) ((-1161 . -1194) 98698) ((-1161 . -1197) 98664) ((-1161 . -95) 98630) ((-361 . -1106) T) ((-359 . -1145) 98609) ((-353 . -1145) 98588) ((-345 . -1145) 98567) ((-1161 . -35) 98533) ((-1120 . -35) 98499) ((-1120 . -95) 98465) ((-108 . -1145) T) ((-1120 . -1197) 98431) ((-830 . -1053) 98410) ((-643 . -309) 98348) ((-630 . -309) 98199) ((-1120 . -1194) 98165) ((-709 . -1046) T) ((-1057 . -637) 98147) ((-1074 . -38) 98015) ((-949 . -637) 97963) ((-1001 . -147) T) ((-1001 . -145) NIL) ((-379 . -1106) T) ((-324 . -25) T) ((-322 . -23) T) ((-940 . -847) 97942) ((-709 . -326) 97919) ((-481 . -637) 97867) ((-40 . -1035) 97755) ((-709 . -233) T) ((-697 . -714) 97742) ((-339 . -1094) T) ((-174 . -1094) T) ((-331 . -847) T) ((-418 . -452) 97692) ((-379 . -23) T) ((-359 . -38) 97657) ((-353 . -38) 97622) ((-345 . -38) 97587) ((-80 . -441) T) ((-80 . -395) T) ((-225 . -25) T) ((-225 . -21) T) ((-833 . -1106) T) ((-108 . -38) 97537) ((-824 . -1106) T) ((-771 . -1094) T) ((-116 . -714) 97524) ((-668 . -1035) 97508) ((-610 . -102) T) ((-833 . -23) T) ((-824 . -23) T) ((-1150 . -286) 97485) ((-1107 . -309) 97423) ((-1096 . -235) 97407) ((-64 . -396) T) ((-64 . -395) T) ((-110 . -102) T) ((-40 . -377) 97384) ((-96 . -102) T) ((-649 . -849) 97368) ((-1129 . -1077) T) ((-1057 . -21) T) ((-1057 . -25) T) ((-812 . -231) 97337) ((-949 . -25) T) ((-949 . -21) T) ((-619 . -1053) T) ((-1114 . -368) T) ((-481 . -25) T) ((-481 . -21) T) ((-1024 . -309) 97275) ((-886 . -611) 97257) ((-882 . -611) 97239) ((-251 . -847) 97190) ((-250 . -847) 97141) ((-523 . -514) 97074) ((-868 . -637) 97051) ((-476 . -309) 96989) ((-463 . -309) 96927) ((-351 . -290) T) ((-1150 . -1247) 96911) ((-1136 . -611) 96873) ((-1136 . -612) 96834) ((-1134 . -102) T) ((-996 . -1052) 96730) ((-40 . -897) 96682) ((-1150 . -602) 96659) ((-1287 . -644) 96646) ((-863 . -490) 96623) ((-1058 . -151) 96569) ((-869 . -1213) T) ((-996 . -111) 96451) ((-339 . -714) 96435) ((-863 . -611) 96397) ((-174 . -714) 96329) ((-407 . -286) 96287) ((-869 . -556) T) ((-108 . -400) 96269) ((-84 . -384) T) ((-84 . -395) T) ((-697 . -172) T) ((-615 . -611) 96251) ((-99 . -723) T) ((-482 . -102) 96041) ((-99 . -473) T) ((-116 . -172) T) ((-1107 . -38) 96011) ((-169 . -637) 95959) ((-1050 . -102) T) ((-996 . -614) 95849) ((-868 . -25) T) ((-812 . -238) 95828) ((-868 . -21) T) ((-815 . -102) T) ((-414 . -102) T) ((-385 . -102) T) ((-110 . -309) NIL) ((-227 . -102) 95806) ((-127 . -1209) T) ((-121 . -1209) T) ((-1031 . -131) T) ((-666 . -367) 95790) ((-996 . -1046) T) ((-1232 . -637) 95738) ((-1098 . -611) 95720) ((-1000 . -611) 95702) ((-515 . -23) T) ((-510 . -23) T) ((-343 . -307) T) ((-508 . -23) T) ((-322 . -131) T) ((-3 . -1094) T) ((-1000 . -612) 95686) ((-996 . -243) 95665) ((-996 . -233) 95644) ((-1287 . -723) T) ((-1251 . -145) 95623) ((-830 . -1094) T) ((-1251 . -147) 95602) ((-1244 . -147) 95581) ((-1244 . -145) 95560) ((-1243 . -1213) 95539) ((-1223 . -145) 95446) ((-1223 . -147) 95353) ((-1222 . -1213) 95332) ((-379 . -131) T) ((-564 . -883) 95314) ((0 . -1094) T) ((-174 . -172) T) ((-169 . -21) T) ((-169 . -25) T) ((-49 . -1094) T) ((-1245 . -644) 95219) ((-1243 . -556) 95170) ((-711 . -1106) T) ((-1222 . -556) 95121) ((-564 . -1035) 95103) ((-594 . -147) 95082) ((-594 . -145) 95061) ((-495 . -1035) 95004) ((-1129 . -1131) T) ((-87 . -384) T) ((-87 . -395) T) ((-869 . -363) T) ((-833 . -131) T) ((-824 . -131) T) ((-711 . -23) T) ((-506 . -611) 94970) ((-502 . -611) 94952) ((-1283 . -1053) T) ((-379 . -1055) T) ((-1023 . -1094) 94930) ((-55 . -1035) 94912) ((-898 . -34) T) ((-482 . -309) 94850) ((-591 . -102) T) ((-1150 . -612) 94811) ((-1150 . -611) 94743) ((-1166 . -847) 94722) ((-45 . -102) T) ((-1119 . -847) 94701) ((-814 . -102) T) ((-1232 . -25) T) ((-1232 . -21) T) ((-852 . -25) T) ((-44 . -367) 94685) ((-852 . -21) T) ((-728 . -452) 94636) ((-1282 . -611) 94618) ((-1050 . -309) 94556) ((-667 . -1077) T) ((-604 . -1077) T) ((-390 . -1094) T) ((-571 . -25) T) ((-571 . -21) T) ((-180 . -1077) T) ((-161 . -1077) T) ((-156 . -1077) T) ((-154 . -1077) T) ((-619 . -1094) T) ((-695 . -883) 94538) ((-1259 . -1209) T) ((-227 . -309) 94476) ((-144 . -368) T) ((-1043 . -612) 94418) ((-1043 . -611) 94361) ((-313 . -906) NIL) ((-1217 . -841) T) ((-695 . -1035) 94306) ((-708 . -917) T) ((-474 . -1213) 94285) ((-1167 . -452) 94264) ((-1161 . -452) 94243) ((-330 . -102) T) ((-869 . -1106) T) ((-316 . -644) 94064) ((-313 . -644) 93993) ((-474 . -556) 93944) ((-339 . -514) 93910) ((-550 . -151) 93860) ((-40 . -307) T) ((-840 . -611) 93842) ((-697 . -290) T) ((-869 . -23) T) ((-379 . -493) T) ((-1074 . -231) 93812) ((-512 . -102) T) ((-407 . -612) 93619) ((-407 . -611) 93601) ((-263 . -611) 93583) ((-116 . -290) T) ((-1245 . -723) T) ((-1243 . -363) 93562) ((-1222 . -363) 93541) ((-1272 . -34) T) ((-1217 . -1094) T) ((-117 . -1209) T) ((-108 . -231) 93523) ((-1172 . -102) T) ((-477 . -1094) T) ((-523 . -489) 93507) ((-734 . -34) T) ((-482 . -38) 93477) ((-141 . -34) T) ((-117 . -881) 93454) ((-117 . -883) NIL) ((-621 . -1035) 93337) ((-641 . -847) 93316) ((-1271 . -102) T) ((-295 . -102) T) ((-709 . -368) 93295) ((-117 . -1035) 93272) ((-390 . -714) 93256) ((-619 . -714) 93240) ((-45 . -309) 93044) ((-813 . -145) 93023) ((-813 . -147) 93002) ((-1282 . -382) 92981) ((-816 . -847) T) ((-1261 . -1094) T) ((-1153 . -229) 92928) ((-386 . -847) 92907) ((-1251 . -1197) 92873) ((-1251 . -1194) 92839) ((-1244 . -1194) 92805) ((-515 . -131) T) ((-1244 . -1197) 92771) ((-1223 . -1194) 92737) ((-1223 . -1197) 92703) ((-1251 . -35) 92669) ((-1251 . -95) 92635) ((-633 . -611) 92604) ((-605 . -611) 92573) ((-225 . -847) T) ((-1244 . -95) 92539) ((-1244 . -35) 92505) ((-1243 . -1106) T) ((-1114 . -644) 92492) ((-1223 . -95) 92458) ((-1222 . -1106) T) ((-592 . -151) 92440) ((-1074 . -349) 92419) ((-174 . -290) T) ((-117 . -377) 92396) ((-117 . -338) 92373) ((-1223 . -35) 92339) ((-867 . -307) T) ((-313 . -791) NIL) ((-313 . -788) NIL) ((-316 . -723) 92188) ((-313 . -723) T) ((-474 . -363) 92167) ((-359 . -349) 92146) ((-353 . -349) 92125) ((-345 . -349) 92104) ((-316 . -473) 92083) ((-1243 . -23) T) ((-1222 . -23) T) ((-715 . -1106) T) ((-711 . -131) T) ((-649 . -102) T) ((-477 . -714) 92048) ((-45 . -282) 91998) ((-105 . -1094) T) ((-68 . -611) 91980) ((-967 . -102) T) ((-861 . -102) T) ((-621 . -897) 91939) ((-1283 . -1094) T) ((-381 . -1094) T) ((-1208 . -1094) T) ((-1107 . -231) 91908) ((-82 . -1209) T) ((-1057 . -847) T) ((-949 . -847) 91887) ((-117 . -897) NIL) ((-779 . -917) 91866) ((-710 . -847) T) ((-531 . -1094) T) ((-500 . -1094) T) ((-355 . -1213) T) ((-352 . -1213) T) ((-344 . -1213) T) ((-264 . -1213) 91845) ((-247 . -1213) 91824) ((-533 . -857) T) ((-481 . -847) 91803) ((-1152 . -825) T) ((-1136 . -1052) 91787) ((-390 . -758) T) ((-690 . -1209) T) ((-687 . -1035) 91771) ((-355 . -556) T) ((-352 . -556) T) ((-344 . -556) T) ((-264 . -556) 91702) ((-247 . -556) 91633) ((-525 . -1077) T) ((-1136 . -111) 91612) ((-453 . -741) 91582) ((-863 . -1052) 91552) ((-814 . -38) 91494) ((-690 . -881) 91476) ((-690 . -883) 91458) ((-295 . -309) 91262) ((-907 . -1213) T) ((-666 . -411) 91246) ((-863 . -111) 91211) ((-690 . -1035) 91156) ((-1001 . -452) T) ((-907 . -556) T) ((-533 . -611) 91138) ((-581 . -917) T) ((-474 . -1106) T) ((-518 . -917) T) ((-1150 . -288) 91115) ((-911 . -452) T) ((-65 . -611) 91097) ((-630 . -229) 91043) ((-474 . -23) T) ((-1114 . -791) T) ((-869 . -131) T) ((-1114 . -788) T) ((-1274 . -1276) 91022) ((-1114 . -723) T) ((-650 . -644) 90996) ((-294 . -611) 90737) ((-1136 . -614) 90655) ((-1032 . -34) T) ((-812 . -845) 90634) ((-580 . -307) T) ((-564 . -307) T) ((-495 . -307) T) ((-1283 . -714) 90604) ((-690 . -377) 90586) ((-690 . -338) 90568) ((-477 . -172) T) ((-381 . -714) 90538) ((-863 . -614) 90473) ((-868 . -847) NIL) ((-564 . -1019) T) ((-495 . -1019) T) ((-1127 . -611) 90455) ((-1107 . -238) 90434) ((-214 . -102) T) ((-1144 . -102) T) ((-71 . -611) 90416) ((-1136 . -1046) T) ((-1172 . -38) 90313) ((-855 . -611) 90295) ((-564 . -545) T) ((-666 . -1053) T) ((-728 . -946) 90248) ((-1136 . -233) 90227) ((-1076 . -1094) T) ((-1031 . -25) T) ((-1031 . -21) T) ((-1000 . -1052) 90172) ((-902 . -102) T) ((-863 . -1046) T) ((-690 . -897) NIL) ((-355 . -329) 90156) ((-355 . -363) T) ((-352 . -329) 90140) ((-352 . -363) T) ((-344 . -329) 90124) ((-344 . -363) T) ((-487 . -102) T) ((-1271 . -38) 90094) ((-546 . -847) T) ((-523 . -683) 90044) ((-217 . -102) T) ((-1021 . -1035) 89924) ((-1000 . -111) 89853) ((-1168 . -970) 89822) ((-1167 . -970) 89784) ((-520 . -151) 89768) ((-1074 . -370) 89747) ((-351 . -611) 89729) ((-322 . -21) T) ((-354 . -1035) 89706) ((-322 . -25) T) ((-1161 . -970) 89675) ((-1120 . -970) 89642) ((-76 . -611) 89624) ((-695 . -307) T) ((-169 . -847) 89603) ((-129 . -841) T) ((-907 . -363) T) ((-379 . -25) T) ((-379 . -21) T) ((-907 . -329) 89590) ((-86 . -611) 89572) ((-695 . -1019) T) ((-673 . -847) T) ((-1243 . -131) T) ((-1222 . -131) T) ((-898 . -1007) 89556) ((-833 . -21) T) ((-48 . -1035) 89499) ((-833 . -25) T) ((-824 . -25) T) ((-824 . -21) T) ((-1281 . -1053) T) ((-549 . -102) T) ((-1279 . -1053) T) ((-650 . -723) T) ((-1098 . -616) 89402) ((-1000 . -614) 89332) ((-1282 . -1052) 89316) ((-1232 . -847) 89295) ((-812 . -411) 89264) ((-103 . -119) 89248) ((-129 . -1094) T) ((-52 . -1094) T) ((-923 . -611) 89230) ((-868 . -989) 89207) ((-820 . -102) T) ((-1282 . -111) 89186) ((-649 . -38) 89156) ((-571 . -847) T) ((-355 . -1106) T) ((-352 . -1106) T) ((-344 . -1106) T) ((-264 . -1106) T) ((-247 . -1106) T) ((-621 . -307) 89135) ((-1144 . -309) 88939) ((-524 . -1077) T) ((-311 . -1094) T) ((-660 . -23) T) ((-482 . -231) 88908) ((-152 . -1053) T) ((-355 . -23) T) ((-352 . -23) T) ((-344 . -23) T) ((-117 . -307) T) ((-264 . -23) T) ((-247 . -23) T) ((-1000 . -1046) T) ((-709 . -906) 88887) ((-1150 . -614) 88864) ((-1000 . -233) 88836) ((-1000 . -243) T) ((-117 . -1019) NIL) ((-907 . -1106) T) ((-1244 . -452) 88815) ((-1223 . -452) 88794) ((-523 . -611) 88726) ((-709 . -644) 88651) ((-407 . -1052) 88603) ((-504 . -611) 88585) ((-907 . -23) T) ((-487 . -309) NIL) ((-1282 . -614) 88541) ((-474 . -131) T) ((-217 . -309) NIL) ((-407 . -111) 88479) ((-812 . -1053) 88409) ((-734 . -1092) 88393) ((-1243 . -493) 88359) ((-1222 . -493) 88325) ((-548 . -841) T) ((-141 . -1092) 88307) ((-477 . -290) T) ((-1282 . -1046) T) ((-1214 . -102) T) ((-1058 . -102) T) ((-840 . -614) 88175) ((-500 . -514) NIL) ((-699 . -102) T) ((-482 . -238) 88154) ((-407 . -614) 88052) ((-1166 . -145) 88031) ((-1166 . -147) 88010) ((-1119 . -147) 87989) ((-1119 . -145) 87968) ((-633 . -1052) 87952) ((-605 . -1052) 87936) ((-1168 . -1250) 87920) ((-666 . -1094) T) ((-666 . -1049) 87860) ((-1168 . -1237) 87837) ((-548 . -1094) T) ((-487 . -1145) T) ((-1167 . -1242) 87798) ((-1167 . -1237) 87768) ((-1167 . -1240) 87752) ((-217 . -1145) T) ((-343 . -917) T) ((-815 . -266) 87736) ((-633 . -111) 87715) ((-605 . -111) 87694) ((-1161 . -1221) 87655) ((-840 . -1046) 87634) ((-1161 . -1237) 87611) ((-515 . -25) T) ((-495 . -302) T) ((-511 . -23) T) ((-510 . -25) T) ((-508 . -25) T) ((-507 . -23) T) ((-1161 . -1219) 87595) ((-407 . -1046) T) ((-319 . -1053) T) ((-690 . -307) T) ((-108 . -845) T) ((-709 . -723) T) ((-407 . -243) T) ((-407 . -233) 87574) ((-487 . -38) 87524) ((-217 . -38) 87474) ((-474 . -493) 87440) ((-1216 . -368) T) ((-1152 . -1138) T) ((-1095 . -102) T) ((-697 . -611) 87422) ((-697 . -612) 87337) ((-711 . -21) T) ((-711 . -25) T) ((-1129 . -102) T) ((-134 . -611) 87319) ((-116 . -611) 87301) ((-157 . -25) T) ((-1281 . -1094) T) ((-869 . -637) 87249) ((-1279 . -1094) T) ((-960 . -102) T) ((-732 . -102) T) ((-712 . -102) T) ((-453 . -102) T) ((-813 . -452) 87200) ((-44 . -1094) T) ((-1082 . -847) T) ((-660 . -131) T) ((-1058 . -309) 87051) ((-666 . -714) 87035) ((-289 . -1053) T) ((-355 . -131) T) ((-352 . -131) T) ((-344 . -131) T) ((-264 . -131) T) ((-247 . -131) T) ((-418 . -102) T) ((-152 . -1094) T) ((-45 . -229) 86985) ((-955 . -847) 86964) ((-996 . -644) 86902) ((-240 . -1266) 86872) ((-1021 . -307) T) ((-294 . -1052) 86793) ((-907 . -131) T) ((-40 . -917) T) ((-487 . -400) 86775) ((-354 . -307) T) ((-217 . -400) 86757) ((-1074 . -411) 86741) ((-294 . -111) 86657) ((-1177 . -847) T) ((-1176 . -847) T) ((-869 . -25) T) ((-869 . -21) T) ((-339 . -611) 86639) ((-1245 . -47) 86583) ((-225 . -147) T) ((-174 . -611) 86565) ((-1107 . -845) 86544) ((-771 . -611) 86526) ((-128 . -847) T) ((-606 . -235) 86473) ((-475 . -235) 86423) ((-1281 . -714) 86393) ((-48 . -307) T) ((-1279 . -714) 86363) ((-65 . -614) 86292) ((-961 . -1094) T) ((-812 . -1094) 86082) ((-312 . -102) T) ((-898 . -1209) T) ((-48 . -1019) T) ((-1222 . -637) 85990) ((-685 . -102) 85968) ((-44 . -714) 85952) ((-550 . -102) T) ((-294 . -614) 85883) ((-67 . -383) T) ((-67 . -395) T) ((-658 . -23) T) ((-666 . -758) T) ((-1206 . -1094) 85861) ((-351 . -1052) 85806) ((-671 . -1094) 85784) ((-1057 . -147) T) ((-949 . -147) 85763) ((-949 . -145) 85742) ((-796 . -102) T) ((-152 . -714) 85726) ((-481 . -147) 85705) ((-481 . -145) 85684) ((-351 . -111) 85613) ((-1074 . -1053) T) ((-322 . -847) 85592) ((-1251 . -970) 85561) ((-625 . -1094) T) ((-1244 . -970) 85523) ((-511 . -131) T) ((-507 . -131) T) ((-295 . -229) 85473) ((-359 . -1053) T) ((-353 . -1053) T) ((-345 . -1053) T) ((-294 . -1046) 85415) ((-1223 . -970) 85384) ((-379 . -847) T) ((-108 . -1053) T) ((-996 . -723) T) ((-867 . -917) T) ((-840 . -792) 85363) ((-840 . -789) 85342) ((-418 . -309) 85281) ((-468 . -102) T) ((-594 . -970) 85250) ((-319 . -1094) T) ((-407 . -792) 85229) ((-407 . -789) 85208) ((-500 . -489) 85190) ((-1245 . -1035) 85156) ((-1243 . -21) T) ((-1243 . -25) T) ((-1222 . -21) T) ((-1222 . -25) T) ((-812 . -714) 85098) ((-351 . -614) 85028) ((-695 . -404) T) ((-1272 . -1209) T) ((-604 . -102) T) ((-1107 . -411) 84997) ((-1000 . -368) NIL) ((-667 . -102) T) ((-180 . -102) T) ((-161 . -102) T) ((-156 . -102) T) ((-154 . -102) T) ((-103 . -34) T) ((-734 . -1209) T) ((-44 . -758) T) ((-592 . -102) T) ((-77 . -396) T) ((-77 . -395) T) ((-649 . -652) 84981) ((-141 . -1209) T) ((-868 . -147) T) ((-868 . -145) NIL) ((-1208 . -93) T) ((-351 . -1046) T) ((-70 . -383) T) ((-70 . -395) T) ((-1159 . -102) T) ((-666 . -514) 84914) ((-685 . -309) 84852) ((-960 . -38) 84749) ((-732 . -38) 84719) ((-550 . -309) 84523) ((-316 . -1209) T) ((-351 . -233) T) ((-351 . -243) T) ((-313 . -1209) T) ((-289 . -1094) T) ((-1174 . -611) 84505) ((-708 . -1213) T) ((-1150 . -647) 84489) ((-1203 . -556) 84468) ((-708 . -556) T) ((-316 . -881) 84452) ((-316 . -883) 84377) ((-313 . -881) 84338) ((-313 . -883) NIL) ((-796 . -309) 84303) ((-319 . -714) 84144) ((-324 . -323) 84121) ((-485 . -102) T) ((-474 . -25) T) ((-474 . -21) T) ((-418 . -38) 84095) ((-316 . -1035) 83758) ((-225 . -1194) T) ((-225 . -1197) T) ((-3 . -611) 83740) ((-313 . -1035) 83670) ((-2 . -1094) T) ((-2 . |RecordCategory|) T) ((-830 . -611) 83652) ((-1107 . -1053) 83582) ((-580 . -917) T) ((-564 . -817) T) ((-564 . -917) T) ((-495 . -917) T) ((-136 . -1035) 83566) ((-225 . -95) T) ((-75 . -441) T) ((-75 . -395) T) ((0 . -611) 83548) ((-169 . -147) 83527) ((-169 . -145) 83478) ((-225 . -35) T) ((-49 . -611) 83460) ((-477 . -1053) T) ((-487 . -231) 83442) ((-484 . -965) 83426) ((-482 . -845) 83405) ((-217 . -231) 83387) ((-81 . -441) T) ((-81 . -395) T) ((-1140 . -34) T) ((-812 . -172) 83366) ((-728 . -102) T) ((-1023 . -611) 83333) ((-500 . -286) 83308) ((-316 . -377) 83277) ((-313 . -377) 83238) ((-313 . -338) 83199) ((-1079 . -611) 83181) ((-813 . -946) 83128) ((-658 . -131) T) ((-1232 . -145) 83107) ((-1232 . -147) 83086) ((-1168 . -102) T) ((-1167 . -102) T) ((-1161 . -102) T) ((-1153 . -1094) T) ((-1120 . -102) T) ((-222 . -34) T) ((-289 . -714) 83073) ((-1153 . -608) 83049) ((-592 . -309) NIL) ((-484 . -1094) 83027) ((-390 . -611) 83009) ((-510 . -847) T) ((-1144 . -229) 82959) ((-1251 . -1250) 82943) ((-1251 . -1237) 82920) ((-1244 . -1242) 82881) ((-1244 . -1237) 82851) ((-1244 . -1240) 82835) ((-1223 . -1221) 82796) ((-1223 . -1237) 82773) ((-619 . -611) 82755) ((-1223 . -1219) 82739) ((-695 . -917) T) ((-1168 . -284) 82705) ((-1167 . -284) 82671) ((-1161 . -284) 82637) ((-1074 . -1094) T) ((-1056 . -1094) T) ((-48 . -302) T) ((-316 . -897) 82603) ((-313 . -897) NIL) ((-1056 . -1063) 82582) ((-1114 . -883) 82564) ((-796 . -38) 82548) ((-264 . -637) 82496) ((-247 . -637) 82444) ((-697 . -1052) 82431) ((-594 . -1237) 82408) ((-1120 . -284) 82374) ((-319 . -172) 82305) ((-359 . -1094) T) ((-353 . -1094) T) ((-345 . -1094) T) ((-500 . -19) 82287) ((-1114 . -1035) 82269) ((-1096 . -151) 82253) ((-108 . -1094) T) ((-116 . -1052) 82240) ((-708 . -363) T) ((-500 . -602) 82215) ((-697 . -111) 82200) ((-436 . -102) T) ((-45 . -1143) 82150) ((-116 . -111) 82135) ((-633 . -717) T) ((-605 . -717) T) ((-812 . -514) 82068) ((-1032 . -1209) T) ((-940 . -151) 82052) ((-1217 . -611) 82034) ((-1166 . -452) 81965) ((-1160 . -1094) T) ((-1152 . -1094) T) ((-525 . -102) T) ((-520 . -102) 81915) ((-1136 . -644) 81889) ((-1119 . -452) 81840) ((-1081 . -1213) 81819) ((-779 . -1213) 81798) ((-777 . -1213) 81777) ((-62 . -1209) T) ((-477 . -611) 81729) ((-477 . -612) 81651) ((-1081 . -556) 81582) ((-991 . -1094) T) ((-779 . -556) 81493) ((-777 . -556) 81424) ((-482 . -411) 81393) ((-621 . -917) 81372) ((-454 . -1213) 81351) ((-728 . -309) 81338) ((-697 . -614) 81310) ((-398 . -611) 81292) ((-671 . -514) 81225) ((-660 . -25) T) ((-660 . -21) T) ((-454 . -556) 81156) ((-355 . -25) T) ((-355 . -21) T) ((-117 . -917) T) ((-117 . -817) NIL) ((-352 . -25) T) ((-352 . -21) T) ((-344 . -25) T) ((-344 . -21) T) ((-264 . -25) T) ((-264 . -21) T) ((-247 . -25) T) ((-247 . -21) T) ((-83 . -384) T) ((-83 . -395) T) ((-134 . -614) 81138) ((-116 . -614) 81110) ((-1261 . -611) 81092) ((-1215 . -847) T) ((-1203 . -1106) T) ((-1203 . -23) T) ((-1161 . -309) 80977) ((-1120 . -309) 80964) ((-1074 . -714) 80832) ((-863 . -644) 80792) ((-940 . -977) 80776) ((-907 . -21) T) ((-289 . -172) T) ((-907 . -25) T) ((-311 . -93) T) ((-869 . -847) 80727) ((-708 . -1106) T) ((-708 . -23) T) ((-697 . -1046) T) ((-643 . -1094) 80705) ((-630 . -1094) T) ((-581 . -1213) T) ((-518 . -1213) T) ((-697 . -233) T) ((-630 . -608) 80680) ((-581 . -556) T) ((-518 . -556) T) ((-359 . -714) 80632) ((-339 . -1052) 80616) ((-353 . -714) 80568) ((-345 . -714) 80520) ((-174 . -1052) 80452) ((-174 . -111) 80363) ((-108 . -714) 80313) ((-339 . -111) 80292) ((-274 . -1094) T) ((-273 . -1094) T) ((-272 . -1094) T) ((-271 . -1094) T) ((-270 . -1094) T) ((-269 . -1094) T) ((-268 . -1094) T) ((-212 . -1094) T) ((-211 . -1094) T) ((-169 . -1197) 80270) ((-169 . -1194) 80248) ((-209 . -1094) T) ((-208 . -1094) T) ((-116 . -1046) T) ((-207 . -1094) T) ((-206 . -1094) T) ((-203 . -1094) T) ((-202 . -1094) T) ((-201 . -1094) T) ((-200 . -1094) T) ((-199 . -1094) T) ((-198 . -1094) T) ((-197 . -1094) T) ((-196 . -1094) T) ((-195 . -1094) T) ((-194 . -1094) T) ((-193 . -1094) T) ((-240 . -102) 80038) ((-169 . -35) 80016) ((-169 . -95) 79994) ((-650 . -1035) 79890) ((-482 . -1053) 79820) ((-1107 . -1094) 79610) ((-1136 . -34) T) ((-666 . -489) 79594) ((-73 . -1209) T) ((-105 . -611) 79576) ((-1283 . -611) 79558) ((-381 . -611) 79540) ((-339 . -614) 79492) ((-174 . -614) 79409) ((-1208 . -490) 79390) ((-728 . -38) 79239) ((-571 . -1197) T) ((-571 . -1194) T) ((-531 . -611) 79221) ((-520 . -309) 79159) ((-500 . -611) 79141) ((-500 . -612) 79123) ((-1208 . -611) 79089) ((-1161 . -1145) NIL) ((-1024 . -1066) 79058) ((-1024 . -1094) T) ((-1001 . -102) T) ((-968 . -102) T) ((-911 . -102) T) ((-890 . -1035) 79035) ((-1136 . -723) T) ((-1000 . -644) 78980) ((-476 . -1094) T) ((-463 . -1094) T) ((-585 . -23) T) ((-571 . -35) T) ((-571 . -95) T) ((-427 . -102) T) ((-1058 . -229) 78926) ((-1168 . -38) 78823) ((-863 . -723) T) ((-690 . -917) T) ((-511 . -25) T) ((-507 . -21) T) ((-507 . -25) T) ((-1167 . -38) 78664) ((-339 . -1046) T) ((-1161 . -38) 78460) ((-1074 . -172) T) ((-174 . -1046) T) ((-1120 . -38) 78357) ((-709 . -47) 78334) ((-359 . -172) T) ((-353 . -172) T) ((-519 . -57) 78308) ((-497 . -57) 78258) ((-351 . -1278) 78235) ((-225 . -452) T) ((-319 . -290) 78186) ((-345 . -172) T) ((-174 . -243) T) ((-1222 . -847) 78085) ((-108 . -172) T) ((-869 . -989) 78069) ((-654 . -1106) T) ((-581 . -363) T) ((-581 . -329) 78056) ((-518 . -329) 78033) ((-518 . -363) T) ((-316 . -307) 78012) ((-313 . -307) T) ((-600 . -847) 77991) ((-1107 . -714) 77933) ((-520 . -282) 77917) ((-654 . -23) T) ((-418 . -231) 77901) ((-313 . -1019) NIL) ((-336 . -23) T) ((-103 . -1007) 77885) ((-45 . -36) 77864) ((-610 . -1094) T) ((-351 . -368) T) ((-524 . -102) T) ((-495 . -27) T) ((-240 . -309) 77802) ((-1081 . -1106) T) ((-1282 . -644) 77776) ((-779 . -1106) T) ((-777 . -1106) T) ((-454 . -1106) T) ((-1057 . -452) T) ((-949 . -452) 77727) ((-1109 . -1077) T) ((-110 . -1094) T) ((-1081 . -23) T) ((-814 . -1053) T) ((-779 . -23) T) ((-777 . -23) T) ((-481 . -452) 77678) ((-1153 . -514) 77461) ((-381 . -382) 77440) ((-1172 . -411) 77424) ((-461 . -23) T) ((-454 . -23) T) ((-96 . -1094) T) ((-484 . -514) 77357) ((-289 . -290) T) ((-1076 . -611) 77339) ((-1076 . -612) 77320) ((-407 . -906) 77299) ((-50 . -1106) T) ((-1021 . -917) T) ((-1000 . -723) T) ((-709 . -883) NIL) ((-581 . -1106) T) ((-518 . -1106) T) ((-840 . -644) 77272) ((-1203 . -131) T) ((-1161 . -400) 77224) ((-1001 . -309) NIL) ((-812 . -489) 77208) ((-354 . -917) T) ((-1150 . -34) T) ((-407 . -644) 77160) ((-50 . -23) T) ((-708 . -131) T) ((-709 . -1035) 77040) ((-581 . -23) T) ((-108 . -514) NIL) ((-518 . -23) T) ((-169 . -409) 77011) ((-1134 . -1094) T) ((-1274 . -1273) 76995) ((-697 . -792) T) ((-697 . -789) T) ((-1114 . -307) T) ((-379 . -147) T) ((-280 . -611) 76977) ((-1222 . -989) 76947) ((-48 . -917) T) ((-671 . -489) 76931) ((-251 . -1266) 76901) ((-250 . -1266) 76871) ((-1170 . -847) T) ((-1107 . -172) 76850) ((-1114 . -1019) T) ((-1043 . -34) T) ((-833 . -147) 76829) ((-833 . -145) 76808) ((-734 . -107) 76792) ((-610 . -132) T) ((-482 . -1094) 76582) ((-1172 . -1053) T) ((-868 . -452) T) ((-85 . -1209) T) ((-240 . -38) 76552) ((-141 . -107) 76534) ((-709 . -377) 76518) ((-830 . -614) 76386) ((-1114 . -545) T) ((-579 . -102) T) ((-129 . -490) 76368) ((-390 . -1052) 76352) ((-1282 . -723) T) ((-1166 . -946) 76321) ((-129 . -611) 76288) ((-52 . -611) 76270) ((-1119 . -946) 76237) ((-649 . -411) 76221) ((-1271 . -1053) T) ((-619 . -1052) 76205) ((-658 . -25) T) ((-658 . -21) T) ((-1152 . -514) NIL) ((-1251 . -102) T) ((-1244 . -102) T) ((-390 . -111) 76184) ((-222 . -254) 76168) ((-1223 . -102) T) ((-1050 . -1094) T) ((-1001 . -1145) T) ((-1050 . -1049) 76108) ((-815 . -1094) T) ((-343 . -1213) T) ((-633 . -644) 76092) ((-619 . -111) 76071) ((-605 . -644) 76055) ((-595 . -102) T) ((-311 . -490) 76036) ((-585 . -131) T) ((-594 . -102) T) ((-414 . -1094) T) ((-385 . -1094) T) ((-311 . -611) 76002) ((-227 . -1094) 75980) ((-643 . -514) 75913) ((-630 . -514) 75757) ((-830 . -1046) 75736) ((-641 . -151) 75720) ((-343 . -556) T) ((-709 . -897) 75663) ((-550 . -229) 75613) ((-1251 . -284) 75579) ((-1074 . -290) 75530) ((-487 . -845) T) ((-223 . -1106) T) ((-1244 . -284) 75496) ((-1223 . -284) 75462) ((-1001 . -38) 75412) ((-217 . -845) T) ((-1203 . -493) 75378) ((-911 . -38) 75330) ((-840 . -791) 75309) ((-840 . -788) 75288) ((-840 . -723) 75267) ((-359 . -290) T) ((-353 . -290) T) ((-345 . -290) T) ((-169 . -452) 75198) ((-427 . -38) 75182) ((-108 . -290) T) ((-223 . -23) T) ((-407 . -791) 75161) ((-407 . -788) 75140) ((-407 . -723) T) ((-500 . -288) 75115) ((-477 . -1052) 75080) ((-654 . -131) T) ((-619 . -614) 75049) ((-1107 . -514) 74982) ((-336 . -131) T) ((-169 . -402) 74961) ((-482 . -714) 74903) ((-812 . -286) 74880) ((-477 . -111) 74836) ((-649 . -1053) T) ((-1232 . -452) 74767) ((-1270 . -1077) T) ((-1269 . -1077) T) ((-1081 . -131) T) ((-1050 . -714) 74709) ((-264 . -847) 74688) ((-247 . -847) 74667) ((-779 . -131) T) ((-777 . -131) T) ((-571 . -452) T) ((-1024 . -514) 74600) ((-619 . -1046) T) ((-591 . -1094) T) ((-533 . -173) T) ((-461 . -131) T) ((-454 . -131) T) ((-45 . -1094) T) ((-385 . -714) 74570) ((-814 . -1094) T) ((-476 . -514) 74503) ((-463 . -514) 74436) ((-453 . -367) 74406) ((-45 . -608) 74385) ((-316 . -302) T) ((-477 . -614) 74335) ((-666 . -611) 74297) ((-59 . -847) 74276) ((-1223 . -309) 74161) ((-548 . -611) 74143) ((-1001 . -400) 74125) ((-812 . -602) 74102) ((-516 . -847) 74081) ((-496 . -847) 74060) ((-40 . -1213) T) ((-996 . -1035) 73956) ((-50 . -131) T) ((-581 . -131) T) ((-518 . -131) T) ((-294 . -644) 73816) ((-343 . -329) 73793) ((-343 . -363) T) ((-322 . -323) 73770) ((-319 . -286) 73755) ((-40 . -556) T) ((-379 . -1194) T) ((-379 . -1197) T) ((-1032 . -1185) 73730) ((-1182 . -235) 73680) ((-1161 . -231) 73632) ((-330 . -1094) T) ((-379 . -95) T) ((-379 . -35) T) ((-1032 . -107) 73578) ((-477 . -1046) T) ((-479 . -235) 73528) ((-1153 . -489) 73462) ((-1283 . -1052) 73446) ((-381 . -1052) 73430) ((-477 . -243) T) ((-813 . -102) T) ((-711 . -147) 73409) ((-711 . -145) 73388) ((-484 . -489) 73372) ((-485 . -335) 73341) ((-1283 . -111) 73320) ((-512 . -1094) T) ((-482 . -172) 73299) ((-996 . -377) 73283) ((-413 . -102) T) ((-381 . -111) 73262) ((-996 . -338) 73246) ((-279 . -980) 73230) ((-278 . -980) 73214) ((-1281 . -611) 73196) ((-1279 . -611) 73178) ((-110 . -514) NIL) ((-1166 . -1235) 73162) ((-851 . -849) 73146) ((-1172 . -1094) T) ((-103 . -1209) T) ((-949 . -946) 73107) ((-814 . -714) 73049) ((-1223 . -1145) NIL) ((-481 . -946) 72994) ((-1057 . -143) T) ((-60 . -102) 72972) ((-44 . -611) 72954) ((-78 . -611) 72936) ((-351 . -644) 72881) ((-1271 . -1094) T) ((-511 . -847) T) ((-343 . -1106) T) ((-295 . -1094) T) ((-996 . -897) 72840) ((-295 . -608) 72819) ((-1283 . -614) 72768) ((-1251 . -38) 72665) ((-1244 . -38) 72506) ((-1223 . -38) 72302) ((-487 . -1053) T) ((-381 . -614) 72286) ((-217 . -1053) T) ((-343 . -23) T) ((-152 . -611) 72268) ((-830 . -792) 72247) ((-830 . -789) 72226) ((-1208 . -614) 72207) ((-595 . -38) 72180) ((-594 . -38) 72077) ((-867 . -556) T) ((-223 . -131) T) ((-319 . -999) 72043) ((-79 . -611) 72025) ((-709 . -307) 72004) ((-294 . -723) 71906) ((-821 . -102) T) ((-861 . -841) T) ((-294 . -473) 71885) ((-1274 . -102) T) ((-40 . -363) T) ((-869 . -147) 71864) ((-869 . -145) 71843) ((-1152 . -489) 71825) ((-1283 . -1046) T) ((-482 . -514) 71758) ((-1140 . -1209) T) ((-961 . -611) 71740) ((-643 . -489) 71724) ((-630 . -489) 71655) ((-812 . -611) 71386) ((-48 . -27) T) ((-1172 . -714) 71283) ((-649 . -1094) T) ((-858 . -857) T) ((-436 . -364) 71257) ((-1096 . -102) T) ((-967 . -1094) T) ((-861 . -1094) T) ((-813 . -309) 71244) ((-533 . -527) T) ((-533 . -576) T) ((-1279 . -382) 71216) ((-1050 . -514) 71149) ((-1153 . -286) 71125) ((-240 . -231) 71094) ((-1271 . -714) 71064) ((-1160 . -93) T) ((-991 . -93) T) ((-814 . -172) 71043) ((-1206 . -490) 71020) ((-227 . -514) 70953) ((-619 . -792) 70932) ((-619 . -789) 70911) ((-1206 . -611) 70823) ((-222 . -1209) T) ((-671 . -611) 70755) ((-1150 . -1007) 70739) ((-940 . -102) 70689) ((-351 . -723) T) ((-858 . -611) 70671) ((-1223 . -400) 70623) ((-1107 . -489) 70607) ((-60 . -309) 70545) ((-331 . -102) T) ((-1203 . -21) T) ((-1203 . -25) T) ((-40 . -1106) T) ((-708 . -21) T) ((-625 . -611) 70527) ((-515 . -323) 70506) ((-708 . -25) T) ((-439 . -102) T) ((-108 . -286) NIL) ((-918 . -1106) T) ((-40 . -23) T) ((-768 . -1106) T) ((-564 . -1213) T) ((-495 . -1213) T) ((-319 . -611) 70488) ((-1001 . -231) 70470) ((-169 . -166) 70454) ((-580 . -556) T) ((-564 . -556) T) ((-495 . -556) T) ((-768 . -23) T) ((-1243 . -147) 70433) ((-1153 . -602) 70409) ((-1243 . -145) 70388) ((-1024 . -489) 70372) ((-1222 . -145) 70297) ((-1222 . -147) 70222) ((-1274 . -1280) 70201) ((-476 . -489) 70185) ((-463 . -489) 70169) ((-523 . -34) T) ((-649 . -714) 70139) ((-112 . -964) T) ((-658 . -847) 70118) ((-1172 . -172) 70069) ((-365 . -102) T) ((-240 . -238) 70048) ((-251 . -102) T) ((-250 . -102) T) ((-1232 . -946) 70017) ((-245 . -847) 69996) ((-813 . -38) 69845) ((-45 . -514) 69637) ((-1152 . -286) 69612) ((-214 . -1094) T) ((-1144 . -1094) T) ((-1144 . -608) 69591) ((-585 . -25) T) ((-585 . -21) T) ((-1096 . -309) 69529) ((-960 . -411) 69513) ((-695 . -1213) T) ((-630 . -286) 69488) ((-1081 . -637) 69436) ((-779 . -637) 69384) ((-777 . -637) 69332) ((-343 . -131) T) ((-289 . -611) 69314) ((-902 . -1094) T) ((-695 . -556) T) ((-129 . -614) 69296) ((-867 . -1106) T) ((-454 . -637) 69244) ((-902 . -900) 69228) ((-379 . -452) T) ((-487 . -1094) T) ((-940 . -309) 69166) ((-697 . -644) 69153) ((-549 . -841) T) ((-217 . -1094) T) ((-316 . -917) 69132) ((-313 . -917) T) ((-313 . -817) NIL) ((-390 . -717) T) ((-867 . -23) T) ((-116 . -644) 69119) ((-474 . -145) 69098) ((-418 . -411) 69082) ((-474 . -147) 69061) ((-110 . -489) 69043) ((-311 . -614) 69024) ((-2 . -611) 69006) ((-186 . -102) T) ((-1152 . -19) 68988) ((-1152 . -602) 68963) ((-654 . -21) T) ((-654 . -25) T) ((-592 . -1138) T) ((-1107 . -286) 68940) ((-336 . -25) T) ((-336 . -21) T) ((-495 . -363) T) ((-1274 . -38) 68910) ((-1136 . -1209) T) ((-630 . -602) 68885) ((-549 . -1094) T) ((-1081 . -25) T) ((-1081 . -21) T) ((-531 . -789) T) ((-531 . -792) T) ((-117 . -1213) T) ((-960 . -1053) T) ((-621 . -556) T) ((-779 . -25) T) ((-779 . -21) T) ((-777 . -21) T) ((-777 . -25) T) ((-732 . -1053) T) ((-712 . -1053) T) ((-666 . -1052) 68869) ((-517 . -1077) T) ((-461 . -25) T) ((-117 . -556) T) ((-461 . -21) T) ((-454 . -25) T) ((-454 . -21) T) ((-1281 . -1052) 68853) ((-1136 . -1035) 68749) ((-814 . -290) 68728) ((-1279 . -1052) 68712) ((-820 . -1094) T) ((-1243 . -1194) 68678) ((-963 . -964) T) ((-666 . -111) 68657) ((-295 . -514) 68449) ((-1243 . -1197) 68415) ((-1243 . -95) 68381) ((-1226 . -102) 68359) ((-251 . -309) 68297) ((-250 . -309) 68235) ((-1223 . -231) 68187) ((-1153 . -612) NIL) ((-1153 . -611) 68169) ((-1222 . -1194) 68135) ((-1222 . -1197) 68101) ((-1217 . -368) T) ((-96 . -93) T) ((-1214 . -841) T) ((-1136 . -377) 68085) ((-1114 . -817) T) ((-1114 . -917) T) ((-1107 . -602) 68062) ((-1074 . -612) 68046) ((-484 . -611) 67978) ((-812 . -288) 67955) ((-606 . -151) 67902) ((-418 . -1053) T) ((-487 . -714) 67852) ((-482 . -489) 67836) ((-327 . -847) 67815) ((-339 . -644) 67789) ((-50 . -21) T) ((-50 . -25) T) ((-217 . -714) 67739) ((-169 . -721) 67710) ((-174 . -644) 67642) ((-581 . -21) T) ((-581 . -25) T) ((-518 . -25) T) ((-518 . -21) T) ((-475 . -151) 67592) ((-1074 . -611) 67574) ((-1056 . -611) 67556) ((-990 . -102) T) ((-859 . -102) T) ((-796 . -411) 67520) ((-40 . -131) T) ((-695 . -363) T) ((-697 . -723) T) ((-697 . -791) T) ((-697 . -788) T) ((-212 . -892) T) ((-580 . -1106) T) ((-564 . -1106) T) ((-495 . -1106) T) ((-359 . -611) 67502) ((-353 . -611) 67484) ((-345 . -611) 67466) ((-66 . -396) T) ((-66 . -395) T) ((-108 . -612) 67396) ((-108 . -611) 67338) ((-211 . -892) T) ((-955 . -151) 67322) ((-768 . -131) T) ((-666 . -614) 67240) ((-134 . -723) T) ((-116 . -723) T) ((-1243 . -35) 67206) ((-1050 . -489) 67190) ((-580 . -23) T) ((-564 . -23) T) ((-495 . -23) T) ((-1222 . -95) 67156) ((-1222 . -35) 67122) ((-1166 . -102) T) ((-1119 . -102) T) ((-851 . -102) T) ((-227 . -489) 67106) ((-1281 . -111) 67085) ((-1279 . -111) 67064) ((-44 . -1052) 67048) ((-1232 . -1235) 67032) ((-852 . -849) 67016) ((-1281 . -614) 66962) ((-1172 . -290) 66941) ((-110 . -286) 66916) ((-1214 . -1094) T) ((-128 . -151) 66898) ((-1136 . -897) 66857) ((-44 . -111) 66836) ((-1175 . -1254) T) ((-1160 . -490) 66817) ((-1160 . -611) 66783) ((-1152 . -612) NIL) ((-666 . -1046) T) ((-1152 . -611) 66765) ((-1058 . -608) 66740) ((-1058 . -1094) T) ((-991 . -490) 66721) ((-991 . -611) 66687) ((-74 . -441) T) ((-74 . -395) T) ((-699 . -1094) T) ((-152 . -1052) 66671) ((-666 . -233) 66650) ((-571 . -554) 66634) ((-355 . -147) 66613) ((-355 . -145) 66564) ((-352 . -147) 66543) ((-352 . -145) 66494) ((-344 . -147) 66473) ((-344 . -145) 66424) ((-264 . -145) 66403) ((-264 . -147) 66382) ((-251 . -38) 66352) ((-247 . -147) 66331) ((-117 . -363) T) ((-247 . -145) 66310) ((-250 . -38) 66280) ((-152 . -111) 66259) ((-1000 . -1035) 66147) ((-1161 . -845) NIL) ((-690 . -1213) T) ((-796 . -1053) T) ((-695 . -1106) T) ((-1281 . -1046) T) ((-1279 . -614) 66076) ((-1279 . -1046) T) ((-1150 . -1209) T) ((-1000 . -377) 66053) ((-907 . -145) T) ((-907 . -147) 66035) ((-867 . -131) T) ((-812 . -1052) 65932) ((-690 . -556) T) ((-695 . -23) T) ((-643 . -611) 65864) ((-643 . -612) 65825) ((-630 . -612) NIL) ((-630 . -611) 65807) ((-487 . -172) T) ((-223 . -21) T) ((-217 . -172) T) ((-223 . -25) T) ((-474 . -1197) 65773) ((-474 . -1194) 65739) ((-274 . -611) 65721) ((-273 . -611) 65703) ((-272 . -611) 65685) ((-271 . -611) 65667) ((-270 . -611) 65649) ((-500 . -647) 65631) ((-269 . -611) 65613) ((-339 . -723) T) ((-268 . -611) 65595) ((-110 . -19) 65577) ((-174 . -723) T) ((-500 . -373) 65559) ((-212 . -611) 65541) ((-520 . -1143) 65525) ((-500 . -123) T) ((-110 . -602) 65500) ((-211 . -611) 65482) ((-474 . -35) 65448) ((-474 . -95) 65414) ((-209 . -611) 65396) ((-208 . -611) 65378) ((-207 . -611) 65360) ((-206 . -611) 65342) ((-203 . -611) 65324) ((-202 . -611) 65306) ((-201 . -611) 65288) ((-200 . -611) 65270) ((-199 . -611) 65252) ((-198 . -611) 65234) ((-197 . -611) 65216) ((-536 . -1097) 65168) ((-196 . -611) 65150) ((-195 . -611) 65132) ((-45 . -489) 65069) ((-194 . -611) 65051) ((-193 . -611) 65033) ((-152 . -614) 65002) ((-1109 . -102) T) ((-812 . -111) 64892) ((-641 . -102) 64842) ((-482 . -286) 64819) ((-1107 . -611) 64550) ((-1095 . -1094) T) ((-1043 . -1209) T) ((-1282 . -1035) 64534) ((-621 . -1106) T) ((-1166 . -309) 64521) ((-1129 . -1094) T) ((-1119 . -309) 64508) ((-1090 . -1077) T) ((-1084 . -1077) T) ((-1068 . -1077) T) ((-1061 . -1077) T) ((-1033 . -1077) T) ((-1016 . -1077) T) ((-117 . -1106) T) ((-816 . -102) T) ((-624 . -1077) T) ((-621 . -23) T) ((-1144 . -514) 64300) ((-483 . -1077) T) ((-1000 . -897) 64252) ((-386 . -102) T) ((-324 . -102) T) ((-218 . -1077) T) ((-960 . -1094) T) ((-152 . -1046) T) ((-728 . -411) 64236) ((-117 . -23) T) ((-732 . -1094) T) ((-712 . -1094) T) ((-699 . -132) T) ((-453 . -1094) T) ((-407 . -1209) T) ((-316 . -430) 64220) ((-591 . -93) T) ((-1024 . -612) 64181) ((-1021 . -1213) T) ((-225 . -102) T) ((-1024 . -611) 64143) ((-813 . -231) 64127) ((-812 . -614) 63857) ((-1021 . -556) T) ((-830 . -644) 63830) ((-354 . -1213) T) ((-476 . -611) 63792) ((-476 . -612) 63753) ((-463 . -612) 63714) ((-463 . -611) 63676) ((-407 . -881) 63660) ((-319 . -1052) 63495) ((-407 . -883) 63420) ((-840 . -1035) 63316) ((-487 . -514) NIL) ((-482 . -602) 63293) ((-354 . -556) T) ((-217 . -514) NIL) ((-869 . -452) T) ((-418 . -1094) T) ((-407 . -1035) 63157) ((-319 . -111) 62978) ((-690 . -363) T) ((-225 . -284) T) ((-1206 . -614) 62955) ((-48 . -1213) T) ((-812 . -1046) 62885) ((-580 . -131) T) ((-564 . -131) T) ((-495 . -131) T) ((-1166 . -1145) 62863) ((-48 . -556) T) ((-1153 . -288) 62839) ((-1057 . -102) T) ((-949 . -102) T) ((-316 . -27) 62818) ((-812 . -233) 62770) ((-249 . -832) 62752) ((-240 . -845) 62731) ((-187 . -832) 62713) ((-710 . -102) T) ((-295 . -489) 62650) ((-481 . -102) T) ((-728 . -1053) T) ((-610 . -611) 62632) ((-610 . -612) 62493) ((-407 . -377) 62477) ((-407 . -338) 62461) ((-319 . -614) 62287) ((-1166 . -38) 62116) ((-1119 . -38) 61965) ((-851 . -38) 61935) ((-390 . -644) 61919) ((-641 . -309) 61857) ((-960 . -714) 61754) ((-732 . -714) 61724) ((-222 . -107) 61708) ((-45 . -286) 61633) ((-619 . -644) 61607) ((-312 . -1094) T) ((-289 . -1052) 61594) ((-110 . -611) 61576) ((-110 . -612) 61558) ((-453 . -714) 61528) ((-813 . -253) 61467) ((-685 . -1094) 61445) ((-550 . -1094) T) ((-1168 . -1053) T) ((-1167 . -1053) T) ((-96 . -490) 61426) ((-1161 . -1053) T) ((-289 . -111) 61411) ((-1120 . -1053) T) ((-550 . -608) 61390) ((-96 . -611) 61356) ((-1001 . -845) T) ((-227 . -683) 61314) ((-690 . -1106) T) ((-1203 . -737) 61290) ((-1021 . -363) T) ((-835 . -832) 61272) ((-319 . -1046) T) ((-343 . -25) T) ((-343 . -21) T) ((-407 . -897) 61231) ((-68 . -1209) T) ((-830 . -791) 61210) ((-418 . -714) 61184) ((-796 . -1094) T) ((-830 . -788) 61163) ((-695 . -131) T) ((-709 . -917) 61142) ((-690 . -23) T) ((-487 . -290) T) ((-830 . -723) 61121) ((-319 . -233) 61073) ((-319 . -243) 61052) ((-217 . -290) T) ((-129 . -368) T) ((-1243 . -452) 61031) ((-1222 . -452) 61010) ((-354 . -329) 60987) ((-354 . -363) T) ((-1134 . -611) 60969) ((-45 . -1247) 60919) ((-868 . -102) T) ((-641 . -282) 60903) ((-695 . -1055) T) ((-1270 . -102) T) ((-1269 . -102) T) ((-477 . -644) 60868) ((-468 . -1094) T) ((-45 . -602) 60793) ((-1152 . -288) 60768) ((-289 . -614) 60740) ((-40 . -637) 60679) ((-48 . -363) T) ((-1100 . -611) 60661) ((-1081 . -847) 60640) ((-630 . -288) 60615) ((-779 . -847) 60594) ((-777 . -847) 60573) ((-482 . -611) 60304) ((-240 . -411) 60273) ((-949 . -309) 60260) ((-454 . -847) 60239) ((-65 . -1209) T) ((-1058 . -514) 60083) ((-621 . -131) T) ((-546 . -102) T) ((-481 . -309) 60070) ((-604 . -1094) T) ((-117 . -131) T) ((-667 . -1094) T) ((-289 . -1046) T) ((-180 . -1094) T) ((-161 . -1094) T) ((-156 . -1094) T) ((-154 . -1094) T) ((-453 . -758) T) ((-31 . -1077) T) ((-960 . -172) 60021) ((-967 . -93) T) ((-1074 . -1052) 59931) ((-619 . -791) 59910) ((-592 . -1094) T) ((-619 . -788) 59889) ((-619 . -723) T) ((-295 . -286) 59868) ((-294 . -1209) T) ((-1050 . -611) 59830) ((-1050 . -612) 59791) ((-1021 . -1106) T) ((-169 . -102) T) ((-275 . -847) T) ((-1159 . -1094) T) ((-815 . -611) 59773) ((-1107 . -288) 59750) ((-1096 . -229) 59734) ((-1000 . -307) T) ((-796 . -714) 59718) ((-359 . -1052) 59670) ((-354 . -1106) T) ((-353 . -1052) 59622) ((-414 . -611) 59604) ((-385 . -611) 59586) ((-345 . -1052) 59538) ((-227 . -611) 59470) ((-1074 . -111) 59366) ((-1021 . -23) T) ((-108 . -1052) 59316) ((-895 . -102) T) ((-838 . -102) T) ((-805 . -102) T) ((-766 . -102) T) ((-673 . -102) T) ((-474 . -452) 59295) ((-418 . -172) T) ((-359 . -111) 59233) ((-353 . -111) 59171) ((-345 . -111) 59109) ((-251 . -231) 59078) ((-250 . -231) 59047) ((-354 . -23) T) ((-71 . -1209) T) ((-225 . -38) 59012) ((-108 . -111) 58946) ((-40 . -25) T) ((-40 . -21) T) ((-666 . -717) T) ((-169 . -284) 58924) ((-48 . -1106) T) ((-918 . -25) T) ((-768 . -25) T) ((-1144 . -489) 58861) ((-485 . -1094) T) ((-1283 . -644) 58835) ((-1232 . -102) T) ((-1057 . -1145) T) ((-852 . -102) T) ((-240 . -1053) 58765) ((-961 . -789) 58718) ((-961 . -792) 58671) ((-381 . -644) 58655) ((-48 . -23) T) ((-812 . -792) 58606) ((-812 . -789) 58557) ((-548 . -368) T) ((-295 . -602) 58536) ((-477 . -723) T) ((-571 . -102) T) ((-1074 . -614) 58354) ((-249 . -185) T) ((-187 . -185) T) ((-868 . -309) 58311) ((-649 . -286) 58290) ((-112 . -657) T) ((-359 . -614) 58227) ((-353 . -614) 58164) ((-345 . -614) 58101) ((-76 . -1209) T) ((-108 . -614) 58051) ((-1057 . -38) 58038) ((-660 . -374) 58017) ((-949 . -38) 57866) ((-728 . -1094) T) ((-481 . -38) 57715) ((-86 . -1209) T) ((-591 . -490) 57696) ((-571 . -284) T) ((-1223 . -845) NIL) ((-591 . -611) 57662) ((-1168 . -1094) T) ((-1167 . -1094) T) ((-1074 . -1046) T) ((-351 . -1035) 57639) ((-814 . -490) 57623) ((-1001 . -1053) T) ((-45 . -611) 57605) ((-45 . -612) NIL) ((-911 . -1053) T) ((-814 . -611) 57574) ((-1161 . -1094) T) ((-1141 . -102) 57552) ((-1074 . -243) 57503) ((-427 . -1053) T) ((-359 . -1046) T) ((-365 . -364) 57480) ((-353 . -1046) T) ((-345 . -1046) T) ((-251 . -238) 57459) ((-250 . -238) 57438) ((-1074 . -233) 57363) ((-1120 . -1094) T) ((-294 . -897) 57322) ((-108 . -1046) T) ((-690 . -131) T) ((-418 . -514) 57164) ((-359 . -233) 57143) ((-359 . -243) T) ((-44 . -717) T) ((-353 . -233) 57122) ((-353 . -243) T) ((-345 . -233) 57101) ((-345 . -243) T) ((-1160 . -614) 57082) ((-169 . -309) 57047) ((-108 . -243) T) ((-108 . -233) T) ((-991 . -614) 57028) ((-319 . -789) T) ((-867 . -21) T) ((-867 . -25) T) ((-407 . -307) T) ((-500 . -34) T) ((-110 . -288) 57003) ((-1107 . -1052) 56900) ((-868 . -1145) NIL) ((-330 . -611) 56882) ((-407 . -1019) 56860) ((-1107 . -111) 56750) ((-687 . -1254) T) ((-436 . -1094) T) ((-1283 . -723) T) ((-63 . -611) 56732) ((-868 . -38) 56677) ((-523 . -1209) T) ((-600 . -151) 56661) ((-512 . -611) 56643) ((-1232 . -309) 56630) ((-728 . -714) 56479) ((-531 . -790) T) ((-531 . -791) T) ((-564 . -637) 56461) ((-495 . -637) 56421) ((-355 . -452) T) ((-352 . -452) T) ((-344 . -452) T) ((-264 . -452) 56372) ((-525 . -1094) T) ((-520 . -1094) 56322) ((-247 . -452) 56273) ((-1144 . -286) 56252) ((-1172 . -611) 56234) ((-685 . -514) 56167) ((-960 . -290) 56146) ((-550 . -514) 55938) ((-1271 . -611) 55907) ((-1166 . -231) 55891) ((-1107 . -614) 55621) ((-169 . -1145) 55600) ((-1271 . -490) 55584) ((-1168 . -714) 55481) ((-1167 . -714) 55322) ((-889 . -102) T) ((-1161 . -714) 55118) ((-1120 . -714) 55015) ((-1150 . -670) 54999) ((-355 . -402) 54950) ((-352 . -402) 54901) ((-344 . -402) 54852) ((-1021 . -131) T) ((-796 . -514) 54764) ((-295 . -612) NIL) ((-295 . -611) 54746) ((-907 . -452) T) ((-961 . -368) 54699) ((-812 . -368) 54678) ((-510 . -509) 54657) ((-508 . -509) 54636) ((-487 . -286) NIL) ((-482 . -288) 54613) ((-418 . -290) T) ((-354 . -131) T) ((-217 . -286) NIL) ((-690 . -493) NIL) ((-99 . -1106) T) ((-169 . -38) 54441) ((-1243 . -970) 54403) ((-1141 . -309) 54341) ((-1222 . -970) 54310) ((-907 . -402) T) ((-1107 . -1046) 54240) ((-1245 . -556) T) ((-1144 . -602) 54219) ((-112 . -847) T) ((-1058 . -489) 54150) ((-580 . -21) T) ((-580 . -25) T) ((-564 . -21) T) ((-564 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-1232 . -1145) 54128) ((-1107 . -233) 54080) ((-48 . -131) T) ((-1190 . -102) T) ((-240 . -1094) 53870) ((-868 . -400) 53847) ((-1082 . -102) T) ((-1070 . -102) T) ((-606 . -102) T) ((-475 . -102) T) ((-1232 . -38) 53676) ((-852 . -38) 53646) ((-728 . -172) 53557) ((-649 . -611) 53539) ((-642 . -1077) T) ((-571 . -38) 53526) ((-967 . -490) 53507) ((-967 . -611) 53473) ((-955 . -102) 53423) ((-861 . -611) 53405) ((-861 . -612) 53327) ((-592 . -514) NIL) ((-1251 . -1053) T) ((-1244 . -1053) T) ((-1223 . -1053) T) ((-1287 . -1106) T) ((-1177 . -102) T) ((-595 . -1053) T) ((-594 . -1053) T) ((-1176 . -102) T) ((-1168 . -172) 53278) ((-1167 . -172) 53209) ((-1161 . -172) 53140) ((-1120 . -172) 53091) ((-1001 . -1094) T) ((-968 . -1094) T) ((-911 . -1094) T) ((-1203 . -147) 53070) ((-796 . -794) 53054) ((-695 . -25) T) ((-695 . -21) T) ((-117 . -637) 53031) ((-697 . -883) 53013) ((-427 . -1094) T) ((-316 . -1213) 52992) ((-313 . -1213) T) ((-169 . -400) 52976) ((-1203 . -145) 52955) ((-474 . -970) 52917) ((-130 . -102) T) ((-128 . -102) T) ((-72 . -611) 52899) ((-108 . -792) T) ((-108 . -789) T) ((-697 . -1035) 52881) ((-316 . -556) 52860) ((-313 . -556) T) ((-1287 . -23) T) ((-134 . -1035) 52842) ((-96 . -614) 52823) ((-482 . -1052) 52720) ((-45 . -288) 52645) ((-240 . -714) 52587) ((-517 . -102) T) ((-482 . -111) 52477) ((-1086 . -102) 52455) ((-1031 . -102) T) ((-641 . -825) 52434) ((-728 . -514) 52377) ((-1050 . -1052) 52361) ((-1129 . -93) T) ((-1058 . -286) 52336) ((-621 . -21) T) ((-621 . -25) T) ((-524 . -1094) T) ((-361 . -102) T) ((-322 . -102) T) ((-666 . -644) 52310) ((-385 . -1052) 52294) ((-1050 . -111) 52273) ((-813 . -411) 52257) ((-117 . -25) T) ((-89 . -611) 52239) ((-117 . -21) T) ((-606 . -309) 52034) ((-475 . -309) 51838) ((-1144 . -612) NIL) ((-385 . -111) 51817) ((-379 . -102) T) ((-214 . -611) 51799) ((-1144 . -611) 51781) ((-1161 . -514) 51550) ((-1001 . -714) 51500) ((-1120 . -514) 51470) ((-911 . -714) 51422) ((-482 . -614) 51152) ((-351 . -307) T) ((-1182 . -151) 51102) ((-955 . -309) 51040) ((-833 . -102) T) ((-427 . -714) 51024) ((-225 . -825) T) ((-824 . -102) T) ((-822 . -102) T) ((-479 . -151) 50974) ((-1243 . -1242) 50953) ((-1114 . -1213) T) ((-339 . -1035) 50920) ((-1243 . -1237) 50890) ((-1243 . -1240) 50874) ((-1222 . -1221) 50853) ((-80 . -611) 50835) ((-902 . -611) 50817) ((-1222 . -1237) 50794) ((-1114 . -556) T) ((-918 . -847) T) ((-768 . -847) T) ((-487 . -612) 50724) ((-487 . -611) 50665) ((-379 . -284) T) ((-668 . -847) T) ((-1222 . -1219) 50649) ((-1245 . -1106) T) ((-217 . -612) 50579) ((-217 . -611) 50520) ((-1281 . -644) 50494) ((-1058 . -602) 50469) ((-815 . -614) 50453) ((-59 . -151) 50437) ((-516 . -151) 50421) ((-496 . -151) 50405) ((-359 . -1278) 50389) ((-353 . -1278) 50373) ((-345 . -1278) 50357) ((-316 . -363) 50336) ((-313 . -363) T) ((-482 . -1046) 50266) ((-690 . -637) 50248) ((-1279 . -644) 50222) ((-128 . -309) NIL) ((-1245 . -23) T) ((-685 . -489) 50206) ((-64 . -611) 50188) ((-1107 . -792) 50139) ((-1107 . -789) 50090) ((-550 . -489) 50027) ((-666 . -34) T) ((-482 . -233) 49979) ((-295 . -288) 49958) ((-240 . -172) 49937) ((-813 . -1053) T) ((-44 . -644) 49895) ((-1074 . -368) 49846) ((-728 . -290) 49777) ((-520 . -514) 49710) ((-814 . -1052) 49661) ((-1081 . -145) 49640) ((-549 . -611) 49622) ((-359 . -368) 49601) ((-353 . -368) 49580) ((-345 . -368) 49559) ((-1081 . -147) 49538) ((-868 . -231) 49515) ((-814 . -111) 49457) ((-779 . -145) 49436) ((-779 . -147) 49415) ((-264 . -946) 49382) ((-251 . -845) 49361) ((-247 . -946) 49306) ((-250 . -845) 49285) ((-777 . -145) 49264) ((-777 . -147) 49243) ((-152 . -644) 49217) ((-579 . -1094) T) ((-454 . -147) 49196) ((-454 . -145) 49175) ((-666 . -723) T) ((-820 . -611) 49157) ((-1251 . -1094) T) ((-1244 . -1094) T) ((-1223 . -1094) T) ((-1203 . -1197) 49123) ((-1203 . -1194) 49089) ((-1168 . -290) 49068) ((-1167 . -290) 49019) ((-1161 . -290) 48970) ((-1120 . -290) 48949) ((-339 . -897) 48930) ((-1001 . -172) T) ((-911 . -172) T) ((-595 . -1094) T) ((-594 . -1094) T) ((-690 . -21) T) ((-690 . -25) T) ((-474 . -1240) 48914) ((-474 . -1237) 48884) ((-418 . -286) 48812) ((-547 . -847) T) ((-316 . -1106) 48661) ((-313 . -1106) T) ((-1203 . -35) 48627) ((-1203 . -95) 48593) ((-84 . -611) 48575) ((-91 . -102) 48553) ((-1287 . -131) T) ((-591 . -614) 48534) ((-581 . -145) T) ((-581 . -147) 48516) ((-518 . -147) 48498) ((-518 . -145) T) ((-316 . -23) 48350) ((-40 . -342) 48324) ((-313 . -23) T) ((-814 . -614) 48238) ((-1152 . -647) 48220) ((-1274 . -1053) T) ((-1152 . -373) 48202) ((-812 . -644) 48050) ((-1090 . -102) T) ((-1084 . -102) T) ((-1068 . -102) T) ((-169 . -231) 48034) ((-1061 . -102) T) ((-1033 . -102) T) ((-1016 . -102) T) ((-592 . -489) 48016) ((-624 . -102) T) ((-240 . -514) 47949) ((-483 . -102) T) ((-1281 . -723) T) ((-1279 . -723) T) ((-218 . -102) T) ((-1172 . -1052) 47832) ((-1172 . -111) 47701) ((-858 . -173) T) ((-814 . -1046) T) ((-677 . -1077) T) ((-672 . -1077) T) ((-515 . -102) T) ((-510 . -102) T) ((-48 . -637) 47661) ((-508 . -102) T) ((-478 . -1077) T) ((-1271 . -1052) 47631) ((-138 . -1077) T) ((-137 . -1077) T) ((-133 . -1077) T) ((-1031 . -38) 47615) ((-814 . -233) T) ((-814 . -243) 47594) ((-1271 . -111) 47559) ((-1251 . -714) 47456) ((-1244 . -714) 47297) ((-1232 . -231) 47281) ((-550 . -286) 47260) ((-1214 . -611) 47242) ((-1058 . -612) NIL) ((-604 . -93) T) ((-1058 . -611) 47224) ((-699 . -490) 47208) ((-667 . -93) T) ((-180 . -93) T) ((-161 . -93) T) ((-156 . -93) T) ((-154 . -93) T) ((-1223 . -714) 47004) ((-1000 . -917) T) ((-699 . -611) 46973) ((-152 . -723) T) ((-1107 . -368) 46952) ((-1001 . -514) NIL) ((-251 . -411) 46921) ((-250 . -411) 46890) ((-1021 . -25) T) ((-1021 . -21) T) ((-595 . -714) 46863) ((-594 . -714) 46760) ((-796 . -286) 46718) ((-126 . -102) 46696) ((-830 . -1035) 46592) ((-169 . -825) 46571) ((-319 . -644) 46468) ((-812 . -34) T) ((-711 . -102) T) ((-1172 . -614) 46321) ((-1114 . -1106) T) ((-1023 . -1209) T) ((-379 . -38) 46286) ((-354 . -25) T) ((-354 . -21) T) ((-187 . -102) T) ((-162 . -102) T) ((-249 . -102) T) ((-157 . -102) T) ((-355 . -1266) 46270) ((-352 . -1266) 46254) ((-344 . -1266) 46238) ((-169 . -349) 46217) ((-564 . -847) T) ((-495 . -847) T) ((-1114 . -23) T) ((-87 . -611) 46199) ((-697 . -307) T) ((-833 . -38) 46169) ((-824 . -38) 46139) ((-1271 . -614) 46081) ((-1245 . -131) T) ((-1144 . -288) 46060) ((-961 . -790) 46013) ((-961 . -791) 45966) ((-812 . -788) 45945) ((-116 . -307) T) ((-91 . -309) 45883) ((-671 . -34) T) ((-550 . -602) 45862) ((-48 . -25) T) ((-48 . -21) T) ((-812 . -791) 45813) ((-812 . -790) 45792) ((-697 . -1019) T) ((-649 . -1052) 45776) ((-961 . -723) 45675) ((-812 . -723) 45585) ((-961 . -473) 45538) ((-482 . -792) 45489) ((-482 . -789) 45440) ((-907 . -1266) 45427) ((-1172 . -1046) T) ((-649 . -111) 45406) ((-1172 . -326) 45383) ((-1195 . -102) 45361) ((-1095 . -611) 45343) ((-697 . -545) T) ((-813 . -1094) T) ((-1271 . -1046) T) ((-1129 . -490) 45324) ((-1215 . -102) T) ((-413 . -1094) T) ((-1129 . -611) 45290) ((-251 . -1053) 45220) ((-250 . -1053) 45150) ((-835 . -102) T) ((-289 . -644) 45137) ((-592 . -286) 45112) ((-685 . -683) 45070) ((-960 . -611) 45052) ((-869 . -102) T) ((-732 . -611) 45034) ((-712 . -611) 45016) ((-1251 . -172) 44967) ((-1244 . -172) 44898) ((-1223 . -172) 44829) ((-695 . -847) T) ((-1001 . -290) T) ((-453 . -611) 44811) ((-625 . -723) T) ((-60 . -1094) 44789) ((-245 . -151) 44773) ((-911 . -290) T) ((-1021 . -1009) T) ((-625 . -473) T) ((-709 . -1213) 44752) ((-649 . -614) 44670) ((-595 . -172) 44649) ((-594 . -172) 44600) ((-1259 . -847) 44579) ((-709 . -556) 44490) ((-407 . -917) T) ((-407 . -817) 44469) ((-319 . -791) T) ((-967 . -614) 44450) ((-319 . -723) T) ((-418 . -611) 44432) ((-418 . -612) 44339) ((-641 . -1143) 44323) ((-110 . -647) 44305) ((-174 . -307) T) ((-126 . -309) 44243) ((-110 . -373) 44225) ((-398 . -1209) T) ((-316 . -131) 44096) ((-313 . -131) T) ((-69 . -395) T) ((-110 . -123) T) ((-520 . -489) 44080) ((-650 . -1106) T) ((-592 . -19) 44062) ((-61 . -441) T) ((-61 . -395) T) ((-821 . -1094) T) ((-592 . -602) 44037) ((-477 . -1035) 43997) ((-649 . -1046) T) ((-650 . -23) T) ((-1274 . -1094) T) ((-31 . -102) T) ((-813 . -714) 43846) ((-577 . -857) T) ((-117 . -847) NIL) ((-1166 . -411) 43830) ((-1119 . -411) 43814) ((-851 . -411) 43798) ((-870 . -102) 43749) ((-1243 . -102) T) ((-1223 . -514) 43518) ((-1222 . -102) T) ((-1195 . -309) 43456) ((-525 . -93) T) ((-1168 . -286) 43441) ((-312 . -611) 43423) ((-1167 . -286) 43408) ((-1096 . -1094) T) ((-1074 . -644) 43318) ((-685 . -611) 43250) ((-289 . -723) T) ((-108 . -906) NIL) ((-685 . -612) 43211) ((-599 . -611) 43193) ((-577 . -611) 43175) ((-550 . -612) NIL) ((-550 . -611) 43157) ((-529 . -611) 43139) ((-1161 . -286) 42987) ((-487 . -1052) 42937) ((-708 . -452) T) ((-511 . -509) 42916) ((-507 . -509) 42895) ((-217 . -1052) 42845) ((-359 . -644) 42797) ((-353 . -644) 42749) ((-225 . -845) T) ((-345 . -644) 42701) ((-600 . -102) 42651) ((-482 . -368) 42630) ((-108 . -644) 42580) ((-487 . -111) 42514) ((-240 . -489) 42498) ((-343 . -147) 42480) ((-343 . -145) T) ((-169 . -370) 42451) ((-940 . -1257) 42435) ((-217 . -111) 42369) ((-869 . -309) 42334) ((-940 . -1094) 42284) ((-796 . -612) 42245) ((-796 . -611) 42227) ((-715 . -102) T) ((-331 . -1094) T) ((-214 . -614) 42204) ((-1114 . -131) T) ((-711 . -38) 42174) ((-316 . -493) 42153) ((-500 . -1209) T) ((-1243 . -284) 42119) ((-1222 . -284) 42085) ((-327 . -151) 42069) ((-439 . -1094) T) ((-1058 . -288) 42044) ((-1274 . -714) 42014) ((-1153 . -34) T) ((-1283 . -1035) 41991) ((-468 . -611) 41973) ((-484 . -34) T) ((-381 . -1035) 41957) ((-1166 . -1053) T) ((-1119 . -1053) T) ((-851 . -1053) T) ((-1057 . -845) T) ((-487 . -614) 41907) ((-217 . -614) 41857) ((-813 . -172) 41768) ((-520 . -286) 41745) ((-1251 . -290) 41724) ((-1190 . -364) 41698) ((-1082 . -266) 41682) ((-667 . -490) 41663) ((-667 . -611) 41629) ((-604 . -490) 41610) ((-117 . -989) 41587) ((-604 . -611) 41537) ((-474 . -102) T) ((-180 . -490) 41518) ((-180 . -611) 41484) ((-161 . -490) 41465) ((-156 . -490) 41446) ((-154 . -490) 41427) ((-161 . -611) 41393) ((-156 . -611) 41359) ((-365 . -1094) T) ((-251 . -1094) T) ((-250 . -1094) T) ((-154 . -611) 41325) ((-1244 . -290) 41276) ((-1223 . -290) 41227) ((-869 . -1145) 41205) ((-1168 . -999) 41171) ((-606 . -364) 41111) ((-1167 . -999) 41077) ((-606 . -229) 41024) ((-592 . -611) 41006) ((-592 . -612) NIL) ((-690 . -847) T) ((-475 . -229) 40956) ((-487 . -1046) T) ((-1161 . -999) 40922) ((-88 . -440) T) ((-88 . -395) T) ((-217 . -1046) T) ((-1120 . -999) 40888) ((-1074 . -723) T) ((-709 . -1106) T) ((-595 . -290) 40867) ((-594 . -290) 40846) ((-487 . -243) T) ((-487 . -233) T) ((-217 . -243) T) ((-217 . -233) T) ((-1159 . -611) 40828) ((-869 . -38) 40780) ((-359 . -723) T) ((-353 . -723) T) ((-345 . -723) T) ((-108 . -791) T) ((-108 . -788) T) ((-709 . -23) T) ((-108 . -723) T) ((-520 . -1247) 40764) ((-1287 . -25) T) ((-474 . -284) 40730) ((-1287 . -21) T) ((-1222 . -309) 40669) ((-1170 . -102) T) ((-40 . -145) 40641) ((-40 . -147) 40613) ((-520 . -602) 40590) ((-1107 . -644) 40438) ((-600 . -309) 40376) ((-45 . -647) 40326) ((-45 . -662) 40276) ((-45 . -373) 40226) ((-1152 . -34) T) ((-868 . -845) NIL) ((-650 . -131) T) ((-485 . -611) 40208) ((-240 . -286) 40185) ((-186 . -1094) T) ((-643 . -34) T) ((-630 . -34) T) ((-1081 . -452) 40136) ((-813 . -514) 40010) ((-779 . -452) 39941) ((-777 . -452) 39892) ((-454 . -452) 39843) ((-949 . -411) 39827) ((-728 . -611) 39809) ((-251 . -714) 39751) ((-250 . -714) 39693) ((-728 . -612) 39554) ((-481 . -411) 39538) ((-339 . -302) T) ((-524 . -93) T) ((-351 . -917) T) ((-997 . -102) 39516) ((-1021 . -847) T) ((-60 . -514) 39449) ((-1222 . -1145) 39401) ((-1001 . -286) NIL) ((-225 . -1053) T) ((-379 . -825) T) ((-1107 . -34) T) ((-581 . -452) T) ((-518 . -452) T) ((-1226 . -1087) 39385) ((-1226 . -1094) 39363) ((-240 . -602) 39340) ((-1226 . -1089) 39297) ((-1168 . -611) 39279) ((-1167 . -611) 39261) ((-1161 . -611) 39243) ((-1161 . -612) NIL) ((-1120 . -611) 39225) ((-869 . -400) 39209) ((-536 . -102) T) ((-1243 . -38) 39050) ((-1222 . -38) 38864) ((-867 . -147) T) ((-699 . -614) 38848) ((-581 . -402) T) ((-48 . -847) T) ((-518 . -402) T) ((-1255 . -102) T) ((-1245 . -21) T) ((-1245 . -25) T) ((-1107 . -788) 38827) ((-1107 . -791) 38778) ((-1107 . -790) 38757) ((-990 . -1094) T) ((-1024 . -34) T) ((-859 . -1094) T) ((-1107 . -723) 38667) ((-660 . -102) T) ((-642 . -102) T) ((-550 . -288) 38646) ((-1182 . -102) T) ((-476 . -34) T) ((-463 . -34) T) ((-355 . -102) T) ((-352 . -102) T) ((-344 . -102) T) ((-264 . -102) T) ((-247 . -102) T) ((-477 . -307) T) ((-1057 . -1053) T) ((-949 . -1053) T) ((-316 . -637) 38552) ((-313 . -637) 38513) ((-481 . -1053) T) ((-479 . -102) T) ((-436 . -611) 38495) ((-1166 . -1094) T) ((-1119 . -1094) T) ((-851 . -1094) T) ((-1135 . -102) T) ((-813 . -290) 38426) ((-960 . -1052) 38309) ((-477 . -1019) T) ((-732 . -1052) 38279) ((-453 . -1052) 38249) ((-1141 . -1115) 38233) ((-1096 . -514) 38166) ((-960 . -111) 38035) ((-907 . -102) T) ((-732 . -111) 38000) ((-525 . -490) 37981) ((-525 . -611) 37947) ((-59 . -102) 37897) ((-520 . -612) 37858) ((-520 . -611) 37770) ((-519 . -102) 37748) ((-516 . -102) 37698) ((-497 . -102) 37676) ((-496 . -102) 37626) ((-453 . -111) 37589) ((-251 . -172) 37568) ((-250 . -172) 37547) ((-418 . -1052) 37521) ((-1203 . -970) 37483) ((-996 . -1106) T) ((-1129 . -614) 37464) ((-940 . -514) 37397) ((-487 . -792) T) ((-474 . -38) 37238) ((-418 . -111) 37205) ((-487 . -789) T) ((-997 . -309) 37143) ((-217 . -792) T) ((-217 . -789) T) ((-996 . -23) T) ((-709 . -131) T) ((-1222 . -400) 37113) ((-316 . -25) 36965) ((-169 . -411) 36949) ((-316 . -21) 36820) ((-313 . -25) T) ((-313 . -21) T) ((-861 . -368) T) ((-960 . -614) 36673) ((-110 . -34) T) ((-732 . -614) 36629) ((-712 . -614) 36611) ((-482 . -644) 36459) ((-868 . -1053) T) ((-592 . -288) 36434) ((-580 . -147) T) ((-564 . -147) T) ((-495 . -147) T) ((-1166 . -714) 36263) ((-1119 . -714) 36112) ((-1114 . -637) 36094) ((-851 . -714) 36064) ((-666 . -1209) T) ((-1 . -102) T) ((-418 . -614) 35972) ((-240 . -611) 35703) ((-1109 . -1094) T) ((-1232 . -411) 35687) ((-1182 . -309) 35491) ((-960 . -1046) T) ((-732 . -1046) T) ((-712 . -1046) T) ((-641 . -1094) 35441) ((-1050 . -644) 35425) ((-852 . -411) 35409) ((-511 . -102) T) ((-507 . -102) T) ((-247 . -309) 35396) ((-264 . -309) 35383) ((-960 . -326) 35362) ((-385 . -644) 35346) ((-479 . -309) 35150) ((-251 . -514) 35083) ((-666 . -1035) 34979) ((-250 . -514) 34912) ((-1135 . -309) 34838) ((-816 . -1094) T) ((-796 . -1052) 34822) ((-1251 . -286) 34807) ((-1244 . -286) 34792) ((-1223 . -286) 34640) ((-386 . -1094) T) ((-324 . -1094) T) ((-418 . -1046) T) ((-169 . -1053) T) ((-59 . -309) 34578) ((-796 . -111) 34557) ((-594 . -286) 34542) ((-519 . -309) 34480) ((-516 . -309) 34418) ((-497 . -309) 34356) ((-496 . -309) 34294) ((-418 . -233) 34273) ((-482 . -34) T) ((-1001 . -612) 34203) ((-225 . -1094) T) ((-1001 . -611) 34163) ((-968 . -611) 34123) ((-968 . -612) 34098) ((-911 . -611) 34080) ((-695 . -147) T) ((-697 . -917) T) ((-697 . -817) T) ((-427 . -611) 34062) ((-1114 . -21) T) ((-1114 . -25) T) ((-666 . -377) 34046) ((-116 . -917) T) ((-869 . -231) 34030) ((-78 . -1209) T) ((-126 . -125) 34014) ((-1050 . -34) T) ((-1281 . -1035) 33988) ((-1279 . -1035) 33945) ((-1232 . -1053) T) ((-852 . -1053) T) ((-482 . -788) 33924) ((-355 . -1145) 33903) ((-352 . -1145) 33882) ((-344 . -1145) 33861) ((-482 . -791) 33812) ((-482 . -790) 33791) ((-227 . -34) T) ((-482 . -723) 33701) ((-796 . -614) 33549) ((-60 . -489) 33533) ((-571 . -1053) T) ((-1166 . -172) 33424) ((-1119 . -172) 33335) ((-1057 . -1094) T) ((-1081 . -946) 33280) ((-949 . -1094) T) ((-814 . -644) 33231) ((-779 . -946) 33200) ((-710 . -1094) T) ((-777 . -946) 33167) ((-516 . -282) 33151) ((-666 . -897) 33110) ((-481 . -1094) T) ((-454 . -946) 33077) ((-79 . -1209) T) ((-355 . -38) 33042) ((-352 . -38) 33007) ((-344 . -38) 32972) ((-264 . -38) 32821) ((-247 . -38) 32670) ((-907 . -1145) T) ((-524 . -490) 32651) ((-621 . -147) 32630) ((-621 . -145) 32609) ((-524 . -611) 32575) ((-117 . -147) T) ((-117 . -145) NIL) ((-414 . -723) T) ((-796 . -1046) T) ((-343 . -452) T) ((-1251 . -999) 32541) ((-1244 . -999) 32507) ((-1223 . -999) 32473) ((-907 . -38) 32438) ((-225 . -714) 32403) ((-319 . -47) 32373) ((-40 . -409) 32345) ((-140 . -611) 32327) ((-996 . -131) T) ((-812 . -1209) T) ((-174 . -917) T) ((-549 . -368) T) ((-604 . -614) 32308) ((-343 . -402) T) ((-667 . -614) 32289) ((-180 . -614) 32270) ((-161 . -614) 32251) ((-156 . -614) 32232) ((-154 . -614) 32213) ((-520 . -288) 32190) ((-1222 . -231) 32160) ((-812 . -1035) 31987) ((-45 . -34) T) ((-677 . -102) T) ((-672 . -102) T) ((-658 . -102) T) ((-650 . -21) T) ((-650 . -25) T) ((-1096 . -489) 31971) ((-671 . -1209) T) ((-478 . -102) T) ((-245 . -102) 31921) ((-546 . -841) T) ((-138 . -102) T) ((-137 . -102) T) ((-133 . -102) T) ((-868 . -1094) T) ((-1172 . -644) 31846) ((-1057 . -714) 31833) ((-728 . -1052) 31676) ((-1166 . -514) 31623) ((-949 . -714) 31472) ((-1119 . -514) 31424) ((-1270 . -1094) T) ((-1269 . -1094) T) ((-481 . -714) 31273) ((-67 . -611) 31255) ((-728 . -111) 31084) ((-940 . -489) 31068) ((-1271 . -644) 31028) ((-814 . -723) T) ((-1168 . -1052) 30911) ((-1167 . -1052) 30746) ((-1161 . -1052) 30536) ((-1120 . -1052) 30419) ((-1000 . -1213) T) ((-1088 . -102) 30397) ((-812 . -377) 30366) ((-579 . -611) 30348) ((-546 . -1094) T) ((-1000 . -556) T) ((-1168 . -111) 30217) ((-1167 . -111) 30038) ((-1161 . -111) 29807) ((-1120 . -111) 29676) ((-1099 . -1097) 29640) ((-379 . -845) T) ((-1251 . -611) 29622) ((-1244 . -611) 29604) ((-1223 . -611) 29586) ((-1223 . -612) NIL) ((-240 . -288) 29563) ((-40 . -452) T) ((-225 . -172) T) ((-169 . -1094) T) ((-728 . -614) 29348) ((-690 . -147) T) ((-690 . -145) NIL) ((-595 . -611) 29330) ((-594 . -611) 29312) ((-895 . -1094) T) ((-838 . -1094) T) ((-805 . -1094) T) ((-766 . -1094) T) ((-654 . -849) 29296) ((-673 . -1094) T) ((-812 . -897) 29228) ((-1214 . -368) T) ((-40 . -402) NIL) ((-1168 . -614) 29110) ((-1114 . -657) T) ((-868 . -714) 29055) ((-251 . -489) 29039) ((-250 . -489) 29023) ((-1167 . -614) 28766) ((-1161 . -614) 28561) ((-709 . -637) 28509) ((-649 . -644) 28483) ((-1120 . -614) 28365) ((-295 . -34) T) ((-728 . -1046) T) ((-581 . -1266) 28352) ((-518 . -1266) 28329) ((-1232 . -1094) T) ((-1166 . -290) 28240) ((-1119 . -290) 28171) ((-1057 . -172) T) ((-852 . -1094) T) ((-949 . -172) 28082) ((-779 . -1235) 28066) ((-641 . -514) 27999) ((-77 . -611) 27981) ((-728 . -326) 27946) ((-1172 . -723) T) ((-571 . -1094) T) ((-481 . -172) 27857) ((-245 . -309) 27795) ((-1136 . -1106) T) ((-70 . -611) 27777) ((-1271 . -723) T) ((-1168 . -1046) T) ((-1167 . -1046) T) ((-327 . -102) 27727) ((-1161 . -1046) T) ((-1136 . -23) T) ((-1120 . -1046) T) ((-91 . -1115) 27711) ((-863 . -1106) T) ((-1168 . -233) 27670) ((-1167 . -243) 27649) ((-1167 . -233) 27601) ((-1161 . -233) 27488) ((-1161 . -243) 27467) ((-319 . -897) 27373) ((-863 . -23) T) ((-169 . -714) 27201) ((-407 . -1213) T) ((-1095 . -368) T) ((-1021 . -147) T) ((-1000 . -363) T) ((-867 . -452) T) ((-940 . -286) 27178) ((-316 . -847) T) ((-313 . -847) NIL) ((-871 . -102) T) ((-709 . -25) T) ((-407 . -556) T) ((-709 . -21) T) ((-525 . -614) 27159) ((-354 . -147) 27141) ((-354 . -145) T) ((-1141 . -1094) 27119) ((-453 . -717) T) ((-75 . -611) 27101) ((-114 . -847) T) ((-245 . -282) 27085) ((-240 . -1052) 26982) ((-81 . -611) 26964) ((-732 . -368) 26917) ((-1170 . -825) T) ((-734 . -235) 26901) ((-1153 . -1209) T) ((-141 . -235) 26883) ((-240 . -111) 26773) ((-1232 . -714) 26602) ((-48 . -147) T) ((-868 . -172) T) ((-852 . -714) 26572) ((-484 . -1209) T) ((-949 . -514) 26519) ((-649 . -723) T) ((-571 . -714) 26506) ((-1031 . -1053) T) ((-481 . -514) 26449) ((-940 . -19) 26433) ((-940 . -602) 26410) ((-813 . -612) NIL) ((-813 . -611) 26392) ((-1001 . -1052) 26342) ((-413 . -611) 26324) ((-251 . -286) 26301) ((-250 . -286) 26278) ((-487 . -906) NIL) ((-316 . -29) 26248) ((-108 . -1209) T) ((-1000 . -1106) T) ((-217 . -906) NIL) ((-911 . -1052) 26200) ((-1074 . -1035) 26096) ((-1001 . -111) 26030) ((-1000 . -23) T) ((-734 . -691) 26014) ((-264 . -231) 25998) ((-427 . -1052) 25982) ((-379 . -1053) T) ((-240 . -614) 25712) ((-911 . -111) 25650) ((-690 . -1197) NIL) ((-487 . -644) 25600) ((-108 . -881) 25582) ((-108 . -883) 25564) ((-690 . -1194) NIL) ((-217 . -644) 25514) ((-359 . -1035) 25498) ((-353 . -1035) 25482) ((-327 . -309) 25420) ((-345 . -1035) 25404) ((-225 . -290) T) ((-427 . -111) 25383) ((-60 . -611) 25315) ((-169 . -172) T) ((-1114 . -847) T) ((-108 . -1035) 25275) ((-889 . -1094) T) ((-833 . -1053) T) ((-824 . -1053) T) ((-690 . -35) NIL) ((-690 . -95) NIL) ((-313 . -989) 25236) ((-183 . -102) T) ((-580 . -452) T) ((-564 . -452) T) ((-495 . -452) T) ((-407 . -363) T) ((-240 . -1046) 25166) ((-1144 . -34) T) ((-477 . -917) T) ((-996 . -637) 25114) ((-251 . -602) 25091) ((-250 . -602) 25068) ((-1074 . -377) 25052) ((-868 . -514) 24960) ((-240 . -233) 24912) ((-1152 . -1209) T) ((-1001 . -614) 24862) ((-911 . -614) 24799) ((-821 . -611) 24781) ((-1282 . -1106) T) ((-1274 . -611) 24763) ((-1232 . -172) 24654) ((-427 . -614) 24623) ((-108 . -377) 24605) ((-108 . -338) 24587) ((-1057 . -290) T) ((-949 . -290) 24518) ((-796 . -368) 24497) ((-643 . -1209) T) ((-630 . -1209) T) ((-481 . -290) 24428) ((-571 . -172) T) ((-327 . -282) 24412) ((-1282 . -23) T) ((-1203 . -102) T) ((-1190 . -1094) T) ((-1082 . -1094) T) ((-1070 . -1094) T) ((-83 . -611) 24394) ((-1177 . -841) T) ((-1176 . -841) T) ((-708 . -102) T) ((-355 . -349) 24373) ((-606 . -1094) T) ((-352 . -349) 24352) ((-344 . -349) 24331) ((-475 . -1094) T) ((-1182 . -229) 24281) ((-264 . -253) 24243) ((-1136 . -131) T) ((-606 . -608) 24219) ((-1074 . -897) 24152) ((-1001 . -1046) T) ((-911 . -1046) T) ((-475 . -608) 24131) ((-1161 . -789) NIL) ((-1161 . -792) NIL) ((-1096 . -612) 24092) ((-479 . -229) 24042) ((-1096 . -611) 24024) ((-1001 . -243) T) ((-1001 . -233) T) ((-427 . -1046) T) ((-955 . -1094) 23974) ((-911 . -243) T) ((-863 . -131) T) ((-695 . -452) T) ((-840 . -1106) 23953) ((-108 . -897) NIL) ((-1203 . -284) 23919) ((-869 . -845) 23898) ((-1107 . -1209) T) ((-902 . -723) T) ((-169 . -514) 23810) ((-996 . -25) T) ((-902 . -473) T) ((-407 . -1106) T) ((-487 . -791) T) ((-487 . -788) T) ((-907 . -349) T) ((-487 . -723) T) ((-217 . -791) T) ((-217 . -788) T) ((-996 . -21) T) ((-217 . -723) T) ((-840 . -23) 23762) ((-524 . -614) 23743) ((-1177 . -1094) T) ((-319 . -307) 23722) ((-1176 . -1094) T) ((-1032 . -235) 23668) ((-407 . -23) T) ((-940 . -612) 23629) ((-940 . -611) 23541) ((-641 . -489) 23525) ((-45 . -1007) 23475) ((-615 . -964) T) ((-491 . -102) T) ((-331 . -611) 23457) ((-1107 . -1035) 23284) ((-592 . -647) 23266) ((-130 . -1094) T) ((-128 . -1094) T) ((-592 . -373) 23248) ((-343 . -1266) 23225) ((-439 . -611) 23207) ((-1024 . -1209) T) ((-868 . -290) T) ((-1232 . -514) 23154) ((-476 . -1209) T) ((-463 . -1209) T) ((-585 . -102) T) ((-1166 . -286) 23081) ((-621 . -452) 23060) ((-997 . -992) 23044) ((-1274 . -382) 23016) ((-517 . -1094) T) ((-117 . -452) T) ((-1189 . -102) T) ((-1086 . -1094) 22994) ((-1031 . -1094) T) ((-1109 . -93) T) ((-890 . -847) T) ((-351 . -1213) T) ((-1251 . -1052) 22877) ((-1107 . -377) 22846) ((-1244 . -1052) 22681) ((-1223 . -1052) 22471) ((-1251 . -111) 22340) ((-1244 . -111) 22161) ((-1223 . -111) 21930) ((-1203 . -309) 21917) ((-351 . -556) T) ((-365 . -611) 21899) ((-289 . -307) T) ((-595 . -1052) 21872) ((-594 . -1052) 21755) ((-361 . -1094) T) ((-322 . -1094) T) ((-251 . -611) 21716) ((-250 . -611) 21677) ((-1000 . -131) T) ((-633 . -23) T) ((-690 . -409) 21644) ((-605 . -23) T) ((-654 . -102) T) ((-595 . -111) 21615) ((-594 . -111) 21484) ((-379 . -1094) T) ((-336 . -102) T) ((-169 . -290) 21395) ((-1222 . -845) 21348) ((-711 . -1053) T) ((-1141 . -514) 21281) ((-1107 . -897) 21213) ((-833 . -1094) T) ((-824 . -1094) T) ((-822 . -1094) T) ((-97 . -102) T) ((-144 . -847) T) ((-610 . -881) 21197) ((-110 . -1209) T) ((-1081 . -102) T) ((-1058 . -34) T) ((-779 . -102) T) ((-777 . -102) T) ((-1251 . -614) 21079) ((-1244 . -614) 20822) ((-461 . -102) T) ((-454 . -102) T) ((-1223 . -614) 20617) ((-240 . -792) 20568) ((-240 . -789) 20519) ((-645 . -102) T) ((-595 . -614) 20477) ((-594 . -614) 20359) ((-1232 . -290) 20270) ((-660 . -632) 20254) ((-186 . -611) 20236) ((-641 . -286) 20213) ((-1031 . -714) 20197) ((-571 . -290) T) ((-960 . -644) 20122) ((-1282 . -131) T) ((-732 . -644) 20082) ((-712 . -644) 20069) ((-275 . -102) T) ((-453 . -644) 19999) ((-50 . -102) T) ((-581 . -102) T) ((-518 . -102) T) ((-1251 . -1046) T) ((-1244 . -1046) T) ((-1223 . -1046) T) ((-1251 . -233) 19958) ((-322 . -714) 19940) ((-1244 . -243) 19919) ((-1244 . -233) 19871) ((-1223 . -233) 19758) ((-1223 . -243) 19737) ((-1203 . -38) 19634) ((-1001 . -792) T) ((-595 . -1046) T) ((-594 . -1046) T) ((-1001 . -789) T) ((-968 . -792) T) ((-968 . -789) T) ((-869 . -1053) T) ((-867 . -866) 19618) ((-109 . -611) 19600) ((-690 . -452) T) ((-379 . -714) 19565) ((-418 . -644) 19539) ((-709 . -847) 19518) ((-708 . -38) 19483) ((-594 . -233) 19442) ((-40 . -721) 19414) ((-351 . -329) 19391) ((-351 . -363) T) ((-1074 . -307) 19342) ((-294 . -1106) 19223) ((-1100 . -1209) T) ((-171 . -102) T) ((-1226 . -611) 19190) ((-840 . -131) 19142) ((-641 . -1247) 19126) ((-833 . -714) 19096) ((-824 . -714) 19066) ((-482 . -1209) T) ((-359 . -307) T) ((-353 . -307) T) ((-345 . -307) T) ((-641 . -602) 19043) ((-407 . -131) T) ((-520 . -662) 19027) ((-108 . -307) T) ((-294 . -23) 18910) ((-520 . -647) 18894) ((-690 . -402) NIL) ((-520 . -373) 18878) ((-291 . -611) 18860) ((-91 . -1094) 18838) ((-108 . -1019) T) ((-564 . -143) T) ((-1259 . -151) 18822) ((-482 . -1035) 18649) ((-1245 . -145) 18610) ((-1245 . -147) 18571) ((-1050 . -1209) T) ((-990 . -611) 18553) ((-859 . -611) 18535) ((-813 . -1052) 18378) ((-1270 . -93) T) ((-1269 . -93) T) ((-1166 . -612) NIL) ((-1090 . -1094) T) ((-1084 . -1094) T) ((-1081 . -309) 18365) ((-1068 . -1094) T) ((-227 . -1209) T) ((-1061 . -1094) T) ((-1033 . -1094) T) ((-1016 . -1094) T) ((-779 . -309) 18352) ((-777 . -309) 18339) ((-1166 . -611) 18321) ((-813 . -111) 18150) ((-1119 . -611) 18132) ((-624 . -1094) T) ((-577 . -173) T) ((-529 . -173) T) ((-454 . -309) 18119) ((-483 . -1094) T) ((-1119 . -612) 17867) ((-1031 . -172) T) ((-940 . -288) 17844) ((-218 . -1094) T) ((-851 . -611) 17826) ((-606 . -514) 17609) ((-81 . -614) 17550) ((-815 . -1035) 17534) ((-475 . -514) 17326) ((-960 . -723) T) ((-732 . -723) T) ((-712 . -723) T) ((-351 . -1106) T) ((-1173 . -611) 17308) ((-223 . -102) T) ((-482 . -377) 17277) ((-515 . -1094) T) ((-510 . -1094) T) ((-508 . -1094) T) ((-796 . -644) 17251) ((-1021 . -452) T) ((-955 . -514) 17184) ((-351 . -23) T) ((-633 . -131) T) ((-605 . -131) T) ((-354 . -452) T) ((-240 . -368) 17163) ((-379 . -172) T) ((-1243 . -1053) T) ((-1222 . -1053) T) ((-225 . -999) T) ((-813 . -614) 16900) ((-695 . -387) T) ((-418 . -723) T) ((-697 . -1213) T) ((-1136 . -637) 16848) ((-580 . -866) 16832) ((-1274 . -1052) 16816) ((-1153 . -1185) 16792) ((-697 . -556) T) ((-126 . -1094) 16770) ((-711 . -1094) T) ((-482 . -897) 16702) ((-249 . -1094) T) ((-187 . -1094) T) ((-654 . -38) 16672) ((-354 . -402) T) ((-316 . -147) 16651) ((-316 . -145) 16630) ((-128 . -514) NIL) ((-116 . -556) T) ((-313 . -147) 16586) ((-313 . -145) 16542) ((-48 . -452) T) ((-162 . -1094) T) ((-157 . -1094) T) ((-1153 . -107) 16489) ((-779 . -1145) 16467) ((-685 . -34) T) ((-1274 . -111) 16446) ((-550 . -34) T) ((-484 . -107) 16430) ((-251 . -288) 16407) ((-250 . -288) 16384) ((-868 . -286) 16335) ((-45 . -1209) T) ((-1215 . -841) T) ((-813 . -1046) T) ((-1172 . -47) 16312) ((-813 . -326) 16274) ((-1081 . -38) 16123) ((-813 . -233) 16102) ((-779 . -38) 15931) ((-777 . -38) 15780) ((-1109 . -490) 15761) ((-454 . -38) 15610) ((-1109 . -611) 15576) ((-1112 . -102) T) ((-641 . -612) 15537) ((-641 . -611) 15449) ((-581 . -1145) T) ((-518 . -1145) T) ((-1141 . -489) 15433) ((-1195 . -1094) 15411) ((-1136 . -25) T) ((-1136 . -21) T) ((-1274 . -614) 15360) ((-474 . -1053) T) ((-1215 . -1094) T) ((-1223 . -789) NIL) ((-1223 . -792) NIL) ((-996 . -847) 15339) ((-835 . -1094) T) ((-816 . -611) 15321) ((-863 . -21) T) ((-863 . -25) T) ((-796 . -723) T) ((-174 . -1213) T) ((-581 . -38) 15286) ((-518 . -38) 15251) ((-386 . -611) 15233) ((-324 . -611) 15215) ((-169 . -286) 15173) ((-63 . -1209) T) ((-112 . -102) T) ((-869 . -1094) T) ((-174 . -556) T) ((-711 . -714) 15143) ((-294 . -131) 15026) ((-225 . -611) 15008) ((-225 . -612) 14938) ((-1000 . -637) 14877) ((-1274 . -1046) T) ((-1114 . -147) T) ((-630 . -1185) 14852) ((-728 . -906) 14831) ((-592 . -34) T) ((-643 . -107) 14815) ((-630 . -107) 14761) ((-1232 . -286) 14688) ((-728 . -644) 14613) ((-295 . -1209) T) ((-1172 . -1035) 14509) ((-940 . -616) 14486) ((-577 . -576) T) ((-577 . -527) T) ((-529 . -527) T) ((-1161 . -906) NIL) ((-1057 . -612) 14401) ((-1057 . -611) 14383) ((-949 . -611) 14365) ((-710 . -490) 14315) ((-343 . -102) T) ((-251 . -1052) 14212) ((-250 . -1052) 14109) ((-394 . -102) T) ((-31 . -1094) T) ((-949 . -612) 13970) ((-710 . -611) 13905) ((-1272 . -1202) 13874) ((-481 . -611) 13856) ((-481 . -612) 13717) ((-247 . -411) 13701) ((-264 . -411) 13685) ((-251 . -111) 13575) ((-250 . -111) 13465) ((-1168 . -644) 13390) ((-1167 . -644) 13287) ((-1161 . -644) 13139) ((-1120 . -644) 13064) ((-351 . -131) T) ((-82 . -441) T) ((-82 . -395) T) ((-1000 . -25) T) ((-1000 . -21) T) ((-870 . -1094) 13015) ((-869 . -714) 12967) ((-379 . -290) T) ((-169 . -999) 12919) ((-690 . -387) T) ((-996 . -994) 12903) ((-697 . -1106) T) ((-690 . -166) 12885) ((-1243 . -1094) T) ((-1222 . -1094) T) ((-316 . -1194) 12864) ((-316 . -1197) 12843) ((-1158 . -102) T) ((-316 . -956) 12822) ((-134 . -1106) T) ((-116 . -1106) T) ((-600 . -1257) 12806) ((-697 . -23) T) ((-600 . -1094) 12756) ((-316 . -95) 12735) ((-91 . -514) 12668) ((-174 . -363) T) ((-251 . -614) 12398) ((-250 . -614) 12128) ((-316 . -35) 12107) ((-606 . -489) 12041) ((-134 . -23) T) ((-116 . -23) T) ((-963 . -102) T) ((-715 . -1094) T) ((-475 . -489) 11978) ((-407 . -637) 11926) ((-649 . -1035) 11822) ((-955 . -489) 11806) ((-355 . -1053) T) ((-352 . -1053) T) ((-344 . -1053) T) ((-264 . -1053) T) ((-247 . -1053) T) ((-868 . -612) NIL) ((-868 . -611) 11788) ((-1270 . -490) 11769) ((-1269 . -490) 11750) ((-1282 . -21) T) ((-1270 . -611) 11716) ((-1269 . -611) 11682) ((-571 . -999) T) ((-728 . -723) T) ((-1282 . -25) T) ((-251 . -1046) 11612) ((-250 . -1046) 11542) ((-72 . -1209) T) ((-251 . -233) 11494) ((-250 . -233) 11446) ((-40 . -102) T) ((-907 . -1053) T) ((-128 . -489) 11428) ((-1175 . -102) T) ((-1168 . -723) T) ((-1167 . -723) T) ((-1161 . -723) T) ((-1161 . -788) NIL) ((-1161 . -791) NIL) ((-951 . -102) T) ((-918 . -102) T) ((-1120 . -723) T) ((-768 . -102) T) ((-668 . -102) T) ((-546 . -611) 11410) ((-474 . -1094) T) ((-339 . -1106) T) ((-174 . -1106) T) ((-319 . -917) 11389) ((-1243 . -714) 11230) ((-869 . -172) T) ((-1222 . -714) 11044) ((-840 . -21) 10996) ((-840 . -25) 10948) ((-245 . -1143) 10932) ((-126 . -514) 10865) ((-407 . -25) T) ((-407 . -21) T) ((-339 . -23) T) ((-169 . -612) 10631) ((-169 . -611) 10613) ((-174 . -23) T) ((-641 . -288) 10590) ((-520 . -34) T) ((-895 . -611) 10572) ((-89 . -1209) T) ((-838 . -611) 10554) ((-805 . -611) 10536) ((-766 . -611) 10518) ((-673 . -611) 10500) ((-240 . -644) 10348) ((-1170 . -1094) T) ((-1166 . -1052) 10171) ((-1144 . -1209) T) ((-1119 . -1052) 10014) ((-851 . -1052) 9998) ((-1226 . -616) 9982) ((-1166 . -111) 9791) ((-1119 . -111) 9620) ((-851 . -111) 9599) ((-1216 . -847) T) ((-1232 . -612) NIL) ((-1232 . -611) 9581) ((-343 . -1145) T) ((-852 . -611) 9563) ((-1070 . -286) 9542) ((-80 . -1209) T) ((-1001 . -906) NIL) ((-606 . -286) 9518) ((-1195 . -514) 9451) ((-487 . -1209) T) ((-571 . -611) 9433) ((-475 . -286) 9412) ((-517 . -93) T) ((-217 . -1209) T) ((-1081 . -231) 9396) ((-1001 . -644) 9346) ((-289 . -917) T) ((-814 . -307) 9325) ((-867 . -102) T) ((-779 . -231) 9309) ((-955 . -286) 9286) ((-911 . -644) 9238) ((-633 . -21) T) ((-633 . -25) T) ((-605 . -21) T) ((-547 . -102) T) ((-343 . -38) 9203) ((-690 . -721) 9170) ((-487 . -881) 9152) ((-487 . -883) 9134) ((-474 . -714) 8975) ((-217 . -881) 8957) ((-64 . -1209) T) ((-217 . -883) 8939) ((-605 . -25) T) ((-427 . -644) 8913) ((-1166 . -614) 8682) ((-487 . -1035) 8642) ((-869 . -514) 8554) ((-1119 . -614) 8346) ((-851 . -614) 8264) ((-217 . -1035) 8224) ((-240 . -34) T) ((-997 . -1094) 8202) ((-1243 . -172) 8133) ((-1222 . -172) 8064) ((-709 . -145) 8043) ((-709 . -147) 8022) ((-697 . -131) T) ((-136 . -465) 7999) ((-1141 . -611) 7931) ((-654 . -652) 7915) ((-128 . -286) 7890) ((-116 . -131) T) ((-477 . -1213) T) ((-606 . -602) 7866) ((-475 . -602) 7845) ((-336 . -335) 7814) ((-536 . -1094) T) ((-477 . -556) T) ((-1166 . -1046) T) ((-1119 . -1046) T) ((-851 . -1046) T) ((-240 . -788) 7793) ((-240 . -791) 7744) ((-240 . -790) 7723) ((-1166 . -326) 7700) ((-240 . -723) 7610) ((-955 . -19) 7594) ((-487 . -377) 7576) ((-487 . -338) 7558) ((-1119 . -326) 7530) ((-354 . -1266) 7507) ((-217 . -377) 7489) ((-217 . -338) 7471) ((-955 . -602) 7448) ((-1166 . -233) T) ((-660 . -1094) T) ((-642 . -1094) T) ((-1255 . -1094) T) ((-1182 . -1094) T) ((-1081 . -253) 7385) ((-355 . -1094) T) ((-352 . -1094) T) ((-344 . -1094) T) ((-264 . -1094) T) ((-247 . -1094) T) ((-84 . -1209) T) ((-127 . -102) 7363) ((-121 . -102) 7341) ((-1182 . -608) 7320) ((-479 . -1094) T) ((-1135 . -1094) T) ((-479 . -608) 7299) ((-251 . -792) 7250) ((-251 . -789) 7201) ((-250 . -792) 7152) ((-40 . -1145) NIL) ((-250 . -789) 7103) ((-1109 . -614) 7084) ((-128 . -19) 7066) ((-1074 . -917) 7017) ((-1001 . -791) T) ((-1001 . -788) T) ((-1001 . -723) T) ((-968 . -791) T) ((-128 . -602) 6992) ((-911 . -723) T) ((-91 . -489) 6976) ((-487 . -897) NIL) ((-907 . -1094) T) ((-225 . -1052) 6941) ((-869 . -290) T) ((-217 . -897) NIL) ((-830 . -1106) 6920) ((-59 . -1094) 6870) ((-519 . -1094) 6848) ((-516 . -1094) 6798) ((-497 . -1094) 6776) ((-496 . -1094) 6726) ((-580 . -102) T) ((-564 . -102) T) ((-495 . -102) T) ((-474 . -172) 6657) ((-359 . -917) T) ((-353 . -917) T) ((-345 . -917) T) ((-225 . -111) 6613) ((-830 . -23) 6565) ((-427 . -723) T) ((-108 . -917) T) ((-40 . -38) 6510) ((-108 . -817) T) ((-581 . -349) T) ((-518 . -349) T) ((-1222 . -514) 6370) ((-316 . -452) 6349) ((-313 . -452) T) ((-889 . -611) 6331) ((-833 . -286) 6310) ((-339 . -131) T) ((-174 . -131) T) ((-294 . -25) 6174) ((-294 . -21) 6057) ((-45 . -1185) 6036) ((-66 . -611) 6018) ((-55 . -102) T) ((-600 . -514) 5951) ((-45 . -107) 5901) ((-816 . -614) 5885) ((-1096 . -425) 5869) ((-1096 . -368) 5848) ((-386 . -614) 5832) ((-324 . -614) 5816) ((-1058 . -1209) T) ((-1057 . -1052) 5803) ((-949 . -1052) 5646) ((-1260 . -102) T) ((-1259 . -102) 5596) ((-1057 . -111) 5581) ((-481 . -1052) 5424) ((-660 . -714) 5408) ((-949 . -111) 5237) ((-225 . -614) 5187) ((-477 . -363) T) ((-355 . -714) 5139) ((-352 . -714) 5091) ((-344 . -714) 5043) ((-264 . -714) 4892) ((-247 . -714) 4741) ((-1251 . -644) 4666) ((-1223 . -906) NIL) ((-1090 . -93) T) ((-1084 . -93) T) ((-940 . -647) 4650) ((-1068 . -93) T) ((-481 . -111) 4479) ((-1061 . -93) T) ((-1033 . -93) T) ((-940 . -373) 4463) ((-248 . -102) T) ((-1016 . -93) T) ((-74 . -611) 4445) ((-960 . -47) 4424) ((-707 . -102) T) ((-695 . -102) T) ((-1 . -1094) T) ((-619 . -1106) T) ((-1244 . -644) 4321) ((-624 . -93) T) ((-1190 . -611) 4303) ((-1082 . -611) 4285) ((-126 . -489) 4269) ((-483 . -93) T) ((-1070 . -611) 4251) ((-390 . -23) T) ((-87 . -1209) T) ((-218 . -93) T) ((-1223 . -644) 4103) ((-907 . -714) 4068) ((-619 . -23) T) ((-606 . -611) 4050) ((-606 . -612) NIL) ((-475 . -612) NIL) ((-475 . -611) 4032) ((-511 . -1094) T) ((-507 . -1094) T) ((-351 . -25) T) ((-351 . -21) T) ((-127 . -309) 3970) ((-121 . -309) 3908) ((-595 . -644) 3895) ((-225 . -1046) T) ((-594 . -644) 3820) ((-379 . -999) T) ((-225 . -243) T) ((-225 . -233) T) ((-1057 . -614) 3792) ((-1057 . -616) 3773) ((-955 . -612) 3734) ((-955 . -611) 3646) ((-949 . -614) 3435) ((-867 . -38) 3422) ((-710 . -614) 3372) ((-1243 . -290) 3323) ((-1222 . -290) 3274) ((-481 . -614) 3059) ((-1114 . -452) T) ((-502 . -847) T) ((-316 . -1133) 3038) ((-996 . -147) 3017) ((-996 . -145) 2996) ((-495 . -309) 2983) ((-295 . -1185) 2962) ((-1177 . -611) 2944) ((-1176 . -611) 2926) ((-868 . -1052) 2871) ((-477 . -1106) T) ((-139 . -832) 2853) ((-621 . -102) T) ((-1195 . -489) 2837) ((-251 . -368) 2816) ((-250 . -368) 2795) ((-1057 . -1046) T) ((-295 . -107) 2745) ((-130 . -611) 2727) ((-128 . -612) NIL) ((-128 . -611) 2671) ((-117 . -102) T) ((-949 . -1046) T) ((-868 . -111) 2600) ((-477 . -23) T) ((-481 . -1046) T) ((-1057 . -233) T) ((-949 . -326) 2569) ((-481 . -326) 2526) ((-355 . -172) T) ((-352 . -172) T) ((-344 . -172) T) ((-264 . -172) 2437) ((-247 . -172) 2348) ((-960 . -1035) 2244) ((-517 . -490) 2225) ((-732 . -1035) 2196) ((-517 . -611) 2162) ((-1099 . -102) T) ((-1086 . -611) 2129) ((-1031 . -611) 2111) ((-1272 . -151) 2095) ((-1270 . -614) 2076) ((-1264 . -611) 2058) ((-1251 . -723) T) ((-1244 . -723) T) ((-1223 . -788) NIL) ((-1223 . -791) NIL) ((-169 . -1052) 1968) ((-907 . -172) T) ((-868 . -614) 1898) ((-1223 . -723) T) ((-1269 . -614) 1879) ((-1000 . -342) 1853) ((-997 . -514) 1786) ((-840 . -847) 1765) ((-564 . -1145) T) ((-474 . -290) 1716) ((-595 . -723) T) ((-361 . -611) 1698) ((-322 . -611) 1680) ((-418 . -1035) 1576) ((-594 . -723) T) ((-407 . -847) 1527) ((-169 . -111) 1423) ((-830 . -131) 1375) ((-734 . -151) 1359) ((-1259 . -309) 1297) ((-487 . -307) T) ((-379 . -611) 1264) ((-520 . -1007) 1248) ((-379 . -612) 1162) ((-217 . -307) T) ((-141 . -151) 1144) ((-711 . -286) 1123) ((-487 . -1019) T) ((-580 . -38) 1110) ((-564 . -38) 1097) ((-495 . -38) 1062) ((-217 . -1019) T) ((-868 . -1046) T) ((-833 . -611) 1044) ((-824 . -611) 1026) ((-822 . -611) 1008) ((-813 . -906) 987) ((-1283 . -1106) T) ((-1232 . -1052) 810) ((-852 . -1052) 794) ((-868 . -243) T) ((-868 . -233) NIL) ((-685 . -1209) T) ((-1283 . -23) T) ((-813 . -644) 719) ((-550 . -1209) T) ((-418 . -338) 703) ((-571 . -1052) 690) ((-1232 . -111) 499) ((-697 . -637) 481) ((-852 . -111) 460) ((-381 . -23) T) ((-169 . -614) 238) ((-1182 . -514) 30) ((-658 . -1094) T) ((-677 . -1094) T) ((-672 . -1094) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index df881866..5c620e2b 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3444870408) -(4411 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3449148015) +(4414 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| @@ -194,7 +194,7 @@ |InfiniteProductCharacteristicZero| |InnerNumericFloatSolvePackage| |InnerModularGcd| |InnerMultFact| |InfiniteProductFiniteField| |InfiniteProductPrimeField| |InnerPolySign| |IntegerNumberSystem&| - |IntegerNumberSystem| |Int16| |Int32| |Int8| |InnerTable| + |IntegerNumberSystem| |Int16| |Int32| |Int64| |Int8| |InnerTable| |AlgebraicIntegration| |AlgebraicIntegrate| |IntegerBits| |IntervalCategory| |IntegralDomain&| |IntegralDomain| |ElementaryIntegration| |IntegerFactorizationPackage| @@ -442,7 +442,7 @@ |TriangularSetCategory| |TaylorSeries| |TubePlot| |TubePlotTools| |Tuple| |TwoFactorize| |TypeAst| |Type| |UserDefinedPartialOrdering| |UserDefinedVariableOrdering| |UniqueFactorizationDomain&| - |UniqueFactorizationDomain| |UInt16| |UInt32| |UInt8| + |UniqueFactorizationDomain| |UInt16| |UInt32| |UInt64| |UInt8| |UnivariateLaurentSeriesFunctions2| |UnivariateLaurentSeriesCategory| |UnivariateLaurentSeriesConstructorCategory&| |UnivariateLaurentSeriesConstructorCategory| @@ -477,662 +477,662 @@ |XPolynomial| |XPolynomialRing| |XRecursivePolynomial| |ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping| - |Record| |Union| |exponentialOrder| |cRationalPower| |back| - |writeUInt8!| |fintegrate| |stop| |fprindINFO| - |solveLinearPolynomialEquation| |f01maf| |SturmHabichtSequence| - |completeEval| |cPower| |front| |writeInt8!| |coefficient| - |prinpolINFO| |factorSquareFreePolynomial| |f01mcf| - |SturmHabichtCoefficients| |lowerPolynomial| |seriesToOutputForm| - |rotate!| |writeByte!| |coHeight| |prinb| |factorPolynomial| |f01qcf| - |SturmHabicht| |shift| |raisePolynomial| |iCompose| |dequeue!| - |isOpen?| |extendIfCan| |critpOrder| |squareFreePolynomial| |f01qdf| - |countRealRoots| |normalDeriv| |vector| |taylorQuoByVar| |enqueue!| - |outputBinaryFile| |algebraicVariables| |makeCrit| |gcdPolynomial| - |f01qef| |SturmHabichtMultiple| |ran| |compile| |iExquo| |quatern| - |blankSeparate| |zeroSetSplitIntoTriangularSystems| |virtualDegree| - |f01rcf| |torsion?| |varList| |countRealRootsMultiple| - |highCommonTerms| |getStream| |imagK| |semicolonSeparate| - |zeroSetSplit| |property| |conditionsForIdempotents| |torsionIfCan| - |f01rdf| |signatureAst| |optimize| |mapCoef| |differentiate| |getRef| - |imagJ| |commaSeparate| |reduceByQuasiMonic| - |genericRightDiscriminant| |getGoodPrime| |f01ref| |pop!| |makeSeries| - |imagI| |pile| |collectQuasiMonic| |nand| |genericRightTraceForm| - |badNum| |f02aaf| |push!| |iicot| |signature| GF2FG |conjugate| - |paren| |removeZero| |binaryTournament| |units| - |genericLeftDiscriminant| |mix| |f02abf| |minordet| |iisec| FG2F - |queue| |bracket| |initiallyReduce| |binaryTree| - |genericLeftTraceForm| |doubleDisc| |f02adf| |determinant| |iicsc| - F2FG |nthRoot| |prod| |headReduce| |byte| |f02aef| |diagonalProduct| - |iiasin| |explogs2trigs| |fractRadix| |overlabel| |stronglyReduce| - |setLength!| |minimize| |slash| |remove| |f02aff| |diagonal| ** - |iiacos| |objects| |trigs2explogs| |wholeRadix| |overbar| - |rewriteSetWithReduction| |capacity| |module| |over| |f02agf| - |diagonalMatrix| |iiatan| |base| |byteBuffer| |swap!| |cycleRagits| - |prime| |autoReduced?| |code| |rightRegularRepresentation| |zag| - |last| |f02ajf| |scalarMatrix| |iiacot| |quote| |initiallyReduced?| - |assoc| |unknownEndian| |leftRegularRepresentation| |postfix| |f02akf| - |hermite| |iiasec| |palgLODE0| |triangular?| |supersub| |headReduced?| - |bigEndian| |rightTraceMatrix| |infix| |f02awf| |completeHermite| - |iiacsc| |chineseRemainder| |rewriteIdealWithRemainder| |isQuotient| - |presuper| |stronglyReduced?| |littleEndian| |leftTraceMatrix| - |vconcat| |f02axf| |smith| |iisinh| |divisors| - |rewriteIdealWithHeadRemainder| |initial| |presub| |reduced?| |dom| - |subtractIfCan| |rightDiscriminant| |hconcat| |plus| |iicosh| - |eulerPhi| |remainder| |zeroOf| |sub| |normalized?| |setPosition| - |leftDiscriminant| |pushdterm| |rspace| |augment| |eval| |iitanh| - |fibonacci| |headRemainder| |rarrow| |quasiComponent| |rootsOf| - |generalizedContinuumHypothesisAssumed| |represents| |vspace| - |pushucoef| |lastSubResultant| |iicoth| |cond| |harmonic| - |roughUnitIdeal?| |assign| |initials| - |generalizedContinuumHypothesisAssumed?| |continue| |mergeFactors| - |hspace| |pushuconst| |lastSubResultantElseSplit| |iisech| |jacobi| - |roughEqualIdeals?| |height| |countable?| |isMult| |superHeight| - |numberOfMonomials| |invertibleSet| |times| |iicsch| |cn| |moebiusMu| - |roughSubIdeal?| |OMputEndAttr| |nil?| |Aleph| |title| |exprToXXP| - |subHeight| |multiset| |invertible?| |iiasinh| |numberOfDivisors| - |roughBase?| |OMputEndBind| |buildSyntax| |unravel| |exprToUPS| - |doubleFloatFormat| |mergeDifference| |invertibleElseSplit?| - |previous| |iiacosh| |sumOfDivisors| |trivialIdeal?| |OMputEndBVar| - |solve| |leviCivitaSymbol| |exprToGenUPS| |messagePrint| - |squareFreePrim| |purelyAlgebraicLeadingMonomial?| |iiatanh| - |sumOfKthPowerDivisors| |collectUpper| |OMputEndError| - |triangularSystems| |kroneckerDelta| |e| |localAbs| |members| - |compdegd| |algebraicCoefficients?| |dimension| |monom| |iiacoth| - |HermiteIntegrate| |collect| |OMputEndObject| |nativeModuleExtension| - |reindex| |universe| |padecf| |univcase| |purelyTranscendental?| - |crest| |tail| |iiasech| |palgint| |collectUnder| |OMputInteger| - |hostByteOrder| |principalAncestors| |complement| |pade| |consnewpol| - |purelyAlgebraic?| |cfirst| |iiacsch| |palgextint| |mainVariable?| - |OMputFloat| |hostPlatform| |exportedOperators| |cardinality| |lcm| - |root| |nsqfree| |prepareSubResAlgo| |common| |sts2stst| |comparison| - |specialTrigs| |palglimint| |mainVariables| |OMputVariable| - |rootDirectory| |alphanumeric| |internalIntegrate0| |quotientByP| - |intChoose| |internalLastSubResultant| |clikeUniv| |equality| - |localReal?| |palgRDE| |removeSquaresIfCan| |OMputString| |bumprow| - |alphabetic| |makeCos| |append| |moduloP| |coefChoose| - |integralLastSubResultant| |weierstrass| |rischNormalize| |palgLODE| - |unprotectedRemoveRedundantFactors| |OMputSymbol| |bumptab| |hexDigit| - |makeSin| |myDegree| |modulus| |gcd| |toseLastSubResultant| |qqq| - |realElementary| |splitConstant| |removeRedundantFactors| |OMgetApp| - |bumptab1| |digit| |iiGamma| |false| |digits| |normDeriv2| - |toseInvertible?| |integralBasis| |validExponential| - |pmComplexintegrate| |certainlySubVariety?| |OMgetAtp| |untab| - |charClass| |iiabs| |continuedFraction| |plenaryPower| - |toseInvertibleSet| |localIntegralBasis| |rootNormalize| |pmintegrate| - |possiblyNewVariety?| |OMgetAttr| |bat1| |tree| |alphanumeric?| - |bringDown| |light| |c02aff| |toseSquareFreePart| |qualifier| |tanQ| - |width| |infieldint| |probablyZeroDim?| |OMgetBind| |bat| |lowerCase?| - |newReduc| |c02agf| |pastel| |quotedOperators| |zero| |mainExpression| - |callForm?| |extendedint| |selectPolynomials| |OMgetBVar| |tab1| - |upperCase?| |logical?| |c05adf| |dark| |rur| |#| |changeWeightLevel| - |getIdentifier| |limitedint| |selectOrPolynomials| |OMgetError| |tab| - |alphabetic?| |character?| |c05nbf| |getSyntaxFormsFromFile| |create| - |And| |characteristicSerie| |properties| |getConstant| |integerIfCan| - |plusInfinity| |selectAndPolynomials| |OMgetObject| |lex| |hexDigit?| - |doubleComplex?| |c05pbf| |surface| |enterInCache| |Or| - |characteristicSet| |select!| |internalIntegrate| |generator| - |minusInfinity| |quasiMonicPolynomials| |OMgetEndApp| |slex| - |translate| |escape| |complex?| |c06eaf| |coordinate| - |currentCategoryFrame| |Not| |medialSet| |delete!| |infieldIntegrate| - |univariate?| |OMgetEndAtp| |inverse| |ord| |double?| |partitions| - |c06ebf| |currentScope| |Hausdorff| |sn| |limitedIntegrate| - |univariatePolynomials| |OMgetEndAttr| |maxrow| |mkIntegral| |ffactor| - |conjugates| |c06ecf| |pushNewContour| |Frobenius| |dn| |optional| - |approximate| |extendedIntegrate| |linear?| |OMgetEndBind| |tableau| - |radPoly| |qfactor| |shuffle| |c06ekf| |findBinding| - |transcendenceDegree| |complex| |sncndn| |varselect| - |linearPolynomials| |OMgetEndBVar| |listOfLists| |rootPoly| |UP2ifCan| - |shufflein| |c06fpf| |contours| |extensionDegree| |categoryFrame| - |kmax| |bivariate?| |OMgetEndError| |tanSum| |goodPoint| |anfactor| - |sequences| |c06fqf| |structuralConstants| |inGroundField?| - |setProperties!| |ksec| |bivariatePolynomials| |OMgetEndObject| - |tanAn| |chvar| |fortranCharacter| |permutations| |c06frf| - |coordinates| |transcendent?| |type| |getProperties| |vark| - |removeRoughlyRedundantFactorsInPols| |OMgetInteger| |tanNa| - |interpret| |generate| |find| |fortranDoubleComplex| |atoms| |c06fuf| - |bounds| |algebraic?| |setProperty!| |removeConstantTerm| - |removeRoughlyRedundantFactorsInPol| |OMgetFloat| |initTable!| - |clipParametric| |fortranComplex| |makeResult| |c06gbf| |high| |sh| - |getProperty| |mkPrim| |interReduce| |OMgetVariable| |printInfo!| - |brillhartTrials| |incrementBy| |clipWithRanges| |fortranLogical| - |is?| |c06gcf| |low| |mirror| |scopes| |intPatternMatch| - |roughBasicSet| |OMgetString| |startStats!| |bezoutResultant| |expand| - |numberOfHues| SEGMENT |fortranInteger| |Is| |c06gqf| |subset?| - |monomial?| |eigenvalues| |primintegrate| |crushedSet| |OMgetSymbol| - |printStats!| |bezoutDiscriminant| |filterWhile| |yellow| - |fortranDouble| |c06gsf| |addMatchRestricted| |symmetricDifference| - |first| |rquo| |eigenvector| |expintegrate| - |rewriteSetByReducingWithParticularGenerators| |OMgetType| - |clearTable!| |filterUntil| |iifact| |fortranReal| |d01ajf| - |insertMatch| |difference| |rest| |comment| |lquo| |iibinom| - |generalizedEigenvector| |tanintegrate| - |rewriteIdealWithQuasiMonicGenerators| |OMencodingBinary| - |usingTable?| |stack| |select| |external?| ~ |substitute| |addMatch| - |d01akf| |intersect| |mindegTerm| |generalizedEigenvectors| - |primextendedint| |squareFreeFactors| |OMencodingSGML| |printingInfo?| - |removeDuplicates| |iiperm| |scalarTypeOf| |getMatch| |d01alf| |part?| - |tower| |product| |eigenvectors| |expextendedint| - |univariatePolynomialsGcds| |OMencodingXML| |makingStats?| |iipow| - |open| |fortranCarriageReturn| |failed?| |d01amf| |latex| - |LiePolyIfCan| |factorAndSplit| |primlimitedint| - |removeRoughlyRedundantFactorsInContents| |OMencodingUnknown| - |extractIfCan| |iidsum| |fortranLiteral| |optpair| |d01anf| |member?| - |trunc| |concat| |rightOne| |explimitedint| - |removeRedundantFactorsInContents| |omError| |insert!| |iidprod| - |fortranLiteralLine| |getBadValues| |d01apf| |enumerate| |degree| - |leftOne| |primextintfrac| |removeRedundantFactorsInPols| |errorInfo| - |interpretString| |ipow| |processTemplate| |resetBadValues| |d01aqf| - |setOfMinN| |quasiRegular| |rightZero| |primlimintfrac| - |irreducibleFactors| |errorKind| |stripCommentsAndBlanks| |factorial| - |operations| |makeFR| |hasTopPredicate?| |d01asf| |elements| - |complexNumeric| |quasiRegular?| |leftZero| |primintfldpoly| |output| - |lazyIrreducibleFactors| |OMReadError?| |setPrologue!| |multinomial| - |musserTrials| |topPredicate| |d01bbf| |replaceKthElement| |constant?| - |swap| |expintfldpoly| |removeIrreducibleRedundantFactors| - |OMUnknownSymbol?| |setTex!| |mr| |stopMusserTrials| |setTopPredicate| - |d01fcf| |incrementKthElement| |kernels| |mindeg| |minPoly| - |monomialIntegrate| |normalForm| |OMUnknownCD?| |setEpilogue!| |delta| - |numberOfFactors| |patternVariable| |d01gaf| |float?| |univariate| - |maxdeg| |freeOf?| |monomialIntPoly| |changeBase| |OMParseError?| - |prologue| |modularFactor| |withPredicates| |d01gbf| |integer?| - |source| |RemainderList| |operators| |inverseLaplace| F - |companionBlocks| |OMwrite| |epilogue| |useSingleFactorBound?| - |setPredicates| |d02bbf| |symbol?| |unexpand| |inputOutputBinaryFile| - |xCoord| |po| |endOfFile?| ~= |useSingleFactorBound| |inc| - |predicates| |d02bhf| |string?| |factor| |triangSolve| |reify| - |bothWays| |yCoord| |OMread| |readIfCan!| |coerce| - |useEisensteinCriterion?| |hasPredicate?| |d02cjf| |list?| |sqrt| - |univariateSolve| |separant| |bytes| |zCoord| |OMreadFile| - |readLineIfCan!| |construct| |useEisensteinCriterion| |optional?| - |d02ejf| |pair?| |real| |realSolve| |isobaric?| |super| |ip4Address| - |rCoord| |OMreadStr| |readLine!| |d02gaf| |atom?| |target| |imag| - |positiveSolve| |weights| |iprint| |thetaCoord| |OMlistCDs| - |writeLine!| |rightNorm| |lambda| |d02gbf| |null?| |directProduct| - |squareFree| |differentialVariables| |elem?| |phiCoord| - |OMlistSymbols| |sign| |leftNorm| |d02kef| |startTable!| - |linearlyDependentOverZ?| |extractBottom!| |notelem| |color| - |OMsupportsCD?| |nonQsign| |rightTrace| |makeSketch| |d02raf| - |stopTable!| |brace| |linearDependenceOverZ| |extractTop!| - |OMsupportsSymbol?| |direction| EQ |leftTrace| |inrootof| |d03edf| - |supDimElseRittWu?| |destruct| |solveLinearlyOverQ| |insertBottom!| - |minimalPolynomial| |primitiveElement| |OMunhandledSymbol| - |createThreeSpace| |someBasis| |d03eef| |algebraicSort| |insertTop!| - |position!| |nextPrime| |OMreceive| |cyclicParents| |sort!| |d03faf| - |moreAlgebraic?| |ravel| |bottom!| |eof?| |prevPrime| |OMsend| - |cyclicEqual?| |copyInto!| |top!| |reshape| |inputBinaryFile| |primes| - |OMserve| |cyclicEntries| |sorted?| |times!| |getMeasure| |monomial| - |dequeue| |increment| |selectsecond| |makeop| |cyclicCopy| |LiePoly| - |power!| |changeMeasure| |digit?| |multivariate| |node| |recolor| - |charpol| |selectfirst| |opeval| |cyclic?| |quickSort| |just| - |changeThreshhold| |variables| |drawComplex| |solve1| |makeprod| - |setelt| |heapSort| |gradient| |selectMultiDimensionalRoutines| - |drawComplexVectorField| |innerEigenvectors| |equivOperands| |imagk| - |sincos| |shellSort| |divergence| |selectNonFiniteRoutines| |category| - |setRealSteps| |update| |parseString| |equiv?| |imagj| |sinhcosh| - |copy| |outputSpacing| |laplacian| |selectSumOfSquaresRoutines| - |domain| |setImagSteps| |unparse| |impliesOperands| |imagi| - |subresultantVector| |outputGeneral| |hessian| |selectFiniteRoutines| - |package| |setClipValue| |predicate| |binary| |implies?| |octon| - |primitivePart| |outputFixed| |bandedHessian| |selectODEIVPRoutines| - |coth| |drawCurves| |option?| |packageCall| |orOperands| |ODESolve| - |pointData| |autoCoerce| |outputFloating| |jacobian| - |selectPDERoutines| |sech| |scale| |range| |innerSolve1| |or?| - |constDsolve| |parent| |exp1| |bandedJacobian| - |selectOptimizationRoutines| |csch| |connect| |match?| |colorFunction| - |position| |innerSolve| |andOperands| |showTheIFTable| - |extractProperty| |log2| |duplicates| |selectIntegrationRoutines| - |asinh| |region| |curveColor| |makeEq| |and?| |clearTheIFTable| - |extractClosed| |next| |rationalApproximation| |removeDuplicates!| - |routines| |acosh| |points| |pointColor| |modularGcdPrimitive| - |notOperand| |iFTable| |extractIndex| |relerror| |linears| - |mainSquareFreePart| |atanh| |getGraph| |clip| |modularGcd| - |variable?| |showIntensityFunctions| |extractPoint| |complexSolve| - |comp| |ddFact| |mainPrimitivePart| |acoth| |putGraph| |clipBoolean| - |reduction| |term| |expint| |traverse| |complexRoots| - |separateFactors| |mainContent| |asech| |graphs| |style| |parameters| - |signAround| |term?| |diff| |defineProperty| |realRoots| |exptMod| - |primitivePart!| |graphStates| |substring?| |toScale| |equation| - |invmod| |equiv| |algDsolve| |closeComponent| |leadingTerm| - |meshPar2Var| |nextsubResultant2| |multiple| |graphState| - |pointColorPalette| |powmod| |denomLODE| |implies| |modifyPoint| - |list| |numeric| |writable?| |meshFun2Var| |LazardQuotient2| - |applyQuote| |makeViewport2D| |suffix?| |curveColorPalette| |mulmod| - |indicialEquations| |merge!| |addPointLast| |car| |datalist| |radical| - |readable?| |meshPar1Var| |LazardQuotient| |viewport2D| |var1Steps| - |submod| |indicialEquation| |resultantEuclidean| |addPoint2| |cdr| - |exists?| |ptFunc| |subResultantChain| |getPickedPoints| |prefix?| - |var2Steps| |addmod| |setDifference| |semiResultantEuclidean2| - |denomRicDE| |addPoint| |extension| |minimumExponent| - |halfExtendedSubResultantGcd2| |ruleset| |colorDef| |setright!| - |space| |symmetricRemainder| |setIntersection| - |semiResultantEuclidean1| |leadingCoefficientRicDE| |merge| |arg1| - |shallowExpand| |maximumExponent| |halfExtendedSubResultantGcd1| - |intensity| |constantOperator| |setleft!| |tubePoints| - |positiveRemainder| |setUnion| |indiceSubResultant| - |constantCoefficientRicDE| |deepCopy| |arg2| |binarySearchTree| - |deepExpand| |rowEch| |extendedSubResultantGcd| |lighting| - |tubeRadius| |bit?| |changeVar| |indiceSubResultantEuclidean| - |shallowCopy| |apply| |nor| |char| |clearFortranOutputStack| - |rowEchLocal| |exactQuotient!| |suchThat| |clipSurface| - |constantOpIfCan| |weight| |algint| |semiIndiceSubResultantEuclidean| - |ratDsolve| |numberOfChildren| |conditions| |showFortranOutputStack| - |rowEchelonLocal| |exactQuotient| |showClipRegion| |integerBound| - |makeVariable| |algintegrate| |indicialEquationAtInfinity| - |degreeSubResultant| |children| |size| |match| |topFortranOutputStack| - |normalizedDivide| |primPartElseUnitCanonical!| |showRegion| |infix?| - |finiteBound| |palgintegrate| |degreeSubResultantEuclidean| - |reduceLODE| |child| |decrease| |setFormula!| |maxint| - |primPartElseUnitCanonical| |hitherPlane| |mask| |sortConstraints| - |palginfieldint| |semiDegreeSubResultantEuclidean| |singRicDE| |birth| - |increase| |linkToFortran| |binaryFunction| |lazyResidueClass| - |eyeDistance| |sumOfSquares| |bitLength| |lastSubResultantEuclidean| - |polyRicDE| |internal?| |setLegalFortranSourceExtensions| - |makeFloatFunction| |monicModulo| |float| |perspective| |splitLinear| - |bitCoef| |semiLastSubResultantEuclidean| |ricDsolve| |root?| - |fracPart| |unaryFunction| |lazyPseudoDivide| |zoom| |simpleBounds?| - |bitTruth| |subResultantGcdEuclidean| |triangulate| |leaf?| - |directory| |polyPart| |compiledFunction| |lazyPremWithDefault| - |rotate| |linearMatrix| |contains?| |semiSubResultantGcdEuclidean2| - |solveInField| |outputForm| |constant| |fullPartialFraction| |log| - |corrPoly| |lazyPquo| |drawStyle| |linearPart| |inf| - |semiSubResultantGcdEuclidean1| |wronskianMatrix| |argscript| - |primeFrobenius| |lifting| |lazyPrem| |outlineRender| |nonLinearPart| - |qinterval| |discriminantEuclidean| |variationOfParameters| - |superscript| |discreteLog| |lifting1| |pquo| |diagonals| |id| - |quadratic?| |lift| |interval| |semiDiscriminantEuclidean| |factors| - |subscript| |decreasePrecision| |exprex| |prem| |axes| |insert| - |changeNameToObjf| |reduce| |unit?| |chainSubResultants| |nthFactor| - |scripted?| |increasePrecision| |coerceL| |supRittWu?| |controlPanel| - |table| |optAttributes| |associates?| |schema| |nthExpon| |resetNew| - |bits| |coerceS| |RittWuCompare| GE |viewpoint| |new| |Nul| - |unitCanonical| |resultantReduit| |overlap| |symFunc| |obj| - |unitNormalize| |frobenius| |mainMonomials| GT |dimensions| - |exponents| |unitNormal| |resultantReduitEuclidean| |hcrf| - |symbolTableOf| |cache| |unit| |computePowers| |mainCoefficients| LE - |resize| |iisqrt2| |lfextendedint| |semiResultantReduitEuclidean| - |hclf| |argumentListOf| |flagFactor| |pow| |leastMonomial| LT |move| - |iisqrt3| |lflimitedint| |lexico| |divide| |retract| |returnTypeOf| - |sqfrFactor| |An| |mainMonomial| |modifyPointData| |iiexp| - |lfinfieldint| |Lazard| |OMmakeConn| |printHeader| |status| - |primeFactor| |UnVectorise| |quasiMonic?| |subspace| |iilog| - |lfintegrate| |Lazard2| |OMcloseConn| |returnType!| |nthFlag| - |Vectorise| |monic?| |makeViewport3D| |iisin| |lfextlimint| - |nextsousResultant2| |OMconnInDevice| |argumentList!| |nthExponent| - |setPoly| |deepestInitial| |viewport3D| |iicos| |subst| |BasicMethod| - |numer| |resultantnaif| |OMconnOutDevice| |endSubProgram| - |irreducibleFactor| |exponent| |iteratedInitials| |viewDeltaYDefault| - |iitan| |PollardSmallFactor| |denom| |resultantEuclideannaif| - |OMconnectTCP| |currentSubProgram| |nilFactor| |exQuo| |deepestTail| - |viewDeltaXDefault| |ptree| |showTheFTable| - |semiResultantEuclideannaif| |OMbindTCP| |newSubProgram| - |regularRepresentation| |moebius| |head| |viewZoomDefault| |dihedral| - |left| |clearTheFTable| |pi| |pdct| |OMopenFile| |clearTheSymbolTable| - |traceMatrix| |rightRecip| |mdeg| |viewPhiDefault| |cap| |right| - |fTable| |infinity| |powers| |OMopenString| |showTheSymbolTable| - |retractIfCan| |randomLC| |leftRecip| |mvar| |viewThetaDefault| |cup| - |palgint0| |partition| |OMclose| |printTypes| |leftPower| - |relativeApprox| |pointColorDefault| |wreath| |palgextint0| |complete| - |OMsetEncoding| |newTypeLists| |createZechTable| |rightPower| |rootOf| - |lineColorDefault| |SFunction| |palglimint0| |options| |kernel| - |pole?| |OMputApp| |typeLists| |createMultiplicationTable| - |derivationCoordinates| |allRootsOf| |axesColorDefault| - |skewSFunction| |draw| |keys| |palgRDE0| |listBranches| |OMputAtp| - |externalList| |createMultiplicationMatrix| |one?| - |definingPolynomial| |unitsColorDefault| |cyclotomicDecomposition| - |OMputAttr| |typeList| |createLowComplexityTable| |splitSquarefree| - |positive?| |pointSizeDefault| |cyclotomicFactorization| |leastPower| - |maxPoints| |string| |OMputBind| |parametersOf| - |createLowComplexityNormalBasis| |function| |normalDenom| |negative?| - BY |viewPosDefault| |rangeIsFinite| |idealiser| |setMinPoints| - |OMputBVar| |fortranTypeOf| |representationType| |totalfract| |zero?| - |viewSizeDefault| |functionIsContinuousAtEndPoints| |failed| - |idealiserMatrix| |minPoints| |makeObject| |OMputError| |empty| - |createPrimitiveElement| |map| |viewDefaults| |functionIsOscillatory| - |moduleSum| |parametric?| |OMputObject| |compound?| - |tableForDiscreteLogarithm| |makeTerm| |areEquivalent?| - |viewWriteDefault| |changeName| |mapUnivariate| |plotPolar| |coef| - |OMputEndApp| |getOperands| |factorsOfCyclicGroupSize| |listOfMonoms| - |isAbsolutelyIrreducible?| |currentEnv| |viewWriteAvailable| - |exprHasWeightCosWXorSinWX| |symbol| |mapUnivariateIfCan| |debug3D| - |OMputEndAtp| |getOperator| |sizeMultiplication| |symmetricSquare| - |meatAxe| |var1StepsDefault| |exprHasAlgebraicWeight| |expression| - |mapMatrixIfCan| |numFunEvals3D| |setleaves!| - |getMultiplicationMatrix| |factor1| |scanOneDimSubspaces| |printInfo| - |var2StepsDefault| |exprHasLogarithmicWeights| |integer| - |mapBivariate| |setAdaptive3D| |s21bcf| |setCondition!| NOT - |balancedBinaryTree| |getMultiplicationTable| |convert| - |symmetricProduct| |expt| |tubePointsDefault| - |combineFeatureCompatibility| |fullDisplay| |adaptive3D?| |s21bdf| - |setValue!| OR |primitive?| |symmetricPower| |showArrayValues| - |tubeRadiusDefault| |sparsityIF| |relationsIdeal| - |setScreenResolution3D| |fortranCompilerName| |empty?| AND |bfEntry| - |numberOfIrreduciblePoly| |directSum| |showScalarValues| - |stiffnessAndStabilityFactor| |saturate| |screenResolution3D| - |fortranLinkerArgs| |splitNodeOf!| |label| |bfKeys| - |numberOfPrimitivePoly| |solveLinearPolynomialEquationByFractions| - |solveRetract| |monicDivide| |stiffnessAndStabilityOfODEIF| - |groebner?| |setMaxPoints3D| |aspFilename| |remove!| |symbolTable| - |numberOfNormalPoly| |hasSolution?| |mainVariable| |divideExponents| - |systemSizeIF| |groebnerIdeal| |declare| |maxPoints3D| |dimensionsOf| - |subNodeOf?| |createIrreduciblePoly| |linSolve| |uniform01| - |unmakeSUP| |expenseOfEvaluationIF| |ideal| |setMinPoints3D| - |restorePrecision| |nodeOf?| |createPrimitivePoly| |true| - |LyndonWordsList| |normal01| |makeSUP| |accuracyIF| |leadingIdeal| - |minPoints3D| |antiCommutator| |updateStatus!| |createNormalPoly| - |LyndonWordsList1| |exponential1| |vectorise| |intermediateResultsIF| - |backOldPos| |tValues| |commutator| |extractSplittingLeaf| - |createNormalPrimitivePoly| |lyndonIfCan| |chiSquare1| |extend| - |subscriptedVariables| |generalPosition| |tRange| |associator| - |squareMatrix| |createPrimitiveNormalPoly| |lyndon| |exponential| - |truncate| |constructor| |central?| |quotient| |plot| - |complexEigenvalues| |transpose| |nextIrreduciblePoly| |lyndon?| - |chiSquare| |order| |elliptic?| |zeroDim?| |pointPlot| - |complexEigenvectors| |trim| |option| * |nextPrimitivePoly| - |numberOfComputedEntries| |factorFraction| |terms| |doubleResultant| - |inRadical?| |calcRanges| |isConnected?| |split| |operation| - |nextNormalPoly| |rst| |componentUpperBound| |squareFreePart| - |nothing| |distdfact| |in?| |fixPredicate| |connectTo| |replace| - |nextNormalPrimitivePoly| |frst| |blue| |BumInSepFFE| |rules| - |separateDegrees| |element?| |patternMatch| |normalizedAssociate| - |upperCase!| |unknown| |li| = |nextPrimitiveNormalPoly| |lazyEvaluate| - |green| |multiplyExponents| |trace2PowMod| |zeroDimPrime?| - |patternMatchTimes| |normalize| |upperCase| |leastAffineMultiple| - |lazy?| |red| |init| |laurentIfCan| |tracePowMod| |zeroDimPrimary?| - |nil| |precision| |bernoulli| |double| |outputArgs| |lowerCase!| < - |reducedQPowers| |explicitlyEmpty?| |whitePoint| |laurentRep| - |irreducible?| |rightTrim| |primaryDecomp| |chebyshevT| - |normInvertible?| |lowerCase| > |rootOfIrreduciblePoly| - |explicitEntries?| |uniform| |rationalPower| |decimal| |leftTrim| - |contract| |chebyshevU| |normFactors| |KrullNumber| <= |write!| - |matrixDimensions| |binomial| |dominantTerm| |innerint| - |leadingSupport| |cyclotomic| |npcoef| |numberOfVariables| >= |read!| - |matrixConcat3D| |poisson| |limitPlus| |exteriorDifferential| - |shrinkable| |euler| |listexp| |algebraicDecompose| |iomode| |setelt!| - |geometric| |split!| |totalDifferential| |physicalLength!| - |fixedDivisor| |characteristicPolynomial| |transcendentalDecompose| - |parents| |close!| |identityMatrix| |ridHack1| |setlast!| - |homogeneous?| |physicalLength| |laguerre| |realEigenvalues| - |internalDecompose| + |close| |reopen!| |zeroMatrix| |interpolate| - |setrest!| |leadingBasisTerm| |flexibleArray| |legendre| |declare!| - |realEigenvectors| |decompose| - |rightUnit| |mappingAst| |nullSpace| - |setfirst!| |ignore?| |elseBranch| |dmpToHdmp| - |halfExtendedResultant2| |upDateBranches| |pattern| / |display| - |leftUnit| |nullary| |nullity| |cycleSplit!| |computeInt| |thenBranch| - |hdmpToDmp| |halfExtendedResultant1| |preprocess| - |rightMinimalPolynomial| |fixedPoint| |rowEchelon| |test| |concat!| - |checkForZero| |generalizedInverse| |pToHdmp| |extendedResultant| - |internalZeroSetSplit| |leftMinimalPolynomial| |recur| |column| - |cycleTail| |logGamma| |imports| |hdmpToP| |subResultantsChain| - |internalAugment| |associatorDependence| |const| |row| |cycleLength| - |hypergeometric0F1| |sequence| |dmpToP| |eq| |lazyPseudoQuotient| - |possiblyInfinite?| |prefix| |message| |lieAlgebra?| |curry| - |maxColIndex| |cycleEntry| |rotatez| |iterationVar| |iter| |pToDmp| - |lazyPseudoRemainder| |explicitlyFinite?| |input| |jordanAlgebra?| - |diag| |minColIndex| |taylor| |invmultisect| |rotatey| |readBytes!| - |sylvesterSequence| |segment| |bernoulliB| |nextItem| |library| - |noncommutativeJordanAlgebra?| |curryRight| |maxRowIndex| |laurent| - |multisect| |rotatex| |readUInt32!| |sturmSequence| |eulerE| - |infiniteProduct| |jordanAdmissible?| |curryLeft| |minRowIndex| - |puiseux| |revert| |identity| |readInt32!| |boundOfCauchy| - |numericIfCan| |evenInfiniteProduct| |lieAdmissible?| |constantRight| - |antisymmetric?| |generalLambert| |dictionary| |readUInt16!| - |sturmVariationsOf| |complexNumericIfCan| |oddInfiniteProduct| |any| - |sylvesterMatrix| |jacobiIdentity?| |constantLeft| |symmetric?| |inv| - |evenlambert| |cons| |dioSolve| |readInt16!| |lazyVariations| - |FormatArabic| |generalInfiniteProduct| |bezoutMatrix| |set| - |powerAssociative?| |ground?| |twist| |diagonal?| |oddlambert| - |newLine| |readUInt8!| |content| |ScanArabic| |showAll?| - |alternative?| |ground| |setsubMatrix!| |square?| |lambert| |copies| - |readInt8!| |totalDegree| |exp| |FormatRoman| |showAllElements| - |flexible?| |subMatrix| |rectangularMatrix| |leadingMonomial| - |lagrange| |sayLength| |readByte!| |minimumDegree| |ScanRoman| |delay| - |rightAlternative?| |swapColumns!| |characteristic| - |leadingCoefficient| |univariatePolynomial| |setnext!| |setFieldInfo| - |monomials| |ScanFloatIgnoreSpaces| |findCycle| |leftAlternative?| - |swapRows!| |round| |primitiveMonomials| |integrate| |setprevious!| - |pol| |isPlus| |ScanFloatIgnoreSpacesIfCan| |repeating?| - |antiAssociative?| |vertConcat| |fractionPart| |reductum| - |multiplyCoefficients| |shanksDiscLogAlgorithm| |xn| - |numericalIntegration| |isTimes| |center| |repeating| |associative?| - |horizConcat| |wholePart| |erf| |quoByVar| |reflect| |dAndcExp| - |isExpt| |rk4| |recip| |antiCommutative?| |squareTop| |floor| - |coefficients| |repSq| |isPower| |rk4a| |integers| |commutative?| - |elRow1!| |ceiling| |stFunc1| |permutation| |expPot| |rroot| |rk4qc| - |oddintegers| |rightCharacteristicPolynomial| |hash| |elRow2!| |norm| - |dilog| |stFunc2| |stirling1| |qPot| |qroot| |rk4f| |int| |show| - |leftCharacteristicPolynomial| |count| |elColumn2!| |mightHaveRoots| - |sin| |stFuncN| |stirling2| |lookup| |froot| |aromberg| |mapmult| - |fractionFreeGauss!| |refine| |cos| |fixedPointExquo| |summation| |lo| - |normal?| |nthr| |asimpson| |deriv| |nthCoef| |trace| |invertIfCan| - |middle| |tan| |ode1| |factorials| |basis| |firstUncouplingMatrix| - |atrapezoidal| |gderiv| |binomThmExpt| |copy!| |roman| |cot| |ode2| - |mkcomm| |normalElement| |integral| |romberg| |compose| |pomopo!| - |plus!| |recoverAfterFail| |sec| |ode| |polarCoordinates| |simpson| - |addiag| |mapExponents| |minus!| |showTheRoutinesTable| |csc| |mpsode| - |imaginary| |genericRightNorm| |polyred| |trapezoidal| |lazyIntegrate| - |key| |linearAssociatedLog| |length| |leftScalarTimes!| - |deleteRoutine!| |asin| UP2UTS |solid| |genericRightTrace| - |padicFraction| |rombergo| |nlde| |linearAssociatedOrder| |scripts| - |rightScalarTimes!| |getExplanations| |acos| UTS2UP |solid?| - |genericRightMinimalPolynomial| |padicallyExpand| |simpsono| |powern| - |filename| |linearAssociatedExp| |droot| |systemCommand| |atan| - LODO2FUN |nary?| |denominators| |rightRankPolynomial| - |numberOfFractionalTerms| |trapezoidalo| |mapdiv| |not?| - |createNormalElement| |fill!| |prefixRagits| |name| |iroot| |acot| - RF2UTS |unary?| |numerators| |genericLeftNorm| |nthFractionalTerm| - |sup| |lazyGintegrate| |parse| |setLabelValue| |minIndex| - |fractRagits| |body| |asec| |magnitude| |convergents| - |genericLeftTrace| |makeRecord| |firstNumer| |imagE| |power| |getCode| - |maxIndex| |wholeRagits| |normal| |acsc| |cross| |approximants| - |genericLeftMinimalPolynomial| |firstDenom| |printCode| |entry?| - |radix| |dec| |sinh| |dot| |reducedForm| |incr| |leftRankPolynomial| - |compactFraction| |f02bbf| |completeSmith| |printStatement| |indices| - |randnum| |rank| |partialQuotients| |cosh| |scan| |generic| |hi| - |f02bjf| |partialFraction| |diophantineSystem| |point| |block| - |index?| |reseed| |tanh| |graphCurves| |partialDenominators| - |rightUnits| |gcdPrimitive| |f02fjf| |csubst| |returns| |entries| - |seed| |partialNumerators| |leftUnits| |symmetricGroup| |f02wef| - |particularSolution| |goto| |key?| |port| |rational| |basicSet| - |reducedContinuedFraction| |compBound| |f02xef| |alternatingGroup| - |mapSolve| |series| |repeatUntilLoop| |symbolIfCan| |rational?| - |exquo| |infRittWu?| |nullary?| |push| |error| |tablePow| - |abelianGroup| |f04adf| |quadratic| |whileLoop| |argument| - |rationalIfCan| |t| |div| |getCurve| |derivative| |bindings| |solveid| - |f04arf| |cyclicGroup| |assert| |cubic| |forLoop| |constantKernel| - |setvalue!| |quo| |listLoops| |cartesian| |testModulus| - |dihedralGroup| |f04asf| |quartic| |sin?| |constantIfCan| - |setchildren!| |lists| |closed?| |polar| |HenselLift| |f04atf| - |mathieu11| |min| |aLinear| |index| |zeroVector| |kovacic| |node?| - |rem| |open?| |cylindrical| |completeHensel| |mathieu12| |f04axf| - |aQuadratic| |zeroSquareMatrix| |laplace| |child?| |setClosed| - |spherical| |multMonom| |f04faf| |mathieu22| |rule| |aCubic| - |identitySquareMatrix| |trailingCoefficient| |distance| |tube| - |parabolic| |build| |mathieu23| |f04jgf| |aQuartic| |pair| - |lSpaceBasis| |normalizeIfCan| |nodes| |unitVector| - |parabolicCylindrical| |leadingIndex| |mathieu24| |f04maf| - |radicalSolve| |finiteBasis| |polCase| |rename| |cosSinInfo| |say| - |paraboloidal| |leadingExponent| |janko2| |f04mbf| |radicalRoots| - |principal?| |distFact| |rename!| |loopPoints| |ellipticCylindrical| - |GospersMethod| |rubiksGroup| |box| |f04mcf| |contractSolve| |divisor| - |identification| |mainValue| |generalTwoFactor| |prolateSpheroidal| - |value| |nextSubsetGray| |youngGroup| |f04qaf| |decomposeFunc| - |useNagFunctions| |LyndonCoordinates| |mainDefiningPolynomial| - |generalSqFr| |oblateSpheroidal| |firstSubsetGray| |lexGroebner| - |f07adf| |unvectorise| |rationalPoints| |LyndonBasis| |mainForm| - |twoFactor| |bipolar| |clipPointsDefault| |totalGroebner| |f07aef| - |bubbleSort!| |nonSingularModel| |zeroDimensional?| |rischDE| |result| - |setOrder| |bipolarCylindrical| |drawToScale| |expressIdealMember| - |f07fdf| |insertionSort!| |algSplitSimple| |fglmIfCan| |rischDEsys| - |getOrder| |reset| |fortran| |toroidal| |adaptive| |principalIdeal| - |f07fef| |check| |hyperelliptic| |groebner| |checkPrecision| - |monomRDE| |less?| |conical| |figureUnits| |LagrangeInterpolation| - |s01eaf| |lprop| |elliptic| |lexTriangular| |baseRDE| |userOrdered?| - |write| |modTree| |putColorInfo| |psolve| |s13aaf| |llprop| - |integralDerivationMatrix| |squareFreeLexTriangular| |polyRDE| |save| - |largest| |multiEuclideanTree| |appendPoint| |wrregime| |s13acf| - |lllp| |integralRepresents| |belong?| |monomRDEsys| |more?| - |complexZeros| |component| |rdregime| |s13adf| |lllip| - |integralCoordinates| |Ci| |baseRDEsys| |setVariableOrder| - |divisorCascade| |ranges| |bsolve| |s14aaf| |mesh?| |yCoordinates| - |Si| |weighted| |getVariableOrder| |resetAttributeButtons| |graeffe| - |pointLists| |dmp2rfi| |s14abf| |mesh| |/\\| |kind| - |inverseIntegralMatrixAtInfinity| |Ei| |rdHack1| |resetVariableOrder| - |getButtonValue| |pleskenSplit| |makeGraphImage| |se2rfi| |s14baf| - |polygon?| |\\/| |integralMatrixAtInfinity| |linGenPos| |op| - |operator| |prime?| |reciprocalPolynomial| |graphImage| |pr2dmp| - |s15adf| |polygon| |inverseIntegralMatrix| |groebgen| |midpoint| - |sample| |rootRadius| |groebSolve| |hasoln| |s15aef| |closedCurve?| - |mapDown!| |integralMatrix| |totolex| |midpoints| |rationalFunction| - |schwerpunkt| |flatten| |testDim| |ParCondList| |s17acf| |closedCurve| - |mapUp!| |setProperties| |reduceBasisAtInfinity| |entry| |minPol| - |realZeros| |taylorIfCan| |setErrorBound| |genericPosition| |redpps| - |s17adf| |curve?| |setProperty| |normalizeAtInfinity| |computeBasis| - |mainCharacterization| |removeZeroes| |script| |startPolynomial| - |null| |lfunc| |B1solve| |s17aef| |curve| |complementaryBasis| |coord| - |algebraicOf| |taylorRep| |cycleElt| |not| |inHallBasis?| |factorset| - |s17aff| |point?| |integral?| |anticoord| |ReduceOrder| |union| - |factorSquareFree| |size?| |computeCycleLength| |search| |and| - |reorder| |maxrank| |s17agf| |enterPointData| |integralAtInfinity?| - |intcompBasis| |setref| |henselFact| |eq?| |tex| |computeCycleEntry| - |or| |headAst| |minrank| |s17ahf| |composites| - |integralBasisAtInfinity| |choosemon| |deref| |hasHi| - |doublyTransitive?| |findConstructor| |xor| |heap| |minset| |s17ajf| - |components| |deleteProperty!| |ramified?| |transform| |ref| |fmecg| - |knownInfBasis| |dualSignature| |case| |gcdprim| |nextSublist| - |s17akf| |numberOfComposites| |has?| |ramifiedAtInfinity?| |pack!| - |radicalEigenvectors| |commonDenominator| |rootSplit| |coerceP| |Zero| - |gcdcofact| |overset?| |s17dcf| |numberOfComponents| |singular?| |top| - |complexLimit| |radicalEigenvector| |ratDenom| |clearDenominator| - |powerSum| |gcdcofactprim| |One| |outerProduct| |s17def| |ParCond| - |dim| |create3Space| |singularAtInfinity?| |limit| - |radicalEigenvalues| |splitDenominator| |ratPoly| |elementary| - |lintgcd| |redmat| |s17dgf| |outputAsScript| |branchPoint?| - |categories| |linearlyDependent?| |eigenMatrix| - |monicRightFactorIfCan| |rootPower| |alternating| |hex| |regime| - |s17dhf| |outputAsTex| |branchPointAtInfinity?| |linearDependence| - |normalise| |rightFactorIfCan| |rootProduct| |inspect| |cyclic| - |every?| |s17dlf| |sqfree| |matrix| |abs| |rationalPoint?| - |solveLinear| |gramschmidt| |leftFactorIfCan| |rootSimp| |extract!| - |any?| |inconsistent?| |s18acf| |Beta| |absolutelyIrreducible?| - |reducedSystem| |orthonormalBasis| |monicDecomposeIfCan| |rootKerSimp| - |setButtonValue| |elt| |host| |numFunEvals| |s18adf| |digamma| |genus| - |duplicates?| |antisymmetricTensors| |monicCompleteDecompose| - |leftRank| |setAttributeButtonStep| |trueEqual| |s18aef| |setAdaptive| - |linear| |polygamma| |getZechTable| |formula| |mapGen| - |createGenericMatrix| |divideIfCan| |rightRank| |factorList| - |adaptive?| |s18aff| |Gamma| |leaves| |mapExpon| |symmetricTensors| - |sum| |noKaratsuba| |doubleRank| |listConjugateBases| |s18dcf| - |setScreenResolution| |besselJ| |polynomial| |mainKernel| - |commutativeEquality| |tensorProduct| |karatsubaOnce| |weakBiRank| - |matrixGcd| |screenResolution| |s18def| |besselY| |distribute| - |leftMult| |permutationRepresentation| |karatsuba| |biRank| - |divideIfCan!| |setMaxPoints| |s19aaf| |besselI| - |functionIsFracPolynomial?| |rightMult| |completeEchelonBasis| - |separate| |basisOfCommutingElements| |s19abf| |second| |besselK| - |brillhartIrreducible?| |lp| |problemPoints| |makeUnit| - |createRandomElement| |pseudoDivide| |eisensteinIrreducible?| - |multiple?| |basisOfLeftAnnihilator| |s19acf| |third| |airyAi| - |zerosOf| |reverse!| |cyclicSubmodule| |pseudoQuotient| - |tryFunctionalDecomposition?| |generic?| |basisOfRightAnnihilator| - |s19adf| |airyBi| |singularitiesOf| |makeMulti| - |standardBasisOfCyclicSubmodule| |composite| - |tryFunctionalDecomposition| |quoted?| |basisOfLeftNucleus| |s20acf| - |subNode?| |polynomialZeros| |subResultantGcd| |btwFact| |inR?| - |nrows| |basisOfRightNucleus| |s20adf| |infLex?| |f2df| |logpart| - |hue| |resultant| |beauzamyBound| |isList| |ncols| - |basisOfMiddleNucleus| |s21baf| |setEmpty!| |pushFortranOutputStack| - |ef2edf| |ratpart| |bright| |shade| |discriminant| |arguments| - |bombieriNorm| |isOp| |basisOfNucleus| |s21bbf| |setStatus!| - |popFortranOutputStack| |ocf2ocdf| |mkAnswer| |nthRootIfCan| - |pseudoRemainder| |void| |rootBound| |satisfy?| |basisOfCenter| - |socf2socdf| |perfectNthPower?| |expIfCan| |shiftLeft| - |singleFactorBound| |addBadValue| |e01baf| |subTriSet?| - |basisOfLeftNucloid| |expr| |outputAsFortran| |df2fi| |perfectNthRoot| - |logIfCan| |shiftRight| |showSummary| |quadraticNorm| |badValues| - |e01bef| |subPolSet?| |basisOfRightNucloid| |edf2fi| |approxNthRoot| - |sinIfCan| |karatsubaDivide| |infinityNorm| |retractable?| |e01bff| - |internalSubPolSet?| |basisOfCentroid| |edf2df| |perfectSquare?| - |cosIfCan| |scaleRoots| |showAttributes| |ListOfTerms| |e01bgf| - |internalInfRittWu?| |radicalOfLeftTraceForm| |expenseOfEvaluation| - |perfectSqrt| |tanIfCan| |evaluateInverse| |complexNormalize| |bag| - |shiftRoots| |PDESolve| |e01bhf| |internalSubQuasiComponent?| - |showTypeInOutput| |variable| |numberOfOperations| |approxSqrt| - |cotIfCan| |evaluate| |complexElementary| |binding| |degreePartition| - |leftFactor| |e01daf| |subQuasiComponent?| |objectOf| |morphism| - |iterators| |edf2efi| |generateIrredPoly| |secIfCan| |conjug| |trigs| - |factorOfDegree| |rightFactorCandidate| |e01saf| - |removeSuperfluousQuasiComponents| |domainOf| |balancedFactorisation| - |dfRange| |complexExpand| |outputList| |cscIfCan| |adjoint| |real?| - |factorsOfDegree| |measure| |e01sbf| |subCase?| |applyRules| |dflist| - |complexIntegrate| |asinIfCan| |arity| |complexForm| |pascalTriangle| - |e01sef| |coerceImages| |removeSuperfluousCases| |qelt| |localUnquote| - |df2mf| |dimensionOfIrreducibleRepresentation| |acosIfCan| - |getDatabase| |UpTriBddDenomInv| |qsetelt| |rangePascalTriangle| - |fixedPoints| |e01sff| |prepareDecompose| |arbitrary| |ldf2vmf| - |irreducibleRepresentation| |atanIfCan| |numericalOptimization| - |LowTriBddDenomInv| |leader| |sizePascalTriangle| |max| |e02adf| - |odd?| |branchIfCan| |xRange| |setColumn!| |edf2ef| |checkRur| - |acotIfCan| |goodnessOfFit| |simplify| |fillPascalTriangle| |e02aef| - |even?| |startTableGcd!| |yRange| |setRow!| |vedf2vef| |cAcsch| - |asecIfCan| |whatInfinity| |htrigs| |safeCeiling| |e02agf| - |numberOfCycles| |stopTableGcd!| |zRange| |oneDimensionalArray| - |df2st| |cAsech| |acscIfCan| |infinite?| |simplifyExp| |safeFloor| - |map!| |cyclePartition| |e02ahf| |startTableInvSet!| - |associatedSystem| |lhs| |f2st| |cAcoth| |sinhIfCan| |finite?| - |simplifyLog| |qsetelt!| |safetyMargin| |coerceListOfPairs| |e02ajf| - |stopTableInvSet!| |uncouplingMatrices| |rhs| |ldf2lst| |cAtanh| - |delete| |coshIfCan| |pureLex| |expandPower| |sumSquares| - |coercePreimagesImages| |e02akf| |stosePrepareSubResAlgo| |sdf2lst| - |cAcosh| |tanhIfCan| |totalLex| |expandLog| |euclideanNormalForm| - |listRepresentation| |e02baf| |stoseInternalLastSubResultant| |getlo| - |cAsinh| |cothIfCan| |reverseLex| |cos2sec| |debug| - |euclideanGroebner| |permanent| |e02bbf| - |stoseIntegralLastSubResultant| |gethi| |cCsch| |sechIfCan| |leftLcm| - |cosh2sech| D |factorGroebnerBasis| |cycles| |e02bcf| - |stoseLastSubResultant| |outputMeasure| |cSech| |cschIfCan| - |rightExtendedGcd| |cot2trig| |groebnerFactorize| |e02bdf| |cycle| - |stoseInvertible?sqfreg| |acsch| |measure2Result| |cCoth| |clearCache| - |asinhIfCan| |rightGcd| |coth2trigh| |credPol| - |initializeGroupForWordProblem| |e02bef| |stoseInvertibleSetsqfreg| - |att2Result| |cTanh| |acoshIfCan| |rightExactQuotient| |csc2sin| - |redPol| |movedPoints| |e02daf| |stoseInvertible?reg| |iflist2Result| - |cCosh| |atanhIfCan| |rightRemainder| |csch2sinh| |gbasis| |e02dcf| - |wordInGenerators| |stoseInvertibleSetreg| |loadNativeModule| - |associatedEquations| |parts| |pdf2ef| |cSinh| |acothIfCan| - |rightQuotient| |sec2cos| |critT| |wordInStrongGenerators| |e02ddf| - |stoseInvertible?| |arrayStack| |pdf2df| |cAcsc| |asechIfCan| - |rightLcm| |sech2cosh| |critM| |orbits| |e02def| |stoseInvertibleSet| - |df2ef| |sort| |cAsec| |acschIfCan| |leftExtendedGcd| |sin2csc| - |noLinearFactor?| |critB| |orbit| |e02dff| |stoseSquareFreePart| - |fi2df| |cAcot| |pushdown| |leftGcd| |sinh2csch| |insertRoot!| - |critBonD| |permutationGroup| |e02gaf| |coleman| |mat| |cAtan| - |pushup| |leftExactQuotient| |tan2trig| |print| |critMTonD1| - |wordsForStrongGenerators| |e02zaf| |inverseColeman| |neglist| |log10| - |cAcos| |reducedDiscriminant| |leftRemainder| |tanh2trigh| |resolve| - |reverse| |critMonD1| |strongGenerators| |e04dgf| |listYoungTableaus| - |multiEuclidean| |cAsin| |random| |leftQuotient| |idealSimplify| - |bitand| |tan2cot| |condition| |redPo| |generators| |e04fdf| - |makeYoungTableau| |extendedEuclidean| |cCsc| |definingInequation| - |bitior| |monicLeftDivide| |tanh2coth| |level| |hMonic| - |bivariateSLPEBR| |e04gcf| |nextColeman| |euclideanSize| |cSec| - |definingEquations| |monicRightDivide| |cot2tan| |updatF| - |solveLinearPolynomialEquationByRecursion| |e04jaf| - |nextLatticePermutation| |call| |sizeLess?| |cCot| |setStatus| - |leftDivide| |coth2tanh| |sPol| |factorByRecursion| |e04mbf| - |nextPartition| |simplifyPower| |cTan| |quasiAlgebraicSet| - |rightDivide| |removeCosSq| |updatD| |factorSquareFreeByRecursion| - |e04naf| |numberOfImproperPartitions| |number?| |cCos| - |radicalSimplify| |hermiteH| |removeSinSq| |minGbasis| |e04ucf| - |randomR| |subSet| |depth| |seriesSolve| |cSin| |denominator| - |laguerreL| |removeCoshSq| |lepol| |factorSFBRlcUnit| Y |e04ycf| - |unrankImproperPartitions0| |constantToUnaryFunction| |cLog| - |numerator| |legendreP| |removeSinhSq| |prinshINFO| |charthRoot| - |f01brf| |unrankImproperPartitions1| |tubePlot| |cExp| |quadraticForm| - |writeBytes!| |expandTrigProducts| |prindINFO| |mantissa| |conditionP| - |f01bsf| |subresultantSequence| |nil| |infinite| |arbitraryExponent| - |approximate| |complex| |shallowMutable| |canonical| |noetherian| - |central| |partiallyOrderedSet| |arbitraryPrecision| - |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary| - |additiveValuation| |unitsKnown| |canonicalUnitNormal| - |multiplicativeValuation| |finiteAggregate| |shallowlyMutable| - |commutative|)
\ No newline at end of file + |Record| |Union| |extract!| |OMUnknownCD?| |expenseOfEvaluation| + |integralMatrix| |ground| |makeMulti| |c06fpf| |bombieriNorm| + |fillPascalTriangle| |lepol| |rightExactQuotient| + |functionIsContinuousAtEndPoints| |in?| |minRowIndex| |mainVariable| + |dmpToHdmp| |port| |leadingMonomial| |mainValue| |ScanArabic| + |vectorise| |primitive?| |light| |decreasePrecision| |setAdaptive3D| + |primextintfrac| |divide| |algintegrate| |leadingCoefficient| |exquo| + |close!| |child| |exprToXXP| |string?| |invmod| |key| |code| + |component| |cCsc| |tensorProduct| |f01rdf| |shuffle| + |primitiveMonomials| |t| |arg1| |div| |expandLog| |minimize| |limit| + |cyclicEntries| |basicSet| |cAtanh| |tab1| |removeSquaresIfCan| + |column| |printStats!| |reductum| |arg2| |quo| |extractBottom!| + |filename| |intersect| |axesColorDefault| |zeroDimPrimary?| + |fixedPointExquo| |indicialEquations| |genericLeftTrace| + |mainCharacterization| |SturmHabichtCoefficients| |radicalRoots| + |escape| |remainder| |pleskenSplit| |setMaxPoints| |trigs| |not?| + |critM| |getCurve| |duplicates| |makeViewport3D| |f01qef| |rem| + |conditions| |substring?| |zeroSquareMatrix| |makeTerm| |musserTrials| + |frobenius| |high| |parse| |measure2Result| |quadraticNorm| + |factorByRecursion| |f02axf| |members| |match| |horizConcat| + |tan2trig| |intensity| |semiSubResultantGcdEuclidean2| |minColIndex| + |setEpilogue!| |lyndon?| |OMgetApp| |mapExponents| |d02gbf| |suffix?| + |s18adf| |droot| |e02aef| |intcompBasis| |monomRDE| |revert| + |partialQuotients| |quote| |shellSort| |ScanFloatIgnoreSpacesIfCan| + |contours| |mainVariable?| |showAll?| |csc2sin| |viewDeltaXDefault| + |s21bcf| |primlimitedint| |variable?| |any?| + |standardBasisOfCyclicSubmodule| |prefix?| |decrease| + |intermediateResultsIF| |triangSolve| |summation| |factorSFBRlcUnit| + |showSummary| |karatsubaOnce| |perfectSqrt| |halfExtendedResultant2| + |idealiserMatrix| |divideExponents| |generalTwoFactor| |skewSFunction| + |option?| |c02aff| |subHeight| |upperCase?| |totolex| |fixPredicate| + |bezoutDiscriminant| |c06ekf| |euclideanNormalForm| |isOp| + |radicalEigenvalues| |reducedContinuedFraction| |sorted?| |derivative| + |lowerPolynomial| |removeRedundantFactorsInPols| |returnTypeOf| + |principal?| |showAttributes| |zeroOf| |slash| |zeroSetSplit| + |symmetricPower| |equiv| |merge!| |definingInequation| |cycleTail| + |exprex| |indicialEquationAtInfinity| |notelem| |complex?| + |identityMatrix| |factorOfDegree| |s19aaf| |parameters| |cCoth| + |iisin| |OMputString| |rdregime| |reset| |wholePart| + |constantOperator| |mindegTerm| |bernoulli| |sh| |identity| + |firstNumer| |removeZeroes| |orbits| |infix?| |makeGraphImage| + |areEquivalent?| |showTheFTable| |laplace| |solveInField| BY + |numberOfFactors| |e04mbf| |selectIntegrationRoutines| |minus!| + |write| |mask| |index| |digamma| |even?| |mainMonomials| + |topPredicate| |less?| |weakBiRank| |badValues| |bumptab1| |save| + |divergence| |extensionDegree| |reify| |critMTonD1| |redPol| + |invmultisect| |setCondition!| |showIntensityFunctions| |chiSquare| + |systemSizeIF| |zero| |prolateSpheroidal| |basisOfNucleus| + |alternative?| |multiset| |setref| |logical?| |nothing| |box| + |removeRoughlyRedundantFactorsInContents| |scan| |composite| + |setFormula!| |palgRDE0| |OMputFloat| |normal?| |e04ycf| + |absolutelyIrreducible?| |bindings| |connectTo| |upDateBranches| + |yellow| |And| |listRepresentation| |packageCall| |splitDenominator| + |times!| |toseSquareFreePart| |createPrimitiveElement| |rank| + |addPointLast| |sqfrFactor| |tanIfCan| |seriesToOutputForm| |Or| |sub| + |conditionsForIdempotents| LODO2FUN |compBound| |showArrayValues| + |logGamma| |asinhIfCan| |plusInfinity| |midpoints| |s13adf| |Not| + |flatten| |color| |backOldPos| |c06eaf| |algDsolve| |besselI| + |readInt32!| |minusInfinity| |errorInfo| |monicLeftDivide| |prem| + |quoByVar| |setleft!| |f02aff| |getProperty| |outputArgs| |null?| + |patternVariable| |startPolynomial| |bumprow| |e02def| |genus| + |generalizedEigenvectors| |child?| |conical| |rightFactorCandidate| + |smith| |c05adf| |lfextlimint| |imagE| |initiallyReduced?| + |viewWriteDefault| |ridHack1| |startTableGcd!| |rotatey| |outputForm| + |readable?| |nextPartition| |region| |showTheRoutinesTable| + |categoryFrame| |ratPoly| |se2rfi| |d01bbf| |movedPoints| |solveid| + |digit| |e01bef| |selectNonFiniteRoutines| |nextSubsetGray| |bothWays| + |dimensions| |semiResultantEuclideannaif| |invertible?| |lists| |type| + |rightGcd| |generic| |order| |tryFunctionalDecomposition| + |setsubMatrix!| |maxint| |wordsForStrongGenerators| |nthr| |numer| + |henselFact| |d01gaf| |leftUnit| |extractPoint| |groebnerIdeal| + |e02baf| |listBranches| |hostPlatform| |denom| |getMeasure| + |unrankImproperPartitions0| |boundOfCauchy| |OMencodingUnknown| + |evaluateInverse| |fortranDouble| |normalized?| |nary?| |coordinate| + |functionIsFracPolynomial?| |qualifier| |ref| |An| |replace| |rotate!| + |reflect| |tubePoints| |f02xef| |outerProduct| |orOperands| |pi| + |tubeRadiusDefault| |optional| |showTheSymbolTable| |imports| + |rationalFunction| |lllip| |mkPrim| |OMsupportsCD?| |s21bbf| + |setClosed| |infinity| |closeComponent| |dark| |interpretString| + |tanh2coth| |axes| |changeName| |setRow!| |tValues| + |fullPartialFraction| |e01saf| |alphabetic| |meshPar1Var| |lfunc| ~ + |stoseInvertibleSet| |duplicates?| |exponents| |yCoord| |figureUnits| + |lowerCase!| |lift| |categories| |f04arf| |curveColor| + |nextsousResultant2| |unknownEndian| |generator| |readBytes!| + |square?| |diagonal| |kernel| |e02daf| |reduce| |simplifyPower| + |coth2trigh| |open| |power| |setRealSteps| = |elementary| |sparsityIF| + |primextendedint| |draw| |replaceKthElement| |numericIfCan| + |elliptic?| |iiGamma| |mpsode| |OMputAtp| |setlast!| |eq?| |dequeue| + |float?| |complexSolve| |subPolSet?| |quoted?| < |s14baf| + |currentCategoryFrame| |iiasinh| |OMbindTCP| |nullary| |f02bjf| + |maxPoints3D| > |spherical| |e02zaf| |constantToUnaryFunction| + |asimpson| |stoseLastSubResultant| |operations| + |nextNormalPrimitivePoly| |extractIfCan| |changeNameToObjf| <= + |exportedOperators| |makeObject| |positiveRemainder| |tanQ| + |rightMult| |rroot| |schwerpunkt| |complexNormalize| + |integralCoordinates| >= |denominators| |vedf2vef| |leadingTerm| + |interReduce| |createThreeSpace| |pile| |mainMonomial| |c06gsf| + |corrPoly| |alternatingGroup| |coef| |mapMatrixIfCan| + |normalizedDivide| |ipow| |hMonic| |currentEnv| |writeByte!| |c05pbf| + UTS2UP |reducedQPowers| |LagrangeInterpolation| |clearCache| + |symmetricTensors| |basisOfRightNucloid| |coercePreimagesImages| + |isQuotient| |hdmpToP| |df2ef| + |setright!| |s21baf| + |removeSuperfluousQuasiComponents| |stoseInvertible?reg| |coordinates| + |blankSeparate| |getCode| |OMconnInDevice| |leftRegularRepresentation| + - |zeroVector| |minPoints3D| |numberOfDivisors| |sylvesterSequence| + |byte| |f07aef| |presub| |imaginary| / |iiasin| |odd?| |concat| + |increment| |constant?| |monicModulo| |colorFunction| |concat!| + |parseString| |bezoutMatrix| |rewriteIdealWithQuasiMonicGenerators| + |computeCycleEntry| |deriv| |outputMeasure| |makeSin| |lazyGintegrate| + |basisOfLeftNucleus| |split!| |unexpand| |relationsIdeal| + |newSubProgram| |someBasis| |int| |keys| |reducedForm| |iicot| + |dimensionsOf| |ratDenom| |Nul| |rk4qc| |iFTable| |subTriSet?| |unit?| + |SFunction| |mesh| |OMsend| |defineProperty| |numFunEvals3D| |iisec| + |autoReduced?| |bright| |Ci| |e02gaf| |surface| |objectOf| |expt| + |noKaratsuba| |fortranCarriageReturn| |sinhIfCan| |coHeight| |solid?| + |space| |besselY| |upperCase| |iidprod| |bubbleSort!| |reverse| + |mappingAst| |list| |kovacic| |pade| |leftZero| + |removeRoughlyRedundantFactorsInPol| |perspective| |checkForZero| + |groebSolve| |pomopo!| |car| |octon| |branchIfCan| |toroidal| + |iterationVar| |cSech| |genericPosition| |leastMonomial| |gradient| + |computeCycleLength| |cdr| |powerAssociative?| |antiCommutator| |rule| + |leaf?| |d03eef| |redPo| |lfintegrate| |tryFunctionalDecomposition?| + |declare| |setDifference| |inputOutputBinaryFile| |setEmpty!| + |initializeGroupForWordProblem| |resultantEuclideannaif| |oddintegers| + |basisOfLeftNucloid| |myDegree| |groebner?| |setIntersection| + |totalDifferential| |palglimint0| |iicsch| |seriesSolve| |dec| + |doubleRank| |leftRankPolynomial| |internalLastSubResultant| |subset?| + |lookup| |setUnion| |explogs2trigs| |clearDenominator| + |rewriteIdealWithHeadRemainder| |possiblyNewVariety?| |error| + |setleaves!| |setLabelValue| |matrix| |extractIndex| |lllp| |apply| + |makeSeries| |enterInCache| |realRoots| |cyclicEqual?| |assert| + |pastel| |innerSolve| |finite?| |diagonals| |distribute| + |symmetricRemainder| |OMencodingBinary| |elem?| |f02wef| |splitLinear| + |fortranLiteralLine| |quotient| |arrayStack| |morphism| |size| + |inverseIntegralMatrixAtInfinity| |node?| |fractionPart| + |tubePointsDefault| |nonSingularModel| |generalizedInverse| |front| + |sumOfKthPowerDivisors| |setColumn!| |unitCanonical| + |leastAffineMultiple| |OMgetFloat| |cschIfCan| + |rightRegularRepresentation| |redpps| |plus!| |twist| |coleman| + |outputBinaryFile| |polyPart| |primintfldpoly| |properties| + |rightCharacteristicPolynomial| |failed?| |Lazard2| + |selectMultiDimensionalRoutines| |consnewpol| |first| |xCoord| + |stronglyReduced?| |adaptive| |pToDmp| |relerror| |algebraicSort| + |nullSpace| |translate| |generic?| |say| |rest| |powerSum| + |genericRightMinimalPolynomial| |reorder| |e02bef| + |getMultiplicationMatrix| |modulus| |hasoln| |setMaxPoints3D| |failed| + |substitute| |pole?| |primitivePart| |moebiusMu| |OMconnectTCP| + |listConjugateBases| |compactFraction| |move| |quadratic?| + |removeDuplicates| |ef2edf| |characteristicSet| |copyInto!| |cSin| + |quotedOperators| |f02aaf| |generators| |delete| |monomial?| |edf2efi| + |semiResultantEuclidean1| |updateStatus!| |topFortranOutputStack| + |froot| |bitCoef| |df2fi| |simplifyLog| |integralRepresents| + |combineFeatureCompatibility| |physicalLength!| |open?| |OMgetAttr| + |loopPoints| |zeroDimensional?| |getBadValues| |clikeUniv| |pdf2df| + |edf2ef| |fractRadix| |leftMult| |exptMod| |rightExtendedGcd| + |minIndex| |pToHdmp| |collectUpper| |po| |usingTable?| + |particularSolution| |initTable!| |insertTop!| |s17adf| |andOperands| + |drawComplexVectorField| |imagI| |diagonal?| |lazy?| + |compiledFunction| |elRow2!| |double| |OMcloseConn| |writeInt8!| + |recoverAfterFail| |gcdcofactprim| |Ei| |lazyPseudoRemainder| + |principalIdeal| |datalist| |pushFortranOutputStack| |factor1| + |linears| |plot| |basisOfRightAnnihilator| |OMputApp| + |resultantReduit| |lazyIrreducibleFactors| |stoseInvertibleSetsqfreg| + |popFortranOutputStack| |s18dcf| |iisqrt3| |toseLastSubResultant| + |aspFilename| |select!| |mat| |match?| |maxrank| |roughSubIdeal?| + |mainExpression| |f02bbf| |zag| |eigenvalues| |cylindrical| + |purelyAlgebraic?| |top!| |currentSubProgram| + |semiLastSubResultantEuclidean| |d01amf| |d01apf| |tower| |interval| + |outputFixed| |sumSquares| |leadingCoefficientRicDE| |aromberg| + |denominator| |constant| |rischDE| |extendedResultant| |setfirst!| + |belong?| |fullDisplay| |checkRur| |padicallyExpand| |quatern| |bat1| + |precision| |cot2trig| |f01ref| |curve?| |cAcsc| |createNormalPoly| + |endOfFile?| |goto| |permutationRepresentation| |s15aef| + |retractIfCan| |declare!| |setScreenResolution| |debug| |returnType!| + |OMputEndError| |level| |ratpart| |oddlambert| |clipParametric| + |primitivePart!| |e04fdf| |scanOneDimSubspaces| D |qqq| + |innerEigenvectors| |s17def| |overlabel| |generateIrredPoly| |f07fef| + |repeating?| |callForm?| |equality| |mainSquareFreePart| |ode| + |external?| |red| |typeLists| |lazyPremWithDefault| |float| + |inconsistent?| |queue| |showTheIFTable| |completeSmith| |s19adf| + |att2Result| |internalIntegrate| |fixedDivisor| FG2F |outputAsFortran| + |ricDsolve| |e01bgf| |fractRagits| |remove!| |completeHensel| + |overlap| |OMputEndAttr| |collectQuasiMonic| |setOrder| + |perfectNthRoot| |componentUpperBound| |primintegrate| |rdHack1| + |merge| |inputBinaryFile| |OMReadError?| |setProperty| + |groebnerFactorize| |complexEigenvalues| |output| + |semiDiscriminantEuclidean| |cAtan| |acotIfCan| |explicitlyFinite?| + |mapmult| |minPoly| |segment| |ignore?| |nthFlag| |monomRDEsys| + |newLine| |cfirst| |nilFactor| |adaptive3D?| |lflimitedint| + |infiniteProduct| |map| |enumerate| |asechIfCan| + |createMultiplicationTable| |bandedHessian| |log| |s17agf| |karatsuba| + |besselJ| |f02ajf| |internalZeroSetSplit| |triangularSystems| + |useSingleFactorBound| |simpsono| |fortranComplex| |laguerreL| + |realElementary| |var2StepsDefault| |print| |closedCurve?| + |polarCoordinates| |alphanumeric?| |LyndonWordsList1| |check| |paren| + |center| GE |printStatement| |extendedint| |resolve| |latex| + |equivOperands| |key?| |ParCond| |shade| |rotate| GT |any| + |bipolarCylindrical| |pop!| |getGraph| |numberOfNormalPoly| |cTanh| + |characteristicPolynomial| |quasiMonicPolynomials| |graphStates| LE + |node| |convert| |internalInfRittWu?| |bracket| |makeYoungTableau| + |retract| |status| |airyBi| |biRank| |shallowExpand| |stronglyReduce| + |secIfCan| LT |root?| |localReal?| |squareFreePart| |mantissa| + |crushedSet| |addMatch| |mathieu12| |nil?| |laurentIfCan| |e02bdf| + |leftMinimalPolynomial| |extractProperty| |factorSquareFreePolynomial| + |nand| |goodnessOfFit| |symFunc| |erf| |fractionFreeGauss!| + |magnitude| |degree| |factors| |readUInt8!| |resetVariableOrder| + |jordanAlgebra?| |primes| |divideIfCan| |normalizeAtInfinity| + |logIfCan| |more?| |nil| |derivationCoordinates| |pushup| |exQuo| + |s21bdf| |ptree| |bivariatePolynomials| |Vectorise| |transpose| + |rightLcm| |iiacsch| |dilog| |predicates| |makeResult| |setPrologue!| + |sumOfSquares| |coshIfCan| |splitConstant| |scalarMatrix| + |kroneckerDelta| |linearMatrix| |sin| |signatureAst| |rationalPoints| + |SturmHabichtMultiple| |clip| |elseBranch| |simpson| |outputGeneral| + |approximate| |setchildren!| |hyperelliptic| |insert| |cos| + |enterPointData| |sechIfCan| |indices| |LiePolyIfCan| |imagk| + |complex| |ldf2vmf| |rombergo| |completeEval| |tan| |removeCoshSq| + |rightRank| |radicalOfLeftTraceForm| |mapDown!| |singularitiesOf| + |LyndonWordsList| |companionBlocks| |bringDown| |cot| |acoshIfCan| + |commutative?| |differentialVariables| |hasSolution?| |leaves| |hue| + |symmetric?| |Aleph| |toScale| |shift| |sec| |represents| |super| + |branchPointAtInfinity?| |squareMatrix| |complexZeros| |vertConcat| + |gcdcofact| |nthRoot| |csc| |OMserve| |rational| |supDimElseRittWu?| + |iiatan| |maxPoints| |f01mcf| |listexp| |complete| |tracePowMod| + |asin| |refine| |getOperator| |getRef| |weierstrass| |OMgetSymbol| + |integerIfCan| |difference| |remove| |acos| |OMgetEndObject| + |flexibleArray| |getStream| |varselect| |equation| |subscript| + |resetAttributeButtons| |cn| |denomRicDE| |sizeLess?| + |possiblyInfinite?| |atan| |loadNativeModule| |bitLength| + |clearFortranOutputStack| |expextendedint| |sech2cosh| + |irreducibleFactor| |resetNew| |closed?| |jacobi| |last| |function| + |acot| |inverseIntegralMatrix| |LyndonBasis| |normalizeIfCan| |length| + |localAbs| |Beta| |assoc| |comp| |irreducibleRepresentation| + |collectUnder| |sort!| |point?| |asec| |safeFloor| |leftLcm| + |semiResultantReduitEuclidean| |scripts| |hessian| |hermiteH| |qroot| + |OMwrite| |left| |monom| |acsc| |eval| |sizeMultiplication| + |multiEuclidean| |hdmpToDmp| |acothIfCan| |rationalPower| + |nextNormalPoly| |entry| |nlde| |evenlambert| |continuedFraction| + |right| |sinh| |vspace| |numerators| |member?| |bfKeys| |innerint| + |OMsetEncoding| |normal01| |returns| |scaleRoots| |cosh| |elRow1!| + |linearDependence| |rootDirectory| |addMatchRestricted| |solve| + |common| |atoms| |optimize| |overset?| |resultant| |minPoints| + |graphs| |tanh| |solveLinearlyOverQ| |exp1| |OMputBind| |just| + |minset| |binding| |prod| |selectAndPolynomials| |ran| |f07fdf| |coth| + |pushNewContour| |factorList| |rischNormalize| + |createPrimitiveNormalPoly| |mdeg| |ode2| |polar| |algebraicDecompose| + |lazyPseudoDivide| |multiplyExponents| |sech| + |semiIndiceSubResultantEuclidean| |tanAn| |rowEchLocal| |shiftLeft| + |s19acf| |expandTrigProducts| |addPoint| |lquo| |lieAlgebra?| |cCot| + |csch| |radicalSolve| |lastSubResultantEuclidean| |byteBuffer| |nodes| + |HermiteIntegrate| |startStats!| |graeffe| |atanIfCan| |makeFR| + |roughEqualIdeals?| |asinh| |leftGcd| |mainForm| |cyclePartition| + |imagJ| |decimal| |discriminantEuclidean| |iExquo| |dioSolve| |bits| + |integral?| |d03faf| |acosh| |completeHermite| |cosh2sech| |predicate| + |halfExtendedResultant1| |legendre| |curveColorPalette| |polyRDE| + |exponent| |OMputInteger| |epilogue| |rk4f| |top| |d02gaf| |atanh| + |paraboloidal| |pushucoef| |univariatePolynomialsGcds| |trunc| + |argument| |rightQuotient| |linearAssociatedOrder| |lcm| |s17dcf| + |rst| |removeSinSq| |ScanFloatIgnoreSpaces| |acoth| |dom| + |insertBottom!| |groebgen| |normalise| |OMgetEndBind| |qelt| + |leviCivitaSymbol| |dflist| |selectFiniteRoutines| |newTypeLists| + |plenaryPower| |ListOfTerms| |idealiser| |asech| |qsetelt| |leader| + |ceiling| |hclf| |parametersOf| |exactQuotient| |mkcomm| + |leadingSupport| |style| |beauzamyBound| |OMgetObject| |c06fuf| + |symbol| |append| |s17dlf| |palgLODE| |cAsin| |symmetricSquare| + |e02ajf| |xRange| |changeThreshhold| |symmetricDifference| |extension| + |entries| |multiple| |makeSUP| |expression| |insertionSort!| |gcd| + |Frobenius| |alphanumeric| |adaptive?| |exactQuotient!| |yRange| + |numberOfPrimitivePoly| |s17ajf| |iibinom| |trace2PowMod| + |finiteBasis| |HenselLift| |integer| |zoom| |applyQuote| |false| + |chvar| |genericLeftNorm| |unitVector| |zRange| |airyAi| + |viewPhiDefault| |tree| |numericalOptimization| |headReduce| + |degreePartition| |setStatus| |ratDsolve| |bezoutResultant| |map!| + |bandedJacobian| |polyRicDE| |e02ahf| |result| |prindINFO| |title| + |formula| |createZechTable| |iomode| |countable?| |curry| + |countRealRoots| |qsetelt!| |twoFactor| |rightOne| |singleFactorBound| + |variationOfParameters| |collect| |useSingleFactorBound?| |pointLists| + |leftCharacteristicPolynomial| |hasTopPredicate?| |sinh2csch| + |ruleset| |factorGroebnerBasis| |lyndon| |preprocess| |mulmod| + |largest| |readInt16!| |coerceS| |anticoord| |moreAlgebraic?| |iiacsc| + |#| |e| |lastSubResultant| |createLowComplexityNormalBasis| |swap!| + |rationalIfCan| |sec2cos| |insertRoot!| GF2FG |simpleBounds?| + |iteratedInitials| |atom?| |minimalPolynomial| |label| + |realEigenvectors| |rightFactorIfCan| |exprToGenUPS| |contract| + |nrows| |numberOfComponents| |hostByteOrder| |minGbasis| |bounds| + |findCycle| |suchThat| |stFunc1| |OMencodingXML| + |unprotectedRemoveRedundantFactors| |drawComplex| |complexIntegrate| + |ncols| |setClipValue| |lex| |algSplitSimple| |toseInvertibleSet| + |sqfree| |s18aff| |genericRightTraceForm| |midpoint| |normalElement| + |cyclotomic| |rightScalarTimes!| |minimumExponent| + |balancedBinaryTree| |signAround| |setMinPoints| |meatAxe| + |startTableInvSet!| |argumentListOf| |zerosOf| |rquo| |arguments| + |accuracyIF| |f04atf| |leftDivide| |seed| |dn| |fortranCharacter| + |rightMinimalPolynomial| |leftQuotient| |cap| + |solveLinearPolynomialEquationByFractions| |isList| + |LowTriBddDenomInv| |isMult| |zeroDimPrime?| |polCase| |bipolar| + |internalIntegrate0| |explimitedint| |numberOfHues| |components| + |point| |singular?| |f01maf| |bottom!| |leftFactor| |numberOfChildren| + |internal?| |rootProduct| |nthFractionalTerm| |multiEuclideanTree| + |conditionP| |constructor| |f02aef| |setPredicates| |elColumn2!| + |d01asf| |normalDeriv| |critT| |cycles| |normalDenom| + |selectOptimizationRoutines| |OMputEndObject| |stack| + |generalizedEigenvector| |lazyVariations| |matrixGcd| |maxColIndex| + |chineseRemainder| |width| |permutation| |option| |OMputSymbol| + |addBadValue| |chebyshevU| |superscript| |ellipticCylindrical| + |expandPower| |setelt!| |series| |rightPower| |rules| |ReduceOrder| + |algebraic?| |leftAlternative?| |primitiveElement| |pointColor| + |exponential| |messagePrint| |asinIfCan| |divisors| |test| |bitTruth| + |dmp2rfi| |conjugate| |findBinding| |viewDeltaYDefault| + |positiveSolve| |Gamma| |flagFactor| |entry?| |eigenvector| |solve1| + |hexDigit?| |distFact| |sort| |fglmIfCan| |RittWuCompare| |e04ucf| + |dim| |OMputBVar| |var1StepsDefault| |associatedSystem| |cycleRagits| + |npcoef| |integral| |critBonD| |mathieu11| |coth2tanh| + |localIntegralBasis| |abs| |permutations| |badNum| |decompose| + |deleteProperty!| |reverse!| |principalAncestors| |min| + |partialNumerators| |halfExtendedSubResultantGcd2| + |getMultiplicationTable| |rightTrim| |showFortranOutputStack| + |setLegalFortranSourceExtensions| |fixedPoint| |makingStats?| |fTable| + |solveRetract| |sizePascalTriangle| |binary| |leftTrim| |superHeight| + |term?| |commaSeparate| |clipPointsDefault| + |removeRedundantFactorsInContents| |sample| |discreteLog| |f01bsf| + |random| |d02bbf| |getExplanations| |eof?| |e01daf| |safetyMargin| + |e02bcf| |inspect| |idealSimplify| |fortranInteger| + |nativeModuleExtension| |basisOfMiddleNucleus| |FormatArabic| + |patternMatchTimes| |mightHaveRoots| |extendedIntegrate| + |exprHasAlgebraicWeight| |e01baf| |negative?| |outputSpacing| + |appendPoint| |leadingIdeal| |complexLimit| |screenResolution| + |elements| |rename| |tex| |max| |expPot| |sup| |bumptab| + |wordInStrongGenerators| |lazyIntegrate| |rootOf| + |SturmHabichtSequence| |coefficient| |cycleEntry| |taylorQuoByVar| + |OMunhandledSymbol| |modularGcdPrimitive| |quotientByP| + |squareFreePrim| |normFactors| |doubleComplex?| |diagonalProduct| + |iitan| |setProperty!| |rewriteIdealWithRemainder| |mapExpon| |radix| + |connect| |romberg| |arity| |tanintegrate| |aLinear| + |subResultantGcdEuclidean| |factorSquareFree| |weights| |c06frf| + |f2st| |push!| |expintegrate| |makeprod| |geometric| |colorDef| + |randomR| |rischDEsys| |swapRows!| |makeFloatFunction| |pattern| + |omError| |truncate| |cyclicSubmodule| |numberOfVariables| + |rootNormalize| |e02adf| |s14abf| |sPol| |second| |rationalPoint?| + |totalGroebner| |iipow| |rowEchelon| |ramified?| |monicDivide| + |leftUnits| |symbol?| |viewpoint| |symmetricProduct| |third| + |fortranTypeOf| |cyclic| |prime| |lifting1| |powers| + |permutationGroup| |generalInfiniteProduct| |numberOfMonomials| |diff| + |reduceByQuasiMonic| |listOfMonoms| |rootRadius| |viewPosDefault| |Is| + |subresultantSequence| |complement| |radicalEigenvector| |normalize| + |prevPrime| |linear?| |s18aef| |message| |hexDigit| |rightUnit| + |reindex| |wrregime| |implies?| |lineColorDefault| + |subQuasiComponent?| |stFuncN| |rowEchelonLocal| |semicolonSeparate| + |pow| |notOperand| |linearAssociatedLog| |e02ddf| |rotatez| |s18def| + |cosSinInfo| |sequences| |tan2cot| |dot| |laplacian| + |purelyAlgebraicLeadingMonomial?| |binaryTournament| |write!| + |prinpolINFO| |sum| |quasiRegular?| |coerceListOfPairs| |birth| + |central?| |heapSort| |cAcoth| |KrullNumber| |void| |pascalTriangle| + |OMclose| |size?| |removeConstantTerm| |enqueue!| |generalSqFr| + |intChoose| |insert!| |compose| |complexForm| |alphabetic?| + |genericLeftTraceForm| |PollardSmallFactor| |triangulate| |presuper| + |euclideanGroebner| |stiffnessAndStabilityOfODEIF| |read!| |exists?| + |matrixConcat3D| |cons| |subSet| |getOrder| |iprint| |fibonacci| + |separant| |rootBound| |rewriteSetByReducingWithParticularGenerators| + |pseudoQuotient| |testModulus| |OMgetType| |pmintegrate| + |invertibleSet| |round| |extractTop!| |operation| |subMatrix| |extend| + |transform| |c06gqf| |lp| |mr| |padecf| |UpTriBddDenomInv| |stirling2| + |symmetricGroup| |representationType| |floor| |capacity| |typeList| + |s13acf| |OMopenString| |phiCoord| |setImagSteps| |withPredicates| + |solveLinear| |setAdaptive| |reopen!| |monicRightFactorIfCan| + |universe| |pquo| |multiplyCoefficients| |sturmVariationsOf| + |deleteRoutine!| |pmComplexintegrate| |routines| + |isAbsolutelyIrreducible?| |double?| |getMatch| |leftScalarTimes!| + |s18acf| |stoseInvertible?| |reducedSystem| |ramifiedAtInfinity?| + |matrixDimensions| |retractable?| |term| |c06fqf| + |reciprocalPolynomial| |tube| |iiatanh| |squareFree| + |selectSumOfSquaresRoutines| |e01sef| |viewDefaults| |source| + |printTypes| |factorFraction| |graphCurves| |systemCommand| |increase| + |computePowers| |lighting| |showTypeInOutput| |linearPolynomials| + |character?| |doubleDisc| |getProperties| |lhs| |oblateSpheroidal| + |stopTableGcd!| |tanh2trigh| |modTree| |stopMusserTrials| + |reduceBasisAtInfinity| |GospersMethod| |ptFunc| |poisson| + |patternMatch| |rhs| |permanent| |rootPower| |comparison| + |clearTheFTable| |argscript| |primPartElseUnitCanonical!| + |dihedralGroup| |clearTable!| |iicos| |primeFactor| |normal| + |headRemainder| |range| |bytes| |e02dcf| |multisect| |e02akf| + |rangePascalTriangle| |mesh?| |rightZero| |monicRightDivide| + |OMsupportsSymbol?| |fill!| |rectangularMatrix| |choosemon| + |mergeDifference| |generalizedContinuumHypothesisAssumed?| + |zeroSetSplitIntoTriangularSystems| |genericLeftDiscriminant| + |controlPanel| |target| |cycleLength| |s14aaf| |coefficients| + |subscriptedVariables| |createLowComplexityTable| |recolor| |f01brf| + |thetaCoord| |reduced?| |univcase| |d01gbf| |printCode| |taylorRep| + |supRittWu?| |polygamma| |partitions| |satisfy?| |c02agf| + |firstUncouplingMatrix| |shanksDiscLogAlgorithm| |integrate| |unparse| + |complexNumericIfCan| |e04naf| |points| |orbit| |viewWriteAvailable| + |parabolic| |module| |push| |makeUnit| |OMlistSymbols| |pack!| UP2UTS + |partialDenominators| |e01bff| |supersub| |tubeRadius| |stop| + |structuralConstants| |subst| |zeroMatrix| |implies| + |showScalarValues| |functionIsOscillatory| |genericRightDiscriminant| + |leftPower| |rename!| |certainlySubVariety?| |terms| |swapColumns!| + |linkToFortran| |oneDimensionalArray| |d01alf| |normInvertible?| |low| + |c05nbf| |orthonormalBasis| |coerceImages| |children| |vark| |expint| + |ravel| |realSolve| |cond| |firstSubsetGray| |graphImage| |zCoord| + |primeFrobenius| |real?| |delta| |OMgetEndBVar| |f04asf| |binomial| + |numberOfOperations| |minPol| |basisOfRightNucleus| |reshape| |e02bbf| + |mainCoefficients| |lagrange| |rotatex| |putColorInfo| |f02adf| + |rubiksGroup| |subResultantChain| |linear| |UnVectorise| + |normalizedAssociate| |ideal| |rarrow| |alternating| |critMonD1| + |setTopPredicate| |wordInGenerators| |showRegion| |iifact| + |fixedPoints| |hypergeometric0F1| |cot2tan| |maxrow| |repSq| + |specialTrigs| |splitSquarefree| |pdct| |invertibleElseSplit?| + |virtualDegree| |integer?| |limitPlus| |polynomial| |mergeFactors| + |primlimintfrac| |dequeue!| |charpol| |direction| |innerSolve1| + |c06ebf| |deref| |objects| |stosePrepareSubResAlgo| |optAttributes| + |oddInfiniteProduct| |cycleElt| |doubleResultant| |e02dff| + |exprHasWeightCosWXorSinWX| |build| |prefixRagits| |atrapezoidal| + |base| |unrankImproperPartitions1| |subtractIfCan| |yCoordinates| + |mix| |BasicMethod| |internalSubPolSet?| |headReduced?| |update| + |getZechTable| |basisOfCenter| |bit?| |stiffnessAndStabilityFactor| + |tablePow| |call| |xn| |radicalEigenvectors| |purelyTranscendental?| + |removeRoughlyRedundantFactorsInPols| |numberOfImproperPartitions| + |isobaric?| |init| |inGroundField?| |df2st| |generalPosition| + |createRandomElement| |modifyPoint| |lambda| |sign| |solid| + |relativeApprox| |rightUnits| |realZeros| |characteristic| + |binaryFunction| |sayLength| |over| |factorsOfDegree| |mirror| + |moduleSum| |getSyntaxFormsFromFile| |impliesOperands| |approxSqrt| + |quasiMonic?| |s20adf| |hex| |lexGroebner| |lifting| |interpolate| + |lowerCase| ** |monicDecomposeIfCan| |getGoodPrime| |quartic| |updatF| + |OMgetAtp| |setMinPoints3D| |stoseIntegralLastSubResultant| + |OMreadFile| |part?| |readUInt32!| |psolve| |listOfLists| + |removeSuperfluousCases| |getPickedPoints| |hspace| |traverse| + |mkIntegral| |position| |leftTrace| |pr2dmp| |positive?| |d01fcf| + |stoseInvertibleSetreg| |finiteBound| |e01sff| |dominantTerm| + |position!| |upperCase!| |parabolicCylindrical| EQ |quasiComponent| + |changeVar| |resize| |iiacosh| |OMopenFile| |symbolTable| |f04mcf| + |sylvesterMatrix| |exteriorDifferential| |sequence| |norm| + |clipSurface| |mapUnivariateIfCan| |strongGenerators| |mathieu23| + |selectfirst| |hasHi| |sdf2lst| |checkPrecision| |determinant| + |RemainderList| |basisOfCentroid| |irreducibleFactors| |char| + |isOpen?| |isPower| |palglimint| |cAsech| |tubePlot| |gderiv| |f01rcf| + |fortranReal| |commonDenominator| |inHallBasis?| |inRadical?| + |stoseSquareFreePart| |mapGen| |iroot| |readByte!| |saturate| + |compdegd| |rightDiscriminant| |associates?| |pointColorDefault| + |OMgetInteger| |resultantnaif| |bigEndian| |previous| |setProperties!| + |or?| |readLineIfCan!| |writable?| |pseudoDivide| |leftNorm| |Si| + |create| |number?| |taylorIfCan| |ip4Address| |f07adf| |socf2socdf| + |regime| |scopes| |abelianGroup| |interpret| |numericalIntegration| + |degreeSubResultant| |var2Steps| |crest| |untab| |subspace| + |univariatePolynomial| |pair| |lazyResidueClass| |tRange| + |pointSizeDefault| |rootOfIrreduciblePoly| |s13aaf| |rootKerSimp| + |pureLex| |sin?| |genericRightTrace| |complexRoots| + |solveLinearPolynomialEquationByRecursion| |restorePrecision| |gethi| + |f02agf| |moduloP| |measure| |lazyPrem| |parametric?| |imagi| + |prepareDecompose| |pushuconst| |gcdPrimitive| |infLex?| |rootsOf| + |associatedEquations| |f04jgf| |setrest!| |sturmSequence| |lo| + |rootPoly| |kind| |iicsc| |operators| |nextPrimitiveNormalPoly| + |nextPrime| |value| |ffactor| |inrootof| |sumOfDivisors| + |indiceSubResultantEuclidean| |product| |incr| |incrementKthElement| + |empty| |jacobiIdentity?| |palgintegrate| |shrinkable| |cotIfCan| + |stFunc2| |op| |constantOpIfCan| |doublyTransitive?| |rk4a| |iisqrt2| + |acscIfCan| |sncndn| |binomThmExpt| |contractSolve| |fprindINFO| + |d01ajf| |edf2df| |errorKind| |leadingIndex| |useEisensteinCriterion| + |debug3D| |leadingExponent| |s15adf| |opeval| |clearTheSymbolTable| + |cAcosh| |rootSplit| |schema| |calcRanges| |dmpToP| |extendIfCan| + |eisensteinIrreducible?| |createGenericMatrix| |e04dgf| + |minimumDegree| |cExp| |tableau| |generate| |wreath| |torsion?| + |OMconnOutDevice| |weighted| |tanNa| |OMputError| |fi2df| + |cyclotomicFactorization| |ksec| |comment| |mainVariables| + |screenResolution3D| |algebraicCoefficients?| |setErrorBound| + |iiasech| |hconcat| |factorset| |characteristicSerie| |varList| + |transcendenceDegree| |rightTraceMatrix| |unvectorise| |s17dhf| + |constDsolve| |intPatternMatch| |meshFun2Var| |incrementBy| |d02kef| + |addmod| |padicFraction| |iilog| |cCos| |setnext!| |coefChoose| + |eyeDistance| |f04adf| RF2UTS F |llprop| |expand| |charClass| + |isTimes| |constantIfCan| |subresultantVector| |e04jaf| |union| + |rCoord| |cCsch| |perfectNthPower?| |aQuartic| |explicitEntries?| + |outlineRender| |filterWhile| |setButtonValue| |arbitrary| + |createPrimitivePoly| |separateFactors| |lastSubResultantElseSplit| + |f2df| |generalizedContinuumHypothesisAssumed| |associator| + |shallowCopy| |pdf2ef| |e01sbf| |filterUntil| |inverseLaplace| + |logpart| |stirling1| |f02fjf| |nodeOf?| |d03edf| |infinite?| + |diagonalMatrix| |eulerE| |trivialIdeal?| |select| F2FG |constantLeft| + |lazyEvaluate| |OMreceive| |conjugates| |leadingBasisTerm| |integers| + |leastPower| |numeric| |copy!| |mindeg| |insertMatch| + |solveLinearPolynomialEquation| |perfectSquare?| |evaluate| |weight| + |findConstructor| |close| |eigenvectors| |OMputEndAtp| |radical| + |ScanRoman| |hi| |cyclic?| |coerceP| |euler| |isConnected?| + |lazyPseudoQuotient| |mathieu24| |lfextendedint| |optional?| + |traceMatrix| |fortranLinkerArgs| |find| |palgextint0| |nthExpon| |id| + |stripCommentsAndBlanks| |critpOrder| |kmax| |display| |polygon| + |outputAsTex| |multiple?| |quadraticForm| |getConstant| + |getVariableOrder| |s17aff| |nextLatticePermutation| |cAcot| + |youngGroup| |integralLastSubResultant| |listYoungTableaus| + |roughBasicSet| |dimension| |iisech| |palgint| + |semiResultantEuclidean2| |endSubProgram| |table| |infix| + |primPartElseUnitCanonical| |highCommonTerms| |OMputVariable| + |nonLinearPart| |LazardQuotient2| |makeRecord| |parts| |qPot| + |radicalSimplify| |new| |setFieldInfo| |stoseInternalLastSubResultant| + |obj| |unary?| |nor| |integralDerivationMatrix| |quadratic| |randomLC| + |iiabs| |cyclicParents| |OMreadStr| |setPosition| |lSpaceBasis| + |cSinh| |parent| |uniform| |cache| |fmecg| |search| |plus| |cosIfCan| + |mainContent| |exponentialOrder| |dAndcExp| |input| |expIfCan| + |simplifyExp| |OMputEndBVar| |subCase?| |rur| |csubst| |split| + |algint| |library| |nonQsign| |quickSort| |heap| |cyclicGroup| + |fortranDoubleComplex| |green| |c06ecf| |mapUnivariate| |ODESolve| + |OMread| |rightRecip| |roman| |LazardQuotient| |unaryFunction| + |complexElementary| |f04maf| |antisymmetricTensors| |commutator| + |lambert| |basisOfLeftAnnihilator| |writeBytes!| |credPol| |factorial| + |times| |expressIdealMember| |squareFreePolynomial| |f02abf| |lintgcd| + |setStatus!| |iiacoth| |splitNodeOf!| |evenInfiniteProduct| |pushdown| + |interactiveEnv| |set| |iiacos| |externalList| |category| |whileLoop| + |OMgetString| |maxdeg| |makeCos| |B1solve| |f02awf| |bivariate?| + |homogeneous?| |multMonom| |domain| |qinterval| |makeViewport2D| + |knownInfBasis| |makeEq| |cTan| |monomials| |f04qaf| + |squareFreeFactors| |medialSet| |applyRules| |package| + |squareFreeLexTriangular| |leftRecip| |zeroDim?| |digits| |readLine!| + |hitherPlane| |unitNormal| |indiceSubResultant| |iidsum| + |changeWeightLevel| |ddFact| |height| |rangeIsFinite| |getlo| |cAcsch| + |depth| |cLog| |polygon?| |completeEchelonBasis| ~= |cubic| + |partialFraction| |nullity| |every?| |copies| |leftDiscriminant| + |infieldint| |inverseColeman| |OMgetVariable| |coerce| + |stopTableInvSet!| |viewport2D| |bag| |testDim| |f01qdf| |rightTrace| + |cardinality| |meshPar2Var| |readIfCan!| |s01eaf| |construct| + |showClipRegion| |freeOf?| |frst| |modifyPointData| |isExpt| + |createMultiplicationMatrix| |rightRankPolynomial| |lazyPquo| + |mapSolve| |digit?| |lieAdmissible?| |processTemplate| + |bivariateSLPEBR| |cAsec| |plotPolar| |redmat| |pointData| |domainOf| + |iflist2Result| |dualSignature| |maxIndex| |s17aef| |postfix| + |monicCompleteDecompose| |delete!| |ocf2ocdf| |nthCoef| + |explicitlyEmpty?| |mvar| |subResultantsChain| |and?| + |genericRightNorm| |minordet| |show| |f04faf| |extractSplittingLeaf| + |swap| |roughBase?| |getIdentifier| |edf2fi| |argumentList!| |equiv?| + |OMgetEndError| |trigs2explogs| |constantCoefficientRicDE| + |bernoulliB| |setScreenResolution3D| |printInfo| |var1Steps| + |pointPlot| |quasiAlgebraicSet| |s20acf| |sortConstraints| + |regularRepresentation| |expr| |trace| |physicalLength| |asecIfCan| + |selectsecond| |tail| |forLoop| |iiexp| |cRationalPower| |totalfract| + |subNodeOf?| |decomposeFunc| |useEisensteinCriterion?| + |OMencodingSGML| |headAst| |separate| |localUnquote| |fortranLiteral| + |true| |normDeriv2| |gramschmidt| |currentScope| + |integralMatrixAtInfinity| |cAsinh| |readInt8!| |unknown| |numerator| + |printInfo!| |monomialIntPoly| |mainPrimitivePart| |cycleSplit!| + |prinb| |one?| |pushdterm| |outputList| |resultantReduitEuclidean| + |probablyZeroDim?| |lprop| |constantRight| |ParCondList| + |diophantineSystem| |chainSubResultants| |makeSketch| |variable| + |neglist| |s17dgf| |repeatUntilLoop| |drawStyle| |gcdprim| + |shiftRoots| |e04gcf| |baseRDEsys| |createNormalPrimitivePoly| |rk4| + |iterators| |infieldIntegrate| |hash| |cCosh| |nextsubResultant2| + |viewThetaDefault| |iicoth| |blue| |acschIfCan| |leftRank| + |balancedFactorisation| |count| |root| |mathieu22| |OMputEndBind| + |setelt| |limitedint| |nthExponent| |clearTheIFTable| |f02akf| + |OMputEndApp| |outputFloating| |deepCopy| |invertIfCan| |whitePoint| + |submod| |resetBadValues| |wholeRagits| |imagj| |useNagFunctions| + |expintfldpoly| |whatInfinity| |numberOfFractionalTerms| |makeop| + |copy| |li| |fortran| |constantKernel| |approxNthRoot| + |internalAugment| |polyred| |tanSum| |mkAnswer| |hasPredicate?| + |basisOfCommutingElements| |nextItem| |df2mf| |complexEigenvectors| + |curve| |createIrreduciblePoly| |palginfieldint| |totalDegree| + |wholeRadix| |moebius| |fortranCompilerName| |cup| |computeInt| |next| + |rightDivide| |subNode?| |brillhartTrials| |cothIfCan| |laguerre| + |definingPolynomial| |minrank| |autoCoerce| |changeBase| |block| + |optpair| |Hausdorff| |rspace| |options| |outputAsScript| + |printingInfo?| |linearPart| |legendreP| |antisymmetric?| + |lfinfieldint| |toseInvertible?| |factorPolynomial| |d02raf| + |linGenPos| |univariate?| |elliptic| |OMgetBind| |nextSublist| + |s17acf| |putGraph| |nthFactor| |recip| |binarySearchTree| |hcrf| + |symbolIfCan| |atanhIfCan| |selectOrPolynomials| |back| |nextColeman| + |setVariableOrder| |setAttributeButtonStep| |string| |cAcos| |aCubic| + |buildSyntax| |graphState| |indicialEquation| |harmonic| |PDESolve| + |leftExtendedGcd| |vector| |getOperands| |nsqfree| |htrigs| |dfRange| + |middle| |setvalue!| |extractClosed| |BumInSepFFE| |hermite| + |goodPoint| |jacobian| |d02cjf| |cyclicCopy| |laurentRep| + |dimensionOfIrreducibleRepresentation| |associatorDependence| |cross| + |trapezoidal| |LyndonCoordinates| |FormatRoman| |trapezoidalo| + |noncommutativeJordanAlgebra?| |s19abf| |OMParseError?| |d01aqf| + |sinIfCan| |parents| |sinhcosh| |semiDegreeSubResultantEuclidean| + |branchPoint?| |lyndonIfCan| |removeIrreducibleRedundantFactors| + |empty?| |generalLambert| |complementaryBasis| |trim| + |polynomialZeros| |clipWithRanges| |reverseLex| |nthRootIfCan| + |unitsColorDefault| |directory| |s17ahf| |script| |palgint0| + |thenBranch| |setPoly| |linSolve| NOT |augment| |identitySquareMatrix| + |overbar| |inf| |head| |sn| |s17akf| |d01anf| |removeCosSq| |/\\| OR + |antiCommutative?| |eq| |iiperm| |OMgetEndAtp| |lexTriangular| + |removeSinhSq| |prefix| |divisorCascade| |OMgetError| |clipBoolean| + |Lazard| |\\/| AND |iter| |stopTable!| |deepExpand| |realEigenvalues| + |rightRemainder| |bat| |log10| |resultantEuclidean| |condition| + |closedCurve| |integralBasis| |f01qcf| |factorsOfCyclicGroupSize| + |safeCeiling| |operator| |bfEntry| |pointColorPalette| |euclideanSize| + |index?| |complexNumeric| |listLoops| |acsch| |bitand| |scripted?| + |trueEqual| |cyclotomicDecomposition| |symbolTableOf| |unravel| + |rational?| |acosIfCan| |bitior| |writeUInt8!| |roughUnitIdeal?| + |sin2csc| |imagK| |linearlyDependent?| |reducedDiscriminant| + |irreducible?| |LiePoly| |continue| |approximants| |dictionary| + |separateDegrees| |kernels| |iiasec| |anfactor| |prepareSubResAlgo| + |list?| |complexExpand| |ode1| |rationalApproximation| |prologue| + |e01bhf| |univariate| |uniform01| |singRicDE| |selectPDERoutines| + |showAllElements| |curryRight| |besselK| |partition| + |nextPrimitivePoly| |coord| |subResultantGcd| |mainDefiningPolynomial| + |mapdiv| |inverse| |fortranLogical| |OMUnknownSymbol?| + |numberOfComposites| |const| |karatsubaDivide| |limitedIntegrate| + |differentiate| |exp| |cos2sec| |trailingCoefficient| |chiSquare1| + |semiSubResultantGcdEuclidean1| |composites| |mapUp!| |tab| + |algebraicVariables| |factor| |setOfMinN| |increasePrecision| |iitanh| + |rowEch| |pseudoRemainder| |baseRDE| |viewZoomDefault| |littleEndian| + |cartesian| |sqrt| |OMmakeConn| |deepestInitial| |ranges| * + |squareTop| |e02agf| |rewriteSetWithReduction| |prinshINFO| + |csch2sinh| |setprevious!| |updatD| |addPoint2| |cSec| |real| + |SturmHabicht| |linearDependenceOverZ| |flexible?| |scalarTypeOf| + |lowerCase?| |exprToUPS| |validExponential| |getDatabase| |OMlistCDs| + |imag| |assign| |noLinearFactor?| |OMputAttr| |internalDecompose| + |factorials| |powmod| |has?| |directProduct| + |genericLeftMinimalPolynomial| |inc| |reduction| |zero?| |palgLODE0| + |OMputObject| |unit| |univariateSolve| |power!| |infRittWu?| + |modularFactor| |removeDuplicates!| |leftFactorIfCan| |reseed| + |d02ejf| |UP2ifCan| Y |eigenMatrix| |prime?| |brillhartIrreducible?| + |primaryDecomp| |uncouplingMatrices| |infinityNorm| |readUInt16!| + |brace| |fintegrate| |delay| |divisor| |ord| |leftRemainder| + |numberOfIrreduciblePoly| |cscIfCan| |radPoly| |element?| |compile| + |numberOfComputedEntries| |destruct| |btwFact| + |degreeSubResultantEuclidean| |distance| |sts2stst| |is?| + |maxRowIndex| |jordanAdmissible?| |integerBound| SEGMENT + |internalSubQuasiComponent?| |transcendent?| |unmakeSUP| |tanhIfCan| + |createNormalElement| |extendedSubResultantGcd| |wronskianMatrix| + |setTex!| |monomialIntegrate| |setProperties| |janko2| |algebraicOf| + |univariatePolynomials| |countRealRootsMultiple| |numberOfCycles| + |scale| |dihedral| |userOrdered?| |exprHasLogarithmicWeights| + |makeCrit| |row| |printHeader| |raisePolynomial| |iicosh| + |integralBasisAtInfinity| |gbasis| |mainKernel| |null| |rootSimp| + |monomial| |definingEquations| |quasiRegular| |coerceL| |startTable!| + |selectODEIVPRoutines| |create3Space| |doubleFloatFormat| |charthRoot| + |selectPolynomials| |not| |leftTraceMatrix| |multivariate| |initials| + |viewport3D| |bsolve| |repeating| |powern| |removeZero| |newReduc| + |basis| |initiallyReduce| |and| |pol| |variables| + |factorSquareFreeByRecursion| |firstDenom| |critB| |host| + |OMgetEndApp| |exponential1| |nullary?| |changeMeasure| |fracPart| + |or| |writeLine!| |triangular?| |compound?| |maximumExponent| + |discriminant| |problemPoints| |denomLODE| |signature| |drawToScale| + |xor| |distdfact| |lexico| |viewSizeDefault| |rightAlternative?| + |shufflein| |setLength!| |f04axf| |directSum| |adjoint| |cycle| |case| + |leftOne| |extendedEuclidean| |makeVariable| |pair?| |identification| + |d01akf| |simplify| |c06gcf| |chebyshevT| |curryLeft| |Zero| + |convergents| |computeBasis| |ldf2lst| |expenseOfEvaluationIF| + |reduceLODE| |d02bhf| |transcendentalDecompose| |qfactor| |normalForm| + |One| |palgRDE| |recur| |name| |taylor| |inR?| |totalLex| + |getButtonValue| |content| |divideIfCan!| |conjug| + |nextIrreduciblePoly| |mapBivariate| |f04mbf| |torsionIfCan| + |property| |body| |laurent| |OMgetEndAttr| |eulerPhi| + |singularAtInfinity?| |unitNormalize| |multinomial| |setValue!| + |initial| |commutativeEquality| |log2| |monic?| |gcdPolynomial| + |puiseux| |iCompose| |associative?| |leftExactQuotient| |allRootsOf| + |mapCoef| |contains?| |OMgetBVar| |removeRedundantFactors| + |shiftRight| |vconcat| |linearlyDependentOverZ?| |palgextint| |slex| + |integralAtInfinity?| |c06gbf| |binaryTree| |iisinh| |iiacot| + |rightNorm| |modularGcd| |units| |addiag| |inv| + |tableForDiscreteLogarithm| |linearAssociatedExp| + |halfExtendedSubResultantGcd1| |cPower| |diag| |factorAndSplit| + |antiAssociative?| |stoseInvertible?sqfreg| |elt| |ground?| |randnum| + |sincos| |isPlus| |numFunEvals| |aQuadratic| |drawCurves| |groebner| + |deepestTail| |nil| |infinite| |arbitraryExponent| |approximate| + |complex| |shallowMutable| |canonical| |noetherian| |central| + |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed| + |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation| + |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation| + |finiteAggregate| |shallowlyMutable| |commutative|)
\ No newline at end of file diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 143035fa..979b04dc 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5299 +1,5309 @@ -(3198344 . 3444870428) -((-2162 (((-112) (-1 (-112) |#2| |#2|) $) 85) (((-112) $) NIL)) (-2146 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-2189 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-1224 (-563)) |#2|) 43)) (-3934 (($ $) 79)) (-2532 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 49) ((|#2| (-1 |#2| |#2| |#2|) $) 48)) (-2256 (((-563) (-1 (-112) |#2|) $) 27) (((-563) |#2| $) NIL) (((-563) |#2| $ (-563)) 95)) (-4236 (((-640 |#2|) $) 13)) (-2383 (($ (-1 (-112) |#2| |#2|) $ $) 62) (($ $ $) NIL)) (-4139 (($ (-1 |#2| |#2|) $) 37)) (-2751 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 59)) (-2530 (($ |#2| $ (-563)) NIL) (($ $ $ (-563)) 65)) (-1828 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3837 (((-112) (-1 (-112) |#2|) $) 23)) (-3858 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL) (($ $ (-1224 (-563))) 64)) (-4159 (($ $ (-563)) 74) (($ $ (-1224 (-563))) 73)) (-3261 (((-767) (-1 (-112) |#2|) $) 34) (((-767) |#2| $) NIL)) (-2155 (($ $ $ (-563)) 67)) (-2208 (($ $) 66)) (-2074 (($ (-640 |#2|)) 71)) (-1951 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 86) (($ (-640 $)) 84)) (-2062 (((-858) $) 91)) (-3848 (((-112) (-1 (-112) |#2|) $) 22)) (-2943 (((-112) $ $) 94)) (-2966 (((-112) $ $) 98))) -(((-18 |#1| |#2|) (-10 -8 (-15 -2943 ((-112) |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -2155 (|#1| |#1| |#1| (-563))) (-15 -2162 ((-112) |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2256 ((-563) |#2| |#1| (-563))) (-15 -2256 ((-563) |#2| |#1|)) (-15 -2256 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -2162 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2189 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -2530 (|#1| |#1| |#1| (-563))) (-15 -2530 (|#1| |#2| |#1| (-563))) (-15 -4159 (|#1| |#1| (-1224 (-563)))) (-15 -4159 (|#1| |#1| (-563))) (-15 -3858 (|#1| |#1| (-1224 (-563)))) (-15 -2751 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1951 (|#1| (-640 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -2074 (|#1| (-640 |#2|))) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3858 (|#2| |#1| (-563))) (-15 -3858 (|#2| |#1| (-563) |#2|)) (-15 -2189 (|#2| |#1| (-563) |#2|)) (-15 -3261 ((-767) |#2| |#1|)) (-15 -4236 ((-640 |#2|) |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4139 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2208 (|#1| |#1|))) (-19 |#2|) (-1208)) (T -18)) +(3199856 . 3449148038) +((-1445 (((-112) (-1 (-112) |#2| |#2|) $) 85) (((-112) $) NIL)) (-2402 (($ (-1 (-112) |#2| |#2|) $) 18) (($ $) NIL)) (-3877 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 43)) (-2797 (($ $) 79)) (-1699 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 49) ((|#2| (-1 |#2| |#2| |#2|) $) 48)) (-3305 (((-564) (-1 (-112) |#2|) $) 27) (((-564) |#2| $) NIL) (((-564) |#2| $ (-564)) 95)) (-3616 (((-641 |#2|) $) 13)) (-2164 (($ (-1 (-112) |#2| |#2|) $ $) 62) (($ $ $) NIL)) (-2606 (($ (-1 |#2| |#2|) $) 37)) (-2187 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 59)) (-2308 (($ |#2| $ (-564)) NIL) (($ $ $ (-564)) 65)) (-3582 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 29)) (-3736 (((-112) (-1 (-112) |#2|) $) 23)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL) (($ $ (-1226 (-564))) 64)) (-2004 (($ $ (-564)) 74) (($ $ (-1226 (-564))) 73)) (-3873 (((-768) (-1 (-112) |#2|) $) 34) (((-768) |#2| $) NIL)) (-1999 (($ $ $ (-564)) 67)) (-3896 (($ $) 66)) (-3753 (($ (-641 |#2|)) 71)) (-1802 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 86) (($ (-641 $)) 84)) (-3742 (((-859) $) 91)) (-1417 (((-112) (-1 (-112) |#2|) $) 22)) (-1705 (((-112) $ $) 94)) (-1723 (((-112) $ $) 98))) +(((-18 |#1| |#2|) (-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2402 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2797 (|#1| |#1|)) (-15 -1999 (|#1| |#1| |#1| (-564))) (-15 -1445 ((-112) |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -3305 ((-564) |#2| |#1| (-564))) (-15 -3305 ((-564) |#2| |#1|)) (-15 -3305 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1445 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3877 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -2308 (|#1| |#1| |#1| (-564))) (-15 -2308 (|#1| |#2| |#1| (-564))) (-15 -2004 (|#1| |#1| (-1226 (-564)))) (-15 -2004 (|#1| |#1| (-564))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2187 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1802 (|#1| (-641 |#1|))) (-15 -1802 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#2|)) (-15 -3753 (|#1| (-641 |#2|))) (-15 -3582 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -3877 (|#2| |#1| (-564) |#2|)) (-15 -3873 ((-768) |#2| |#1|)) (-15 -3616 ((-641 |#2|) |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2606 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3896 (|#1| |#1|))) (-19 |#2|) (-1209)) (T -18)) NIL -(-10 -8 (-15 -2943 ((-112) |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -2155 (|#1| |#1| |#1| (-563))) (-15 -2162 ((-112) |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2256 ((-563) |#2| |#1| (-563))) (-15 -2256 ((-563) |#2| |#1|)) (-15 -2256 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -2162 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2189 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -2530 (|#1| |#1| |#1| (-563))) (-15 -2530 (|#1| |#2| |#1| (-563))) (-15 -4159 (|#1| |#1| (-1224 (-563)))) (-15 -4159 (|#1| |#1| (-563))) (-15 -3858 (|#1| |#1| (-1224 (-563)))) (-15 -2751 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1951 (|#1| (-640 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -2074 (|#1| (-640 |#2|))) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3858 (|#2| |#1| (-563))) (-15 -3858 (|#2| |#1| (-563) |#2|)) (-15 -2189 (|#2| |#1| (-563) |#2|)) (-15 -3261 ((-767) |#2| |#1|)) (-15 -4236 ((-640 |#2|) |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -4139 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2208 (|#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-3934 (($ $) 90 (|has| $ (-6 -4409)))) (-4294 (($ $) 100)) (-1920 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 51)) (-2256 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2552 (($ (-767) |#1|) 69)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-3489 (($ $ $) 87 (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4105 (($ $ $) 86 (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 42 (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3357 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-4159 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2155 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-2988 (((-112) $ $) 85 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 82 (|has| |#1| (-846)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-19 |#1|) (-140) (-1208)) (T -19)) +(-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -2402 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2797 (|#1| |#1|)) (-15 -1999 (|#1| |#1| |#1| (-564))) (-15 -1445 ((-112) |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -3305 ((-564) |#2| |#1| (-564))) (-15 -3305 ((-564) |#2| |#1|)) (-15 -3305 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1445 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -3877 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -2308 (|#1| |#1| |#1| (-564))) (-15 -2308 (|#1| |#2| |#1| (-564))) (-15 -2004 (|#1| |#1| (-1226 (-564)))) (-15 -2004 (|#1| |#1| (-564))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2187 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1802 (|#1| (-641 |#1|))) (-15 -1802 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#2|)) (-15 -3753 (|#1| (-641 |#2|))) (-15 -3582 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -3877 (|#2| |#1| (-564) |#2|)) (-15 -3873 ((-768) |#2| |#1|)) (-15 -3616 ((-641 |#2|) |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2606 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3896 (|#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-2797 (($ $) 90 (|has| $ (-6 -4412)))) (-1856 (($ $) 100)) (-1996 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 51)) (-3305 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-3619 (($ (-768) |#1|) 69)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-2799 (($ $ $) 87 (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2848 (($ $ $) 86 (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 42 (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3099 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2004 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1999 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 70)) (-1802 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1741 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 82 (|has| |#1| (-847)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-19 |#1|) (-140) (-1209)) (T -19)) NIL -(-13 (-373 |t#1|) (-10 -7 (-6 -4409))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T)) -((-1482 (((-3 $ "failed") $ $) 12)) (-3039 (($ $) NIL) (($ $ $) 9)) (* (($ (-917) $) NIL) (($ (-767) $) 16) (($ (-563) $) 26))) -(((-20 |#1|) (-10 -8 (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -1482 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-21)) (T -20)) +(-13 (-373 |t#1|) (-10 -7 (-6 -4412))) +(((-34) . T) ((-102) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T)) +((-3239 (((-3 $ "failed") $ $) 12)) (-1790 (($ $) NIL) (($ $ $) 9)) (* (($ (-918) $) NIL) (($ (-768) $) 16) (($ (-564) $) 26))) +(((-20 |#1|) (-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -3239 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-21)) (T -20)) NIL -(-10 -8 (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -1482 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20))) +(-10 -8 (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -3239 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20))) (((-21) (-140)) (T -21)) -((-3039 (*1 *1 *1) (-4 *1 (-21))) (-3039 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-563))))) -(-13 (-131) (-10 -8 (-15 -3039 ($ $)) (-15 -3039 ($ $ $)) (-15 * ($ (-563) $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2741 (((-112) $) 10)) (-3684 (($) 15)) (* (($ (-917) $) 14) (($ (-767) $) 19))) -(((-22 |#1|) (-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 -3684 (|#1|)) (-15 * (|#1| (-917) |#1|))) (-23)) (T -22)) -NIL -(-10 -8 (-15 * (|#1| (-767) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 -3684 (|#1|)) (-15 * (|#1| (-917) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) +((-1790 (*1 *1 *1) (-4 *1 (-21))) (-1790 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564))))) +(-13 (-131) (-10 -8 (-15 -1790 ($ $)) (-15 -1790 ($ $ $)) (-15 * ($ (-564) $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-4173 (((-112) $) 10)) (-2818 (($) 15)) (* (($ (-918) $) 14) (($ (-768) $) 19))) +(((-22 |#1|) (-10 -8 (-15 * (|#1| (-768) |#1|)) (-15 -4173 ((-112) |#1|)) (-15 -2818 (|#1|)) (-15 * (|#1| (-918) |#1|))) (-23)) (T -22)) +NIL +(-10 -8 (-15 * (|#1| (-768) |#1|)) (-15 -4173 ((-112) |#1|)) (-15 -2818 (|#1|)) (-15 * (|#1| (-918) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15))) (((-23) (-140)) (T -23)) -((-3790 (*1 *1) (-4 *1 (-23))) (-3684 (*1 *1) (-4 *1 (-23))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767))))) -(-13 (-25) (-10 -8 (-15 (-3790) ($) -2495) (-15 -3684 ($) -2495) (-15 -2741 ((-112) $)) (-15 * ($ (-767) $)))) -(((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((* (($ (-917) $) 10))) -(((-24 |#1|) (-10 -8 (-15 * (|#1| (-917) |#1|))) (-25)) (T -24)) -NIL -(-10 -8 (-15 * (|#1| (-917) |#1|))) -((-2049 (((-112) $ $) 7)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13))) +((-4311 (*1 *1) (-4 *1 (-23))) (-2818 (*1 *1) (-4 *1 (-23))) (-4173 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-768))))) +(-13 (-25) (-10 -8 (-15 (-4311) ($) -2091) (-15 -2818 ($) -2091) (-15 -4173 ((-112) $)) (-15 * ($ (-768) $)))) +(((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((* (($ (-918) $) 10))) +(((-24 |#1|) (-10 -8 (-15 * (|#1| (-918) |#1|))) (-25)) (T -24)) +NIL +(-10 -8 (-15 * (|#1| (-918) |#1|))) +((-3732 (((-112) $ $) 7)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13))) (((-25) (-140)) (T -25)) -((-3027 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917))))) -(-13 (-1093) (-10 -8 (-15 -3027 ($ $ $)) (-15 * ($ (-917) $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-3933 (((-640 $) (-948 $)) 32) (((-640 $) (-1165 $)) 16) (((-640 $) (-1165 $) (-1169)) 20)) (-1489 (($ (-948 $)) 30) (($ (-1165 $)) 11) (($ (-1165 $) (-1169)) 60)) (-1503 (((-640 $) (-948 $)) 33) (((-640 $) (-1165 $)) 18) (((-640 $) (-1165 $) (-1169)) 19)) (-2691 (($ (-948 $)) 31) (($ (-1165 $)) 13) (($ (-1165 $) (-1169)) NIL))) -(((-26 |#1|) (-10 -8 (-15 -3933 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -3933 ((-640 |#1|) (-1165 |#1|))) (-15 -3933 ((-640 |#1|) (-948 |#1|))) (-15 -1489 (|#1| (-1165 |#1|) (-1169))) (-15 -1489 (|#1| (-1165 |#1|))) (-15 -1489 (|#1| (-948 |#1|))) (-15 -1503 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -1503 ((-640 |#1|) (-1165 |#1|))) (-15 -1503 ((-640 |#1|) (-948 |#1|))) (-15 -2691 (|#1| (-1165 |#1|) (-1169))) (-15 -2691 (|#1| (-1165 |#1|))) (-15 -2691 (|#1| (-948 |#1|)))) (-27)) (T -26)) -NIL -(-10 -8 (-15 -3933 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -3933 ((-640 |#1|) (-1165 |#1|))) (-15 -3933 ((-640 |#1|) (-948 |#1|))) (-15 -1489 (|#1| (-1165 |#1|) (-1169))) (-15 -1489 (|#1| (-1165 |#1|))) (-15 -1489 (|#1| (-948 |#1|))) (-15 -1503 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -1503 ((-640 |#1|) (-1165 |#1|))) (-15 -1503 ((-640 |#1|) (-948 |#1|))) (-15 -2691 (|#1| (-1165 |#1|) (-1169))) (-15 -2691 (|#1| (-1165 |#1|))) (-15 -2691 (|#1| (-948 |#1|)))) -((-2049 (((-112) $ $) 7)) (-3933 (((-640 $) (-948 $)) 81) (((-640 $) (-1165 $)) 80) (((-640 $) (-1165 $) (-1169)) 79)) (-1489 (($ (-948 $)) 84) (($ (-1165 $)) 83) (($ (-1165 $) (-1169)) 82)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-2067 (($ $) 93)) (-4332 (((-112) $ $) 60)) (-3684 (($) 17 T CONST)) (-1503 (((-640 $) (-948 $)) 87) (((-640 $) (-1165 $)) 86) (((-640 $) (-1165 $) (-1169)) 85)) (-2691 (($ (-948 $)) 90) (($ (-1165 $)) 89) (($ (-1165 $) (-1169)) 88)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-3675 (((-112) $) 72)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 92)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-2055 (((-418 $) $) 75)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 66)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 91)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +((-1780 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-918))))) +(-13 (-1094) (-10 -8 (-15 -1780 ($ $ $)) (-15 * ($ (-918) $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-2690 (((-641 $) (-949 $)) 32) (((-641 $) (-1166 $)) 16) (((-641 $) (-1166 $) (-1170)) 20)) (-1452 (($ (-949 $)) 30) (($ (-1166 $)) 11) (($ (-1166 $) (-1170)) 60)) (-3414 (((-641 $) (-949 $)) 33) (((-641 $) (-1166 $)) 18) (((-641 $) (-1166 $) (-1170)) 19)) (-2854 (($ (-949 $)) 31) (($ (-1166 $)) 13) (($ (-1166 $) (-1170)) NIL))) +(((-26 |#1|) (-10 -8 (-15 -2690 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2690 ((-641 |#1|) (-1166 |#1|))) (-15 -2690 ((-641 |#1|) (-949 |#1|))) (-15 -1452 (|#1| (-1166 |#1|) (-1170))) (-15 -1452 (|#1| (-1166 |#1|))) (-15 -1452 (|#1| (-949 |#1|))) (-15 -3414 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3414 ((-641 |#1|) (-1166 |#1|))) (-15 -3414 ((-641 |#1|) (-949 |#1|))) (-15 -2854 (|#1| (-1166 |#1|) (-1170))) (-15 -2854 (|#1| (-1166 |#1|))) (-15 -2854 (|#1| (-949 |#1|)))) (-27)) (T -26)) +NIL +(-10 -8 (-15 -2690 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2690 ((-641 |#1|) (-1166 |#1|))) (-15 -2690 ((-641 |#1|) (-949 |#1|))) (-15 -1452 (|#1| (-1166 |#1|) (-1170))) (-15 -1452 (|#1| (-1166 |#1|))) (-15 -1452 (|#1| (-949 |#1|))) (-15 -3414 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3414 ((-641 |#1|) (-1166 |#1|))) (-15 -3414 ((-641 |#1|) (-949 |#1|))) (-15 -2854 (|#1| (-1166 |#1|) (-1170))) (-15 -2854 (|#1| (-1166 |#1|))) (-15 -2854 (|#1| (-949 |#1|)))) +((-3732 (((-112) $ $) 7)) (-2690 (((-641 $) (-949 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79)) (-1452 (($ (-949 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-4137 (($ $) 93)) (-2377 (((-112) $ $) 60)) (-2818 (($) 17 T CONST)) (-3414 (((-641 $) (-949 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85)) (-2854 (($ (-949 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-4188 (((-112) $) 72)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 92)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4127 (((-418 $) $) 75)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 66)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-27) (-140)) (T -27)) -((-2691 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-2691 (*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) (-2691 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-1503 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-1503 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-1489 (*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) (-1489 (*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) (-1489 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-3933 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) (-3933 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) (-5 *2 (-640 *1))))) -(-13 (-363) (-998) (-10 -8 (-15 -2691 ($ (-948 $))) (-15 -2691 ($ (-1165 $))) (-15 -2691 ($ (-1165 $) (-1169))) (-15 -1503 ((-640 $) (-948 $))) (-15 -1503 ((-640 $) (-1165 $))) (-15 -1503 ((-640 $) (-1165 $) (-1169))) (-15 -1489 ($ (-948 $))) (-15 -1489 ($ (-1165 $))) (-15 -1489 ($ (-1165 $) (-1169))) (-15 -3933 ((-640 $) (-948 $))) (-15 -3933 ((-640 $) (-1165 $))) (-15 -3933 ((-640 $) (-1165 $) (-1169))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-998) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) -((-3933 (((-640 $) (-948 $)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 $) (-1169)) 60) (((-640 $) $) 22) (((-640 $) $ (-1169)) 51)) (-1489 (($ (-948 $)) NIL) (($ (-1165 $)) NIL) (($ (-1165 $) (-1169)) 62) (($ $) 20) (($ $ (-1169)) 45)) (-1503 (((-640 $) (-948 $)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 $) (-1169)) 58) (((-640 $) $) 18) (((-640 $) $ (-1169)) 53)) (-2691 (($ (-948 $)) NIL) (($ (-1165 $)) NIL) (($ (-1165 $) (-1169)) NIL) (($ $) 15) (($ $ (-1169)) 47))) -(((-28 |#1| |#2|) (-10 -8 (-15 -3933 ((-640 |#1|) |#1| (-1169))) (-15 -1489 (|#1| |#1| (-1169))) (-15 -3933 ((-640 |#1|) |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1503 ((-640 |#1|) |#1| (-1169))) (-15 -2691 (|#1| |#1| (-1169))) (-15 -1503 ((-640 |#1|) |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -3933 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -3933 ((-640 |#1|) (-1165 |#1|))) (-15 -3933 ((-640 |#1|) (-948 |#1|))) (-15 -1489 (|#1| (-1165 |#1|) (-1169))) (-15 -1489 (|#1| (-1165 |#1|))) (-15 -1489 (|#1| (-948 |#1|))) (-15 -1503 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -1503 ((-640 |#1|) (-1165 |#1|))) (-15 -1503 ((-640 |#1|) (-948 |#1|))) (-15 -2691 (|#1| (-1165 |#1|) (-1169))) (-15 -2691 (|#1| (-1165 |#1|))) (-15 -2691 (|#1| (-948 |#1|)))) (-29 |#2|) (-13 (-846) (-555))) (T -28)) -NIL -(-10 -8 (-15 -3933 ((-640 |#1|) |#1| (-1169))) (-15 -1489 (|#1| |#1| (-1169))) (-15 -3933 ((-640 |#1|) |#1|)) (-15 -1489 (|#1| |#1|)) (-15 -1503 ((-640 |#1|) |#1| (-1169))) (-15 -2691 (|#1| |#1| (-1169))) (-15 -1503 ((-640 |#1|) |#1|)) (-15 -2691 (|#1| |#1|)) (-15 -3933 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -3933 ((-640 |#1|) (-1165 |#1|))) (-15 -3933 ((-640 |#1|) (-948 |#1|))) (-15 -1489 (|#1| (-1165 |#1|) (-1169))) (-15 -1489 (|#1| (-1165 |#1|))) (-15 -1489 (|#1| (-948 |#1|))) (-15 -1503 ((-640 |#1|) (-1165 |#1|) (-1169))) (-15 -1503 ((-640 |#1|) (-1165 |#1|))) (-15 -1503 ((-640 |#1|) (-948 |#1|))) (-15 -2691 (|#1| (-1165 |#1|) (-1169))) (-15 -2691 (|#1| (-1165 |#1|))) (-15 -2691 (|#1| (-948 |#1|)))) -((-2049 (((-112) $ $) 7)) (-3933 (((-640 $) (-948 $)) 81) (((-640 $) (-1165 $)) 80) (((-640 $) (-1165 $) (-1169)) 79) (((-640 $) $) 125) (((-640 $) $ (-1169)) 123)) (-1489 (($ (-948 $)) 84) (($ (-1165 $)) 83) (($ (-1165 $) (-1169)) 82) (($ $) 126) (($ $ (-1169)) 124)) (-2741 (((-112) $) 16)) (-2185 (((-640 (-1169)) $) 200)) (-2021 (((-407 (-1165 $)) $ (-609 $)) 232 (|has| |#1| (-555)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1926 (((-640 (-609 $)) $) 163)) (-1482 (((-3 $ "failed") $ $) 19)) (-2624 (($ $ (-640 (-609 $)) (-640 $)) 153) (($ $ (-640 (-294 $))) 152) (($ $ (-294 $)) 151)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-2067 (($ $) 93)) (-4332 (((-112) $ $) 60)) (-3684 (($) 17 T CONST)) (-1503 (((-640 $) (-948 $)) 87) (((-640 $) (-1165 $)) 86) (((-640 $) (-1165 $) (-1169)) 85) (((-640 $) $) 129) (((-640 $) $ (-1169)) 127)) (-2691 (($ (-948 $)) 90) (($ (-1165 $)) 89) (($ (-1165 $) (-1169)) 88) (($ $) 130) (($ $ (-1169)) 128)) (-2671 (((-3 (-948 |#1|) "failed") $) 250 (|has| |#1| (-1045))) (((-3 (-407 (-948 |#1|)) "failed") $) 234 (|has| |#1| (-555))) (((-3 |#1| "failed") $) 196) (((-3 (-563) "failed") $) 193 (|has| |#1| (-1034 (-563)))) (((-3 (-1169) "failed") $) 187) (((-3 (-609 $) "failed") $) 138) (((-3 (-407 (-563)) "failed") $) 121 (-2811 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-2589 (((-948 |#1|) $) 249 (|has| |#1| (-1045))) (((-407 (-948 |#1|)) $) 233 (|has| |#1| (-555))) ((|#1| $) 195) (((-563) $) 194 (|has| |#1| (-1034 (-563)))) (((-1169) $) 186) (((-609 $) $) 137) (((-407 (-563)) $) 122 (-2811 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-3495 (($ $ $) 56)) (-3853 (((-684 |#1|) (-684 $)) 240 (|has| |#1| (-1045))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 239 (|has| |#1| (-1045))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 120 (-2811 (-3743 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-3743 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (((-684 (-563)) (-684 $)) 119 (-2811 (-3743 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-3743 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-3675 (((-112) $) 72)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 192 (|has| |#1| (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 191 (|has| |#1| (-882 (-563))))) (-1383 (($ (-640 $)) 157) (($ $) 156)) (-2034 (((-640 (-114)) $) 164)) (-3674 (((-114) (-114)) 165)) (-2712 (((-112) $) 31)) (-4107 (((-112) $) 185 (|has| $ (-1034 (-563))))) (-4372 (($ $) 217 (|has| |#1| (-1045)))) (-2626 (((-1118 |#1| (-609 $)) $) 216 (|has| |#1| (-1045)))) (-1403 (($ $ (-563)) 92)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-2011 (((-1165 $) (-609 $)) 182 (|has| $ (-1045)))) (-3489 (($ $ $) 136)) (-4105 (($ $ $) 135)) (-2751 (($ (-1 $ $) (-609 $)) 171)) (-3895 (((-3 (-609 $) "failed") $) 161)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-2009 (((-640 (-609 $)) $) 162)) (-2696 (($ (-114) (-640 $)) 170) (($ (-114) $) 169)) (-3218 (((-3 (-640 $) "failed") $) 211 (|has| |#1| (-1105)))) (-3236 (((-3 (-2 (|:| |val| $) (|:| -2631 (-563))) "failed") $) 220 (|has| |#1| (-1045)))) (-3207 (((-3 (-640 $) "failed") $) 213 (|has| |#1| (-25)))) (-1526 (((-3 (-2 (|:| -2765 (-563)) (|:| |var| (-609 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3228 (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-1169)) 219 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-114)) 218 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $) 212 (|has| |#1| (-1105)))) (-1854 (((-112) $ (-1169)) 168) (((-112) $ (-114)) 167)) (-3149 (($ $) 71)) (-1524 (((-767) $) 160)) (-3249 (((-1113) $) 10)) (-3160 (((-112) $) 198)) (-3170 ((|#1| $) 199)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-2023 (((-112) $ (-1169)) 173) (((-112) $ $) 172)) (-2055 (((-418 $) $) 75)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4118 (((-112) $) 184 (|has| $ (-1034 (-563))))) (-1497 (($ $ (-1169) (-767) (-1 $ $)) 224 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) 223 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 222 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 221 (|has| |#1| (-1045))) (($ $ (-640 (-114)) (-640 $) (-1169)) 210 (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 209 (|has| |#1| (-611 (-536)))) (($ $) 208 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) 207 (|has| |#1| (-611 (-536)))) (($ $ (-1169)) 206 (|has| |#1| (-611 (-536)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-640 $))) 180) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 179) (($ $ (-640 (-114)) (-640 (-1 $ $))) 178) (($ $ (-1169) (-1 $ $)) 177) (($ $ (-1169) (-1 $ (-640 $))) 176) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 175) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 174) (($ $ (-640 $) (-640 $)) 145) (($ $ $ $) 144) (($ $ (-294 $)) 143) (($ $ (-640 (-294 $))) 142) (($ $ (-640 (-609 $)) (-640 $)) 141) (($ $ (-609 $) $) 140)) (-4322 (((-767) $) 59)) (-3858 (($ (-114) (-640 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-3904 (($ $ $) 159) (($ $) 158)) (-1361 (($ $ (-1169)) 248 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 247 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 246 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) 245 (|has| |#1| (-1045)))) (-4362 (($ $) 227 (|has| |#1| (-555)))) (-2636 (((-1118 |#1| (-609 $)) $) 226 (|has| |#1| (-555)))) (-2713 (($ $) 183 (|has| $ (-1045)))) (-2802 (((-536) $) 254 (|has| |#1| (-611 (-536)))) (($ (-418 $)) 225 (|has| |#1| (-555))) (((-888 (-379)) $) 190 (|has| |#1| (-611 (-888 (-379))))) (((-888 (-563)) $) 189 (|has| |#1| (-611 (-888 (-563)))))) (-1382 (($ $ $) 253 (|has| |#1| (-473)))) (-2879 (($ $ $) 252 (|has| |#1| (-473)))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-948 |#1|)) 251 (|has| |#1| (-1045))) (($ (-407 (-948 |#1|))) 235 (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) 231 (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) 230 (|has| |#1| (-555))) (($ (-407 |#1|)) 229 (|has| |#1| (-555))) (($ (-1118 |#1| (-609 $))) 215 (|has| |#1| (-1045))) (($ |#1|) 197) (($ (-1169)) 188) (($ (-609 $)) 139)) (-4376 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3548 (($ (-640 $)) 155) (($ $) 154)) (-3631 (((-112) (-114)) 166)) (-2543 (((-112) $ $) 40)) (-2340 (($ (-1169) (-640 $)) 205) (($ (-1169) $ $ $ $) 204) (($ (-1169) $ $ $) 203) (($ (-1169) $ $) 202) (($ (-1169) $) 201)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-1169)) 244 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 243 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 242 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) 241 (|has| |#1| (-1045)))) (-2998 (((-112) $ $) 133)) (-2977 (((-112) $ $) 132)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 134)) (-2966 (((-112) $ $) 131)) (-3050 (($ $ $) 66) (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 228 (|has| |#1| (-555)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 91)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172))))) -(((-29 |#1|) (-140) (-13 (-846) (-555))) (T -29)) -((-2691 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))) (-1503 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))) (-2691 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *4)))) (-1489 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))) (-3933 (*1 *2 *1) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))) (-1489 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) (-3933 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -2691 ($ $)) (-15 -1503 ((-640 $) $)) (-15 -2691 ($ $ (-1169))) (-15 -1503 ((-640 $) $ (-1169))) (-15 -1489 ($ $)) (-15 -3933 ((-640 $) $)) (-15 -1489 ($ $ (-1169))) (-15 -3933 ((-640 $) $ (-1169))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 #1=(-407 (-948 |#1|))) |has| |#1| (-555)) ((-613 (-563)) . T) ((-613 #2=(-609 $)) . T) ((-613 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-613 #4=(-1169)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) |has| |#1| (-172)) ((-643 $) . T) ((-636 (-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) ((-636 |#1|) |has| |#1| (-1045)) ((-713 #0#) . T) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-896 (-1169)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-563))) -2811 (|has| |#1| (-1034 (-407 (-563)))) (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) ((-1034 #1#) |has| |#1| (-555)) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1208) . T) ((-1212) . T)) -((-4120 (((-1087 (-225)) $) NIL)) (-4109 (((-1087 (-225)) $) NIL)) (-3272 (($ $ (-225)) 167)) (-2118 (($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563)))) 102)) (-2708 (((-640 (-640 (-939 (-225)))) $) 183)) (-2062 (((-858) $) 197))) -(((-30) (-13 (-951) (-10 -8 (-15 -2118 ($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563))))) (-15 -3272 ($ $ (-225)))))) (T -30)) -((-2118 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-948 (-563))) (-5 *3 (-1169)) (-5 *4 (-1087 (-407 (-563)))) (-5 *1 (-30)))) (-3272 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) -(-13 (-951) (-10 -8 (-15 -2118 ($ (-948 (-563)) (-1169) (-1169) (-1087 (-407 (-563))) (-1087 (-407 (-563))))) (-15 -3272 ($ $ (-225))))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-1128) $) 11)) (-1433 (((-1128) $) 9)) (-2943 (((-112) $ $) NIL))) -(((-31) (-13 (-1076) (-10 -8 (-15 -1433 ((-1128) $)) (-15 -3373 ((-1128) $))))) (T -31)) -((-1433 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31))))) -(-13 (-1076) (-10 -8 (-15 -1433 ((-1128) $)) (-15 -3373 ((-1128) $)))) -((-2691 ((|#2| (-1165 |#2|) (-1169)) 46)) (-3674 (((-114) (-114)) 60)) (-2011 (((-1165 |#2|) (-609 |#2|)) 151 (|has| |#1| (-1034 (-563))))) (-3360 ((|#2| |#1| (-563)) 139 (|has| |#1| (-1034 (-563))))) (-2128 ((|#2| (-1165 |#2|) |#2|) 29)) (-3345 (((-858) (-640 |#2|)) 88)) (-2713 ((|#2| |#2|) 146 (|has| |#1| (-1034 (-563))))) (-3631 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-563))) 105 (|has| |#1| (-1034 (-563)))))) -(((-32 |#1| |#2|) (-10 -7 (-15 -2691 (|#2| (-1165 |#2|) (-1169))) (-15 -3674 ((-114) (-114))) (-15 -3631 ((-112) (-114))) (-15 -2128 (|#2| (-1165 |#2|) |#2|)) (-15 -3345 ((-858) (-640 |#2|))) (IF (|has| |#1| (-1034 (-563))) (PROGN (-15 ** (|#2| |#2| (-407 (-563)))) (-15 -2011 ((-1165 |#2|) (-609 |#2|))) (-15 -2713 (|#2| |#2|)) (-15 -3360 (|#2| |#1| (-563)))) |%noBranch|)) (-13 (-846) (-555)) (-430 |#1|)) (T -32)) -((-3360 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-555))))) (-2713 (*1 *2 *2) (-12 (-4 *3 (-1034 (-563))) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-609 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-563))) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-1165 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-1034 (-563))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-3345 (*1 *2 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-858)) (-5 *1 (-32 *4 *5)))) (-2128 (*1 *2 *3 *2) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-3674 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-2691 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *2)) (-5 *4 (-1169)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-555)))))) -(-10 -7 (-15 -2691 (|#2| (-1165 |#2|) (-1169))) (-15 -3674 ((-114) (-114))) (-15 -3631 ((-112) (-114))) (-15 -2128 (|#2| (-1165 |#2|) |#2|)) (-15 -3345 ((-858) (-640 |#2|))) (IF (|has| |#1| (-1034 (-563))) (PROGN (-15 ** (|#2| |#2| (-407 (-563)))) (-15 -2011 ((-1165 |#2|) (-609 |#2|))) (-15 -2713 (|#2| |#2|)) (-15 -3360 (|#2| |#1| (-563)))) |%noBranch|)) -((-3740 (((-112) $ (-767)) 19)) (-3684 (($) 10)) (-3633 (((-112) $ (-767)) 18)) (-3604 (((-112) $ (-767)) 17)) (-3752 (((-112) $ $) 8)) (-2820 (((-112) $) 15))) -(((-33 |#1|) (-10 -8 (-15 -3684 (|#1|)) (-15 -3740 ((-112) |#1| (-767))) (-15 -3633 ((-112) |#1| (-767))) (-15 -3604 ((-112) |#1| (-767))) (-15 -2820 ((-112) |#1|)) (-15 -3752 ((-112) |#1| |#1|))) (-34)) (T -33)) -NIL -(-10 -8 (-15 -3684 (|#1|)) (-15 -3740 ((-112) |#1| (-767))) (-15 -3633 ((-112) |#1| (-767))) (-15 -3604 ((-112) |#1| (-767))) (-15 -2820 ((-112) |#1|)) (-15 -3752 ((-112) |#1| |#1|))) -((-3740 (((-112) $ (-767)) 8)) (-3684 (($) 7 T CONST)) (-3633 (((-112) $ (-767)) 9)) (-3604 (((-112) $ (-767)) 10)) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-2208 (($ $) 13)) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) +((-2854 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-2854 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-2854 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-3414 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) (-1452 (*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) (-1452 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) (-2690 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) (-5 *2 (-641 *1))))) +(-13 (-363) (-999) (-10 -8 (-15 -2854 ($ (-949 $))) (-15 -2854 ($ (-1166 $))) (-15 -2854 ($ (-1166 $) (-1170))) (-15 -3414 ((-641 $) (-949 $))) (-15 -3414 ((-641 $) (-1166 $))) (-15 -3414 ((-641 $) (-1166 $) (-1170))) (-15 -1452 ($ (-949 $))) (-15 -1452 ($ (-1166 $))) (-15 -1452 ($ (-1166 $) (-1170))) (-15 -2690 ((-641 $) (-949 $))) (-15 -2690 ((-641 $) (-1166 $))) (-15 -2690 ((-641 $) (-1166 $) (-1170))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-999) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2690 (((-641 $) (-949 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 60) (((-641 $) $) 22) (((-641 $) $ (-1170)) 51)) (-1452 (($ (-949 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) 62) (($ $) 20) (($ $ (-1170)) 45)) (-3414 (((-641 $) (-949 $)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 $) (-1170)) 58) (((-641 $) $) 18) (((-641 $) $ (-1170)) 53)) (-2854 (($ (-949 $)) NIL) (($ (-1166 $)) NIL) (($ (-1166 $) (-1170)) NIL) (($ $) 15) (($ $ (-1170)) 47))) +(((-28 |#1| |#2|) (-10 -8 (-15 -2690 ((-641 |#1|) |#1| (-1170))) (-15 -1452 (|#1| |#1| (-1170))) (-15 -2690 ((-641 |#1|) |#1|)) (-15 -1452 (|#1| |#1|)) (-15 -3414 ((-641 |#1|) |#1| (-1170))) (-15 -2854 (|#1| |#1| (-1170))) (-15 -3414 ((-641 |#1|) |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -2690 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2690 ((-641 |#1|) (-1166 |#1|))) (-15 -2690 ((-641 |#1|) (-949 |#1|))) (-15 -1452 (|#1| (-1166 |#1|) (-1170))) (-15 -1452 (|#1| (-1166 |#1|))) (-15 -1452 (|#1| (-949 |#1|))) (-15 -3414 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3414 ((-641 |#1|) (-1166 |#1|))) (-15 -3414 ((-641 |#1|) (-949 |#1|))) (-15 -2854 (|#1| (-1166 |#1|) (-1170))) (-15 -2854 (|#1| (-1166 |#1|))) (-15 -2854 (|#1| (-949 |#1|)))) (-29 |#2|) (-13 (-847) (-556))) (T -28)) +NIL +(-10 -8 (-15 -2690 ((-641 |#1|) |#1| (-1170))) (-15 -1452 (|#1| |#1| (-1170))) (-15 -2690 ((-641 |#1|) |#1|)) (-15 -1452 (|#1| |#1|)) (-15 -3414 ((-641 |#1|) |#1| (-1170))) (-15 -2854 (|#1| |#1| (-1170))) (-15 -3414 ((-641 |#1|) |#1|)) (-15 -2854 (|#1| |#1|)) (-15 -2690 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -2690 ((-641 |#1|) (-1166 |#1|))) (-15 -2690 ((-641 |#1|) (-949 |#1|))) (-15 -1452 (|#1| (-1166 |#1|) (-1170))) (-15 -1452 (|#1| (-1166 |#1|))) (-15 -1452 (|#1| (-949 |#1|))) (-15 -3414 ((-641 |#1|) (-1166 |#1|) (-1170))) (-15 -3414 ((-641 |#1|) (-1166 |#1|))) (-15 -3414 ((-641 |#1|) (-949 |#1|))) (-15 -2854 (|#1| (-1166 |#1|) (-1170))) (-15 -2854 (|#1| (-1166 |#1|))) (-15 -2854 (|#1| (-949 |#1|)))) +((-3732 (((-112) $ $) 7)) (-2690 (((-641 $) (-949 $)) 81) (((-641 $) (-1166 $)) 80) (((-641 $) (-1166 $) (-1170)) 79) (((-641 $) $) 125) (((-641 $) $ (-1170)) 123)) (-1452 (($ (-949 $)) 84) (($ (-1166 $)) 83) (($ (-1166 $) (-1170)) 82) (($ $) 126) (($ $ (-1170)) 124)) (-4173 (((-112) $) 16)) (-4269 (((-641 (-1170)) $) 200)) (-4097 (((-407 (-1166 $)) $ (-610 $)) 232 (|has| |#1| (-556)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-2084 (((-641 (-610 $)) $) 163)) (-3239 (((-3 $ "failed") $ $) 19)) (-3148 (($ $ (-641 (-610 $)) (-641 $)) 153) (($ $ (-641 (-294 $))) 152) (($ $ (-294 $)) 151)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-4137 (($ $) 93)) (-2377 (((-112) $ $) 60)) (-2818 (($) 17 T CONST)) (-3414 (((-641 $) (-949 $)) 87) (((-641 $) (-1166 $)) 86) (((-641 $) (-1166 $) (-1170)) 85) (((-641 $) $) 129) (((-641 $) $ (-1170)) 127)) (-2854 (($ (-949 $)) 90) (($ (-1166 $)) 89) (($ (-1166 $) (-1170)) 88) (($ $) 130) (($ $ (-1170)) 128)) (-2111 (((-3 (-949 |#1|) "failed") $) 250 (|has| |#1| (-1046))) (((-3 (-407 (-949 |#1|)) "failed") $) 234 (|has| |#1| (-556))) (((-3 |#1| "failed") $) 196) (((-3 (-564) "failed") $) 193 (|has| |#1| (-1035 (-564)))) (((-3 (-1170) "failed") $) 187) (((-3 (-610 $) "failed") $) 138) (((-3 (-407 (-564)) "failed") $) 121 (-4030 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-2239 (((-949 |#1|) $) 249 (|has| |#1| (-1046))) (((-407 (-949 |#1|)) $) 233 (|has| |#1| (-556))) ((|#1| $) 195) (((-564) $) 194 (|has| |#1| (-1035 (-564)))) (((-1170) $) 186) (((-610 $) $) 137) (((-407 (-564)) $) 122 (-4030 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-1373 (($ $ $) 56)) (-3039 (((-685 |#1|) (-685 $)) 240 (|has| |#1| (-1046))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 239 (|has| |#1| (-1046))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 120 (-4030 (-4267 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-4267 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (((-685 (-564)) (-685 $)) 119 (-4030 (-4267 (|has| |#1| (-1046)) (|has| |#1| (-637 (-564)))) (-4267 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-4188 (((-112) $) 72)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 192 (|has| |#1| (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 191 (|has| |#1| (-883 (-564))))) (-2211 (($ (-641 $)) 157) (($ $) 156)) (-3423 (((-641 (-114)) $) 164)) (-4058 (((-114) (-114)) 165)) (-3840 (((-112) $) 31)) (-1801 (((-112) $) 185 (|has| $ (-1035 (-564))))) (-3834 (($ $) 217 (|has| |#1| (-1046)))) (-1625 (((-1119 |#1| (-610 $)) $) 216 (|has| |#1| (-1046)))) (-2347 (($ $ (-564)) 92)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2176 (((-1166 $) (-610 $)) 182 (|has| $ (-1046)))) (-2799 (($ $ $) 136)) (-2848 (($ $ $) 135)) (-2187 (($ (-1 $ $) (-610 $)) 171)) (-4242 (((-3 (-610 $) "failed") $) 161)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4087 (((-641 (-610 $)) $) 162)) (-1697 (($ (-114) (-641 $)) 170) (($ (-114) $) 169)) (-3514 (((-3 (-641 $) "failed") $) 211 (|has| |#1| (-1106)))) (-3343 (((-3 (-2 (|:| |val| $) (|:| -2515 (-564))) "failed") $) 220 (|has| |#1| (-1046)))) (-4386 (((-3 (-641 $) "failed") $) 213 (|has| |#1| (-25)))) (-2705 (((-3 (-2 (|:| -1762 (-564)) (|:| |var| (-610 $))) "failed") $) 214 (|has| |#1| (-25)))) (-3758 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-1170)) 219 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-114)) 218 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $) 212 (|has| |#1| (-1106)))) (-4211 (((-112) $ (-1170)) 168) (((-112) $ (-114)) 167)) (-4373 (($ $) 71)) (-3724 (((-768) $) 160)) (-3864 (((-1114) $) 10)) (-4383 (((-112) $) 198)) (-1296 ((|#1| $) 199)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-3755 (((-112) $ (-1170)) 173) (((-112) $ $) 172)) (-4127 (((-418 $) $) 75)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-1497 (((-112) $) 184 (|has| $ (-1035 (-564))))) (-2416 (($ $ (-1170) (-768) (-1 $ $)) 224 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) 223 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 222 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 221 (|has| |#1| (-1046))) (($ $ (-641 (-114)) (-641 $) (-1170)) 210 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 209 (|has| |#1| (-612 (-536)))) (($ $) 208 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 207 (|has| |#1| (-612 (-536)))) (($ $ (-1170)) 206 (|has| |#1| (-612 (-536)))) (($ $ (-114) (-1 $ $)) 181) (($ $ (-114) (-1 $ (-641 $))) 180) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 179) (($ $ (-641 (-114)) (-641 (-1 $ $))) 178) (($ $ (-1170) (-1 $ $)) 177) (($ $ (-1170) (-1 $ (-641 $))) 176) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 175) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 174) (($ $ (-641 $) (-641 $)) 145) (($ $ $ $) 144) (($ $ (-294 $)) 143) (($ $ (-641 (-294 $))) 142) (($ $ (-641 (-610 $)) (-641 $)) 141) (($ $ (-610 $) $) 140)) (-4061 (((-768) $) 59)) (-4382 (($ (-114) (-641 $)) 150) (($ (-114) $ $ $ $) 149) (($ (-114) $ $ $) 148) (($ (-114) $ $) 147) (($ (-114) $) 146)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-1928 (($ $ $) 159) (($ $) 158)) (-4117 (($ $ (-1170)) 248 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 247 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 246 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) 245 (|has| |#1| (-1046)))) (-2090 (($ $) 227 (|has| |#1| (-556)))) (-1634 (((-1119 |#1| (-610 $)) $) 226 (|has| |#1| (-556)))) (-3925 (($ $) 183 (|has| $ (-1046)))) (-2235 (((-536) $) 254 (|has| |#1| (-612 (-536)))) (($ (-418 $)) 225 (|has| |#1| (-556))) (((-889 (-379)) $) 190 (|has| |#1| (-612 (-889 (-379))))) (((-889 (-564)) $) 189 (|has| |#1| (-612 (-889 (-564)))))) (-2766 (($ $ $) 253 (|has| |#1| (-473)))) (-3671 (($ $ $) 252 (|has| |#1| (-473)))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-949 |#1|)) 251 (|has| |#1| (-1046))) (($ (-407 (-949 |#1|))) 235 (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) 231 (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) 230 (|has| |#1| (-556))) (($ (-407 |#1|)) 229 (|has| |#1| (-556))) (($ (-1119 |#1| (-610 $))) 215 (|has| |#1| (-1046))) (($ |#1|) 197) (($ (-1170)) 188) (($ (-610 $)) 139)) (-4253 (((-3 $ "failed") $) 238 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-1523 (($ (-641 $)) 155) (($ $) 154)) (-2095 (((-112) (-114)) 166)) (-3360 (((-112) $ $) 40)) (-2591 (($ (-1170) (-641 $)) 205) (($ (-1170) $ $ $ $) 204) (($ (-1170) $ $ $) 203) (($ (-1170) $ $) 202) (($ (-1170) $) 201)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-1170)) 244 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 243 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 242 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) 241 (|has| |#1| (-1046)))) (-1751 (((-112) $ $) 133)) (-1731 (((-112) $ $) 132)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 134)) (-1723 (((-112) $ $) 131)) (-1799 (($ $ $) 66) (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 228 (|has| |#1| (-556)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 91)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 237 (|has| |#1| (-172))) (($ |#1| $) 236 (|has| |#1| (-172))))) +(((-29 |#1|) (-140) (-13 (-847) (-556))) (T -29)) +((-2854 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) (-3414 (*1 *2 *1) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-2854 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) (-3414 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4)))) (-1452 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) (-2690 (*1 *2 *1) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) (-1452 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) (-2690 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-430 |t#1|) (-10 -8 (-15 -2854 ($ $)) (-15 -3414 ((-641 $) $)) (-15 -2854 ($ $ (-1170))) (-15 -3414 ((-641 $) $ (-1170))) (-15 -1452 ($ $)) (-15 -2690 ((-641 $) $)) (-15 -1452 ($ $ (-1170))) (-15 -2690 ((-641 $) $ (-1170))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 #1=(-407 (-949 |#1|))) |has| |#1| (-556)) ((-614 (-564)) . T) ((-614 #2=(-610 $)) . T) ((-614 #3=(-949 |#1|)) |has| |#1| (-1046)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-243) . T) ((-290) . T) ((-307) . T) ((-309 $) . T) ((-302) . T) ((-363) . T) ((-377 |#1|) |has| |#1| (-1046)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-430 |#1|) . T) ((-452) . T) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) ((-637 |#1|) |has| |#1| (-1046)) ((-714 #0#) . T) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-897 (-1170)) |has| |#1| (-1046)) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-917) . T) ((-999) . T) ((-1035 (-407 (-564))) -4030 (|has| |#1| (-1035 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) ((-1035 #1#) |has| |#1| (-556)) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 #3#) |has| |#1| (-1046)) ((-1035 #4#) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T) ((-1213) . T)) +((-2582 (((-1088 (-225)) $) NIL)) (-2568 (((-1088 (-225)) $) NIL)) (-2359 (($ $ (-225)) 167)) (-3850 (($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564)))) 102)) (-1632 (((-641 (-641 (-940 (-225)))) $) 183)) (-3742 (((-859) $) 197))) +(((-30) (-13 (-952) (-10 -8 (-15 -3850 ($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2359 ($ $ (-225)))))) (T -30)) +((-3850 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-949 (-564))) (-5 *3 (-1170)) (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30)))) (-2359 (*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30))))) +(-13 (-952) (-10 -8 (-15 -3850 ($ (-949 (-564)) (-1170) (-1170) (-1088 (-407 (-564))) (-1088 (-407 (-564))))) (-15 -2359 ($ $ (-225))))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-1129) $) 11)) (-3237 (((-1129) $) 9)) (-1705 (((-112) $ $) NIL))) +(((-31) (-13 (-1077) (-10 -8 (-15 -3237 ((-1129) $)) (-15 -4337 ((-1129) $))))) (T -31)) +((-3237 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31))))) +(-13 (-1077) (-10 -8 (-15 -3237 ((-1129) $)) (-15 -4337 ((-1129) $)))) +((-2854 ((|#2| (-1166 |#2|) (-1170)) 46)) (-4058 (((-114) (-114)) 60)) (-2176 (((-1166 |#2|) (-610 |#2|)) 151 (|has| |#1| (-1035 (-564))))) (-3355 ((|#2| |#1| (-564)) 139 (|has| |#1| (-1035 (-564))))) (-3428 ((|#2| (-1166 |#2|) |#2|) 29)) (-1400 (((-859) (-641 |#2|)) 88)) (-3925 ((|#2| |#2|) 146 (|has| |#1| (-1035 (-564))))) (-2095 (((-112) (-114)) 17)) (** ((|#2| |#2| (-407 (-564))) 105 (|has| |#1| (-1035 (-564)))))) +(((-32 |#1| |#2|) (-10 -7 (-15 -2854 (|#2| (-1166 |#2|) (-1170))) (-15 -4058 ((-114) (-114))) (-15 -2095 ((-112) (-114))) (-15 -3428 (|#2| (-1166 |#2|) |#2|)) (-15 -1400 ((-859) (-641 |#2|))) (IF (|has| |#1| (-1035 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2176 ((-1166 |#2|) (-610 |#2|))) (-15 -3925 (|#2| |#2|)) (-15 -3355 (|#2| |#1| (-564)))) |%noBranch|)) (-13 (-847) (-556)) (-430 |#1|)) (T -32)) +((-3355 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1035 *4)) (-4 *3 (-13 (-847) (-556))))) (-3925 (*1 *2 *2) (-12 (-4 *3 (-1035 (-564))) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1035 (-564))) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1035 (-564))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) (-1400 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-859)) (-5 *1 (-32 *4 *5)))) (-3428 (*1 *2 *3 *2) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *4)) (-4 *4 (-430 *3)))) (-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-847) (-556)))))) +(-10 -7 (-15 -2854 (|#2| (-1166 |#2|) (-1170))) (-15 -4058 ((-114) (-114))) (-15 -2095 ((-112) (-114))) (-15 -3428 (|#2| (-1166 |#2|) |#2|)) (-15 -1400 ((-859) (-641 |#2|))) (IF (|has| |#1| (-1035 (-564))) (PROGN (-15 ** (|#2| |#2| (-407 (-564)))) (-15 -2176 ((-1166 |#2|) (-610 |#2|))) (-15 -3925 (|#2| |#2|)) (-15 -3355 (|#2| |#1| (-564)))) |%noBranch|)) +((-2969 (((-112) $ (-768)) 19)) (-2818 (($) 10)) (-2275 (((-112) $ (-768)) 18)) (-1500 (((-112) $ (-768)) 17)) (-1717 (((-112) $ $) 8)) (-4003 (((-112) $) 15))) +(((-33 |#1|) (-10 -8 (-15 -2818 (|#1|)) (-15 -2969 ((-112) |#1| (-768))) (-15 -2275 ((-112) |#1| (-768))) (-15 -1500 ((-112) |#1| (-768))) (-15 -4003 ((-112) |#1|)) (-15 -1717 ((-112) |#1| |#1|))) (-34)) (T -33)) +NIL +(-10 -8 (-15 -2818 (|#1|)) (-15 -2969 ((-112) |#1| (-768))) (-15 -2275 ((-112) |#1| (-768))) (-15 -1500 ((-112) |#1| (-768))) (-15 -4003 ((-112) |#1|)) (-15 -1717 ((-112) |#1| |#1|))) +((-2969 (((-112) $ (-768)) 8)) (-2818 (($) 7 T CONST)) (-2275 (((-112) $ (-768)) 9)) (-1500 (((-112) $ (-768)) 10)) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-3896 (($ $) 13)) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) (((-34) (-140)) (T -34)) -((-3752 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-2208 (*1 *1 *1) (-4 *1 (-34))) (-2749 (*1 *1) (-4 *1 (-34))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3604 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-3633 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-3740 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) (-3684 (*1 *1) (-4 *1 (-34))) (-1708 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-34)) (-5 *2 (-767))))) -(-13 (-1208) (-10 -8 (-15 -3752 ((-112) $ $)) (-15 -2208 ($ $)) (-15 -2749 ($)) (-15 -2820 ((-112) $)) (-15 -3604 ((-112) $ (-767))) (-15 -3633 ((-112) $ (-767))) (-15 -3740 ((-112) $ (-767))) (-15 -3684 ($) -2495) (IF (|has| $ (-6 -4408)) (-15 -1708 ((-767) $)) |%noBranch|))) -(((-1208) . T)) -((-2285 (($ $) 11)) (-2264 (($ $) 10)) (-2306 (($ $) 9)) (-4205 (($ $) 8)) (-2296 (($ $) 7)) (-2275 (($ $) 6))) +((-1717 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-3896 (*1 *1 *1) (-4 *1 (-34))) (-3434 (*1 *1) (-4 *1 (-34))) (-4003 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) (-1500 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-2275 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-2969 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) (-2818 (*1 *1) (-4 *1 (-34))) (-2641 (*1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-34)) (-5 *2 (-768))))) +(-13 (-1209) (-10 -8 (-15 -1717 ((-112) $ $)) (-15 -3896 ($ $)) (-15 -3434 ($)) (-15 -4003 ((-112) $)) (-15 -1500 ((-112) $ (-768))) (-15 -2275 ((-112) $ (-768))) (-15 -2969 ((-112) $ (-768))) (-15 -2818 ($) -2091) (IF (|has| $ (-6 -4411)) (-15 -2641 ((-768) $)) |%noBranch|))) +(((-1209) . T)) +((-2521 (($ $) 11)) (-2495 (($ $) 10)) (-2548 (($ $) 9)) (-4065 (($ $) 8)) (-2534 (($ $) 7)) (-2507 (($ $) 6))) (((-35) (-140)) (T -35)) -((-2285 (*1 *1 *1) (-4 *1 (-35))) (-2264 (*1 *1 *1) (-4 *1 (-35))) (-2306 (*1 *1 *1) (-4 *1 (-35))) (-4205 (*1 *1 *1) (-4 *1 (-35))) (-2296 (*1 *1 *1) (-4 *1 (-35))) (-2275 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -2275 ($ $)) (-15 -2296 ($ $)) (-15 -4205 ($ $)) (-15 -2306 ($ $)) (-15 -2264 ($ $)) (-15 -2285 ($ $)))) -((-2049 (((-112) $ $) 19 (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-3556 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 125)) (-3931 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 148)) (-1588 (($ $) 146)) (-2541 (($) 72) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 71)) (-1435 (((-1262) $ |#1| |#1|) 99 (|has| $ (-6 -4409))) (((-1262) $ (-563) (-563)) 178 (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) 159 (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2146 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 200 (|has| $ (-6 -4409))) (($ $) 199 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)) (|has| $ (-6 -4409))))) (-4257 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-3740 (((-112) $ (-767)) 8)) (-3472 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 134 (|has| $ (-6 -4409)))) (-3032 (($ $ $) 155 (|has| $ (-6 -4409)))) (-3021 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 157 (|has| $ (-6 -4409)))) (-3043 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 153 (|has| $ (-6 -4409)))) (-2189 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 189 (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-1224 (-563)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 160 (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "last" (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 158 (|has| $ (-6 -4409))) (($ $ "rest" $) 156 (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "first" (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 154 (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "value" (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 133 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 132 (|has| $ (-6 -4409)))) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 45 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 216)) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 55 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 175 (|has| $ (-6 -4408)))) (-3919 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 147)) (-3742 (((-3 |#2| "failed") |#1| $) 61)) (-3684 (($) 7 T CONST)) (-3934 (($ $) 201 (|has| $ (-6 -4409)))) (-4294 (($ $) 211)) (-1897 (($ $ (-767)) 142) (($ $) 140)) (-2273 (($ $) 214 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-1920 (($ $) 58 (-2811 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408))) (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 220) (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 215 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 54 (|has| $ (-6 -4408))) (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 174 (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 56 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 52 (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 176 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 173 (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 172 (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 190 (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) 88) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) 188)) (-3089 (((-112) $) 192)) (-2256 (((-563) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 208) (((-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 207 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) (((-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) 206 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 30 (|has| $ (-6 -4408))) (((-640 |#2|) $) 79 (|has| $ (-6 -4408))) (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 114 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 123)) (-3494 (((-112) $ $) 131 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-2552 (($ (-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 169)) (-3633 (((-112) $ (-767)) 9)) (-3371 ((|#1| $) 96 (|has| |#1| (-846))) (((-563) $) 180 (|has| (-563) (-846)))) (-3489 (($ $ $) 198 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2346 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2383 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 29 (|has| $ (-6 -4408))) (((-640 |#2|) $) 80 (|has| $ (-6 -4408))) (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 115 (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408)))) (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-3383 ((|#1| $) 95 (|has| |#1| (-846))) (((-563) $) 181 (|has| (-563) (-846)))) (-4105 (($ $ $) 197 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 34 (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 110 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 109)) (-2335 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 225)) (-3604 (((-112) $ (-767)) 10)) (-3884 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 128)) (-2484 (((-112) $) 124)) (-1938 (((-1151) $) 22 (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-1442 (($ $ (-767)) 145) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 143)) (-2706 (((-640 |#1|) $) 63)) (-3435 (((-112) |#1| $) 64)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 39)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 40) (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) 219) (($ $ $ (-563)) 218)) (-2530 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) 162) (($ $ $ (-563)) 161)) (-3404 (((-640 |#1|) $) 93) (((-640 (-563)) $) 183)) (-3417 (((-112) |#1| $) 92) (((-112) (-563) $) 184)) (-3249 (((-1113) $) 21 (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-1884 ((|#2| $) 97 (|has| |#1| (-846))) (($ $ (-767)) 139) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 137)) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 51) (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 171)) (-3357 (($ $ |#2|) 98 (|has| $ (-6 -4409))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 179 (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 41)) (-3101 (((-112) $) 191)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 32 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 112 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) 26 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 25 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 24 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 23 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 121 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 120 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 119 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) 118 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 182 (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-3427 (((-640 |#2|) $) 91) (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 185)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 187) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) 186) (($ $ (-1224 (-563))) 165) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "first") 138) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "value") 126)) (-3514 (((-563) $ $) 129)) (-3139 (($) 49) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 48)) (-1751 (($ $ (-563)) 222) (($ $ (-1224 (-563))) 221)) (-4159 (($ $ (-563)) 164) (($ $ (-1224 (-563))) 163)) (-2181 (((-112) $) 127)) (-3074 (($ $) 151)) (-3055 (($ $) 152 (|has| $ (-6 -4409)))) (-3083 (((-767) $) 150)) (-3095 (($ $) 149)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 113 (|has| $ (-6 -4408)))) (-2155 (($ $ $ (-563)) 202 (|has| $ (-6 -4409)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536)))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 50) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 170)) (-3065 (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 224) (($ $ $) 223)) (-1951 (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 168) (($ (-640 $)) 167) (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 136) (($ $ $) 135)) (-2062 (((-858) $) 18 (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858)))))) (-2432 (((-640 $) $) 122)) (-3504 (((-112) $ $) 130 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 42)) (-1448 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") |#1| $) 108)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 33 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 111 (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) 195 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2977 (((-112) $ $) 194 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2943 (((-112) $ $) 20 (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2988 (((-112) $ $) 196 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2966 (((-112) $ $) 193 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-36 |#1| |#2|) (-140) (-1093) (-1093)) (T -36)) -((-1448 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-2 (|:| -3320 *3) (|:| -3704 *4)))))) -(-13 (-1184 |t#1| |t#2|) (-661 (-2 (|:| -3320 |t#1|) (|:| -3704 |t#2|))) (-10 -8 (-15 -1448 ((-3 (-2 (|:| -3320 |t#1|) (|:| -3704 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T) ((-102) -2811 (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846))) ((-610 (-858)) -2811 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858)))) ((-151 #1=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T) ((-611 (-536)) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-563) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-601 #2# #1#) . T) ((-601 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-607 |#1| |#2|) . T) ((-646 #1#) . T) ((-661 #1#) . T) ((-846) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)) ((-1006 #1#) . T) ((-1093) -2811 (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846))) ((-1142 #1#) . T) ((-1184 |#1| |#2|) . T) ((-1208) . T) ((-1245 #1#) . T)) -((-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10))) -(((-37 |#1| |#2|) (-10 -8 (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-38 |#2|) (-172)) (T -37)) -NIL -(-10 -8 (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +((-2521 (*1 *1 *1) (-4 *1 (-35))) (-2495 (*1 *1 *1) (-4 *1 (-35))) (-2548 (*1 *1 *1) (-4 *1 (-35))) (-4065 (*1 *1 *1) (-4 *1 (-35))) (-2534 (*1 *1 *1) (-4 *1 (-35))) (-2507 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -2507 ($ $)) (-15 -2534 ($ $)) (-15 -4065 ($ $)) (-15 -2548 ($ $)) (-15 -2495 ($ $)) (-15 -2521 ($ $)))) +((-3732 (((-112) $ $) 19 (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-3426 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 125)) (-2910 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 148)) (-3813 (($ $) 146)) (-3608 (($) 72) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 71)) (-2645 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4412))) (((-1264) $ (-564) (-564)) 178 (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) 159 (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 209) (((-112) $) 203 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2402 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 200 (|has| $ (-6 -4412))) (($ $) 199 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)) (|has| $ (-6 -4412))))) (-2777 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2969 (((-112) $ (-768)) 8)) (-3976 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 134 (|has| $ (-6 -4412)))) (-3417 (($ $ $) 155 (|has| $ (-6 -4412)))) (-1716 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 157 (|has| $ (-6 -4412)))) (-2094 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 153 (|has| $ (-6 -4412)))) (-3877 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 189 (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-1226 (-564)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 160 (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "last" (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 158 (|has| $ (-6 -4412))) (($ $ "rest" $) 156 (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "first" (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 154 (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "value" (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 133 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 132 (|has| $ (-6 -4412)))) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 45 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 216)) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 55 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 175 (|has| $ (-6 -4411)))) (-2899 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 147)) (-3638 (((-3 |#2| "failed") |#1| $) 61)) (-2818 (($) 7 T CONST)) (-2797 (($ $) 201 (|has| $ (-6 -4412)))) (-1856 (($ $) 211)) (-1977 (($ $ (-768)) 142) (($ $) 140)) (-4181 (($ $) 214 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-1996 (($ $) 58 (-4030 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411))) (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 46 (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 220) (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 215 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 54 (|has| $ (-6 -4411))) (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 177 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 174 (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 56 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 53 (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 52 (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 176 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 173 (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 172 (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 190 (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) 88) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) 188)) (-2378 (((-112) $) 192)) (-3305 (((-564) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 208) (((-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 207 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) (((-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) 206 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 30 (|has| $ (-6 -4411))) (((-641 |#2|) $) 79 (|has| $ (-6 -4411))) (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 114 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 123)) (-1940 (((-112) $ $) 131 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-3619 (($ (-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 169)) (-2275 (((-112) $ (-768)) 9)) (-2029 ((|#1| $) 96 (|has| |#1| (-847))) (((-564) $) 180 (|has| (-564) (-847)))) (-2799 (($ $ $) 198 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1457 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2164 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 29 (|has| $ (-6 -4411))) (((-641 |#2|) $) 80 (|has| $ (-6 -4411))) (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 115 (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411)))) (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 117 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-3774 ((|#1| $) 95 (|has| |#1| (-847))) (((-564) $) 181 (|has| (-564) (-847)))) (-2848 (($ $ $) 197 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 34 (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4412))) (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 110 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 109)) (-1858 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 225)) (-1500 (((-112) $ (-768)) 10)) (-2333 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 128)) (-1881 (((-112) $) 124)) (-2217 (((-1152) $) 22 (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2389 (($ $ (-768)) 145) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 143)) (-1823 (((-641 |#1|) $) 63)) (-2219 (((-112) |#1| $) 64)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 39)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 40) (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) 219) (($ $ $ (-564)) 218)) (-2308 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) 162) (($ $ $ (-564)) 161)) (-2312 (((-641 |#1|) $) 93) (((-641 (-564)) $) 183)) (-4062 (((-112) |#1| $) 92) (((-112) (-564) $) 184)) (-3864 (((-1114) $) 21 (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-1966 ((|#2| $) 97 (|has| |#1| (-847))) (($ $ (-768)) 139) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 137)) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 51) (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 171)) (-3099 (($ $ |#2|) 98 (|has| $ (-6 -4412))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 179 (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 41)) (-2174 (((-112) $) 191)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 32 (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 112 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) 26 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 25 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 24 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 23 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 121 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 120 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 119 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) 118 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 182 (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2572 (((-641 |#2|) $) 91) (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 185)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 187) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) 186) (($ $ (-1226 (-564))) 165) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "first") 138) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "value") 126)) (-4209 (((-564) $ $) 129)) (-4085 (($) 49) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 48)) (-3778 (($ $ (-564)) 222) (($ $ (-1226 (-564))) 221)) (-2004 (($ $ (-564)) 164) (($ $ (-1226 (-564))) 163)) (-3572 (((-112) $) 127)) (-1459 (($ $) 151)) (-3838 (($ $) 152 (|has| $ (-6 -4412)))) (-3108 (((-768) $) 150)) (-2857 (($ $) 149)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 31 (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-768) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 116 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 113 (|has| $ (-6 -4411)))) (-1999 (($ $ $ (-564)) 202 (|has| $ (-6 -4412)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536)))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 50) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 170)) (-1807 (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 224) (($ $ $) 223)) (-1802 (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 168) (($ (-641 $)) 167) (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 136) (($ $ $) 135)) (-3742 (((-859) $) 18 (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859)))))) (-3167 (((-641 $) $) 122)) (-1584 (((-112) $ $) 130 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 42)) (-2398 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") |#1| $) 108)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 33 (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 111 (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) 195 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1731 (((-112) $ $) 194 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1705 (((-112) $ $) 20 (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-1741 (((-112) $ $) 196 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1723 (((-112) $ $) 193 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-36 |#1| |#2|) (-140) (-1094) (-1094)) (T -36)) +((-2398 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| -1327 *3) (|:| -2423 *4)))))) +(-13 (-1185 |t#1| |t#2|) (-662 (-2 (|:| -1327 |t#1|) (|:| -2423 |t#2|))) (-10 -8 (-15 -2398 ((-3 (-2 (|:| -1327 |t#1|) (|:| -2423 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T) ((-102) -4030 (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847))) ((-611 (-859)) -4030 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859)))) ((-151 #1=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T) ((-612 (-536)) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 #2=(-564) #1#) . T) ((-286 |#1| |#2|) . T) ((-288 #2# #1#) . T) ((-288 |#1| |#2|) . T) ((-309 #1#) -12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-282 #1#) . T) ((-373 #1#) . T) ((-489 #1#) . T) ((-489 |#2|) . T) ((-602 #2# #1#) . T) ((-602 |#1| |#2|) . T) ((-514 #1# #1#) -12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-647 #1#) . T) ((-662 #1#) . T) ((-847) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)) ((-1007 #1#) . T) ((-1094) -4030 (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847))) ((-1143 #1#) . T) ((-1185 |#1| |#2|) . T) ((-1209) . T) ((-1247 #1#) . T)) +((-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10))) +(((-37 |#1| |#2|) (-10 -8 (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-38 |#2|) (-172)) (T -37)) +NIL +(-10 -8 (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) (((-38 |#1|) (-140) (-172)) (T -38)) NIL -(-13 (-1045) (-713 |t#1|) (-613 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2919 (((-418 |#1|) |#1|) 41)) (-2055 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-640 (-48))) 33)) (-3764 (((-112) |#1|) 59))) -(((-39 |#1|) (-10 -7 (-15 -2055 ((-418 |#1|) |#1| (-640 (-48)))) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2919 ((-418 |#1|) |#1|)) (-15 -3764 ((-112) |#1|))) (-1233 (-48))) (T -39)) -((-3764 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-2919 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-2055 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48)))))) -(-10 -7 (-15 -2055 ((-418 |#1|) |#1| (-640 (-48)))) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2919 ((-418 |#1|) |#1|)) (-15 -3764 ((-112) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3648 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-2554 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2533 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2660 (((-684 (-407 |#2|)) (-1257 $)) NIL) (((-684 (-407 |#2|))) NIL)) (-3282 (((-407 |#2|) $) NIL)) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-407 |#2|) (-349)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2102 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4332 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2433 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-3809 (((-112)) NIL)) (-3795 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) NIL)) (-1505 (($ (-1257 (-407 |#2|)) (-1257 $)) NIL) (($ (-1257 (-407 |#2|))) 61) (($ (-1257 |#2|) |#2|) 135)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-3495 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2649 (((-684 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) NIL) (((-684 (-407 |#2|)) (-684 $)) NIL)) (-3703 (((-1257 $) (-1257 $)) NIL)) (-2532 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3230 (((-3 $ "failed") $) NIL)) (-3570 (((-640 (-640 |#1|))) NIL (|has| |#1| (-368)))) (-3842 (((-112) |#1| |#1|) NIL)) (-3406 (((-917)) NIL)) (-4301 (($) NIL (|has| (-407 |#2|) (-368)))) (-3784 (((-112)) NIL)) (-3772 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-3473 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| (-407 |#2|) (-363)))) (-2227 (($ $) NIL)) (-2135 (($) NIL (|has| (-407 |#2|) (-349)))) (-2812 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-2506 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-3675 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2903 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-2712 (((-112) $) NIL)) (-3794 (((-767)) NIL)) (-3714 (((-1257 $) (-1257 $)) 111)) (-3251 (((-407 |#2|) $) NIL)) (-3579 (((-640 (-948 |#1|)) (-1169)) NIL (|has| |#1| (-363)))) (-3113 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2134 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-3267 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-2521 ((|#3| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1938 (((-1151) $) NIL)) (-3776 (((-1262) (-767)) 88)) (-3660 (((-684 (-407 |#2|))) 56)) (-3681 (((-684 (-407 |#2|))) 49)) (-3149 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3630 (($ (-1257 |#2|) |#2|) 136)) (-3671 (((-684 (-407 |#2|))) 50)) (-3691 (((-684 (-407 |#2|))) 48)) (-3620 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 134)) (-3639 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 68)) (-3760 (((-1257 $)) 47)) (-1661 (((-1257 $)) 46)) (-3748 (((-112) $) NIL)) (-3735 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2956 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-3491 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-3600 (((-3 |#2| "failed")) NIL)) (-3249 (((-1113) $) NIL)) (-3863 (((-767)) NIL)) (-1738 (($) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-407 |#2|) (-363)))) (-1647 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| (-407 |#2|) (-349)))) (-2055 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3448 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4322 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-3858 ((|#1| $ |#1| |#1|) NIL)) (-3610 (((-3 |#2| "failed")) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3974 (((-407 |#2|) (-1257 $)) NIL) (((-407 |#2|)) 44)) (-2515 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-1361 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 130) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-2811 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2811 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2701 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-2713 ((|#3|) 55)) (-2750 (($) NIL (|has| (-407 |#2|) (-349)))) (-1818 (((-1257 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 |#2|)) $) 62) (((-684 (-407 |#2|)) (-1257 $)) 112)) (-2802 (((-1257 (-407 |#2|)) $) NIL) (($ (-1257 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-407 |#2|) (-349)))) (-3725 (((-1257 $) (-1257 $)) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-563))) NIL (-2811 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4376 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-3015 ((|#3| $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3830 (((-112)) 42)) (-3819 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-3288 (((-1257 $)) 102)) (-2543 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3589 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3852 (((-112)) NIL)) (-3790 (($) 17 T CONST)) (-3803 (($) 27 T CONST)) (-4191 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-2811 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2811 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) NIL (|has| (-407 |#2|) (-363))))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -3776 ((-1262) (-767))))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) |#3|) (T -40)) -((-3776 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *2 (-1262)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1233 (-407 *5))) (-14 *7 *6)))) -(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -3776 ((-1262) (-767))))) -((-3788 ((|#2| |#2|) 48)) (-3846 ((|#2| |#2|) 143 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-3834 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-3824 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-3856 ((|#2| (-114) |#2| (-767)) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-846)) (|has| |#1| (-1034 (-563)))))) (-3813 (((-1165 |#2|) |#2|) 45)) (-3799 ((|#2| |#2| (-640 (-609 |#2|))) 18) ((|#2| |#2| (-640 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) -(((-41 |#1| |#2|) (-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3799 (|#2| |#2| |#2|)) (-15 -3799 (|#2| |#2| (-640 |#2|))) (-15 -3799 (|#2| |#2| (-640 (-609 |#2|)))) (-15 -3813 ((-1165 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-563))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -3824 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3856 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-555) (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 |#1| (-609 $)) $)) (-15 -2636 ((-1118 |#1| (-609 $)) $)) (-15 -2062 ($ (-1118 |#1| (-609 $))))))) (T -41)) -((-3856 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846)) (-4 *5 (-1034 (-563))) (-4 *5 (-555)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *5 (-609 $)) $)) (-15 -2636 ((-1118 *5 (-609 $)) $)) (-15 -2062 ($ (-1118 *5 (-609 $))))))))) (-3846 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) (-15 -2636 ((-1118 *3 (-609 $)) $)) (-15 -2062 ($ (-1118 *3 (-609 $))))))))) (-3834 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) (-15 -2636 ((-1118 *3 (-609 $)) $)) (-15 -2062 ($ (-1118 *3 (-609 $))))))))) (-3824 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) (-15 -2636 ((-1118 *3 (-609 $)) $)) (-15 -2062 ($ (-1118 *3 (-609 $))))))))) (-3813 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-1165 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *4 (-609 $)) $)) (-15 -2636 ((-1118 *4 (-609 $)) $)) (-15 -2062 ($ (-1118 *4 (-609 $))))))))) (-3799 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-609 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *4 (-609 $)) $)) (-15 -2636 ((-1118 *4 (-609 $)) $)) (-15 -2062 ($ (-1118 *4 (-609 $))))))) (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))) (-3799 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *4 (-609 $)) $)) (-15 -2636 ((-1118 *4 (-609 $)) $)) (-15 -2062 ($ (-1118 *4 (-609 $))))))) (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))) (-3799 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) (-15 -2636 ((-1118 *3 (-609 $)) $)) (-15 -2062 ($ (-1118 *3 (-609 $))))))))) (-3799 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) (-15 -2636 ((-1118 *3 (-609 $)) $)) (-15 -2062 ($ (-1118 *3 (-609 $))))))))) (-3788 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) (-15 -2636 ((-1118 *3 (-609 $)) $)) (-15 -2062 ($ (-1118 *3 (-609 $)))))))))) -(-10 -7 (-15 -3788 (|#2| |#2|)) (-15 -3799 (|#2| |#2|)) (-15 -3799 (|#2| |#2| |#2|)) (-15 -3799 (|#2| |#2| (-640 |#2|))) (-15 -3799 (|#2| |#2| (-640 (-609 |#2|)))) (-15 -3813 ((-1165 |#2|) |#2|)) (IF (|has| |#1| (-846)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1034 (-563))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -3824 (|#2| |#2|)) (-15 -3834 (|#2| |#2|)) (-15 -3846 (|#2| |#2|)) (-15 -3856 (|#2| (-114) |#2| (-767)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-2055 (((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48))) 23) (((-418 |#3|) |#3| (-640 (-48))) 19))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -2055 ((-418 |#3|) |#3| (-640 (-48)))) (-15 -2055 ((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48))))) (-846) (-789) (-945 (-48) |#2| |#1|)) (T -42)) -((-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5))))) -(-10 -7 (-15 -2055 ((-418 |#3|) |#3| (-640 (-48)))) (-15 -2055 ((-418 (-1165 |#3|)) (-1165 |#3|) (-640 (-48))))) -((-3899 (((-767) |#2|) 72)) (-3879 (((-767) |#2|) 76)) (-4028 (((-640 |#2|)) 39)) (-3867 (((-767) |#2|) 75)) (-3889 (((-767) |#2|) 71)) (-3908 (((-767) |#2|) 74)) (-4010 (((-640 (-684 |#1|))) 67)) (-3956 (((-640 |#2|)) 62)) (-3939 (((-640 |#2|) |#2|) 50)) (-3978 (((-640 |#2|)) 64)) (-3966 (((-640 |#2|)) 63)) (-3998 (((-640 (-684 |#1|))) 55)) (-3948 (((-640 |#2|)) 61)) (-3929 (((-640 |#2|) |#2|) 49)) (-3917 (((-640 |#2|)) 57)) (-4019 (((-640 (-684 |#1|))) 68)) (-3989 (((-640 |#2|)) 66)) (-3288 (((-1257 |#2|) (-1257 |#2|)) 100 (|has| |#1| (-307))))) -(((-43 |#1| |#2|) (-10 -7 (-15 -3867 ((-767) |#2|)) (-15 -3879 ((-767) |#2|)) (-15 -3889 ((-767) |#2|)) (-15 -3899 ((-767) |#2|)) (-15 -3908 ((-767) |#2|)) (-15 -3917 ((-640 |#2|))) (-15 -3929 ((-640 |#2|) |#2|)) (-15 -3939 ((-640 |#2|) |#2|)) (-15 -3948 ((-640 |#2|))) (-15 -3956 ((-640 |#2|))) (-15 -3966 ((-640 |#2|))) (-15 -3978 ((-640 |#2|))) (-15 -3989 ((-640 |#2|))) (-15 -3998 ((-640 (-684 |#1|)))) (-15 -4010 ((-640 (-684 |#1|)))) (-15 -4019 ((-640 (-684 |#1|)))) (-15 -4028 ((-640 |#2|))) (IF (|has| |#1| (-307)) (-15 -3288 ((-1257 |#2|) (-1257 |#2|))) |%noBranch|)) (-555) (-417 |#1|)) (T -43)) -((-3288 (*1 *2 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-43 *3 *4)))) (-4028 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4019 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-4010 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3998 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3989 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3978 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3966 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3956 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3948 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3939 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3929 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3917 (*1 *2) (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3899 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3889 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3879 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3867 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) -(-10 -7 (-15 -3867 ((-767) |#2|)) (-15 -3879 ((-767) |#2|)) (-15 -3889 ((-767) |#2|)) (-15 -3899 ((-767) |#2|)) (-15 -3908 ((-767) |#2|)) (-15 -3917 ((-640 |#2|))) (-15 -3929 ((-640 |#2|) |#2|)) (-15 -3939 ((-640 |#2|) |#2|)) (-15 -3948 ((-640 |#2|))) (-15 -3956 ((-640 |#2|))) (-15 -3966 ((-640 |#2|))) (-15 -3978 ((-640 |#2|))) (-15 -3989 ((-640 |#2|))) (-15 -3998 ((-640 (-684 |#1|)))) (-15 -4010 ((-640 (-684 |#1|)))) (-15 -4019 ((-640 (-684 |#1|)))) (-15 -4028 ((-640 |#2|))) (IF (|has| |#1| (-307)) (-15 -3288 ((-1257 |#2|) (-1257 |#2|))) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2570 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1807 (((-1257 (-684 |#1|)) (-1257 $)) NIL) (((-1257 (-684 |#1|))) 24)) (-2138 (((-1257 $)) 55)) (-3684 (($) NIL T CONST)) (-3422 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL (|has| |#1| (-555)))) (-3040 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-1460 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-2117 ((|#1| $) NIL)) (-1440 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-2661 (((-3 $ "failed") $) NIL (|has| |#1| (-555)))) (-3351 (((-1165 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-2690 (($ $ (-917)) NIL)) (-2097 ((|#1| $) NIL)) (-3061 (((-1165 |#1|) $) NIL (|has| |#1| (-555)))) (-1483 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-3248 (((-1165 |#1|) $) NIL)) (-3190 (((-112)) 102)) (-1505 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) NIL)) (-3230 (((-3 $ "failed") $) 14 (|has| |#1| (-555)))) (-3406 (((-917)) 56)) (-3159 (((-112)) NIL)) (-1670 (($ $ (-917)) NIL)) (-3115 (((-112)) NIL)) (-3092 (((-112)) NIL)) (-3135 (((-112)) 104)) (-3430 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL (|has| |#1| (-555)))) (-3052 (((-3 $ "failed")) NIL (|has| |#1| (-555)))) (-1471 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-2127 ((|#1| $) NIL)) (-1450 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-2673 (((-3 $ "failed") $) NIL (|has| |#1| (-555)))) (-3399 (((-1165 (-948 |#1|))) NIL (|has| |#1| (-363)))) (-2681 (($ $ (-917)) NIL)) (-2108 ((|#1| $) NIL)) (-3071 (((-1165 |#1|) $) NIL (|has| |#1| (-555)))) (-1493 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-3260 (((-1165 |#1|) $) NIL)) (-3200 (((-112)) 101)) (-1938 (((-1151) $) NIL)) (-3103 (((-112)) 109)) (-3125 (((-112)) 108)) (-3146 (((-112)) 110)) (-3249 (((-1113) $) NIL)) (-3180 (((-112)) 103)) (-3858 ((|#1| $ (-563)) 58)) (-1818 (((-1257 |#1|) $ (-1257 $)) 53) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) 28) (((-684 |#1|) (-1257 $)) NIL)) (-2802 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL)) (-1355 (((-640 (-948 |#1|)) (-1257 $)) NIL) (((-640 (-948 |#1|))) NIL)) (-2879 (($ $ $) NIL)) (-3239 (((-112)) 98)) (-2062 (((-858) $) 75) (($ (-1257 |#1|)) 22)) (-3288 (((-1257 $)) 49)) (-3080 (((-640 (-1257 |#1|))) NIL (|has| |#1| (-555)))) (-2888 (($ $ $ $) NIL)) (-3221 (((-112)) 94)) (-2408 (($ (-684 |#1|) $) 18)) (-2870 (($ $ $) NIL)) (-3231 (((-112)) 100)) (-3210 (((-112)) 95)) (-3169 (((-112)) 93)) (-3790 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1135 |#2| |#1|) $) 19))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-643 (-1135 |#2| |#1|)) (-10 -8 (-15 -2062 ($ (-1257 |#1|))))) (-363) (-917) (-640 (-1169)) (-1257 (-684 |#1|))) (T -44)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-14 *6 (-1257 (-684 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169)))))) -(-13 (-417 |#1|) (-643 (-1135 |#2| |#1|)) (-10 -8 (-15 -2062 ($ (-1257 |#1|))))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-3556 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3931 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-1588 (($ $) NIL)) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1435 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409))) (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2146 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846))))) (-4257 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-3472 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409)))) (-3032 (($ $ $) 33 (|has| $ (-6 -4409)))) (-3021 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409)))) (-3043 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 35 (|has| $ (-6 -4409)))) (-2189 ((|#2| $ |#1| |#2|) 52) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-1224 (-563)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "last" (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409))) (($ $ "rest" $) NIL (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "first" (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "value" (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3919 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3742 (((-3 |#2| "failed") |#1| $) 43)) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1897 (($ $ (-767)) NIL) (($ $) 29)) (-2273 (($ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 55) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) NIL) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) NIL)) (-3089 (((-112) $) NIL)) (-2256 (((-563) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (((-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) (((-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 20 (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408))) (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 20 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-2552 (($ (-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 ((|#1| $) NIL (|has| |#1| (-846))) (((-563) $) 38 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2346 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2383 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408))) (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-3383 ((|#1| $) NIL (|has| |#1| (-846))) (((-563) $) 40 (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-2335 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-3884 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-2484 (((-112) $) NIL)) (-1938 (((-1151) $) 48 (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1442 (($ $ (-767)) NIL) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-2706 (((-640 |#1|) $) 22)) (-3435 (((-112) |#1| $) NIL)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL) (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-2530 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 |#1|) $) NIL) (((-640 (-563)) $) NIL)) (-3417 (((-112) |#1| $) NIL) (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1884 ((|#2| $) NIL (|has| |#1| (-846))) (($ $ (-767)) NIL) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 27)) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3101 (((-112) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-3427 (((-640 |#2|) $) NIL) (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 19)) (-2820 (((-112) $) 18)) (-2749 (($) 14)) (-3858 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "first") NIL) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $ "value") NIL)) (-3514 (((-563) $ $) NIL)) (-3139 (($) 13) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1751 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-2181 (((-112) $) NIL)) (-3074 (($ $) NIL)) (-3055 (($ $) NIL (|has| $ (-6 -4409)))) (-3083 (((-767) $) NIL)) (-3095 (($ $) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3065 (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL) (($ $ $) NIL)) (-1951 (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL) (($ (-640 $)) NIL) (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 31) (($ $ $) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1448 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") |#1| $) 50)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2988 (((-112) $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-846)))) (-1708 (((-767) $) 25 (|has| $ (-6 -4408))))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1093) (-1093)) (T -45)) +(-13 (-1046) (-714 |t#1|) (-614 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3651 (((-418 |#1|) |#1|) 41)) (-4127 (((-418 |#1|) |#1|) 30) (((-418 |#1|) |#1| (-641 (-48))) 33)) (-3442 (((-112) |#1|) 59))) +(((-39 |#1|) (-10 -7 (-15 -4127 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3651 ((-418 |#1|) |#1|)) (-15 -3442 ((-112) |#1|))) (-1235 (-48))) (T -39)) +((-3442 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-3651 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))) +(-10 -7 (-15 -4127 ((-418 |#1|) |#1| (-641 (-48)))) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3651 ((-418 |#1|) |#1|)) (-15 -3442 ((-112) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3240 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1948 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1832 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3580 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3809 (((-407 |#2|) $) NIL)) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3048 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2377 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1938 (((-768)) NIL (|has| (-407 |#2|) (-368)))) (-4341 (((-112)) NIL)) (-2714 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-2340 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 61) (($ (-1259 |#2|) |#2|) 135)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-1373 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3807 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-3071 (((-1259 $) (-1259 $)) NIL)) (-1699 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-2299 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-2900 (((-112) |#1| |#1|) NIL)) (-1544 (((-918)) NIL)) (-2821 (($) NIL (|has| (-407 |#2|) (-368)))) (-3040 (((-112)) NIL)) (-2904 (((-112) |#1|) NIL) (((-112) |#2|) NIL)) (-1350 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-1989 (($ $) NIL)) (-2757 (($) NIL (|has| (-407 |#2|) (-349)))) (-1313 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3176 (($ $ (-768)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-4188 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1619 (((-918) $) NIL (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) NIL (|has| (-407 |#2|) (-349)))) (-3840 (((-112) $) NIL)) (-2660 (((-768)) NIL)) (-2273 (((-1259 $) (-1259 $)) 111)) (-3328 (((-407 |#2|) $) NIL)) (-1943 (((-641 (-949 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-3907 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2653 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1906 (((-918) $) NIL (|has| (-407 |#2|) (-368)))) (-1687 ((|#3| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2217 (((-1152) $) NIL)) (-3704 (((-1264) (-768)) 88)) (-1939 (((-685 (-407 |#2|))) 56)) (-2392 (((-685 (-407 |#2|))) 49)) (-4373 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2014 (($ (-1259 |#2|) |#2|) 136)) (-3830 (((-685 (-407 |#2|))) 50)) (-1295 (((-685 (-407 |#2|))) 48)) (-3625 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 134)) (-1750 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 68)) (-4240 (((-1259 $)) 47)) (-4054 (((-1259 $)) 46)) (-4364 (((-112) $) NIL)) (-2505 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3258 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-1495 (($ (-918)) NIL (|has| (-407 |#2|) (-368)))) (-2307 (((-3 |#2| "failed")) NIL)) (-3864 (((-1114) $) NIL)) (-1582 (((-768)) NIL)) (-1693 (($) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2577 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-4127 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4061 (((-768) $) NIL (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) NIL)) (-3945 (((-3 |#2| "failed")) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4284 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 44)) (-2819 (((-768) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-4117 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 130) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4030 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4030 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2277 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3925 ((|#3|) 55)) (-1543 (($) NIL (|has| (-407 |#2|) (-349)))) (-1785 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 62) (((-685 (-407 |#2|)) (-1259 $)) 112)) (-2235 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-4005 (((-1259 $) (-1259 $)) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-4030 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4253 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-2230 ((|#3| $) NIL)) (-3270 (((-768)) NIL T CONST)) (-2342 (((-112)) 42)) (-4000 (((-112) |#1|) 54) (((-112) |#2|) 141)) (-4265 (((-1259 $)) 102)) (-3360 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2674 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1532 (((-112)) NIL)) (-4311 (($) 17 T CONST)) (-4321 (($) 27 T CONST)) (-2124 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4030 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4030 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363))))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -3704 ((-1264) (-768))))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) |#3|) (T -40)) +((-3704 (*1 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6)))) +(-13 (-342 |#1| |#2| |#3|) (-10 -7 (-15 -3704 ((-1264) (-768))))) +((-3461 ((|#2| |#2|) 48)) (-4244 ((|#2| |#2|) 143 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-2720 ((|#2| |#2|) 100 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-3078 ((|#2| |#2|) 101 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-3396 ((|#2| (-114) |#2| (-768)) 139 (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-452)) (|has| |#1| (-847)) (|has| |#1| (-1035 (-564)))))) (-1602 (((-1166 |#2|) |#2|) 45)) (-1827 ((|#2| |#2| (-641 (-610 |#2|))) 18) ((|#2| |#2| (-641 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16))) +(((-41 |#1| |#2|) (-10 -7 (-15 -3461 (|#2| |#2|)) (-15 -1827 (|#2| |#2|)) (-15 -1827 (|#2| |#2| |#2|)) (-15 -1827 (|#2| |#2| (-641 |#2|))) (-15 -1827 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -1602 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-847)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1035 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -3078 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -4244 (|#2| |#2|)) (-15 -3396 (|#2| (-114) |#2| (-768)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-556) (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 |#1| (-610 $)) $)) (-15 -1634 ((-1119 |#1| (-610 $)) $)) (-15 -3742 ($ (-1119 |#1| (-610 $))))))) (T -41)) +((-3396 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-114)) (-5 *4 (-768)) (-4 *5 (-452)) (-4 *5 (-847)) (-4 *5 (-1035 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) (-4 *2 (-430 *5)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *5 (-610 $)) $)) (-15 -1634 ((-1119 *5 (-610 $)) $)) (-15 -3742 ($ (-1119 *5 (-610 $))))))))) (-4244 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) (-15 -1634 ((-1119 *3 (-610 $)) $)) (-15 -3742 ($ (-1119 *3 (-610 $))))))))) (-2720 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) (-15 -1634 ((-1119 *3 (-610 $)) $)) (-15 -3742 ($ (-1119 *3 (-610 $))))))))) (-3078 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) (-15 -1634 ((-1119 *3 (-610 $)) $)) (-15 -3742 ($ (-1119 *3 (-610 $))))))))) (-1602 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *4 (-610 $)) $)) (-15 -1634 ((-1119 *4 (-610 $)) $)) (-15 -3742 ($ (-1119 *4 (-610 $))))))))) (-1827 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-610 *2))) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *4 (-610 $)) $)) (-15 -1634 ((-1119 *4 (-610 $)) $)) (-15 -3742 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1827 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *4 (-610 $)) $)) (-15 -1634 ((-1119 *4 (-610 $)) $)) (-15 -3742 ($ (-1119 *4 (-610 $))))))) (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) (-1827 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) (-15 -1634 ((-1119 *3 (-610 $)) $)) (-15 -3742 ($ (-1119 *3 (-610 $))))))))) (-1827 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) (-15 -1634 ((-1119 *3 (-610 $)) $)) (-15 -3742 ($ (-1119 *3 (-610 $))))))))) (-3461 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-363) (-302) (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) (-15 -1634 ((-1119 *3 (-610 $)) $)) (-15 -3742 ($ (-1119 *3 (-610 $)))))))))) +(-10 -7 (-15 -3461 (|#2| |#2|)) (-15 -1827 (|#2| |#2|)) (-15 -1827 (|#2| |#2| |#2|)) (-15 -1827 (|#2| |#2| (-641 |#2|))) (-15 -1827 (|#2| |#2| (-641 (-610 |#2|)))) (-15 -1602 ((-1166 |#2|) |#2|)) (IF (|has| |#1| (-847)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-1035 (-564))) (IF (|has| |#2| (-430 |#1|)) (PROGN (-15 -3078 (|#2| |#2|)) (-15 -2720 (|#2| |#2|)) (-15 -4244 (|#2| |#2|)) (-15 -3396 (|#2| (-114) |#2| (-768)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-4127 (((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))) 23) (((-418 |#3|) |#3| (-641 (-48))) 19))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4127 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -4127 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) (-847) (-790) (-946 (-48) |#2| |#1|)) (T -42)) +((-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *7 (-946 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-946 (-48) *6 *5))))) +(-10 -7 (-15 -4127 ((-418 |#3|) |#3| (-641 (-48)))) (-15 -4127 ((-418 (-1166 |#3|)) (-1166 |#3|) (-641 (-48))))) +((-1501 (((-768) |#2|) 72)) (-2321 (((-768) |#2|) 76)) (-2322 (((-641 |#2|)) 39)) (-3871 (((-768) |#2|) 75)) (-1902 (((-768) |#2|) 71)) (-2242 (((-768) |#2|) 74)) (-1775 (((-641 (-685 |#1|))) 67)) (-3184 (((-641 |#2|)) 62)) (-2058 (((-641 |#2|) |#2|) 50)) (-1517 (((-641 |#2|)) 64)) (-2832 (((-641 |#2|)) 63)) (-1893 (((-641 (-685 |#1|))) 55)) (-1816 (((-641 |#2|)) 61)) (-3673 (((-641 |#2|) |#2|) 49)) (-3906 (((-641 |#2|)) 57)) (-3339 (((-641 (-685 |#1|))) 68)) (-3247 (((-641 |#2|)) 66)) (-4265 (((-1259 |#2|) (-1259 |#2|)) 100 (|has| |#1| (-307))))) +(((-43 |#1| |#2|) (-10 -7 (-15 -3871 ((-768) |#2|)) (-15 -2321 ((-768) |#2|)) (-15 -1902 ((-768) |#2|)) (-15 -1501 ((-768) |#2|)) (-15 -2242 ((-768) |#2|)) (-15 -3906 ((-641 |#2|))) (-15 -3673 ((-641 |#2|) |#2|)) (-15 -2058 ((-641 |#2|) |#2|)) (-15 -1816 ((-641 |#2|))) (-15 -3184 ((-641 |#2|))) (-15 -2832 ((-641 |#2|))) (-15 -1517 ((-641 |#2|))) (-15 -3247 ((-641 |#2|))) (-15 -1893 ((-641 (-685 |#1|)))) (-15 -1775 ((-641 (-685 |#1|)))) (-15 -3339 ((-641 (-685 |#1|)))) (-15 -2322 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -4265 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) (-556) (-417 |#1|)) (T -43)) +((-4265 (*1 *2 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) (-2322 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3339 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1775 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1893 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3247 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1517 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2832 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-3184 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-1816 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3673 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3906 (*1 *2) (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-417 *3)))) (-2242 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1501 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-1902 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-2321 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4)))) (-3871 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) (-4 *3 (-417 *4))))) +(-10 -7 (-15 -3871 ((-768) |#2|)) (-15 -2321 ((-768) |#2|)) (-15 -1902 ((-768) |#2|)) (-15 -1501 ((-768) |#2|)) (-15 -2242 ((-768) |#2|)) (-15 -3906 ((-641 |#2|))) (-15 -3673 ((-641 |#2|) |#2|)) (-15 -2058 ((-641 |#2|) |#2|)) (-15 -1816 ((-641 |#2|))) (-15 -3184 ((-641 |#2|))) (-15 -2832 ((-641 |#2|))) (-15 -1517 ((-641 |#2|))) (-15 -3247 ((-641 |#2|))) (-15 -1893 ((-641 (-685 |#1|)))) (-15 -1775 ((-641 (-685 |#1|)))) (-15 -3339 ((-641 (-685 |#1|)))) (-15 -2322 ((-641 |#2|))) (IF (|has| |#1| (-307)) (-15 -4265 ((-1259 |#2|) (-1259 |#2|))) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4176 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3147 (((-1259 (-685 |#1|)) (-1259 $)) NIL) (((-1259 (-685 |#1|))) 24)) (-1821 (((-1259 $)) 55)) (-2818 (($) NIL T CONST)) (-3268 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-2934 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-3493 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3748 ((|#1| $) NIL)) (-1952 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3664 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-3760 (((-1166 (-949 |#1|))) NIL (|has| |#1| (-363)))) (-2752 (($ $ (-918)) NIL)) (-4369 ((|#1| $) NIL)) (-2699 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-3359 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-1961 (((-1166 |#1|) $) NIL)) (-4293 (((-112)) 102)) (-2340 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-3951 (((-3 $ "failed") $) 14 (|has| |#1| (-556)))) (-1544 (((-918)) 56)) (-1878 (((-112)) NIL)) (-2545 (($ $ (-918)) NIL)) (-3992 (((-112)) NIL)) (-2482 (((-112)) NIL)) (-3764 (((-112)) 104)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL (|has| |#1| (-556)))) (-1628 (((-3 $ "failed")) NIL (|has| |#1| (-556)))) (-4256 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3306 ((|#1| $) NIL)) (-1789 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3714 (((-3 $ "failed") $) NIL (|has| |#1| (-556)))) (-1903 (((-1166 (-949 |#1|))) NIL (|has| |#1| (-363)))) (-3154 (($ $ (-918)) NIL)) (-3371 ((|#1| $) NIL)) (-2257 (((-1166 |#1|) $) NIL (|has| |#1| (-556)))) (-3738 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-2627 (((-1166 |#1|) $) NIL)) (-2756 (((-112)) 101)) (-2217 (((-1152) $) NIL)) (-2270 (((-112)) 109)) (-4213 (((-112)) 108)) (-3435 (((-112)) 110)) (-3864 (((-1114) $) NIL)) (-4154 (((-112)) 103)) (-4382 ((|#1| $ (-564)) 58)) (-1785 (((-1259 |#1|) $ (-1259 $)) 53) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 28) (((-685 |#1|) (-1259 $)) NIL)) (-2235 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL)) (-1551 (((-641 (-949 |#1|)) (-1259 $)) NIL) (((-641 (-949 |#1|))) NIL)) (-3671 (($ $ $) NIL)) (-2330 (((-112)) 98)) (-3742 (((-859) $) 75) (($ (-1259 |#1|)) 22)) (-4265 (((-1259 $)) 49)) (-3986 (((-641 (-1259 |#1|))) NIL (|has| |#1| (-556)))) (-3533 (($ $ $ $) NIL)) (-4352 (((-112)) 94)) (-1918 (($ (-685 |#1|) $) 18)) (-1879 (($ $ $) NIL)) (-4031 (((-112)) 100)) (-4380 (((-112)) 95)) (-1518 (((-112)) 93)) (-4311 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1136 |#2| |#1|) $) 19))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -3742 ($ (-1259 |#1|))))) (-363) (-918) (-641 (-1170)) (-1259 (-685 |#1|))) (T -44)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170)))))) +(-13 (-417 |#1|) (-644 (-1136 |#2| |#1|)) (-10 -8 (-15 -3742 ($ (-1259 |#1|))))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3426 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2910 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-3813 (($ $) NIL)) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-2645 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412))) (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (((-112) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2402 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847))))) (-2777 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3976 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412)))) (-3417 (($ $ $) 33 (|has| $ (-6 -4412)))) (-1716 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412)))) (-2094 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 35 (|has| $ (-6 -4412)))) (-3877 ((|#2| $ |#1| |#2|) 52) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-1226 (-564)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "last" (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412))) (($ $ "rest" $) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "first" (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "value" (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2899 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-3638 (((-3 |#2| "failed") |#1| $) 43)) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1977 (($ $ (-768)) NIL) (($ $) 29)) (-4181 (($ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 55) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) NIL) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) NIL)) (-2378 (((-112) $) NIL)) (-3305 (((-564) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (((-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) (((-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 20 (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411))) (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 20 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-3619 (($ (-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 ((|#1| $) NIL (|has| |#1| (-847))) (((-564) $) 38 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1457 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2164 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411))) (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-3774 ((|#1| $) NIL (|has| |#1| (-847))) (((-564) $) 40 (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-1858 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2333 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-1881 (((-112) $) NIL)) (-2217 (((-1152) $) 48 (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2389 (($ $ (-768)) NIL) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-1823 (((-641 |#1|) $) 22)) (-2219 (((-112) |#1| $) NIL)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL) (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2308 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 |#1|) $) NIL) (((-641 (-564)) $) NIL)) (-4062 (((-112) |#1| $) NIL) (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1966 ((|#2| $) NIL (|has| |#1| (-847))) (($ $ (-768)) NIL) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 27)) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2174 (((-112) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2572 (((-641 |#2|) $) NIL) (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 19)) (-4003 (((-112) $) 18)) (-3434 (($) 14)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "first") NIL) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $ "value") NIL)) (-4209 (((-564) $ $) NIL)) (-4085 (($) 13) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3778 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3572 (((-112) $) NIL)) (-1459 (($ $) NIL)) (-3838 (($ $) NIL (|has| $ (-6 -4412)))) (-3108 (((-768) $) NIL)) (-2857 (($ $) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-1807 (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL) (($ $ $) NIL)) (-1802 (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL) (($ (-641 $)) NIL) (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 31) (($ $ $) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-2398 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") |#1| $) 50)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1741 (((-112) $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-847)))) (-2641 (((-768) $) 25 (|has| $ (-6 -4411))))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1094) (-1094)) (T -45)) NIL (-36 |#1| |#2|) -((-1871 (((-112) $) 12)) (-2751 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-563)) $) 25) (($ $ (-407 (-563))) NIL))) -(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-47 |#2| |#3|) (-1045) (-788)) (T -46)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -1871 ((-112) |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1871 (((-112) $) 65)) (-2165 (($ |#1| |#2|) 64)) (-2751 (($ (-1 |#1| |#1|) $) 66)) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1962 ((|#2| $) 67)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-1304 ((|#1| $ |#2|) 62)) (-4376 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-47 |#1| |#2|) (-140) (-1045) (-788)) (T -47)) -((-3193 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3183 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-2165 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-3213 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-1304 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-363))))) -(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (-15 -3193 (|t#1| $)) (-15 -3183 ($ $)) (-15 -1962 (|t#2| $)) (-15 -2751 ($ (-1 |t#1| |t#1|) $)) (-15 -1871 ((-112) $)) (-15 -2165 ($ |t#1| |t#2|)) (-15 -3213 ($ $)) (-15 -1304 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -3050 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-555)) (-6 (-555)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (-6 (-38 (-407 (-563)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-3933 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-1489 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-2741 (((-112) $) 11)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1926 (((-640 (-609 $)) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2624 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2067 (($ $) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-1503 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-2691 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-2671 (((-3 (-609 $) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2589 (((-609 $) $) NIL) (((-563) $) NIL) (((-407 (-563)) $) NIL)) (-3495 (($ $ $) NIL)) (-3853 (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -4277 (-684 (-407 (-563)))) (|:| |vec| (-1257 (-407 (-563))))) (-684 $) (-1257 $)) NIL) (((-684 (-407 (-563))) (-684 $)) NIL)) (-2532 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-1383 (($ $) NIL) (($ (-640 $)) NIL)) (-2034 (((-640 (-114)) $) NIL)) (-3674 (((-114) (-114)) NIL)) (-2712 (((-112) $) 14)) (-4107 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2626 (((-1118 (-563) (-609 $)) $) NIL)) (-1403 (($ $ (-563)) NIL)) (-3251 (((-1165 $) (-1165 $) (-609 $)) NIL) (((-1165 $) (-1165 $) (-640 (-609 $))) NIL) (($ $ (-609 $)) NIL) (($ $ (-640 (-609 $))) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2011 (((-1165 $) (-609 $)) NIL (|has| $ (-1045)))) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 $ $) (-609 $)) NIL)) (-3895 (((-3 (-609 $) "failed") $) NIL)) (-1607 (($ (-640 $)) NIL) (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-2009 (((-640 (-609 $)) $) NIL)) (-2696 (($ (-114) $) NIL) (($ (-114) (-640 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-3149 (($ $) NIL)) (-1524 (((-767) $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2023 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4118 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1497 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4322 (((-767) $) NIL)) (-3858 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-3904 (($ $) NIL) (($ $ $) NIL)) (-1361 (($ $ (-767)) NIL) (($ $) NIL)) (-2636 (((-1118 (-563) (-609 $)) $) NIL)) (-2713 (($ $) NIL (|has| $ (-1045)))) (-2802 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-2062 (((-858) $) NIL) (($ (-609 $)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-1118 (-563) (-609 $))) NIL)) (-3192 (((-767)) NIL T CONST)) (-3548 (($ $) NIL) (($ (-640 $)) NIL)) (-3631 (((-112) (-114)) NIL)) (-2543 (((-112) $ $) NIL)) (-3790 (($) 7 T CONST)) (-3803 (($) 12 T CONST)) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 16)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3039 (($ $ $) 15) (($ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-407 (-563))) NIL) (($ $ (-563)) NIL) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) -(((-48) (-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -2062 ($ (-1118 (-563) (-609 $)))) (-15 -2626 ((-1118 (-563) (-609 $)) $)) (-15 -2636 ((-1118 (-563) (-609 $)) $)) (-15 -2532 ($ $)) (-15 -3251 ((-1165 $) (-1165 $) (-609 $))) (-15 -3251 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3251 ($ $ (-609 $))) (-15 -3251 ($ $ (-640 (-609 $))))))) (T -48)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) (-2532 (*1 *1 *1) (-5 *1 (-48))) (-3251 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-609 (-48))) (-5 *1 (-48)))) (-3251 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-640 (-609 (-48)))) (-5 *1 (-48)))) (-3251 (*1 *1 *1 *2) (-12 (-5 *2 (-609 (-48))) (-5 *1 (-48)))) (-3251 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-48)))) (-5 *1 (-48))))) -(-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -2062 ($ (-1118 (-563) (-609 $)))) (-15 -2626 ((-1118 (-563) (-609 $)) $)) (-15 -2636 ((-1118 (-563) (-609 $)) $)) (-15 -2532 ($ $)) (-15 -3251 ((-1165 $) (-1165 $) (-609 $))) (-15 -3251 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3251 ($ $ (-609 $))) (-15 -3251 ($ $ (-640 (-609 $)))))) -((-2049 (((-112) $ $) NIL)) (-2309 (((-640 (-1169)) $) 17)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 7)) (-3373 (((-1174) $) 18)) (-2943 (((-112) $ $) NIL))) -(((-49) (-13 (-1093) (-10 -8 (-15 -2309 ((-640 (-1169)) $)) (-15 -3373 ((-1174) $))))) (T -49)) -((-2309 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-49)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-49))))) -(-13 (-1093) (-10 -8 (-15 -2309 ((-640 (-1169)) $)) (-15 -3373 ((-1174) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 87)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-4016 (((-112) $) 30)) (-2671 (((-3 |#1| "failed") $) 33)) (-2589 ((|#1| $) 34)) (-3213 (($ $) 40)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3193 ((|#1| $) 31)) (-3033 (($ $) 76)) (-1938 (((-1151) $) NIL)) (-3022 (((-112) $) 43)) (-3249 (((-1113) $) NIL)) (-1738 (($ (-767)) 74)) (-3177 (($ (-640 (-563))) 75)) (-1962 (((-767) $) 44)) (-2062 (((-858) $) 93) (($ (-563)) 71) (($ |#1|) 69)) (-1304 ((|#1| $ $) 28)) (-3192 (((-767)) 73 T CONST)) (-3790 (($) 45 T CONST)) (-3803 (($) 17 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 66)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) -(((-50 |#1| |#2|) (-13 (-617 |#1|) (-1034 |#1|) (-10 -8 (-15 -3193 (|#1| $)) (-15 -3033 ($ $)) (-15 -3213 ($ $)) (-15 -1304 (|#1| $ $)) (-15 -1738 ($ (-767))) (-15 -3177 ($ (-640 (-563)))) (-15 -3022 ((-112) $)) (-15 -4016 ((-112) $)) (-15 -1962 ((-767) $)) (-15 -2751 ($ (-1 |#1| |#1|) $)))) (-1045) (-640 (-1169))) (T -50)) -((-3193 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) (-3033 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) (-3213 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) (-1304 (*1 *2 *1 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-3177 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) (-14 *4 (-640 (-1169))))) (-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) (-14 *4 (-640 (-1169)))))) -(-13 (-617 |#1|) (-1034 |#1|) (-10 -8 (-15 -3193 (|#1| $)) (-15 -3033 ($ $)) (-15 -3213 ($ $)) (-15 -1304 (|#1| $ $)) (-15 -1738 ($ (-767))) (-15 -3177 ($ (-640 (-563)))) (-15 -3022 ((-112) $)) (-15 -4016 ((-112) $)) (-15 -1962 ((-767) $)) (-15 -2751 ($ (-1 |#1| |#1|) $)))) -((-4016 (((-112) (-52)) 13)) (-2671 (((-3 |#1| "failed") (-52)) 21)) (-2589 ((|#1| (-52)) 22)) (-2062 (((-52) |#1|) 18))) -(((-51 |#1|) (-10 -7 (-15 -2062 ((-52) |#1|)) (-15 -2671 ((-3 |#1| "failed") (-52))) (-15 -4016 ((-112) (-52))) (-15 -2589 (|#1| (-52)))) (-1208)) (T -51)) -((-2589 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) (-4016 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1208)))) (-2671 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) (-2062 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1208))))) -(-10 -7 (-15 -2062 ((-52) |#1|)) (-15 -2671 ((-3 |#1| "failed") (-52))) (-15 -4016 ((-112) (-52))) (-15 -2589 (|#1| (-52)))) -((-2049 (((-112) $ $) NIL)) (-4039 (((-1151) (-112)) 26)) (-4051 (((-858) $) 25)) (-2558 (((-770) $) 13)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-4063 (((-858) $) 17)) (-1481 (((-1097) $) 15)) (-2062 (((-858) $) 35)) (-3144 (($ (-1097) (-770)) 36)) (-2943 (((-112) $ $) 19))) -(((-52) (-13 (-1093) (-10 -8 (-15 -3144 ($ (-1097) (-770))) (-15 -4063 ((-858) $)) (-15 -4051 ((-858) $)) (-15 -1481 ((-1097) $)) (-15 -2558 ((-770) $)) (-15 -4039 ((-1151) (-112)))))) (T -52)) -((-3144 (*1 *1 *2 *3) (-12 (-5 *2 (-1097)) (-5 *3 (-770)) (-5 *1 (-52)))) (-4063 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-52)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1151)) (-5 *1 (-52))))) -(-13 (-1093) (-10 -8 (-15 -3144 ($ (-1097) (-770))) (-15 -4063 ((-858) $)) (-15 -4051 ((-858) $)) (-15 -1481 ((-1097) $)) (-15 -2558 ((-770) $)) (-15 -4039 ((-1151) (-112))))) -((-2408 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2408 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1045) (-643 |#1|) (-848 |#1|)) (T -53)) -((-2408 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-643 *5)) (-4 *5 (-1045)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5))))) -(-10 -7 (-15 -2408 (|#2| |#3| (-1 |#2| |#2|) |#2|))) -((-4086 ((|#3| |#3| (-640 (-1169))) 46)) (-4075 ((|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917)) 32) ((|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|) 31))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -4075 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|)) (-15 -4075 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917))) (-15 -4086 (|#3| |#3| (-640 (-1169))))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -54)) -((-4086 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-4075 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-640 (-1069 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1093)) (-4 *6 (-13 (-1045) (-882 *5) (-846) (-611 (-888 *5)))) (-4 *2 (-13 (-430 *6) (-882 *5) (-611 (-888 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-4075 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-1069 *4 *5 *2))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-5 *1 (-54 *4 *5 *2))))) -(-10 -7 (-15 -4075 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3|)) (-15 -4075 (|#3| (-640 (-1069 |#1| |#2| |#3|)) |#3| (-917))) (-15 -4086 (|#3| |#3| (-640 (-1169))))) -((-2049 (((-112) $ $) NIL)) (-2671 (((-3 (-767) "failed") $) 32)) (-2589 (((-767) $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) 13)) (-2062 (((-858) $) 21) (($ (-767)) 27)) (-4097 (($) 11 T CONST)) (-2943 (((-112) $ $) 16))) -(((-55) (-13 (-1093) (-1034 (-767)) (-10 -8 (-15 -4097 ($) -2495)))) (T -55)) -((-4097 (*1 *1) (-5 *1 (-55)))) -(-13 (-1093) (-1034 (-767)) (-10 -8 (-15 -4097 ($) -2495))) -((-3740 (((-112) $ (-767)) 27)) (-4121 (($ $ (-563) |#3|) 64)) (-4110 (($ $ (-563) |#4|) 68)) (-3082 ((|#3| $ (-563)) 77)) (-4236 (((-640 |#2|) $) 45)) (-3633 (((-112) $ (-767)) 30)) (-1949 (((-112) |#2| $) 72)) (-4139 (($ (-1 |#2| |#2|) $) 53)) (-2751 (($ (-1 |#2| |#2|) $) 52) (($ (-1 |#2| |#2| |#2|) $ $) 56) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 60)) (-3604 (((-112) $ (-767)) 29)) (-3357 (($ $ |#2|) 50)) (-3837 (((-112) (-1 (-112) |#2|) $) 21)) (-3858 ((|#2| $ (-563) (-563)) NIL) ((|#2| $ (-563) (-563) |#2|) 33)) (-3261 (((-767) (-1 (-112) |#2|) $) 39) (((-767) |#2| $) 74)) (-2208 (($ $) 49)) (-3073 ((|#4| $ (-563)) 80)) (-2062 (((-858) $) 86)) (-3848 (((-112) (-1 (-112) |#2|) $) 20)) (-2943 (((-112) $ $) 71)) (-1708 (((-767) $) 31))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2751 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4139 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4110 (|#1| |#1| (-563) |#4|)) (-15 -4121 (|#1| |#1| (-563) |#3|)) (-15 -4236 ((-640 |#2|) |#1|)) (-15 -3073 (|#4| |#1| (-563))) (-15 -3082 (|#3| |#1| (-563))) (-15 -3858 (|#2| |#1| (-563) (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563) (-563))) (-15 -3357 (|#1| |#1| |#2|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -1949 ((-112) |#2| |#1|)) (-15 -3261 ((-767) |#2| |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1708 ((-767) |#1|)) (-15 -3740 ((-112) |#1| (-767))) (-15 -3633 ((-112) |#1| (-767))) (-15 -3604 ((-112) |#1| (-767))) (-15 -2208 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1208) (-373 |#2|) (-373 |#2|)) (T -56)) -NIL -(-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2751 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4139 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4110 (|#1| |#1| (-563) |#4|)) (-15 -4121 (|#1| |#1| (-563) |#3|)) (-15 -4236 ((-640 |#2|) |#1|)) (-15 -3073 (|#4| |#1| (-563))) (-15 -3082 (|#3| |#1| (-563))) (-15 -3858 (|#2| |#1| (-563) (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563) (-563))) (-15 -3357 (|#1| |#1| |#2|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -1949 ((-112) |#2| |#1|)) (-15 -3261 ((-767) |#2| |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1708 ((-767) |#1|)) (-15 -3740 ((-112) |#1| (-767))) (-15 -3633 ((-112) |#1| (-767))) (-15 -3604 ((-112) |#1| (-767))) (-15 -2208 (|#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#1| $ (-563) (-563) |#1|) 44)) (-4121 (($ $ (-563) |#2|) 42)) (-4110 (($ $ (-563) |#3|) 41)) (-3684 (($) 7 T CONST)) (-3082 ((|#2| $ (-563)) 46)) (-4150 ((|#1| $ (-563) (-563) |#1|) 43)) (-4085 ((|#1| $ (-563) (-563)) 48)) (-4236 (((-640 |#1|) $) 30)) (-3955 (((-767) $) 51)) (-2552 (($ (-767) (-767) |#1|) 57)) (-3965 (((-767) $) 50)) (-3633 (((-112) $ (-767)) 9)) (-3127 (((-563) $) 55)) (-3105 (((-563) $) 53)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3117 (((-563) $) 54)) (-3094 (((-563) $) 52)) (-4139 (($ (-1 |#1| |#1|) $) 34)) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3357 (($ $ |#1|) 56)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) (-563)) 49) ((|#1| $ (-563) (-563) |#1|) 47)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-3073 ((|#3| $ (-563)) 45)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-57 |#1| |#2| |#3|) (-140) (-1208) (-373 |t#1|) (-373 |t#1|)) (T -57)) -((-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2552 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1208)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3357 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1208)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-563)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-767)))) (-3858 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1208)))) (-4085 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1208)))) (-3858 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-3082 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-3073 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-4236 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-640 *3)))) (-2189 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-4150 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-4121 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1208)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-4110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1208)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-4139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2751 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2751 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(-13 (-489 |t#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -2552 ($ (-767) (-767) |t#1|)) (-15 -3357 ($ $ |t#1|)) (-15 -3127 ((-563) $)) (-15 -3117 ((-563) $)) (-15 -3105 ((-563) $)) (-15 -3094 ((-563) $)) (-15 -3955 ((-767) $)) (-15 -3965 ((-767) $)) (-15 -3858 (|t#1| $ (-563) (-563))) (-15 -4085 (|t#1| $ (-563) (-563))) (-15 -3858 (|t#1| $ (-563) (-563) |t#1|)) (-15 -3082 (|t#2| $ (-563))) (-15 -3073 (|t#3| $ (-563))) (-15 -4236 ((-640 |t#1|) $)) (-15 -2189 (|t#1| $ (-563) (-563) |t#1|)) (-15 -4150 (|t#1| $ (-563) (-563) |t#1|)) (-15 -4121 ($ $ (-563) |t#2|)) (-15 -4110 ($ $ (-563) |t#3|)) (-15 -2751 ($ (-1 |t#1| |t#1|) $)) (-15 -4139 ($ (-1 |t#1| |t#1|) $)) (-15 -2751 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2751 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-3409 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-2532 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2751 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) -(((-58 |#1| |#2|) (-10 -7 (-15 -3409 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2532 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2751 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1208) (-1208)) (T -58)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-58 *5 *2)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) -(-10 -7 (-15 -3409 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2532 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2751 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) |#1|) 20 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-2256 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-4132 (($ (-640 |#1|)) 21) (($ (-767) |#1|) 22)) (-2552 (($ (-767) |#1|) 18)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) NIL (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 16)) (-3858 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4132 ($ (-640 |#1|))) (-15 -4132 ($ (-767) |#1|)))) (-1208)) (T -59)) -((-4132 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-59 *3)))) (-4132 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1208))))) -(-13 (-19 |#1|) (-10 -8 (-15 -4132 ($ (-640 |#1|))) (-15 -4132 ($ (-767) |#1|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4121 (($ $ (-563) (-59 |#1|)) NIL)) (-4110 (($ $ (-563) (-59 |#1|)) NIL)) (-3684 (($) NIL T CONST)) (-3082 (((-59 |#1|) $ (-563)) NIL)) (-4150 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4085 ((|#1| $ (-563) (-563)) NIL)) (-4236 (((-640 |#1|) $) NIL)) (-3955 (((-767) $) NIL)) (-2552 (($ (-767) (-767) |#1|) NIL)) (-3965 (((-767) $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3127 (((-563) $) NIL)) (-3105 (((-563) $) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3117 (((-563) $) NIL)) (-3094 (((-563) $) NIL)) (-4139 (($ (-1 |#1| |#1|) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3357 (($ $ |#1|) NIL)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-3073 (((-59 |#1|) $ (-563)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4409))) (-1208)) (T -60)) -NIL -(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4409))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 74) (((-3 $ "failed") (-1257 (-316 (-563)))) 63) (((-3 $ "failed") (-1257 (-948 (-379)))) 94) (((-3 $ "failed") (-1257 (-948 (-563)))) 84) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 52) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 39)) (-2589 (($ (-1257 (-316 (-379)))) 70) (($ (-1257 (-316 (-563)))) 59) (($ (-1257 (-948 (-379)))) 90) (($ (-1257 (-948 (-563)))) 80) (($ (-1257 (-407 (-948 (-379))))) 48) (($ (-1257 (-407 (-948 (-563))))) 32)) (-4000 (((-1262) $) 127)) (-2062 (((-858) $) 121) (($ (-640 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 101) (($ (-1257 (-339 (-2074 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2074) (-694)))) 31))) -(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2074) (-694))))))) (-1169)) (T -61)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2074) (-694)))) (-5 *1 (-61 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2074) (-694))))))) -((-4000 (((-1262) $) 54) (((-1262)) 55)) (-2062 (((-858) $) 51))) -(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -4000 ((-1262))))) (-1169)) (T -62)) -((-4000 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-62 *3)) (-14 *3 (-1169))))) -(-13 (-395) (-10 -7 (-15 -4000 ((-1262))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 154) (((-3 $ "failed") (-1257 (-316 (-563)))) 144) (((-3 $ "failed") (-1257 (-948 (-379)))) 174) (((-3 $ "failed") (-1257 (-948 (-563)))) 164) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 133) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 121)) (-2589 (($ (-1257 (-316 (-379)))) 150) (($ (-1257 (-316 (-563)))) 140) (($ (-1257 (-948 (-379)))) 170) (($ (-1257 (-948 (-563)))) 160) (($ (-1257 (-407 (-948 (-379))))) 129) (($ (-1257 (-407 (-948 (-563))))) 114)) (-4000 (((-1262) $) 107)) (-2062 (((-858) $) 101) (($ (-640 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 33) (($ (-1257 (-339 (-2074) (-2074 (QUOTE XC)) (-694)))) 99))) -(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074) (-2074 (QUOTE XC)) (-694))))))) (-1169)) (T -63)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074) (-2074 (QUOTE XC)) (-694)))) (-5 *1 (-63 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074) (-2074 (QUOTE XC)) (-694))))))) -((-2671 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-563))) 46) (((-3 $ "failed") (-948 (-379))) 50) (((-3 $ "failed") (-948 (-563))) 54) (((-3 $ "failed") (-407 (-948 (-379)))) 36) (((-3 $ "failed") (-407 (-948 (-563)))) 29)) (-2589 (($ (-316 (-379))) 39) (($ (-316 (-563))) 44) (($ (-948 (-379))) 48) (($ (-948 (-563))) 52) (($ (-407 (-948 (-379)))) 34) (($ (-407 (-948 (-563)))) 26)) (-4000 (((-1262) $) 76)) (-2062 (((-858) $) 69) (($ (-640 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 64) (($ (-339 (-2074 (QUOTE X)) (-2074) (-694))) 25))) -(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074 (QUOTE X)) (-2074) (-694)))))) (-1169)) (T -64)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-339 (-2074 (QUOTE X)) (-2074) (-694))) (-5 *1 (-64 *3)) (-14 *3 (-1169))))) -(-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074 (QUOTE X)) (-2074) (-694)))))) -((-2671 (((-3 $ "failed") (-684 (-316 (-379)))) 114) (((-3 $ "failed") (-684 (-316 (-563)))) 102) (((-3 $ "failed") (-684 (-948 (-379)))) 136) (((-3 $ "failed") (-684 (-948 (-563)))) 125) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 90) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 76)) (-2589 (($ (-684 (-316 (-379)))) 110) (($ (-684 (-316 (-563)))) 98) (($ (-684 (-948 (-379)))) 132) (($ (-684 (-948 (-563)))) 121) (($ (-684 (-407 (-948 (-379))))) 86) (($ (-684 (-407 (-948 (-563))))) 69)) (-4000 (((-1262) $) 144)) (-2062 (((-858) $) 138) (($ (-640 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 32) (($ (-684 (-339 (-2074) (-2074 (QUOTE X) (QUOTE HESS)) (-694)))) 59))) -(((-65 |#1|) (-13 (-384) (-613 (-684 (-339 (-2074) (-2074 (QUOTE X) (QUOTE HESS)) (-694))))) (-1169)) (T -65)) -NIL -(-13 (-384) (-613 (-684 (-339 (-2074) (-2074 (QUOTE X) (QUOTE HESS)) (-694))))) -((-2671 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-563))) 65) (((-3 $ "failed") (-948 (-379))) 69) (((-3 $ "failed") (-948 (-563))) 73) (((-3 $ "failed") (-407 (-948 (-379)))) 55) (((-3 $ "failed") (-407 (-948 (-563)))) 48)) (-2589 (($ (-316 (-379))) 58) (($ (-316 (-563))) 63) (($ (-948 (-379))) 67) (($ (-948 (-563))) 71) (($ (-407 (-948 (-379)))) 53) (($ (-407 (-948 (-563)))) 45)) (-4000 (((-1262) $) 82)) (-2062 (((-858) $) 76) (($ (-640 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 32) (($ (-339 (-2074) (-2074 (QUOTE XC)) (-694))) 40))) -(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074) (-2074 (QUOTE XC)) (-694)))))) (-1169)) (T -66)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-339 (-2074) (-2074 (QUOTE XC)) (-694))) (-5 *1 (-66 *3)) (-14 *3 (-1169))))) -(-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074) (-2074 (QUOTE XC)) (-694)))))) -((-4000 (((-1262) $) 68)) (-2062 (((-858) $) 62) (($ (-684 (-694))) 54) (($ (-640 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 58))) -(((-67 |#1|) (-383) (-1169)) (T -67)) +((-2005 (((-112) $) 12)) (-2187 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-407 (-564)) $) 25) (($ $ (-407 (-564))) NIL))) +(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2005 ((-112) |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-47 |#2| |#3|) (-1046) (-789)) (T -46)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -2005 ((-112) |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2005 (((-112) $) 65)) (-4245 (($ |#1| |#2|) 64)) (-2187 (($ (-1 |#1| |#1|) $) 66)) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2266 ((|#2| $) 67)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-2856 ((|#1| $ |#2|) 62)) (-4253 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-47 |#1| |#2|) (-140) (-1046) (-789)) (T -47)) +((-1320 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-1309 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-112)))) (-4245 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-1348 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-2856 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-1799 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-363))))) +(-13 (-1046) (-111 |t#1| |t#1|) (-10 -8 (-15 -1320 (|t#1| $)) (-15 -1309 ($ $)) (-15 -2266 (|t#2| $)) (-15 -2187 ($ (-1 |t#1| |t#1|) $)) (-15 -2005 ((-112) $)) (-15 -4245 ($ |t#1| |t#2|)) (-15 -1348 ($ $)) (-15 -2856 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-363)) (-15 -1799 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-6 (-172)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-556)) (-6 (-556)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-6 (-38 (-407 (-564)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-2690 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-1452 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-4173 (((-112) $) 11)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2084 (((-641 (-610 $)) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3148 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-4137 (($ $) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3414 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-2854 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-2111 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2239 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-1373 (($ $ $) NIL)) (-3039 (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2069 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-1699 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-2211 (($ $) NIL) (($ (-641 $)) NIL)) (-3423 (((-641 (-114)) $) NIL)) (-4058 (((-114) (-114)) NIL)) (-3840 (((-112) $) 14)) (-1801 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-1625 (((-1119 (-564) (-610 $)) $) NIL)) (-2347 (($ $ (-564)) NIL)) (-3328 (((-1166 $) (-1166 $) (-610 $)) NIL) (((-1166 $) (-1166 $) (-641 (-610 $))) NIL) (($ $ (-610 $)) NIL) (($ $ (-641 (-610 $))) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2176 (((-1166 $) (-610 $)) NIL (|has| $ (-1046)))) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 $ $) (-610 $)) NIL)) (-4242 (((-3 (-610 $) "failed") $) NIL)) (-2529 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-4087 (((-641 (-610 $)) $) NIL)) (-1697 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-4211 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-4373 (($ $) NIL)) (-3724 (((-768) $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3755 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1497 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2416 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4061 (((-768) $) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-1928 (($ $) NIL) (($ $ $) NIL)) (-4117 (($ $ (-768)) NIL) (($ $) NIL)) (-1634 (((-1119 (-564) (-610 $)) $) NIL)) (-3925 (($ $) NIL (|has| $ (-1046)))) (-2235 (((-379) $) NIL) (((-225) $) NIL) (((-169 (-379)) $) NIL)) (-3742 (((-859) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) NIL)) (-3270 (((-768)) NIL T CONST)) (-1523 (($ $) NIL) (($ (-641 $)) NIL)) (-2095 (((-112) (-114)) NIL)) (-3360 (((-112) $ $) NIL)) (-4311 (($) 7 T CONST)) (-4321 (($) 12 T CONST)) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 16)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL)) (-1790 (($ $ $) 15) (($ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) NIL) (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL))) +(((-48) (-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -3742 ($ (-1119 (-564) (-610 $)))) (-15 -1625 ((-1119 (-564) (-610 $)) $)) (-15 -1634 ((-1119 (-564) (-610 $)) $)) (-15 -1699 ($ $)) (-15 -3328 ((-1166 $) (-1166 $) (-610 $))) (-15 -3328 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -3328 ($ $ (-610 $))) (-15 -3328 ($ $ (-641 (-610 $))))))) (T -48)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) (-1699 (*1 *1 *1) (-5 *1 (-48))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48))))) +(-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -3742 ($ (-1119 (-564) (-610 $)))) (-15 -1625 ((-1119 (-564) (-610 $)) $)) (-15 -1634 ((-1119 (-564) (-610 $)) $)) (-15 -1699 ($ $)) (-15 -3328 ((-1166 $) (-1166 $) (-610 $))) (-15 -3328 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -3328 ($ $ (-610 $))) (-15 -3328 ($ $ (-641 (-610 $)))))) +((-3732 (((-112) $ $) NIL)) (-1467 (((-641 (-1170)) $) 17)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 7)) (-4337 (((-1175) $) 18)) (-1705 (((-112) $ $) NIL))) +(((-49) (-13 (-1094) (-10 -8 (-15 -1467 ((-641 (-1170)) $)) (-15 -4337 ((-1175) $))))) (T -49)) +((-1467 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-49)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49))))) +(-13 (-1094) (-10 -8 (-15 -1467 ((-641 (-1170)) $)) (-15 -4337 ((-1175) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 87)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-3042 (((-112) $) 30)) (-2111 (((-3 |#1| "failed") $) 33)) (-2239 ((|#1| $) 34)) (-1348 (($ $) 40)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1320 ((|#1| $) 31)) (-3554 (($ $) 76)) (-2217 (((-1152) $) NIL)) (-3699 (((-112) $) 43)) (-3864 (((-1114) $) NIL)) (-1693 (($ (-768)) 74)) (-4118 (($ (-641 (-564))) 75)) (-2266 (((-768) $) 44)) (-3742 (((-859) $) 93) (($ (-564)) 71) (($ |#1|) 69)) (-2856 ((|#1| $ $) 28)) (-3270 (((-768)) 73 T CONST)) (-4311 (($) 45 T CONST)) (-4321 (($) 17 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 66)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 67) (($ |#1| $) 60))) +(((-50 |#1| |#2|) (-13 (-618 |#1|) (-1035 |#1|) (-10 -8 (-15 -1320 (|#1| $)) (-15 -3554 ($ $)) (-15 -1348 ($ $)) (-15 -2856 (|#1| $ $)) (-15 -1693 ($ (-768))) (-15 -4118 ($ (-641 (-564)))) (-15 -3699 ((-112) $)) (-15 -3042 ((-112) $)) (-15 -2266 ((-768) $)) (-15 -2187 ($ (-1 |#1| |#1|) $)))) (-1046) (-641 (-1170))) (T -50)) +((-1320 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) (-1348 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) (-2856 (*1 *2 *1 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-4118 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) (-14 *4 (-641 (-1170))))) (-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-50 *3 *4)) (-14 *4 (-641 (-1170)))))) +(-13 (-618 |#1|) (-1035 |#1|) (-10 -8 (-15 -1320 (|#1| $)) (-15 -3554 ($ $)) (-15 -1348 ($ $)) (-15 -2856 (|#1| $ $)) (-15 -1693 ($ (-768))) (-15 -4118 ($ (-641 (-564)))) (-15 -3699 ((-112) $)) (-15 -3042 ((-112) $)) (-15 -2266 ((-768) $)) (-15 -2187 ($ (-1 |#1| |#1|) $)))) +((-3042 (((-112) (-52)) 13)) (-2111 (((-3 |#1| "failed") (-52)) 21)) (-2239 ((|#1| (-52)) 22)) (-3742 (((-52) |#1|) 18))) +(((-51 |#1|) (-10 -7 (-15 -3742 ((-52) |#1|)) (-15 -2111 ((-3 |#1| "failed") (-52))) (-15 -3042 ((-112) (-52))) (-15 -2239 (|#1| (-52)))) (-1209)) (T -51)) +((-2239 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) (-2111 (*1 *2 *3) (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) (-3742 (*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209))))) +(-10 -7 (-15 -3742 ((-52) |#1|)) (-15 -2111 ((-3 |#1| "failed") (-52))) (-15 -3042 ((-112) (-52))) (-15 -2239 (|#1| (-52)))) +((-3732 (((-112) $ $) NIL)) (-3060 (((-1152) (-112)) 26)) (-1844 (((-859) $) 25)) (-3622 (((-771) $) 13)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3771 (((-859) $) 17)) (-2535 (((-1098) $) 15)) (-3742 (((-859) $) 35)) (-2224 (($ (-1098) (-771)) 36)) (-1705 (((-112) $ $) 19))) +(((-52) (-13 (-1094) (-10 -8 (-15 -2224 ($ (-1098) (-771))) (-15 -3771 ((-859) $)) (-15 -1844 ((-859) $)) (-15 -2535 ((-1098) $)) (-15 -3622 ((-771) $)) (-15 -3060 ((-1152) (-112)))))) (T -52)) +((-2224 (*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-771)) (-5 *1 (-52)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52)))) (-2535 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52)))) (-3622 (*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-52)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52))))) +(-13 (-1094) (-10 -8 (-15 -2224 ($ (-1098) (-771))) (-15 -3771 ((-859) $)) (-15 -1844 ((-859) $)) (-15 -2535 ((-1098) $)) (-15 -3622 ((-771) $)) (-15 -3060 ((-1152) (-112))))) +((-1918 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 19))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -1918 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1046) (-644 |#1|) (-849 |#1|)) (T -53)) +((-1918 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1046)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-849 *5))))) +(-10 -7 (-15 -1918 (|#2| |#3| (-1 |#2| |#2|) |#2|))) +((-3824 ((|#3| |#3| (-641 (-1170))) 46)) (-3711 ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918)) 32) ((|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|) 31))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3711 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -3711 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918))) (-15 -3824 (|#3| |#3| (-641 (-1170))))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -54)) +((-3824 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-3711 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-918)) (-4 *5 (-1094)) (-4 *6 (-13 (-1046) (-883 *5) (-847) (-612 (-889 *5)))) (-4 *2 (-13 (-430 *6) (-883 *5) (-612 (-889 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3711 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-5 *1 (-54 *4 *5 *2))))) +(-10 -7 (-15 -3711 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3|)) (-15 -3711 (|#3| (-641 (-1070 |#1| |#2| |#3|)) |#3| (-918))) (-15 -3824 (|#3| |#3| (-641 (-1170))))) +((-3732 (((-112) $ $) NIL)) (-2111 (((-3 (-768) "failed") $) 32)) (-2239 (((-768) $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) 13)) (-3742 (((-859) $) 21) (($ (-768)) 27)) (-3527 (($) 11 T CONST)) (-1705 (((-112) $ $) 16))) +(((-55) (-13 (-1094) (-1035 (-768)) (-10 -8 (-15 -3527 ($) -2091)))) (T -55)) +((-3527 (*1 *1) (-5 *1 (-55)))) +(-13 (-1094) (-1035 (-768)) (-10 -8 (-15 -3527 ($) -2091))) +((-2969 (((-112) $ (-768)) 27)) (-1673 (($ $ (-564) |#3|) 64)) (-1947 (($ $ (-564) |#4|) 68)) (-4236 ((|#3| $ (-564)) 77)) (-3616 (((-641 |#2|) $) 45)) (-2275 (((-112) $ (-768)) 30)) (-2431 (((-112) |#2| $) 72)) (-2606 (($ (-1 |#2| |#2|) $) 53)) (-2187 (($ (-1 |#2| |#2|) $) 52) (($ (-1 |#2| |#2| |#2|) $ $) 56) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 60)) (-1500 (((-112) $ (-768)) 29)) (-3099 (($ $ |#2|) 50)) (-3736 (((-112) (-1 (-112) |#2|) $) 21)) (-4382 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) 33)) (-3873 (((-768) (-1 (-112) |#2|) $) 39) (((-768) |#2| $) 74)) (-3896 (($ $) 49)) (-1346 ((|#4| $ (-564)) 80)) (-3742 (((-859) $) 86)) (-1417 (((-112) (-1 (-112) |#2|) $) 20)) (-1705 (((-112) $ $) 71)) (-2641 (((-768) $) 31))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2187 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2606 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1947 (|#1| |#1| (-564) |#4|)) (-15 -1673 (|#1| |#1| (-564) |#3|)) (-15 -3616 ((-641 |#2|) |#1|)) (-15 -1346 (|#4| |#1| (-564))) (-15 -4236 (|#3| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564))) (-15 -3099 (|#1| |#1| |#2|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2431 ((-112) |#2| |#1|)) (-15 -3873 ((-768) |#2| |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2641 ((-768) |#1|)) (-15 -2969 ((-112) |#1| (-768))) (-15 -2275 ((-112) |#1| (-768))) (-15 -1500 ((-112) |#1| (-768))) (-15 -3896 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1209) (-373 |#2|) (-373 |#2|)) (T -56)) +NIL +(-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2187 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2606 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1947 (|#1| |#1| (-564) |#4|)) (-15 -1673 (|#1| |#1| (-564) |#3|)) (-15 -3616 ((-641 |#2|) |#1|)) (-15 -1346 (|#4| |#1| (-564))) (-15 -4236 (|#3| |#1| (-564))) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564))) (-15 -3099 (|#1| |#1| |#2|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2431 ((-112) |#2| |#1|)) (-15 -3873 ((-768) |#2| |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2641 ((-768) |#1|)) (-15 -2969 ((-112) |#1| (-768))) (-15 -2275 ((-112) |#1| (-768))) (-15 -1500 ((-112) |#1| (-768))) (-15 -3896 (|#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#1| $ (-564) (-564) |#1|) 44)) (-1673 (($ $ (-564) |#2|) 42)) (-1947 (($ $ (-564) |#3|) 41)) (-2818 (($) 7 T CONST)) (-4236 ((|#2| $ (-564)) 46)) (-2619 ((|#1| $ (-564) (-564) |#1|) 43)) (-2540 ((|#1| $ (-564) (-564)) 48)) (-3616 (((-641 |#1|) $) 30)) (-2659 (((-768) $) 51)) (-3619 (($ (-768) (-768) |#1|) 57)) (-2671 (((-768) $) 50)) (-2275 (((-112) $ (-768)) 9)) (-1305 (((-564) $) 55)) (-1392 (((-564) $) 53)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-4212 (((-564) $) 54)) (-2739 (((-564) $) 52)) (-2606 (($ (-1 |#1| |#1|) $) 34)) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3099 (($ $ |#1|) 56)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-1346 ((|#3| $ (-564)) 45)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-57 |#1| |#2| |#3|) (-140) (-1209) (-373 |t#1|) (-373 |t#1|)) (T -57)) +((-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3619 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-768)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3099 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-1392 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-564)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-768)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-768)))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-2540 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-4236 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-1346 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) (-3877 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-2619 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) (-1673 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) (-4 *3 (-373 *4)) (-4 *5 (-373 *4)))) (-1947 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) (-4 *5 (-373 *4)) (-4 *3 (-373 *4)))) (-2606 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2187 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2187 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(-13 (-489 |t#1|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -3619 ($ (-768) (-768) |t#1|)) (-15 -3099 ($ $ |t#1|)) (-15 -1305 ((-564) $)) (-15 -4212 ((-564) $)) (-15 -1392 ((-564) $)) (-15 -2739 ((-564) $)) (-15 -2659 ((-768) $)) (-15 -2671 ((-768) $)) (-15 -4382 (|t#1| $ (-564) (-564))) (-15 -2540 (|t#1| $ (-564) (-564))) (-15 -4382 (|t#1| $ (-564) (-564) |t#1|)) (-15 -4236 (|t#2| $ (-564))) (-15 -1346 (|t#3| $ (-564))) (-15 -3616 ((-641 |t#1|) $)) (-15 -3877 (|t#1| $ (-564) (-564) |t#1|)) (-15 -2619 (|t#1| $ (-564) (-564) |t#1|)) (-15 -1673 ($ $ (-564) |t#2|)) (-15 -1947 ($ $ (-564) |t#3|)) (-15 -2187 ($ (-1 |t#1| |t#1|) $)) (-15 -2606 ($ (-1 |t#1| |t#1|) $)) (-15 -2187 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2187 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-1525 (((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 16)) (-1699 ((|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|) 18)) (-2187 (((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)) 13))) +(((-58 |#1| |#2|) (-10 -7 (-15 -1525 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1699 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2187 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) (-1209) (-1209)) (T -58)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) (-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5))))) +(-10 -7 (-15 -1525 ((-59 |#2|) (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -1699 (|#2| (-1 |#2| |#1| |#2|) (-59 |#1|) |#2|)) (-15 -2187 ((-59 |#2|) (-1 |#2| |#1|) (-59 |#1|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) |#1|) 20 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-3305 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3160 (($ (-641 |#1|)) 21) (($ (-768) |#1|) 22)) (-3619 (($ (-768) |#1|) 18)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) NIL (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 16)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-1802 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-59 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3160 ($ (-641 |#1|))) (-15 -3160 ($ (-768) |#1|)))) (-1209)) (T -59)) +((-3160 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3)))) (-3160 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-59 *3)) (-4 *3 (-1209))))) +(-13 (-19 |#1|) (-10 -8 (-15 -3160 ($ (-641 |#1|))) (-15 -3160 ($ (-768) |#1|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1673 (($ $ (-564) (-59 |#1|)) NIL)) (-1947 (($ $ (-564) (-59 |#1|)) NIL)) (-2818 (($) NIL T CONST)) (-4236 (((-59 |#1|) $ (-564)) NIL)) (-2619 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2540 ((|#1| $ (-564) (-564)) NIL)) (-3616 (((-641 |#1|) $) NIL)) (-2659 (((-768) $) NIL)) (-3619 (($ (-768) (-768) |#1|) NIL)) (-2671 (((-768) $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-1305 (((-564) $) NIL)) (-1392 (((-564) $) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4212 (((-564) $) NIL)) (-2739 (((-564) $) NIL)) (-2606 (($ (-1 |#1| |#1|) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3099 (($ $ |#1|) NIL)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-1346 (((-59 |#1|) $ (-564)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-60 |#1|) (-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4412))) (-1209)) (T -60)) +NIL +(-13 (-57 |#1| (-59 |#1|) (-59 |#1|)) (-10 -7 (-6 -4412))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 74) (((-3 $ "failed") (-1259 (-316 (-564)))) 63) (((-3 $ "failed") (-1259 (-949 (-379)))) 94) (((-3 $ "failed") (-1259 (-949 (-564)))) 84) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 52) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 39)) (-2239 (($ (-1259 (-316 (-379)))) 70) (($ (-1259 (-316 (-564)))) 59) (($ (-1259 (-949 (-379)))) 90) (($ (-1259 (-949 (-564)))) 80) (($ (-1259 (-407 (-949 (-379))))) 48) (($ (-1259 (-407 (-949 (-564))))) 32)) (-2150 (((-1264) $) 127)) (-3742 (((-859) $) 121) (($ (-641 (-330))) 103) (($ (-330)) 97) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 101) (($ (-1259 (-339 (-3753 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3753) (-695)))) 31))) +(((-61 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3753) (-695))))))) (-1170)) (T -61)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3753) (-695)))) (-5 *1 (-61 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3753) (-695))))))) +((-2150 (((-1264) $) 54) (((-1264)) 55)) (-3742 (((-859) $) 51))) +(((-62 |#1|) (-13 (-395) (-10 -7 (-15 -2150 ((-1264))))) (-1170)) (T -62)) +((-2150 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170))))) +(-13 (-395) (-10 -7 (-15 -2150 ((-1264))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 154) (((-3 $ "failed") (-1259 (-316 (-564)))) 144) (((-3 $ "failed") (-1259 (-949 (-379)))) 174) (((-3 $ "failed") (-1259 (-949 (-564)))) 164) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 133) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 121)) (-2239 (($ (-1259 (-316 (-379)))) 150) (($ (-1259 (-316 (-564)))) 140) (($ (-1259 (-949 (-379)))) 170) (($ (-1259 (-949 (-564)))) 160) (($ (-1259 (-407 (-949 (-379))))) 129) (($ (-1259 (-407 (-949 (-564))))) 114)) (-2150 (((-1264) $) 107)) (-3742 (((-859) $) 101) (($ (-641 (-330))) 30) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 33) (($ (-1259 (-339 (-3753) (-3753 (QUOTE XC)) (-695)))) 99))) +(((-63 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753) (-3753 (QUOTE XC)) (-695))))))) (-1170)) (T -63)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753) (-3753 (QUOTE XC)) (-695)))) (-5 *1 (-63 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753) (-3753 (QUOTE XC)) (-695))))))) +((-2111 (((-3 $ "failed") (-316 (-379))) 41) (((-3 $ "failed") (-316 (-564))) 46) (((-3 $ "failed") (-949 (-379))) 50) (((-3 $ "failed") (-949 (-564))) 54) (((-3 $ "failed") (-407 (-949 (-379)))) 36) (((-3 $ "failed") (-407 (-949 (-564)))) 29)) (-2239 (($ (-316 (-379))) 39) (($ (-316 (-564))) 44) (($ (-949 (-379))) 48) (($ (-949 (-564))) 52) (($ (-407 (-949 (-379)))) 34) (($ (-407 (-949 (-564)))) 26)) (-2150 (((-1264) $) 76)) (-3742 (((-859) $) 69) (($ (-641 (-330))) 61) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 64) (($ (-339 (-3753 (QUOTE X)) (-3753) (-695))) 25))) +(((-64 |#1|) (-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753 (QUOTE X)) (-3753) (-695)))))) (-1170)) (T -64)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-339 (-3753 (QUOTE X)) (-3753) (-695))) (-5 *1 (-64 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753 (QUOTE X)) (-3753) (-695)))))) +((-2111 (((-3 $ "failed") (-685 (-316 (-379)))) 114) (((-3 $ "failed") (-685 (-316 (-564)))) 102) (((-3 $ "failed") (-685 (-949 (-379)))) 136) (((-3 $ "failed") (-685 (-949 (-564)))) 125) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 90) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 76)) (-2239 (($ (-685 (-316 (-379)))) 110) (($ (-685 (-316 (-564)))) 98) (($ (-685 (-949 (-379)))) 132) (($ (-685 (-949 (-564)))) 121) (($ (-685 (-407 (-949 (-379))))) 86) (($ (-685 (-407 (-949 (-564))))) 69)) (-2150 (((-1264) $) 144)) (-3742 (((-859) $) 138) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 32) (($ (-685 (-339 (-3753) (-3753 (QUOTE X) (QUOTE HESS)) (-695)))) 59))) +(((-65 |#1|) (-13 (-384) (-614 (-685 (-339 (-3753) (-3753 (QUOTE X) (QUOTE HESS)) (-695))))) (-1170)) (T -65)) +NIL +(-13 (-384) (-614 (-685 (-339 (-3753) (-3753 (QUOTE X) (QUOTE HESS)) (-695))))) +((-2111 (((-3 $ "failed") (-316 (-379))) 60) (((-3 $ "failed") (-316 (-564))) 65) (((-3 $ "failed") (-949 (-379))) 69) (((-3 $ "failed") (-949 (-564))) 73) (((-3 $ "failed") (-407 (-949 (-379)))) 55) (((-3 $ "failed") (-407 (-949 (-564)))) 48)) (-2239 (($ (-316 (-379))) 58) (($ (-316 (-564))) 63) (($ (-949 (-379))) 67) (($ (-949 (-564))) 71) (($ (-407 (-949 (-379)))) 53) (($ (-407 (-949 (-564)))) 45)) (-2150 (((-1264) $) 82)) (-3742 (((-859) $) 76) (($ (-641 (-330))) 29) (($ (-330)) 34) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 32) (($ (-339 (-3753) (-3753 (QUOTE XC)) (-695))) 40))) +(((-66 |#1|) (-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753) (-3753 (QUOTE XC)) (-695)))))) (-1170)) (T -66)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-339 (-3753) (-3753 (QUOTE XC)) (-695))) (-5 *1 (-66 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753) (-3753 (QUOTE XC)) (-695)))))) +((-2150 (((-1264) $) 68)) (-3742 (((-859) $) 62) (($ (-685 (-695))) 54) (($ (-641 (-330))) 53) (($ (-330)) 60) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 58))) +(((-67 |#1|) (-383) (-1170)) (T -67)) NIL (-383) -((-4000 (((-1262) $) 69)) (-2062 (((-858) $) 63) (($ (-684 (-694))) 55) (($ (-640 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 60))) -(((-68 |#1|) (-383) (-1169)) (T -68)) +((-2150 (((-1264) $) 69)) (-3742 (((-859) $) 63) (($ (-685 (-695))) 55) (($ (-641 (-330))) 54) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 60))) +(((-68 |#1|) (-383) (-1170)) (T -68)) NIL (-383) -((-4000 (((-1262) $) NIL) (((-1262)) 33)) (-2062 (((-858) $) NIL))) -(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -4000 ((-1262))))) (-1169)) (T -69)) -((-4000 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-69 *3)) (-14 *3 (-1169))))) -(-13 (-395) (-10 -7 (-15 -4000 ((-1262))))) -((-4000 (((-1262) $) 75)) (-2062 (((-858) $) 69) (($ (-684 (-694))) 61) (($ (-640 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 60))) -(((-70 |#1|) (-383) (-1169)) (T -70)) +((-2150 (((-1264) $) NIL) (((-1264)) 33)) (-3742 (((-859) $) NIL))) +(((-69 |#1|) (-13 (-395) (-10 -7 (-15 -2150 ((-1264))))) (-1170)) (T -69)) +((-2150 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170))))) +(-13 (-395) (-10 -7 (-15 -2150 ((-1264))))) +((-2150 (((-1264) $) 75)) (-3742 (((-859) $) 69) (($ (-685 (-695))) 61) (($ (-641 (-330))) 63) (($ (-330)) 66) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 60))) +(((-70 |#1|) (-383) (-1170)) (T -70)) NIL (-383) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 111) (((-3 $ "failed") (-1257 (-316 (-563)))) 100) (((-3 $ "failed") (-1257 (-948 (-379)))) 131) (((-3 $ "failed") (-1257 (-948 (-563)))) 121) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 89) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 76)) (-2589 (($ (-1257 (-316 (-379)))) 107) (($ (-1257 (-316 (-563)))) 96) (($ (-1257 (-948 (-379)))) 127) (($ (-1257 (-948 (-563)))) 117) (($ (-1257 (-407 (-948 (-379))))) 85) (($ (-1257 (-407 (-948 (-563))))) 69)) (-4000 (((-1262) $) 144)) (-2062 (((-858) $) 138) (($ (-640 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 61) (($ (-1257 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694)))) 62))) -(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694))))))) (-1169)) (T -71)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694)))) (-5 *1 (-71 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694))))))) -((-4000 (((-1262) $) 33) (((-1262)) 32)) (-2062 (((-858) $) 36))) -(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -4000 ((-1262))))) (-1169)) (T -72)) -((-4000 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-72 *3)) (-14 *3 (-1169))))) -(-13 (-395) (-10 -7 (-15 -4000 ((-1262))))) -((-4000 (((-1262) $) 65)) (-2062 (((-858) $) 59) (($ (-684 (-694))) 51) (($ (-640 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 50))) -(((-73 |#1|) (-383) (-1169)) (T -73)) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 111) (((-3 $ "failed") (-1259 (-316 (-564)))) 100) (((-3 $ "failed") (-1259 (-949 (-379)))) 131) (((-3 $ "failed") (-1259 (-949 (-564)))) 121) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 89) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 76)) (-2239 (($ (-1259 (-316 (-379)))) 107) (($ (-1259 (-316 (-564)))) 96) (($ (-1259 (-949 (-379)))) 127) (($ (-1259 (-949 (-564)))) 117) (($ (-1259 (-407 (-949 (-379))))) 85) (($ (-1259 (-407 (-949 (-564))))) 69)) (-2150 (((-1264) $) 144)) (-3742 (((-859) $) 138) (($ (-641 (-330))) 133) (($ (-330)) 136) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 61) (($ (-1259 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695)))) 62))) +(((-71 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695))))))) (-1170)) (T -71)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695)))) (-5 *1 (-71 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695))))))) +((-2150 (((-1264) $) 33) (((-1264)) 32)) (-3742 (((-859) $) 36))) +(((-72 |#1|) (-13 (-395) (-10 -7 (-15 -2150 ((-1264))))) (-1170)) (T -72)) +((-2150 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170))))) +(-13 (-395) (-10 -7 (-15 -2150 ((-1264))))) +((-2150 (((-1264) $) 65)) (-3742 (((-859) $) 59) (($ (-685 (-695))) 51) (($ (-641 (-330))) 53) (($ (-330)) 56) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 50))) +(((-73 |#1|) (-383) (-1170)) (T -73)) NIL (-383) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 130) (((-3 $ "failed") (-1257 (-316 (-563)))) 120) (((-3 $ "failed") (-1257 (-948 (-379)))) 150) (((-3 $ "failed") (-1257 (-948 (-563)))) 140) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 110) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 98)) (-2589 (($ (-1257 (-316 (-379)))) 126) (($ (-1257 (-316 (-563)))) 116) (($ (-1257 (-948 (-379)))) 146) (($ (-1257 (-948 (-563)))) 136) (($ (-1257 (-407 (-948 (-379))))) 106) (($ (-1257 (-407 (-948 (-563))))) 91)) (-4000 (((-1262) $) 83)) (-2062 (((-858) $) 28) (($ (-640 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 76) (($ (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694)))) 70))) -(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694))))))) (-1169)) (T -74)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694)))) (-5 *1 (-74 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694))))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 135) (((-3 $ "failed") (-1257 (-316 (-563)))) 124) (((-3 $ "failed") (-1257 (-948 (-379)))) 155) (((-3 $ "failed") (-1257 (-948 (-563)))) 145) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 113) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 100)) (-2589 (($ (-1257 (-316 (-379)))) 131) (($ (-1257 (-316 (-563)))) 120) (($ (-1257 (-948 (-379)))) 151) (($ (-1257 (-948 (-563)))) 141) (($ (-1257 (-407 (-948 (-379))))) 109) (($ (-1257 (-407 (-948 (-563))))) 93)) (-4000 (((-1262) $) 85)) (-2062 (((-858) $) 77) (($ (-640 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) NIL) (($ (-1257 (-339 (-2074 (QUOTE X) (QUOTE EPS)) (-2074 (QUOTE -4367)) (-694)))) 72))) -(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X) (QUOTE EPS)) (-2074 (QUOTE -4367)) (-694))))))) (-1169) (-1169) (-1169)) (T -75)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074 (QUOTE X) (QUOTE EPS)) (-2074 (QUOTE -4367)) (-694)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X) (QUOTE EPS)) (-2074 (QUOTE -4367)) (-694))))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 141) (((-3 $ "failed") (-1257 (-316 (-563)))) 130) (((-3 $ "failed") (-1257 (-948 (-379)))) 161) (((-3 $ "failed") (-1257 (-948 (-563)))) 151) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 119) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 106)) (-2589 (($ (-1257 (-316 (-379)))) 137) (($ (-1257 (-316 (-563)))) 126) (($ (-1257 (-948 (-379)))) 157) (($ (-1257 (-948 (-563)))) 147) (($ (-1257 (-407 (-948 (-379))))) 115) (($ (-1257 (-407 (-948 (-563))))) 99)) (-4000 (((-1262) $) 91)) (-2062 (((-858) $) 83) (($ (-640 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) NIL) (($ (-1257 (-339 (-2074 (QUOTE EPS)) (-2074 (QUOTE YA) (QUOTE YB)) (-694)))) 78))) -(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE EPS)) (-2074 (QUOTE YA) (QUOTE YB)) (-694))))))) (-1169) (-1169) (-1169)) (T -76)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074 (QUOTE EPS)) (-2074 (QUOTE YA) (QUOTE YB)) (-694)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) (-14 *5 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE EPS)) (-2074 (QUOTE YA) (QUOTE YB)) (-694))))))) -((-2671 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-563))) 88) (((-3 $ "failed") (-948 (-379))) 92) (((-3 $ "failed") (-948 (-563))) 96) (((-3 $ "failed") (-407 (-948 (-379)))) 78) (((-3 $ "failed") (-407 (-948 (-563)))) 71)) (-2589 (($ (-316 (-379))) 81) (($ (-316 (-563))) 86) (($ (-948 (-379))) 90) (($ (-948 (-563))) 94) (($ (-407 (-948 (-379)))) 76) (($ (-407 (-948 (-563)))) 68)) (-4000 (((-1262) $) 63)) (-2062 (((-858) $) 51) (($ (-640 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 55) (($ (-339 (-2074) (-2074 (QUOTE X)) (-694))) 48))) -(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074) (-2074 (QUOTE X)) (-694)))))) (-1169)) (T -77)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-339 (-2074) (-2074 (QUOTE X)) (-694))) (-5 *1 (-77 *3)) (-14 *3 (-1169))))) -(-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074) (-2074 (QUOTE X)) (-694)))))) -((-2671 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-563))) 52) (((-3 $ "failed") (-948 (-379))) 56) (((-3 $ "failed") (-948 (-563))) 60) (((-3 $ "failed") (-407 (-948 (-379)))) 42) (((-3 $ "failed") (-407 (-948 (-563)))) 35)) (-2589 (($ (-316 (-379))) 45) (($ (-316 (-563))) 50) (($ (-948 (-379))) 54) (($ (-948 (-563))) 58) (($ (-407 (-948 (-379)))) 40) (($ (-407 (-948 (-563)))) 32)) (-4000 (((-1262) $) 81)) (-2062 (((-858) $) 75) (($ (-640 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 70) (($ (-339 (-2074) (-2074 (QUOTE X)) (-694))) 31))) -(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074) (-2074 (QUOTE X)) (-694)))))) (-1169)) (T -78)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-339 (-2074) (-2074 (QUOTE X)) (-694))) (-5 *1 (-78 *3)) (-14 *3 (-1169))))) -(-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074) (-2074 (QUOTE X)) (-694)))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 90) (((-3 $ "failed") (-1257 (-316 (-563)))) 79) (((-3 $ "failed") (-1257 (-948 (-379)))) 110) (((-3 $ "failed") (-1257 (-948 (-563)))) 100) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 68) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 55)) (-2589 (($ (-1257 (-316 (-379)))) 86) (($ (-1257 (-316 (-563)))) 75) (($ (-1257 (-948 (-379)))) 106) (($ (-1257 (-948 (-563)))) 96) (($ (-1257 (-407 (-948 (-379))))) 64) (($ (-1257 (-407 (-948 (-563))))) 48)) (-4000 (((-1262) $) 126)) (-2062 (((-858) $) 120) (($ (-640 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 116) (($ (-1257 (-339 (-2074) (-2074 (QUOTE XC)) (-694)))) 39))) -(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074) (-2074 (QUOTE XC)) (-694))))))) (-1169)) (T -79)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074) (-2074 (QUOTE XC)) (-694)))) (-5 *1 (-79 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074) (-2074 (QUOTE XC)) (-694))))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 158) (((-3 $ "failed") (-1257 (-316 (-563)))) 148) (((-3 $ "failed") (-1257 (-948 (-379)))) 178) (((-3 $ "failed") (-1257 (-948 (-563)))) 168) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 138) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 126)) (-2589 (($ (-1257 (-316 (-379)))) 154) (($ (-1257 (-316 (-563)))) 144) (($ (-1257 (-948 (-379)))) 174) (($ (-1257 (-948 (-563)))) 164) (($ (-1257 (-407 (-948 (-379))))) 134) (($ (-1257 (-407 (-948 (-563))))) 119)) (-4000 (((-1262) $) 112)) (-2062 (((-858) $) 106) (($ (-640 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 102) (($ (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694)))) 98))) -(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694))))))) (-1169)) (T -80)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694)))) (-5 *1 (-80 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694))))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 79) (((-3 $ "failed") (-1257 (-316 (-563)))) 68) (((-3 $ "failed") (-1257 (-948 (-379)))) 99) (((-3 $ "failed") (-1257 (-948 (-563)))) 89) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 57) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 44)) (-2589 (($ (-1257 (-316 (-379)))) 75) (($ (-1257 (-316 (-563)))) 64) (($ (-1257 (-948 (-379)))) 95) (($ (-1257 (-948 (-563)))) 85) (($ (-1257 (-407 (-948 (-379))))) 53) (($ (-1257 (-407 (-948 (-563))))) 37)) (-4000 (((-1262) $) 125)) (-2062 (((-858) $) 119) (($ (-640 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 114) (($ (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694)))) 36))) -(((-81 |#1|) (-13 (-441) (-613 (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694))))) (-1169)) (T -81)) -NIL -(-13 (-441) (-613 (-1257 (-339 (-2074) (-2074 (QUOTE X)) (-694))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 98) (((-3 $ "failed") (-1257 (-316 (-563)))) 87) (((-3 $ "failed") (-1257 (-948 (-379)))) 118) (((-3 $ "failed") (-1257 (-948 (-563)))) 108) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 76) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 63)) (-2589 (($ (-1257 (-316 (-379)))) 94) (($ (-1257 (-316 (-563)))) 83) (($ (-1257 (-948 (-379)))) 114) (($ (-1257 (-948 (-563)))) 104) (($ (-1257 (-407 (-948 (-379))))) 72) (($ (-1257 (-407 (-948 (-563))))) 56)) (-4000 (((-1262) $) 48)) (-2062 (((-858) $) 42) (($ (-640 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 38) (($ (-1257 (-339 (-2074 (QUOTE X) (QUOTE -4367)) (-2074) (-694)))) 33))) -(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X) (QUOTE -4367)) (-2074) (-694))))))) (-1169)) (T -82)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074 (QUOTE X) (QUOTE -4367)) (-2074) (-694)))) (-5 *1 (-82 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X) (QUOTE -4367)) (-2074) (-694))))))) -((-2671 (((-3 $ "failed") (-684 (-316 (-379)))) 118) (((-3 $ "failed") (-684 (-316 (-563)))) 107) (((-3 $ "failed") (-684 (-948 (-379)))) 140) (((-3 $ "failed") (-684 (-948 (-563)))) 129) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 96) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 83)) (-2589 (($ (-684 (-316 (-379)))) 114) (($ (-684 (-316 (-563)))) 103) (($ (-684 (-948 (-379)))) 136) (($ (-684 (-948 (-563)))) 125) (($ (-684 (-407 (-948 (-379))))) 92) (($ (-684 (-407 (-948 (-563))))) 76)) (-4000 (((-1262) $) 66)) (-2062 (((-858) $) 53) (($ (-640 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 58) (($ (-684 (-339 (-2074 (QUOTE X) (QUOTE -4367)) (-2074) (-694)))) 50))) -(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -2062 ($ (-684 (-339 (-2074 (QUOTE X) (QUOTE -4367)) (-2074) (-694))))))) (-1169)) (T -83)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-2074 (QUOTE X) (QUOTE -4367)) (-2074) (-694)))) (-5 *1 (-83 *3)) (-14 *3 (-1169))))) -(-13 (-384) (-10 -8 (-15 -2062 ($ (-684 (-339 (-2074 (QUOTE X) (QUOTE -4367)) (-2074) (-694))))))) -((-2671 (((-3 $ "failed") (-684 (-316 (-379)))) 113) (((-3 $ "failed") (-684 (-316 (-563)))) 101) (((-3 $ "failed") (-684 (-948 (-379)))) 135) (((-3 $ "failed") (-684 (-948 (-563)))) 124) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 89) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 75)) (-2589 (($ (-684 (-316 (-379)))) 109) (($ (-684 (-316 (-563)))) 97) (($ (-684 (-948 (-379)))) 131) (($ (-684 (-948 (-563)))) 120) (($ (-684 (-407 (-948 (-379))))) 85) (($ (-684 (-407 (-948 (-563))))) 68)) (-4000 (((-1262) $) 60)) (-2062 (((-858) $) 54) (($ (-640 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 45) (($ (-684 (-339 (-2074 (QUOTE X)) (-2074) (-694)))) 46))) -(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -2062 ($ (-684 (-339 (-2074 (QUOTE X)) (-2074) (-694))))))) (-1169)) (T -84)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-2074 (QUOTE X)) (-2074) (-694)))) (-5 *1 (-84 *3)) (-14 *3 (-1169))))) -(-13 (-384) (-10 -8 (-15 -2062 ($ (-684 (-339 (-2074 (QUOTE X)) (-2074) (-694))))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 105) (((-3 $ "failed") (-1257 (-316 (-563)))) 94) (((-3 $ "failed") (-1257 (-948 (-379)))) 125) (((-3 $ "failed") (-1257 (-948 (-563)))) 115) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 83) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 70)) (-2589 (($ (-1257 (-316 (-379)))) 101) (($ (-1257 (-316 (-563)))) 90) (($ (-1257 (-948 (-379)))) 121) (($ (-1257 (-948 (-563)))) 111) (($ (-1257 (-407 (-948 (-379))))) 79) (($ (-1257 (-407 (-948 (-563))))) 63)) (-4000 (((-1262) $) 47)) (-2062 (((-858) $) 41) (($ (-640 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 53) (($ (-1257 (-339 (-2074 (QUOTE X)) (-2074) (-694)))) 38))) -(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X)) (-2074) (-694))))))) (-1169)) (T -85)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074 (QUOTE X)) (-2074) (-694)))) (-5 *1 (-85 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X)) (-2074) (-694))))))) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 80) (((-3 $ "failed") (-1257 (-316 (-563)))) 69) (((-3 $ "failed") (-1257 (-948 (-379)))) 100) (((-3 $ "failed") (-1257 (-948 (-563)))) 90) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 58) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 45)) (-2589 (($ (-1257 (-316 (-379)))) 76) (($ (-1257 (-316 (-563)))) 65) (($ (-1257 (-948 (-379)))) 96) (($ (-1257 (-948 (-563)))) 86) (($ (-1257 (-407 (-948 (-379))))) 54) (($ (-1257 (-407 (-948 (-563))))) 38)) (-4000 (((-1262) $) 126)) (-2062 (((-858) $) 120) (($ (-640 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 115) (($ (-1257 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694)))) 37))) -(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694))))))) (-1169)) (T -86)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694)))) (-5 *1 (-86 *3)) (-14 *3 (-1169))))) -(-13 (-441) (-10 -8 (-15 -2062 ($ (-1257 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694))))))) -((-2671 (((-3 $ "failed") (-684 (-316 (-379)))) 117) (((-3 $ "failed") (-684 (-316 (-563)))) 105) (((-3 $ "failed") (-684 (-948 (-379)))) 139) (((-3 $ "failed") (-684 (-948 (-563)))) 128) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 93) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 79)) (-2589 (($ (-684 (-316 (-379)))) 113) (($ (-684 (-316 (-563)))) 101) (($ (-684 (-948 (-379)))) 135) (($ (-684 (-948 (-563)))) 124) (($ (-684 (-407 (-948 (-379))))) 89) (($ (-684 (-407 (-948 (-563))))) 72)) (-4000 (((-1262) $) 63)) (-2062 (((-858) $) 57) (($ (-640 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 52) (($ (-684 (-339 (-2074 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2074) (-694)))) 48))) -(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -2062 ($ (-684 (-339 (-2074 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2074) (-694))))))) (-1169)) (T -87)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-684 (-339 (-2074 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2074) (-694)))) (-5 *1 (-87 *3)) (-14 *3 (-1169))))) -(-13 (-384) (-10 -8 (-15 -2062 ($ (-684 (-339 (-2074 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2074) (-694))))))) -((-4000 (((-1262) $) 45)) (-2062 (((-858) $) 39) (($ (-1257 (-694))) 101) (($ (-640 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 34))) -(((-88 |#1|) (-440) (-1169)) (T -88)) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 130) (((-3 $ "failed") (-1259 (-316 (-564)))) 120) (((-3 $ "failed") (-1259 (-949 (-379)))) 150) (((-3 $ "failed") (-1259 (-949 (-564)))) 140) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 110) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 98)) (-2239 (($ (-1259 (-316 (-379)))) 126) (($ (-1259 (-316 (-564)))) 116) (($ (-1259 (-949 (-379)))) 146) (($ (-1259 (-949 (-564)))) 136) (($ (-1259 (-407 (-949 (-379))))) 106) (($ (-1259 (-407 (-949 (-564))))) 91)) (-2150 (((-1264) $) 83)) (-3742 (((-859) $) 28) (($ (-641 (-330))) 73) (($ (-330)) 69) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 76) (($ (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695)))) 70))) +(((-74 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695))))))) (-1170)) (T -74)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695)))) (-5 *1 (-74 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695))))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 135) (((-3 $ "failed") (-1259 (-316 (-564)))) 124) (((-3 $ "failed") (-1259 (-949 (-379)))) 155) (((-3 $ "failed") (-1259 (-949 (-564)))) 145) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 113) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 100)) (-2239 (($ (-1259 (-316 (-379)))) 131) (($ (-1259 (-316 (-564)))) 120) (($ (-1259 (-949 (-379)))) 151) (($ (-1259 (-949 (-564)))) 141) (($ (-1259 (-407 (-949 (-379))))) 109) (($ (-1259 (-407 (-949 (-564))))) 93)) (-2150 (((-1264) $) 85)) (-3742 (((-859) $) 77) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) NIL) (($ (-1259 (-339 (-3753 (QUOTE X) (QUOTE EPS)) (-3753 (QUOTE -4186)) (-695)))) 72))) +(((-75 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X) (QUOTE EPS)) (-3753 (QUOTE -4186)) (-695))))))) (-1170) (-1170) (-1170)) (T -75)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753 (QUOTE X) (QUOTE EPS)) (-3753 (QUOTE -4186)) (-695)))) (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X) (QUOTE EPS)) (-3753 (QUOTE -4186)) (-695))))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 141) (((-3 $ "failed") (-1259 (-316 (-564)))) 130) (((-3 $ "failed") (-1259 (-949 (-379)))) 161) (((-3 $ "failed") (-1259 (-949 (-564)))) 151) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 119) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 106)) (-2239 (($ (-1259 (-316 (-379)))) 137) (($ (-1259 (-316 (-564)))) 126) (($ (-1259 (-949 (-379)))) 157) (($ (-1259 (-949 (-564)))) 147) (($ (-1259 (-407 (-949 (-379))))) 115) (($ (-1259 (-407 (-949 (-564))))) 99)) (-2150 (((-1264) $) 91)) (-3742 (((-859) $) 83) (($ (-641 (-330))) NIL) (($ (-330)) NIL) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) NIL) (($ (-1259 (-339 (-3753 (QUOTE EPS)) (-3753 (QUOTE YA) (QUOTE YB)) (-695)))) 78))) +(((-76 |#1| |#2| |#3|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE EPS)) (-3753 (QUOTE YA) (QUOTE YB)) (-695))))))) (-1170) (-1170) (-1170)) (T -76)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753 (QUOTE EPS)) (-3753 (QUOTE YA) (QUOTE YB)) (-695)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) (-14 *5 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE EPS)) (-3753 (QUOTE YA) (QUOTE YB)) (-695))))))) +((-2111 (((-3 $ "failed") (-316 (-379))) 83) (((-3 $ "failed") (-316 (-564))) 88) (((-3 $ "failed") (-949 (-379))) 92) (((-3 $ "failed") (-949 (-564))) 96) (((-3 $ "failed") (-407 (-949 (-379)))) 78) (((-3 $ "failed") (-407 (-949 (-564)))) 71)) (-2239 (($ (-316 (-379))) 81) (($ (-316 (-564))) 86) (($ (-949 (-379))) 90) (($ (-949 (-564))) 94) (($ (-407 (-949 (-379)))) 76) (($ (-407 (-949 (-564)))) 68)) (-2150 (((-1264) $) 63)) (-3742 (((-859) $) 51) (($ (-641 (-330))) 47) (($ (-330)) 57) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 55) (($ (-339 (-3753) (-3753 (QUOTE X)) (-695))) 48))) +(((-77 |#1|) (-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753) (-3753 (QUOTE X)) (-695)))))) (-1170)) (T -77)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-339 (-3753) (-3753 (QUOTE X)) (-695))) (-5 *1 (-77 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753) (-3753 (QUOTE X)) (-695)))))) +((-2111 (((-3 $ "failed") (-316 (-379))) 47) (((-3 $ "failed") (-316 (-564))) 52) (((-3 $ "failed") (-949 (-379))) 56) (((-3 $ "failed") (-949 (-564))) 60) (((-3 $ "failed") (-407 (-949 (-379)))) 42) (((-3 $ "failed") (-407 (-949 (-564)))) 35)) (-2239 (($ (-316 (-379))) 45) (($ (-316 (-564))) 50) (($ (-949 (-379))) 54) (($ (-949 (-564))) 58) (($ (-407 (-949 (-379)))) 40) (($ (-407 (-949 (-564)))) 32)) (-2150 (((-1264) $) 81)) (-3742 (((-859) $) 75) (($ (-641 (-330))) 67) (($ (-330)) 72) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 70) (($ (-339 (-3753) (-3753 (QUOTE X)) (-695))) 31))) +(((-78 |#1|) (-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753) (-3753 (QUOTE X)) (-695)))))) (-1170)) (T -78)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-339 (-3753) (-3753 (QUOTE X)) (-695))) (-5 *1 (-78 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753) (-3753 (QUOTE X)) (-695)))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 90) (((-3 $ "failed") (-1259 (-316 (-564)))) 79) (((-3 $ "failed") (-1259 (-949 (-379)))) 110) (((-3 $ "failed") (-1259 (-949 (-564)))) 100) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 68) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 55)) (-2239 (($ (-1259 (-316 (-379)))) 86) (($ (-1259 (-316 (-564)))) 75) (($ (-1259 (-949 (-379)))) 106) (($ (-1259 (-949 (-564)))) 96) (($ (-1259 (-407 (-949 (-379))))) 64) (($ (-1259 (-407 (-949 (-564))))) 48)) (-2150 (((-1264) $) 126)) (-3742 (((-859) $) 120) (($ (-641 (-330))) 113) (($ (-330)) 38) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 116) (($ (-1259 (-339 (-3753) (-3753 (QUOTE XC)) (-695)))) 39))) +(((-79 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753) (-3753 (QUOTE XC)) (-695))))))) (-1170)) (T -79)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753) (-3753 (QUOTE XC)) (-695)))) (-5 *1 (-79 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753) (-3753 (QUOTE XC)) (-695))))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 158) (((-3 $ "failed") (-1259 (-316 (-564)))) 148) (((-3 $ "failed") (-1259 (-949 (-379)))) 178) (((-3 $ "failed") (-1259 (-949 (-564)))) 168) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 138) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 126)) (-2239 (($ (-1259 (-316 (-379)))) 154) (($ (-1259 (-316 (-564)))) 144) (($ (-1259 (-949 (-379)))) 174) (($ (-1259 (-949 (-564)))) 164) (($ (-1259 (-407 (-949 (-379))))) 134) (($ (-1259 (-407 (-949 (-564))))) 119)) (-2150 (((-1264) $) 112)) (-3742 (((-859) $) 106) (($ (-641 (-330))) 97) (($ (-330)) 104) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 102) (($ (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695)))) 98))) +(((-80 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695))))))) (-1170)) (T -80)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695)))) (-5 *1 (-80 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695))))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 79) (((-3 $ "failed") (-1259 (-316 (-564)))) 68) (((-3 $ "failed") (-1259 (-949 (-379)))) 99) (((-3 $ "failed") (-1259 (-949 (-564)))) 89) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 57) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 44)) (-2239 (($ (-1259 (-316 (-379)))) 75) (($ (-1259 (-316 (-564)))) 64) (($ (-1259 (-949 (-379)))) 95) (($ (-1259 (-949 (-564)))) 85) (($ (-1259 (-407 (-949 (-379))))) 53) (($ (-1259 (-407 (-949 (-564))))) 37)) (-2150 (((-1264) $) 125)) (-3742 (((-859) $) 119) (($ (-641 (-330))) 110) (($ (-330)) 116) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 114) (($ (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695)))) 36))) +(((-81 |#1|) (-13 (-441) (-614 (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695))))) (-1170)) (T -81)) +NIL +(-13 (-441) (-614 (-1259 (-339 (-3753) (-3753 (QUOTE X)) (-695))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 98) (((-3 $ "failed") (-1259 (-316 (-564)))) 87) (((-3 $ "failed") (-1259 (-949 (-379)))) 118) (((-3 $ "failed") (-1259 (-949 (-564)))) 108) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 76) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 63)) (-2239 (($ (-1259 (-316 (-379)))) 94) (($ (-1259 (-316 (-564)))) 83) (($ (-1259 (-949 (-379)))) 114) (($ (-1259 (-949 (-564)))) 104) (($ (-1259 (-407 (-949 (-379))))) 72) (($ (-1259 (-407 (-949 (-564))))) 56)) (-2150 (((-1264) $) 48)) (-3742 (((-859) $) 42) (($ (-641 (-330))) 32) (($ (-330)) 35) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 38) (($ (-1259 (-339 (-3753 (QUOTE X) (QUOTE -4186)) (-3753) (-695)))) 33))) +(((-82 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X) (QUOTE -4186)) (-3753) (-695))))))) (-1170)) (T -82)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753 (QUOTE X) (QUOTE -4186)) (-3753) (-695)))) (-5 *1 (-82 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X) (QUOTE -4186)) (-3753) (-695))))))) +((-2111 (((-3 $ "failed") (-685 (-316 (-379)))) 118) (((-3 $ "failed") (-685 (-316 (-564)))) 107) (((-3 $ "failed") (-685 (-949 (-379)))) 140) (((-3 $ "failed") (-685 (-949 (-564)))) 129) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 96) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 83)) (-2239 (($ (-685 (-316 (-379)))) 114) (($ (-685 (-316 (-564)))) 103) (($ (-685 (-949 (-379)))) 136) (($ (-685 (-949 (-564)))) 125) (($ (-685 (-407 (-949 (-379))))) 92) (($ (-685 (-407 (-949 (-564))))) 76)) (-2150 (((-1264) $) 66)) (-3742 (((-859) $) 53) (($ (-641 (-330))) 60) (($ (-330)) 49) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 58) (($ (-685 (-339 (-3753 (QUOTE X) (QUOTE -4186)) (-3753) (-695)))) 50))) +(((-83 |#1|) (-13 (-384) (-10 -8 (-15 -3742 ($ (-685 (-339 (-3753 (QUOTE X) (QUOTE -4186)) (-3753) (-695))))))) (-1170)) (T -83)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-3753 (QUOTE X) (QUOTE -4186)) (-3753) (-695)))) (-5 *1 (-83 *3)) (-14 *3 (-1170))))) +(-13 (-384) (-10 -8 (-15 -3742 ($ (-685 (-339 (-3753 (QUOTE X) (QUOTE -4186)) (-3753) (-695))))))) +((-2111 (((-3 $ "failed") (-685 (-316 (-379)))) 113) (((-3 $ "failed") (-685 (-316 (-564)))) 101) (((-3 $ "failed") (-685 (-949 (-379)))) 135) (((-3 $ "failed") (-685 (-949 (-564)))) 124) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 89) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 75)) (-2239 (($ (-685 (-316 (-379)))) 109) (($ (-685 (-316 (-564)))) 97) (($ (-685 (-949 (-379)))) 131) (($ (-685 (-949 (-564)))) 120) (($ (-685 (-407 (-949 (-379))))) 85) (($ (-685 (-407 (-949 (-564))))) 68)) (-2150 (((-1264) $) 60)) (-3742 (((-859) $) 54) (($ (-641 (-330))) 48) (($ (-330)) 51) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 45) (($ (-685 (-339 (-3753 (QUOTE X)) (-3753) (-695)))) 46))) +(((-84 |#1|) (-13 (-384) (-10 -8 (-15 -3742 ($ (-685 (-339 (-3753 (QUOTE X)) (-3753) (-695))))))) (-1170)) (T -84)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-3753 (QUOTE X)) (-3753) (-695)))) (-5 *1 (-84 *3)) (-14 *3 (-1170))))) +(-13 (-384) (-10 -8 (-15 -3742 ($ (-685 (-339 (-3753 (QUOTE X)) (-3753) (-695))))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 105) (((-3 $ "failed") (-1259 (-316 (-564)))) 94) (((-3 $ "failed") (-1259 (-949 (-379)))) 125) (((-3 $ "failed") (-1259 (-949 (-564)))) 115) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 83) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 70)) (-2239 (($ (-1259 (-316 (-379)))) 101) (($ (-1259 (-316 (-564)))) 90) (($ (-1259 (-949 (-379)))) 121) (($ (-1259 (-949 (-564)))) 111) (($ (-1259 (-407 (-949 (-379))))) 79) (($ (-1259 (-407 (-949 (-564))))) 63)) (-2150 (((-1264) $) 47)) (-3742 (((-859) $) 41) (($ (-641 (-330))) 50) (($ (-330)) 37) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 53) (($ (-1259 (-339 (-3753 (QUOTE X)) (-3753) (-695)))) 38))) +(((-85 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X)) (-3753) (-695))))))) (-1170)) (T -85)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753 (QUOTE X)) (-3753) (-695)))) (-5 *1 (-85 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X)) (-3753) (-695))))))) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 80) (((-3 $ "failed") (-1259 (-316 (-564)))) 69) (((-3 $ "failed") (-1259 (-949 (-379)))) 100) (((-3 $ "failed") (-1259 (-949 (-564)))) 90) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 58) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 45)) (-2239 (($ (-1259 (-316 (-379)))) 76) (($ (-1259 (-316 (-564)))) 65) (($ (-1259 (-949 (-379)))) 96) (($ (-1259 (-949 (-564)))) 86) (($ (-1259 (-407 (-949 (-379))))) 54) (($ (-1259 (-407 (-949 (-564))))) 38)) (-2150 (((-1264) $) 126)) (-3742 (((-859) $) 120) (($ (-641 (-330))) 111) (($ (-330)) 117) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 115) (($ (-1259 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695)))) 37))) +(((-86 |#1|) (-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695))))))) (-1170)) (T -86)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695)))) (-5 *1 (-86 *3)) (-14 *3 (-1170))))) +(-13 (-441) (-10 -8 (-15 -3742 ($ (-1259 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695))))))) +((-2111 (((-3 $ "failed") (-685 (-316 (-379)))) 117) (((-3 $ "failed") (-685 (-316 (-564)))) 105) (((-3 $ "failed") (-685 (-949 (-379)))) 139) (((-3 $ "failed") (-685 (-949 (-564)))) 128) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 93) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 79)) (-2239 (($ (-685 (-316 (-379)))) 113) (($ (-685 (-316 (-564)))) 101) (($ (-685 (-949 (-379)))) 135) (($ (-685 (-949 (-564)))) 124) (($ (-685 (-407 (-949 (-379))))) 89) (($ (-685 (-407 (-949 (-564))))) 72)) (-2150 (((-1264) $) 63)) (-3742 (((-859) $) 57) (($ (-641 (-330))) 47) (($ (-330)) 54) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 52) (($ (-685 (-339 (-3753 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3753) (-695)))) 48))) +(((-87 |#1|) (-13 (-384) (-10 -8 (-15 -3742 ($ (-685 (-339 (-3753 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3753) (-695))))))) (-1170)) (T -87)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-685 (-339 (-3753 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3753) (-695)))) (-5 *1 (-87 *3)) (-14 *3 (-1170))))) +(-13 (-384) (-10 -8 (-15 -3742 ($ (-685 (-339 (-3753 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3753) (-695))))))) +((-2150 (((-1264) $) 45)) (-3742 (((-859) $) 39) (($ (-1259 (-695))) 101) (($ (-641 (-330))) 31) (($ (-330)) 36) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 34))) +(((-88 |#1|) (-440) (-1170)) (T -88)) NIL (-440) -((-2671 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-563))) 53) (((-3 $ "failed") (-948 (-379))) 57) (((-3 $ "failed") (-948 (-563))) 61) (((-3 $ "failed") (-407 (-948 (-379)))) 43) (((-3 $ "failed") (-407 (-948 (-563)))) 36)) (-2589 (($ (-316 (-379))) 46) (($ (-316 (-563))) 51) (($ (-948 (-379))) 55) (($ (-948 (-563))) 59) (($ (-407 (-948 (-379)))) 41) (($ (-407 (-948 (-563)))) 33)) (-4000 (((-1262) $) 91)) (-2062 (((-858) $) 85) (($ (-640 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 77) (($ (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694))) 32))) -(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694)))))) (-1169)) (T -89)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694))) (-5 *1 (-89 *3)) (-14 *3 (-1169))))) -(-13 (-396) (-10 -8 (-15 -2062 ($ (-339 (-2074 (QUOTE X)) (-2074 (QUOTE -4367)) (-694)))))) -((-4155 (((-1257 (-684 |#1|)) (-684 |#1|)) 65)) (-4143 (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917)) 54)) (-4235 (((-2 (|:| |minor| (-640 (-917))) (|:| -3087 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917)) 76 (|has| |#1| (-363))))) -(((-90 |#1| |#2|) (-10 -7 (-15 -4143 ((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917))) (-15 -4155 ((-1257 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-363)) (-15 -4235 ((-2 (|:| |minor| (-640 (-917))) (|:| -3087 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917))) |%noBranch|)) (-555) (-651 |#1|)) (T -90)) -((-4235 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |minor| (-640 (-917))) (|:| -3087 *3) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5)))) (-4155 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-684 *4)) (-4 *5 (-651 *4)))) (-4143 (*1 *2 *3 *4) (-12 (-4 *5 (-555)) (-5 *2 (-2 (|:| -4277 (-684 *5)) (|:| |vec| (-1257 (-640 (-917)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5))))) -(-10 -7 (-15 -4143 ((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 (-640 (-917))))) |#2| (-917))) (-15 -4155 ((-1257 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-363)) (-15 -4235 ((-2 (|:| |minor| (-640 (-917))) (|:| -3087 |#2|) (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 |#2|))) |#2| (-917))) |%noBranch|)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3796 ((|#1| $) 42)) (-3740 (((-112) $ (-767)) NIL)) (-3684 (($) NIL T CONST)) (-1378 ((|#1| |#1| $) 37)) (-1369 ((|#1| $) 35)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3835 ((|#1| $) NIL)) (-1956 (($ |#1| $) 38)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3847 ((|#1| $) 36)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 18)) (-2749 (($) 46)) (-4359 (((-767) $) 33)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) 17)) (-2062 (((-858) $) 32 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) NIL)) (-4246 (($ (-640 |#1|)) 44)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 15 (|has| |#1| (-1093)))) (-1708 (((-767) $) 12 (|has| $ (-6 -4408))))) -(((-91 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -4246 ($ (-640 |#1|))))) (-1093)) (T -91)) -((-4246 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-91 *3))))) -(-13 (-1114 |#1|) (-10 -8 (-15 -4246 ($ (-640 |#1|))))) -((-2062 (((-858) $) 13) (($ (-1174)) 9) (((-1174) $) 8))) -(((-92 |#1|) (-10 -8 (-15 -2062 ((-1174) |#1|)) (-15 -2062 (|#1| (-1174))) (-15 -2062 ((-858) |#1|))) (-93)) (T -92)) -NIL -(-10 -8 (-15 -2062 ((-1174) |#1|)) (-15 -2062 (|#1| (-1174))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-2943 (((-112) $ $) 6))) +((-2111 (((-3 $ "failed") (-316 (-379))) 48) (((-3 $ "failed") (-316 (-564))) 53) (((-3 $ "failed") (-949 (-379))) 57) (((-3 $ "failed") (-949 (-564))) 61) (((-3 $ "failed") (-407 (-949 (-379)))) 43) (((-3 $ "failed") (-407 (-949 (-564)))) 36)) (-2239 (($ (-316 (-379))) 46) (($ (-316 (-564))) 51) (($ (-949 (-379))) 55) (($ (-949 (-564))) 59) (($ (-407 (-949 (-379)))) 41) (($ (-407 (-949 (-564)))) 33)) (-2150 (((-1264) $) 91)) (-3742 (((-859) $) 85) (($ (-641 (-330))) 79) (($ (-330)) 82) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 77) (($ (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695))) 32))) +(((-89 |#1|) (-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695)))))) (-1170)) (T -89)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695))) (-5 *1 (-89 *3)) (-14 *3 (-1170))))) +(-13 (-396) (-10 -8 (-15 -3742 ($ (-339 (-3753 (QUOTE X)) (-3753 (QUOTE -4186)) (-695)))))) +((-4191 (((-1259 (-685 |#1|)) (-685 |#1|)) 65)) (-2784 (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918)) 54)) (-3415 (((-2 (|:| |minor| (-641 (-918))) (|:| -4032 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918)) 76 (|has| |#1| (-363))))) +(((-90 |#1| |#2|) (-10 -7 (-15 -2784 ((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918))) (-15 -4191 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -3415 ((-2 (|:| |minor| (-641 (-918))) (|:| -4032 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918))) |%noBranch|)) (-556) (-652 |#1|)) (T -90)) +((-3415 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |minor| (-641 (-918))) (|:| -4032 *3) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5)))) (-4191 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-685 *4)) (-4 *5 (-652 *4)))) (-2784 (*1 *2 *3 *4) (-12 (-4 *5 (-556)) (-5 *2 (-2 (|:| -2069 (-685 *5)) (|:| |vec| (-1259 (-641 (-918)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5))))) +(-10 -7 (-15 -2784 ((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 (-641 (-918))))) |#2| (-918))) (-15 -4191 ((-1259 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-363)) (-15 -3415 ((-2 (|:| |minor| (-641 (-918))) (|:| -4032 |#2|) (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 |#2|))) |#2| (-918))) |%noBranch|)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2519 ((|#1| $) 42)) (-2969 (((-112) $ (-768)) NIL)) (-2818 (($) NIL T CONST)) (-2881 ((|#1| |#1| $) 37)) (-2226 ((|#1| $) 35)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2828 ((|#1| $) NIL)) (-2974 (($ |#1| $) 38)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1292 ((|#1| $) 36)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 18)) (-3434 (($) 46)) (-3728 (((-768) $) 33)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) 17)) (-3742 (((-859) $) 32 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) NIL)) (-1936 (($ (-641 |#1|)) 44)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 15 (|has| |#1| (-1094)))) (-2641 (((-768) $) 12 (|has| $ (-6 -4411))))) +(((-91 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -1936 ($ (-641 |#1|))))) (-1094)) (T -91)) +((-1936 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3))))) +(-13 (-1115 |#1|) (-10 -8 (-15 -1936 ($ (-641 |#1|))))) +((-3742 (((-859) $) 13) (($ (-1175)) 9) (((-1175) $) 8))) +(((-92 |#1|) (-10 -8 (-15 -3742 ((-1175) |#1|)) (-15 -3742 (|#1| (-1175))) (-15 -3742 ((-859) |#1|))) (-93)) (T -92)) +NIL +(-10 -8 (-15 -3742 ((-1175) |#1|)) (-15 -3742 (|#1| (-1175))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-1705 (((-112) $ $) 6))) (((-93) (-140)) (T -93)) NIL -(-13 (-1093) (-490 (-1174))) -(((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T)) -((-3374 (($ $) 10)) (-3386 (($ $) 12))) -(((-94 |#1|) (-10 -8 (-15 -3386 (|#1| |#1|)) (-15 -3374 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1094) (-490 (-1175))) +(((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) +((-2404 (($ $) 10)) (-2415 (($ $) 12))) +(((-94 |#1|) (-10 -8 (-15 -2415 (|#1| |#1|)) (-15 -2404 (|#1| |#1|))) (-95)) (T -94)) NIL -(-10 -8 (-15 -3386 (|#1| |#1|)) (-15 -3374 (|#1| |#1|))) -((-3347 (($ $) 11)) (-3325 (($ $) 10)) (-3374 (($ $) 9)) (-3386 (($ $) 8)) (-3361 (($ $) 7)) (-3336 (($ $) 6))) +(-10 -8 (-15 -2415 (|#1| |#1|)) (-15 -2404 (|#1| |#1|))) +((-2379 (($ $) 11)) (-2358 (($ $) 10)) (-2404 (($ $) 9)) (-2415 (($ $) 8)) (-2391 (($ $) 7)) (-2367 (($ $) 6))) (((-95) (-140)) (T -95)) -((-3347 (*1 *1 *1) (-4 *1 (-95))) (-3325 (*1 *1 *1) (-4 *1 (-95))) (-3374 (*1 *1 *1) (-4 *1 (-95))) (-3386 (*1 *1 *1) (-4 *1 (-95))) (-3361 (*1 *1 *1) (-4 *1 (-95))) (-3336 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3336 ($ $)) (-15 -3361 ($ $)) (-15 -3386 ($ $)) (-15 -3374 ($ $)) (-15 -3325 ($ $)) (-15 -3347 ($ $)))) -((-2049 (((-112) $ $) NIL)) (-3359 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-96) (-13 (-1076) (-10 -8 (-15 -3359 ((-1128) $))))) (T -96)) -((-3359 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-96))))) -(-13 (-1076) (-10 -8 (-15 -3359 ((-1128) $)))) -((-2049 (((-112) $ $) NIL)) (-3857 (((-379) (-1151) (-379)) 45) (((-379) (-1151) (-1151) (-379)) 43)) (-3868 (((-379) (-379)) 35)) (-3652 (((-1262)) 38)) (-1938 (((-1151) $) NIL)) (-2456 (((-379) (-1151) (-1151)) 49) (((-379) (-1151)) 51)) (-3249 (((-1113) $) NIL)) (-3664 (((-379) (-1151) (-1151)) 50)) (-2445 (((-379) (-1151) (-1151)) 52) (((-379) (-1151)) 53)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-97) (-13 (-1093) (-10 -7 (-15 -2456 ((-379) (-1151) (-1151))) (-15 -2456 ((-379) (-1151))) (-15 -2445 ((-379) (-1151) (-1151))) (-15 -2445 ((-379) (-1151))) (-15 -3664 ((-379) (-1151) (-1151))) (-15 -3652 ((-1262))) (-15 -3868 ((-379) (-379))) (-15 -3857 ((-379) (-1151) (-379))) (-15 -3857 ((-379) (-1151) (-1151) (-379))) (-6 -4408)))) (T -97)) -((-2456 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2445 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2445 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3664 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3652 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-97)))) (-3868 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-3857 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97)))) (-3857 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97))))) -(-13 (-1093) (-10 -7 (-15 -2456 ((-379) (-1151) (-1151))) (-15 -2456 ((-379) (-1151))) (-15 -2445 ((-379) (-1151) (-1151))) (-15 -2445 ((-379) (-1151))) (-15 -3664 ((-379) (-1151) (-1151))) (-15 -3652 ((-1262))) (-15 -3868 ((-379) (-379))) (-15 -3857 ((-379) (-1151) (-379))) (-15 -3857 ((-379) (-1151) (-1151) (-379))) (-6 -4408))) +((-2379 (*1 *1 *1) (-4 *1 (-95))) (-2358 (*1 *1 *1) (-4 *1 (-95))) (-2404 (*1 *1 *1) (-4 *1 (-95))) (-2415 (*1 *1 *1) (-4 *1 (-95))) (-2391 (*1 *1 *1) (-4 *1 (-95))) (-2367 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -2367 ($ $)) (-15 -2391 ($ $)) (-15 -2415 ($ $)) (-15 -2404 ($ $)) (-15 -2358 ($ $)) (-15 -2379 ($ $)))) +((-3732 (((-112) $ $) NIL)) (-4324 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-96) (-13 (-1077) (-10 -8 (-15 -4324 ((-1129) $))))) (T -96)) +((-4324 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96))))) +(-13 (-1077) (-10 -8 (-15 -4324 ((-1129) $)))) +((-3732 (((-112) $ $) NIL)) (-3526 (((-379) (-1152) (-379)) 45) (((-379) (-1152) (-1152) (-379)) 43)) (-3960 (((-379) (-379)) 35)) (-2374 (((-1264)) 38)) (-2217 (((-1152) $) NIL)) (-3057 (((-379) (-1152) (-1152)) 49) (((-379) (-1152)) 51)) (-3864 (((-1114) $) NIL)) (-4328 (((-379) (-1152) (-1152)) 50)) (-1420 (((-379) (-1152) (-1152)) 52) (((-379) (-1152)) 53)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-97) (-13 (-1094) (-10 -7 (-15 -3057 ((-379) (-1152) (-1152))) (-15 -3057 ((-379) (-1152))) (-15 -1420 ((-379) (-1152) (-1152))) (-15 -1420 ((-379) (-1152))) (-15 -4328 ((-379) (-1152) (-1152))) (-15 -2374 ((-1264))) (-15 -3960 ((-379) (-379))) (-15 -3526 ((-379) (-1152) (-379))) (-15 -3526 ((-379) (-1152) (-1152) (-379))) (-6 -4411)))) (T -97)) +((-3057 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-3057 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1420 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-1420 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-4328 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) (-2374 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97)))) (-3960 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97)))) (-3526 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) (-3526 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))) +(-13 (-1094) (-10 -7 (-15 -3057 ((-379) (-1152) (-1152))) (-15 -3057 ((-379) (-1152))) (-15 -1420 ((-379) (-1152) (-1152))) (-15 -1420 ((-379) (-1152))) (-15 -4328 ((-379) (-1152) (-1152))) (-15 -2374 ((-1264))) (-15 -3960 ((-379) (-379))) (-15 -3526 ((-379) (-1152) (-379))) (-15 -3526 ((-379) (-1152) (-1152) (-379))) (-6 -4411))) NIL (((-98) (-140)) (T -98)) NIL -(-13 (-10 -7 (-6 -4408) (-6 (-4410 "*")) (-6 -4409) (-6 -4405) (-6 -4403) (-6 -4402) (-6 -4401) (-6 -4406) (-6 -4400) (-6 -4399) (-6 -4398) (-6 -4397) (-6 -4396) (-6 -4404) (-6 -4407) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4395))) -((-2049 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-4052 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-563))) 24)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 16)) (-3249 (((-1113) $) NIL)) (-3858 ((|#1| $ |#1|) 13)) (-1382 (($ $ $) NIL)) (-2879 (($ $ $) NIL)) (-2062 (((-858) $) 22)) (-3803 (($) 8 T CONST)) (-2943 (((-112) $ $) 10)) (-3050 (($ $ $) NIL)) (** (($ $ (-917)) 34) (($ $ (-767)) NIL) (($ $ (-563)) 18)) (* (($ $ $) 35))) -(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4052 ($ (-1 |#1| |#1|))) (-15 -4052 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4052 ($ (-1 |#1| |#1| (-563)))))) (-1045)) (T -99)) -((-4052 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-4052 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) (-4052 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-99 *3))))) -(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -4052 ($ (-1 |#1| |#1|))) (-15 -4052 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -4052 ($ (-1 |#1| |#1| (-563)))))) -((-4064 (((-418 |#2|) |#2| (-640 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11))) -(((-100 |#1| |#2|) (-10 -7 (-15 -4064 ((-418 |#2|) |#2| |#2|)) (-15 -4064 ((-418 |#2|) |#2| (-640 |#2|)))) (-13 (-452) (-147)) (-1233 |#1|)) (T -100)) -((-4064 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-4064 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -4064 ((-418 |#2|) |#2| |#2|)) (-15 -4064 ((-418 |#2|) |#2| (-640 |#2|)))) -((-2049 (((-112) $ $) 9))) -(((-101 |#1|) (-10 -8 (-15 -2049 ((-112) |#1| |#1|))) (-102)) (T -101)) -NIL -(-10 -8 (-15 -2049 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2943 (((-112) $ $) 6))) +(-13 (-10 -7 (-6 -4411) (-6 (-4413 "*")) (-6 -4412) (-6 -4408) (-6 -4406) (-6 -4405) (-6 -4404) (-6 -4409) (-6 -4403) (-6 -4402) (-6 -4401) (-6 -4400) (-6 -4399) (-6 -4407) (-6 -4410) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4398))) +((-3732 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-1937 (($ (-1 |#1| |#1|)) 27) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26) (($ (-1 |#1| |#1| (-564))) 24)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 16)) (-3864 (((-1114) $) NIL)) (-4382 ((|#1| $ |#1|) 13)) (-2766 (($ $ $) NIL)) (-3671 (($ $ $) NIL)) (-3742 (((-859) $) 22)) (-4321 (($) 8 T CONST)) (-1705 (((-112) $ $) 10)) (-1799 (($ $ $) NIL)) (** (($ $ (-918)) 34) (($ $ (-768)) NIL) (($ $ (-564)) 18)) (* (($ $ $) 35))) +(((-99 |#1|) (-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -1937 ($ (-1 |#1| |#1|))) (-15 -1937 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1937 ($ (-1 |#1| |#1| (-564)))))) (-1046)) (T -99)) +((-1937 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) (-1937 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) (-1937 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-99 *3))))) +(-13 (-473) (-286 |#1| |#1|) (-10 -8 (-15 -1937 ($ (-1 |#1| |#1|))) (-15 -1937 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1937 ($ (-1 |#1| |#1| (-564)))))) +((-3872 (((-418 |#2|) |#2| (-641 |#2|)) 10) (((-418 |#2|) |#2| |#2|) 11))) +(((-100 |#1| |#2|) (-10 -7 (-15 -3872 ((-418 |#2|) |#2| |#2|)) (-15 -3872 ((-418 |#2|) |#2| (-641 |#2|)))) (-13 (-452) (-147)) (-1235 |#1|)) (T -100)) +((-3872 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3)))) (-3872 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -3872 ((-418 |#2|) |#2| |#2|)) (-15 -3872 ((-418 |#2|) |#2| (-641 |#2|)))) +((-3732 (((-112) $ $) 9))) +(((-101 |#1|) (-10 -8 (-15 -3732 ((-112) |#1| |#1|))) (-102)) (T -101)) +NIL +(-10 -8 (-15 -3732 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-1705 (((-112) $ $) 6))) (((-102) (-140)) (T -102)) -((-2049 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-2943 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) -(-13 (-10 -8 (-15 -2943 ((-112) $ $)) (-15 -2049 ((-112) $ $)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-3472 ((|#1| $ |#1|) 24 (|has| $ (-6 -4409)))) (-2377 (($ $ $) NIL (|has| $ (-6 -4409)))) (-2390 (($ $ $) NIL (|has| $ (-6 -4409)))) (-2787 (($ $ (-640 |#1|)) 34)) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2665 (($ $) 12)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2176 (($ $ |#1| $) 36)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3701 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-3690 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|)) 53)) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-2654 (($ $) 11)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) 13)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 9)) (-2749 (($) 35)) (-3858 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3514 (((-563) $ $) NIL)) (-2181 (((-112) $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2800 (($ (-767) |#1|) 37)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -2800 ($ (-767) |#1|)) (-15 -2787 ($ $ (-640 |#1|))) (-15 -3701 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3701 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3690 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3690 ($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|))))) (-1093)) (T -103)) -((-2800 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1093)))) (-2787 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))) (-3701 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1093)))) (-3701 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))) (-3690 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2)))) (-3690 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-640 *2) *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -2800 ($ (-767) |#1|)) (-15 -2787 ($ $ (-640 |#1|))) (-15 -3701 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3701 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3690 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3690 ($ $ |#1| (-1 (-640 |#1|) |#1| |#1| |#1|))))) -((-3145 ((|#3| |#2| |#2|) 35)) (-1863 ((|#1| |#2| |#2|) 52 (|has| |#1| (-6 (-4410 "*"))))) (-3157 ((|#3| |#2| |#2|) 37)) (-1877 ((|#1| |#2|) 57 (|has| |#1| (-6 (-4410 "*")))))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3145 (|#3| |#2| |#2|)) (-15 -3157 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4410 "*"))) (PROGN (-15 -1863 (|#1| |#2| |#2|)) (-15 -1877 (|#1| |#2|))) |%noBranch|)) (-1045) (-1233 |#1|) (-682 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104)) -((-1877 (*1 *2 *3) (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) (-4 *4 (-682 *2 *5 *6)))) (-1863 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) (-4 *4 (-682 *2 *5 *6)))) (-3157 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-3145 (*1 *2 *3 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))))) -(-10 -7 (-15 -3145 (|#3| |#2| |#2|)) (-15 -3157 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4410 "*"))) (PROGN (-15 -1863 (|#1| |#2| |#2|)) (-15 -1877 (|#1| |#2|))) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2832 (((-640 (-1169))) 37)) (-2822 (((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169)) 39)) (-2943 (((-112) $ $) NIL))) -(((-105) (-13 (-1093) (-10 -7 (-15 -2832 ((-640 (-1169)))) (-15 -2822 ((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169))) (-6 -4408)))) (T -105)) -((-2832 (*1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-105)))) (-2822 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225))))) (-5 *1 (-105))))) -(-13 (-1093) (-10 -7 (-15 -2832 ((-640 (-1169)))) (-15 -2822 ((-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) (|:| |singularities| (-1149 (-225)))) (-1169))) (-6 -4408))) -((-4034 (($ (-640 |#2|)) 11))) -(((-106 |#1| |#2|) (-10 -8 (-15 -4034 (|#1| (-640 |#2|)))) (-107 |#2|) (-1208)) (T -106)) -NIL -(-10 -8 (-15 -4034 (|#1| (-640 |#2|)))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-3684 (($) 7 T CONST)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-107 |#1|) (-140) (-1208)) (T -107)) -((-4034 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-107 *3)))) (-3847 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))) (-1956 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))) (-3835 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208))))) -(-13 (-489 |t#1|) (-10 -8 (-6 -4409) (-15 -4034 ($ (-640 |t#1|))) (-15 -3847 (|t#1| $)) (-15 -1956 ($ |t#1| $)) (-15 -3835 (|t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 (((-563) $) NIL (|has| (-563) (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| (-563) (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2589 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-563) (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| (-563) (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL)) (-2626 (((-563) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-2731 (((-112) $) NIL (|has| (-563) (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| (-563) (-846)))) (-2751 (($ (-1 (-563) (-563)) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-563) (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-3233 (((-563) $) NIL (|has| (-563) (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-4322 (((-767) $) NIL)) (-3858 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-4362 (($ $) NIL)) (-2636 (((-563) $) NIL)) (-2802 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 2) $) 10)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-3192 (((-767)) NIL T CONST)) (-3241 (((-563) $) NIL (|has| (-563) (-545)))) (-2224 (($ (-407 (-563))) 9)) (-2543 (((-112) $ $) NIL)) (-3841 (($ $) NIL (|has| (-563) (-816)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-2998 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-563) (-846)))) (-3050 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL))) -(((-108) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 2)) (-10 -8 (-15 -3212 ((-407 (-563)) $)) (-15 -2224 ($ (-407 (-563))))))) (T -108)) -((-3212 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108)))) (-2224 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108))))) -(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 2)) (-10 -8 (-15 -3212 ((-407 (-563)) $)) (-15 -2224 ($ (-407 (-563)))))) -((-1722 (((-640 (-961)) $) 14)) (-3359 (((-1169) $) 10)) (-2062 (((-858) $) 23)) (-4046 (($ (-1169) (-640 (-961))) 15))) -(((-109) (-13 (-610 (-858)) (-10 -8 (-15 -3359 ((-1169) $)) (-15 -1722 ((-640 (-961)) $)) (-15 -4046 ($ (-1169) (-640 (-961))))))) (T -109)) -((-3359 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-109)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-640 (-961))) (-5 *1 (-109)))) (-4046 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-109))))) -(-13 (-610 (-858)) (-10 -8 (-15 -3359 ((-1169) $)) (-15 -1722 ((-640 (-961)) $)) (-15 -4046 ($ (-1169) (-640 (-961)))))) -((-2049 (((-112) $ $) NIL)) (-1909 (($ $) NIL)) (-3766 (($ $ $) NIL)) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2146 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-4257 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-2189 (((-112) $ (-1224 (-563)) (-112)) NIL (|has| $ (-6 -4409))) (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-1417 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2532 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-4150 (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4409)))) (-4085 (((-112) $ (-563)) NIL)) (-2256 (((-563) (-112) $ (-563)) NIL (|has| (-112) (-1093))) (((-563) (-112) $) NIL (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) NIL)) (-4236 (((-640 (-112)) $) NIL (|has| $ (-6 -4408)))) (-3755 (($ $ $) NIL)) (-3730 (($ $) NIL)) (-2409 (($ $ $) NIL)) (-2552 (($ (-767) (-112)) 10)) (-1374 (($ $ $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL)) (-2383 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1572 (((-640 (-112)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL)) (-4139 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-2530 (($ $ $ (-563)) NIL) (($ (-112) $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-112) $) NIL (|has| (-563) (-846)))) (-1828 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3357 (($ $ (-112)) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-112)) (-640 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-3427 (((-640 (-112)) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 (($ $ (-1224 (-563))) NIL) (((-112) $ (-563)) NIL) (((-112) $ (-563) (-112)) NIL)) (-4159 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-3261 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-112) (-611 (-536))))) (-2074 (($ (-640 (-112))) NIL)) (-1951 (($ (-640 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2062 (((-858) $) NIL)) (-2547 (($ (-767) (-112)) 11)) (-3848 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-3743 (($ $ $) NIL)) (-3670 (($ $ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3658 (($ $ $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-110) (-13 (-123) (-10 -8 (-15 -2547 ($ (-767) (-112)))))) (T -110)) -((-2547 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110))))) -(-13 (-123) (-10 -8 (-15 -2547 ($ (-767) (-112))))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) -(((-111 |#1| |#2|) (-140) (-1045) (-1045)) (T -111)) -NIL -(-13 (-643 |t#1|) (-1051 |t#2|) (-10 -7 (-6 -4403) (-6 -4402))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-1051 |#2|) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-1909 (($ $) 13)) (-3766 (($ $ $) 18)) (-2863 (($) 7 T CONST)) (-3064 (($ $) 6)) (-2433 (((-767)) 26)) (-4301 (($) 34)) (-3755 (($ $ $) 16)) (-3730 (($ $) 9)) (-2409 (($ $ $) 19)) (-1374 (($ $ $) 20)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-3267 (((-917) $) 32)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) 30)) (-2333 (($ $ $) 22)) (-3249 (((-1113) $) NIL)) (-1657 (($) 8 T CONST)) (-2322 (($ $ $) 23)) (-2802 (((-536) $) 38)) (-2062 (((-858) $) 41)) (-3743 (($ $ $) 14)) (-3670 (($ $ $) 17)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 21)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 24)) (-3658 (($ $ $) 15))) -(((-112) (-13 (-840) (-656) (-963) (-611 (-536)) (-10 -8 (-15 -2863 ($) -2495) (-15 -1657 ($) -2495) (-15 -3766 ($ $ $)) (-15 -1374 ($ $ $)) (-15 -2409 ($ $ $)) (-15 -3064 ($ $))))) (T -112)) -((-2863 (*1 *1) (-5 *1 (-112))) (-1657 (*1 *1) (-5 *1 (-112))) (-3766 (*1 *1 *1 *1) (-5 *1 (-112))) (-1374 (*1 *1 *1 *1) (-5 *1 (-112))) (-2409 (*1 *1 *1 *1) (-5 *1 (-112))) (-3064 (*1 *1 *1) (-5 *1 (-112)))) -(-13 (-840) (-656) (-963) (-611 (-536)) (-10 -8 (-15 -2863 ($) -2495) (-15 -1657 ($) -2495) (-15 -3766 ($ $ $)) (-15 -1374 ($ $ $)) (-15 -2409 ($ $ $)) (-15 -3064 ($ $)))) -((-4044 (((-3 (-1 |#1| (-640 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-640 |#1|))) 11) (((-3 |#1| "failed") (-114) (-640 |#1|)) 21)) (-3463 (((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-640 (-1 |#1| (-640 |#1|)))) 26)) (-2389 (((-114) |#1|) 56 (|has| |#1| (-846)))) (-2416 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-846))))) -(((-113 |#1|) (-10 -7 (-15 -4044 ((-3 |#1| "failed") (-114) (-640 |#1|))) (-15 -4044 ((-114) (-114) (-1 |#1| (-640 |#1|)))) (-15 -4044 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4044 ((-3 (-1 |#1| (-640 |#1|)) "failed") (-114))) (-15 -3463 ((-114) (-114) (-640 (-1 |#1| (-640 |#1|))))) (-15 -3463 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3463 ((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114))) (IF (|has| |#1| (-846)) (PROGN (-15 -2389 ((-114) |#1|)) (-15 -2416 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1093)) (T -113)) -((-2416 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1093)) (-4 *2 (-846)) (-5 *1 (-113 *2)))) (-2389 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-846)) (-4 *3 (-1093)))) (-3463 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-1 *4 (-640 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1093)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-3463 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 (-1 *4 (-640 *4)))) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-4044 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-640 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1093)))) (-4044 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-4044 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-640 *4))) (-4 *4 (-1093)) (-5 *1 (-113 *4)))) (-4044 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-640 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1093))))) -(-10 -7 (-15 -4044 ((-3 |#1| "failed") (-114) (-640 |#1|))) (-15 -4044 ((-114) (-114) (-1 |#1| (-640 |#1|)))) (-15 -4044 ((-114) (-114) (-1 |#1| |#1|))) (-15 -4044 ((-3 (-1 |#1| (-640 |#1|)) "failed") (-114))) (-15 -3463 ((-114) (-114) (-640 (-1 |#1| (-640 |#1|))))) (-15 -3463 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3463 ((-3 (-640 (-1 |#1| (-640 |#1|))) "failed") (-114))) (IF (|has| |#1| (-846)) (PROGN (-15 -2389 ((-114) |#1|)) (-15 -2416 ((-3 |#1| "failed") (-114)))) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-2417 (((-767) $) 83) (($ $ (-767)) 33)) (-3363 (((-112) $) 37)) (-3713 (($ $ (-1151) (-770)) 29)) (-3702 (($ $ (-45 (-1151) (-770))) 16)) (-1354 (((-3 (-770) "failed") $ (-1151)) 28)) (-1722 (((-45 (-1151) (-770)) $) 15)) (-3674 (($ (-1169)) 21) (($ (-1169) (-767)) 25)) (-3450 (((-112) $) 35)) (-3349 (((-112) $) 39)) (-3359 (((-1169) $) 8)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-1854 (((-112) $ (-1169)) 11)) (-3102 (($ $ (-1 (-536) (-640 (-536)))) 58) (((-3 (-1 (-536) (-640 (-536))) "failed") $) 62)) (-3249 (((-1113) $) NIL)) (-3783 (((-112) $ (-1151)) 32)) (-1625 (($ $ (-1 (-112) $ $)) 41)) (-3051 (((-3 (-1 (-858) (-640 (-858))) "failed") $) 60) (($ $ (-1 (-858) (-640 (-858)))) 47) (($ $ (-1 (-858) (-858))) 49)) (-3771 (($ $ (-1151)) 51)) (-2208 (($ $) 71)) (-1613 (($ $ (-1 (-112) $ $)) 42)) (-2062 (((-858) $) 54)) (-3468 (($ $ (-1151)) 30)) (-4079 (((-3 (-767) "failed") $) 66)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 81)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 94))) -(((-114) (-13 (-846) (-10 -8 (-15 -3359 ((-1169) $)) (-15 -1722 ((-45 (-1151) (-770)) $)) (-15 -2208 ($ $)) (-15 -3674 ($ (-1169))) (-15 -3674 ($ (-1169) (-767))) (-15 -4079 ((-3 (-767) "failed") $)) (-15 -3450 ((-112) $)) (-15 -3363 ((-112) $)) (-15 -3349 ((-112) $)) (-15 -2417 ((-767) $)) (-15 -2417 ($ $ (-767))) (-15 -1625 ($ $ (-1 (-112) $ $))) (-15 -1613 ($ $ (-1 (-112) $ $))) (-15 -3051 ((-3 (-1 (-858) (-640 (-858))) "failed") $)) (-15 -3051 ($ $ (-1 (-858) (-640 (-858))))) (-15 -3051 ($ $ (-1 (-858) (-858)))) (-15 -3102 ($ $ (-1 (-536) (-640 (-536))))) (-15 -3102 ((-3 (-1 (-536) (-640 (-536))) "failed") $)) (-15 -1854 ((-112) $ (-1169))) (-15 -3783 ((-112) $ (-1151))) (-15 -3468 ($ $ (-1151))) (-15 -3771 ($ $ (-1151))) (-15 -1354 ((-3 (-770) "failed") $ (-1151))) (-15 -3713 ($ $ (-1151) (-770))) (-15 -3702 ($ $ (-45 (-1151) (-770))))))) (T -114)) -((-3359 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114)))) (-2208 (*1 *1 *1) (-5 *1 (-114))) (-3674 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) (-3674 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *1 (-114)))) (-4079 (*1 *2 *1) (|partial| -12 (-5 *2 (-767)) (-5 *1 (-114)))) (-3450 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3349 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-2417 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-2417 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) (-1625 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-1613 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3051 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) (-3051 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114)))) (-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) (-3102 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-114)))) (-3468 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))) (-3771 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))) (-1354 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-770)) (-5 *1 (-114)))) (-3713 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-770)) (-5 *1 (-114)))) (-3702 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114))))) -(-13 (-846) (-10 -8 (-15 -3359 ((-1169) $)) (-15 -1722 ((-45 (-1151) (-770)) $)) (-15 -2208 ($ $)) (-15 -3674 ($ (-1169))) (-15 -3674 ($ (-1169) (-767))) (-15 -4079 ((-3 (-767) "failed") $)) (-15 -3450 ((-112) $)) (-15 -3363 ((-112) $)) (-15 -3349 ((-112) $)) (-15 -2417 ((-767) $)) (-15 -2417 ($ $ (-767))) (-15 -1625 ($ $ (-1 (-112) $ $))) (-15 -1613 ($ $ (-1 (-112) $ $))) (-15 -3051 ((-3 (-1 (-858) (-640 (-858))) "failed") $)) (-15 -3051 ($ $ (-1 (-858) (-640 (-858))))) (-15 -3051 ($ $ (-1 (-858) (-858)))) (-15 -3102 ($ $ (-1 (-536) (-640 (-536))))) (-15 -3102 ((-3 (-1 (-536) (-640 (-536))) "failed") $)) (-15 -1854 ((-112) $ (-1169))) (-15 -3783 ((-112) $ (-1151))) (-15 -3468 ($ $ (-1151))) (-15 -3771 ($ $ (-1151))) (-15 -1354 ((-3 (-770) "failed") $ (-1151))) (-15 -3713 ($ $ (-1151) (-770))) (-15 -3702 ($ $ (-45 (-1151) (-770)))))) -((-2427 (((-563) |#2|) 41))) -(((-115 |#1| |#2|) (-10 -7 (-15 -2427 ((-563) |#2|))) (-13 (-363) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -115)) -((-2427 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-563)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -2427 ((-563) |#2|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2067 (($ $ (-563)) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-1608 (($ (-1165 (-563)) (-563)) NIL)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-1621 (($ $) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2903 (((-767) $) NIL)) (-2712 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1646 (((-563)) NIL)) (-1634 (((-563) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2884 (($ $ (-563)) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1658 (((-1149 (-563)) $) NIL)) (-2686 (($ $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL)) (-3192 (((-767)) NIL T CONST)) (-2543 (((-112) $ $) NIL)) (-1775 (((-563) $ (-563)) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL))) -(((-116 |#1|) (-865 |#1|) (-563)) (T -116)) -NIL -(-865 |#1|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| (-116 |#1|) (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-116 |#1|) (-1034 (-563))))) (-2589 (((-116 |#1|) $) NIL) (((-1169) $) NIL (|has| (-116 |#1|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-116 |#1|) (-1034 (-563)))) (((-563) $) NIL (|has| (-116 |#1|) (-1034 (-563))))) (-3717 (($ $) NIL) (($ (-563) $) NIL)) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-116 |#1|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-116 |#1|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-116 |#1|))) (|:| |vec| (-1257 (-116 |#1|)))) (-684 $) (-1257 $)) NIL) (((-684 (-116 |#1|)) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-116 |#1|) (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-116 |#1|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-116 |#1|) (-882 (-379))))) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL)) (-2626 (((-116 |#1|) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1144)))) (-2731 (((-112) $) NIL (|has| (-116 |#1|) (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-4105 (($ $ $) NIL (|has| (-116 |#1|) (-846)))) (-2751 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-116 |#1|) (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-3233 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-116 |#1|) (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 (-116 |#1|)) (-640 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-640 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-640 (-1169)) (-640 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1169) (-116 |#1|)))) (($ $ (-1169) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1169) (-116 |#1|))))) (-4322 (((-767) $) NIL)) (-3858 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-4362 (($ $) NIL)) (-2636 (((-116 |#1|) $) NIL)) (-2802 (((-888 (-563)) $) NIL (|has| (-116 |#1|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-116 |#1|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-611 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1018))) (((-225) $) NIL (|has| (-116 |#1|) (-1018)))) (-1669 (((-174 (-407 (-563))) $) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-116 |#1|)) NIL) (($ (-1169)) NIL (|has| (-116 |#1|) (-1034 (-1169))))) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-905))) (|has| (-116 |#1|) (-145))))) (-3192 (((-767)) NIL T CONST)) (-3241 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-2543 (((-112) $ $) NIL)) (-1775 (((-407 (-563)) $ (-563)) NIL)) (-3841 (($ $) NIL (|has| (-116 |#1|) (-816)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-116 |#1|) (-896 (-1169)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-767)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2998 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-116 |#1|) (-846)))) (-3050 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) -(((-117 |#1|) (-13 (-988 (-116 |#1|)) (-10 -8 (-15 -1775 ((-407 (-563)) $ (-563))) (-15 -1669 ((-174 (-407 (-563))) $)) (-15 -3717 ($ $)) (-15 -3717 ($ (-563) $)))) (-563)) (T -117)) -((-1775 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-563)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-117 *3)) (-14 *3 (-563)))) (-3717 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-563)))) (-3717 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-117 *3)) (-14 *3 *2)))) -(-13 (-988 (-116 |#1|)) (-10 -8 (-15 -1775 ((-407 (-563)) $ (-563))) (-15 -1669 ((-174 (-407 (-563))) $)) (-15 -3717 ($ $)) (-15 -3717 ($ (-563) $)))) -((-2189 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 58) (($ $ "right" $) 60)) (-3524 (((-640 $) $) 31)) (-3494 (((-112) $ $) 36)) (-1949 (((-112) |#2| $) 40)) (-3884 (((-640 |#2|) $) 25)) (-2484 (((-112) $) 18)) (-3858 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2181 (((-112) $) 55)) (-2062 (((-858) $) 45)) (-2432 (((-640 $) $) 32)) (-2943 (((-112) $ $) 38)) (-1708 (((-767) $) 48))) -(((-118 |#1| |#2|) (-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -2189 (|#1| |#1| "right" |#1|)) (-15 -2189 (|#1| |#1| "left" |#1|)) (-15 -3858 (|#1| |#1| "right")) (-15 -3858 (|#1| |#1| "left")) (-15 -2189 (|#2| |#1| "value" |#2|)) (-15 -3494 ((-112) |#1| |#1|)) (-15 -3884 ((-640 |#2|) |#1|)) (-15 -2181 ((-112) |#1|)) (-15 -3858 (|#2| |#1| "value")) (-15 -2484 ((-112) |#1|)) (-15 -3524 ((-640 |#1|) |#1|)) (-15 -2432 ((-640 |#1|) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -1949 ((-112) |#2| |#1|)) (-15 -1708 ((-767) |#1|))) (-119 |#2|) (-1208)) (T -118)) -NIL -(-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -2189 (|#1| |#1| "right" |#1|)) (-15 -2189 (|#1| |#1| "left" |#1|)) (-15 -3858 (|#1| |#1| "right")) (-15 -3858 (|#1| |#1| "left")) (-15 -2189 (|#2| |#1| "value" |#2|)) (-15 -3494 ((-112) |#1| |#1|)) (-15 -3884 ((-640 |#2|) |#1|)) (-15 -2181 ((-112) |#1|)) (-15 -3858 (|#2| |#1| "value")) (-15 -2484 ((-112) |#1|)) (-15 -3524 ((-640 |#1|) |#1|)) (-15 -2432 ((-640 |#1|) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -1949 ((-112) |#2| |#1|)) (-15 -1708 ((-767) |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3556 ((|#1| $) 48)) (-3740 (((-112) $ (-767)) 8)) (-3472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-2377 (($ $ $) 52 (|has| $ (-6 -4409)))) (-2390 (($ $ $) 54 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) (($ $ "left" $) 55 (|has| $ (-6 -4409))) (($ $ "right" $) 53 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-3684 (($) 7 T CONST)) (-2665 (($ $) 57)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 50)) (-3494 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-2654 (($ $) 59)) (-3884 (((-640 |#1|) $) 45)) (-2484 (((-112) $) 49)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3514 (((-563) $ $) 44)) (-2181 (((-112) $) 46)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 51)) (-3504 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-119 |#1|) (-140) (-1208)) (T -119)) -((-2654 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-2665 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-2189 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-2390 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1208)))) (-2189 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) (-4 *3 (-1208)))) (-2377 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1208))))) -(-13 (-1006 |t#1|) (-10 -8 (-15 -2654 ($ $)) (-15 -3858 ($ $ "left")) (-15 -2665 ($ $)) (-15 -3858 ($ $ "right")) (IF (|has| $ (-6 -4409)) (PROGN (-15 -2189 ($ $ "left" $)) (-15 -2390 ($ $ $)) (-15 -2189 ($ $ "right" $)) (-15 -2377 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-4262 (((-112) |#1|) 29)) (-1850 (((-767) (-767)) 28) (((-767)) 27)) (-3921 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) -(((-120 |#1|) (-10 -7 (-15 -3921 ((-112) |#1|)) (-15 -3921 ((-112) |#1| (-112))) (-15 -1850 ((-767))) (-15 -1850 ((-767) (-767))) (-15 -4262 ((-112) |#1|))) (-1233 (-563))) (T -120)) -((-4262 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-1850 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-1850 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-3921 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) (-3921 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))) -(-10 -7 (-15 -3921 ((-112) |#1|)) (-15 -3921 ((-112) |#1| (-112))) (-15 -1850 ((-767))) (-15 -1850 ((-767) (-767))) (-15 -4262 ((-112) |#1|))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) 18)) (-2919 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 25)) (-3740 (((-112) $ (-767)) NIL)) (-3472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-2377 (($ $ $) 21 (|has| $ (-6 -4409)))) (-2390 (($ $ $) 23 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2665 (($ $) 20)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2176 (($ $ |#1| $) 26)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-2654 (($ $) 22)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-4272 (($ |#1| $) 27)) (-1956 (($ |#1| $) 15)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 17)) (-2749 (($) 11)) (-3858 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3514 (((-563) $ $) NIL)) (-2181 (((-112) $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2398 (($ (-640 |#1|)) 16)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -2398 ($ (-640 |#1|))) (-15 -1956 ($ |#1| $)) (-15 -4272 ($ |#1| $)) (-15 -2919 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-846)) (T -121)) -((-2398 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3)))) (-1956 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-4272 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) (-2919 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-846))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -2398 ($ (-640 |#1|))) (-15 -1956 ($ |#1| $)) (-15 -4272 ($ |#1| $)) (-15 -2919 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) -((-1909 (($ $) 12)) (-3730 (($ $) 10)) (-2409 (($ $ $) 22)) (-1374 (($ $ $) 20)) (-3670 (($ $ $) 18)) (-3658 (($ $ $) 16))) -(((-122 |#1|) (-10 -8 (-15 -2409 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -3730 (|#1| |#1|)) (-15 -1909 (|#1| |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3670 (|#1| |#1| |#1|))) (-123)) (T -122)) -NIL -(-10 -8 (-15 -2409 (|#1| |#1| |#1|)) (-15 -1374 (|#1| |#1| |#1|)) (-15 -3730 (|#1| |#1|)) (-15 -1909 (|#1| |#1|)) (-15 -3658 (|#1| |#1| |#1|)) (-15 -3670 (|#1| |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-1909 (($ $) 103)) (-3766 (($ $ $) 25)) (-1435 (((-1262) $ (-563) (-563)) 66 (|has| $ (-6 -4409)))) (-2162 (((-112) $) 98 (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2146 (($ $) 102 (-12 (|has| (-112) (-846)) (|has| $ (-6 -4409)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4409)))) (-4257 (($ $) 97 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-3740 (((-112) $ (-767)) 37)) (-2189 (((-112) $ (-1224 (-563)) (-112)) 88 (|has| $ (-6 -4409))) (((-112) $ (-563) (-112)) 54 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4408)))) (-3684 (($) 38 T CONST)) (-3934 (($ $) 100 (|has| $ (-6 -4409)))) (-4294 (($ $) 90)) (-1920 (($ $) 68 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4408))) (($ (-112) $) 69 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408))))) (-2532 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408))))) (-4150 (((-112) $ (-563) (-112)) 53 (|has| $ (-6 -4409)))) (-4085 (((-112) $ (-563)) 55)) (-2256 (((-563) (-112) $ (-563)) 95 (|has| (-112) (-1093))) (((-563) (-112) $) 94 (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) 93)) (-4236 (((-640 (-112)) $) 45 (|has| $ (-6 -4408)))) (-3755 (($ $ $) 26)) (-3730 (($ $) 30)) (-2409 (($ $ $) 28)) (-2552 (($ (-767) (-112)) 77)) (-1374 (($ $ $) 29)) (-3633 (((-112) $ (-767)) 36)) (-3371 (((-563) $) 63 (|has| (-563) (-846)))) (-3489 (($ $ $) 13)) (-2383 (($ $ $) 96 (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1572 (((-640 (-112)) $) 46 (|has| $ (-6 -4408)))) (-1949 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 62 (|has| (-563) (-846)))) (-4105 (($ $ $) 14)) (-4139 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-3604 (((-112) $ (-767)) 35)) (-1938 (((-1151) $) 9)) (-2530 (($ $ $ (-563)) 87) (($ (-112) $ (-563)) 86)) (-3404 (((-640 (-563)) $) 60)) (-3417 (((-112) (-563) $) 59)) (-3249 (((-1113) $) 10)) (-1884 (((-112) $) 64 (|has| (-563) (-846)))) (-1828 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3357 (($ $ (-112)) 65 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-112)) (-640 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-3752 (((-112) $ $) 31)) (-3392 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-3427 (((-640 (-112)) $) 58)) (-2820 (((-112) $) 34)) (-2749 (($) 33)) (-3858 (($ $ (-1224 (-563))) 83) (((-112) $ (-563)) 57) (((-112) $ (-563) (-112)) 56)) (-4159 (($ $ (-1224 (-563))) 85) (($ $ (-563)) 84)) (-3261 (((-767) (-112) $) 47 (-12 (|has| (-112) (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4408)))) (-2155 (($ $ $ (-563)) 99 (|has| $ (-6 -4409)))) (-2208 (($ $) 32)) (-2802 (((-536) $) 67 (|has| (-112) (-611 (-536))))) (-2074 (($ (-640 (-112))) 76)) (-1951 (($ (-640 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-2062 (((-858) $) 11)) (-3848 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4408)))) (-3743 (($ $ $) 27)) (-3670 (($ $ $) 105)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (-3658 (($ $ $) 104)) (-1708 (((-767) $) 39 (|has| $ (-6 -4408))))) +((-3732 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) (-1705 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112))))) +(-13 (-10 -8 (-15 -1705 ((-112) $ $)) (-15 -3732 ((-112) $ $)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3976 ((|#1| $ |#1|) 24 (|has| $ (-6 -4412)))) (-1781 (($ $ $) NIL (|has| $ (-6 -4412)))) (-1573 (($ $ $) NIL (|has| $ (-6 -4412)))) (-1913 (($ $ (-641 |#1|)) 34)) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2427 (($ $) 12)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2234 (($ $ |#1| $) 36)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4124 ((|#1| $ (-1 |#1| |#1| |#1|)) 44) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 49)) (-2323 (($ $ |#1| (-1 |#1| |#1| |#1|)) 50) (($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|)) 53)) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2413 (($ $) 11)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) 13)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 9)) (-3434 (($) 35)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4209 (((-564) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2684 (($ (-768) |#1|) 37)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-103 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -2684 ($ (-768) |#1|)) (-15 -1913 ($ $ (-641 |#1|))) (-15 -4124 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4124 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2323 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2323 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) (-1094)) (T -103)) +((-2684 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-103 *3)) (-4 *3 (-1094)))) (-1913 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094)))) (-4124 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) (-2323 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2)))) (-2323 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -2684 ($ (-768) |#1|)) (-15 -1913 ($ $ (-641 |#1|))) (-15 -4124 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -4124 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2323 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2323 ($ $ |#1| (-1 (-641 |#1|) |#1| |#1| |#1|))))) +((-3325 ((|#3| |#2| |#2|) 35)) (-2605 ((|#1| |#2| |#2|) 52 (|has| |#1| (-6 (-4413 "*"))))) (-1809 ((|#3| |#2| |#2|) 37)) (-1439 ((|#1| |#2|) 57 (|has| |#1| (-6 (-4413 "*")))))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3325 (|#3| |#2| |#2|)) (-15 -1809 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4413 "*"))) (PROGN (-15 -2605 (|#1| |#2| |#2|)) (-15 -1439 (|#1| |#2|))) |%noBranch|)) (-1046) (-1235 |#1|) (-683 |#1| |#4| |#5|) (-373 |#1|) (-373 |#1|)) (T -104)) +((-1439 (*1 *2 *3) (-12 (|has| *2 (-6 (-4413 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-2605 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4413 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) (-4 *4 (-683 *2 *5 *6)))) (-1809 (*1 *2 *3 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)))) (-3325 (*1 *2 *3 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4))))) +(-10 -7 (-15 -3325 (|#3| |#2| |#2|)) (-15 -1809 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4413 "*"))) (PROGN (-15 -2605 (|#1| |#2| |#2|)) (-15 -1439 (|#1| |#2|))) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-2432 (((-641 (-1170))) 37)) (-4059 (((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170)) 39)) (-1705 (((-112) $ $) NIL))) +(((-105) (-13 (-1094) (-10 -7 (-15 -2432 ((-641 (-1170)))) (-15 -4059 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4411)))) (T -105)) +((-2432 (*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105)))) (-4059 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225))))) (-5 *1 (-105))))) +(-13 (-1094) (-10 -7 (-15 -2432 ((-641 (-1170)))) (-15 -4059 ((-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) (|:| |singularities| (-1150 (-225)))) (-1170))) (-6 -4411))) +((-3745 (($ (-641 |#2|)) 11))) +(((-106 |#1| |#2|) (-10 -8 (-15 -3745 (|#1| (-641 |#2|)))) (-107 |#2|) (-1209)) (T -106)) +NIL +(-10 -8 (-15 -3745 (|#1| (-641 |#2|)))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-2818 (($) 7 T CONST)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-107 |#1|) (-140) (-1209)) (T -107)) +((-3745 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-2974 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) +(-13 (-489 |t#1|) (-10 -8 (-6 -4412) (-15 -3745 ($ (-641 |t#1|))) (-15 -1292 (|t#1| $)) (-15 -2974 ($ |t#1| $)) (-15 -2828 (|t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 (((-564) $) NIL (|has| (-564) (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| (-564) (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2239 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-564) (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) NIL (|has| (-564) (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL)) (-1625 (((-564) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2839 (((-112) $) NIL (|has| (-564) (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| (-564) (-847)))) (-2187 (($ (-1 (-564) (-564)) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-564) (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-3014 (((-564) $) NIL (|has| (-564) (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-4061 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2090 (($ $) NIL)) (-1634 (((-564) $) NIL)) (-2235 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 2) $) 10)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-3270 (((-768)) NIL T CONST)) (-2551 (((-564) $) NIL (|has| (-564) (-545)))) (-2811 (($ (-407 (-564))) 9)) (-3360 (((-112) $ $) NIL)) (-2792 (($ $) NIL (|has| (-564) (-817)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1751 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1799 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) +(((-108) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 2)) (-10 -8 (-15 -1941 ((-407 (-564)) $)) (-15 -2811 ($ (-407 (-564))))))) (T -108)) +((-1941 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) (-2811 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108))))) +(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 2)) (-10 -8 (-15 -1941 ((-407 (-564)) $)) (-15 -2811 ($ (-407 (-564)))))) +((-1960 (((-641 (-962)) $) 14)) (-4324 (((-1170) $) 10)) (-3742 (((-859) $) 23)) (-2457 (($ (-1170) (-641 (-962))) 15))) +(((-109) (-13 (-611 (-859)) (-10 -8 (-15 -4324 ((-1170) $)) (-15 -1960 ((-641 (-962)) $)) (-15 -2457 ($ (-1170) (-641 (-962))))))) (T -109)) +((-4324 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-641 (-962))) (-5 *1 (-109)))) (-2457 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-109))))) +(-13 (-611 (-859)) (-10 -8 (-15 -4324 ((-1170) $)) (-15 -1960 ((-641 (-962)) $)) (-15 -2457 ($ (-1170) (-641 (-962)))))) +((-3732 (((-112) $ $) NIL)) (-1680 (($ $) NIL)) (-4289 (($ $ $) NIL)) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) $) NIL (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2402 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-847)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2777 (($ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3877 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4412))) (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2366 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-1699 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2619 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4412)))) (-2540 (((-112) $ (-564)) NIL)) (-3305 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-3616 (((-641 (-112)) $) NIL (|has| $ (-6 -4411)))) (-4279 (($ $ $) NIL)) (-4255 (($ $) NIL)) (-3624 (($ $ $) NIL)) (-3619 (($ (-768) (-112)) 10)) (-2260 (($ $ $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL)) (-2164 (($ $ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1386 (((-641 (-112)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL)) (-2606 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-112) (-112) (-112)) $ $) NIL) (($ (-1 (-112) (-112)) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-2308 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-112) $) NIL (|has| (-564) (-847)))) (-3582 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3099 (($ $ (-112)) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2572 (((-641 (-112)) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) NIL) (((-112) $ (-564) (-112)) NIL)) (-2004 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3873 (((-768) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094)))) (((-768) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-3753 (($ (-641 (-112))) NIL)) (-1802 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3742 (((-859) $) NIL)) (-2504 (($ (-768) (-112)) 11)) (-1417 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-4267 (($ $ $) NIL)) (-4042 (($ $ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-4029 (($ $ $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-110) (-13 (-123) (-10 -8 (-15 -2504 ($ (-768) (-112)))))) (T -110)) +((-2504 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-112)) (-5 *1 (-110))))) +(-13 (-123) (-10 -8 (-15 -2504 ($ (-768) (-112))))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26))) +(((-111 |#1| |#2|) (-140) (-1046) (-1046)) (T -111)) +NIL +(-13 (-644 |t#1|) (-1052 |t#2|) (-10 -7 (-6 -4406) (-6 -4405))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-1052 |#2|) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-1680 (($ $) 13)) (-4289 (($ $ $) 18)) (-3826 (($) 7 T CONST)) (-2763 (($ $) 6)) (-1938 (((-768)) 26)) (-2821 (($) 34)) (-4279 (($ $ $) 16)) (-4255 (($ $) 9)) (-3624 (($ $ $) 19)) (-2260 (($ $ $) 20)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) 32)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) 30)) (-3150 (($ $ $) 22)) (-3864 (((-1114) $) NIL)) (-2592 (($) 8 T CONST)) (-1456 (($ $ $) 23)) (-2235 (((-536) $) 38)) (-3742 (((-859) $) 41)) (-4267 (($ $ $) 14)) (-4042 (($ $ $) 17)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 21)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 24)) (-4029 (($ $ $) 15))) +(((-112) (-13 (-841) (-657) (-964) (-612 (-536)) (-10 -8 (-15 -3826 ($) -2091) (-15 -2592 ($) -2091) (-15 -4289 ($ $ $)) (-15 -2260 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -2763 ($ $))))) (T -112)) +((-3826 (*1 *1) (-5 *1 (-112))) (-2592 (*1 *1) (-5 *1 (-112))) (-4289 (*1 *1 *1 *1) (-5 *1 (-112))) (-2260 (*1 *1 *1 *1) (-5 *1 (-112))) (-3624 (*1 *1 *1 *1) (-5 *1 (-112))) (-2763 (*1 *1 *1) (-5 *1 (-112)))) +(-13 (-841) (-657) (-964) (-612 (-536)) (-10 -8 (-15 -3826 ($) -2091) (-15 -2592 ($) -2091) (-15 -4289 ($ $ $)) (-15 -2260 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -2763 ($ $)))) +((-3563 (((-3 (-1 |#1| (-641 |#1|)) "failed") (-114)) 19) (((-114) (-114) (-1 |#1| |#1|)) 13) (((-114) (-114) (-1 |#1| (-641 |#1|))) 11) (((-3 |#1| "failed") (-114) (-641 |#1|)) 21)) (-1446 (((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114)) 25) (((-114) (-114) (-1 |#1| |#1|)) 30) (((-114) (-114) (-641 (-1 |#1| (-641 |#1|)))) 26)) (-1474 (((-114) |#1|) 56 (|has| |#1| (-847)))) (-3441 (((-3 |#1| "failed") (-114)) 50 (|has| |#1| (-847))))) +(((-113 |#1|) (-10 -7 (-15 -3563 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -3563 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -3563 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3563 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -1446 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -1446 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1446 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-847)) (PROGN (-15 -1474 ((-114) |#1|)) (-15 -3441 ((-3 |#1| "failed") (-114)))) |%noBranch|)) (-1094)) (T -113)) +((-3441 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-847)) (-5 *1 (-113 *2)))) (-1474 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))) (-1446 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-1446 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-1446 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3563 (*1 *2 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) (-5 *1 (-113 *4)) (-4 *4 (-1094)))) (-3563 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3563 (*1 *2 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) (-5 *1 (-113 *4)))) (-3563 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) (-4 *2 (-1094))))) +(-10 -7 (-15 -3563 ((-3 |#1| "failed") (-114) (-641 |#1|))) (-15 -3563 ((-114) (-114) (-1 |#1| (-641 |#1|)))) (-15 -3563 ((-114) (-114) (-1 |#1| |#1|))) (-15 -3563 ((-3 (-1 |#1| (-641 |#1|)) "failed") (-114))) (-15 -1446 ((-114) (-114) (-641 (-1 |#1| (-641 |#1|))))) (-15 -1446 ((-114) (-114) (-1 |#1| |#1|))) (-15 -1446 ((-3 (-641 (-1 |#1| (-641 |#1|))) "failed") (-114))) (IF (|has| |#1| (-847)) (PROGN (-15 -1474 ((-114) |#1|)) (-15 -3441 ((-3 |#1| "failed") (-114)))) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-3564 (((-768) $) 83) (($ $ (-768)) 33)) (-3623 (((-112) $) 37)) (-2167 (($ $ (-1152) (-771)) 29)) (-4225 (($ $ (-45 (-1152) (-771))) 16)) (-4336 (((-3 (-771) "failed") $ (-1152)) 28)) (-1960 (((-45 (-1152) (-771)) $) 15)) (-4058 (($ (-1170)) 21) (($ (-1170) (-768)) 25)) (-4276 (((-112) $) 35)) (-1642 (((-112) $) 39)) (-4324 (((-1170) $) 8)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-4211 (((-112) $ (-1170)) 11)) (-3644 (($ $ (-1 (-536) (-641 (-536)))) 58) (((-3 (-1 (-536) (-641 (-536))) "failed") $) 62)) (-3864 (((-1114) $) NIL)) (-4168 (((-112) $ (-1152)) 32)) (-2133 (($ $ (-1 (-112) $ $)) 41)) (-3589 (((-3 (-1 (-859) (-641 (-859))) "failed") $) 60) (($ $ (-1 (-859) (-641 (-859)))) 47) (($ $ (-1 (-859) (-859))) 49)) (-2796 (($ $ (-1152)) 51)) (-3896 (($ $) 71)) (-3079 (($ $ (-1 (-112) $ $)) 42)) (-3742 (((-859) $) 54)) (-1923 (($ $ (-1152)) 30)) (-2873 (((-3 (-768) "failed") $) 66)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 81)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 94))) +(((-114) (-13 (-847) (-10 -8 (-15 -4324 ((-1170) $)) (-15 -1960 ((-45 (-1152) (-771)) $)) (-15 -3896 ($ $)) (-15 -4058 ($ (-1170))) (-15 -4058 ($ (-1170) (-768))) (-15 -2873 ((-3 (-768) "failed") $)) (-15 -4276 ((-112) $)) (-15 -3623 ((-112) $)) (-15 -1642 ((-112) $)) (-15 -3564 ((-768) $)) (-15 -3564 ($ $ (-768))) (-15 -2133 ($ $ (-1 (-112) $ $))) (-15 -3079 ($ $ (-1 (-112) $ $))) (-15 -3589 ((-3 (-1 (-859) (-641 (-859))) "failed") $)) (-15 -3589 ($ $ (-1 (-859) (-641 (-859))))) (-15 -3589 ($ $ (-1 (-859) (-859)))) (-15 -3644 ($ $ (-1 (-536) (-641 (-536))))) (-15 -3644 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -4211 ((-112) $ (-1170))) (-15 -4168 ((-112) $ (-1152))) (-15 -1923 ($ $ (-1152))) (-15 -2796 ($ $ (-1152))) (-15 -4336 ((-3 (-771) "failed") $ (-1152))) (-15 -2167 ($ $ (-1152) (-771))) (-15 -4225 ($ $ (-45 (-1152) (-771))))))) (T -114)) +((-4324 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114)))) (-3896 (*1 *1 *1) (-5 *1 (-114))) (-4058 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) (-4058 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *1 (-114)))) (-2873 (*1 *2 *1) (|partial| -12 (-5 *2 (-768)) (-5 *1 (-114)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3623 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-1642 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114)))) (-3564 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) (-3564 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) (-2133 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3079 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114)))) (-3589 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) (-3589 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) (-3589 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-114)))) (-3644 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-3644 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) (-4211 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) (-4168 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114)))) (-1923 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-2796 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) (-4336 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-771)) (-5 *1 (-114)))) (-2167 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-771)) (-5 *1 (-114)))) (-4225 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114))))) +(-13 (-847) (-10 -8 (-15 -4324 ((-1170) $)) (-15 -1960 ((-45 (-1152) (-771)) $)) (-15 -3896 ($ $)) (-15 -4058 ($ (-1170))) (-15 -4058 ($ (-1170) (-768))) (-15 -2873 ((-3 (-768) "failed") $)) (-15 -4276 ((-112) $)) (-15 -3623 ((-112) $)) (-15 -1642 ((-112) $)) (-15 -3564 ((-768) $)) (-15 -3564 ($ $ (-768))) (-15 -2133 ($ $ (-1 (-112) $ $))) (-15 -3079 ($ $ (-1 (-112) $ $))) (-15 -3589 ((-3 (-1 (-859) (-641 (-859))) "failed") $)) (-15 -3589 ($ $ (-1 (-859) (-641 (-859))))) (-15 -3589 ($ $ (-1 (-859) (-859)))) (-15 -3644 ($ $ (-1 (-536) (-641 (-536))))) (-15 -3644 ((-3 (-1 (-536) (-641 (-536))) "failed") $)) (-15 -4211 ((-112) $ (-1170))) (-15 -4168 ((-112) $ (-1152))) (-15 -1923 ($ $ (-1152))) (-15 -2796 ($ $ (-1152))) (-15 -4336 ((-3 (-771) "failed") $ (-1152))) (-15 -2167 ($ $ (-1152) (-771))) (-15 -4225 ($ $ (-45 (-1152) (-771)))))) +((-4214 (((-564) |#2|) 41))) +(((-115 |#1| |#2|) (-10 -7 (-15 -4214 ((-564) |#2|))) (-13 (-363) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -115)) +((-4214 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-1035 (-407 *2)))) (-5 *2 (-564)) (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -4214 ((-564) |#2|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-4137 (($ $ (-564)) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3874 (($ (-1166 (-564)) (-564)) NIL)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2861 (($ $) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-1619 (((-768) $) NIL)) (-3840 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1983 (((-564)) NIL)) (-3405 (((-564) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3004 (($ $ (-564)) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3716 (((-1150 (-564)) $) NIL)) (-2356 (($ $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3270 (((-768)) NIL T CONST)) (-3360 (((-112) $ $) NIL)) (-2305 (((-564) $ (-564)) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) +(((-116 |#1|) (-866 |#1|) (-564)) (T -116)) +NIL +(-866 |#1|) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| (-116 |#1|) (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-116 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-116 |#1|) (-1035 (-564))))) (-2239 (((-116 |#1|) $) NIL) (((-1170) $) NIL (|has| (-116 |#1|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-116 |#1|) (-1035 (-564)))) (((-564) $) NIL (|has| (-116 |#1|) (-1035 (-564))))) (-1480 (($ $) NIL) (($ (-564) $) NIL)) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-116 |#1|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-116 |#1|))) (|:| |vec| (-1259 (-116 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-116 |#1|)) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-116 |#1|) (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) NIL (|has| (-116 |#1|) (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-116 |#1|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-116 |#1|) (-883 (-379))))) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL)) (-1625 (((-116 |#1|) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| (-116 |#1|) (-1145)))) (-2839 (((-112) $) NIL (|has| (-116 |#1|) (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| (-116 |#1|) (-847)))) (-2848 (($ $ $) NIL (|has| (-116 |#1|) (-847)))) (-2187 (($ (-1 (-116 |#1|) (-116 |#1|)) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-116 |#1|) (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| (-116 |#1|) (-307)))) (-3014 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-116 |#1|) (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 (-116 |#1|)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-116 |#1|) (-116 |#1|)) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-294 (-116 |#1|))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-294 (-116 |#1|)))) NIL (|has| (-116 |#1|) (-309 (-116 |#1|)))) (($ $ (-641 (-1170)) (-641 (-116 |#1|))) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|)))) (($ $ (-1170) (-116 |#1|)) NIL (|has| (-116 |#1|) (-514 (-1170) (-116 |#1|))))) (-4061 (((-768) $) NIL)) (-4382 (($ $ (-116 |#1|)) NIL (|has| (-116 |#1|) (-286 (-116 |#1|) (-116 |#1|))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-768)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-2090 (($ $) NIL)) (-1634 (((-116 |#1|) $) NIL)) (-2235 (((-889 (-564)) $) NIL (|has| (-116 |#1|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-116 |#1|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-116 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-116 |#1|) (-1019))) (((-225) $) NIL (|has| (-116 |#1|) (-1019)))) (-2426 (((-174 (-407 (-564))) $) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-116 |#1|)) NIL) (($ (-1170)) NIL (|has| (-116 |#1|) (-1035 (-1170))))) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-116 |#1|) (-906))) (|has| (-116 |#1|) (-145))))) (-3270 (((-768)) NIL T CONST)) (-2551 (((-116 |#1|) $) NIL (|has| (-116 |#1|) (-545)))) (-3360 (((-112) $ $) NIL)) (-2305 (((-407 (-564)) $ (-564)) NIL)) (-2792 (($ $) NIL (|has| (-116 |#1|) (-817)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $) NIL (|has| (-116 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-116 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-116 |#1|) (-897 (-1170)))) (($ $ (-1 (-116 |#1|) (-116 |#1|)) (-768)) NIL) (($ $ (-1 (-116 |#1|) (-116 |#1|))) NIL)) (-1751 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-116 |#1|) (-847)))) (-1799 (($ $ $) NIL) (($ (-116 |#1|) (-116 |#1|)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-116 |#1|) $) NIL) (($ $ (-116 |#1|)) NIL))) +(((-117 |#1|) (-13 (-989 (-116 |#1|)) (-10 -8 (-15 -2305 ((-407 (-564)) $ (-564))) (-15 -2426 ((-174 (-407 (-564))) $)) (-15 -1480 ($ $)) (-15 -1480 ($ (-564) $)))) (-564)) (T -117)) +((-2305 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) (-1480 (*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) (-1480 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2)))) +(-13 (-989 (-116 |#1|)) (-10 -8 (-15 -2305 ((-407 (-564)) $ (-564))) (-15 -2426 ((-174 (-407 (-564))) $)) (-15 -1480 ($ $)) (-15 -1480 ($ (-564) $)))) +((-3877 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 58) (($ $ "right" $) 60)) (-2488 (((-641 $) $) 31)) (-1940 (((-112) $ $) 36)) (-2431 (((-112) |#2| $) 40)) (-2333 (((-641 |#2|) $) 25)) (-1881 (((-112) $) 18)) (-4382 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-3572 (((-112) $) 55)) (-3742 (((-859) $) 45)) (-3167 (((-641 $) $) 32)) (-1705 (((-112) $ $) 38)) (-2641 (((-768) $) 48))) +(((-118 |#1| |#2|) (-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -3877 (|#1| |#1| "right" |#1|)) (-15 -3877 (|#1| |#1| "left" |#1|)) (-15 -4382 (|#1| |#1| "right")) (-15 -4382 (|#1| |#1| "left")) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -1940 ((-112) |#1| |#1|)) (-15 -2333 ((-641 |#2|) |#1|)) (-15 -3572 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -1881 ((-112) |#1|)) (-15 -2488 ((-641 |#1|) |#1|)) (-15 -3167 ((-641 |#1|) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2431 ((-112) |#2| |#1|)) (-15 -2641 ((-768) |#1|))) (-119 |#2|) (-1209)) (T -118)) +NIL +(-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -3877 (|#1| |#1| "right" |#1|)) (-15 -3877 (|#1| |#1| "left" |#1|)) (-15 -4382 (|#1| |#1| "right")) (-15 -4382 (|#1| |#1| "left")) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -1940 ((-112) |#1| |#1|)) (-15 -2333 ((-641 |#2|) |#1|)) (-15 -3572 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -1881 ((-112) |#1|)) (-15 -2488 ((-641 |#1|) |#1|)) (-15 -3167 ((-641 |#1|) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2431 ((-112) |#2| |#1|)) (-15 -2641 ((-768) |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3426 ((|#1| $) 48)) (-2969 (((-112) $ (-768)) 8)) (-3976 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-1781 (($ $ $) 52 (|has| $ (-6 -4412)))) (-1573 (($ $ $) 54 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) (($ $ "left" $) 55 (|has| $ (-6 -4412))) (($ $ "right" $) 53 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2818 (($) 7 T CONST)) (-2427 (($ $) 57)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 50)) (-1940 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2413 (($ $) 59)) (-2333 (((-641 |#1|) $) 45)) (-1881 (((-112) $) 49)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4209 (((-564) $ $) 44)) (-3572 (((-112) $) 46)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 51)) (-1584 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-119 |#1|) (-140) (-1209)) (T -119)) +((-2413 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-2427 (*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-3877 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4412)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-1573 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-119 *2)) (-4 *2 (-1209)))) (-3877 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4412)) (-4 *1 (-119 *3)) (-4 *3 (-1209)))) (-1781 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) +(-13 (-1007 |t#1|) (-10 -8 (-15 -2413 ($ $)) (-15 -4382 ($ $ "left")) (-15 -2427 ($ $)) (-15 -4382 ($ $ "right")) (IF (|has| $ (-6 -4412)) (PROGN (-15 -3877 ($ $ "left" $)) (-15 -1573 ($ $ $)) (-15 -3877 ($ $ "right" $)) (-15 -1781 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-4163 (((-112) |#1|) 29)) (-3922 (((-768) (-768)) 28) (((-768)) 27)) (-4189 (((-112) |#1| (-112)) 30) (((-112) |#1|) 31))) +(((-120 |#1|) (-10 -7 (-15 -4189 ((-112) |#1|)) (-15 -4189 ((-112) |#1| (-112))) (-15 -3922 ((-768))) (-15 -3922 ((-768) (-768))) (-15 -4163 ((-112) |#1|))) (-1235 (-564))) (T -120)) +((-4163 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-3922 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-4189 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) (-4189 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) +(-10 -7 (-15 -4189 ((-112) |#1|)) (-15 -4189 ((-112) |#1| (-112))) (-15 -3922 ((-768))) (-15 -3922 ((-768) (-768))) (-15 -4163 ((-112) |#1|))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) 18)) (-3651 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 25)) (-2969 (((-112) $ (-768)) NIL)) (-3976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-1781 (($ $ $) 21 (|has| $ (-6 -4412)))) (-1573 (($ $ $) 23 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2427 (($ $) 20)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2234 (($ $ |#1| $) 26)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2413 (($ $) 22)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2648 (($ |#1| $) 27)) (-2974 (($ |#1| $) 15)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 17)) (-3434 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4209 (((-564) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3952 (($ (-641 |#1|)) 16)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-121 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -3952 ($ (-641 |#1|))) (-15 -2974 ($ |#1| $)) (-15 -2648 ($ |#1| $)) (-15 -3651 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-847)) (T -121)) +((-3952 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-121 *3)))) (-2974 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) (-2648 (*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) (-3651 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) (-5 *1 (-121 *3)) (-4 *3 (-847))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -3952 ($ (-641 |#1|))) (-15 -2974 ($ |#1| $)) (-15 -2648 ($ |#1| $)) (-15 -3651 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) +((-1680 (($ $) 12)) (-4255 (($ $) 10)) (-3624 (($ $ $) 22)) (-2260 (($ $ $) 20)) (-4042 (($ $ $) 18)) (-4029 (($ $ $) 16))) +(((-122 |#1|) (-10 -8 (-15 -3624 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#1| |#1|)) (-15 -4255 (|#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4042 (|#1| |#1| |#1|))) (-123)) (T -122)) +NIL +(-10 -8 (-15 -3624 (|#1| |#1| |#1|)) (-15 -2260 (|#1| |#1| |#1|)) (-15 -4255 (|#1| |#1|)) (-15 -1680 (|#1| |#1|)) (-15 -4029 (|#1| |#1| |#1|)) (-15 -4042 (|#1| |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-1680 (($ $) 103)) (-4289 (($ $ $) 25)) (-2645 (((-1264) $ (-564) (-564)) 66 (|has| $ (-6 -4412)))) (-1445 (((-112) $) 98 (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) 92)) (-2402 (($ $) 102 (-12 (|has| (-112) (-847)) (|has| $ (-6 -4412)))) (($ (-1 (-112) (-112) (-112)) $) 101 (|has| $ (-6 -4412)))) (-2777 (($ $) 97 (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) 91)) (-2969 (((-112) $ (-768)) 37)) (-3877 (((-112) $ (-1226 (-564)) (-112)) 88 (|has| $ (-6 -4412))) (((-112) $ (-564) (-112)) 54 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) (-112)) $) 71 (|has| $ (-6 -4411)))) (-2818 (($) 38 T CONST)) (-2797 (($ $) 100 (|has| $ (-6 -4412)))) (-1856 (($ $) 90)) (-1996 (($ $) 68 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ (-1 (-112) (-112)) $) 72 (|has| $ (-6 -4411))) (($ (-112) $) 69 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411))))) (-1699 (((-112) (-1 (-112) (-112) (-112)) $) 74 (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) 73 (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) 70 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411))))) (-2619 (((-112) $ (-564) (-112)) 53 (|has| $ (-6 -4412)))) (-2540 (((-112) $ (-564)) 55)) (-3305 (((-564) (-112) $ (-564)) 95 (|has| (-112) (-1094))) (((-564) (-112) $) 94 (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) 93)) (-3616 (((-641 (-112)) $) 45 (|has| $ (-6 -4411)))) (-4279 (($ $ $) 26)) (-4255 (($ $) 30)) (-3624 (($ $ $) 28)) (-3619 (($ (-768) (-112)) 77)) (-2260 (($ $ $) 29)) (-2275 (((-112) $ (-768)) 36)) (-2029 (((-564) $) 63 (|has| (-564) (-847)))) (-2799 (($ $ $) 13)) (-2164 (($ $ $) 96 (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) 89)) (-1386 (((-641 (-112)) $) 46 (|has| $ (-6 -4411)))) (-2431 (((-112) (-112) $) 48 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 62 (|has| (-564) (-847)))) (-2848 (($ $ $) 14)) (-2606 (($ (-1 (-112) (-112)) $) 41 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-112) (-112) (-112)) $ $) 82) (($ (-1 (-112) (-112)) $) 40)) (-1500 (((-112) $ (-768)) 35)) (-2217 (((-1152) $) 9)) (-2308 (($ $ $ (-564)) 87) (($ (-112) $ (-564)) 86)) (-2312 (((-641 (-564)) $) 60)) (-4062 (((-112) (-564) $) 59)) (-3864 (((-1114) $) 10)) (-1966 (((-112) $) 64 (|has| (-564) (-847)))) (-3582 (((-3 (-112) "failed") (-1 (-112) (-112)) $) 75)) (-3099 (($ $ (-112)) 65 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) (-112)) $) 43 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-112)) (-641 (-112))) 52 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) 51 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) 50 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) 49 (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-1717 (((-112) $ $) 31)) (-2772 (((-112) (-112) $) 61 (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2572 (((-641 (-112)) $) 58)) (-4003 (((-112) $) 34)) (-3434 (($) 33)) (-4382 (($ $ (-1226 (-564))) 83) (((-112) $ (-564)) 57) (((-112) $ (-564) (-112)) 56)) (-2004 (($ $ (-1226 (-564))) 85) (($ $ (-564)) 84)) (-3873 (((-768) (-112) $) 47 (-12 (|has| (-112) (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) (-112)) $) 44 (|has| $ (-6 -4411)))) (-1999 (($ $ $ (-564)) 99 (|has| $ (-6 -4412)))) (-3896 (($ $) 32)) (-2235 (((-536) $) 67 (|has| (-112) (-612 (-536))))) (-3753 (($ (-641 (-112))) 76)) (-1802 (($ (-641 $)) 81) (($ $ $) 80) (($ (-112) $) 79) (($ $ (-112)) 78)) (-3742 (((-859) $) 11)) (-1417 (((-112) (-1 (-112) (-112)) $) 42 (|has| $ (-6 -4411)))) (-4267 (($ $ $) 27)) (-4042 (($ $ $) 105)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-4029 (($ $ $) 104)) (-2641 (((-768) $) 39 (|has| $ (-6 -4411))))) (((-123) (-140)) (T -123)) -((-3730 (*1 *1 *1) (-4 *1 (-123))) (-1374 (*1 *1 *1 *1) (-4 *1 (-123))) (-2409 (*1 *1 *1 *1) (-4 *1 (-123))) (-3743 (*1 *1 *1 *1) (-4 *1 (-123))) (-3755 (*1 *1 *1 *1) (-4 *1 (-123))) (-3766 (*1 *1 *1 *1) (-4 *1 (-123)))) -(-13 (-846) (-656) (-19 (-112)) (-10 -8 (-15 -3730 ($ $)) (-15 -1374 ($ $ $)) (-15 -2409 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -3766 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 #0=(-112)) . T) ((-611 (-536)) |has| (-112) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))) ((-646 #0#) . T) ((-656) . T) ((-19 #0#) . T) ((-846) . T) ((-1093) . T) ((-1208) . T)) -((-4139 (($ (-1 |#2| |#2|) $) 22)) (-2208 (($ $) 16)) (-1708 (((-767) $) 25))) -(((-124 |#1| |#2|) (-10 -8 (-15 -4139 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1708 ((-767) |#1|)) (-15 -2208 (|#1| |#1|))) (-125 |#2|) (-1093)) (T -124)) -NIL -(-10 -8 (-15 -4139 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1708 ((-767) |#1|)) (-15 -2208 (|#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3556 ((|#1| $) 48)) (-3740 (((-112) $ (-767)) 8)) (-3472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-2377 (($ $ $) 52 (|has| $ (-6 -4409)))) (-2390 (($ $ $) 54 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) (($ $ "left" $) 55 (|has| $ (-6 -4409))) (($ $ "right" $) 53 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-3684 (($) 7 T CONST)) (-2665 (($ $) 57)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 50)) (-3494 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2176 (($ $ |#1| $) 60)) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-2654 (($ $) 59)) (-3884 (((-640 |#1|) $) 45)) (-2484 (((-112) $) 49)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-3514 (((-563) $ $) 44)) (-2181 (((-112) $) 46)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 51)) (-3504 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-125 |#1|) (-140) (-1093)) (T -125)) -((-2176 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1093))))) -(-13 (-119 |t#1|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -2176 ($ $ |t#1| $)))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-119 |#1|) . T) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) 18)) (-3740 (((-112) $ (-767)) NIL)) (-3472 ((|#1| $ |#1|) 22 (|has| $ (-6 -4409)))) (-2377 (($ $ $) 23 (|has| $ (-6 -4409)))) (-2390 (($ $ $) 21 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2665 (($ $) 24)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2176 (($ $ |#1| $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-2654 (($ $) NIL)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1956 (($ |#1| $) 15)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 17)) (-2749 (($) 11)) (-3858 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3514 (((-563) $ $) NIL)) (-2181 (((-112) $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) 20)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1385 (($ (-640 |#1|)) 16)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4409) (-15 -1385 ($ (-640 |#1|))) (-15 -1956 ($ |#1| $)))) (-846)) (T -126)) -((-1385 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3)))) (-1956 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846))))) -(-13 (-125 |#1|) (-10 -8 (-6 -4409) (-15 -1385 ($ (-640 |#1|))) (-15 -1956 ($ |#1| $)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) 30)) (-3740 (((-112) $ (-767)) NIL)) (-3472 ((|#1| $ |#1|) 32 (|has| $ (-6 -4409)))) (-2377 (($ $ $) 36 (|has| $ (-6 -4409)))) (-2390 (($ $ $) 34 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2665 (($ $) 23)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2176 (($ $ |#1| $) 16)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-2654 (($ $) 22)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) 25)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 20)) (-2749 (($) 11)) (-3858 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3514 (((-563) $ $) NIL)) (-2181 (((-112) $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1396 (($ |#1|) 18) (($ $ |#1| $) 17)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 10 (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -1396 ($ |#1|)) (-15 -1396 ($ $ |#1| $)))) (-1093)) (T -127)) -((-1396 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093)))) (-1396 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093))))) -(-13 (-125 |#1|) (-10 -8 (-15 -1396 ($ |#1|)) (-15 -1396 ($ $ |#1| $)))) -((-2049 (((-112) $ $) NIL (|has| (-129) (-1093)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-846)))) (-2146 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-129) (-846))))) (-4257 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 (((-129) $ (-563) (-129)) 26 (|has| $ (-6 -4409))) (((-129) $ (-1224 (-563)) (-129)) NIL (|has| $ (-6 -4409)))) (-1414 (((-767) $ (-767)) 34)) (-1907 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093))))) (-1417 (($ (-129) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4408))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4408)))) (-4150 (((-129) $ (-563) (-129)) 25 (|has| $ (-6 -4409)))) (-4085 (((-129) $ (-563)) 20)) (-2256 (((-563) (-1 (-112) (-129)) $) NIL) (((-563) (-129) $) NIL (|has| (-129) (-1093))) (((-563) (-129) $ (-563)) NIL (|has| (-129) (-1093)))) (-4236 (((-640 (-129)) $) NIL (|has| $ (-6 -4408)))) (-2552 (($ (-767) (-129)) 14)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 27 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| (-129) (-846)))) (-2383 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-846)))) (-1572 (((-640 (-129)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093))))) (-3383 (((-563) $) 30 (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| (-129) (-846)))) (-4139 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| (-129) (-1093)))) (-2530 (($ (-129) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| (-129) (-1093)))) (-1884 (((-129) $) NIL (|has| (-563) (-846)))) (-1828 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3357 (($ $ (-129)) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093)))) (($ $ (-640 (-129)) (-640 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093))))) (-3427 (((-640 (-129)) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 12)) (-3858 (((-129) $ (-563) (-129)) NIL) (((-129) $ (-563)) 23) (($ $ (-1224 (-563))) NIL)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3261 (((-767) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408))) (((-767) (-129) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-129) (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-129) (-611 (-536))))) (-2074 (($ (-640 (-129))) 47)) (-1951 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-640 $)) NIL)) (-2062 (((-954 (-129)) $) 35) (((-1151) $) 44) (((-858) $) NIL (|has| (-129) (-610 (-858))))) (-1427 (((-767) $) 18)) (-1434 (($ (-767)) 8)) (-3848 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2943 (((-112) $ $) 32 (|has| (-129) (-1093)))) (-2988 (((-112) $ $) NIL (|has| (-129) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-129) (-846)))) (-1708 (((-767) $) 15 (|has| $ (-6 -4408))))) -(((-128) (-13 (-19 (-129)) (-610 (-954 (-129))) (-610 (-1151)) (-10 -8 (-15 -1434 ($ (-767))) (-15 -1427 ((-767) $)) (-15 -1414 ((-767) $ (-767))) (-6 -4408)))) (T -128)) -((-1434 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-1427 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128)))) (-1414 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) -(-13 (-19 (-129)) (-610 (-954 (-129))) (-610 (-1151)) (-10 -8 (-15 -1434 ($ (-767))) (-15 -1427 ((-767) $)) (-15 -1414 ((-767) $ (-767))) (-6 -4408))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) 12 T CONST)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) 22 T CONST)) (-4105 (($ $ $) NIL) (($) 23 T CONST)) (-3267 (((-917) $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-1406 (($ (-767)) 8)) (-4314 (($ $ $) 25)) (-4304 (($ $ $) 24)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 19)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 20))) -(((-129) (-13 (-840) (-490 (-144)) (-10 -8 (-15 -1406 ($ (-767))) (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495)))) (T -129)) -((-1406 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129)))) (-4304 (*1 *1 *1 *1) (-5 *1 (-129))) (-4314 (*1 *1 *1 *1) (-5 *1 (-129))) (-3684 (*1 *1) (-5 *1 (-129)))) -(-13 (-840) (-490 (-144)) (-10 -8 (-15 -1406 ($ (-767))) (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495))) +((-4255 (*1 *1 *1) (-4 *1 (-123))) (-2260 (*1 *1 *1 *1) (-4 *1 (-123))) (-3624 (*1 *1 *1 *1) (-4 *1 (-123))) (-4267 (*1 *1 *1 *1) (-4 *1 (-123))) (-4279 (*1 *1 *1 *1) (-4 *1 (-123))) (-4289 (*1 *1 *1 *1) (-4 *1 (-123)))) +(-13 (-847) (-657) (-19 (-112)) (-10 -8 (-15 -4255 ($ $)) (-15 -2260 ($ $ $)) (-15 -3624 ($ $ $)) (-15 -4267 ($ $ $)) (-15 -4279 ($ $ $)) (-15 -4289 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 #0=(-112)) . T) ((-612 (-536)) |has| (-112) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))) ((-647 #0#) . T) ((-657) . T) ((-19 #0#) . T) ((-847) . T) ((-1094) . T) ((-1209) . T)) +((-2606 (($ (-1 |#2| |#2|) $) 22)) (-3896 (($ $) 16)) (-2641 (((-768) $) 25))) +(((-124 |#1| |#2|) (-10 -8 (-15 -2606 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2641 ((-768) |#1|)) (-15 -3896 (|#1| |#1|))) (-125 |#2|) (-1094)) (T -124)) +NIL +(-10 -8 (-15 -2606 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2641 ((-768) |#1|)) (-15 -3896 (|#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3426 ((|#1| $) 48)) (-2969 (((-112) $ (-768)) 8)) (-3976 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-1781 (($ $ $) 52 (|has| $ (-6 -4412)))) (-1573 (($ $ $) 54 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) (($ $ "left" $) 55 (|has| $ (-6 -4412))) (($ $ "right" $) 53 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2818 (($) 7 T CONST)) (-2427 (($ $) 57)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 50)) (-1940 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2234 (($ $ |#1| $) 60)) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2413 (($ $) 59)) (-2333 (((-641 |#1|) $) 45)) (-1881 (((-112) $) 49)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-4209 (((-564) $ $) 44)) (-3572 (((-112) $) 46)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 51)) (-1584 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-125 |#1|) (-140) (-1094)) (T -125)) +((-2234 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094))))) +(-13 (-119 |t#1|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -2234 ($ $ |t#1| $)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-119 |#1|) . T) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) 18)) (-2969 (((-112) $ (-768)) NIL)) (-3976 ((|#1| $ |#1|) 22 (|has| $ (-6 -4412)))) (-1781 (($ $ $) 23 (|has| $ (-6 -4412)))) (-1573 (($ $ $) 21 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2427 (($ $) 24)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2234 (($ $ |#1| $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2413 (($ $) NIL)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2974 (($ |#1| $) 15)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 17)) (-3434 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4209 (((-564) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) 20)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2955 (($ (-641 |#1|)) 16)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-126 |#1|) (-13 (-125 |#1|) (-10 -8 (-6 -4412) (-15 -2955 ($ (-641 |#1|))) (-15 -2974 ($ |#1| $)))) (-847)) (T -126)) +((-2955 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-126 *3)))) (-2974 (*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-847))))) +(-13 (-125 |#1|) (-10 -8 (-6 -4412) (-15 -2955 ($ (-641 |#1|))) (-15 -2974 ($ |#1| $)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) 30)) (-2969 (((-112) $ (-768)) NIL)) (-3976 ((|#1| $ |#1|) 32 (|has| $ (-6 -4412)))) (-1781 (($ $ $) 36 (|has| $ (-6 -4412)))) (-1573 (($ $ $) 34 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2427 (($ $) 23)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2234 (($ $ |#1| $) 16)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2413 (($ $) 22)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) 25)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 20)) (-3434 (($) 11)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4209 (((-564) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4366 (($ |#1|) 18) (($ $ |#1| $) 17)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 10 (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-127 |#1|) (-13 (-125 |#1|) (-10 -8 (-15 -4366 ($ |#1|)) (-15 -4366 ($ $ |#1| $)))) (-1094)) (T -127)) +((-4366 (*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) (-4366 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))) +(-13 (-125 |#1|) (-10 -8 (-15 -4366 ($ |#1|)) (-15 -4366 ($ $ |#1| $)))) +((-3732 (((-112) $ $) NIL (|has| (-129) (-1094)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) (-129) (-129)) $) NIL) (((-112) $) NIL (|has| (-129) (-847)))) (-2402 (($ (-1 (-112) (-129) (-129)) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-129) (-847))))) (-2777 (($ (-1 (-112) (-129) (-129)) $) NIL) (($ $) NIL (|has| (-129) (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 (((-129) $ (-564) (-129)) 26 (|has| $ (-6 -4412))) (((-129) $ (-1226 (-564)) (-129)) NIL (|has| $ (-6 -4412)))) (-4295 (((-768) $ (-768)) 34)) (-3548 (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094))))) (-2366 (($ (-129) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094)))) (($ (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-129) (-1 (-129) (-129) (-129)) $ (-129) (-129)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094)))) (((-129) (-1 (-129) (-129) (-129)) $ (-129)) NIL (|has| $ (-6 -4411))) (((-129) (-1 (-129) (-129) (-129)) $) NIL (|has| $ (-6 -4411)))) (-2619 (((-129) $ (-564) (-129)) 25 (|has| $ (-6 -4412)))) (-2540 (((-129) $ (-564)) 20)) (-3305 (((-564) (-1 (-112) (-129)) $) NIL) (((-564) (-129) $) NIL (|has| (-129) (-1094))) (((-564) (-129) $ (-564)) NIL (|has| (-129) (-1094)))) (-3616 (((-641 (-129)) $) NIL (|has| $ (-6 -4411)))) (-3619 (($ (-768) (-129)) 14)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 27 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| (-129) (-847)))) (-2164 (($ (-1 (-112) (-129) (-129)) $ $) NIL) (($ $ $) NIL (|has| (-129) (-847)))) (-1386 (((-641 (-129)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094))))) (-3774 (((-564) $) 30 (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| (-129) (-847)))) (-2606 (($ (-1 (-129) (-129)) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-129) (-129)) $) NIL) (($ (-1 (-129) (-129) (-129)) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| (-129) (-1094)))) (-2308 (($ (-129) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| (-129) (-1094)))) (-1966 (((-129) $) NIL (|has| (-564) (-847)))) (-3582 (((-3 (-129) "failed") (-1 (-112) (-129)) $) NIL)) (-3099 (($ $ (-129)) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-129)))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-294 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-129) (-129)) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094)))) (($ $ (-641 (-129)) (-641 (-129))) NIL (-12 (|has| (-129) (-309 (-129))) (|has| (-129) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) (-129) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094))))) (-2572 (((-641 (-129)) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 12)) (-4382 (((-129) $ (-564) (-129)) NIL) (((-129) $ (-564)) 23) (($ $ (-1226 (-564))) NIL)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3873 (((-768) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411))) (((-768) (-129) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-129) (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-129) (-612 (-536))))) (-3753 (($ (-641 (-129))) 47)) (-1802 (($ $ (-129)) NIL) (($ (-129) $) NIL) (($ $ $) 48) (($ (-641 $)) NIL)) (-3742 (((-955 (-129)) $) 35) (((-1152) $) 44) (((-859) $) NIL (|has| (-129) (-611 (-859))))) (-3015 (((-768) $) 18)) (-2487 (($ (-768)) 8)) (-1417 (((-112) (-1 (-112) (-129)) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1705 (((-112) $ $) 32 (|has| (-129) (-1094)))) (-1741 (((-112) $ $) NIL (|has| (-129) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-129) (-847)))) (-2641 (((-768) $) 15 (|has| $ (-6 -4411))))) +(((-128) (-13 (-19 (-129)) (-611 (-955 (-129))) (-611 (-1152)) (-10 -8 (-15 -2487 ($ (-768))) (-15 -3015 ((-768) $)) (-15 -4295 ((-768) $ (-768))) (-6 -4411)))) (T -128)) +((-2487 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-128)))) (-4295 (*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128))))) +(-13 (-19 (-129)) (-611 (-955 (-129))) (-611 (-1152)) (-10 -8 (-15 -2487 ($ (-768))) (-15 -3015 ((-768) $)) (-15 -4295 ((-768) $ (-768))) (-6 -4411))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) 12 T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) 22 T CONST)) (-2848 (($ $ $) NIL) (($) 23 T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL) (($ (-144)) 16) (((-144) $) 18)) (-1795 (($ (-768)) 8)) (-4074 (($ $ $) 25)) (-4066 (($ $ $) 24)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 19)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 20))) +(((-129) (-13 (-841) (-490 (-144)) (-10 -8 (-15 -1795 ($ (-768))) (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091)))) (T -129)) +((-1795 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-129)))) (-4066 (*1 *1 *1 *1) (-5 *1 (-129))) (-4074 (*1 *1 *1 *1) (-5 *1 (-129))) (-2818 (*1 *1) (-5 *1 (-129)))) +(-13 (-841) (-490 (-144)) (-10 -8 (-15 -1795 ($ (-768))) (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091))) ((|NonNegativeInteger|) (< |#1| 256)) -((-2049 (((-112) $ $) NIL)) (-1449 (($) 6 T CONST)) (-1470 (($) 7 T CONST)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 14)) (-1459 (($) 8 T CONST)) (-2943 (((-112) $ $) 10))) -(((-130) (-13 (-1093) (-10 -8 (-15 -1470 ($) -2495) (-15 -1459 ($) -2495) (-15 -1449 ($) -2495)))) (T -130)) -((-1470 (*1 *1) (-5 *1 (-130))) (-1459 (*1 *1) (-5 *1 (-130))) (-1449 (*1 *1) (-5 *1 (-130)))) -(-13 (-1093) (-10 -8 (-15 -1470 ($) -2495) (-15 -1459 ($) -2495) (-15 -1449 ($) -2495))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) +((-3732 (((-112) $ $) NIL)) (-1692 (($) 6 T CONST)) (-4135 (($) 7 T CONST)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 14)) (-3364 (($) 8 T CONST)) (-1705 (((-112) $ $) 10))) +(((-130) (-13 (-1094) (-10 -8 (-15 -4135 ($) -2091) (-15 -3364 ($) -2091) (-15 -1692 ($) -2091)))) (T -130)) +((-4135 (*1 *1) (-5 *1 (-130))) (-3364 (*1 *1) (-5 *1 (-130))) (-1692 (*1 *1) (-5 *1 (-130)))) +(-13 (-1094) (-10 -8 (-15 -4135 ($) -2091) (-15 -3364 ($) -2091) (-15 -1692 ($) -2091))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15))) (((-131) (-140)) (T -131)) -((-1482 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(-13 (-23) (-10 -8 (-15 -1482 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 7)) (-1492 (((-1262) $ (-767)) 19)) (-2256 (((-767) $) 20)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18))) +((-3239 (*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(-13 (-23) (-10 -8 (-15 -3239 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 7)) (-3631 (((-1264) $ (-768)) 19)) (-3305 (((-768) $) 20)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) (((-132) (-140)) (T -132)) -((-2256 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) (-1492 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1262))))) -(-13 (-846) (-10 -8 (-15 -2256 ((-767) $)) (-15 -1492 ((-1262) $ (-767))))) -(((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-640 (-1128)) $) 10)) (-2943 (((-112) $ $) NIL))) -(((-133) (-13 (-1076) (-10 -8 (-15 -3373 ((-640 (-1128)) $))))) (T -133)) -((-3373 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-133))))) -(-13 (-1076) (-10 -8 (-15 -3373 ((-640 (-1128)) $)))) -((-2049 (((-112) $ $) 47)) (-2741 (((-112) $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-767) "failed") $) 56)) (-2589 (((-767) $) 54)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) 36)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1515 (((-112)) 57)) (-1504 (((-112) (-112)) 59)) (-4148 (((-112) $) 30)) (-1525 (((-112) $) 53)) (-2062 (((-858) $) 28) (($ (-767)) 20)) (-3790 (($) 18 T CONST)) (-3803 (($) 19 T CONST)) (-1537 (($ (-767)) 21)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 32)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 34)) (-3039 (((-3 $ "failed") $ $) 40)) (-3027 (($ $ $) 37)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ $) 52)) (* (($ (-767) $) 46) (($ (-917) $) NIL) (($ $ $) 43))) -(((-134) (-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4410 "*")) (-15 -3039 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1537 ($ (-767))) (-15 -4148 ((-112) $)) (-15 -1525 ((-112) $)) (-15 -1515 ((-112))) (-15 -1504 ((-112) (-112)))))) (T -134)) -((-3039 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-1537 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1525 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1515 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-1504 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(-13 (-846) (-23) (-722) (-1034 (-767)) (-10 -8 (-6 (-4410 "*")) (-15 -3039 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1537 ($ (-767))) (-15 -4148 ((-112) $)) (-15 -1525 ((-112) $)) (-15 -1515 ((-112))) (-15 -1504 ((-112) (-112))))) -((-2157 (((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2751 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) -(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2157 ((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2751 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-563) (-767) (-172) (-172)) (T -135)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) -(-10 -7 (-15 -2157 ((-136 |#1| |#2| |#4|) (-640 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2751 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) -((-2049 (((-112) $ $) NIL)) (-1548 (($ (-640 |#3|)) 63)) (-2899 (($ $) 125) (($ $ (-563) (-563)) 124)) (-3684 (($) 20)) (-2671 (((-3 |#3| "failed") $) 85)) (-2589 ((|#3| $) NIL)) (-1582 (($ $ (-640 (-563))) 126)) (-2149 (((-640 |#3|) $) 58)) (-3406 (((-767) $) 68)) (-1927 (($ $ $) 119)) (-1559 (($) 67)) (-1938 (((-1151) $) NIL)) (-1569 (($) 19)) (-3249 (((-1113) $) NIL)) (-3858 ((|#3| $) 70) ((|#3| $ (-563)) 71) ((|#3| $ (-563) (-563)) 72) ((|#3| $ (-563) (-563) (-563)) 73) ((|#3| $ (-563) (-563) (-563) (-563)) 74) ((|#3| $ (-640 (-563))) 75)) (-1962 (((-767) $) 69)) (-2984 (($ $ (-563) $ (-563)) 120) (($ $ (-563) (-563)) 122)) (-2062 (((-858) $) 93) (($ |#3|) 94) (($ (-240 |#2| |#3|)) 101) (($ (-1135 |#2| |#3|)) 104) (($ (-640 |#3|)) 76) (($ (-640 $)) 82)) (-3790 (($) 95 T CONST)) (-3803 (($) 96 T CONST)) (-2943 (((-112) $ $) 106)) (-3039 (($ $) 112) (($ $ $) 110)) (-3027 (($ $ $) 108)) (* (($ |#3| $) 117) (($ $ |#3|) 118) (($ $ (-563)) 115) (($ (-563) $) 114) (($ $ $) 121))) -(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-767)) (-470 (-563) (-767)) (-10 -8 (-15 -2062 ($ (-240 |#2| |#3|))) (-15 -2062 ($ (-1135 |#2| |#3|))) (-15 -2062 ($ (-640 |#3|))) (-15 -2062 ($ (-640 $))) (-15 -3406 ((-767) $)) (-15 -3858 (|#3| $)) (-15 -3858 (|#3| $ (-563))) (-15 -3858 (|#3| $ (-563) (-563))) (-15 -3858 (|#3| $ (-563) (-563) (-563))) (-15 -3858 (|#3| $ (-563) (-563) (-563) (-563))) (-15 -3858 (|#3| $ (-640 (-563)))) (-15 -1927 ($ $ $)) (-15 * ($ $ $)) (-15 -2984 ($ $ (-563) $ (-563))) (-15 -2984 ($ $ (-563) (-563))) (-15 -2899 ($ $)) (-15 -2899 ($ $ (-563) (-563))) (-15 -1582 ($ $ (-640 (-563)))) (-15 -1569 ($)) (-15 -1559 ($)) (-15 -2149 ((-640 |#3|) $)) (-15 -1548 ($ (-640 |#3|))) (-15 -3684 ($)))) (-563) (-767) (-172)) (T -136)) -((-1927 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1135 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-3406 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 *2) (-4 *5 (-172)))) (-3858 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-563)) (-14 *4 (-767)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-3858 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-3858 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-3858 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-767)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-563))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-563)) (-14 *5 (-767)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2984 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-2984 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-2899 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2899 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-767)) (-4 *5 (-172)))) (-1582 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1569 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-1559 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-640 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1548 (*1 *1 *2) (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) (-14 *4 (-767)))) (-3684 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) (-4 *4 (-172))))) -(-13 (-465 |#3| (-767)) (-470 (-563) (-767)) (-10 -8 (-15 -2062 ($ (-240 |#2| |#3|))) (-15 -2062 ($ (-1135 |#2| |#3|))) (-15 -2062 ($ (-640 |#3|))) (-15 -2062 ($ (-640 $))) (-15 -3406 ((-767) $)) (-15 -3858 (|#3| $)) (-15 -3858 (|#3| $ (-563))) (-15 -3858 (|#3| $ (-563) (-563))) (-15 -3858 (|#3| $ (-563) (-563) (-563))) (-15 -3858 (|#3| $ (-563) (-563) (-563) (-563))) (-15 -3858 (|#3| $ (-640 (-563)))) (-15 -1927 ($ $ $)) (-15 * ($ $ $)) (-15 -2984 ($ $ (-563) $ (-563))) (-15 -2984 ($ $ (-563) (-563))) (-15 -2899 ($ $)) (-15 -2899 ($ $ (-563) (-563))) (-15 -1582 ($ $ (-640 (-563)))) (-15 -1569 ($)) (-15 -1559 ($)) (-15 -2149 ((-640 |#3|) $)) (-15 -1548 ($ (-640 |#3|))) (-15 -3684 ($)))) -((-2049 (((-112) $ $) NIL)) (-4156 (((-1128) $) 11)) (-4144 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-137) (-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1128) $))))) (T -137)) -((-4144 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137))))) -(-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1128) $)))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3659 (((-1169) $) 10)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-640 (-1128)) $) 13)) (-2943 (((-112) $ $) NIL))) -(((-138) (-13 (-1076) (-10 -8 (-15 -3659 ((-1169) $)) (-15 -3373 ((-640 (-1128)) $))))) (T -138)) -((-3659 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-138)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-138))))) -(-13 (-1076) (-10 -8 (-15 -3659 ((-1169) $)) (-15 -3373 ((-640 (-1128)) $)))) -((-2049 (((-112) $ $) NIL)) (-1980 (((-640 (-861)) $) NIL)) (-3359 (((-506) $) NIL)) (-1938 (((-1151) $) NIL)) (-3659 (((-186) $) NIL)) (-3249 (((-1113) $) NIL)) (-3777 (((-640 (-112)) $) NIL)) (-2062 (((-858) $) NIL) (((-187) $) 6)) (-4079 (((-55) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-139) (-13 (-185) (-610 (-187)))) (T -139)) -NIL -(-13 (-185) (-610 (-187))) -((-1594 (((-640 (-183)) $) 13)) (-3017 (((-640 (-183)) $) 14)) (-1605 (((-640 (-834)) $) 10)) (-2894 (((-139) $) 7)) (-2062 (((-858) $) 16))) -(((-140) (-13 (-610 (-858)) (-10 -8 (-15 -2894 ((-139) $)) (-15 -1605 ((-640 (-834)) $)) (-15 -1594 ((-640 (-183)) $)) (-15 -3017 ((-640 (-183)) $))))) (T -140)) -((-2894 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-640 (-834))) (-5 *1 (-140)))) (-1594 (*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140)))) (-3017 (*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140))))) -(-13 (-610 (-858)) (-10 -8 (-15 -2894 ((-139) $)) (-15 -1605 ((-640 (-834)) $)) (-15 -1594 ((-640 (-183)) $)) (-15 -3017 ((-640 (-183)) $)))) -((-2049 (((-112) $ $) NIL)) (-2952 (($) 17 T CONST)) (-1583 (($) NIL (|has| (-144) (-368)))) (-3738 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-1883 (($ $ $) NIL)) (-1870 (((-112) $ $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-2433 (((-767)) NIL (|has| (-144) (-368)))) (-3158 (($) NIL) (($ (-640 (-144))) NIL)) (-1736 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2841 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (($ (-144) $) 61 (|has| $ (-6 -4408)))) (-1417 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2532 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-4301 (($) NIL (|has| (-144) (-368)))) (-4236 (((-640 (-144)) $) 70 (|has| $ (-6 -4408)))) (-1925 (((-112) $ $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3489 (((-144) $) NIL (|has| (-144) (-846)))) (-1572 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-4105 (((-144) $) NIL (|has| (-144) (-846)))) (-4139 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-144) (-144)) $) 65)) (-2976 (($) 18 T CONST)) (-3267 (((-917) $) NIL (|has| (-144) (-368)))) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1913 (($ $ $) 30)) (-3835 (((-144) $) 62)) (-1956 (($ (-144) $) 60)) (-3491 (($ (-917)) NIL (|has| (-144) (-368)))) (-1643 (($) 16 T CONST)) (-3249 (((-1113) $) NIL)) (-1828 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3847 (((-144) $) 63)) (-3837 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 58)) (-1655 (($) 15 T CONST)) (-1896 (($ $ $) 32) (($ $ (-144)) NIL)) (-3139 (($ (-640 (-144))) NIL) (($) NIL)) (-3261 (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-1151) $) 37) (((-536) $) NIL (|has| (-144) (-611 (-536)))) (((-640 (-144)) $) 35)) (-2074 (($ (-640 (-144))) NIL)) (-1595 (($ $) 33 (|has| (-144) (-368)))) (-2062 (((-858) $) 55)) (-1667 (($ (-1151)) 14) (($ (-640 (-144))) 52)) (-1606 (((-767) $) NIL)) (-2121 (($) 59) (($ (-640 (-144))) NIL)) (-4034 (($ (-640 (-144))) NIL)) (-3848 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1619 (($) 21 T CONST)) (-1631 (($) 20 T CONST)) (-2943 (((-112) $ $) 24)) (-1708 (((-767) $) 57 (|has| $ (-6 -4408))))) -(((-141) (-13 (-1093) (-611 (-1151)) (-425 (-144)) (-611 (-640 (-144))) (-10 -8 (-15 -1667 ($ (-1151))) (-15 -1667 ($ (-640 (-144)))) (-15 -1655 ($) -2495) (-15 -1643 ($) -2495) (-15 -2952 ($) -2495) (-15 -2976 ($) -2495) (-15 -1631 ($) -2495) (-15 -1619 ($) -2495)))) (T -141)) -((-1667 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-141)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-640 (-144))) (-5 *1 (-141)))) (-1655 (*1 *1) (-5 *1 (-141))) (-1643 (*1 *1) (-5 *1 (-141))) (-2952 (*1 *1) (-5 *1 (-141))) (-2976 (*1 *1) (-5 *1 (-141))) (-1631 (*1 *1) (-5 *1 (-141))) (-1619 (*1 *1) (-5 *1 (-141)))) -(-13 (-1093) (-611 (-1151)) (-425 (-144)) (-611 (-640 (-144))) (-10 -8 (-15 -1667 ($ (-1151))) (-15 -1667 ($ (-640 (-144)))) (-15 -1655 ($) -2495) (-15 -1643 ($) -2495) (-15 -2952 ($) -2495) (-15 -2976 ($) -2495) (-15 -1631 ($) -2495) (-15 -1619 ($) -2495))) -((-3812 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3787 ((|#1| |#3|) 9)) (-3800 ((|#3| |#3|) 15))) -(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3787 (|#1| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3812 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-555) (-988 |#1|) (-373 |#2|)) (T -142)) -((-3812 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4))))) -(-10 -7 (-15 -3787 (|#1| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3812 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3243 (($ $ $) 8)) (-1979 (($ $) 7)) (-2991 (($ $ $) 6))) +((-3305 (*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-768)))) (-3631 (*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-768)) (-5 *2 (-1264))))) +(-13 (-847) (-10 -8 (-15 -3305 ((-768) $)) (-15 -3631 ((-1264) $ (-768))))) +(((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-641 (-1129)) $) 10)) (-1705 (((-112) $ $) NIL))) +(((-133) (-13 (-1077) (-10 -8 (-15 -4337 ((-641 (-1129)) $))))) (T -133)) +((-4337 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133))))) +(-13 (-1077) (-10 -8 (-15 -4337 ((-641 (-1129)) $)))) +((-3732 (((-112) $ $) 47)) (-4173 (((-112) $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-768) "failed") $) 56)) (-2239 (((-768) $) 54)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) 36)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3103 (((-112)) 57)) (-3532 (((-112) (-112)) 59)) (-1926 (((-112) $) 30)) (-2616 (((-112) $) 53)) (-3742 (((-859) $) 28) (($ (-768)) 20)) (-4311 (($) 18 T CONST)) (-4321 (($) 19 T CONST)) (-2336 (($ (-768)) 21)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 32)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 34)) (-1790 (((-3 $ "failed") $ $) 40)) (-1780 (($ $ $) 37)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL) (($ $ $) 52)) (* (($ (-768) $) 46) (($ (-918) $) NIL) (($ $ $) 43))) +(((-134) (-13 (-847) (-23) (-723) (-1035 (-768)) (-10 -8 (-6 (-4413 "*")) (-15 -1790 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2336 ($ (-768))) (-15 -1926 ((-112) $)) (-15 -2616 ((-112) $)) (-15 -3103 ((-112))) (-15 -3532 ((-112) (-112)))))) (T -134)) +((-1790 (*1 *1 *1 *1) (|partial| -5 *1 (-134))) (** (*1 *1 *1 *1) (-5 *1 (-134))) (-2336 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-134)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-2616 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3103 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) (-3532 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(-13 (-847) (-23) (-723) (-1035 (-768)) (-10 -8 (-6 (-4413 "*")) (-15 -1790 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2336 ($ (-768))) (-15 -1926 ((-112) $)) (-15 -2616 ((-112) $)) (-15 -3103 ((-112))) (-15 -3532 ((-112) (-112))))) +((-3185 (((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|)) 14)) (-2187 (((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)) 18))) +(((-135 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3185 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2187 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) (-564) (-768) (-172) (-172)) (T -135)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) (-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8))))) +(-10 -7 (-15 -3185 ((-136 |#1| |#2| |#4|) (-641 |#4|) (-136 |#1| |#2| |#3|))) (-15 -2187 ((-136 |#1| |#2| |#4|) (-1 |#4| |#3|) (-136 |#1| |#2| |#3|)))) +((-3732 (((-112) $ $) NIL)) (-4071 (($ (-641 |#3|)) 63)) (-2284 (($ $) 125) (($ $ (-564) (-564)) 124)) (-2818 (($) 20)) (-2111 (((-3 |#3| "failed") $) 85)) (-2239 ((|#3| $) NIL)) (-2935 (($ $ (-641 (-564))) 126)) (-3170 (((-641 |#3|) $) 58)) (-1544 (((-768) $) 68)) (-3431 (($ $ $) 119)) (-2541 (($) 67)) (-2217 (((-1152) $) NIL)) (-2295 (($) 19)) (-3864 (((-1114) $) NIL)) (-4382 ((|#3| $) 70) ((|#3| $ (-564)) 71) ((|#3| $ (-564) (-564)) 72) ((|#3| $ (-564) (-564) (-564)) 73) ((|#3| $ (-564) (-564) (-564) (-564)) 74) ((|#3| $ (-641 (-564))) 75)) (-2266 (((-768) $) 69)) (-2658 (($ $ (-564) $ (-564)) 120) (($ $ (-564) (-564)) 122)) (-3742 (((-859) $) 93) (($ |#3|) 94) (($ (-240 |#2| |#3|)) 101) (($ (-1136 |#2| |#3|)) 104) (($ (-641 |#3|)) 76) (($ (-641 $)) 82)) (-4311 (($) 95 T CONST)) (-4321 (($) 96 T CONST)) (-1705 (((-112) $ $) 106)) (-1790 (($ $) 112) (($ $ $) 110)) (-1780 (($ $ $) 108)) (* (($ |#3| $) 117) (($ $ |#3|) 118) (($ $ (-564)) 115) (($ (-564) $) 114) (($ $ $) 121))) +(((-136 |#1| |#2| |#3|) (-13 (-465 |#3| (-768)) (-470 (-564) (-768)) (-10 -8 (-15 -3742 ($ (-240 |#2| |#3|))) (-15 -3742 ($ (-1136 |#2| |#3|))) (-15 -3742 ($ (-641 |#3|))) (-15 -3742 ($ (-641 $))) (-15 -1544 ((-768) $)) (-15 -4382 (|#3| $)) (-15 -4382 (|#3| $ (-564))) (-15 -4382 (|#3| $ (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-641 (-564)))) (-15 -3431 ($ $ $)) (-15 * ($ $ $)) (-15 -2658 ($ $ (-564) $ (-564))) (-15 -2658 ($ $ (-564) (-564))) (-15 -2284 ($ $)) (-15 -2284 ($ $ (-564) (-564))) (-15 -2935 ($ $ (-641 (-564)))) (-15 -2295 ($)) (-15 -2541 ($)) (-15 -3170 ((-641 |#3|) $)) (-15 -4071 ($ (-641 |#3|))) (-15 -2818 ($)))) (-564) (-768) (-172)) (T -136)) +((-3431 (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-1544 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 *2) (-4 *5 (-172)))) (-4382 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) (-14 *4 (-768)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-768)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) (-14 *4 (-564)) (-14 *5 (-768)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-2658 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2658 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-2284 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-768)) (-4 *5 (-172)))) (-2935 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-2295 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-2541 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) (-3170 (*1 *2 *1) (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) (-4071 (*1 *1 *2) (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) (-14 *4 (-768)))) (-2818 (*1 *1) (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172))))) +(-13 (-465 |#3| (-768)) (-470 (-564) (-768)) (-10 -8 (-15 -3742 ($ (-240 |#2| |#3|))) (-15 -3742 ($ (-1136 |#2| |#3|))) (-15 -3742 ($ (-641 |#3|))) (-15 -3742 ($ (-641 $))) (-15 -1544 ((-768) $)) (-15 -4382 (|#3| $)) (-15 -4382 (|#3| $ (-564))) (-15 -4382 (|#3| $ (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-564) (-564) (-564) (-564))) (-15 -4382 (|#3| $ (-641 (-564)))) (-15 -3431 ($ $ $)) (-15 * ($ $ $)) (-15 -2658 ($ $ (-564) $ (-564))) (-15 -2658 ($ $ (-564) (-564))) (-15 -2284 ($ $)) (-15 -2284 ($ $ (-564) (-564))) (-15 -2935 ($ $ (-641 (-564)))) (-15 -2295 ($)) (-15 -2541 ($)) (-15 -3170 ((-641 |#3|) $)) (-15 -4071 ($ (-641 |#3|))) (-15 -2818 ($)))) +((-3732 (((-112) $ $) NIL)) (-3076 (((-1129) $) 11)) (-3065 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-137) (-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1129) $))))) (T -137)) +((-3065 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137))))) +(-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1129) $)))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3421 (((-1170) $) 10)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-641 (-1129)) $) 13)) (-1705 (((-112) $ $) NIL))) +(((-138) (-13 (-1077) (-10 -8 (-15 -3421 ((-1170) $)) (-15 -4337 ((-641 (-1129)) $))))) (T -138)) +((-3421 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-138)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138))))) +(-13 (-1077) (-10 -8 (-15 -3421 ((-1170) $)) (-15 -4337 ((-641 (-1129)) $)))) +((-3732 (((-112) $ $) NIL)) (-1737 (((-641 (-862)) $) NIL)) (-4324 (((-506) $) NIL)) (-2217 (((-1152) $) NIL)) (-3421 (((-186) $) NIL)) (-3864 (((-1114) $) NIL)) (-3773 (((-641 (-112)) $) NIL)) (-3742 (((-859) $) NIL) (((-187) $) 6)) (-2873 (((-55) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-139) (-13 (-185) (-611 (-187)))) (T -139)) +NIL +(-13 (-185) (-611 (-187))) +((-2798 (((-641 (-183)) $) 13)) (-3997 (((-641 (-183)) $) 14)) (-1742 (((-641 (-835)) $) 10)) (-2724 (((-139) $) 7)) (-3742 (((-859) $) 16))) +(((-140) (-13 (-611 (-859)) (-10 -8 (-15 -2724 ((-139) $)) (-15 -1742 ((-641 (-835)) $)) (-15 -2798 ((-641 (-183)) $)) (-15 -3997 ((-641 (-183)) $))))) (T -140)) +((-2724 (*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-641 (-835))) (-5 *1 (-140)))) (-2798 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) +(-13 (-611 (-859)) (-10 -8 (-15 -2724 ((-139) $)) (-15 -1742 ((-641 (-835)) $)) (-15 -2798 ((-641 (-183)) $)) (-15 -3997 ((-641 (-183)) $)))) +((-3732 (((-112) $ $) NIL)) (-1853 (($) 17 T CONST)) (-3026 (($) NIL (|has| (-144) (-368)))) (-3518 (($ $ $) 19) (($ $ (-144)) NIL) (($ (-144) $) NIL)) (-2570 (($ $ $) NIL)) (-1905 (((-112) $ $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-1938 (((-768)) NIL (|has| (-144) (-368)))) (-3688 (($) NIL) (($ (-641 (-144))) NIL)) (-2068 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2154 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411))) (($ (-144) $) 61 (|has| $ (-6 -4411)))) (-2366 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411))) (($ (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-1699 (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2821 (($) NIL (|has| (-144) (-368)))) (-3616 (((-641 (-144)) $) 70 (|has| $ (-6 -4411)))) (-3296 (((-112) $ $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2799 (((-144) $) NIL (|has| (-144) (-847)))) (-1386 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-144) $) 27 (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2848 (((-144) $) NIL (|has| (-144) (-847)))) (-2606 (($ (-1 (-144) (-144)) $) 69 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-144) (-144)) $) 65)) (-3286 (($) 18 T CONST)) (-1906 (((-918) $) NIL (|has| (-144) (-368)))) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-1353 (($ $ $) 30)) (-2828 (((-144) $) 62)) (-2974 (($ (-144) $) 60)) (-1495 (($ (-918)) NIL (|has| (-144) (-368)))) (-2933 (($) 16 T CONST)) (-3864 (((-1114) $) NIL)) (-3582 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-1292 (((-144) $) 63)) (-3736 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 58)) (-1607 (($) 15 T CONST)) (-2365 (($ $ $) 32) (($ $ (-144)) NIL)) (-4085 (($ (-641 (-144))) NIL) (($) NIL)) (-3873 (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-1152) $) 37) (((-536) $) NIL (|has| (-144) (-612 (-536)))) (((-641 (-144)) $) 35)) (-3753 (($ (-641 (-144))) NIL)) (-2926 (($ $) 33 (|has| (-144) (-368)))) (-3742 (((-859) $) 55)) (-3513 (($ (-1152)) 14) (($ (-641 (-144))) 52)) (-3749 (((-768) $) NIL)) (-4194 (($) 59) (($ (-641 (-144))) NIL)) (-3745 (($ (-641 (-144))) NIL)) (-1417 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2579 (($) 21 T CONST)) (-1677 (($) 20 T CONST)) (-1705 (((-112) $ $) 24)) (-2641 (((-768) $) 57 (|has| $ (-6 -4411))))) +(((-141) (-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -3513 ($ (-1152))) (-15 -3513 ($ (-641 (-144)))) (-15 -1607 ($) -2091) (-15 -2933 ($) -2091) (-15 -1853 ($) -2091) (-15 -3286 ($) -2091) (-15 -1677 ($) -2091) (-15 -2579 ($) -2091)))) (T -141)) +((-3513 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141)))) (-3513 (*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) (-1607 (*1 *1) (-5 *1 (-141))) (-2933 (*1 *1) (-5 *1 (-141))) (-1853 (*1 *1) (-5 *1 (-141))) (-3286 (*1 *1) (-5 *1 (-141))) (-1677 (*1 *1) (-5 *1 (-141))) (-2579 (*1 *1) (-5 *1 (-141)))) +(-13 (-1094) (-612 (-1152)) (-425 (-144)) (-612 (-641 (-144))) (-10 -8 (-15 -3513 ($ (-1152))) (-15 -3513 ($ (-641 (-144)))) (-15 -1607 ($) -2091) (-15 -2933 ($) -2091) (-15 -1853 ($) -2091) (-15 -3286 ($) -2091) (-15 -1677 ($) -2091) (-15 -2579 ($) -2091))) +((-1540 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3350 ((|#1| |#3|) 9)) (-1909 ((|#3| |#3|) 15))) +(((-142 |#1| |#2| |#3|) (-10 -7 (-15 -3350 (|#1| |#3|)) (-15 -1909 (|#3| |#3|)) (-15 -1540 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-989 |#1|) (-373 |#2|)) (T -142)) +((-1540 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) (-4 *3 (-373 *5)))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-142 *3 *4 *2)) (-4 *2 (-373 *4)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) (-4 *3 (-373 *4))))) +(-10 -7 (-15 -3350 (|#1| |#3|)) (-15 -1909 (|#3| |#3|)) (-15 -1540 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2742 (($ $ $) 8)) (-3676 (($ $) 7)) (-3181 (($ $ $) 6))) (((-143) (-140)) (T -143)) -((-3243 (*1 *1 *1 *1) (-4 *1 (-143))) (-1979 (*1 *1 *1) (-4 *1 (-143))) (-2991 (*1 *1 *1 *1) (-4 *1 (-143)))) -(-13 (-10 -8 (-15 -2991 ($ $ $)) (-15 -1979 ($ $)) (-15 -3243 ($ $ $)))) -((-2049 (((-112) $ $) NIL)) (-1703 (((-112) $) 36)) (-2952 (($ $) 52)) (-2378 (($) 23)) (-2433 (((-767)) 10)) (-4301 (($) 22)) (-1446 (($) 24)) (-1756 (((-767) $) 18)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-1691 (((-112) $) 38)) (-2976 (($ $) 53)) (-3267 (((-917) $) 20)) (-1938 (((-1151) $) 46)) (-3491 (($ (-917)) 17)) (-1729 (((-112) $) 34)) (-3249 (((-1113) $) NIL)) (-1744 (($) 25)) (-2174 (((-112) $) 32)) (-2062 (((-858) $) 27)) (-2410 (($ (-767)) 16) (($ (-1151)) 51)) (-1679 (((-112) $) 42)) (-1715 (((-112) $) 40)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 7)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 8))) -(((-144) (-13 (-840) (-10 -8 (-15 -1756 ((-767) $)) (-15 -2410 ($ (-767))) (-15 -2410 ($ (-1151))) (-15 -2378 ($)) (-15 -1446 ($)) (-15 -1744 ($)) (-15 -2952 ($ $)) (-15 -2976 ($ $)) (-15 -2174 ((-112) $)) (-15 -1729 ((-112) $)) (-15 -1715 ((-112) $)) (-15 -1703 ((-112) $)) (-15 -1691 ((-112) $)) (-15 -1679 ((-112) $))))) (T -144)) -((-1756 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144)))) (-2410 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-144)))) (-2378 (*1 *1) (-5 *1 (-144))) (-1446 (*1 *1) (-5 *1 (-144))) (-1744 (*1 *1) (-5 *1 (-144))) (-2952 (*1 *1 *1) (-5 *1 (-144))) (-2976 (*1 *1 *1) (-5 *1 (-144))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1691 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(-13 (-840) (-10 -8 (-15 -1756 ((-767) $)) (-15 -2410 ($ (-767))) (-15 -2410 ($ (-1151))) (-15 -2378 ($)) (-15 -1446 ($)) (-15 -1744 ($)) (-15 -2952 ($ $)) (-15 -2976 ($ $)) (-15 -2174 ((-112) $)) (-15 -1729 ((-112) $)) (-15 -1715 ((-112) $)) (-15 -1703 ((-112) $)) (-15 -1691 ((-112) $)) (-15 -1679 ((-112) $)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-4376 (((-3 $ "failed") $) 35)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +((-2742 (*1 *1 *1 *1) (-4 *1 (-143))) (-3676 (*1 *1 *1) (-4 *1 (-143))) (-3181 (*1 *1 *1 *1) (-4 *1 (-143)))) +(-13 (-10 -8 (-15 -3181 ($ $ $)) (-15 -3676 ($ $)) (-15 -2742 ($ $ $)))) +((-3732 (((-112) $ $) NIL)) (-1436 (((-112) $) 36)) (-1853 (($ $) 52)) (-1851 (($) 23)) (-1938 (((-768)) 10)) (-2821 (($) 22)) (-1406 (($) 24)) (-4198 (((-768) $) 18)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-4156 (((-112) $) 38)) (-3286 (($ $) 53)) (-1906 (((-918) $) 20)) (-2217 (((-1152) $) 46)) (-1495 (($ (-918)) 17)) (-2775 (((-112) $) 34)) (-3864 (((-1114) $) NIL)) (-1362 (($) 25)) (-3763 (((-112) $) 32)) (-3742 (((-859) $) 27)) (-3341 (($ (-768)) 16) (($ (-1152)) 51)) (-2208 (((-112) $) 42)) (-2977 (((-112) $) 40)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 7)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 8))) +(((-144) (-13 (-841) (-10 -8 (-15 -4198 ((-768) $)) (-15 -3341 ($ (-768))) (-15 -3341 ($ (-1152))) (-15 -1851 ($)) (-15 -1406 ($)) (-15 -1362 ($)) (-15 -1853 ($ $)) (-15 -3286 ($ $)) (-15 -3763 ((-112) $)) (-15 -2775 ((-112) $)) (-15 -2977 ((-112) $)) (-15 -1436 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -2208 ((-112) $))))) (T -144)) +((-4198 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-144)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-144)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) (-1851 (*1 *1) (-5 *1 (-144))) (-1406 (*1 *1) (-5 *1 (-144))) (-1362 (*1 *1) (-5 *1 (-144))) (-1853 (*1 *1 *1) (-5 *1 (-144))) (-3286 (*1 *1 *1) (-5 *1 (-144))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144)))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(-13 (-841) (-10 -8 (-15 -4198 ((-768) $)) (-15 -3341 ($ (-768))) (-15 -3341 ($ (-1152))) (-15 -1851 ($)) (-15 -1406 ($)) (-15 -1362 ($)) (-15 -1853 ($ $)) (-15 -3286 ($ $)) (-15 -3763 ((-112) $)) (-15 -2775 ((-112) $)) (-15 -2977 ((-112) $)) (-15 -1436 ((-112) $)) (-15 -4156 ((-112) $)) (-15 -2208 ((-112) $)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-4253 (((-3 $ "failed") $) 35)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-145) (-140)) (T -145)) -((-4376 (*1 *1 *1) (|partial| -4 *1 (-145)))) -(-13 (-1045) (-10 -8 (-15 -4376 ((-3 $ "failed") $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-3015 ((|#1| (-684 |#1|) |#1|) 23))) -(((-146 |#1|) (-10 -7 (-15 -3015 (|#1| (-684 |#1|) |#1|))) (-172)) (T -146)) -((-3015 (*1 *2 *3 *2) (-12 (-5 *3 (-684 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) -(-10 -7 (-15 -3015 (|#1| (-684 |#1|) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +((-4253 (*1 *1 *1) (|partial| -4 *1 (-145)))) +(-13 (-1046) (-10 -8 (-15 -4253 ((-3 $ "failed") $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2230 ((|#1| (-685 |#1|) |#1|) 23))) +(((-146 |#1|) (-10 -7 (-15 -2230 (|#1| (-685 |#1|) |#1|))) (-172)) (T -146)) +((-2230 (*1 *2 *3 *2) (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2))))) +(-10 -7 (-15 -2230 (|#1| (-685 |#1|) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-147) (-140)) (T -147)) NIL -(-13 (-1045)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-1792 (((-2 (|:| -2631 (-767)) (|:| -2765 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767)) 75)) (-1780 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|) 55)) (-1767 (((-2 (|:| -2765 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 40)) (-1803 ((|#1| |#3| |#3|) 43)) (-1497 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-1814 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|) 52))) -(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -1767 ((-2 (|:| -2765 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1780 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -1792 ((-2 (|:| -2631 (-767)) (|:| -2765 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -1803 (|#1| |#3| |#3|)) (-15 -1497 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1814 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) (-1212) (-1233 |#1|) (-1233 (-407 |#2|))) (T -148)) -((-1814 (*1 *2 *3 *3) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))) (-1497 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1233 *3)))) (-1803 (*1 *2 *3 *3) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-1212)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-1792 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1233 *3)))) (-1780 (*1 *2 *3) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5))))) (-1767 (*1 *2 *3) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -2765 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5)))))) -(-10 -7 (-15 -1767 ((-2 (|:| -2765 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1780 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-767))) "failed") |#3|)) (-15 -1792 ((-2 (|:| -2631 (-767)) (|:| -2765 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-767))) (-15 -1803 (|#1| |#3| |#3|)) (-15 -1497 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -1814 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-767))) |#3| |#3|))) -((-1297 (((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)) 34))) -(((-149 |#1| |#2|) (-10 -7 (-15 -1297 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)))) (-545) (-166 |#1|)) (T -149)) -((-1297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))) -(-10 -7 (-15 -1297 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)))) -((-1907 (($ (-1 (-112) |#2|) $) 35)) (-1920 (($ $) 42)) (-1417 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-2532 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-1828 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3837 (((-112) (-1 (-112) |#2|) $) 22)) (-3261 (((-767) (-1 (-112) |#2|) $) 18) (((-767) |#2| $) NIL)) (-3848 (((-112) (-1 (-112) |#2|) $) 21)) (-1708 (((-767) $) 12))) -(((-150 |#1| |#2|) (-10 -8 (-15 -1920 (|#1| |#1|)) (-15 -1417 (|#1| |#2| |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3261 ((-767) |#2| |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1708 ((-767) |#1|))) (-151 |#2|) (-1208)) (T -150)) -NIL -(-10 -8 (-15 -1920 (|#1| |#1|)) (-15 -1417 (|#1| |#2| |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3261 ((-767) |#2| |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1708 ((-767) |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-1907 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-1920 (($ $) 41 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408))) (($ |#1| $) 42 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 40 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 49)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-151 |#1|) (-140) (-1208)) (T -151)) -((-2074 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-151 *3)))) (-1828 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-2532 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-2532 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3)) (-4 *3 (-1208)))) (-1907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3)) (-4 *3 (-1208)))) (-2532 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)))) (-1417 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-1920 (*1 *1 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) (-4 *2 (-1093))))) -(-13 (-489 |t#1|) (-10 -8 (-15 -2074 ($ (-640 |t#1|))) (-15 -1828 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4408)) (PROGN (-15 -2532 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2532 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -1417 ($ (-1 (-112) |t#1|) $)) (-15 -1907 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -2532 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -1417 ($ |t#1| $)) (-15 -1920 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) 113)) (-2712 (((-112) $) NIL)) (-2165 (($ |#2| (-640 (-917))) 73)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1570 (($ (-917)) 61)) (-1575 (((-134)) 26)) (-2062 (((-858) $) 88) (($ (-563)) 57) (($ |#2|) 58)) (-1304 ((|#2| $ (-640 (-917))) 76)) (-3192 (((-767)) 23 T CONST)) (-3790 (($) 51 T CONST)) (-3803 (($) 55 T CONST)) (-2943 (((-112) $ $) 37)) (-3050 (($ $ |#2|) NIL)) (-3039 (($ $) 46) (($ $ $) 44)) (-3027 (($ $ $) 42)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) -(((-152 |#1| |#2| |#3|) (-13 (-1045) (-38 |#2|) (-1264 |#2|) (-10 -8 (-15 -1570 ($ (-917))) (-15 -2165 ($ |#2| (-640 (-917)))) (-15 -1304 (|#2| $ (-640 (-917)))) (-15 -3230 ((-3 $ "failed") $)))) (-917) (-363) (-989 |#1| |#2|)) (T -152)) -((-3230 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363)) (-14 *4 (-989 *2 *3)))) (-1570 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-989 *3 *4)))) (-2165 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) (-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) (-14 *5 (-989 *4 *2))))) -(-13 (-1045) (-38 |#2|) (-1264 |#2|) (-10 -8 (-15 -1570 ($ (-917))) (-15 -2165 ($ |#2| (-640 (-917)))) (-15 -1304 (|#2| $ (-640 (-917)))) (-15 -3230 ((-3 $ "failed") $)))) -((-1852 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225)) 60)) (-1839 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563))) 97) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923)) 98)) (-2287 (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225))))) 101) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225)))) 100) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563))) 93) (((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923)) 94))) -(((-153) (-10 -7 (-15 -2287 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -2287 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -1839 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -1839 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -1852 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2287 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225))))) (-15 -2287 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))))))) (T -153)) -((-2287 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 (-225))))))) (-2287 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)) (-5 *3 (-640 (-939 (-225)))))) (-1852 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 *4)))) (|:| |xValues| (-1087 *4)) (|:| |yValues| (-1087 *4)))) (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 *4)))))) (-1839 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-2287 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-923)) (-5 *2 (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) (-5 *1 (-153))))) -(-10 -7 (-15 -2287 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -2287 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -1839 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923))) (-15 -1839 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-923) (-407 (-563)) (-407 (-563)))) (-15 -1852 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2287 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-939 (-225))))) (-15 -2287 ((-2 (|:| |brans| (-640 (-640 (-939 (-225))))) (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225)))) (-640 (-640 (-939 (-225))))))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-4053 (((-640 (-1128)) $) 20)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 29) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-1128) $) 9)) (-2943 (((-112) $ $) NIL))) -(((-154) (-13 (-1076) (-10 -8 (-15 -4053 ((-640 (-1128)) $)) (-15 -3373 ((-1128) $))))) (T -154)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-154)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154))))) -(-13 (-1076) (-10 -8 (-15 -4053 ((-640 (-1128)) $)) (-15 -3373 ((-1128) $)))) -((-3634 (((-640 (-169 |#2|)) |#1| |#2|) 50))) -(((-155 |#1| |#2|) (-10 -7 (-15 -3634 ((-640 (-169 |#2|)) |#1| |#2|))) (-1233 (-169 (-563))) (-13 (-363) (-844))) (T -155)) -((-3634 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1233 (-169 (-563)))) (-4 *4 (-13 (-363) (-844)))))) -(-10 -7 (-15 -3634 ((-640 (-169 |#2|)) |#1| |#2|))) -((-2049 (((-112) $ $) NIL)) (-4156 (((-1207) $) 12)) (-4144 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-156) (-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1207) $))))) (T -156)) -((-4144 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-156)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-156))))) -(-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1207) $)))) -((-2049 (((-112) $ $) NIL)) (-1879 (($) 40)) (-2955 (($) 39)) (-1865 (((-917)) 45)) (-1938 (((-1151) $) NIL)) (-3961 (((-563) $) 43)) (-3249 (((-1113) $) NIL)) (-2946 (($) 41)) (-2114 (($ (-563)) 46)) (-2062 (((-858) $) 52)) (-2933 (($) 42)) (-2943 (((-112) $ $) 37)) (-3027 (($ $ $) 34)) (* (($ (-917) $) 44) (($ (-225) $) 11))) -(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -3027 ($ $ $)) (-15 -2955 ($)) (-15 -1879 ($)) (-15 -2946 ($)) (-15 -2933 ($)) (-15 -3961 ((-563) $)) (-15 -1865 ((-917))) (-15 -2114 ($ (-563)))))) (T -157)) -((-3027 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-2955 (*1 *1) (-5 *1 (-157))) (-1879 (*1 *1) (-5 *1 (-157))) (-2946 (*1 *1) (-5 *1 (-157))) (-2933 (*1 *1) (-5 *1 (-157))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-157)))) (-1865 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) (-2114 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-157))))) -(-13 (-25) (-10 -8 (-15 * ($ (-917) $)) (-15 * ($ (-225) $)) (-15 -3027 ($ $ $)) (-15 -2955 ($)) (-15 -1879 ($)) (-15 -2946 ($)) (-15 -2933 ($)) (-15 -3961 ((-563) $)) (-15 -1865 ((-917))) (-15 -2114 ($ (-563))))) -((-3275 ((|#2| |#2| (-1085 |#2|)) 98) ((|#2| |#2| (-1169)) 75)) (-1927 ((|#2| |#2| (-1085 |#2|)) 97) ((|#2| |#2| (-1169)) 74)) (-3243 ((|#2| |#2| |#2|) 25)) (-3674 (((-114) (-114)) 111)) (-1968 ((|#2| (-640 |#2|)) 130)) (-1933 ((|#2| (-640 |#2|)) 151)) (-1921 ((|#2| (-640 |#2|)) 138)) (-1892 ((|#2| |#2|) 136)) (-1945 ((|#2| (-640 |#2|)) 124)) (-1957 ((|#2| (-640 |#2|)) 125)) (-1900 ((|#2| (-640 |#2|)) 149)) (-3287 ((|#2| |#2| (-1169)) 63) ((|#2| |#2|) 62)) (-1979 ((|#2| |#2|) 21)) (-2991 ((|#2| |#2| |#2|) 24)) (-3631 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) -(((-158 |#1| |#2|) (-10 -7 (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2991 (|#2| |#2| |#2|)) (-15 -3243 (|#2| |#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -3287 (|#2| |#2|)) (-15 -3287 (|#2| |#2| (-1169))) (-15 -3275 (|#2| |#2| (-1169))) (-15 -3275 (|#2| |#2| (-1085 |#2|))) (-15 -1927 (|#2| |#2| (-1169))) (-15 -1927 (|#2| |#2| (-1085 |#2|))) (-15 -1892 (|#2| |#2|)) (-15 -1900 (|#2| (-640 |#2|))) (-15 -1921 (|#2| (-640 |#2|))) (-15 -1933 (|#2| (-640 |#2|))) (-15 -1945 (|#2| (-640 |#2|))) (-15 -1957 (|#2| (-640 |#2|))) (-15 -1968 (|#2| (-640 |#2|)))) (-13 (-846) (-555)) (-430 |#1|)) (T -158)) -((-1968 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-1957 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-1933 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-1900 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-846) (-555))))) (-1892 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1927 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)))) (-1927 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3275 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)))) (-3275 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3287 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-1979 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3243 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2991 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3674 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))) -(-10 -7 (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -2991 (|#2| |#2| |#2|)) (-15 -3243 (|#2| |#2| |#2|)) (-15 -1979 (|#2| |#2|)) (-15 -3287 (|#2| |#2|)) (-15 -3287 (|#2| |#2| (-1169))) (-15 -3275 (|#2| |#2| (-1169))) (-15 -3275 (|#2| |#2| (-1085 |#2|))) (-15 -1927 (|#2| |#2| (-1169))) (-15 -1927 (|#2| |#2| (-1085 |#2|))) (-15 -1892 (|#2| |#2|)) (-15 -1900 (|#2| (-640 |#2|))) (-15 -1921 (|#2| (-640 |#2|))) (-15 -1933 (|#2| (-640 |#2|))) (-15 -1945 (|#2| (-640 |#2|))) (-15 -1957 (|#2| (-640 |#2|))) (-15 -1968 (|#2| (-640 |#2|)))) -((-3266 ((|#1| |#1| |#1|) 65)) (-3254 ((|#1| |#1| |#1|) 62)) (-3243 ((|#1| |#1| |#1|) 56)) (-2678 ((|#1| |#1|) 45)) (-1993 ((|#1| |#1| (-640 |#1|)) 53)) (-1979 ((|#1| |#1|) 47)) (-2991 ((|#1| |#1| |#1|) 50))) -(((-159 |#1|) (-10 -7 (-15 -2991 (|#1| |#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1993 (|#1| |#1| (-640 |#1|))) (-15 -2678 (|#1| |#1|)) (-15 -3243 (|#1| |#1| |#1|)) (-15 -3254 (|#1| |#1| |#1|)) (-15 -3266 (|#1| |#1| |#1|))) (-545)) (T -159)) -((-3266 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3254 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3243 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2678 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-1993 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-1979 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2991 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(-10 -7 (-15 -2991 (|#1| |#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1993 (|#1| |#1| (-640 |#1|))) (-15 -2678 (|#1| |#1|)) (-15 -3243 (|#1| |#1| |#1|)) (-15 -3254 (|#1| |#1| |#1|)) (-15 -3266 (|#1| |#1| |#1|))) -((-3275 (($ $ (-1169)) 12) (($ $ (-1085 $)) 11)) (-1927 (($ $ (-1169)) 10) (($ $ (-1085 $)) 9)) (-3243 (($ $ $) 8)) (-3287 (($ $) 14) (($ $ (-1169)) 13)) (-1979 (($ $) 7)) (-2991 (($ $ $) 6))) +(-13 (-1046)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3420 (((-2 (|:| -2515 (-768)) (|:| -1762 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768)) 75)) (-4202 (((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|) 55)) (-3304 (((-2 (|:| -1762 (-407 |#2|)) (|:| |poly| |#3|)) |#3|) 40)) (-3980 ((|#1| |#3| |#3|) 43)) (-2416 ((|#3| |#3| (-407 |#2|) (-407 |#2|)) 20)) (-2593 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|) 52))) +(((-148 |#1| |#2| |#3|) (-10 -7 (-15 -3304 ((-2 (|:| -1762 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4202 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|)) (-15 -3420 ((-2 (|:| -2515 (-768)) (|:| -1762 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768))) (-15 -3980 (|#1| |#3| |#3|)) (-15 -2416 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -2593 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|))) (T -148)) +((-2593 (*1 *2 *3 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) (|:| |c2| (-407 *5)) (|:| |deg| (-768)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-2416 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) (-3980 (*1 *2 *3 *3) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *3) (|:| |radicand| *6))) (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-768)) (-4 *7 (-1235 *3)))) (-4202 (*1 *2 *3) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-768)))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5))))) (-3304 (*1 *2 *3) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -1762 (-407 *5)) (|:| |poly| *3))) (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) +(-10 -7 (-15 -3304 ((-2 (|:| -1762 (-407 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -4202 ((-3 (-2 (|:| |radicand| (-407 |#2|)) (|:| |deg| (-768))) "failed") |#3|)) (-15 -3420 ((-2 (|:| -2515 (-768)) (|:| -1762 (-407 |#2|)) (|:| |radicand| |#2|)) (-407 |#2|) (-768))) (-15 -3980 (|#1| |#3| |#3|)) (-15 -2416 (|#3| |#3| (-407 |#2|) (-407 |#2|))) (-15 -2593 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| |deg| (-768))) |#3| |#3|))) +((-3561 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 34))) +(((-149 |#1| |#2|) (-10 -7 (-15 -3561 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) (-545) (-166 |#1|)) (T -149)) +((-3561 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5))))) +(-10 -7 (-15 -3561 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)))) +((-3548 (($ (-1 (-112) |#2|) $) 35)) (-1996 (($ $) 42)) (-2366 (($ (-1 (-112) |#2|) $) 33) (($ |#2| $) 38)) (-1699 ((|#2| (-1 |#2| |#2| |#2|) $) 28) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 30) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40)) (-3582 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 25)) (-3736 (((-112) (-1 (-112) |#2|) $) 22)) (-3873 (((-768) (-1 (-112) |#2|) $) 18) (((-768) |#2| $) NIL)) (-1417 (((-112) (-1 (-112) |#2|) $) 21)) (-2641 (((-768) $) 12))) +(((-150 |#1| |#2|) (-10 -8 (-15 -1996 (|#1| |#1|)) (-15 -2366 (|#1| |#2| |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3548 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2366 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3582 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3873 ((-768) |#2| |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2641 ((-768) |#1|))) (-151 |#2|) (-1209)) (T -150)) +NIL +(-10 -8 (-15 -1996 (|#1| |#1|)) (-15 -2366 (|#1| |#2| |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3548 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2366 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3582 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3873 ((-768) |#2| |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2641 ((-768) |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-3548 (($ (-1 (-112) |#1|) $) 44 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-1996 (($ $) 41 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411))) (($ |#1| $) 42 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 48)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 40 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 49)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-151 |#1|) (-140) (-1209)) (T -151)) +((-3753 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3)))) (-3582 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-1699 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-1699 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-3548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *3)) (-4 *3 (-1209)))) (-1699 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)))) (-2366 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-1996 (*1 *1 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) (-4 *2 (-1094))))) +(-13 (-489 |t#1|) (-10 -8 (-15 -3753 ($ (-641 |t#1|))) (-15 -3582 ((-3 |t#1| "failed") (-1 (-112) |t#1|) $)) (IF (|has| $ (-6 -4411)) (PROGN (-15 -1699 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1699 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2366 ($ (-1 (-112) |t#1|) $)) (-15 -3548 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1699 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2366 ($ |t#1| $)) (-15 -1996 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) 113)) (-3840 (((-112) $) NIL)) (-4245 (($ |#2| (-641 (-918))) 73)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2642 (($ (-918)) 61)) (-3603 (((-134)) 26)) (-3742 (((-859) $) 88) (($ (-564)) 57) (($ |#2|) 58)) (-2856 ((|#2| $ (-641 (-918))) 76)) (-3270 (((-768)) 23 T CONST)) (-4311 (($) 51 T CONST)) (-4321 (($) 55 T CONST)) (-1705 (((-112) $ $) 37)) (-1799 (($ $ |#2|) NIL)) (-1790 (($ $) 46) (($ $ $) 44)) (-1780 (($ $ $) 42)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 48) (($ $ $) 67) (($ |#2| $) 50) (($ $ |#2|) NIL))) +(((-152 |#1| |#2| |#3|) (-13 (-1046) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -2642 ($ (-918))) (-15 -4245 ($ |#2| (-641 (-918)))) (-15 -2856 (|#2| $ (-641 (-918)))) (-15 -3951 ((-3 $ "failed") $)))) (-918) (-363) (-990 |#1| |#2|)) (T -152)) +((-3951 (*1 *1 *1) (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-918)) (-4 *3 (-363)) (-14 *4 (-990 *2 *3)))) (-2642 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-363)) (-14 *5 (-990 *3 *4)))) (-4245 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-918))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) (-4 *2 (-363)) (-14 *5 (-990 *4 *2)))) (-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-918))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) (-14 *5 (-990 *4 *2))))) +(-13 (-1046) (-38 |#2|) (-1266 |#2|) (-10 -8 (-15 -2642 ($ (-918))) (-15 -4245 ($ |#2| (-641 (-918)))) (-15 -2856 (|#2| $ (-641 (-918)))) (-15 -3951 ((-3 $ "failed") $)))) +((-4008 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225)) 60)) (-2120 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564))) 97) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924)) 98)) (-2301 (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225))))) 101) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225)))) 100) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564))) 93) (((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924)) 94))) +(((-153) (-10 -7 (-15 -2301 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -2301 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -2120 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -2120 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -4008 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2301 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225))))) (-15 -2301 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))))))) (T -153)) +((-2301 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 (-225))))))) (-2301 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)) (-5 *3 (-641 (-940 (-225)))))) (-4008 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-225)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 *4)))) (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 *4)))))) (-2120 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-2120 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-2301 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-924)) (-5 *2 (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) (-5 *1 (-153))))) +(-10 -7 (-15 -2301 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -2301 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -2120 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924))) (-15 -2120 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-924) (-407 (-564)) (-407 (-564)))) (-15 -4008 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225)))) (-225) (-225) (-225) (-225))) (-15 -2301 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-940 (-225))))) (-15 -2301 ((-2 (|:| |brans| (-641 (-641 (-940 (-225))))) (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225)))) (-641 (-641 (-940 (-225))))))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3862 (((-641 (-1129)) $) 20)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 29) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-1129) $) 9)) (-1705 (((-112) $ $) NIL))) +(((-154) (-13 (-1077) (-10 -8 (-15 -3862 ((-641 (-1129)) $)) (-15 -4337 ((-1129) $))))) (T -154)) +((-3862 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154))))) +(-13 (-1077) (-10 -8 (-15 -3862 ((-641 (-1129)) $)) (-15 -4337 ((-1129) $)))) +((-2344 (((-641 (-169 |#2|)) |#1| |#2|) 50))) +(((-155 |#1| |#2|) (-10 -7 (-15 -2344 ((-641 (-169 |#2|)) |#1| |#2|))) (-1235 (-169 (-564))) (-13 (-363) (-845))) (T -155)) +((-2344 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-845)))))) +(-10 -7 (-15 -2344 ((-641 (-169 |#2|)) |#1| |#2|))) +((-3732 (((-112) $ $) NIL)) (-3076 (((-1208) $) 12)) (-3065 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-156) (-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1208) $))))) (T -156)) +((-3065 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156))))) +(-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1208) $)))) +((-3732 (((-112) $ $) NIL)) (-1536 (($) 40)) (-2137 (($) 39)) (-2711 (((-918)) 45)) (-2217 (((-1152) $) NIL)) (-2334 (((-564) $) 43)) (-3864 (((-1114) $) NIL)) (-3659 (($) 41)) (-1562 (($ (-564)) 46)) (-3742 (((-859) $) 52)) (-3869 (($) 42)) (-1705 (((-112) $ $) 37)) (-1780 (($ $ $) 34)) (* (($ (-918) $) 44) (($ (-225) $) 11))) +(((-157) (-13 (-25) (-10 -8 (-15 * ($ (-918) $)) (-15 * ($ (-225) $)) (-15 -1780 ($ $ $)) (-15 -2137 ($)) (-15 -1536 ($)) (-15 -3659 ($)) (-15 -3869 ($)) (-15 -2334 ((-564) $)) (-15 -2711 ((-918))) (-15 -1562 ($ (-564)))))) (T -157)) +((-1780 (*1 *1 *1 *1) (-5 *1 (-157))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) (-2137 (*1 *1) (-5 *1 (-157))) (-1536 (*1 *1) (-5 *1 (-157))) (-3659 (*1 *1) (-5 *1 (-157))) (-3869 (*1 *1) (-5 *1 (-157))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) (-2711 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) (-1562 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157))))) +(-13 (-25) (-10 -8 (-15 * ($ (-918) $)) (-15 * ($ (-225) $)) (-15 -1780 ($ $ $)) (-15 -2137 ($)) (-15 -1536 ($)) (-15 -3659 ($)) (-15 -3869 ($)) (-15 -2334 ((-564) $)) (-15 -2711 ((-918))) (-15 -1562 ($ (-564))))) +((-1423 ((|#2| |#2| (-1086 |#2|)) 98) ((|#2| |#2| (-1170)) 75)) (-3431 ((|#2| |#2| (-1086 |#2|)) 97) ((|#2| |#2| (-1170)) 74)) (-2742 ((|#2| |#2| |#2|) 25)) (-4058 (((-114) (-114)) 111)) (-1765 ((|#2| (-641 |#2|)) 130)) (-2902 ((|#2| (-641 |#2|)) 151)) (-4033 ((|#2| (-641 |#2|)) 138)) (-3204 ((|#2| |#2|) 136)) (-3721 ((|#2| (-641 |#2|)) 124)) (-1854 ((|#2| (-641 |#2|)) 125)) (-2585 ((|#2| (-641 |#2|)) 149)) (-4166 ((|#2| |#2| (-1170)) 63) ((|#2| |#2|) 62)) (-3676 ((|#2| |#2|) 21)) (-3181 ((|#2| |#2| |#2|) 24)) (-2095 (((-112) (-114)) 55)) (** ((|#2| |#2| |#2|) 46))) +(((-158 |#1| |#2|) (-10 -7 (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3181 (|#2| |#2| |#2|)) (-15 -2742 (|#2| |#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4166 (|#2| |#2| (-1170))) (-15 -1423 (|#2| |#2| (-1170))) (-15 -1423 (|#2| |#2| (-1086 |#2|))) (-15 -3431 (|#2| |#2| (-1170))) (-15 -3431 (|#2| |#2| (-1086 |#2|))) (-15 -3204 (|#2| |#2|)) (-15 -2585 (|#2| (-641 |#2|))) (-15 -4033 (|#2| (-641 |#2|))) (-15 -2902 (|#2| (-641 |#2|))) (-15 -3721 (|#2| (-641 |#2|))) (-15 -1854 (|#2| (-641 |#2|))) (-15 -1765 (|#2| (-641 |#2|)))) (-13 (-847) (-556)) (-430 |#1|)) (T -158)) +((-1765 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-1854 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-3721 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-4033 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-2585 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) (-4 *4 (-13 (-847) (-556))))) (-3204 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3431 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)))) (-3431 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-1423 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)))) (-1423 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-4166 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) (-4166 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-2742 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-3181 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *4)) (-4 *4 (-430 *3)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4))))) +(-10 -7 (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 ** (|#2| |#2| |#2|)) (-15 -3181 (|#2| |#2| |#2|)) (-15 -2742 (|#2| |#2| |#2|)) (-15 -3676 (|#2| |#2|)) (-15 -4166 (|#2| |#2|)) (-15 -4166 (|#2| |#2| (-1170))) (-15 -1423 (|#2| |#2| (-1170))) (-15 -1423 (|#2| |#2| (-1086 |#2|))) (-15 -3431 (|#2| |#2| (-1170))) (-15 -3431 (|#2| |#2| (-1086 |#2|))) (-15 -3204 (|#2| |#2|)) (-15 -2585 (|#2| (-641 |#2|))) (-15 -4033 (|#2| (-641 |#2|))) (-15 -2902 (|#2| (-641 |#2|))) (-15 -3721 (|#2| (-641 |#2|))) (-15 -1854 (|#2| (-641 |#2|))) (-15 -1765 (|#2| (-641 |#2|)))) +((-3011 ((|#1| |#1| |#1|) 65)) (-3540 ((|#1| |#1| |#1|) 62)) (-2742 ((|#1| |#1| |#1|) 56)) (-4104 ((|#1| |#1|) 45)) (-4343 ((|#1| |#1| (-641 |#1|)) 53)) (-3676 ((|#1| |#1|) 47)) (-3181 ((|#1| |#1| |#1|) 50))) +(((-159 |#1|) (-10 -7 (-15 -3181 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -4343 (|#1| |#1| (-641 |#1|))) (-15 -4104 (|#1| |#1|)) (-15 -2742 (|#1| |#1| |#1|)) (-15 -3540 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|))) (-545)) (T -159)) +((-3011 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3540 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-2742 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-4104 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-4343 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2)))) (-3676 (*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) (-3181 (*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(-10 -7 (-15 -3181 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -4343 (|#1| |#1| (-641 |#1|))) (-15 -4104 (|#1| |#1|)) (-15 -2742 (|#1| |#1| |#1|)) (-15 -3540 (|#1| |#1| |#1|)) (-15 -3011 (|#1| |#1| |#1|))) +((-1423 (($ $ (-1170)) 12) (($ $ (-1086 $)) 11)) (-3431 (($ $ (-1170)) 10) (($ $ (-1086 $)) 9)) (-2742 (($ $ $) 8)) (-4166 (($ $) 14) (($ $ (-1170)) 13)) (-3676 (($ $) 7)) (-3181 (($ $ $) 6))) (((-160) (-140)) (T -160)) -((-3287 (*1 *1 *1) (-4 *1 (-160))) (-3287 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-3275 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-3275 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))) (-1927 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) (-1927 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160))))) -(-13 (-143) (-10 -8 (-15 -3287 ($ $)) (-15 -3287 ($ $ (-1169))) (-15 -3275 ($ $ (-1169))) (-15 -3275 ($ $ (-1085 $))) (-15 -1927 ($ $ (-1169))) (-15 -1927 ($ $ (-1085 $))))) +((-4166 (*1 *1 *1) (-4 *1 (-160))) (-4166 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-1423 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-1423 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) (-3431 (*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) (-3431 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160))))) +(-13 (-143) (-10 -8 (-15 -4166 ($ $)) (-15 -4166 ($ $ (-1170))) (-15 -1423 ($ $ (-1170))) (-15 -1423 ($ $ (-1086 $))) (-15 -3431 ($ $ (-1170))) (-15 -3431 ($ $ (-1086 $))))) (((-143) . T)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-640 (-1128)) $) 10)) (-2943 (((-112) $ $) NIL))) -(((-161) (-13 (-1076) (-10 -8 (-15 -3373 ((-640 (-1128)) $))))) (T -161)) -((-3373 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-161))))) -(-13 (-1076) (-10 -8 (-15 -3373 ((-640 (-1128)) $)))) -((-2049 (((-112) $ $) NIL)) (-3297 (($ (-563)) 14) (($ $ $) 15)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 18)) (-2943 (((-112) $ $) 9))) -(((-162) (-13 (-1093) (-10 -8 (-15 -3297 ($ (-563))) (-15 -3297 ($ $ $))))) (T -162)) -((-3297 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-162)))) (-3297 (*1 *1 *1 *1) (-5 *1 (-162)))) -(-13 (-1093) (-10 -8 (-15 -3297 ($ (-563))) (-15 -3297 ($ $ $)))) -((-3674 (((-114) (-1169)) 99))) -(((-163) (-10 -7 (-15 -3674 ((-114) (-1169))))) (T -163)) -((-3674 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-114)) (-5 *1 (-163))))) -(-10 -7 (-15 -3674 ((-114) (-1169)))) -((-1999 ((|#3| |#3|) 19))) -(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -1999 (|#3| |#3|))) (-1045) (-1233 |#1|) (-1233 |#2|)) (T -164)) -((-1999 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-1233 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1233 *4))))) -(-10 -7 (-15 -1999 (|#3| |#3|))) -((-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 225)) (-3282 ((|#2| $) 102)) (-3419 (($ $) 256)) (-3285 (($ $) 250)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 42)) (-3395 (($ $) 254)) (-3264 (($ $) 248)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 149)) (-2589 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 147)) (-3495 (($ $ $) 231)) (-3853 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 163) (((-684 |#2|) (-684 $)) 157)) (-2532 (($ (-1165 |#2|)) 126) (((-3 $ "failed") (-407 (-1165 |#2|))) NIL)) (-3230 (((-3 $ "failed") $) 217)) (-3459 (((-3 (-407 (-563)) "failed") $) 207)) (-3447 (((-112) $) 202)) (-3437 (((-407 (-563)) $) 205)) (-3406 (((-917)) 95)) (-3473 (($ $ $) 233)) (-3307 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-2656 (($) 245)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 194) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 199)) (-3251 ((|#2| $) 100)) (-2134 (((-1165 |#2|) $) 128)) (-2751 (($ (-1 |#2| |#2|) $) 108)) (-2497 (($ $) 247)) (-2521 (((-1165 |#2|) $) 127)) (-3149 (($ $) 210)) (-3315 (($) 103)) (-1306 (((-418 (-1165 $)) (-1165 $)) 94)) (-1315 (((-418 (-1165 $)) (-1165 $)) 59)) (-3448 (((-3 $ "failed") $ |#2|) 212) (((-3 $ "failed") $ $) 215)) (-3177 (($ $) 246)) (-4322 (((-767) $) 228)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 238)) (-3974 ((|#2| (-1257 $)) NIL) ((|#2|) 97)) (-1361 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2713 (((-1165 |#2|)) 121)) (-3408 (($ $) 255)) (-3273 (($ $) 249)) (-1818 (((-1257 |#2|) $ (-1257 $)) 137) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 117) (((-684 |#2|) (-1257 $)) NIL)) (-2802 (((-1257 |#2|) $) NIL) (($ (-1257 |#2|)) NIL) (((-1165 |#2|) $) NIL) (($ (-1165 |#2|)) NIL) (((-888 (-563)) $) 185) (((-888 (-379)) $) 189) (((-169 (-379)) $) 175) (((-169 (-225)) $) 170) (((-536) $) 181)) (-1382 (($ $) 104)) (-2062 (((-858) $) 146) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-407 (-563))) NIL) (($ $) NIL)) (-3015 (((-1165 |#2|) $) 26)) (-3192 (((-767)) 106)) (-2285 (($ $) 259)) (-3347 (($ $) 253)) (-2264 (($ $) 257)) (-3325 (($ $) 251)) (-3458 ((|#2| $) 242)) (-2275 (($ $) 258)) (-3336 (($ $) 252)) (-3841 (($ $) 165)) (-2943 (((-112) $ $) 111)) (-2966 (((-112) $ $) 201)) (-3039 (($ $) 113) (($ $ $) NIL)) (-3027 (($ $ $) 112)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-563))) 277) (($ $ $) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 119) (($ $ $) 150) (($ $ |#2|) NIL) (($ |#2| $) 115) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL))) -(((-165 |#1| |#2|) (-10 -8 (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -2062 (|#1| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2565 ((-2 (|:| -2570 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4322 ((-767) |#1|)) (-15 -2588 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -3473 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2802 ((-169 (-225)) |#1|)) (-15 -2802 ((-169 (-379)) |#1|)) (-15 -3285 (|#1| |#1|)) (-15 -3264 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3336 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3347 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3419 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -2497 (|#1| |#1|)) (-15 -3177 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2656 (|#1|)) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1315 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1306 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1297 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -3307 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3458 (|#2| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1382 (|#1| |#1|)) (-15 -3315 (|#1|)) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2938 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2532 ((-3 |#1| "failed") (-407 (-1165 |#2|)))) (-15 -2521 ((-1165 |#2|) |#1|)) (-15 -2802 (|#1| (-1165 |#2|))) (-15 -2532 (|#1| (-1165 |#2|))) (-15 -2713 ((-1165 |#2|))) (-15 -3853 ((-684 |#2|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2802 ((-1165 |#2|) |#1|)) (-15 -3974 (|#2|)) (-15 -2802 (|#1| (-1257 |#2|))) (-15 -2802 ((-1257 |#2|) |#1|)) (-15 -1818 ((-684 |#2|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1|)) (-15 -2134 ((-1165 |#2|) |#1|)) (-15 -3015 ((-1165 |#2|) |#1|)) (-15 -3974 (|#2| (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3251 (|#2| |#1|)) (-15 -3282 (|#2| |#1|)) (-15 -3406 ((-917))) (-15 -2062 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) -((-3192 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3406 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-3974 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-2713 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) -(-10 -8 (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -2062 (|#1| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2565 ((-2 (|:| -2570 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4322 ((-767) |#1|)) (-15 -2588 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -3473 (|#1| |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2802 ((-169 (-225)) |#1|)) (-15 -2802 ((-169 (-379)) |#1|)) (-15 -3285 (|#1| |#1|)) (-15 -3264 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3336 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3347 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3419 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -2497 (|#1| |#1|)) (-15 -3177 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2656 (|#1|)) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1315 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1306 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1297 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -3307 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3458 (|#2| |#1|)) (-15 -3841 (|#1| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1382 (|#1| |#1|)) (-15 -3315 (|#1|)) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2938 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2532 ((-3 |#1| "failed") (-407 (-1165 |#2|)))) (-15 -2521 ((-1165 |#2|) |#1|)) (-15 -2802 (|#1| (-1165 |#2|))) (-15 -2532 (|#1| (-1165 |#2|))) (-15 -2713 ((-1165 |#2|))) (-15 -3853 ((-684 |#2|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2802 ((-1165 |#2|) |#1|)) (-15 -3974 (|#2|)) (-15 -2802 (|#1| (-1257 |#2|))) (-15 -2802 ((-1257 |#2|) |#1|)) (-15 -1818 ((-684 |#2|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1|)) (-15 -2134 ((-1165 |#2|) |#1|)) (-15 -3015 ((-1165 |#2|) |#1|)) (-15 -3974 (|#2| (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -3251 (|#2| |#1|)) (-15 -3282 (|#2| |#1|)) (-15 -3406 ((-917))) (-15 -2062 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (-2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2554 (($ $) 94 (-2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2533 (((-112) $) 96 (-2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2660 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-3282 ((|#1| $) 53)) (-3419 (($ $) 227 (|has| |#1| (-1193)))) (-3285 (($ $) 210 (|has| |#1| (-1193)))) (-2758 (((-1181 (-917) (-767)) (-563)) 146 (|has| |#1| (-349)))) (-1482 (((-3 $ "failed") $ $) 19)) (-1325 (((-418 (-1165 $)) (-1165 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2924 (($ $) 113 (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2102 (((-418 $) $) 114 (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2067 (($ $) 240 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-4332 (((-112) $ $) 104 (|has| |#1| (-307)))) (-2433 (((-767)) 87 (|has| |#1| (-368)))) (-3395 (($ $) 226 (|has| |#1| (-1193)))) (-3264 (($ $) 211 (|has| |#1| (-1193)))) (-2242 (($ $) 225 (|has| |#1| (-1193)))) (-3305 (($ $) 212 (|has| |#1| (-1193)))) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 169 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 164)) (-2589 (((-563) $) 168 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 165)) (-1505 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-3495 (($ $ $) 108 (|has| |#1| (-307)))) (-2649 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-3853 (((-684 (-563)) (-684 $)) 163 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 161) (((-684 |#1|) (-684 $)) 160)) (-2532 (($ (-1165 |#1|)) 157) (((-3 $ "failed") (-407 (-1165 |#1|))) 154 (|has| |#1| (-363)))) (-3230 (((-3 $ "failed") $) 33)) (-2079 ((|#1| $) 252)) (-3459 (((-3 (-407 (-563)) "failed") $) 245 (|has| |#1| (-545)))) (-3447 (((-112) $) 247 (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) 246 (|has| |#1| (-545)))) (-3406 (((-917)) 55)) (-4301 (($) 90 (|has| |#1| (-368)))) (-3473 (($ $ $) 107 (|has| |#1| (-307)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 102 (|has| |#1| (-307)))) (-2135 (($) 148 (|has| |#1| (-349)))) (-2812 (((-112) $) 149 (|has| |#1| (-349)))) (-2506 (($ $ (-767)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-3675 (((-112) $) 115 (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3307 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1054)) (|has| |#1| (-1193))))) (-2656 (($) 237 (|has| |#1| (-1193)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 260 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 259 (|has| |#1| (-882 (-379))))) (-2903 (((-917) $) 151 (|has| |#1| (-349))) (((-829 (-917)) $) 137 (|has| |#1| (-349)))) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 239 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3251 ((|#1| $) 52)) (-3113 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| |#1| (-307)))) (-2134 (((-1165 |#1|) $) 45 (|has| |#1| (-363)))) (-3489 (($ $ $) 206 (|has| |#1| (-846)))) (-4105 (($ $ $) 205 (|has| |#1| (-846)))) (-2751 (($ (-1 |#1| |#1|) $) 261)) (-3267 (((-917) $) 89 (|has| |#1| (-368)))) (-2497 (($ $) 234 (|has| |#1| (-1193)))) (-2521 (((-1165 |#1|) $) 155)) (-1607 (($ (-640 $)) 100 (-2811 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 99 (-2811 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1938 (((-1151) $) 9)) (-3149 (($ $) 116 (|has| |#1| (-363)))) (-2956 (($) 142 (|has| |#1| (-349)) CONST)) (-3491 (($ (-917)) 88 (|has| |#1| (-368)))) (-3315 (($) 256)) (-2090 ((|#1| $) 253)) (-3249 (((-1113) $) 10)) (-1738 (($) 159)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 101 (-2811 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-1647 (($ (-640 $)) 98 (-2811 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (($ $ $) 97 (-2811 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 145 (|has| |#1| (-349)))) (-1306 (((-418 (-1165 $)) (-1165 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-1315 (((-418 (-1165 $)) (-1165 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2055 (((-418 $) $) 112 (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 109 (|has| |#1| (-307)))) (-3448 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 92 (-2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| |#1| (-307)))) (-3177 (($ $) 235 (|has| |#1| (-1193)))) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 263 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 262 (|has| |#1| (-514 (-1169) |#1|)))) (-4322 (((-767) $) 105 (|has| |#1| (-307)))) (-3858 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 106 (|has| |#1| (-307)))) (-3974 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-2515 (((-767) $) 150 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-349)))) (-1361 (($ $ (-1 |#1| |#1|) (-767)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-640 (-1169)) (-640 (-767))) 129 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 130 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 131 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 132 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 134 (-2811 (-3743 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3743 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-2811 (-3743 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3743 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2701 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-2713 (((-1165 |#1|)) 158)) (-2252 (($ $) 224 (|has| |#1| (-1193)))) (-3313 (($ $) 213 (|has| |#1| (-1193)))) (-2750 (($) 147 (|has| |#1| (-349)))) (-2231 (($ $) 223 (|has| |#1| (-1193)))) (-3295 (($ $) 214 (|has| |#1| (-1193)))) (-3408 (($ $) 222 (|has| |#1| (-1193)))) (-3273 (($ $) 215 (|has| |#1| (-1193)))) (-1818 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2802 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63) (((-1165 |#1|) $) 170) (($ (-1165 |#1|)) 156) (((-888 (-563)) $) 258 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 257 (|has| |#1| (-611 (-888 (-379))))) (((-169 (-379)) $) 209 (|has| |#1| (-1018))) (((-169 (-225)) $) 208 (|has| |#1| (-1018))) (((-536) $) 207 (|has| |#1| (-611 (-536))))) (-1382 (($ $) 255)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 144 (-2811 (-3743 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-349))))) (-1786 (($ |#1| |#1|) 254)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 86 (-2811 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) 91 (-2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-4376 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-2811 (-3743 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (|has| |#1| (-145))))) (-3015 (((-1165 |#1|) $) 46)) (-3192 (((-767)) 28 T CONST)) (-3288 (((-1257 $)) 68)) (-2285 (($ $) 233 (|has| |#1| (-1193)))) (-3347 (($ $) 221 (|has| |#1| (-1193)))) (-2543 (((-112) $ $) 95 (-2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))))) (-2264 (($ $) 232 (|has| |#1| (-1193)))) (-3325 (($ $) 220 (|has| |#1| (-1193)))) (-2306 (($ $) 231 (|has| |#1| (-1193)))) (-3374 (($ $) 219 (|has| |#1| (-1193)))) (-3458 ((|#1| $) 249 (|has| |#1| (-1193)))) (-4205 (($ $) 230 (|has| |#1| (-1193)))) (-3386 (($ $) 218 (|has| |#1| (-1193)))) (-2296 (($ $) 229 (|has| |#1| (-1193)))) (-3361 (($ $) 217 (|has| |#1| (-1193)))) (-2275 (($ $) 228 (|has| |#1| (-1193)))) (-3336 (($ $) 216 (|has| |#1| (-1193)))) (-3841 (($ $) 250 (|has| |#1| (-1054)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-1 |#1| |#1|) (-767)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-640 (-1169)) (-640 (-767))) 125 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 126 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 127 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 128 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 133 (-2811 (-3743 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3743 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-2811 (-3743 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-3743 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2998 (((-112) $ $) 203 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 202 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 204 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 201 (|has| |#1| (-846)))) (-3050 (($ $ $) 120 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-407 (-563))) 238 (-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))) (($ $ $) 236 (|has| |#1| (-1193))) (($ $ (-563)) 117 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-563)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-563))) 118 (|has| |#1| (-363))))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-641 (-1129)) $) 10)) (-1705 (((-112) $ $) NIL))) +(((-161) (-13 (-1077) (-10 -8 (-15 -4337 ((-641 (-1129)) $))))) (T -161)) +((-4337 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161))))) +(-13 (-1077) (-10 -8 (-15 -4337 ((-641 (-1129)) $)))) +((-3732 (((-112) $ $) NIL)) (-2555 (($ (-564)) 14) (($ $ $) 15)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 18)) (-1705 (((-112) $ $) 9))) +(((-162) (-13 (-1094) (-10 -8 (-15 -2555 ($ (-564))) (-15 -2555 ($ $ $))))) (T -162)) +((-2555 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162)))) (-2555 (*1 *1 *1 *1) (-5 *1 (-162)))) +(-13 (-1094) (-10 -8 (-15 -2555 ($ (-564))) (-15 -2555 ($ $ $)))) +((-4058 (((-114) (-1170)) 99))) +(((-163) (-10 -7 (-15 -4058 ((-114) (-1170))))) (T -163)) +((-4058 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163))))) +(-10 -7 (-15 -4058 ((-114) (-1170)))) +((-3790 ((|#3| |#3|) 19))) +(((-164 |#1| |#2| |#3|) (-10 -7 (-15 -3790 (|#3| |#3|))) (-1046) (-1235 |#1|) (-1235 |#2|)) (T -164)) +((-3790 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) (-4 *2 (-1235 *4))))) +(-10 -7 (-15 -3790 (|#3| |#3|))) +((-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 225)) (-3809 ((|#2| $) 102)) (-2451 (($ $) 256)) (-2319 (($ $) 250)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-2428 (($ $) 254)) (-2297 (($ $) 248)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 149)) (-2239 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 147)) (-1373 (($ $ $) 231)) (-3039 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 163) (((-685 |#2|) (-685 $)) 157)) (-1699 (($ (-1166 |#2|)) 126) (((-3 $ "failed") (-407 (-1166 |#2|))) NIL)) (-3951 (((-3 $ "failed") $) 217)) (-2646 (((-3 (-407 (-564)) "failed") $) 207)) (-4072 (((-112) $) 202)) (-2350 (((-407 (-564)) $) 205)) (-1544 (((-918)) 95)) (-1350 (($ $ $) 233)) (-2207 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 270)) (-1655 (($) 245)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 194) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 199)) (-3328 ((|#2| $) 100)) (-2653 (((-1166 |#2|) $) 128)) (-2187 (($ (-1 |#2| |#2|) $) 108)) (-2192 (($ $) 247)) (-1687 (((-1166 |#2|) $) 127)) (-4373 (($ $) 210)) (-1798 (($) 103)) (-2259 (((-418 (-1166 $)) (-1166 $)) 94)) (-3941 (((-418 (-1166 $)) (-1166 $)) 59)) (-1321 (((-3 $ "failed") $ |#2|) 212) (((-3 $ "failed") $ $) 215)) (-4118 (($ $) 246)) (-4061 (((-768) $) 228)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 238)) (-4284 ((|#2| (-1259 $)) NIL) ((|#2|) 97)) (-4117 (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-3925 (((-1166 |#2|)) 121)) (-2438 (($ $) 255)) (-2309 (($ $) 249)) (-1785 (((-1259 |#2|) $ (-1259 $)) 137) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 117) (((-685 |#2|) (-1259 $)) NIL)) (-2235 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) (((-1166 |#2|) $) NIL) (($ (-1166 |#2|)) NIL) (((-889 (-564)) $) 185) (((-889 (-379)) $) 189) (((-169 (-379)) $) 175) (((-169 (-225)) $) 170) (((-536) $) 181)) (-2766 (($ $) 104)) (-3742 (((-859) $) 146) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2230 (((-1166 |#2|) $) 26)) (-3270 (((-768)) 106)) (-2521 (($ $) 259)) (-2379 (($ $) 253)) (-2495 (($ $) 257)) (-2358 (($ $) 251)) (-2526 ((|#2| $) 242)) (-2507 (($ $) 258)) (-2367 (($ $) 252)) (-2792 (($ $) 165)) (-1705 (((-112) $ $) 111)) (-1723 (((-112) $ $) 201)) (-1790 (($ $) 113) (($ $ $) NIL)) (-1780 (($ $ $) 112)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-407 (-564))) 277) (($ $ $) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 119) (($ $ $) 150) (($ $ |#2|) NIL) (($ |#2| $) 115) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL))) +(((-165 |#1| |#2|) (-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -3742 (|#1| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3719 ((-2 (|:| -4176 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4061 ((-768) |#1|)) (-15 -1318 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -1350 (|#1| |#1| |#1|)) (-15 -1373 (|#1| |#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2235 ((-169 (-225)) |#1|)) (-15 -2235 ((-169 (-379)) |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1655 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3941 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2259 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3561 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2207 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2526 (|#2| |#1|)) (-15 -2792 (|#1| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2766 (|#1| |#1|)) (-15 -1798 (|#1|)) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -3075 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -1699 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -1687 ((-1166 |#2|) |#1|)) (-15 -2235 (|#1| (-1166 |#2|))) (-15 -1699 (|#1| (-1166 |#2|))) (-15 -3925 ((-1166 |#2|))) (-15 -3039 ((-685 |#2|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2235 ((-1166 |#2|) |#1|)) (-15 -4284 (|#2|)) (-15 -2235 (|#1| (-1259 |#2|))) (-15 -2235 ((-1259 |#2|) |#1|)) (-15 -1785 ((-685 |#2|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1|)) (-15 -2653 ((-1166 |#2|) |#1|)) (-15 -2230 ((-1166 |#2|) |#1|)) (-15 -4284 (|#2| (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3328 (|#2| |#1|)) (-15 -3809 (|#2| |#1|)) (-15 -1544 ((-918))) (-15 -3742 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) (-166 |#2|) (-172)) (T -165)) +((-3270 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-1544 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-918)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) (-4284 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) (-3925 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4))))) +(-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -3742 (|#1| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3719 ((-2 (|:| -4176 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4061 ((-768) |#1|)) (-15 -1318 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -1350 (|#1| |#1| |#1|)) (-15 -1373 (|#1| |#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2235 ((-169 (-225)) |#1|)) (-15 -2235 ((-169 (-379)) |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1655 (|#1|)) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -3941 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2259 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3561 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2207 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2526 (|#2| |#1|)) (-15 -2792 (|#1| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2766 (|#1| |#1|)) (-15 -1798 (|#1|)) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -3075 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -1699 ((-3 |#1| "failed") (-407 (-1166 |#2|)))) (-15 -1687 ((-1166 |#2|) |#1|)) (-15 -2235 (|#1| (-1166 |#2|))) (-15 -1699 (|#1| (-1166 |#2|))) (-15 -3925 ((-1166 |#2|))) (-15 -3039 ((-685 |#2|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2235 ((-1166 |#2|) |#1|)) (-15 -4284 (|#2|)) (-15 -2235 (|#1| (-1259 |#2|))) (-15 -2235 ((-1259 |#2|) |#1|)) (-15 -1785 ((-685 |#2|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1|)) (-15 -2653 ((-1166 |#2|) |#1|)) (-15 -2230 ((-1166 |#2|) |#1|)) (-15 -4284 (|#2| (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3328 (|#2| |#1|)) (-15 -3809 (|#2| |#1|)) (-15 -1544 ((-918))) (-15 -3742 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 93 (-4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1948 (($ $) 94 (-4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-1832 (((-112) $) 96 (-4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3580 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3809 ((|#1| $) 53)) (-2451 (($ $) 227 (|has| |#1| (-1194)))) (-2319 (($ $) 210 (|has| |#1| (-1194)))) (-4374 (((-1182 (-918) (-768)) (-564)) 146 (|has| |#1| (-349)))) (-3239 (((-3 $ "failed") $ $) 19)) (-3679 (((-418 (-1166 $)) (-1166 $)) 241 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-2249 (($ $) 113 (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3048 (((-418 $) $) 114 (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4137 (($ $) 240 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 244 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-2377 (((-112) $ $) 104 (|has| |#1| (-307)))) (-1938 (((-768)) 87 (|has| |#1| (-368)))) (-2428 (($ $) 226 (|has| |#1| (-1194)))) (-2297 (($ $) 211 (|has| |#1| (-1194)))) (-2473 (($ $) 225 (|has| |#1| (-1194)))) (-2339 (($ $) 212 (|has| |#1| (-1194)))) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-2239 (((-564) $) 168 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 165)) (-2340 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-1373 (($ $ $) 108 (|has| |#1| (-307)))) (-3807 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-3039 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-1699 (($ (-1166 |#1|)) 157) (((-3 $ "failed") (-407 (-1166 |#1|))) 154 (|has| |#1| (-363)))) (-3951 (((-3 $ "failed") $) 33)) (-4151 ((|#1| $) 252)) (-2646 (((-3 (-407 (-564)) "failed") $) 245 (|has| |#1| (-545)))) (-4072 (((-112) $) 247 (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) 246 (|has| |#1| (-545)))) (-1544 (((-918)) 55)) (-2821 (($) 90 (|has| |#1| (-368)))) (-1350 (($ $ $) 107 (|has| |#1| (-307)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 102 (|has| |#1| (-307)))) (-2757 (($) 148 (|has| |#1| (-349)))) (-1313 (((-112) $) 149 (|has| |#1| (-349)))) (-3176 (($ $ (-768)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-4188 (((-112) $) 115 (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-2207 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 248 (-12 (|has| |#1| (-1055)) (|has| |#1| (-1194))))) (-1655 (($) 237 (|has| |#1| (-1194)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 260 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 259 (|has| |#1| (-883 (-379))))) (-1619 (((-918) $) 151 (|has| |#1| (-349))) (((-830 (-918)) $) 137 (|has| |#1| (-349)))) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 239 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-3328 ((|#1| $) 52)) (-3907 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-307)))) (-2653 (((-1166 |#1|) $) 45 (|has| |#1| (-363)))) (-2799 (($ $ $) 206 (|has| |#1| (-847)))) (-2848 (($ $ $) 205 (|has| |#1| (-847)))) (-2187 (($ (-1 |#1| |#1|) $) 261)) (-1906 (((-918) $) 89 (|has| |#1| (-368)))) (-2192 (($ $) 234 (|has| |#1| (-1194)))) (-1687 (((-1166 |#1|) $) 155)) (-2529 (($ (-641 $)) 100 (-4030 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 99 (-4030 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2217 (((-1152) $) 9)) (-4373 (($ $) 116 (|has| |#1| (-363)))) (-3258 (($) 142 (|has| |#1| (-349)) CONST)) (-1495 (($ (-918)) 88 (|has| |#1| (-368)))) (-1798 (($) 256)) (-4161 ((|#1| $) 253)) (-3864 (((-1114) $) 10)) (-1693 (($) 159)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 101 (-4030 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2577 (($ (-641 $)) 98 (-4030 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (($ $ $) 97 (-4030 (|has| |#1| (-307)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 145 (|has| |#1| (-349)))) (-2259 (((-418 (-1166 $)) (-1166 $)) 243 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3941 (((-418 (-1166 $)) (-1166 $)) 242 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4127 (((-418 $) $) 112 (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 109 (|has| |#1| (-307)))) (-1321 (((-3 $ "failed") $ |#1|) 251 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 92 (-4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-307)))) (-4118 (($ $) 235 (|has| |#1| (-1194)))) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) 267 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 266 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 265 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 264 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 263 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 262 (|has| |#1| (-514 (-1170) |#1|)))) (-4061 (((-768) $) 105 (|has| |#1| (-307)))) (-4382 (($ $ |#1|) 268 (|has| |#1| (-286 |#1| |#1|)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 106 (|has| |#1| (-307)))) (-4284 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-2819 (((-768) $) 150 (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) 138 (|has| |#1| (-349)))) (-4117 (($ $ (-1 |#1| |#1|) (-768)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-641 (-1170)) (-641 (-768))) 129 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 130 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 131 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 132 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 134 (-4030 (-4267 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4267 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 136 (-4030 (-4267 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4267 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-2277 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3925 (((-1166 |#1|)) 158)) (-2484 (($ $) 224 (|has| |#1| (-1194)))) (-2348 (($ $) 213 (|has| |#1| (-1194)))) (-1543 (($) 147 (|has| |#1| (-349)))) (-2462 (($ $) 223 (|has| |#1| (-1194)))) (-2328 (($ $) 214 (|has| |#1| (-1194)))) (-2438 (($ $) 222 (|has| |#1| (-1194)))) (-2309 (($ $) 215 (|has| |#1| (-1194)))) (-1785 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2235 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) (((-1166 |#1|) $) 170) (($ (-1166 |#1|)) 156) (((-889 (-564)) $) 258 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 257 (|has| |#1| (-612 (-889 (-379))))) (((-169 (-379)) $) 209 (|has| |#1| (-1019))) (((-169 (-225)) $) 208 (|has| |#1| (-1019))) (((-536) $) 207 (|has| |#1| (-612 (-536))))) (-2766 (($ $) 255)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 144 (-4030 (-4267 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-349))))) (-2315 (($ |#1| |#1|) 254)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 86 (-4030 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) 91 (-4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-4253 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (-4030 (-4267 (|has| $ (-145)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))) (|has| |#1| (-145))))) (-2230 (((-1166 |#1|) $) 46)) (-3270 (((-768)) 28 T CONST)) (-4265 (((-1259 $)) 68)) (-2521 (($ $) 233 (|has| |#1| (-1194)))) (-2379 (($ $) 221 (|has| |#1| (-1194)))) (-3360 (((-112) $ $) 95 (-4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906)))))) (-2495 (($ $) 232 (|has| |#1| (-1194)))) (-2358 (($ $) 220 (|has| |#1| (-1194)))) (-2548 (($ $) 231 (|has| |#1| (-1194)))) (-2404 (($ $) 219 (|has| |#1| (-1194)))) (-2526 ((|#1| $) 249 (|has| |#1| (-1194)))) (-4065 (($ $) 230 (|has| |#1| (-1194)))) (-2415 (($ $) 218 (|has| |#1| (-1194)))) (-2534 (($ $) 229 (|has| |#1| (-1194)))) (-2391 (($ $) 217 (|has| |#1| (-1194)))) (-2507 (($ $) 228 (|has| |#1| (-1194)))) (-2367 (($ $) 216 (|has| |#1| (-1194)))) (-2792 (($ $) 250 (|has| |#1| (-1055)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-1 |#1| |#1|) (-768)) 124) (($ $ (-1 |#1| |#1|)) 123) (($ $ (-641 (-1170)) (-641 (-768))) 125 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 126 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 127 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 128 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 133 (-4030 (-4267 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4267 (|has| |#1| (-233)) (|has| |#1| (-363))))) (($ $) 135 (-4030 (-4267 (|has| |#1| (-363)) (|has| |#1| (-233))) (|has| |#1| (-233)) (-4267 (|has| |#1| (-233)) (|has| |#1| (-363)))))) (-1751 (((-112) $ $) 203 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 202 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 204 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 201 (|has| |#1| (-847)))) (-1799 (($ $ $) 120 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-407 (-564))) 238 (-12 (|has| |#1| (-999)) (|has| |#1| (-1194)))) (($ $ $) 236 (|has| |#1| (-1194))) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363))))) (((-166 |#1|) (-140) (-172)) (T -166)) -((-3251 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3315 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1382 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1786 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2090 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-3841 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-3458 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1193)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1193)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-3459 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563)))))) -(-13 (-720 |t#1| (-1165 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-880 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -1786) (-15 -3315 ($)) (-15 -1382 ($ $)) (-15 -1786 ($ |t#1| |t#1|)) (-15 -2090 (|t#1| $)) (-15 -2079 (|t#1| $)) (-15 -3251 (|t#1| $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-555)) (-15 -3448 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |t#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1018)) (PROGN (-6 (-611 (-169 (-225)))) (-6 (-611 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3841 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1193)) (PROGN (-6 (-1193)) (-15 -3458 (|t#1| $)) (IF (|has| |t#1| (-998)) (-6 (-998)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3307 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-905)) (IF (|has| |t#1| (-307)) (-6 (-905)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1193)) ((-95) |has| |#1| (-1193)) ((-102) . T) ((-111 #0# #0#) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-610 (-858)) . T) ((-172) . T) ((-611 (-169 (-225))) |has| |#1| (-1018)) ((-611 (-169 (-379))) |has| |#1| (-1018)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-611 #1=(-1165 |#1|)) . T) ((-231 |#1|) . T) ((-233) -2811 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1193)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2811 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -2811 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2811 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -2811 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1193)) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-555) -2811 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-643 #0#) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-720 |#1| #1#) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-905) -12 (|has| |#1| (-307)) (|has| |#1| (-905))) ((-916) -2811 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-998) -12 (|has| |#1| (-998)) (|has| |#1| (-1193))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-349)) ((-1193) |has| |#1| (-1193)) ((-1196) |has| |#1| (-1193)) ((-1208) . T) ((-1212) -2811 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) -((-2055 (((-418 |#2|) |#2|) 69))) -(((-167 |#1| |#2|) (-10 -7 (-15 -2055 ((-418 |#2|) |#2|))) (-307) (-1233 (-169 |#1|))) (T -167)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) -(-10 -7 (-15 -2055 ((-418 |#2|) |#2|))) -((-2751 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) -(((-168 |#1| |#2|) (-10 -7 (-15 -2751 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) -(-10 -7 (-15 -2751 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 34)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-2554 (($ $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-2533 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-2660 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) NIL)) (-3282 ((|#1| $) NIL)) (-3419 (($ $) NIL (|has| |#1| (-1193)))) (-3285 (($ $) NIL (|has| |#1| (-1193)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-349)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2924 (($ $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2102 (((-418 $) $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-2067 (($ $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-307)))) (-2433 (((-767)) NIL (|has| |#1| (-368)))) (-3395 (($ $) NIL (|has| |#1| (-1193)))) (-3264 (($ $) NIL (|has| |#1| (-1193)))) (-2242 (($ $) NIL (|has| |#1| (-1193)))) (-3305 (($ $) NIL (|has| |#1| (-1193)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-1505 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3495 (($ $ $) NIL (|has| |#1| (-307)))) (-2649 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-2532 (($ (-1165 |#1|)) NIL) (((-3 $ "failed") (-407 (-1165 |#1|))) NIL (|has| |#1| (-363)))) (-3230 (((-3 $ "failed") $) NIL)) (-2079 ((|#1| $) 13)) (-3459 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-3447 (((-112) $) NIL (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-3406 (((-917)) NIL)) (-4301 (($) NIL (|has| |#1| (-368)))) (-3473 (($ $ $) NIL (|has| |#1| (-307)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-307)))) (-2135 (($) NIL (|has| |#1| (-349)))) (-2812 (((-112) $) NIL (|has| |#1| (-349)))) (-2506 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-3675 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-3307 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1054)) (|has| |#1| (-1193))))) (-2656 (($) NIL (|has| |#1| (-1193)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-2903 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-2712 (((-112) $) 36)) (-1403 (($ $ (-563)) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193))))) (-3251 ((|#1| $) 47)) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-307)))) (-2134 (((-1165 |#1|) $) NIL (|has| |#1| (-363)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-917) $) NIL (|has| |#1| (-368)))) (-2497 (($ $) NIL (|has| |#1| (-1193)))) (-2521 (((-1165 |#1|) $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-2956 (($) NIL (|has| |#1| (-349)) CONST)) (-3491 (($ (-917)) NIL (|has| |#1| (-368)))) (-3315 (($) NIL)) (-2090 ((|#1| $) 15)) (-3249 (((-1113) $) NIL)) (-1738 (($) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-307)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| |#1| (-349)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-905))))) (-2055 (((-418 $) $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-363))))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-307)))) (-3448 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 48 (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-307)))) (-3177 (($ $) NIL (|has| |#1| (-1193)))) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-4322 (((-767) $) NIL (|has| |#1| (-307)))) (-3858 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-307)))) (-3974 ((|#1| (-1257 $)) NIL) ((|#1|) NIL)) (-2515 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-1361 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2701 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2713 (((-1165 |#1|)) NIL)) (-2252 (($ $) NIL (|has| |#1| (-1193)))) (-3313 (($ $) NIL (|has| |#1| (-1193)))) (-2750 (($) NIL (|has| |#1| (-349)))) (-2231 (($ $) NIL (|has| |#1| (-1193)))) (-3295 (($ $) NIL (|has| |#1| (-1193)))) (-3408 (($ $) NIL (|has| |#1| (-1193)))) (-3273 (($ $) NIL (|has| |#1| (-1193)))) (-1818 (((-1257 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-2802 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL) (((-1165 |#1|) $) NIL) (($ (-1165 |#1|)) NIL) (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1018))) (((-169 (-225)) $) NIL (|has| |#1| (-1018))) (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1382 (($ $) 46)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-349))))) (-1786 (($ |#1| |#1|) 38)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) 37) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-4376 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3015 (((-1165 |#1|) $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL)) (-2285 (($ $) NIL (|has| |#1| (-1193)))) (-3347 (($ $) NIL (|has| |#1| (-1193)))) (-2543 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-307)) (|has| |#1| (-905))) (|has| |#1| (-555))))) (-2264 (($ $) NIL (|has| |#1| (-1193)))) (-3325 (($ $) NIL (|has| |#1| (-1193)))) (-2306 (($ $) NIL (|has| |#1| (-1193)))) (-3374 (($ $) NIL (|has| |#1| (-1193)))) (-3458 ((|#1| $) NIL (|has| |#1| (-1193)))) (-4205 (($ $) NIL (|has| |#1| (-1193)))) (-3386 (($ $) NIL (|has| |#1| (-1193)))) (-2296 (($ $) NIL (|has| |#1| (-1193)))) (-3361 (($ $) NIL (|has| |#1| (-1193)))) (-2275 (($ $) NIL (|has| |#1| (-1193)))) (-3336 (($ $) NIL (|has| |#1| (-1193)))) (-3841 (($ $) NIL (|has| |#1| (-1054)))) (-3790 (($) 28 T CONST)) (-3803 (($) 30 T CONST)) (-2038 (((-1151) $) 23 (|has| |#1| (-824))) (((-1151) $ (-112)) 25 (|has| |#1| (-824))) (((-1262) (-818) $) 26 (|has| |#1| (-824))) (((-1262) (-818) $ (-112)) 27 (|has| |#1| (-824)))) (-4191 (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 40)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-407 (-563))) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1193)))) (($ $ $) NIL (|has| |#1| (-1193))) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-563))) NIL (|has| |#1| (-363))))) -(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-172)) (T -169)) -NIL -(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) -((-2802 (((-888 |#1|) |#3|) 22))) -(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2802 ((-888 |#1|) |#3|))) (-1093) (-13 (-611 (-888 |#1|)) (-172)) (-166 |#2|)) (T -170)) -((-2802 (*1 *2 *3) (-12 (-4 *5 (-13 (-611 *2) (-172))) (-5 *2 (-888 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1093)) (-4 *3 (-166 *5))))) -(-10 -7 (-15 -2802 ((-888 |#1|) |#3|))) -((-2049 (((-112) $ $) NIL)) (-3338 (((-112) $) 9)) (-3327 (((-112) $ (-112)) 11)) (-2552 (($) 13)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2208 (($ $) 14)) (-2062 (((-858) $) 18)) (-3484 (((-112) $) 8)) (-3028 (((-112) $ (-112)) 10)) (-2943 (((-112) $ $) NIL))) -(((-171) (-13 (-1093) (-10 -8 (-15 -2552 ($)) (-15 -3484 ((-112) $)) (-15 -3338 ((-112) $)) (-15 -3028 ((-112) $ (-112))) (-15 -3327 ((-112) $ (-112))) (-15 -2208 ($ $))))) (T -171)) -((-2552 (*1 *1) (-5 *1 (-171))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3028 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3327 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-2208 (*1 *1 *1) (-5 *1 (-171)))) -(-13 (-1093) (-10 -8 (-15 -2552 ($)) (-15 -3484 ((-112) $)) (-15 -3338 ((-112) $)) (-15 -3028 ((-112) $ (-112))) (-15 -3327 ((-112) $ (-112))) (-15 -2208 ($ $)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +((-3328 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1798 (*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2766 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-2315 (*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) (-1321 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-2792 (*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-2526 (*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1055)) (-4 *3 (-1194)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2646 (*1 *2 *1) (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564)))))) +(-13 (-721 |t#1| (-1166 |t#1|)) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-400 |t#1|) (-881 |t#1|) (-377 |t#1|) (-172) (-10 -8 (-6 -2315) (-15 -1798 ($)) (-15 -2766 ($ $)) (-15 -2315 ($ |t#1| |t#1|)) (-15 -4161 (|t#1| $)) (-15 -4151 (|t#1| $)) (-15 -3328 (|t#1| $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-556)) (-15 -1321 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-307)) (-6 (-307)) |%noBranch|) (IF (|has| |t#1| (-6 -4410)) (-6 -4410) |%noBranch|) (IF (|has| |t#1| (-6 -4407)) (-6 -4407) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1019)) (PROGN (-6 (-612 (-169 (-225)))) (-6 (-612 (-169 (-379))))) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2792 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1194)) (PROGN (-6 (-1194)) (-15 -2526 (|t#1| $)) (IF (|has| |t#1| (-999)) (-6 (-999)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2207 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-906)) (IF (|has| |t#1| (-307)) (-6 (-906)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-35) |has| |#1| (-1194)) ((-95) |has| |#1| (-1194)) ((-102) . T) ((-111 #0# #0#) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4030 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-611 (-859)) . T) ((-172) . T) ((-612 (-169 (-225))) |has| |#1| (-1019)) ((-612 (-169 (-379))) |has| |#1| (-1019)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-612 #1=(-1166 |#1|)) . T) ((-231 |#1|) . T) ((-233) -4030 (|has| |#1| (-349)) (|has| |#1| (-233))) ((-243) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-284) |has| |#1| (-1194)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4030 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-307) -4030 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4030 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| #1#) . T) ((-409 |#1| #1#) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) -4030 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-493) |has| |#1| (-1194)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) -4030 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-644 #0#) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-714 |#1|) . T) ((-714 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-721 |#1| #1#) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-906) -12 (|has| |#1| (-307)) (|has| |#1| (-906))) ((-917) -4030 (|has| |#1| (-349)) (|has| |#1| (-363)) (|has| |#1| (-307))) ((-999) -12 (|has| |#1| (-999)) (|has| |#1| (-1194))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1194) |has| |#1| (-1194)) ((-1197) |has| |#1| (-1194)) ((-1209) . T) ((-1213) -4030 (|has| |#1| (-349)) (|has| |#1| (-363)) (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) +((-4127 (((-418 |#2|) |#2|) 69))) +(((-167 |#1| |#2|) (-10 -7 (-15 -4127 ((-418 |#2|) |#2|))) (-307) (-1235 (-169 |#1|))) (T -167)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(-10 -7 (-15 -4127 ((-418 |#2|) |#2|))) +((-2187 (((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)) 14))) +(((-168 |#1| |#2|) (-10 -7 (-15 -2187 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) (-172) (-172)) (T -168)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6))))) +(-10 -7 (-15 -2187 ((-169 |#2|) (-1 |#2| |#1|) (-169 |#1|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 34)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-1948 (($ $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-1832 (((-112) $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3580 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) NIL)) (-3809 ((|#1| $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-1194)))) (-2319 (($ $) NIL (|has| |#1| (-1194)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-349)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-2249 (($ $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-3048 (((-418 $) $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4137 (($ $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-307)))) (-1938 (((-768)) NIL (|has| |#1| (-368)))) (-2428 (($ $) NIL (|has| |#1| (-1194)))) (-2297 (($ $) NIL (|has| |#1| (-1194)))) (-2473 (($ $) NIL (|has| |#1| (-1194)))) (-2339 (($ $) NIL (|has| |#1| (-1194)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-2340 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-1373 (($ $ $) NIL (|has| |#1| (-307)))) (-3807 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1699 (($ (-1166 |#1|)) NIL) (((-3 $ "failed") (-407 (-1166 |#1|))) NIL (|has| |#1| (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-4151 ((|#1| $) 13)) (-2646 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-4072 (((-112) $) NIL (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-1544 (((-918)) NIL)) (-2821 (($) NIL (|has| |#1| (-368)))) (-1350 (($ $ $) NIL (|has| |#1| (-307)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-307)))) (-2757 (($) NIL (|has| |#1| (-349)))) (-1313 (((-112) $) NIL (|has| |#1| (-349)))) (-3176 (($ $ (-768)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-4188 (((-112) $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-2207 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1055)) (|has| |#1| (-1194))))) (-1655 (($) NIL (|has| |#1| (-1194)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#1| (-883 (-379))))) (-1619 (((-918) $) NIL (|has| |#1| (-349))) (((-830 (-918)) $) NIL (|has| |#1| (-349)))) (-3840 (((-112) $) 36)) (-2347 (($ $ (-564)) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194))))) (-3328 ((|#1| $) 47)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-2653 (((-1166 |#1|) $) NIL (|has| |#1| (-363)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1906 (((-918) $) NIL (|has| |#1| (-368)))) (-2192 (($ $) NIL (|has| |#1| (-1194)))) (-1687 (((-1166 |#1|) $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-3258 (($) NIL (|has| |#1| (-349)) CONST)) (-1495 (($ (-918)) NIL (|has| |#1| (-368)))) (-1798 (($) NIL)) (-4161 ((|#1| $) 15)) (-3864 (((-1114) $) NIL)) (-1693 (($) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-307)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-307))) (($ $ $) NIL (|has| |#1| (-307)))) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| |#1| (-349)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#1| (-307)) (|has| |#1| (-906))))) (-4127 (((-418 $) $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-363))))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-307)))) (-1321 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 48 (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-307)))) (-4118 (($ $) NIL (|has| |#1| (-1194)))) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4061 (((-768) $) NIL (|has| |#1| (-307)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-307)))) (-4284 ((|#1| (-1259 $)) NIL) ((|#1|) NIL)) (-2819 (((-768) $) NIL (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) NIL (|has| |#1| (-349)))) (-4117 (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2277 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3925 (((-1166 |#1|)) NIL)) (-2484 (($ $) NIL (|has| |#1| (-1194)))) (-2348 (($ $) NIL (|has| |#1| (-1194)))) (-1543 (($) NIL (|has| |#1| (-349)))) (-2462 (($ $) NIL (|has| |#1| (-1194)))) (-2328 (($ $) NIL (|has| |#1| (-1194)))) (-2438 (($ $) NIL (|has| |#1| (-1194)))) (-2309 (($ $) NIL (|has| |#1| (-1194)))) (-1785 (((-1259 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2235 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) (((-1166 |#1|) $) NIL) (($ (-1166 |#1|)) NIL) (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (((-169 (-379)) $) NIL (|has| |#1| (-1019))) (((-169 (-225)) $) NIL (|has| |#1| (-1019))) (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2766 (($ $) 46)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-349))))) (-2315 (($ |#1| |#1|) 38)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) 37) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-4253 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-2230 (((-1166 |#1|) $) NIL)) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL)) (-2521 (($ $) NIL (|has| |#1| (-1194)))) (-2379 (($ $) NIL (|has| |#1| (-1194)))) (-3360 (((-112) $ $) NIL (-4030 (-12 (|has| |#1| (-307)) (|has| |#1| (-906))) (|has| |#1| (-556))))) (-2495 (($ $) NIL (|has| |#1| (-1194)))) (-2358 (($ $) NIL (|has| |#1| (-1194)))) (-2548 (($ $) NIL (|has| |#1| (-1194)))) (-2404 (($ $) NIL (|has| |#1| (-1194)))) (-2526 ((|#1| $) NIL (|has| |#1| (-1194)))) (-4065 (($ $) NIL (|has| |#1| (-1194)))) (-2415 (($ $) NIL (|has| |#1| (-1194)))) (-2534 (($ $) NIL (|has| |#1| (-1194)))) (-2391 (($ $) NIL (|has| |#1| (-1194)))) (-2507 (($ $) NIL (|has| |#1| (-1194)))) (-2367 (($ $) NIL (|has| |#1| (-1194)))) (-2792 (($ $) NIL (|has| |#1| (-1055)))) (-4311 (($) 28 T CONST)) (-4321 (($) 30 T CONST)) (-2412 (((-1152) $) 23 (|has| |#1| (-825))) (((-1152) $ (-112)) 25 (|has| |#1| (-825))) (((-1264) (-819) $) 26 (|has| |#1| (-825))) (((-1264) (-819) $ (-112)) 27 (|has| |#1| (-825)))) (-2124 (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ $) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 40)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-407 (-564))) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1194)))) (($ $ $) NIL (|has| |#1| (-1194))) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 43) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))))) +(((-169 |#1|) (-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-172)) (T -169)) +NIL +(-13 (-166 |#1|) (-10 -7 (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) +((-2235 (((-889 |#1|) |#3|) 22))) +(((-170 |#1| |#2| |#3|) (-10 -7 (-15 -2235 ((-889 |#1|) |#3|))) (-1094) (-13 (-612 (-889 |#1|)) (-172)) (-166 |#2|)) (T -170)) +((-2235 (*1 *2 *3) (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-889 *4)) (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5))))) +(-10 -7 (-15 -2235 ((-889 |#1|) |#3|))) +((-3732 (((-112) $ $) NIL)) (-1850 (((-112) $) 9)) (-3266 (((-112) $ (-112)) 11)) (-3619 (($) 13)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3896 (($ $) 14)) (-3742 (((-859) $) 18)) (-2387 (((-112) $) 8)) (-3566 (((-112) $ (-112)) 10)) (-1705 (((-112) $ $) NIL))) +(((-171) (-13 (-1094) (-10 -8 (-15 -3619 ($)) (-15 -2387 ((-112) $)) (-15 -1850 ((-112) $)) (-15 -3566 ((-112) $ (-112))) (-15 -3266 ((-112) $ (-112))) (-15 -3896 ($ $))))) (T -171)) +((-3619 (*1 *1) (-5 *1 (-171))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-1850 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3566 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3266 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) (-3896 (*1 *1 *1) (-5 *1 (-171)))) +(-13 (-1094) (-10 -8 (-15 -3619 ($)) (-15 -2387 ((-112) $)) (-15 -1850 ((-112) $)) (-15 -3566 ((-112) $ (-112))) (-15 -3266 ((-112) $ (-112))) (-15 -3896 ($ $)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-172) (-140)) (T -172)) NIL -(-13 (-1045) (-111 $ $) (-10 -7 (-6 (-4410 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-3018 (($ $) 6))) +(-13 (-1046) (-111 $ $) (-10 -7 (-6 (-4413 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-1322 (($ $) 6))) (((-173) (-140)) (T -173)) -((-3018 (*1 *1 *1) (-4 *1 (-173)))) -(-13 (-10 -8 (-15 -3018 ($ $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 ((|#1| $) 80)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-3495 (($ $ $) NIL)) (-3397 (($ $) 21)) (-3439 (($ |#1| (-1149 |#1|)) 49)) (-3230 (((-3 $ "failed") $) 122)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-3407 (((-1149 |#1|) $) 87)) (-3429 (((-1149 |#1|) $) 84)) (-3421 (((-1149 |#1|) $) 85)) (-2712 (((-112) $) NIL)) (-3364 (((-1149 |#1|) $) 93)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1607 (($ (-640 $)) NIL) (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL)) (-2884 (($ $ (-563)) 96)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-3350 (((-1149 |#1|) $) 94)) (-3376 (((-1149 (-407 |#1|)) $) 14)) (-1669 (($ (-407 |#1|)) 17) (($ |#1| (-1149 |#1|) (-1149 |#1|)) 39)) (-2686 (($ $) 98)) (-2062 (((-858) $) 139) (($ (-563)) 52) (($ |#1|) 53) (($ (-407 |#1|)) 37) (($ (-407 (-563))) NIL) (($ $) NIL)) (-3192 (((-767)) 69 T CONST)) (-2543 (((-112) $ $) NIL)) (-3388 (((-1149 (-407 |#1|)) $) 20)) (-3790 (($) 27 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 36)) (-3050 (($ $ $) 120)) (-3039 (($ $) 111) (($ $ $) 108)) (-3027 (($ $ $) 106)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 118) (($ $ $) 113) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-407 |#1|) $) 116) (($ $ (-407 |#1|)) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL))) -(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -1669 ($ (-407 |#1|))) (-15 -1669 ($ |#1| (-1149 |#1|) (-1149 |#1|))) (-15 -3439 ($ |#1| (-1149 |#1|))) (-15 -3429 ((-1149 |#1|) $)) (-15 -3421 ((-1149 |#1|) $)) (-15 -3407 ((-1149 |#1|) $)) (-15 -3223 (|#1| $)) (-15 -3397 ($ $)) (-15 -3388 ((-1149 (-407 |#1|)) $)) (-15 -3376 ((-1149 (-407 |#1|)) $)) (-15 -3364 ((-1149 |#1|) $)) (-15 -3350 ((-1149 |#1|) $)) (-15 -2884 ($ $ (-563))) (-15 -2686 ($ $)))) (-307)) (T -174)) -((-1669 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-1669 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3439 (*1 *1 *2 *3) (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-3429 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3407 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3223 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-3397 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3376 (*1 *2 *1) (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3364 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3350 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2686 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) -(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -1669 ($ (-407 |#1|))) (-15 -1669 ($ |#1| (-1149 |#1|) (-1149 |#1|))) (-15 -3439 ($ |#1| (-1149 |#1|))) (-15 -3429 ((-1149 |#1|) $)) (-15 -3421 ((-1149 |#1|) $)) (-15 -3407 ((-1149 |#1|) $)) (-15 -3223 (|#1| $)) (-15 -3397 ($ $)) (-15 -3388 ((-1149 (-407 |#1|)) $)) (-15 -3376 ((-1149 (-407 |#1|)) $)) (-15 -3364 ((-1149 |#1|) $)) (-15 -3350 ((-1149 |#1|) $)) (-15 -2884 ($ $ (-563))) (-15 -2686 ($ $)))) -((-3451 (($ (-109) $) 13)) (-1784 (((-3 (-109) "failed") (-1169) $) 12)) (-2062 (((-858) $) 16)) (-3464 (((-640 (-109)) $) 8))) -(((-175) (-13 (-610 (-858)) (-10 -8 (-15 -3464 ((-640 (-109)) $)) (-15 -3451 ($ (-109) $)) (-15 -1784 ((-3 (-109) "failed") (-1169) $))))) (T -175)) -((-3464 (*1 *2 *1) (-12 (-5 *2 (-640 (-109))) (-5 *1 (-175)))) (-3451 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-1784 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-175))))) -(-13 (-610 (-858)) (-10 -8 (-15 -3464 ((-640 (-109)) $)) (-15 -3451 ($ (-109) $)) (-15 -1784 ((-3 (-109) "failed") (-1169) $)))) -((-3595 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 40)) (-3506 (((-939 |#1|) (-939 |#1|)) 24)) (-3555 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 36)) (-3485 (((-939 |#1|) (-939 |#1|)) 22)) (-3536 (((-939 |#1|) (-939 |#1|)) 30)) (-3526 (((-939 |#1|) (-939 |#1|)) 29)) (-3516 (((-939 |#1|) (-939 |#1|)) 28)) (-3565 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 37)) (-3545 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 35)) (-3610 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 34)) (-3497 (((-939 |#1|) (-939 |#1|)) 23)) (-3605 (((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|) 43)) (-3475 (((-939 |#1|) (-939 |#1|)) 8)) (-3584 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 39)) (-3574 (((-1 (-939 |#1|) (-939 |#1|)) |#1|) 38))) -(((-176 |#1|) (-10 -7 (-15 -3475 ((-939 |#1|) (-939 |#1|))) (-15 -3485 ((-939 |#1|) (-939 |#1|))) (-15 -3497 ((-939 |#1|) (-939 |#1|))) (-15 -3506 ((-939 |#1|) (-939 |#1|))) (-15 -3516 ((-939 |#1|) (-939 |#1|))) (-15 -3526 ((-939 |#1|) (-939 |#1|))) (-15 -3536 ((-939 |#1|) (-939 |#1|))) (-15 -3610 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3545 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3555 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3565 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3574 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3584 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3595 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3605 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) (-13 (-363) (-1193) (-998))) (T -176)) -((-3605 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3595 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3584 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3574 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3565 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3555 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3545 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3610 (*1 *2 *3) (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1193) (-998))))) (-3536 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3526 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3516 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3506 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3497 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3485 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3)))) (-3475 (*1 *2 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) (-5 *1 (-176 *3))))) -(-10 -7 (-15 -3475 ((-939 |#1|) (-939 |#1|))) (-15 -3485 ((-939 |#1|) (-939 |#1|))) (-15 -3497 ((-939 |#1|) (-939 |#1|))) (-15 -3506 ((-939 |#1|) (-939 |#1|))) (-15 -3516 ((-939 |#1|) (-939 |#1|))) (-15 -3526 ((-939 |#1|) (-939 |#1|))) (-15 -3536 ((-939 |#1|) (-939 |#1|))) (-15 -3610 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3545 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3555 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3565 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3574 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3584 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3595 ((-1 (-939 |#1|) (-939 |#1|)) |#1|)) (-15 -3605 ((-1 (-939 |#1|) (-939 |#1|)) |#1| |#1|))) -((-3015 ((|#2| |#3|) 28))) -(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -3015 (|#2| |#3|))) (-172) (-1233 |#1|) (-720 |#1| |#2|)) (T -177)) -((-3015 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1233 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-720 *4 *2))))) -(-10 -7 (-15 -3015 (|#2| |#3|))) -((-2938 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 49 (|has| (-948 |#2|) (-882 |#1|))))) -(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -2938 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|)) (-1093) (-13 (-882 |#1|) (-172)) (-166 |#2|)) (T -178)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5)) (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) -(-10 -7 (IF (|has| (-948 |#2|) (-882 |#1|)) (-15 -2938 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) |%noBranch|)) -((-3625 (((-640 |#1|) (-640 |#1|) |#1|) 41)) (-3615 (((-640 |#1|) |#1| (-640 |#1|)) 20)) (-1465 (((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|)) 36) ((|#1| (-640 |#1|) (-640 |#1|)) 32))) -(((-179 |#1|) (-10 -7 (-15 -3615 ((-640 |#1|) |#1| (-640 |#1|))) (-15 -1465 (|#1| (-640 |#1|) (-640 |#1|))) (-15 -1465 ((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|))) (-15 -3625 ((-640 |#1|) (-640 |#1|) |#1|))) (-307)) (T -179)) -((-3625 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-1465 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-640 *4))) (-5 *2 (-640 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-1465 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-3615 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) -(-10 -7 (-15 -3615 ((-640 |#1|) |#1| (-640 |#1|))) (-15 -1465 (|#1| (-640 |#1|) (-640 |#1|))) (-15 -1465 ((-640 |#1|) (-640 (-640 |#1|)) (-640 |#1|))) (-15 -3625 ((-640 |#1|) (-640 |#1|) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2089 (((-1207) $) 13)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2784 (((-1128) $) 10)) (-2062 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-180) (-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)) (-15 -2089 ((-1207) $))))) (T -180)) -((-2784 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-180)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-180))))) -(-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)) (-15 -2089 ((-1207) $)))) -((-3719 (((-2 (|:| |start| |#2|) (|:| -2524 (-418 |#2|))) |#2|) 66)) (-3708 ((|#1| |#1|) 58)) (-3695 (((-169 |#1|) |#2|) 91)) (-3685 ((|#1| |#2|) 145) ((|#1| |#2| |#1|) 89)) (-3676 ((|#2| |#2|) 90)) (-3665 (((-418 |#2|) |#2| |#1|) 128) (((-418 |#2|) |#2| |#1| (-112)) 87)) (-3251 ((|#1| |#2|) 127)) (-3653 ((|#2| |#2|) 140)) (-2055 (((-418 |#2|) |#2|) 162) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 161)) (-3643 (((-640 (-2 (|:| -2524 (-640 |#2|)) (|:| -3452 |#1|))) |#2| |#2|) 160) (((-640 (-2 (|:| -2524 (-640 |#2|)) (|:| -3452 |#1|))) |#2| |#2| (-112)) 81)) (-3634 (((-640 (-169 |#1|)) |#2| |#1|) 42) (((-640 (-169 |#1|)) |#2|) 43))) -(((-181 |#1| |#2|) (-10 -7 (-15 -3634 ((-640 (-169 |#1|)) |#2|)) (-15 -3634 ((-640 (-169 |#1|)) |#2| |#1|)) (-15 -3643 ((-640 (-2 (|:| -2524 (-640 |#2|)) (|:| -3452 |#1|))) |#2| |#2| (-112))) (-15 -3643 ((-640 (-2 (|:| -2524 (-640 |#2|)) (|:| -3452 |#1|))) |#2| |#2|)) (-15 -2055 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2055 ((-418 |#2|) |#2| |#1|)) (-15 -2055 ((-418 |#2|) |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3251 (|#1| |#2|)) (-15 -3665 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3665 ((-418 |#2|) |#2| |#1|)) (-15 -3676 (|#2| |#2|)) (-15 -3685 (|#1| |#2| |#1|)) (-15 -3685 (|#1| |#2|)) (-15 -3695 ((-169 |#1|) |#2|)) (-15 -3708 (|#1| |#1|)) (-15 -3719 ((-2 (|:| |start| |#2|) (|:| -2524 (-418 |#2|))) |#2|))) (-13 (-363) (-844)) (-1233 (-169 |#1|))) (T -181)) -((-3719 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-2 (|:| |start| *3) (|:| -2524 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3708 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-3695 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1233 *2)))) (-3685 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-3685 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-3676 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1233 (-169 *3))))) (-3665 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3665 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3251 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1233 (-169 *2))))) (-3653 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1233 (-169 *3))))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-2055 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-2055 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3643 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-2 (|:| -2524 (-640 *3)) (|:| -3452 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3643 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) (-5 *2 (-640 (-2 (|:| -2524 (-640 *3)) (|:| -3452 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1233 (-169 *5))))) (-3634 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) (-3634 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) -(-10 -7 (-15 -3634 ((-640 (-169 |#1|)) |#2|)) (-15 -3634 ((-640 (-169 |#1|)) |#2| |#1|)) (-15 -3643 ((-640 (-2 (|:| -2524 (-640 |#2|)) (|:| -3452 |#1|))) |#2| |#2| (-112))) (-15 -3643 ((-640 (-2 (|:| -2524 (-640 |#2|)) (|:| -3452 |#1|))) |#2| |#2|)) (-15 -2055 ((-418 |#2|) |#2| |#1| (-112))) (-15 -2055 ((-418 |#2|) |#2| |#1|)) (-15 -2055 ((-418 |#2|) |#2|)) (-15 -3653 (|#2| |#2|)) (-15 -3251 (|#1| |#2|)) (-15 -3665 ((-418 |#2|) |#2| |#1| (-112))) (-15 -3665 ((-418 |#2|) |#2| |#1|)) (-15 -3676 (|#2| |#2|)) (-15 -3685 (|#1| |#2| |#1|)) (-15 -3685 (|#1| |#2|)) (-15 -3695 ((-169 |#1|) |#2|)) (-15 -3708 (|#1| |#1|)) (-15 -3719 ((-2 (|:| |start| |#2|) (|:| -2524 (-418 |#2|))) |#2|))) -((-3729 (((-3 |#2| "failed") |#2|) 20)) (-3741 (((-767) |#2|) 23)) (-3754 ((|#2| |#2| |#2|) 25))) -(((-182 |#1| |#2|) (-10 -7 (-15 -3729 ((-3 |#2| "failed") |#2|)) (-15 -3741 ((-767) |#2|)) (-15 -3754 (|#2| |#2| |#2|))) (-1208) (-669 |#1|)) (T -182)) -((-3754 (*1 *2 *2 *2) (-12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3)))) (-3741 (*1 *2 *3) (-12 (-4 *4 (-1208)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) (-4 *3 (-669 *4)))) (-3729 (*1 *2 *2) (|partial| -12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3))))) -(-10 -7 (-15 -3729 ((-3 |#2| "failed") |#2|)) (-15 -3741 ((-767) |#2|)) (-15 -3754 (|#2| |#2| |#2|))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2894 (((-187) $) 7)) (-2062 (((-858) $) 14)) (-3975 (((-640 (-1174)) $) 10)) (-2943 (((-112) $ $) 12))) -(((-183) (-13 (-1093) (-10 -8 (-15 -2894 ((-187) $)) (-15 -3975 ((-640 (-1174)) $))))) (T -183)) -((-2894 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-3975 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-183))))) -(-13 (-1093) (-10 -8 (-15 -2894 ((-187) $)) (-15 -3975 ((-640 (-1174)) $)))) -((-1980 (((-640 (-861)) $) 16)) (-3659 (((-186) $) 8)) (-3777 (((-640 (-112)) $) 13)) (-4079 (((-55) $) 10))) -(((-184 |#1|) (-10 -8 (-15 -1980 ((-640 (-861)) |#1|)) (-15 -3777 ((-640 (-112)) |#1|)) (-15 -3659 ((-186) |#1|)) (-15 -4079 ((-55) |#1|))) (-185)) (T -184)) -NIL -(-10 -8 (-15 -1980 ((-640 (-861)) |#1|)) (-15 -3777 ((-640 (-112)) |#1|)) (-15 -3659 ((-186) |#1|)) (-15 -4079 ((-55) |#1|))) -((-2049 (((-112) $ $) 7)) (-1980 (((-640 (-861)) $) 17)) (-3359 (((-506) $) 14)) (-1938 (((-1151) $) 9)) (-3659 (((-186) $) 19)) (-3249 (((-1113) $) 10)) (-3777 (((-640 (-112)) $) 18)) (-2062 (((-858) $) 11)) (-4079 (((-55) $) 13)) (-2943 (((-112) $ $) 6))) +((-1322 (*1 *1 *1) (-4 *1 (-173)))) +(-13 (-10 -8 (-15 -1322 ($ $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 ((|#1| $) 80)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-1373 (($ $ $) NIL)) (-1824 (($ $) 21)) (-1444 (($ |#1| (-1150 |#1|)) 49)) (-3951 (((-3 $ "failed") $) 122)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-1405 (((-1150 |#1|) $) 87)) (-2800 (((-1150 |#1|) $) 84)) (-3142 (((-1150 |#1|) $) 85)) (-3840 (((-112) $) NIL)) (-2430 (((-1150 |#1|) $) 93)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2529 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL)) (-3004 (($ $ (-564)) 96)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-1752 (((-1150 |#1|) $) 94)) (-4312 (((-1150 (-407 |#1|)) $) 14)) (-2426 (($ (-407 |#1|)) 17) (($ |#1| (-1150 |#1|) (-1150 |#1|)) 39)) (-2356 (($ $) 98)) (-3742 (((-859) $) 139) (($ (-564)) 52) (($ |#1|) 53) (($ (-407 |#1|)) 37) (($ (-407 (-564))) NIL) (($ $) NIL)) (-3270 (((-768)) 69 T CONST)) (-3360 (((-112) $ $) NIL)) (-4084 (((-1150 (-407 |#1|)) $) 20)) (-4311 (($) 27 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 36)) (-1799 (($ $ $) 120)) (-1790 (($ $) 111) (($ $ $) 108)) (-1780 (($ $ $) 106)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 118) (($ $ $) 113) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-407 |#1|) $) 116) (($ $ (-407 |#1|)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL))) +(((-174 |#1|) (-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2426 ($ (-407 |#1|))) (-15 -2426 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -1444 ($ |#1| (-1150 |#1|))) (-15 -2800 ((-1150 |#1|) $)) (-15 -3142 ((-1150 |#1|) $)) (-15 -1405 ((-1150 |#1|) $)) (-15 -1473 (|#1| $)) (-15 -1824 ($ $)) (-15 -4084 ((-1150 (-407 |#1|)) $)) (-15 -4312 ((-1150 (-407 |#1|)) $)) (-15 -2430 ((-1150 |#1|) $)) (-15 -1752 ((-1150 |#1|) $)) (-15 -3004 ($ $ (-564))) (-15 -2356 ($ $)))) (-307)) (T -174)) +((-2426 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) (-2426 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-1444 (*1 *1 *2 *3) (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) (-2800 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1473 (*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-1824 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) (-4084 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-4312 (*1 *2 *1) (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2430 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-3004 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) +(-13 (-38 |#1|) (-38 (-407 |#1|)) (-363) (-10 -8 (-15 -2426 ($ (-407 |#1|))) (-15 -2426 ($ |#1| (-1150 |#1|) (-1150 |#1|))) (-15 -1444 ($ |#1| (-1150 |#1|))) (-15 -2800 ((-1150 |#1|) $)) (-15 -3142 ((-1150 |#1|) $)) (-15 -1405 ((-1150 |#1|) $)) (-15 -1473 (|#1| $)) (-15 -1824 ($ $)) (-15 -4084 ((-1150 (-407 |#1|)) $)) (-15 -4312 ((-1150 (-407 |#1|)) $)) (-15 -2430 ((-1150 |#1|) $)) (-15 -1752 ((-1150 |#1|) $)) (-15 -3004 ($ $ (-564))) (-15 -2356 ($ $)))) +((-3137 (($ (-109) $) 15)) (-2767 (((-687 (-109)) (-1170) $) 14)) (-3742 (((-859) $) 18)) (-1533 (((-641 (-109)) $) 8))) +(((-175) (-13 (-611 (-859)) (-10 -8 (-15 -1533 ((-641 (-109)) $)) (-15 -3137 ($ (-109) $)) (-15 -2767 ((-687 (-109)) (-1170) $))))) (T -175)) +((-1533 (*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175)))) (-3137 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175)))) (-2767 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175))))) +(-13 (-611 (-859)) (-10 -8 (-15 -1533 ((-641 (-109)) $)) (-15 -3137 ($ (-109) $)) (-15 -2767 ((-687 (-109)) (-1170) $)))) +((-1870 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 40)) (-1732 (((-940 |#1|) (-940 |#1|)) 24)) (-1516 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 36)) (-2469 (((-940 |#1|) (-940 |#1|)) 22)) (-2522 (((-940 |#1|) (-940 |#1|)) 30)) (-3316 (((-940 |#1|) (-940 |#1|)) 29)) (-3135 (((-940 |#1|) (-940 |#1|)) 28)) (-3066 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 37)) (-2748 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 35)) (-3945 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 34)) (-2077 (((-940 |#1|) (-940 |#1|)) 23)) (-1585 (((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|) 43)) (-4136 (((-940 |#1|) (-940 |#1|)) 8)) (-2225 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 39)) (-2708 (((-1 (-940 |#1|) (-940 |#1|)) |#1|) 38))) +(((-176 |#1|) (-10 -7 (-15 -4136 ((-940 |#1|) (-940 |#1|))) (-15 -2469 ((-940 |#1|) (-940 |#1|))) (-15 -2077 ((-940 |#1|) (-940 |#1|))) (-15 -1732 ((-940 |#1|) (-940 |#1|))) (-15 -3135 ((-940 |#1|) (-940 |#1|))) (-15 -3316 ((-940 |#1|) (-940 |#1|))) (-15 -2522 ((-940 |#1|) (-940 |#1|))) (-15 -3945 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2748 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1516 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3066 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2708 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2225 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1870 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1585 ((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|))) (-13 (-363) (-1194) (-999))) (T -176)) +((-1585 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1870 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2225 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2708 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3066 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2748 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-3945 (*1 *2 *3) (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) (-4 *3 (-13 (-363) (-1194) (-999))))) (-2522 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-3135 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-2077 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-2469 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) (-5 *1 (-176 *3))))) +(-10 -7 (-15 -4136 ((-940 |#1|) (-940 |#1|))) (-15 -2469 ((-940 |#1|) (-940 |#1|))) (-15 -2077 ((-940 |#1|) (-940 |#1|))) (-15 -1732 ((-940 |#1|) (-940 |#1|))) (-15 -3135 ((-940 |#1|) (-940 |#1|))) (-15 -3316 ((-940 |#1|) (-940 |#1|))) (-15 -2522 ((-940 |#1|) (-940 |#1|))) (-15 -3945 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2748 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1516 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -3066 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2708 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -2225 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1870 ((-1 (-940 |#1|) (-940 |#1|)) |#1|)) (-15 -1585 ((-1 (-940 |#1|) (-940 |#1|)) |#1| |#1|))) +((-2230 ((|#2| |#3|) 28))) +(((-177 |#1| |#2| |#3|) (-10 -7 (-15 -2230 (|#2| |#3|))) (-172) (-1235 |#1|) (-721 |#1| |#2|)) (T -177)) +((-2230 (*1 *2 *3) (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) (-4 *3 (-721 *4 *2))))) +(-10 -7 (-15 -2230 (|#2| |#3|))) +((-3075 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 49 (|has| (-949 |#2|) (-883 |#1|))))) +(((-178 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-949 |#2|) (-883 |#1|)) (-15 -3075 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) |%noBranch|)) (-1094) (-13 (-883 |#1|) (-172)) (-166 |#2|)) (T -178)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *3 (-166 *6)) (-4 (-949 *6) (-883 *5)) (-4 *6 (-13 (-883 *5) (-172))) (-5 *1 (-178 *5 *6 *3))))) +(-10 -7 (IF (|has| (-949 |#2|) (-883 |#1|)) (-15 -3075 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) |%noBranch|)) +((-2722 (((-641 |#1|) (-641 |#1|) |#1|) 41)) (-3069 (((-641 |#1|) |#1| (-641 |#1|)) 20)) (-2740 (((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|)) 36) ((|#1| (-641 |#1|) (-641 |#1|)) 32))) +(((-179 |#1|) (-10 -7 (-15 -3069 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -2740 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -2740 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -2722 ((-641 |#1|) (-641 |#1|) |#1|))) (-307)) (T -179)) +((-2722 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3)))) (-2740 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) (-5 *1 (-179 *4)))) (-2740 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) (-3069 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) +(-10 -7 (-15 -3069 ((-641 |#1|) |#1| (-641 |#1|))) (-15 -2740 (|#1| (-641 |#1|) (-641 |#1|))) (-15 -2740 ((-641 |#1|) (-641 (-641 |#1|)) (-641 |#1|))) (-15 -2722 ((-641 |#1|) (-641 |#1|) |#1|))) +((-3732 (((-112) $ $) NIL)) (-3107 (((-1208) $) 13)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2575 (((-1129) $) 10)) (-3742 (((-859) $) 22) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-180) (-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)) (-15 -3107 ((-1208) $))))) (T -180)) +((-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180))))) +(-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)) (-15 -3107 ((-1208) $)))) +((-1579 (((-2 (|:| |start| |#2|) (|:| -2267 (-418 |#2|))) |#2|) 66)) (-3486 ((|#1| |#1|) 58)) (-1748 (((-169 |#1|) |#2|) 91)) (-2922 ((|#1| |#2|) 145) ((|#1| |#2| |#1|) 89)) (-3045 ((|#2| |#2|) 90)) (-1364 (((-418 |#2|) |#2| |#1|) 128) (((-418 |#2|) |#2| |#1| (-112)) 87)) (-3328 ((|#1| |#2|) 127)) (-2491 ((|#2| |#2|) 140)) (-4127 (((-418 |#2|) |#2|) 162) (((-418 |#2|) |#2| |#1|) 33) (((-418 |#2|) |#2| |#1| (-112)) 161)) (-4038 (((-641 (-2 (|:| -2267 (-641 |#2|)) (|:| -1912 |#1|))) |#2| |#2|) 160) (((-641 (-2 (|:| -2267 (-641 |#2|)) (|:| -1912 |#1|))) |#2| |#2| (-112)) 81)) (-2344 (((-641 (-169 |#1|)) |#2| |#1|) 42) (((-641 (-169 |#1|)) |#2|) 43))) +(((-181 |#1| |#2|) (-10 -7 (-15 -2344 ((-641 (-169 |#1|)) |#2|)) (-15 -2344 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -4038 ((-641 (-2 (|:| -2267 (-641 |#2|)) (|:| -1912 |#1|))) |#2| |#2| (-112))) (-15 -4038 ((-641 (-2 (|:| -2267 (-641 |#2|)) (|:| -1912 |#1|))) |#2| |#2|)) (-15 -4127 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4127 ((-418 |#2|) |#2| |#1|)) (-15 -4127 ((-418 |#2|) |#2|)) (-15 -2491 (|#2| |#2|)) (-15 -3328 (|#1| |#2|)) (-15 -1364 ((-418 |#2|) |#2| |#1| (-112))) (-15 -1364 ((-418 |#2|) |#2| |#1|)) (-15 -3045 (|#2| |#2|)) (-15 -2922 (|#1| |#2| |#1|)) (-15 -2922 (|#1| |#2|)) (-15 -1748 ((-169 |#1|) |#2|)) (-15 -3486 (|#1| |#1|)) (-15 -1579 ((-2 (|:| |start| |#2|) (|:| -2267 (-418 |#2|))) |#2|))) (-13 (-363) (-845)) (-1235 (-169 |#1|))) (T -181)) +((-1579 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-2 (|:| |start| *3) (|:| -2267 (-418 *3)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3486 (*1 *2 *2) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-1748 (*1 *2 *3) (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) (-4 *4 (-13 (-363) (-845))) (-4 *3 (-1235 *2)))) (-2922 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-2922 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-3045 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-1364 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-1364 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-3328 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) (-4 *3 (-1235 (-169 *2))))) (-2491 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) (-4 *2 (-1235 (-169 *3))))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4127 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4127 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4038 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-2 (|:| -2267 (-641 *3)) (|:| -1912 *4)))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-4038 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-845))) (-5 *2 (-641 (-2 (|:| -2267 (-641 *3)) (|:| -1912 *5)))) (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) (-2344 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) (-2344 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(-10 -7 (-15 -2344 ((-641 (-169 |#1|)) |#2|)) (-15 -2344 ((-641 (-169 |#1|)) |#2| |#1|)) (-15 -4038 ((-641 (-2 (|:| -2267 (-641 |#2|)) (|:| -1912 |#1|))) |#2| |#2| (-112))) (-15 -4038 ((-641 (-2 (|:| -2267 (-641 |#2|)) (|:| -1912 |#1|))) |#2| |#2|)) (-15 -4127 ((-418 |#2|) |#2| |#1| (-112))) (-15 -4127 ((-418 |#2|) |#2| |#1|)) (-15 -4127 ((-418 |#2|) |#2|)) (-15 -2491 (|#2| |#2|)) (-15 -3328 (|#1| |#2|)) (-15 -1364 ((-418 |#2|) |#2| |#1| (-112))) (-15 -1364 ((-418 |#2|) |#2| |#1|)) (-15 -3045 (|#2| |#2|)) (-15 -2922 (|#1| |#2| |#1|)) (-15 -2922 (|#1| |#2|)) (-15 -1748 ((-169 |#1|) |#2|)) (-15 -3486 (|#1| |#1|)) (-15 -1579 ((-2 (|:| |start| |#2|) (|:| -2267 (-418 |#2|))) |#2|))) +((-3230 (((-3 |#2| "failed") |#2|) 20)) (-1876 (((-768) |#2|) 23)) (-1811 ((|#2| |#2| |#2|) 25))) +(((-182 |#1| |#2|) (-10 -7 (-15 -3230 ((-3 |#2| "failed") |#2|)) (-15 -1876 ((-768) |#2|)) (-15 -1811 (|#2| |#2| |#2|))) (-1209) (-670 |#1|)) (T -182)) +((-1811 (*1 *2 *2 *2) (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3)))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-1209)) (-5 *2 (-768)) (-5 *1 (-182 *4 *3)) (-4 *3 (-670 *4)))) (-3230 (*1 *2 *2) (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3))))) +(-10 -7 (-15 -3230 ((-3 |#2| "failed") |#2|)) (-15 -1876 ((-768) |#2|)) (-15 -1811 (|#2| |#2| |#2|))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2724 (((-187) $) 7)) (-3742 (((-859) $) 14)) (-2692 (((-641 (-1175)) $) 10)) (-1705 (((-112) $ $) 12))) +(((-183) (-13 (-1094) (-10 -8 (-15 -2724 ((-187) $)) (-15 -2692 ((-641 (-1175)) $))))) (T -183)) +((-2724 (*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) (-2692 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183))))) +(-13 (-1094) (-10 -8 (-15 -2724 ((-187) $)) (-15 -2692 ((-641 (-1175)) $)))) +((-1737 (((-641 (-862)) $) 16)) (-3421 (((-186) $) 8)) (-3773 (((-641 (-112)) $) 13)) (-2873 (((-55) $) 10))) +(((-184 |#1|) (-10 -8 (-15 -1737 ((-641 (-862)) |#1|)) (-15 -3773 ((-641 (-112)) |#1|)) (-15 -3421 ((-186) |#1|)) (-15 -2873 ((-55) |#1|))) (-185)) (T -184)) +NIL +(-10 -8 (-15 -1737 ((-641 (-862)) |#1|)) (-15 -3773 ((-641 (-112)) |#1|)) (-15 -3421 ((-186) |#1|)) (-15 -2873 ((-55) |#1|))) +((-3732 (((-112) $ $) 7)) (-1737 (((-641 (-862)) $) 17)) (-4324 (((-506) $) 14)) (-2217 (((-1152) $) 9)) (-3421 (((-186) $) 19)) (-3864 (((-1114) $) 10)) (-3773 (((-641 (-112)) $) 18)) (-3742 (((-859) $) 11)) (-2873 (((-55) $) 13)) (-1705 (((-112) $ $) 6))) (((-185) (-140)) (T -185)) -((-3659 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-112))))) (-1980 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-861)))))) -(-13 (-831 (-506)) (-10 -8 (-15 -3659 ((-186) $)) (-15 -3777 ((-640 (-112)) $)) (-15 -1980 ((-640 (-861)) $)))) -(((-102) . T) ((-610 (-858)) . T) ((-831 (-506)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-8 (($) 7 T CONST)) (-2062 (((-858) $) 12)) (-9 (($) 6 T CONST)) (-2943 (((-112) $ $) 10))) -(((-186) (-13 (-1093) (-10 -8 (-15 -9 ($) -2495) (-15 -8 ($) -2495) (-15 -7 ($) -2495)))) (T -186)) +((-3421 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186)))) (-3773 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112))))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-862)))))) +(-13 (-832 (-506)) (-10 -8 (-15 -3421 ((-186) $)) (-15 -3773 ((-641 (-112)) $)) (-15 -1737 ((-641 (-862)) $)))) +(((-102) . T) ((-611 (-859)) . T) ((-832 (-506)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-7 (($) 8 T CONST)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-8 (($) 7 T CONST)) (-3742 (((-859) $) 12)) (-9 (($) 6 T CONST)) (-1705 (((-112) $ $) 10))) +(((-186) (-13 (-1094) (-10 -8 (-15 -9 ($) -2091) (-15 -8 ($) -2091) (-15 -7 ($) -2091)))) (T -186)) ((-9 (*1 *1) (-5 *1 (-186))) (-8 (*1 *1) (-5 *1 (-186))) (-7 (*1 *1) (-5 *1 (-186)))) -(-13 (-1093) (-10 -8 (-15 -9 ($) -2495) (-15 -8 ($) -2495) (-15 -7 ($) -2495))) -((-2049 (((-112) $ $) NIL)) (-1980 (((-640 (-861)) $) NIL)) (-3359 (((-506) $) 8)) (-1938 (((-1151) $) NIL)) (-3659 (((-186) $) 10)) (-3249 (((-1113) $) NIL)) (-3765 (((-686 $) (-1169)) 18)) (-3777 (((-640 (-112)) $) NIL)) (-2062 (((-858) $) NIL)) (-4079 (((-55) $) 12)) (-2943 (((-112) $ $) NIL))) -(((-187) (-13 (-185) (-10 -8 (-15 -3765 ((-686 $) (-1169)))))) (T -187)) -((-3765 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-686 (-187))) (-5 *1 (-187))))) -(-13 (-185) (-10 -8 (-15 -3765 ((-686 $) (-1169))))) -((-4058 ((|#2| |#2|) 28)) (-4070 (((-112) |#2|) 19)) (-2079 (((-316 |#1|) |#2|) 12)) (-2090 (((-316 |#1|) |#2|) 14)) (-4033 ((|#2| |#2| (-1169)) 70) ((|#2| |#2|) 71)) (-4080 (((-169 (-316 |#1|)) |#2|) 10)) (-4045 ((|#2| |#2| (-1169)) 67) ((|#2| |#2|) 61))) -(((-188 |#1| |#2|) (-10 -7 (-15 -4033 (|#2| |#2|)) (-15 -4033 (|#2| |#2| (-1169))) (-15 -4045 (|#2| |#2|)) (-15 -4045 (|#2| |#2| (-1169))) (-15 -2079 ((-316 |#1|) |#2|)) (-15 -2090 ((-316 |#1|) |#2|)) (-15 -4070 ((-112) |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4080 ((-169 (-316 |#1|)) |#2|))) (-13 (-555) (-846) (-1034 (-563))) (-13 (-27) (-1193) (-430 (-169 |#1|)))) (T -188)) -((-4080 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) (-4070 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-2079 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-4045 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) (-4033 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) (-4033 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3))))))) -(-10 -7 (-15 -4033 (|#2| |#2|)) (-15 -4033 (|#2| |#2| (-1169))) (-15 -4045 (|#2| |#2|)) (-15 -4045 (|#2| |#2| (-1169))) (-15 -2079 ((-316 |#1|) |#2|)) (-15 -2090 ((-316 |#1|) |#2|)) (-15 -4070 ((-112) |#2|)) (-15 -4058 (|#2| |#2|)) (-15 -4080 ((-169 (-316 |#1|)) |#2|))) -((-3789 (((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|))) 26)) (-2062 (((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|))) 37))) -(((-189 |#1|) (-10 -7 (-15 -3789 ((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|)))) (-15 -2062 ((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|))))) (-172)) (T -189)) -((-2062 (*1 *2 *3) (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) (-5 *2 (-1257 (-684 (-407 (-948 *4))))) (-5 *1 (-189 *4)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) (-5 *2 (-1257 (-684 (-948 *4)))) (-5 *1 (-189 *4))))) -(-10 -7 (-15 -3789 ((-1257 (-684 (-948 |#1|))) (-1257 (-684 |#1|)))) (-15 -2062 ((-1257 (-684 (-407 (-948 |#1|)))) (-1257 (-684 |#1|))))) -((-2684 (((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 89)) (-2704 (((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563))) 99)) (-3801 (((-1171 (-407 (-563))) (-563)) 56)) (-2307 (((-1171 (-407 (-563))) (-563)) 75)) (-1497 (((-407 (-563)) (-1171 (-407 (-563)))) 85)) (-3814 (((-1171 (-407 (-563))) (-563)) 37)) (-2653 (((-1171 (-407 (-563))) (-563)) 68)) (-3836 (((-1171 (-407 (-563))) (-563)) 62)) (-2676 (((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 83)) (-2686 (((-1171 (-407 (-563))) (-563)) 29)) (-2664 (((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563)))) 87)) (-3825 (((-1171 (-407 (-563))) (-563)) 35)) (-2693 (((-1171 (-407 (-563))) (-640 (-563))) 96))) -(((-190) (-10 -7 (-15 -2686 ((-1171 (-407 (-563))) (-563))) (-15 -3801 ((-1171 (-407 (-563))) (-563))) (-15 -3814 ((-1171 (-407 (-563))) (-563))) (-15 -3825 ((-1171 (-407 (-563))) (-563))) (-15 -3836 ((-1171 (-407 (-563))) (-563))) (-15 -2653 ((-1171 (-407 (-563))) (-563))) (-15 -2307 ((-1171 (-407 (-563))) (-563))) (-15 -2664 ((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -2676 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1497 ((-407 (-563)) (-1171 (-407 (-563))))) (-15 -2684 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -2693 ((-1171 (-407 (-563))) (-640 (-563)))) (-15 -2704 ((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563)))))) (T -190)) -((-2704 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-2684 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-190)))) (-2676 (*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)))) (-2664 (*1 *2 *3 *3) (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-190)))) (-2307 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-2653 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-3836 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-3825 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-3814 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-3801 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) (-2686 (*1 *2 *3) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) -(-10 -7 (-15 -2686 ((-1171 (-407 (-563))) (-563))) (-15 -3801 ((-1171 (-407 (-563))) (-563))) (-15 -3814 ((-1171 (-407 (-563))) (-563))) (-15 -3825 ((-1171 (-407 (-563))) (-563))) (-15 -3836 ((-1171 (-407 (-563))) (-563))) (-15 -2653 ((-1171 (-407 (-563))) (-563))) (-15 -2307 ((-1171 (-407 (-563))) (-563))) (-15 -2664 ((-407 (-563)) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -2676 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -1497 ((-407 (-563)) (-1171 (-407 (-563))))) (-15 -2684 ((-1171 (-407 (-563))) (-1171 (-407 (-563))) (-1171 (-407 (-563))))) (-15 -2693 ((-1171 (-407 (-563))) (-640 (-563)))) (-15 -2704 ((-1171 (-407 (-563))) (-640 (-563)) (-640 (-563))))) -((-2722 (((-418 (-1165 (-563))) (-563)) 38)) (-2715 (((-640 (-1165 (-563))) (-563)) 33)) (-2995 (((-1165 (-563)) (-563)) 28))) -(((-191) (-10 -7 (-15 -2715 ((-640 (-1165 (-563))) (-563))) (-15 -2995 ((-1165 (-563)) (-563))) (-15 -2722 ((-418 (-1165 (-563))) (-563))))) (T -191)) -((-2722 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563)))) (-2995 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-191)) (-5 *3 (-563)))) (-2715 (*1 *2 *3) (-12 (-5 *2 (-640 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563))))) -(-10 -7 (-15 -2715 ((-640 (-1165 (-563))) (-563))) (-15 -2995 ((-1165 (-563)) (-563))) (-15 -2722 ((-418 (-1165 (-563))) (-563)))) -((-3942 (((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-4167 (((-640 (-1151)) (-1149 (-225))) NIL)) (-2734 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-3923 (((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225)))) NIL)) (-4157 (((-640 (-1151)) (-640 (-225))) NIL)) (-4176 (((-225) (-1087 (-839 (-225)))) 31)) (-4186 (((-225) (-1087 (-839 (-225)))) 32)) (-2753 (((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-2743 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-4133 (((-1151) (-225)) NIL)) (-1364 (((-1151) (-640 (-1151))) 27)) (-2762 (((-1031) (-1169) (-1169) (-1031)) 13))) -(((-192) (-10 -7 (-15 -2734 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2743 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4176 ((-225) (-1087 (-839 (-225))))) (-15 -4186 ((-225) (-1087 (-839 (-225))))) (-15 -2753 ((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3923 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -3942 ((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4133 ((-1151) (-225))) (-15 -4157 ((-640 (-1151)) (-640 (-225)))) (-15 -4167 ((-640 (-1151)) (-1149 (-225)))) (-15 -1364 ((-1151) (-640 (-1151)))) (-15 -2762 ((-1031) (-1169) (-1169) (-1031))))) (T -192)) -((-2762 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-192)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-192)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-192)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-192)))) (-3923 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-192)))) (-2753 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-2743 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) -(-10 -7 (-15 -2734 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2743 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4176 ((-225) (-1087 (-839 (-225))))) (-15 -4186 ((-225) (-1087 (-839 (-225))))) (-15 -2753 ((-379) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3923 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -3942 ((-1149 (-225)) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4133 ((-1151) (-225))) (-15 -4157 ((-640 (-1151)) (-640 (-225)))) (-15 -4167 ((-640 (-1151)) (-1149 (-225)))) (-15 -1364 ((-1151) (-640 (-1151)))) (-15 -2762 ((-1031) (-1169) (-1169) (-1031)))) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 61) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-193) (-783)) (T -193)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 66) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-194) (-783)) (T -194)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 81) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-195) (-783)) (T -195)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 63) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-196) (-783)) (T -196)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 75) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-197) (-783)) (T -197)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-198) (-783)) (T -198)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 90) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-199) (-783)) (T -199)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 77) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-200) (-783)) (T -200)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 78)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-201) (-783)) (T -201)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 79)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-202) (-783)) (T -202)) -NIL -(-783) -((-2049 (((-112) $ $) NIL)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 105) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-203) (-783)) (T -203)) -NIL -(-783) -((-2773 (((-3 (-2 (|:| -3673 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-2793 (((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-2783 (((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92))) -(((-204) (-10 -7 (-15 -2773 ((-3 (-2 (|:| -3673 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2783 ((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2793 ((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) -((-2793 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-563)) (-5 *1 (-204)))) (-2783 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-204)))) (-2773 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3673 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(-10 -7 (-15 -2773 ((-3 (-2 (|:| -3673 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2783 ((-3 (-640 (-225)) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2793 ((-563) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2847 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-2837 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 157)) (-2826 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225)))) 109)) (-2816 (((-379) (-684 (-316 (-225)))) 137)) (-2240 (((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169))) 133)) (-2876 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-2857 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-1497 (((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225)))) 122)) (-2806 (((-379) (-379) (-640 (-379))) 130) (((-379) (-379) (-379)) 125)) (-2867 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) -(((-205) (-10 -7 (-15 -2806 ((-379) (-379) (-379))) (-15 -2806 ((-379) (-379) (-640 (-379)))) (-15 -2816 ((-379) (-684 (-316 (-225))))) (-15 -2240 ((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169)))) (-15 -1497 ((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225))))) (-15 -2826 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225))))) (-15 -2837 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2847 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2857 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2867 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2876 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) -((-2876 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2867 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2847 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-1497 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-684 (-316 (-225)))) (-5 *3 (-640 (-1169))) (-5 *4 (-1257 (-316 (-225)))) (-5 *1 (-205)))) (-2240 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) (-5 *2 (-684 (-316 (-225)))) (-5 *1 (-205)))) (-2816 (*1 *2 *3) (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2806 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2806 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))) -(-10 -7 (-15 -2806 ((-379) (-379) (-379))) (-15 -2806 ((-379) (-379) (-640 (-379)))) (-15 -2816 ((-379) (-684 (-316 (-225))))) (-15 -2240 ((-684 (-316 (-225))) (-1257 (-316 (-225))) (-640 (-1169)))) (-15 -1497 ((-684 (-316 (-225))) (-684 (-316 (-225))) (-640 (-1169)) (-1257 (-316 (-225))))) (-15 -2826 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-684 (-316 (-225))))) (-15 -2837 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2847 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2857 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2867 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2876 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2049 (((-112) $ $) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2236 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-2943 (((-112) $ $) NIL))) -(((-206) (-796)) (T -206)) -NIL -(-796) -((-2049 (((-112) $ $) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2236 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-2943 (((-112) $ $) NIL))) -(((-207) (-796)) (T -207)) -NIL -(-796) -((-2049 (((-112) $ $) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2236 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-2943 (((-112) $ $) NIL))) -(((-208) (-796)) (T -208)) -NIL -(-796) -((-2049 (((-112) $ $) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2236 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-2943 (((-112) $ $) NIL))) -(((-209) (-796)) (T -209)) -NIL -(-796) -((-1347 (((-640 (-1169)) (-1169) (-767)) 24)) (-2885 (((-316 (-225)) (-316 (-225))) 33)) (-2904 (((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 88)) (-2895 (((-112) (-225) (-225) (-640 (-316 (-225)))) 48))) -(((-210) (-10 -7 (-15 -1347 ((-640 (-1169)) (-1169) (-767))) (-15 -2885 ((-316 (-225)) (-316 (-225)))) (-15 -2895 ((-112) (-225) (-225) (-640 (-316 (-225))))) (-15 -2904 ((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))))) (T -210)) -((-2904 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2895 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-640 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-2885 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-210)) (-5 *3 (-1169))))) -(-10 -7 (-15 -1347 ((-640 (-1169)) (-1169) (-767))) (-15 -2885 ((-316 (-225)) (-316 (-225)))) (-15 -2895 ((-112) (-225) (-225) (-640 (-316 (-225))))) (-15 -2904 ((-112) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))))) -((-2049 (((-112) $ $) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 28)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-4036 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 70)) (-2943 (((-112) $ $) NIL))) -(((-211) (-891)) (T -211)) -NIL -(-891) -((-2049 (((-112) $ $) NIL)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 24)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-4036 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) NIL)) (-2943 (((-112) $ $) NIL))) -(((-212) (-891)) (T -212)) -NIL -(-891) -((-2049 (((-112) $ $) NIL)) (-4092 ((|#2| $ (-767) |#2|) 11)) (-4085 ((|#2| $ (-767)) 10)) (-2552 (($) 8)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 26)) (-2943 (((-112) $ $) 13))) -(((-213 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -2552 ($)) (-15 -4085 (|#2| $ (-767))) (-15 -4092 (|#2| $ (-767) |#2|)))) (-917) (-1093)) (T -213)) -((-2552 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1093)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-1093)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)))) (-4092 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)) (-4 *2 (-1093))))) -(-13 (-1093) (-10 -8 (-15 -2552 ($)) (-15 -4085 (|#2| $ (-767))) (-15 -4092 (|#2| $ (-767) |#2|)))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2807 (((-1262) $) 37) (((-1262) $ (-917) (-917)) 44)) (-3858 (($ $ (-985)) 19) (((-245 (-1151)) $ (-1169)) 15)) (-3051 (((-1262) $) 35)) (-2062 (((-858) $) 32) (($ (-640 |#1|)) 8)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $ $) 27)) (-3027 (($ $ $) 22))) -(((-214 |#1|) (-13 (-1093) (-613 (-640 |#1|)) (-10 -8 (-15 -3858 ($ $ (-985))) (-15 -3858 ((-245 (-1151)) $ (-1169))) (-15 -3027 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $)) (-15 -2807 ((-1262) $ (-917) (-917))))) (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $))))) (T -214)) -((-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $))))))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-245 (-1151))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ *3)) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $))))))) (-3027 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $))))))) (-3039 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $))))))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 (*2 $)) (-15 -2807 (*2 $))))))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 (*2 $)) (-15 -2807 (*2 $))))))) (-2807 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 (*2 $)) (-15 -2807 (*2 $)))))))) -(-13 (-1093) (-613 (-640 |#1|)) (-10 -8 (-15 -3858 ($ $ (-985))) (-15 -3858 ((-245 (-1151)) $ (-1169))) (-15 -3027 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $)) (-15 -2807 ((-1262) $ (-917) (-917))))) -((-2915 ((|#2| |#4| (-1 |#2| |#2|)) 49))) -(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2915 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215)) -((-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1233 (-407 *2))) (-4 *2 (-1233 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6))))) -(-10 -7 (-15 -2915 (|#2| |#4| (-1 |#2| |#2|)))) -((-2958 ((|#2| |#2| (-767) |#2|) 58)) (-2948 ((|#2| |#2| (-767) |#2|) 54)) (-2304 (((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -1404 |#2|)))) 81)) (-2936 (((-640 (-2 (|:| |deg| (-767)) (|:| -1404 |#2|))) |#2|) 75)) (-2971 (((-112) |#2|) 73)) (-3739 (((-418 |#2|) |#2|) 101)) (-2055 (((-418 |#2|) |#2|) 100)) (-2315 ((|#2| |#2| (-767) |#2|) 52)) (-2926 (((-2 (|:| |cont| |#1|) (|:| -2524 (-640 (-2 (|:| |irr| |#2|) (|:| -2581 (-563)))))) |#2| (-112)) 93))) -(((-216 |#1| |#2|) (-10 -7 (-15 -2055 ((-418 |#2|) |#2|)) (-15 -3739 ((-418 |#2|) |#2|)) (-15 -2926 ((-2 (|:| |cont| |#1|) (|:| -2524 (-640 (-2 (|:| |irr| |#2|) (|:| -2581 (-563)))))) |#2| (-112))) (-15 -2936 ((-640 (-2 (|:| |deg| (-767)) (|:| -1404 |#2|))) |#2|)) (-15 -2304 ((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -1404 |#2|))))) (-15 -2315 (|#2| |#2| (-767) |#2|)) (-15 -2948 (|#2| |#2| (-767) |#2|)) (-15 -2958 (|#2| |#2| (-767) |#2|)) (-15 -2971 ((-112) |#2|))) (-349) (-1233 |#1|)) (T -216)) -((-2971 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-2958 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-2948 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-2315 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1233 *4)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |deg| (-767)) (|:| -1404 *5)))) (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *2 (-640 *5)) (-5 *1 (-216 *4 *5)))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -1404 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-2926 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2524 (-640 (-2 (|:| |irr| *3) (|:| -2581 (-563))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1233 *5)))) (-3739 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4)))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -2055 ((-418 |#2|) |#2|)) (-15 -3739 ((-418 |#2|) |#2|)) (-15 -2926 ((-2 (|:| |cont| |#1|) (|:| -2524 (-640 (-2 (|:| |irr| |#2|) (|:| -2581 (-563)))))) |#2| (-112))) (-15 -2936 ((-640 (-2 (|:| |deg| (-767)) (|:| -1404 |#2|))) |#2|)) (-15 -2304 ((-640 |#2|) (-640 (-2 (|:| |deg| (-767)) (|:| -1404 |#2|))))) (-15 -2315 (|#2| |#2| (-767) |#2|)) (-15 -2948 (|#2| |#2| (-767) |#2|)) (-15 -2958 (|#2| |#2| (-767) |#2|)) (-15 -2971 ((-112) |#2|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 (((-563) $) NIL (|has| (-563) (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| (-563) (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2589 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-563) (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| (-563) (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL)) (-2626 (((-563) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-2731 (((-112) $) NIL (|has| (-563) (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| (-563) (-846)))) (-2751 (($ (-1 (-563) (-563)) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-563) (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-3233 (((-563) $) NIL (|has| (-563) (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-4322 (((-767) $) NIL)) (-3858 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-4362 (($ $) NIL)) (-2636 (((-563) $) NIL)) (-2982 (($ (-407 (-563))) 9)) (-2802 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 10) $) 10)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-3192 (((-767)) NIL T CONST)) (-3241 (((-563) $) NIL (|has| (-563) (-545)))) (-2543 (((-112) $ $) NIL)) (-3841 (($ $) NIL (|has| (-563) (-816)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-2998 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-563) (-846)))) (-3050 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL))) -(((-217) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 10)) (-10 -8 (-15 -3212 ((-407 (-563)) $)) (-15 -2982 ($ (-407 (-563))))))) (T -217)) -((-3212 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217)))) (-2982 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217))))) -(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 10)) (-10 -8 (-15 -3212 ((-407 (-563)) $)) (-15 -2982 ($ (-407 (-563)))))) -((-2049 (((-112) $ $) NIL)) (-1380 (((-1111) $) 13)) (-1938 (((-1151) $) NIL)) (-2651 (((-483) $) 10)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 25) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-1128) $) 15)) (-2943 (((-112) $ $) NIL))) -(((-218) (-13 (-1076) (-10 -8 (-15 -2651 ((-483) $)) (-15 -1380 ((-1111) $)) (-15 -3373 ((-1128) $))))) (T -218)) -((-2651 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-218)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-218))))) -(-13 (-1076) (-10 -8 (-15 -2651 ((-483) $)) (-15 -1380 ((-1111) $)) (-15 -3373 ((-1128) $)))) -((-3204 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151)) 29) (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|))) 25)) (-2993 (((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112)) 17))) -(((-219 |#1| |#2|) (-10 -7 (-15 -3204 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)))) (-15 -3204 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151))) (-15 -2993 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -219)) -((-2993 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1169)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-1193) (-955) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3)))) (-3204 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-839 *3))) (-5 *5 (-1151)) (-4 *3 (-13 (-1193) (-955) (-29 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-839 *3))) (-4 *3 (-13 (-1193) (-955) (-29 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) -(-10 -7 (-15 -3204 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)))) (-15 -3204 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1085 (-839 |#2|)) (-1151))) (-15 -2993 ((-3 (|:| |f1| (-839 |#2|)) (|:| |f2| (-640 (-839 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1169) (-839 |#2|) (-839 |#2|) (-112)))) -((-3204 (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151)) 49) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|))))) 46) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151)) 50) (((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|)))) 22))) -(((-220 |#1|) (-10 -7 (-15 -3204 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))))) (-15 -3204 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151))) (-15 -3204 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))))) (-15 -3204 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (T -220)) -((-3204 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-839 (-407 (-948 *6))))) (-5 *5 (-1151)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1085 (-839 (-316 *6)))) (-5 *5 (-1151)) (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1085 (-839 (-316 *5)))) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) -(-10 -7 (-15 -3204 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))))) (-15 -3204 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-316 |#1|))) (-1151))) (-15 -3204 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))))) (-15 -3204 ((-3 (|:| |f1| (-839 (-316 |#1|))) (|:| |f2| (-640 (-839 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-948 |#1|)) (-1085 (-839 (-407 (-948 |#1|)))) (-1151)))) -((-2532 (((-2 (|:| -3206 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|)) 26)) (-1864 (((-640 (-316 |#2|)) (-316 |#2|) (-917)) 54))) -(((-221 |#1| |#2|) (-10 -7 (-15 -2532 ((-2 (|:| -3206 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|))) (-15 -1864 ((-640 (-316 |#2|)) (-316 |#2|) (-917)))) (-1045) (-13 (-555) (-846))) (T -221)) -((-1864 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *6 (-13 (-555) (-846))) (-5 *2 (-640 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1045)))) (-2532 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-2 (|:| -3206 (-1165 *4)) (|:| |deg| (-917)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1165 *4)) (-4 *5 (-13 (-555) (-846)))))) -(-10 -7 (-15 -2532 ((-2 (|:| -3206 (-1165 |#1|)) (|:| |deg| (-917))) (-1165 |#1|))) (-15 -1864 ((-640 (-316 |#2|)) (-316 |#2|) (-917)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2156 ((|#1| $) NIL)) (-3796 ((|#1| $) 30)) (-3740 (((-112) $ (-767)) NIL)) (-3684 (($) NIL T CONST)) (-1311 (($ $) NIL)) (-3934 (($ $) 39)) (-1378 ((|#1| |#1| $) NIL)) (-1369 ((|#1| $) NIL)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-3322 (((-767) $) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3835 ((|#1| $) NIL)) (-2141 ((|#1| |#1| $) 35)) (-2133 ((|#1| |#1| $) 37)) (-1956 (($ |#1| $) NIL)) (-1524 (((-767) $) 33)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1302 ((|#1| $) NIL)) (-2123 ((|#1| $) 31)) (-2112 ((|#1| $) 29)) (-3847 ((|#1| $) NIL)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-1331 ((|#1| |#1| $) NIL)) (-2820 (((-112) $) 9)) (-2749 (($) NIL)) (-1321 ((|#1| $) NIL)) (-2166 (($) NIL) (($ (-640 |#1|)) 16)) (-4359 (((-767) $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2150 ((|#1| $) 13)) (-4034 (($ (-640 |#1|)) NIL)) (-1292 ((|#1| $) NIL)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -2166 ($ (-640 |#1|))))) (-1093)) (T -222)) -((-2166 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-222 *3))))) -(-13 (-254 |#1|) (-10 -8 (-15 -2166 ($ (-640 |#1|))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3012 (($ (-316 |#1|)) 27)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-4016 (((-112) $) NIL)) (-2671 (((-3 (-316 |#1|) "failed") $) NIL)) (-2589 (((-316 |#1|) $) NIL)) (-3213 (($ $) 35)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-2751 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-3193 (((-316 |#1|) $) NIL)) (-3033 (($ $) 34)) (-1938 (((-1151) $) NIL)) (-3022 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-1738 (($ (-767)) NIL)) (-3003 (($ $) 36)) (-1962 (((-563) $) NIL)) (-2062 (((-858) $) 68) (($ (-563)) NIL) (($ (-316 |#1|)) NIL)) (-1304 (((-316 |#1|) $ $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3790 (($) 29 T CONST)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) 32)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 23)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22))) -(((-223 |#1| |#2|) (-13 (-617 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -3193 ((-316 |#1|) $)) (-15 -3033 ($ $)) (-15 -3213 ($ $)) (-15 -1304 ((-316 |#1|) $ $)) (-15 -1738 ($ (-767))) (-15 -3022 ((-112) $)) (-15 -4016 ((-112) $)) (-15 -1962 ((-563) $)) (-15 -2751 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -3012 ($ (-316 |#1|))) (-15 -3003 ($ $)))) (-13 (-1045) (-846)) (-640 (-1169))) (T -223)) -((-3193 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-3033 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169))))) (-3213 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169))))) (-1304 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) (-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))) (-3012 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846))) (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))) (-3003 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) (-14 *3 (-640 (-1169)))))) -(-13 (-617 (-316 |#1|)) (-1034 (-316 |#1|)) (-10 -8 (-15 -3193 ((-316 |#1|) $)) (-15 -3033 ($ $)) (-15 -3213 ($ $)) (-15 -1304 ((-316 |#1|) $ $)) (-15 -1738 ($ (-767))) (-15 -3022 ((-112) $)) (-15 -4016 ((-112) $)) (-15 -1962 ((-563) $)) (-15 -2751 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -3012 ($ (-316 |#1|))) (-15 -3003 ($ $)))) -((-3044 (((-112) (-1151)) 25)) (-3056 (((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112)) 35)) (-3066 (((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112)) 84) (((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112)) 85))) -(((-224 |#1| |#2|) (-10 -7 (-15 -3044 ((-112) (-1151))) (-15 -3056 ((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -3066 ((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112))) (-15 -3066 ((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112)))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-29 |#1|))) (T -224)) -((-3066 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1165 *6)) (-5 *4 (-839 *6)) (-4 *6 (-13 (-1193) (-29 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-224 *5 *6)))) (-3066 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1169)) (-5 *5 (-839 *7)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *7 (-13 (-1193) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-3056 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-609 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1193) (-29 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-224 *6 *4)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1193) (-29 *4)))))) -(-10 -7 (-15 -3044 ((-112) (-1151))) (-15 -3056 ((-3 (-839 |#2|) "failed") (-609 |#2|) |#2| (-839 |#2|) (-839 |#2|) (-112))) (-15 -3066 ((-3 (-112) "failed") (-948 |#1|) (-1169) (-839 |#2|) (-839 |#2|) (-112))) (-15 -3066 ((-3 (-112) "failed") (-1165 |#2|) (-839 |#2|) (-839 |#2|) (-112)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 96)) (-3223 (((-563) $) 36)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-2893 (($ $) NIL)) (-3419 (($ $) 85)) (-3285 (($ $) 73)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2067 (($ $) 64)) (-4332 (((-112) $ $) NIL)) (-3395 (($ $) 83)) (-3264 (($ $) 71)) (-2107 (((-563) $) 126)) (-2242 (($ $) 88)) (-3305 (($ $) 75)) (-3684 (($) NIL T CONST)) (-3202 (($ $) NIL)) (-2671 (((-3 (-563) "failed") $) 125) (((-3 (-407 (-563)) "failed") $) 122)) (-2589 (((-563) $) 123) (((-407 (-563)) $) 120)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) 101)) (-2272 (((-407 (-563)) $ (-767)) 115) (((-407 (-563)) $ (-767) (-767)) 114)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2961 (((-917)) 29) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-2720 (((-112) $) NIL)) (-2656 (($) 47)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-2903 (((-563) $) 43)) (-2712 (((-112) $) 97)) (-1403 (($ $ (-563)) NIL)) (-3251 (($ $) NIL)) (-2731 (((-112) $) 95)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) 61) (($) 39 (-12 (-3730 (|has| $ (-6 -4391))) (-3730 (|has| $ (-6 -4399)))))) (-4105 (($ $ $) 60) (($) 38 (-12 (-3730 (|has| $ (-6 -4391))) (-3730 (|has| $ (-6 -4399)))))) (-4385 (((-563) $) 27)) (-2261 (($ $) 34)) (-4288 (($ $) 65)) (-2497 (($ $) 70)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2537 (((-917) (-563)) NIL (|has| $ (-6 -4399)))) (-3249 (((-1113) $) 99)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL)) (-3233 (($ $) NIL)) (-2469 (($ (-563) (-563)) NIL) (($ (-563) (-563) (-917)) 108)) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2631 (((-563) $) 28)) (-2249 (($) 46)) (-3177 (($ $) 69)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1658 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-1361 (($ $ (-767)) NIL) (($ $) 102)) (-2526 (((-917) (-563)) NIL (|has| $ (-6 -4399)))) (-2252 (($ $) 86)) (-3313 (($ $) 76)) (-2231 (($ $) 87)) (-3295 (($ $) 74)) (-3408 (($ $) 84)) (-3273 (($ $) 72)) (-2802 (((-379) $) 111) (((-225) $) 14) (((-888 (-379)) $) NIL) (((-536) $) 53)) (-2062 (((-858) $) 50) (($ (-563)) 68) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-563)) 68) (($ (-407 (-563))) NIL)) (-3192 (((-767)) NIL T CONST)) (-3241 (($ $) NIL)) (-2547 (((-917)) 37) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-1433 (((-917)) 25)) (-2285 (($ $) 91)) (-3347 (($ $) 79) (($ $ $) 118)) (-2543 (((-112) $ $) NIL)) (-2264 (($ $) 89)) (-3325 (($ $) 77)) (-2306 (($ $) 94)) (-3374 (($ $) 82)) (-4205 (($ $) 92)) (-3386 (($ $) 80)) (-2296 (($ $) 93)) (-3361 (($ $) 81)) (-2275 (($ $) 90)) (-3336 (($ $) 78)) (-3841 (($ $) 117)) (-3790 (($) 23 T CONST)) (-3803 (($) 44 T CONST)) (-2038 (((-1151) $) 18) (((-1151) $ (-112)) 20) (((-1262) (-818) $) 21) (((-1262) (-818) $ (-112)) 22)) (-3883 (($ $) 105)) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-3851 (($ $ $) 107)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 62)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 54)) (-3050 (($ $ $) 45) (($ $ (-563)) 63)) (-3039 (($ $) 55) (($ $ $) 57)) (-3027 (($ $ $) 56)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 66) (($ $ (-407 (-563))) 149) (($ $ $) 67)) (* (($ (-917) $) 35) (($ (-767) $) NIL) (($ (-563) $) 59) (($ $ $) 58) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) -(((-225) (-13 (-404) (-233) (-824) (-1193) (-611 (-536)) (-10 -8 (-15 -3050 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -2249 ($)) (-15 -2261 ($ $)) (-15 -4288 ($ $)) (-15 -3347 ($ $ $)) (-15 -3883 ($ $)) (-15 -3851 ($ $ $)) (-15 -2272 ((-407 (-563)) $ (-767))) (-15 -2272 ((-407 (-563)) $ (-767) (-767)))))) (T -225)) -((** (*1 *1 *1 *1) (-5 *1 (-225))) (-3050 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-225)))) (-2249 (*1 *1) (-5 *1 (-225))) (-2261 (*1 *1 *1) (-5 *1 (-225))) (-4288 (*1 *1 *1) (-5 *1 (-225))) (-3347 (*1 *1 *1 *1) (-5 *1 (-225))) (-3883 (*1 *1 *1) (-5 *1 (-225))) (-3851 (*1 *1 *1 *1) (-5 *1 (-225))) (-2272 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225)))) (-2272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225))))) -(-13 (-404) (-233) (-824) (-1193) (-611 (-536)) (-10 -8 (-15 -3050 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -2249 ($)) (-15 -2261 ($ $)) (-15 -4288 ($ $)) (-15 -3347 ($ $ $)) (-15 -3883 ($ $)) (-15 -3851 ($ $ $)) (-15 -2272 ((-407 (-563)) $ (-767))) (-15 -2272 ((-407 (-563)) $ (-767) (-767))))) -((-3873 (((-169 (-225)) (-767) (-169 (-225))) 11) (((-225) (-767) (-225)) 12)) (-3075 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3084 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-3862 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-3903 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-3920 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-3893 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-3912 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-3941 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-3932 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-3883 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-3851 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) -(((-226) (-10 -7 (-15 -3883 ((-225) (-225))) (-15 -3883 ((-169 (-225)) (-169 (-225)))) (-15 -3851 ((-225) (-225) (-225))) (-15 -3851 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3075 ((-225) (-225))) (-15 -3075 ((-169 (-225)) (-169 (-225)))) (-15 -3862 ((-225) (-225))) (-15 -3862 ((-169 (-225)) (-169 (-225)))) (-15 -3873 ((-225) (-767) (-225))) (-15 -3873 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -3893 ((-225) (-225) (-225))) (-15 -3893 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3903 ((-225) (-225) (-225))) (-15 -3903 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3912 ((-225) (-225) (-225))) (-15 -3912 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3920 ((-225) (-225) (-225))) (-15 -3920 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3932 ((-169 (-225)) (-169 (-225)))) (-15 -3932 ((-225) (-225))) (-15 -3941 ((-225) (-225))) (-15 -3941 ((-169 (-225)) (-169 (-225)))) (-15 -3084 ((-225) (-225) (-225))) (-15 -3084 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) -((-3084 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3084 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3941 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3932 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3932 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3920 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3920 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3912 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3912 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3903 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3903 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3893 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3893 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3873 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) (-3873 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) (-3862 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3862 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3075 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3075 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3851 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3851 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3883 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) -(-10 -7 (-15 -3883 ((-225) (-225))) (-15 -3883 ((-169 (-225)) (-169 (-225)))) (-15 -3851 ((-225) (-225) (-225))) (-15 -3851 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3075 ((-225) (-225))) (-15 -3075 ((-169 (-225)) (-169 (-225)))) (-15 -3862 ((-225) (-225))) (-15 -3862 ((-169 (-225)) (-169 (-225)))) (-15 -3873 ((-225) (-767) (-225))) (-15 -3873 ((-169 (-225)) (-767) (-169 (-225)))) (-15 -3893 ((-225) (-225) (-225))) (-15 -3893 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3903 ((-225) (-225) (-225))) (-15 -3903 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3912 ((-225) (-225) (-225))) (-15 -3912 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3920 ((-225) (-225) (-225))) (-15 -3920 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -3932 ((-169 (-225)) (-169 (-225)))) (-15 -3932 ((-225) (-225))) (-15 -3941 ((-225) (-225))) (-15 -3941 ((-169 (-225)) (-169 (-225)))) (-15 -3084 ((-225) (-225) (-225))) (-15 -3084 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1696 (($ (-767) (-767)) NIL)) (-3211 (($ $ $) NIL)) (-2899 (($ (-1257 |#1|)) NIL) (($ $) NIL)) (-1743 (($ |#1| |#1| |#1|) 33)) (-3148 (((-112) $) NIL)) (-3201 (($ $ (-563) (-563)) NIL)) (-3191 (($ $ (-563) (-563)) NIL)) (-3181 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-3232 (($ $) NIL)) (-3172 (((-112) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-3171 (($ $ (-563) (-563) $) NIL)) (-2189 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-4121 (($ $ (-563) (-1257 |#1|)) NIL)) (-4110 (($ $ (-563) (-1257 |#1|)) NIL)) (-2243 (($ |#1| |#1| |#1|) 32)) (-1444 (($ (-767) |#1|) NIL)) (-3684 (($) NIL T CONST)) (-3063 (($ $) NIL (|has| |#1| (-307)))) (-3082 (((-1257 |#1|) $ (-563)) NIL)) (-3096 (($ |#1|) 31)) (-3108 (($ |#1|) 30)) (-3120 (($ |#1|) 29)) (-3406 (((-767) $) NIL (|has| |#1| (-555)))) (-4150 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4085 ((|#1| $ (-563) (-563)) NIL)) (-4236 (((-640 |#1|) $) NIL)) (-3054 (((-767) $) NIL (|has| |#1| (-555)))) (-3042 (((-640 (-1257 |#1|)) $) NIL (|has| |#1| (-555)))) (-3955 (((-767) $) NIL)) (-2552 (($ (-767) (-767) |#1|) NIL)) (-3965 (((-767) $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-1390 ((|#1| $) NIL (|has| |#1| (-6 (-4410 "*"))))) (-3127 (((-563) $) NIL)) (-3105 (((-563) $) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3117 (((-563) $) NIL)) (-3094 (((-563) $) NIL)) (-3840 (($ (-640 (-640 |#1|))) 11)) (-4139 (($ (-1 |#1| |#1|) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1791 (((-640 (-640 |#1|)) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1755 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-3130 (($) 12)) (-3222 (($ $ $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3357 (($ $ |#1|) NIL)) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-1431 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL)) (-3162 (((-112) $) NIL)) (-1400 ((|#1| $) NIL (|has| |#1| (-6 (-4410 "*"))))) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-3073 (((-1257 |#1|) $ (-563)) NIL)) (-2062 (($ (-1257 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3137 (((-112) $) NIL)) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $ $) NIL) (($ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-1257 |#1|) $ (-1257 |#1|)) 15) (((-1257 |#1|) (-1257 |#1|) $) NIL) (((-939 |#1|) $ (-939 |#1|)) 21)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-227 |#1|) (-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -3130 ($)) (-15 -3120 ($ |#1|)) (-15 -3108 ($ |#1|)) (-15 -3096 ($ |#1|)) (-15 -2243 ($ |#1| |#1| |#1|)) (-15 -1743 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1193))) (T -227)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193))) (-5 *1 (-227 *3)))) (-3130 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-3120 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-3108 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-3096 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-2243 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) (-1743 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) -(-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 * ((-939 |#1|) $ (-939 |#1|))) (-15 -3130 ($)) (-15 -3120 ($ |#1|)) (-15 -3108 ($ |#1|)) (-15 -3096 ($ |#1|)) (-15 -2243 ($ |#1| |#1| |#1|)) (-15 -1743 ($ |#1| |#1| |#1|)))) -((-1736 (($ (-1 (-112) |#2|) $) 15)) (-2841 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 26)) (-3139 (($) NIL) (($ (-640 |#2|)) 11)) (-2943 (((-112) $ $) 24))) -(((-228 |#1| |#2|) (-10 -8 (-15 -1736 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2841 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2841 (|#1| |#2| |#1|)) (-15 -3139 (|#1| (-640 |#2|))) (-15 -3139 (|#1|)) (-15 -2943 ((-112) |#1| |#1|))) (-229 |#2|) (-1093)) (T -228)) -NIL -(-10 -8 (-15 -1736 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2841 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2841 (|#1| |#2| |#1|)) (-15 -3139 (|#1| (-640 |#2|))) (-15 -3139 (|#1|)) (-15 -2943 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-1736 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-1920 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1417 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3139 (($) 49) (($ (-640 |#1|)) 48)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 50)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-229 |#1|) (-140) (-1093)) (T -229)) +(-13 (-1094) (-10 -8 (-15 -9 ($) -2091) (-15 -8 ($) -2091) (-15 -7 ($) -2091))) +((-3732 (((-112) $ $) NIL)) (-1737 (((-641 (-862)) $) NIL)) (-4324 (((-506) $) 8)) (-2217 (((-1152) $) NIL)) (-3421 (((-186) $) 10)) (-3864 (((-1114) $) NIL)) (-3565 (((-687 $) (-1170)) 18)) (-3773 (((-641 (-112)) $) NIL)) (-3742 (((-859) $) NIL)) (-2873 (((-55) $) 12)) (-1705 (((-112) $ $) NIL))) +(((-187) (-13 (-185) (-10 -8 (-15 -3565 ((-687 $) (-1170)))))) (T -187)) +((-3565 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-187))) (-5 *1 (-187))))) +(-13 (-185) (-10 -8 (-15 -3565 ((-687 $) (-1170))))) +((-1366 ((|#2| |#2|) 28)) (-3177 (((-112) |#2|) 19)) (-4151 (((-316 |#1|) |#2|) 12)) (-4161 (((-316 |#1|) |#2|) 14)) (-1749 ((|#2| |#2| (-1170)) 70) ((|#2| |#2|) 71)) (-2976 (((-169 (-316 |#1|)) |#2|) 10)) (-3668 ((|#2| |#2| (-1170)) 67) ((|#2| |#2|) 61))) +(((-188 |#1| |#2|) (-10 -7 (-15 -1749 (|#2| |#2|)) (-15 -1749 (|#2| |#2| (-1170))) (-15 -3668 (|#2| |#2|)) (-15 -3668 (|#2| |#2| (-1170))) (-15 -4151 ((-316 |#1|) |#2|)) (-15 -4161 ((-316 |#1|) |#2|)) (-15 -3177 ((-112) |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -2976 ((-169 (-316 |#1|)) |#2|))) (-13 (-556) (-847) (-1035 (-564))) (-13 (-27) (-1194) (-430 (-169 |#1|)))) (T -188)) +((-2976 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-1366 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-112)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-4151 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3668 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) (-1749 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) (-1749 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3))))))) +(-10 -7 (-15 -1749 (|#2| |#2|)) (-15 -1749 (|#2| |#2| (-1170))) (-15 -3668 (|#2| |#2|)) (-15 -3668 (|#2| |#2| (-1170))) (-15 -4151 ((-316 |#1|) |#2|)) (-15 -4161 ((-316 |#1|) |#2|)) (-15 -3177 ((-112) |#2|)) (-15 -1366 (|#2| |#2|)) (-15 -2976 ((-169 (-316 |#1|)) |#2|))) +((-3573 (((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|))) 26)) (-3742 (((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))) 37))) +(((-189 |#1|) (-10 -7 (-15 -3573 ((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|)))) (-15 -3742 ((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))))) (-172)) (T -189)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-407 (-949 *4))))) (-5 *1 (-189 *4)))) (-3573 (*1 *2 *3) (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) (-5 *2 (-1259 (-685 (-949 *4)))) (-5 *1 (-189 *4))))) +(-10 -7 (-15 -3573 ((-1259 (-685 (-949 |#1|))) (-1259 (-685 |#1|)))) (-15 -3742 ((-1259 (-685 (-407 (-949 |#1|)))) (-1259 (-685 |#1|))))) +((-3473 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 89)) (-1432 (((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))) 99)) (-1978 (((-1172 (-407 (-564))) (-564)) 56)) (-2450 (((-1172 (-407 (-564))) (-564)) 75)) (-2416 (((-407 (-564)) (-1172 (-407 (-564)))) 85)) (-1706 (((-1172 (-407 (-564))) (-564)) 37)) (-4232 (((-1172 (-407 (-564))) (-564)) 68)) (-2912 (((-1172 (-407 (-564))) (-564)) 62)) (-3917 (((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 83)) (-2356 (((-1172 (-407 (-564))) (-564)) 29)) (-2701 (((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564)))) 87)) (-3199 (((-1172 (-407 (-564))) (-564)) 35)) (-1833 (((-1172 (-407 (-564))) (-641 (-564))) 96))) +(((-190) (-10 -7 (-15 -2356 ((-1172 (-407 (-564))) (-564))) (-15 -1978 ((-1172 (-407 (-564))) (-564))) (-15 -1706 ((-1172 (-407 (-564))) (-564))) (-15 -3199 ((-1172 (-407 (-564))) (-564))) (-15 -2912 ((-1172 (-407 (-564))) (-564))) (-15 -4232 ((-1172 (-407 (-564))) (-564))) (-15 -2450 ((-1172 (-407 (-564))) (-564))) (-15 -2701 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3917 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2416 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -3473 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -1833 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -1432 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564)))))) (T -190)) +((-1432 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-1833 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-3473 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-3917 (*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)))) (-2701 (*1 *2 *3 *3) (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-190)))) (-2450 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-4232 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2912 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-3199 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-1706 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-1978 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) (-2356 (*1 *2 *3) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(-10 -7 (-15 -2356 ((-1172 (-407 (-564))) (-564))) (-15 -1978 ((-1172 (-407 (-564))) (-564))) (-15 -1706 ((-1172 (-407 (-564))) (-564))) (-15 -3199 ((-1172 (-407 (-564))) (-564))) (-15 -2912 ((-1172 (-407 (-564))) (-564))) (-15 -4232 ((-1172 (-407 (-564))) (-564))) (-15 -2450 ((-1172 (-407 (-564))) (-564))) (-15 -2701 ((-407 (-564)) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -3917 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -2416 ((-407 (-564)) (-1172 (-407 (-564))))) (-15 -3473 ((-1172 (-407 (-564))) (-1172 (-407 (-564))) (-1172 (-407 (-564))))) (-15 -1833 ((-1172 (-407 (-564))) (-641 (-564)))) (-15 -1432 ((-1172 (-407 (-564))) (-641 (-564)) (-641 (-564))))) +((-3480 (((-418 (-1166 (-564))) (-564)) 38)) (-4069 (((-641 (-1166 (-564))) (-564)) 33)) (-2681 (((-1166 (-564)) (-564)) 28))) +(((-191) (-10 -7 (-15 -4069 ((-641 (-1166 (-564))) (-564))) (-15 -2681 ((-1166 (-564)) (-564))) (-15 -3480 ((-418 (-1166 (-564))) (-564))))) (T -191)) +((-3480 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564)))) (-2681 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) (-4069 (*1 *2 *3) (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) +(-10 -7 (-15 -4069 ((-641 (-1166 (-564))) (-564))) (-15 -2681 ((-1166 (-564)) (-564))) (-15 -3480 ((-418 (-1166 (-564))) (-564)))) +((-2324 (((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 132)) (-3335 (((-641 (-1152)) (-1150 (-225))) NIL)) (-3725 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 108)) (-4285 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225)))) NIL)) (-4314 (((-641 (-1152)) (-641 (-225))) NIL)) (-3726 (((-225) (-1088 (-840 (-225)))) 31)) (-3403 (((-225) (-1088 (-840 (-225)))) 32)) (-3152 (((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 126)) (-1303 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 68)) (-3260 (((-1152) (-225)) NIL)) (-2815 (((-1152) (-641 (-1152))) 27)) (-1672 (((-1032) (-1170) (-1170) (-1032)) 13))) +(((-192) (-10 -7 (-15 -3725 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1303 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3726 ((-225) (-1088 (-840 (-225))))) (-15 -3403 ((-225) (-1088 (-840 (-225))))) (-15 -3152 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4285 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -2324 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3260 ((-1152) (-225))) (-15 -4314 ((-641 (-1152)) (-641 (-225)))) (-15 -3335 ((-641 (-1152)) (-1150 (-225)))) (-15 -2815 ((-1152) (-641 (-1152)))) (-15 -1672 ((-1032) (-1170) (-1170) (-1032))))) (T -192)) +((-1672 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-192)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) (-2324 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) (-4285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) (-3152 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-192)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) (-1303 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-192)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-192))))) +(-10 -7 (-15 -3725 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1303 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3726 ((-225) (-1088 (-840 (-225))))) (-15 -3403 ((-225) (-1088 (-840 (-225))))) (-15 -3152 ((-379) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4285 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -2324 ((-1150 (-225)) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3260 ((-1152) (-225))) (-15 -4314 ((-641 (-1152)) (-641 (-225)))) (-15 -3335 ((-641 (-1152)) (-1150 (-225)))) (-15 -2815 ((-1152) (-641 (-1152)))) (-15 -1672 ((-1032) (-1170) (-1170) (-1032)))) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 61) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 33) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-193) (-784)) (T -193)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 66) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-194) (-784)) (T -194)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 81) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 46) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-195) (-784)) (T -195)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 63) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 36) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-196) (-784)) (T -196)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 75) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-197) (-784)) (T -197)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 90) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-198) (-784)) (T -198)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 90) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 51) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-199) (-784)) (T -199)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 77) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 42) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-200) (-784)) (T -200)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 78)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 38)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-201) (-784)) (T -201)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 79)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 44)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-202) (-784)) (T -202)) +NIL +(-784) +((-3732 (((-112) $ $) NIL)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 105) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 86) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-203) (-784)) (T -203)) +NIL +(-784) +((-3233 (((-3 (-2 (|:| -3440 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 110)) (-4234 (((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 58)) (-2837 (((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 92))) +(((-204) (-10 -7 (-15 -3233 ((-3 (-2 (|:| -3440 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2837 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4234 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -204)) +((-4234 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-564)) (-5 *1 (-204)))) (-2837 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-204)))) (-3233 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3440 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(-10 -7 (-15 -3233 ((-3 (-2 (|:| -3440 (-114)) (|:| |w| (-225))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2837 ((-3 (-641 (-225)) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4234 ((-564) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1514 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 49)) (-2983 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 157)) (-3249 (((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225)))) 109)) (-1707 (((-379) (-685 (-316 (-225)))) 137)) (-3981 (((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170))) 133)) (-1421 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 37)) (-4315 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 53)) (-2416 (((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225)))) 122)) (-2015 (((-379) (-379) (-641 (-379))) 130) (((-379) (-379) (-379)) 125)) (-2693 (((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 45))) +(((-205) (-10 -7 (-15 -2015 ((-379) (-379) (-379))) (-15 -2015 ((-379) (-379) (-641 (-379)))) (-15 -1707 ((-379) (-685 (-316 (-225))))) (-15 -3981 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -2416 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -3249 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -2983 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1514 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4315 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2693 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1421 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -205)) +((-1421 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2693 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-4315 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-3249 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) (-5 *1 (-205)))) (-2416 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) (-1707 (*1 *2 *3) (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2015 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205)))) (-2015 (*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205))))) +(-10 -7 (-15 -2015 ((-379) (-379) (-379))) (-15 -2015 ((-379) (-379) (-641 (-379)))) (-15 -1707 ((-379) (-685 (-316 (-225))))) (-15 -3981 ((-685 (-316 (-225))) (-1259 (-316 (-225))) (-641 (-1170)))) (-15 -2416 ((-685 (-316 (-225))) (-685 (-316 (-225))) (-641 (-1170)) (-1259 (-316 (-225))))) (-15 -3249 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-685 (-316 (-225))))) (-15 -2983 ((-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379))) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1514 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4315 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2693 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -1421 ((-379) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-3732 (((-112) $ $) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-3662 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 75)) (-1705 (((-112) $ $) NIL))) +(((-206) (-797)) (T -206)) +NIL +(-797) +((-3732 (((-112) $ $) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 43)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-3662 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 73)) (-1705 (((-112) $ $) NIL))) +(((-207) (-797)) (T -207)) +NIL +(-797) +((-3732 (((-112) $ $) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 40)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-3662 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 76)) (-1705 (((-112) $ $) NIL))) +(((-208) (-797)) (T -208)) +NIL +(-797) +((-3732 (((-112) $ $) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 48)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-3662 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 88)) (-1705 (((-112) $ $) NIL))) +(((-209) (-797)) (T -209)) +NIL +(-797) +((-3491 (((-641 (-1170)) (-1170) (-768)) 24)) (-3111 (((-316 (-225)) (-316 (-225))) 33)) (-1712 (((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 88)) (-2962 (((-112) (-225) (-225) (-641 (-316 (-225)))) 48))) +(((-210) (-10 -7 (-15 -3491 ((-641 (-1170)) (-1170) (-768))) (-15 -3111 ((-316 (-225)) (-316 (-225)))) (-15 -2962 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -1712 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) (T -210)) +((-1712 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-112)) (-5 *1 (-210)))) (-2962 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-210)))) (-3111 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) (-5 *3 (-1170))))) +(-10 -7 (-15 -3491 ((-641 (-1170)) (-1170) (-768))) (-15 -3111 ((-316 (-225)) (-316 (-225)))) (-15 -2962 ((-112) (-225) (-225) (-641 (-316 (-225))))) (-15 -1712 ((-112) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))))) +((-3732 (((-112) $ $) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 28)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-3968 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 70)) (-1705 (((-112) $ $) NIL))) +(((-211) (-892)) (T -211)) +NIL +(-892) +((-3732 (((-112) $ $) NIL)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 24)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-3968 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) NIL)) (-1705 (((-112) $ $) NIL))) +(((-212) (-892)) (T -212)) +NIL +(-892) +((-3732 (((-112) $ $) NIL)) (-2549 ((|#2| $ (-768) |#2|) 11)) (-2540 ((|#2| $ (-768)) 10)) (-3619 (($) 8)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 26)) (-1705 (((-112) $ $) 13))) +(((-213 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3619 ($)) (-15 -2540 (|#2| $ (-768))) (-15 -2549 (|#2| $ (-768) |#2|)))) (-918) (-1094)) (T -213)) +((-3619 (*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1094)))) (-2540 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)))) (-2549 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)) (-4 *2 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -3619 ($)) (-15 -2540 (|#2| $ (-768))) (-15 -2549 (|#2| $ (-768) |#2|)))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2096 (((-1264) $) 37) (((-1264) $ (-918) (-918)) 44)) (-4382 (($ $ (-986)) 19) (((-245 (-1152)) $ (-1170)) 15)) (-3589 (((-1264) $) 35)) (-3742 (((-859) $) 32) (($ (-641 |#1|)) 8)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $ $) 27)) (-1780 (($ $ $) 22))) +(((-214 |#1|) (-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4382 ($ $ (-986))) (-15 -4382 ((-245 (-1152)) $ (-1170))) (-15 -1780 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $)) (-15 -2096 ((-1264) $ (-918) (-918))))) (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $))))) (T -214)) +((-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-986)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $))))))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) (-4 *4 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ *3)) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $))))))) (-1780 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $))))))) (-1790 (*1 *1 *1 *1) (-12 (-5 *1 (-214 *2)) (-4 *2 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $))))))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 (*2 $)) (-15 -2096 (*2 $))))))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) (-4 *3 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 (*2 $)) (-15 -2096 (*2 $))))))) (-2096 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) (-4 *4 (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 (*2 $)) (-15 -2096 (*2 $)))))))) +(-13 (-1094) (-614 (-641 |#1|)) (-10 -8 (-15 -4382 ($ $ (-986))) (-15 -4382 ((-245 (-1152)) $ (-1170))) (-15 -1780 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $)) (-15 -2096 ((-1264) $ (-918) (-918))))) +((-3231 ((|#2| |#4| (-1 |#2| |#2|)) 49))) +(((-215 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3231 (|#2| |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -215)) +((-3231 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) (-4 *3 (-342 *5 *2 *6))))) +(-10 -7 (-15 -3231 (|#2| |#4| (-1 |#2| |#2|)))) +((-2357 ((|#2| |#2| (-768) |#2|) 58)) (-2586 ((|#2| |#2| (-768) |#2|) 54)) (-3529 (((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2458 |#2|)))) 81)) (-4086 (((-641 (-2 (|:| |deg| (-768)) (|:| -2458 |#2|))) |#2|) 75)) (-4081 (((-112) |#2|) 73)) (-2877 (((-418 |#2|) |#2|) 101)) (-4127 (((-418 |#2|) |#2|) 100)) (-2027 ((|#2| |#2| (-768) |#2|) 52)) (-4290 (((-2 (|:| |cont| |#1|) (|:| -2267 (-641 (-2 (|:| |irr| |#2|) (|:| -2943 (-564)))))) |#2| (-112)) 93))) +(((-216 |#1| |#2|) (-10 -7 (-15 -4127 ((-418 |#2|) |#2|)) (-15 -2877 ((-418 |#2|) |#2|)) (-15 -4290 ((-2 (|:| |cont| |#1|) (|:| -2267 (-641 (-2 (|:| |irr| |#2|) (|:| -2943 (-564)))))) |#2| (-112))) (-15 -4086 ((-641 (-2 (|:| |deg| (-768)) (|:| -2458 |#2|))) |#2|)) (-15 -3529 ((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2458 |#2|))))) (-15 -2027 (|#2| |#2| (-768) |#2|)) (-15 -2586 (|#2| |#2| (-768) |#2|)) (-15 -2357 (|#2| |#2| (-768) |#2|)) (-15 -4081 ((-112) |#2|))) (-349) (-1235 |#1|)) (T -216)) +((-4081 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-2357 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-2586 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-2027 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) (-4 *2 (-1235 *4)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |deg| (-768)) (|:| -2458 *5)))) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) (-5 *1 (-216 *4 *5)))) (-4086 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -2458 *3)))) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-4290 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-349)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2267 (-641 (-2 (|:| |irr| *3) (|:| -2943 (-564))))))) (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5)))) (-2877 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -4127 ((-418 |#2|) |#2|)) (-15 -2877 ((-418 |#2|) |#2|)) (-15 -4290 ((-2 (|:| |cont| |#1|) (|:| -2267 (-641 (-2 (|:| |irr| |#2|) (|:| -2943 (-564)))))) |#2| (-112))) (-15 -4086 ((-641 (-2 (|:| |deg| (-768)) (|:| -2458 |#2|))) |#2|)) (-15 -3529 ((-641 |#2|) (-641 (-2 (|:| |deg| (-768)) (|:| -2458 |#2|))))) (-15 -2027 (|#2| |#2| (-768) |#2|)) (-15 -2586 (|#2| |#2| (-768) |#2|)) (-15 -2357 (|#2| |#2| (-768) |#2|)) (-15 -4081 ((-112) |#2|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 (((-564) $) NIL (|has| (-564) (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| (-564) (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2239 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-564) (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) NIL (|has| (-564) (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL)) (-1625 (((-564) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2839 (((-112) $) NIL (|has| (-564) (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| (-564) (-847)))) (-2187 (($ (-1 (-564) (-564)) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-564) (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-3014 (((-564) $) NIL (|has| (-564) (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-4061 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2090 (($ $) NIL)) (-1634 (((-564) $) NIL)) (-2500 (($ (-407 (-564))) 9)) (-2235 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 10) $) 10)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-3270 (((-768)) NIL T CONST)) (-2551 (((-564) $) NIL (|has| (-564) (-545)))) (-3360 (((-112) $ $) NIL)) (-2792 (($ $) NIL (|has| (-564) (-817)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1751 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1799 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) +(((-217) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 10)) (-10 -8 (-15 -1941 ((-407 (-564)) $)) (-15 -2500 ($ (-407 (-564))))))) (T -217)) +((-1941 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) (-2500 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))) +(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 10)) (-10 -8 (-15 -1941 ((-407 (-564)) $)) (-15 -2500 ($ (-407 (-564)))))) +((-3732 (((-112) $ $) NIL)) (-4287 (((-1112) $) 13)) (-2217 (((-1152) $) NIL)) (-4024 (((-483) $) 10)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 25) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-1129) $) 15)) (-1705 (((-112) $ $) NIL))) +(((-218) (-13 (-1077) (-10 -8 (-15 -4024 ((-483) $)) (-15 -4287 ((-1112) $)) (-15 -4337 ((-1129) $))))) (T -218)) +((-4024 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218))))) +(-13 (-1077) (-10 -8 (-15 -4024 ((-483) $)) (-15 -4287 ((-1112) $)) (-15 -4337 ((-1129) $)))) +((-3128 (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152)) 29) (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|))) 25)) (-2433 (((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)) 17))) +(((-219 |#1| |#2|) (-10 -7 (-15 -3128 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)))) (-15 -3128 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152))) (-15 -2433 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -219)) +((-2433 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1170)) (-5 *6 (-112)) (-4 *7 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-1194) (-956) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *7 *3)) (-5 *5 (-840 *3)))) (-3128 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-840 *3))) (-5 *5 (-1152)) (-4 *3 (-13 (-1194) (-956) (-29 *6))) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-840 *3))) (-4 *3 (-13 (-1194) (-956) (-29 *5))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3))))) +(-10 -7 (-15 -3128 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)))) (-15 -3128 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1086 (-840 |#2|)) (-1152))) (-15 -2433 ((-3 (|:| |f1| (-840 |#2|)) (|:| |f2| (-641 (-840 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1170) (-840 |#2|) (-840 |#2|) (-112)))) +((-3128 (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)) 49) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|))))) 46) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152)) 50) (((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|)))) 22))) +(((-220 |#1|) (-10 -7 (-15 -3128 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))))) (-15 -3128 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152))) (-15 -3128 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))))) (-15 -3128 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (T -220)) +((-3128 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-840 (-407 (-949 *6))))) (-5 *5 (-1152)) (-5 *3 (-407 (-949 *6))) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-840 (-407 (-949 *5))))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) (-3128 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1086 (-840 (-316 *6)))) (-5 *5 (-1152)) (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1086 (-840 (-316 *5)))) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5))))) +(-10 -7 (-15 -3128 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))))) (-15 -3128 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-316 |#1|))) (-1152))) (-15 -3128 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))))) (-15 -3128 ((-3 (|:| |f1| (-840 (-316 |#1|))) (|:| |f2| (-641 (-840 (-316 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-407 (-949 |#1|)) (-1086 (-840 (-407 (-949 |#1|)))) (-1152)))) +((-1699 (((-2 (|:| -4268 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|)) 26)) (-3512 (((-641 (-316 |#2|)) (-316 |#2|) (-918)) 54))) +(((-221 |#1| |#2|) (-10 -7 (-15 -1699 ((-2 (|:| -4268 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|))) (-15 -3512 ((-641 (-316 |#2|)) (-316 |#2|) (-918)))) (-1046) (-13 (-556) (-847))) (T -221)) +((-3512 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *6 (-13 (-556) (-847))) (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) (-4 *5 (-1046)))) (-1699 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-2 (|:| -4268 (-1166 *4)) (|:| |deg| (-918)))) (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-847)))))) +(-10 -7 (-15 -1699 ((-2 (|:| -4268 (-1166 |#1|)) (|:| |deg| (-918))) (-1166 |#1|))) (-15 -3512 ((-641 (-316 |#2|)) (-316 |#2|) (-918)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2079 ((|#1| $) NIL)) (-2519 ((|#1| $) 30)) (-2969 (((-112) $ (-768)) NIL)) (-2818 (($) NIL T CONST)) (-1649 (($ $) NIL)) (-2797 (($ $) 39)) (-2881 ((|#1| |#1| $) NIL)) (-2226 ((|#1| $) NIL)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2395 (((-768) $) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2828 ((|#1| $) NIL)) (-2036 ((|#1| |#1| $) 35)) (-2536 ((|#1| |#1| $) 37)) (-2974 (($ |#1| $) NIL)) (-3724 (((-768) $) 33)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1945 ((|#1| $) NIL)) (-3001 ((|#1| $) 31)) (-1351 ((|#1| $) 29)) (-1292 ((|#1| $) NIL)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2971 ((|#1| |#1| $) NIL)) (-4003 (((-112) $) 9)) (-3434 (($) NIL)) (-3220 ((|#1| $) NIL)) (-1718 (($) NIL) (($ (-641 |#1|)) 16)) (-3728 (((-768) $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-2716 ((|#1| $) 13)) (-3745 (($ (-641 |#1|)) NIL)) (-3957 ((|#1| $) NIL)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-222 |#1|) (-13 (-254 |#1|) (-10 -8 (-15 -1718 ($ (-641 |#1|))))) (-1094)) (T -222)) +((-1718 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3))))) +(-13 (-254 |#1|) (-10 -8 (-15 -1718 ($ (-641 |#1|))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1897 (($ (-316 |#1|)) 27)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-3042 (((-112) $) NIL)) (-2111 (((-3 (-316 |#1|) "failed") $) NIL)) (-2239 (((-316 |#1|) $) NIL)) (-1348 (($ $) 35)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-2187 (($ (-1 (-316 |#1|) (-316 |#1|)) $) NIL)) (-1320 (((-316 |#1|) $) NIL)) (-3554 (($ $) 34)) (-2217 (((-1152) $) NIL)) (-3699 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-1693 (($ (-768)) NIL)) (-3326 (($ $) 36)) (-2266 (((-564) $) NIL)) (-3742 (((-859) $) 68) (($ (-564)) NIL) (($ (-316 |#1|)) NIL)) (-2856 (((-316 |#1|) $ $) NIL)) (-3270 (((-768)) NIL T CONST)) (-4311 (($) 29 T CONST)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) 32)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 23)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 28) (($ (-316 |#1|) $) 22))) +(((-223 |#1| |#2|) (-13 (-618 (-316 |#1|)) (-1035 (-316 |#1|)) (-10 -8 (-15 -1320 ((-316 |#1|) $)) (-15 -3554 ($ $)) (-15 -1348 ($ $)) (-15 -2856 ((-316 |#1|) $ $)) (-15 -1693 ($ (-768))) (-15 -3699 ((-112) $)) (-15 -3042 ((-112) $)) (-15 -2266 ((-564) $)) (-15 -2187 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1897 ($ (-316 |#1|))) (-15 -3326 ($ $)))) (-13 (-1046) (-847)) (-641 (-1170))) (T -223)) +((-1320 (*1 *2 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-3554 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))) (-1348 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170))))) (-2856 (*1 *2 *1 *1) (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) (-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1046) (-847))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-1897 (*1 *1 *2) (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1046) (-847))) (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) (-3326 (*1 *1 *1) (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) (-14 *3 (-641 (-1170)))))) +(-13 (-618 (-316 |#1|)) (-1035 (-316 |#1|)) (-10 -8 (-15 -1320 ((-316 |#1|) $)) (-15 -3554 ($ $)) (-15 -1348 ($ $)) (-15 -2856 ((-316 |#1|) $ $)) (-15 -1693 ($ (-768))) (-15 -3699 ((-112) $)) (-15 -3042 ((-112) $)) (-15 -2266 ((-564) $)) (-15 -2187 ($ (-1 (-316 |#1|) (-316 |#1|)) $)) (-15 -1897 ($ (-316 |#1|))) (-15 -3326 ($ $)))) +((-2178 (((-112) (-1152)) 25)) (-3918 (((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112)) 35)) (-1864 (((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)) 84) (((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112)) 85))) +(((-224 |#1| |#2|) (-10 -7 (-15 -2178 ((-112) (-1152))) (-15 -3918 ((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112))) (-15 -1864 ((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112))) (-15 -1864 ((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -224)) +((-1864 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-840 *6)) (-4 *6 (-13 (-1194) (-29 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-224 *5 *6)))) (-1864 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1170)) (-5 *5 (-840 *7)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) (-3918 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-840 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) (-4 *4 (-13 (-1194) (-29 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-224 *6 *4)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4)))))) +(-10 -7 (-15 -2178 ((-112) (-1152))) (-15 -3918 ((-3 (-840 |#2|) "failed") (-610 |#2|) |#2| (-840 |#2|) (-840 |#2|) (-112))) (-15 -1864 ((-3 (-112) "failed") (-949 |#1|) (-1170) (-840 |#2|) (-840 |#2|) (-112))) (-15 -1864 ((-3 (-112) "failed") (-1166 |#2|) (-840 |#2|) (-840 |#2|) (-112)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 96)) (-1473 (((-564) $) 36)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2892 (($ $) NIL)) (-2451 (($ $) 85)) (-2319 (($ $) 73)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-4137 (($ $) 64)) (-2377 (((-112) $ $) NIL)) (-2428 (($ $) 83)) (-2297 (($ $) 71)) (-3265 (((-564) $) 126)) (-2473 (($ $) 88)) (-2339 (($ $) 75)) (-2818 (($) NIL T CONST)) (-3000 (($ $) NIL)) (-2111 (((-3 (-564) "failed") $) 125) (((-3 (-407 (-564)) "failed") $) 122)) (-2239 (((-564) $) 123) (((-407 (-564)) $) 120)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) 101)) (-4094 (((-407 (-564)) $ (-768)) 115) (((-407 (-564)) $ (-768) (-768)) 114)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-2101 (((-918)) 29) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-3308 (((-112) $) NIL)) (-1655 (($) 47)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-1619 (((-564) $) 43)) (-3840 (((-112) $) 97)) (-2347 (($ $ (-564)) NIL)) (-3328 (($ $) NIL)) (-2839 (((-112) $) 95)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) 61) (($) 39 (-12 (-4255 (|has| $ (-6 -4394))) (-4255 (|has| $ (-6 -4402)))))) (-2848 (($ $ $) 60) (($) 38 (-12 (-4255 (|has| $ (-6 -4394))) (-4255 (|has| $ (-6 -4402)))))) (-2250 (((-564) $) 27)) (-4347 (($ $) 34)) (-4050 (($ $) 65)) (-2192 (($ $) 70)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-4129 (((-918) (-564)) NIL (|has| $ (-6 -4402)))) (-3864 (((-1114) $) 99)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL)) (-3014 (($ $) NIL)) (-2140 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-918)) 108)) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2515 (((-564) $) 28)) (-2453 (($) 46)) (-4118 (($ $) 69)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3716 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-4117 (($ $ (-768)) NIL) (($ $) 102)) (-1315 (((-918) (-564)) NIL (|has| $ (-6 -4402)))) (-2484 (($ $) 86)) (-2348 (($ $) 76)) (-2462 (($ $) 87)) (-2328 (($ $) 74)) (-2438 (($ $) 84)) (-2309 (($ $) 72)) (-2235 (((-379) $) 111) (((-225) $) 14) (((-889 (-379)) $) NIL) (((-536) $) 53)) (-3742 (((-859) $) 50) (($ (-564)) 68) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 68) (($ (-407 (-564))) NIL)) (-3270 (((-768)) NIL T CONST)) (-2551 (($ $) NIL)) (-2504 (((-918)) 37) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-3237 (((-918)) 25)) (-2521 (($ $) 91)) (-2379 (($ $) 79) (($ $ $) 118)) (-3360 (((-112) $ $) NIL)) (-2495 (($ $) 89)) (-2358 (($ $) 77)) (-2548 (($ $) 94)) (-2404 (($ $) 82)) (-4065 (($ $) 92)) (-2415 (($ $) 80)) (-2534 (($ $) 93)) (-2391 (($ $) 81)) (-2507 (($ $) 90)) (-2367 (($ $) 78)) (-2792 (($ $) 117)) (-4311 (($) 23 T CONST)) (-4321 (($) 44 T CONST)) (-2412 (((-1152) $) 18) (((-1152) $ (-112)) 20) (((-1264) (-819) $) 21) (((-1264) (-819) $ (-112)) 22)) (-2770 (($ $) 105)) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-2397 (($ $ $) 107)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 62)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 54)) (-1799 (($ $ $) 45) (($ $ (-564)) 63)) (-1790 (($ $) 55) (($ $ $) 57)) (-1780 (($ $ $) 56)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 66) (($ $ (-407 (-564))) 149) (($ $ $) 67)) (* (($ (-918) $) 35) (($ (-768) $) NIL) (($ (-564) $) 59) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-225) (-13 (-404) (-233) (-825) (-1194) (-612 (-536)) (-10 -8 (-15 -1799 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2453 ($)) (-15 -4347 ($ $)) (-15 -4050 ($ $)) (-15 -2379 ($ $ $)) (-15 -2770 ($ $)) (-15 -2397 ($ $ $)) (-15 -4094 ((-407 (-564)) $ (-768))) (-15 -4094 ((-407 (-564)) $ (-768) (-768)))))) (T -225)) +((** (*1 *1 *1 *1) (-5 *1 (-225))) (-1799 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) (-2453 (*1 *1) (-5 *1 (-225))) (-4347 (*1 *1 *1) (-5 *1 (-225))) (-4050 (*1 *1 *1) (-5 *1 (-225))) (-2379 (*1 *1 *1 *1) (-5 *1 (-225))) (-2770 (*1 *1 *1) (-5 *1 (-225))) (-2397 (*1 *1 *1 *1) (-5 *1 (-225))) (-4094 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) (-4094 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225))))) +(-13 (-404) (-233) (-825) (-1194) (-612 (-536)) (-10 -8 (-15 -1799 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2453 ($)) (-15 -4347 ($ $)) (-15 -4050 ($ $)) (-15 -2379 ($ $ $)) (-15 -2770 ($ $)) (-15 -2397 ($ $ $)) (-15 -4094 ((-407 (-564)) $ (-768))) (-15 -4094 ((-407 (-564)) $ (-768) (-768))))) +((-3122 (((-169 (-225)) (-768) (-169 (-225))) 11) (((-225) (-768) (-225)) 12)) (-1555 (((-169 (-225)) (-169 (-225))) 13) (((-225) (-225)) 14)) (-3206 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 19) (((-225) (-225) (-225)) 22)) (-1496 (((-169 (-225)) (-169 (-225))) 27) (((-225) (-225)) 26)) (-1852 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 57) (((-225) (-225) (-225)) 49)) (-4103 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 62) (((-225) (-225) (-225)) 60)) (-2195 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 15) (((-225) (-225) (-225)) 16)) (-1566 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 17) (((-225) (-225) (-225)) 18)) (-2241 (((-169 (-225)) (-169 (-225))) 74) (((-225) (-225)) 73)) (-2597 (((-225) (-225)) 68) (((-169 (-225)) (-169 (-225))) 72)) (-2770 (((-169 (-225)) (-169 (-225))) 8) (((-225) (-225)) 9)) (-2397 (((-169 (-225)) (-169 (-225)) (-169 (-225))) 35) (((-225) (-225) (-225)) 31))) +(((-226) (-10 -7 (-15 -2770 ((-225) (-225))) (-15 -2770 ((-169 (-225)) (-169 (-225)))) (-15 -2397 ((-225) (-225) (-225))) (-15 -2397 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1555 ((-225) (-225))) (-15 -1555 ((-169 (-225)) (-169 (-225)))) (-15 -1496 ((-225) (-225))) (-15 -1496 ((-169 (-225)) (-169 (-225)))) (-15 -3122 ((-225) (-768) (-225))) (-15 -3122 ((-169 (-225)) (-768) (-169 (-225)))) (-15 -2195 ((-225) (-225) (-225))) (-15 -2195 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1852 ((-225) (-225) (-225))) (-15 -1852 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1566 ((-225) (-225) (-225))) (-15 -1566 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4103 ((-225) (-225) (-225))) (-15 -4103 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2597 ((-169 (-225)) (-169 (-225)))) (-15 -2597 ((-225) (-225))) (-15 -2241 ((-225) (-225))) (-15 -2241 ((-169 (-225)) (-169 (-225)))) (-15 -3206 ((-225) (-225) (-225))) (-15 -3206 ((-169 (-225)) (-169 (-225)) (-169 (-225)))))) (T -226)) +((-3206 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-3206 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2597 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4103 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-4103 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1566 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1566 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1852 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1852 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2195 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2195 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-3122 (*1 *2 *3 *2) (-12 (-5 *2 (-169 (-225))) (-5 *3 (-768)) (-5 *1 (-226)))) (-3122 (*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-768)) (-5 *1 (-226)))) (-1496 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1496 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2397 (*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2397 (*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) (-2770 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226))))) +(-10 -7 (-15 -2770 ((-225) (-225))) (-15 -2770 ((-169 (-225)) (-169 (-225)))) (-15 -2397 ((-225) (-225) (-225))) (-15 -2397 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1555 ((-225) (-225))) (-15 -1555 ((-169 (-225)) (-169 (-225)))) (-15 -1496 ((-225) (-225))) (-15 -1496 ((-169 (-225)) (-169 (-225)))) (-15 -3122 ((-225) (-768) (-225))) (-15 -3122 ((-169 (-225)) (-768) (-169 (-225)))) (-15 -2195 ((-225) (-225) (-225))) (-15 -2195 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1852 ((-225) (-225) (-225))) (-15 -1852 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -1566 ((-225) (-225) (-225))) (-15 -1566 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -4103 ((-225) (-225) (-225))) (-15 -4103 ((-169 (-225)) (-169 (-225)) (-169 (-225)))) (-15 -2597 ((-169 (-225)) (-169 (-225)))) (-15 -2597 ((-225) (-225))) (-15 -2241 ((-225) (-225))) (-15 -2241 ((-169 (-225)) (-169 (-225)))) (-15 -3206 ((-225) (-225) (-225))) (-15 -3206 ((-169 (-225)) (-169 (-225)) (-169 (-225))))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1515 (($ (-768) (-768)) NIL)) (-2345 (($ $ $) NIL)) (-2284 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-1974 (($ |#1| |#1| |#1|) 33)) (-2335 (((-112) $) NIL)) (-2888 (($ $ (-564) (-564)) NIL)) (-3158 (($ $ (-564) (-564)) NIL)) (-3003 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-4142 (($ $) NIL)) (-1695 (((-112) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-1621 (($ $ (-564) (-564) $) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1673 (($ $ (-564) (-1259 |#1|)) NIL)) (-1947 (($ $ (-564) (-1259 |#1|)) NIL)) (-4231 (($ |#1| |#1| |#1|) 32)) (-2294 (($ (-768) |#1|) NIL)) (-2818 (($) NIL T CONST)) (-2903 (($ $) NIL (|has| |#1| (-307)))) (-4236 (((-1259 |#1|) $ (-564)) NIL)) (-2947 (($ |#1|) 31)) (-1595 (($ |#1|) 30)) (-3189 (($ |#1|) 29)) (-1544 (((-768) $) NIL (|has| |#1| (-556)))) (-2619 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2540 ((|#1| $ (-564) (-564)) NIL)) (-3616 (((-641 |#1|) $) NIL)) (-3735 (((-768) $) NIL (|has| |#1| (-556)))) (-1973 (((-641 (-1259 |#1|)) $) NIL (|has| |#1| (-556)))) (-2659 (((-768) $) NIL)) (-3619 (($ (-768) (-768) |#1|) NIL)) (-2671 (((-768) $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-3786 ((|#1| $) NIL (|has| |#1| (-6 (-4413 "*"))))) (-1305 (((-564) $) NIL)) (-1392 (((-564) $) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4212 (((-564) $) NIL)) (-2739 (((-564) $) NIL)) (-1915 (($ (-641 (-641 |#1|))) 11)) (-2606 (($ (-1 |#1| |#1|) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3299 (((-641 (-641 |#1|)) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4110 (((-3 $ "failed") $) NIL (|has| |#1| (-363)))) (-1478 (($) 12)) (-1388 (($ $ $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3099 (($ $ |#1|) NIL)) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-3545 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-2041 (((-112) $) NIL)) (-3337 ((|#1| $) NIL (|has| |#1| (-6 (-4413 "*"))))) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-1346 (((-1259 |#1|) $ (-564)) NIL)) (-3742 (($ (-1259 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3938 (((-112) $) NIL)) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $ $) NIL) (($ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) 15) (((-1259 |#1|) (-1259 |#1|) $) NIL) (((-940 |#1|) $ (-940 |#1|)) 21)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-227 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-940 |#1|) $ (-940 |#1|))) (-15 -1478 ($)) (-15 -3189 ($ |#1|)) (-15 -1595 ($ |#1|)) (-15 -2947 ($ |#1|)) (-15 -4231 ($ |#1| |#1| |#1|)) (-15 -1974 ($ |#1| |#1| |#1|)))) (-13 (-363) (-1194))) (T -227)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194))) (-5 *1 (-227 *3)))) (-1478 (*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-3189 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-1595 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-2947 (*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-4231 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) (-1974 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) +(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 * ((-940 |#1|) $ (-940 |#1|))) (-15 -1478 ($)) (-15 -3189 ($ |#1|)) (-15 -1595 ($ |#1|)) (-15 -2947 ($ |#1|)) (-15 -4231 ($ |#1| |#1| |#1|)) (-15 -1974 ($ |#1| |#1| |#1|)))) +((-2068 (($ (-1 (-112) |#2|) $) 15)) (-2154 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 26)) (-4085 (($) NIL) (($ (-641 |#2|)) 11)) (-1705 (((-112) $ $) 24))) +(((-228 |#1| |#2|) (-10 -8 (-15 -2068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2154 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2154 (|#1| |#2| |#1|)) (-15 -4085 (|#1| (-641 |#2|))) (-15 -4085 (|#1|)) (-15 -1705 ((-112) |#1| |#1|))) (-229 |#2|) (-1094)) (T -228)) +NIL +(-10 -8 (-15 -2068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2154 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2154 (|#1| |#2| |#1|)) (-15 -4085 (|#1| (-641 |#2|))) (-15 -4085 (|#1|)) (-15 -1705 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-2068 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-1996 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2366 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4085 (($) 49) (($ (-641 |#1|)) 48)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 50)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-229 |#1|) (-140) (-1094)) (T -229)) NIL (-13 (-235 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-1361 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) 14) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) 22) (($ $ (-767)) NIL) (($ $) 19)) (-4191 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-767)) 17) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL))) -(((-230 |#1| |#2|) (-10 -8 (-15 -1361 (|#1| |#1|)) (-15 -4191 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -4191 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4191 (|#1| |#1| (-1169))) (-15 -4191 (|#1| |#1| (-640 (-1169)))) (-15 -4191 (|#1| |#1| (-1169) (-767))) (-15 -4191 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4191 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4191 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1045)) (T -230)) -NIL -(-10 -8 (-15 -1361 (|#1| |#1|)) (-15 -4191 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -4191 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4191 (|#1| |#1| (-1169))) (-15 -4191 (|#1| |#1| (-640 (-1169)))) (-15 -4191 (|#1| |#1| (-1169) (-767))) (-15 -4191 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4191 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -4191 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1361 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-767)) 51) (($ $ (-640 (-1169)) (-640 (-767))) 44 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 43 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 42 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 41 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-767)) 49) (($ $ (-640 (-1169)) (-640 (-767))) 48 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 47 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 46 (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 45 (|has| |#1| (-896 (-1169)))) (($ $ (-767)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-231 |#1|) (-140) (-1045)) (T -231)) -((-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-1361 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) (-4191 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) (-4 *4 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -1361 ($ $ (-1 |t#1| |t#1|))) (-15 -1361 ($ $ (-1 |t#1| |t#1|) (-767))) (-15 -4191 ($ $ (-1 |t#1| |t#1|))) (-15 -4191 ($ $ (-1 |t#1| |t#1|) (-767))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-233) |has| |#1| (-233)) ((-643 $) . T) ((-722) . T) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-1361 (($ $) NIL) (($ $ (-767)) 13)) (-4191 (($ $) 8) (($ $ (-767)) 15))) -(((-232 |#1|) (-10 -8 (-15 -4191 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-767))) (-15 -4191 (|#1| |#1|)) (-15 -1361 (|#1| |#1|))) (-233)) (T -232)) -NIL -(-10 -8 (-15 -4191 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-767))) (-15 -4191 (|#1| |#1|)) (-15 -1361 (|#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1361 (($ $) 38) (($ $ (-767)) 36)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $) 37) (($ $ (-767)) 35)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-4117 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) 14) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 22) (($ $ (-768)) NIL) (($ $) 19)) (-2124 (($ $ (-1 |#2| |#2|)) 15) (($ $ (-1 |#2| |#2|) (-768)) 17) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL))) +(((-230 |#1| |#2|) (-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -2124 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2124 (|#1| |#1| (-1170))) (-15 -2124 (|#1| |#1| (-641 (-1170)))) (-15 -2124 (|#1| |#1| (-1170) (-768))) (-15 -2124 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2124 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2124 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|)))) (-231 |#2|) (-1046)) (T -230)) +NIL +(-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -2124 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -2124 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2124 (|#1| |#1| (-1170))) (-15 -2124 (|#1| |#1| (-641 (-1170)))) (-15 -2124 (|#1| |#1| (-1170) (-768))) (-15 -2124 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2124 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2124 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4117 (($ $ (-1 |#1| |#1|)) 52) (($ $ (-1 |#1| |#1|) (-768)) 51) (($ $ (-641 (-1170)) (-641 (-768))) 44 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 43 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 41 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 39 (|has| |#1| (-233))) (($ $) 37 (|has| |#1| (-233)))) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-768)) 49) (($ $ (-641 (-1170)) (-641 (-768))) 48 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 47 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 45 (|has| |#1| (-897 (-1170)))) (($ $ (-768)) 40 (|has| |#1| (-233))) (($ $) 38 (|has| |#1| (-233)))) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-231 |#1|) (-140) (-1046)) (T -231)) +((-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) (-4117 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) (-4 *4 (-1046)))) (-2124 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) (-2124 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) (-4 *4 (-1046))))) +(-13 (-1046) (-10 -8 (-15 -4117 ($ $ (-1 |t#1| |t#1|))) (-15 -4117 ($ $ (-1 |t#1| |t#1|) (-768))) (-15 -2124 ($ $ (-1 |t#1| |t#1|))) (-15 -2124 ($ $ (-1 |t#1| |t#1|) (-768))) (IF (|has| |t#1| (-233)) (-6 (-233)) |%noBranch|) (IF (|has| |t#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-233) |has| |#1| (-233)) ((-644 $) . T) ((-723) . T) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-4117 (($ $) NIL) (($ $ (-768)) 13)) (-2124 (($ $) 8) (($ $ (-768)) 15))) +(((-232 |#1|) (-10 -8 (-15 -2124 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-768))) (-15 -2124 (|#1| |#1|)) (-15 -4117 (|#1| |#1|))) (-233)) (T -232)) +NIL +(-10 -8 (-15 -2124 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-768))) (-15 -2124 (|#1| |#1|)) (-15 -4117 (|#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4117 (($ $) 38) (($ $ (-768)) 36)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $) 37) (($ $ (-768)) 35)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-233) (-140)) (T -233)) -((-1361 (*1 *1 *1) (-4 *1 (-233))) (-4191 (*1 *1 *1) (-4 *1 (-233))) (-1361 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) (-4191 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767))))) -(-13 (-1045) (-10 -8 (-15 -1361 ($ $)) (-15 -4191 ($ $)) (-15 -1361 ($ $ (-767))) (-15 -4191 ($ $ (-767))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-3139 (($) 12) (($ (-640 |#2|)) NIL)) (-2208 (($ $) 14)) (-2074 (($ (-640 |#2|)) 10)) (-2062 (((-858) $) 21))) -(((-234 |#1| |#2|) (-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -3139 (|#1| (-640 |#2|))) (-15 -3139 (|#1|)) (-15 -2074 (|#1| (-640 |#2|))) (-15 -2208 (|#1| |#1|))) (-235 |#2|) (-1093)) (T -234)) -NIL -(-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -3139 (|#1| (-640 |#2|))) (-15 -3139 (|#1|)) (-15 -2074 (|#1| (-640 |#2|))) (-15 -2208 (|#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-1736 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-1920 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1417 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3139 (($) 49) (($ (-640 |#1|)) 48)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 50)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-235 |#1|) (-140) (-1093)) (T -235)) -((-3139 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1093)))) (-3139 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-235 *3)))) (-2841 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-235 *2)) (-4 *2 (-1093)))) (-2841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3)) (-4 *3 (-1093)))) (-1736 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3)) (-4 *3 (-1093))))) -(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -3139 ($)) (-15 -3139 ($ (-640 |t#1|))) (IF (|has| $ (-6 -4408)) (PROGN (-15 -2841 ($ |t#1| $)) (-15 -2841 ($ (-1 (-112) |t#1|) $)) (-15 -1736 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-3152 (((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563)))) 42))) -(((-236) (-10 -7 (-15 -3152 ((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563))))))) (T -236)) -((-3152 (*1 *2 *3) (-12 (-5 *3 (-294 (-948 (-563)))) (-5 *2 (-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767)))))) (-5 *1 (-236))))) -(-10 -7 (-15 -3152 ((-2 (|:| |varOrder| (-640 (-1169))) (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) (|:| |hom| (-640 (-1257 (-767))))) (-294 (-948 (-563)))))) -((-2433 (((-767)) 56)) (-3853 (((-2 (|:| -4277 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) 53) (((-684 |#3|) (-684 $)) 44) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-1575 (((-134)) 62)) (-1361 (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2062 (((-1257 |#3|) $) NIL) (($ |#3|) NIL) (((-858) $) NIL) (($ (-563)) 12) (($ (-407 (-563))) NIL)) (-3192 (((-767)) 15)) (-3050 (($ $ |#3|) 59))) -(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|)) (-15 -3192 ((-767))) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2062 (|#1| |#3|)) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -3853 ((-684 |#3|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -2433 ((-767))) (-15 -3050 (|#1| |#1| |#3|)) (-15 -1575 ((-134))) (-15 -2062 ((-1257 |#3|) |#1|))) (-238 |#2| |#3|) (-767) (-1208)) (T -237)) -((-1575 (*1 *2) (-12 (-14 *4 (-767)) (-4 *5 (-1208)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-2433 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3192 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) -(-10 -8 (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|)) (-15 -3192 ((-767))) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -2062 (|#1| |#3|)) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -3853 ((-684 |#3|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -2433 ((-767))) (-15 -3050 (|#1| |#1| |#3|)) (-15 -1575 ((-134))) (-15 -2062 ((-1257 |#3|) |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#2| (-1093)))) (-2741 (((-112) $) 72 (|has| |#2| (-131)))) (-3525 (($ (-917)) 125 (|has| |#2| (-1045)))) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-3367 (($ $ $) 121 (|has| |#2| (-789)))) (-1482 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-3740 (((-112) $ (-767)) 8)) (-2433 (((-767)) 107 (|has| |#2| (-368)))) (-2107 (((-563) $) 119 (|has| |#2| (-844)))) (-2189 ((|#2| $ (-563) |#2|) 52 (|has| $ (-6 -4409)))) (-3684 (($) 7 T CONST)) (-2671 (((-3 (-563) "failed") $) 67 (-3743 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) 64 (-3743 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1093)))) (-2589 (((-563) $) 66 (-3743 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) 63 (-3743 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) 62 (|has| |#2| (-1093)))) (-3853 (((-684 (-563)) (-684 $)) 106 (-3743 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 105 (-3743 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 104 (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) 103 (|has| |#2| (-1045)))) (-3230 (((-3 $ "failed") $) 79 (|has| |#2| (-722)))) (-4301 (($) 110 (|has| |#2| (-368)))) (-4150 ((|#2| $ (-563) |#2|) 53 (|has| $ (-6 -4409)))) (-4085 ((|#2| $ (-563)) 51)) (-2720 (((-112) $) 117 (|has| |#2| (-844)))) (-4236 (((-640 |#2|) $) 30 (|has| $ (-6 -4408)))) (-2712 (((-112) $) 81 (|has| |#2| (-722)))) (-2731 (((-112) $) 118 (|has| |#2| (-844)))) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-3489 (($ $ $) 116 (-2811 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-1572 (((-640 |#2|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4105 (($ $ $) 115 (-2811 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-4139 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#2| |#2|) $) 35)) (-3267 (((-917) $) 109 (|has| |#2| (-368)))) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#2| (-1093)))) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3491 (($ (-917)) 108 (|has| |#2| (-368)))) (-3249 (((-1113) $) 21 (|has| |#2| (-1093)))) (-1884 ((|#2| $) 42 (|has| (-563) (-846)))) (-3357 (($ $ |#2|) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#2| $ (-563) |#2|) 50) ((|#2| $ (-563)) 49)) (-3396 ((|#2| $ $) 124 (|has| |#2| (-1045)))) (-2101 (($ (-1257 |#2|)) 126)) (-1575 (((-134)) 123 (|has| |#2| (-363)))) (-1361 (($ $) 98 (-3743 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 96 (-3743 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) 94 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) 93 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) 92 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) 91 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 84 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1045)))) (-3261 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4408))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-1257 |#2|) $) 127) (($ (-563)) 68 (-2811 (-3743 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) 65 (-3743 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) 60 (|has| |#2| (-1093))) (((-858) $) 18 (|has| |#2| (-610 (-858))))) (-3192 (((-767)) 102 (|has| |#2| (-1045)) CONST)) (-3848 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4408)))) (-3841 (($ $) 120 (|has| |#2| (-844)))) (-3790 (($) 71 (|has| |#2| (-131)) CONST)) (-3803 (($) 82 (|has| |#2| (-722)) CONST)) (-4191 (($ $) 97 (-3743 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) 95 (-3743 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) 90 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) 89 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) 88 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) 87 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) 86 (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1045)))) (-2998 (((-112) $ $) 113 (-2811 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2977 (((-112) $ $) 112 (-2811 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2943 (((-112) $ $) 20 (|has| |#2| (-1093)))) (-2988 (((-112) $ $) 114 (-2811 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-2966 (((-112) $ $) 111 (-2811 (|has| |#2| (-844)) (|has| |#2| (-789))))) (-3050 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-3039 (($ $ $) 100 (|has| |#2| (-1045))) (($ $) 99 (|has| |#2| (-1045)))) (-3027 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-767)) 80 (|has| |#2| (-722))) (($ $ (-917)) 77 (|has| |#2| (-722)))) (* (($ (-563) $) 101 (|has| |#2| (-1045))) (($ $ $) 78 (|has| |#2| (-722))) (($ $ |#2|) 76 (|has| |#2| (-722))) (($ |#2| $) 75 (|has| |#2| (-722))) (($ (-767) $) 73 (|has| |#2| (-131))) (($ (-917) $) 70 (|has| |#2| (-25)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-238 |#1| |#2|) (-140) (-767) (-1208)) (T -238)) -((-2101 (*1 *1 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1208)) (-4 *1 (-238 *3 *4)))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) (-4 *4 (-1208)))) (-3396 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722))))) -(-13 (-601 (-563) |t#2|) (-610 (-1257 |t#2|)) (-10 -8 (-6 -4408) (-15 -2101 ($ (-1257 |t#2|))) (IF (|has| |t#2| (-1093)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1045)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -3525 ($ (-917))) (-15 -3396 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-722)) (PROGN (-6 (-722)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |t#2| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |t#2| (-789)) (-6 (-789)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1264 |t#2|)) |%noBranch|))) -(((-21) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -2811 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -2811 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-613 #0=(-407 (-563))) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))) ((-613 (-563)) -2811 (|has| |#2| (-1045)) (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-613 |#2|) -2811 (|has| |#2| (-1093)) (|has| |#2| (-172))) ((-610 (-858)) -2811 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-610 (-858))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-610 (-1257 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1045)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1045))) ((-286 #1=(-563) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1045)) ((-411 |#2|) |has| |#2| (-1093)) ((-489 |#2|) . T) ((-601 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-643 |#2|) -2811 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-643 $) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-636 (-563)) -12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045))) ((-636 |#2|) |has| |#2| (-1045)) ((-713 |#2|) -2811 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-722) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-787) |has| |#2| (-844)) ((-788) -2811 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-789) |has| |#2| (-789)) ((-790) -2811 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-791) -2811 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-844) |has| |#2| (-844)) ((-846) -2811 (|has| |#2| (-844)) (|has| |#2| (-789))) ((-896 (-1169)) -12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045))) ((-1034 #0#) -12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093))) ((-1034 (-563)) -12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) ((-1034 |#2|) |has| |#2| (-1093)) ((-1051 |#2|) -2811 (|has| |#2| (-1045)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1051 $) |has| |#2| (-172)) ((-1045) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1052) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-172))) ((-1105) -2811 (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-722)) (|has| |#2| (-172))) ((-1093) -2811 (|has| |#2| (-1093)) (|has| |#2| (-1045)) (|has| |#2| (-844)) (|has| |#2| (-789)) (|has| |#2| (-722)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1208) . T) ((-1264 |#2|) |has| |#2| (-363))) -((-3409 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-2532 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2751 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) -(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -3409 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2532 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2751 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-767) (-1208) (-1208)) (T -239)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) (-4 *6 (-1208)) (-4 *2 (-1208)) (-5 *1 (-239 *5 *6 *2)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767)) (-4 *7 (-1208)) (-4 *5 (-1208)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) -(-10 -7 (-15 -3409 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2532 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2751 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) -((-2049 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-2741 (((-112) $) NIL (|has| |#2| (-131)))) (-3525 (($ (-917)) 65 (|has| |#2| (-1045)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3367 (($ $ $) 69 (|has| |#2| (-789)))) (-1482 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-3740 (((-112) $ (-767)) 17)) (-2433 (((-767)) NIL (|has| |#2| (-368)))) (-2107 (((-563) $) NIL (|has| |#2| (-844)))) (-2189 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1093)))) (-2589 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) 32 (|has| |#2| (-1093)))) (-3853 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3230 (((-3 $ "failed") $) 61 (|has| |#2| (-722)))) (-4301 (($) NIL (|has| |#2| (-368)))) (-4150 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ (-563)) 59)) (-2720 (((-112) $) NIL (|has| |#2| (-844)))) (-4236 (((-640 |#2|) $) 15 (|has| $ (-6 -4408)))) (-2712 (((-112) $) NIL (|has| |#2| (-722)))) (-2731 (((-112) $) NIL (|has| |#2| (-844)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 20 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1572 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 (((-563) $) 58 (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4139 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#2| |#2|) $) 47)) (-3267 (((-917) $) NIL (|has| |#2| (-368)))) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#2| (-1093)))) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3491 (($ (-917)) NIL (|has| |#2| (-368)))) (-3249 (((-1113) $) NIL (|has| |#2| (-1093)))) (-1884 ((|#2| $) NIL (|has| (-563) (-846)))) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) 21)) (-3396 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2101 (($ (-1257 |#2|)) 18)) (-1575 (((-134)) NIL (|has| |#2| (-363)))) (-1361 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3261 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-1257 |#2|) $) 10) (($ (-563)) NIL (-2811 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) 13 (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-3192 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-3848 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3841 (($ $) NIL (|has| |#2| (-844)))) (-3790 (($) 40 (|has| |#2| (-131)) CONST)) (-3803 (($) 44 (|has| |#2| (-722)) CONST)) (-4191 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2998 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2977 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2943 (((-112) $ $) 31 (|has| |#2| (-1093)))) (-2988 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2966 (((-112) $ $) 67 (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3027 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) 50 (|has| |#2| (-722))) (($ $ |#2|) 48 (|has| |#2| (-722))) (($ |#2| $) 49 (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-240 |#1| |#2|) (-238 |#1| |#2|) (-767) (-1208)) (T -240)) +((-4117 (*1 *1 *1) (-4 *1 (-233))) (-2124 (*1 *1 *1) (-4 *1 (-233))) (-4117 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))) (-2124 (*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768))))) +(-13 (-1046) (-10 -8 (-15 -4117 ($ $)) (-15 -2124 ($ $)) (-15 -4117 ($ $ (-768))) (-15 -2124 ($ $ (-768))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-4085 (($) 12) (($ (-641 |#2|)) NIL)) (-3896 (($ $) 14)) (-3753 (($ (-641 |#2|)) 10)) (-3742 (((-859) $) 21))) +(((-234 |#1| |#2|) (-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -4085 (|#1| (-641 |#2|))) (-15 -4085 (|#1|)) (-15 -3753 (|#1| (-641 |#2|))) (-15 -3896 (|#1| |#1|))) (-235 |#2|) (-1094)) (T -234)) +NIL +(-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -4085 (|#1| (-641 |#2|))) (-15 -4085 (|#1|)) (-15 -3753 (|#1| (-641 |#2|))) (-15 -3896 (|#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-2068 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-1996 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2366 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4085 (($) 49) (($ (-641 |#1|)) 48)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 50)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-235 |#1|) (-140) (-1094)) (T -235)) +((-4085 (*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-4085 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) (-2154 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) (-2154 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-235 *3)) (-4 *3 (-1094)))) (-2068 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-235 *3)) (-4 *3 (-1094))))) +(-13 (-107 |t#1|) (-151 |t#1|) (-10 -8 (-15 -4085 ($)) (-15 -4085 ($ (-641 |t#1|))) (IF (|has| $ (-6 -4411)) (PROGN (-15 -2154 ($ |t#1| $)) (-15 -2154 ($ (-1 (-112) |t#1|) $)) (-15 -2068 ($ (-1 (-112) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2503 (((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564)))) 42))) +(((-236) (-10 -7 (-15 -2503 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564))))))) (T -236)) +((-2503 (*1 *2 *3) (-12 (-5 *3 (-294 (-949 (-564)))) (-5 *2 (-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768)))))) (-5 *1 (-236))))) +(-10 -7 (-15 -2503 ((-2 (|:| |varOrder| (-641 (-1170))) (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) (|:| |hom| (-641 (-1259 (-768))))) (-294 (-949 (-564)))))) +((-1938 (((-768)) 56)) (-3039 (((-2 (|:| -2069 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 53) (((-685 |#3|) (-685 $)) 44) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3603 (((-134)) 62)) (-4117 (($ $ (-1 |#3| |#3|) (-768)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-3742 (((-1259 |#3|) $) NIL) (($ |#3|) NIL) (((-859) $) NIL) (($ (-564)) 12) (($ (-407 (-564))) NIL)) (-3270 (((-768)) 15)) (-1799 (($ $ |#3|) 59))) +(((-237 |#1| |#2| |#3|) (-10 -8 (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|)) (-15 -3270 ((-768))) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3742 (|#1| |#3|)) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -3039 ((-685 |#3|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -1938 ((-768))) (-15 -1799 (|#1| |#1| |#3|)) (-15 -3603 ((-134))) (-15 -3742 ((-1259 |#3|) |#1|))) (-238 |#2| |#3|) (-768) (-1209)) (T -237)) +((-3603 (*1 *2) (-12 (-14 *4 (-768)) (-4 *5 (-1209)) (-5 *2 (-134)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-1938 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) (-3270 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5))))) +(-10 -8 (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|)) (-15 -3270 ((-768))) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3742 (|#1| |#3|)) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -3039 ((-685 |#3|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -1938 ((-768))) (-15 -1799 (|#1| |#1| |#3|)) (-15 -3603 ((-134))) (-15 -3742 ((-1259 |#3|) |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-4173 (((-112) $) 72 (|has| |#2| (-131)))) (-2595 (($ (-918)) 125 (|has| |#2| (-1046)))) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-2850 (($ $ $) 121 (|has| |#2| (-790)))) (-3239 (((-3 $ "failed") $ $) 74 (|has| |#2| (-131)))) (-2969 (((-112) $ (-768)) 8)) (-1938 (((-768)) 107 (|has| |#2| (-368)))) (-3265 (((-564) $) 119 (|has| |#2| (-845)))) (-3877 ((|#2| $ (-564) |#2|) 52 (|has| $ (-6 -4412)))) (-2818 (($) 7 T CONST)) (-2111 (((-3 (-564) "failed") $) 67 (-4267 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) 64 (-4267 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1094)))) (-2239 (((-564) $) 66 (-4267 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) 63 (-4267 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 62 (|has| |#2| (-1094)))) (-3039 (((-685 (-564)) (-685 $)) 106 (-4267 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 105 (-4267 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 104 (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) 103 (|has| |#2| (-1046)))) (-3951 (((-3 $ "failed") $) 79 (|has| |#2| (-723)))) (-2821 (($) 110 (|has| |#2| (-368)))) (-2619 ((|#2| $ (-564) |#2|) 53 (|has| $ (-6 -4412)))) (-2540 ((|#2| $ (-564)) 51)) (-3308 (((-112) $) 117 (|has| |#2| (-845)))) (-3616 (((-641 |#2|) $) 30 (|has| $ (-6 -4411)))) (-3840 (((-112) $) 81 (|has| |#2| (-723)))) (-2839 (((-112) $) 118 (|has| |#2| (-845)))) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-2799 (($ $ $) 116 (-4030 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1386 (((-641 |#2|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2848 (($ $ $) 115 (-4030 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-2606 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#2| |#2|) $) 35)) (-1906 (((-918) $) 109 (|has| |#2| (-368)))) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#2| (-1094)))) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-1495 (($ (-918)) 108 (|has| |#2| (-368)))) (-3864 (((-1114) $) 21 (|has| |#2| (-1094)))) (-1966 ((|#2| $) 42 (|has| (-564) (-847)))) (-3099 (($ $ |#2|) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#2| $ (-564) |#2|) 50) ((|#2| $ (-564)) 49)) (-2952 ((|#2| $ $) 124 (|has| |#2| (-1046)))) (-4169 (($ (-1259 |#2|)) 126)) (-3603 (((-134)) 123 (|has| |#2| (-363)))) (-4117 (($ $) 98 (-4267 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) 96 (-4267 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) 94 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) 93 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) 92 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) 91 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) 84 (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-1046)))) (-3873 (((-768) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4411))) (((-768) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-1259 |#2|) $) 127) (($ (-564)) 68 (-4030 (-4267 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) 65 (-4267 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 60 (|has| |#2| (-1094))) (((-859) $) 18 (|has| |#2| (-611 (-859))))) (-3270 (((-768)) 102 (|has| |#2| (-1046)) CONST)) (-1417 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4411)))) (-2792 (($ $) 120 (|has| |#2| (-845)))) (-4311 (($) 71 (|has| |#2| (-131)) CONST)) (-4321 (($) 82 (|has| |#2| (-723)) CONST)) (-2124 (($ $) 97 (-4267 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) 95 (-4267 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) 90 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) 89 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) 88 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) 87 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) 86 (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-1046)))) (-1751 (((-112) $ $) 113 (-4030 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1731 (((-112) $ $) 112 (-4030 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1705 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-1741 (((-112) $ $) 114 (-4030 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1723 (((-112) $ $) 111 (-4030 (|has| |#2| (-845)) (|has| |#2| (-790))))) (-1799 (($ $ |#2|) 122 (|has| |#2| (-363)))) (-1790 (($ $ $) 100 (|has| |#2| (-1046))) (($ $) 99 (|has| |#2| (-1046)))) (-1780 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-768)) 80 (|has| |#2| (-723))) (($ $ (-918)) 77 (|has| |#2| (-723)))) (* (($ (-564) $) 101 (|has| |#2| (-1046))) (($ $ $) 78 (|has| |#2| (-723))) (($ $ |#2|) 76 (|has| |#2| (-723))) (($ |#2| $) 75 (|has| |#2| (-723))) (($ (-768) $) 73 (|has| |#2| (-131))) (($ (-918) $) 70 (|has| |#2| (-25)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-238 |#1| |#2|) (-140) (-768) (-1209)) (T -238)) +((-4169 (*1 *1 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4)))) (-2595 (*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1046)) (-4 *4 (-1209)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723))))) +(-13 (-602 (-564) |t#2|) (-611 (-1259 |t#2|)) (-10 -8 (-6 -4411) (-15 -4169 ($ (-1259 |t#2|))) (IF (|has| |t#2| (-1094)) (-6 (-411 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1046)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-231 |t#2|)) (-6 (-377 |t#2|)) (-15 -2595 ($ (-918))) (-15 -2952 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-131)) (-6 (-131)) |%noBranch|) (IF (|has| |t#2| (-723)) (PROGN (-6 (-723)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#2| (-172)) (PROGN (-6 (-38 |t#2|)) (-6 (-172))) |%noBranch|) (IF (|has| |t#2| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |t#2| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |t#2| (-790)) (-6 (-790)) |%noBranch|) (IF (|has| |t#2| (-363)) (-6 (-1266 |t#2|)) |%noBranch|))) +(((-21) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-23) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-25) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-34) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) -4030 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-111 |#2| |#2|) -4030 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-111 $ $) |has| |#2| (-172)) ((-131) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131))) ((-614 #0=(-407 (-564))) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))) ((-614 (-564)) -4030 (|has| |#2| (-1046)) (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-614 |#2|) -4030 (|has| |#2| (-1094)) (|has| |#2| (-172))) ((-611 (-859)) -4030 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-611 (-859))) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-611 (-1259 |#2|)) . T) ((-172) |has| |#2| (-172)) ((-231 |#2|) |has| |#2| (-1046)) ((-233) -12 (|has| |#2| (-233)) (|has| |#2| (-1046))) ((-286 #1=(-564) |#2|) . T) ((-288 #1# |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-368) |has| |#2| (-368)) ((-377 |#2|) |has| |#2| (-1046)) ((-411 |#2|) |has| |#2| (-1094)) ((-489 |#2|) . T) ((-602 #1# |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) -4030 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-644 $) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-637 (-564)) -12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046))) ((-637 |#2|) |has| |#2| (-1046)) ((-714 |#2|) -4030 (|has| |#2| (-363)) (|has| |#2| (-172))) ((-723) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-723)) (|has| |#2| (-172))) ((-788) |has| |#2| (-845)) ((-789) -4030 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-790) |has| |#2| (-790)) ((-791) -4030 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-792) -4030 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-845) |has| |#2| (-845)) ((-847) -4030 (|has| |#2| (-845)) (|has| |#2| (-790))) ((-897 (-1170)) -12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046))) ((-1035 #0#) -12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094))) ((-1035 (-564)) -12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) ((-1035 |#2|) |has| |#2| (-1094)) ((-1052 |#2|) -4030 (|has| |#2| (-1046)) (|has| |#2| (-363)) (|has| |#2| (-172))) ((-1052 $) |has| |#2| (-172)) ((-1046) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-1053) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-172))) ((-1106) -4030 (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-723)) (|has| |#2| (-172))) ((-1094) -4030 (|has| |#2| (-1094)) (|has| |#2| (-1046)) (|has| |#2| (-845)) (|has| |#2| (-790)) (|has| |#2| (-723)) (|has| |#2| (-368)) (|has| |#2| (-363)) (|has| |#2| (-172)) (|has| |#2| (-131)) (|has| |#2| (-25))) ((-1209) . T) ((-1266 |#2|) |has| |#2| (-363))) +((-1525 (((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 21)) (-1699 ((|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|) 23)) (-2187 (((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)) 18))) +(((-239 |#1| |#2| |#3|) (-10 -7 (-15 -1525 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1699 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2187 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) (-768) (-1209) (-1209)) (T -239)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) (-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-768)) (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5)) (-5 *1 (-239 *6 *7 *5))))) +(-10 -7 (-15 -1525 ((-240 |#1| |#3|) (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -1699 (|#3| (-1 |#3| |#2| |#3|) (-240 |#1| |#2|) |#3|)) (-15 -2187 ((-240 |#1| |#3|) (-1 |#3| |#2|) (-240 |#1| |#2|)))) +((-3732 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-4173 (((-112) $) NIL (|has| |#2| (-131)))) (-2595 (($ (-918)) 65 (|has| |#2| (-1046)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-2850 (($ $ $) 69 (|has| |#2| (-790)))) (-3239 (((-3 $ "failed") $ $) 57 (|has| |#2| (-131)))) (-2969 (((-112) $ (-768)) 17)) (-1938 (((-768)) NIL (|has| |#2| (-368)))) (-3265 (((-564) $) NIL (|has| |#2| (-845)))) (-3877 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) 34 (|has| |#2| (-1094)))) (-2239 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) 32 (|has| |#2| (-1094)))) (-3039 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-3951 (((-3 $ "failed") $) 61 (|has| |#2| (-723)))) (-2821 (($) NIL (|has| |#2| (-368)))) (-2619 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ (-564)) 59)) (-3308 (((-112) $) NIL (|has| |#2| (-845)))) (-3616 (((-641 |#2|) $) 15 (|has| $ (-6 -4411)))) (-3840 (((-112) $) NIL (|has| |#2| (-723)))) (-2839 (((-112) $) NIL (|has| |#2| (-845)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 20 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1386 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 (((-564) $) 58 (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2606 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#2| |#2|) $) 47)) (-1906 (((-918) $) NIL (|has| |#2| (-368)))) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#2| (-1094)))) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-1495 (($ (-918)) NIL (|has| |#2| (-368)))) (-3864 (((-1114) $) NIL (|has| |#2| (-1094)))) (-1966 ((|#2| $) NIL (|has| (-564) (-847)))) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#2|) $) 24 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) 21)) (-2952 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4169 (($ (-1259 |#2|)) 18)) (-3603 (((-134)) NIL (|has| |#2| (-363)))) (-4117 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3873 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-1259 |#2|) $) 10) (($ (-564)) NIL (-4030 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) 13 (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-3270 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-1417 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2792 (($ $) NIL (|has| |#2| (-845)))) (-4311 (($) 40 (|has| |#2| (-131)) CONST)) (-4321 (($) 44 (|has| |#2| (-723)) CONST)) (-2124 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1751 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1731 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1705 (((-112) $ $) 31 (|has| |#2| (-1094)))) (-1741 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1723 (((-112) $ $) 67 (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1780 (($ $ $) 38 (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) 50 (|has| |#2| (-723))) (($ $ |#2|) 48 (|has| |#2| (-723))) (($ |#2| $) 49 (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-240 |#1| |#2|) (-238 |#1| |#2|) (-768) (-1209)) (T -240)) NIL (-238 |#1| |#2|) -((-3185 (((-563) (-640 (-1151))) 34) (((-563) (-1151)) 28)) (-3535 (((-1262) (-640 (-1151))) 39) (((-1262) (-1151)) 38)) (-3164 (((-1151)) 16)) (-3174 (((-1151) (-563) (-1151)) 23)) (-3219 (((-640 (-1151)) (-640 (-1151)) (-563) (-1151)) 35) (((-1151) (-1151) (-563) (-1151)) 33)) (-3972 (((-640 (-1151)) (-640 (-1151))) 15) (((-640 (-1151)) (-1151)) 11))) -(((-241) (-10 -7 (-15 -3972 ((-640 (-1151)) (-1151))) (-15 -3972 ((-640 (-1151)) (-640 (-1151)))) (-15 -3164 ((-1151))) (-15 -3174 ((-1151) (-563) (-1151))) (-15 -3219 ((-1151) (-1151) (-563) (-1151))) (-15 -3219 ((-640 (-1151)) (-640 (-1151)) (-563) (-1151))) (-15 -3535 ((-1262) (-1151))) (-15 -3535 ((-1262) (-640 (-1151)))) (-15 -3185 ((-563) (-1151))) (-15 -3185 ((-563) (-640 (-1151)))))) (T -241)) -((-3185 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-563)) (-5 *1 (-241)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-241)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1262)) (-5 *1 (-241)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-241)))) (-3219 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-640 (-1151))) (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *1 (-241)))) (-3219 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))) (-3174 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))) (-3164 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-241)))) (-3972 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)))) (-3972 (*1 *2 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)) (-5 *3 (-1151))))) -(-10 -7 (-15 -3972 ((-640 (-1151)) (-1151))) (-15 -3972 ((-640 (-1151)) (-640 (-1151)))) (-15 -3164 ((-1151))) (-15 -3174 ((-1151) (-563) (-1151))) (-15 -3219 ((-1151) (-1151) (-563) (-1151))) (-15 -3219 ((-640 (-1151)) (-640 (-1151)) (-563) (-1151))) (-15 -3535 ((-1262) (-1151))) (-15 -3535 ((-1262) (-640 (-1151)))) (-15 -3185 ((-563) (-1151))) (-15 -3185 ((-563) (-640 (-1151))))) -((** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 20)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ (-407 (-563)) $) 27) (($ $ (-407 (-563))) NIL))) -(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-243)) (T -242)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 40)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 44)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 41)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ (-407 (-563)) $) 43) (($ $ (-407 (-563))) 42))) +((-3272 (((-564) (-641 (-1152))) 34) (((-564) (-1152)) 28)) (-1976 (((-1264) (-641 (-1152))) 39) (((-1264) (-1152)) 38)) (-2181 (((-1152)) 16)) (-3737 (((-1152) (-564) (-1152)) 23)) (-2212 (((-641 (-1152)) (-641 (-1152)) (-564) (-1152)) 35) (((-1152) (-1152) (-564) (-1152)) 33)) (-1840 (((-641 (-1152)) (-641 (-1152))) 15) (((-641 (-1152)) (-1152)) 11))) +(((-241) (-10 -7 (-15 -1840 ((-641 (-1152)) (-1152))) (-15 -1840 ((-641 (-1152)) (-641 (-1152)))) (-15 -2181 ((-1152))) (-15 -3737 ((-1152) (-564) (-1152))) (-15 -2212 ((-1152) (-1152) (-564) (-1152))) (-15 -2212 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -1976 ((-1264) (-1152))) (-15 -1976 ((-1264) (-641 (-1152)))) (-15 -3272 ((-564) (-1152))) (-15 -3272 ((-564) (-641 (-1152)))))) (T -241)) +((-3272 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241)))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) (-2212 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *1 (-241)))) (-2212 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-3737 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) (-2181 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241)))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) (-1840 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152))))) +(-10 -7 (-15 -1840 ((-641 (-1152)) (-1152))) (-15 -1840 ((-641 (-1152)) (-641 (-1152)))) (-15 -2181 ((-1152))) (-15 -3737 ((-1152) (-564) (-1152))) (-15 -2212 ((-1152) (-1152) (-564) (-1152))) (-15 -2212 ((-641 (-1152)) (-641 (-1152)) (-564) (-1152))) (-15 -1976 ((-1264) (-1152))) (-15 -1976 ((-1264) (-641 (-1152)))) (-15 -3272 ((-564) (-1152))) (-15 -3272 ((-564) (-641 (-1152))))) +((** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 20)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) NIL))) +(((-242 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-243)) (T -242)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 40)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 44)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 41)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 43) (($ $ (-407 (-564))) 42))) (((-243) (-140)) (T -243)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-563)))) (-3149 (*1 *1 *1) (-4 *1 (-243)))) -(-13 (-290) (-38 (-407 (-563))) (-10 -8 (-15 ** ($ $ (-563))) (-15 -3149 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-290) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-722) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3556 ((|#1| $) 48)) (-1588 (($ $) 57)) (-3740 (((-112) $ (-767)) 8)) (-3472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-3205 (($ $ $) 53 (|has| $ (-6 -4409)))) (-3195 (($ $ $) 52 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-3684 (($) 7 T CONST)) (-1553 (($ $) 56)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 50)) (-3494 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2271 (($ $) 55)) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-3884 (((-640 |#1|) $) 45)) (-2484 (((-112) $) 49)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1442 ((|#1| $) 59)) (-2651 (($ $) 58)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ "value") 47)) (-3514 (((-563) $ $) 44)) (-2181 (((-112) $) 46)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-3065 (($ $ $) 54 (|has| $ (-6 -4409)))) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 51)) (-3504 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-244 |#1|) (-140) (-1208)) (T -244)) -((-1442 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-2651 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-1588 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-1553 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-2271 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-3065 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-3205 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))) (-3195 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208))))) -(-13 (-1006 |t#1|) (-10 -8 (-15 -1442 (|t#1| $)) (-15 -2651 ($ $)) (-15 -1588 ($ $)) (-15 -1553 ($ $)) (-15 -2271 ($ $)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -3065 ($ $ $)) (-15 -3205 ($ $ $)) (-15 -3195 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) NIL)) (-3931 ((|#1| $) NIL)) (-1588 (($ $) NIL)) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2146 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4257 (($ $) 10 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-3472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-3032 (($ $ $) NIL (|has| $ (-6 -4409)))) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-3043 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "rest" $) NIL (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-1736 (($ (-1 (-112) |#1|) $) NIL)) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3919 ((|#1| $) NIL)) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1897 (($ $) NIL) (($ $ (-767)) NIL)) (-2273 (($ $) NIL (|has| |#1| (-1093)))) (-1920 (($ $) 7 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2841 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-3089 (((-112) $) NIL)) (-2256 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2552 (($ (-767) |#1|) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2346 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2335 (($ |#1|) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1442 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1956 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-2530 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3101 (((-112) $) NIL)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) NIL) ((|#1| $ (-563) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-767) $ "count") 16)) (-3514 (((-563) $ $) NIL)) (-1751 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-4159 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2349 (($ (-640 |#1|)) 22)) (-2181 (((-112) $) NIL)) (-3074 (($ $) NIL)) (-3055 (($ $) NIL (|has| $ (-6 -4409)))) (-3083 (((-767) $) NIL)) (-3095 (($ $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-3065 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1951 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-2062 (($ (-640 |#1|)) 17) (((-640 |#1|) $) 18) (((-858) $) 21 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1708 (((-767) $) 14 (|has| $ (-6 -4408))))) -(((-245 |#1|) (-13 (-661 |#1|) (-490 (-640 |#1|)) (-10 -8 (-15 -2349 ($ (-640 |#1|))) (-15 -3858 ($ $ "unique")) (-15 -3858 ($ $ "sort")) (-15 -3858 ((-767) $ "count")))) (-846)) (T -245)) -((-2349 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846))))) -(-13 (-661 |#1|) (-490 (-640 |#1|)) (-10 -8 (-15 -2349 ($ (-640 |#1|))) (-15 -3858 ($ $ "unique")) (-15 -3858 ($ $ "sort")) (-15 -3858 ((-767) $ "count")))) -((-3215 (((-3 (-767) "failed") |#1| |#1| (-767)) 42))) -(((-246 |#1|) (-10 -7 (-15 -3215 ((-3 (-767) "failed") |#1| |#1| (-767)))) (-13 (-722) (-368) (-10 -7 (-15 ** (|#1| |#1| (-563)))))) (T -246)) -((-3215 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-767)) (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-563)))))) (-5 *1 (-246 *3))))) -(-10 -7 (-15 -3215 ((-3 (-767) "failed") |#1| |#1| (-767)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-860 |#1|)) $) NIL)) (-2021 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-2554 (($ $) NIL (|has| |#2| (-555)))) (-2533 (((-112) $) NIL (|has| |#2| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2924 (($ $) NIL (|has| |#2| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#2| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2589 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-3962 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3744 (($ $ (-640 (-563))) NIL)) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#2| (-905)))) (-3302 (($ $ |#2| (-240 (-1708 |#1|) (-767)) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-2175 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#2| (-240 (-1708 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-860 |#1|)) NIL)) (-3187 (((-240 (-1708 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3489 (($ $ $) NIL (|has| |#2| (-846)))) (-4105 (($ $ $) NIL (|has| |#2| (-846)))) (-3310 (($ (-1 (-240 (-1708 |#1|) (-767)) (-240 (-1708 |#1|) (-767))) $) NIL)) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-2845 (((-3 (-860 |#1|) "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#2| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1938 (((-1151) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -2631 (-767))) "failed") $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#2| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3448 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-3974 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1361 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1962 (((-240 (-1708 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3166 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-563))) NIL (-2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ (-240 (-1708 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#2| (-555)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2998 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-247 |#1| |#2|) (-13 (-945 |#2| (-240 (-1708 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3744 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045)) (T -247)) -((-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-247 *3 *4)) (-14 *3 (-640 (-1169))) (-4 *4 (-1045))))) -(-13 (-945 |#2| (-240 (-1708 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3744 ($ $ (-640 (-563)))))) -((-2049 (((-112) $ $) NIL)) (-4005 (((-1262) $) 17)) (-2057 (((-183) $) 11)) (-3226 (($ (-183)) 12)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2894 (((-249) $) 7)) (-2062 (((-858) $) 9)) (-2943 (((-112) $ $) 15))) -(((-248) (-13 (-1093) (-10 -8 (-15 -2894 ((-249) $)) (-15 -2057 ((-183) $)) (-15 -3226 ($ (-183))) (-15 -4005 ((-1262) $))))) (T -248)) -((-2894 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-2057 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-3226 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-4005 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-248))))) -(-13 (-1093) (-10 -8 (-15 -2894 ((-249) $)) (-15 -2057 ((-183) $)) (-15 -3226 ($ (-183))) (-15 -4005 ((-1262) $)))) -((-2049 (((-112) $ $) NIL)) (-1980 (((-640 (-861)) $) NIL)) (-3359 (((-506) $) NIL)) (-1938 (((-1151) $) NIL)) (-3659 (((-186) $) NIL)) (-3249 (((-1113) $) NIL)) (-3777 (((-640 (-112)) $) NIL)) (-2062 (((-858) $) NIL) (((-187) $) 6)) (-4079 (((-55) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-249) (-13 (-185) (-610 (-187)))) (T -249)) -NIL -(-13 (-185) (-610 (-187))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3525 (($ (-917)) NIL (|has| |#4| (-1045)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3367 (($ $ $) NIL (|has| |#4| (-789)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-2433 (((-767)) NIL (|has| |#4| (-368)))) (-2107 (((-563) $) NIL (|has| |#4| (-844)))) (-2189 ((|#4| $ (-563) |#4|) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1093))) (((-3 (-563) "failed") $) NIL (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-2589 ((|#4| $) NIL (|has| |#4| (-1093))) (((-563) $) NIL (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-3853 (((-2 (|:| -4277 (-684 |#4|)) (|:| |vec| (-1257 |#4|))) (-684 $) (-1257 $)) NIL (|has| |#4| (-1045))) (((-684 |#4|) (-684 $)) NIL (|has| |#4| (-1045))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))))) (-3230 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-4301 (($) NIL (|has| |#4| (-368)))) (-4150 ((|#4| $ (-563) |#4|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#4| $ (-563)) NIL)) (-2720 (((-112) $) NIL (|has| |#4| (-844)))) (-4236 (((-640 |#4|) $) NIL (|has| $ (-6 -4408)))) (-2712 (((-112) $) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-2731 (((-112) $) NIL (|has| |#4| (-844)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (-2811 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-1572 (((-640 |#4|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (-2811 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-4139 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) NIL)) (-3267 (((-917) $) NIL (|has| |#4| (-368)))) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3491 (($ (-917)) NIL (|has| |#4| (-368)))) (-3249 (((-1113) $) NIL)) (-1884 ((|#4| $) NIL (|has| (-563) (-846)))) (-3357 (($ $ |#4|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-3427 (((-640 |#4|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#4| $ (-563) |#4|) NIL) ((|#4| $ (-563)) 16)) (-3396 ((|#4| $ $) NIL (|has| |#4| (-1045)))) (-2101 (($ (-1257 |#4|)) NIL)) (-1575 (((-134)) NIL (|has| |#4| (-363)))) (-1361 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-3261 (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-1257 |#4|) $) NIL) (((-858) $) NIL) (($ |#4|) NIL (|has| |#4| (-1093))) (($ (-563)) NIL (-2811 (-12 (|has| |#4| (-1034 (-563))) (|has| |#4| (-1093))) (|has| |#4| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#4| (-1034 (-407 (-563)))) (|has| |#4| (-1093))))) (-3192 (((-767)) NIL (|has| |#4| (-1045)) CONST)) (-3848 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3841 (($ $) NIL (|has| |#4| (-844)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) CONST)) (-4191 (($ $ (-1 |#4| |#4|) (-767)) NIL (|has| |#4| (-1045))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))))) (-2998 (((-112) $ $) NIL (-2811 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2977 (((-112) $ $) NIL (-2811 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (-2811 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-2966 (((-112) $ $) NIL (-2811 (|has| |#4| (-789)) (|has| |#4| (-844))))) (-3050 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-3039 (($ $ $) NIL) (($ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045))))) (($ $ (-917)) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (* (($ |#2| $) 18) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-722))) (($ |#4| $) NIL (|has| |#4| (-722))) (($ $ $) NIL (-2811 (-12 (|has| |#4| (-233)) (|has| |#4| (-1045))) (-12 (|has| |#4| (-636 (-563))) (|has| |#4| (-1045))) (|has| |#4| (-722)) (-12 (|has| |#4| (-896 (-1169))) (|has| |#4| (-1045)))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-643 |#2|) (-643 |#3|)) (-917) (-1045) (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-643 |#2|)) (T -250)) -NIL -(-13 (-238 |#1| |#4|) (-643 |#2|) (-643 |#3|)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3525 (($ (-917)) NIL (|has| |#3| (-1045)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3367 (($ $ $) NIL (|has| |#3| (-789)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-2433 (((-767)) NIL (|has| |#3| (-368)))) (-2107 (((-563) $) NIL (|has| |#3| (-844)))) (-2189 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1093))) (((-3 (-563) "failed") $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-2589 ((|#3| $) NIL (|has| |#3| (-1093))) (((-563) $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-3853 (((-2 (|:| -4277 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) NIL (|has| |#3| (-1045))) (((-684 |#3|) (-684 $)) NIL (|has| |#3| (-1045))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))))) (-3230 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-4301 (($) NIL (|has| |#3| (-368)))) (-4150 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#3| $ (-563)) NIL)) (-2720 (((-112) $) NIL (|has| |#3| (-844)))) (-4236 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-2712 (((-112) $) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-2731 (((-112) $) NIL (|has| |#3| (-844)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1572 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-4139 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#3| |#3|) $) NIL)) (-3267 (((-917) $) NIL (|has| |#3| (-368)))) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3491 (($ (-917)) NIL (|has| |#3| (-368)))) (-3249 (((-1113) $) NIL)) (-1884 ((|#3| $) NIL (|has| (-563) (-846)))) (-3357 (($ $ |#3|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-3427 (((-640 |#3|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#3| $ (-563) |#3|) NIL) ((|#3| $ (-563)) 15)) (-3396 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-2101 (($ (-1257 |#3|)) NIL)) (-1575 (((-134)) NIL (|has| |#3| (-363)))) (-1361 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-3261 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-1257 |#3|) $) NIL) (((-858) $) NIL) (($ |#3|) NIL (|has| |#3| (-1093))) (($ (-563)) NIL (-2811 (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093))))) (-3192 (((-767)) NIL (|has| |#3| (-1045)) CONST)) (-3848 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-3841 (($ $) NIL (|has| |#3| (-844)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) CONST)) (-4191 (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))))) (-2998 (((-112) $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2977 (((-112) $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2966 (((-112) $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3050 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3039 (($ $ $) NIL) (($ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045))))) (($ $ (-917)) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (* (($ |#2| $) 17) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ $ $) NIL (-2811 (-12 (|has| |#3| (-233)) (|has| |#3| (-1045))) (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045))) (|has| |#3| (-722)) (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-643 |#2|)) (-767) (-1045) (-643 |#2|)) (T -251)) -NIL -(-13 (-238 |#1| |#3|) (-643 |#2|)) -((-2092 (((-640 (-767)) $) 56) (((-640 (-767)) $ |#3|) 59)) (-2417 (((-767) $) 58) (((-767) $ |#3|) 61)) (-2069 (($ $) 76)) (-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-2903 (((-767) $ |#3|) 43) (((-767) $) 38)) (-2428 (((-1 $ (-767)) |#3|) 15) (((-1 $ (-767)) $) 88)) (-4103 ((|#4| $) 69)) (-2081 (((-112) $) 67)) (-1478 (($ $) 75)) (-1497 (($ $ (-640 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-640 |#4|) (-640 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-640 |#4|) (-640 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-640 |#3|) (-640 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-640 |#3|) (-640 |#2|)) 100)) (-1361 (($ $ |#4|) NIL) (($ $ (-640 |#4|)) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-640 |#4|) (-640 (-767))) NIL) (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2103 (((-640 |#3|) $) 86)) (-1962 ((|#5| $) NIL) (((-767) $ |#4|) NIL) (((-640 (-767)) $ (-640 |#4|)) NIL) (((-767) $ |#3|) 49)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-563))) NIL) (($ $) NIL))) -(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2062 (|#1| |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -1497 (|#1| |#1| (-640 |#3|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#3| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#3|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#3| |#1|)) (-15 -2428 ((-1 |#1| (-767)) |#1|)) (-15 -2069 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -4103 (|#4| |#1|)) (-15 -2081 ((-112) |#1|)) (-15 -2417 ((-767) |#1| |#3|)) (-15 -2092 ((-640 (-767)) |#1| |#3|)) (-15 -2417 ((-767) |#1|)) (-15 -2092 ((-640 (-767)) |#1|)) (-15 -1962 ((-767) |#1| |#3|)) (-15 -2903 ((-767) |#1|)) (-15 -2903 ((-767) |#1| |#3|)) (-15 -2103 ((-640 |#3|) |#1|)) (-15 -2428 ((-1 |#1| (-767)) |#3|)) (-15 -2062 (|#1| |#3|)) (-15 -2671 ((-3 |#3| "failed") |#1|)) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1|)) (-15 -1962 ((-640 (-767)) |#1| (-640 |#4|))) (-15 -1962 ((-767) |#1| |#4|)) (-15 -2062 (|#1| |#4|)) (-15 -2671 ((-3 |#4| "failed") |#1|)) (-15 -1497 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#4| |#1|)) (-15 -1497 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#4| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1962 (|#5| |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -1361 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -1361 (|#1| |#1| |#4| (-767))) (-15 -1361 (|#1| |#1| (-640 |#4|))) (-15 -1361 (|#1| |#1| |#4|)) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1045) (-846) (-266 |#3|) (-789)) (T -252)) -NIL -(-10 -8 (-15 -2062 (|#1| |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -1497 (|#1| |#1| (-640 |#3|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#3| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#3|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#3| |#1|)) (-15 -2428 ((-1 |#1| (-767)) |#1|)) (-15 -2069 (|#1| |#1|)) (-15 -1478 (|#1| |#1|)) (-15 -4103 (|#4| |#1|)) (-15 -2081 ((-112) |#1|)) (-15 -2417 ((-767) |#1| |#3|)) (-15 -2092 ((-640 (-767)) |#1| |#3|)) (-15 -2417 ((-767) |#1|)) (-15 -2092 ((-640 (-767)) |#1|)) (-15 -1962 ((-767) |#1| |#3|)) (-15 -2903 ((-767) |#1|)) (-15 -2903 ((-767) |#1| |#3|)) (-15 -2103 ((-640 |#3|) |#1|)) (-15 -2428 ((-1 |#1| (-767)) |#3|)) (-15 -2062 (|#1| |#3|)) (-15 -2671 ((-3 |#3| "failed") |#1|)) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1|)) (-15 -1962 ((-640 (-767)) |#1| (-640 |#4|))) (-15 -1962 ((-767) |#1| |#4|)) (-15 -2062 (|#1| |#4|)) (-15 -2671 ((-3 |#4| "failed") |#1|)) (-15 -1497 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#4| |#1|)) (-15 -1497 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#4| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1962 (|#5| |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -1361 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -1361 (|#1| |#1| |#4| (-767))) (-15 -1361 (|#1| |#1| (-640 |#4|))) (-15 -1361 (|#1| |#1| |#4|)) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2092 (((-640 (-767)) $) 214) (((-640 (-767)) $ |#2|) 212)) (-2417 (((-767) $) 213) (((-767) $ |#2|) 211)) (-2185 (((-640 |#3|) $) 110)) (-2021 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-2554 (($ $) 88 (|has| |#1| (-555)))) (-2533 (((-112) $) 90 (|has| |#1| (-555)))) (-3176 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-1482 (((-3 $ "failed") $ $) 19)) (-1325 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-2924 (($ $) 98 (|has| |#1| (-452)))) (-2102 (((-418 $) $) 97 (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-2069 (($ $) 207)) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2589 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137) ((|#2| $) 222)) (-3962 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-3213 (($ $) 154)) (-3853 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3230 (((-3 $ "failed") $) 33)) (-2227 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3203 (((-640 $) $) 109)) (-3675 (((-112) $) 96 (|has| |#1| (-905)))) (-3302 (($ $ |#1| |#4| $) 172)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2903 (((-767) $ |#2|) 217) (((-767) $) 216)) (-2712 (((-112) $) 31)) (-1528 (((-767) $) 169)) (-2175 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-3197 (((-640 $) $) 126)) (-1871 (((-112) $) 152)) (-2165 (($ |#1| |#4|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ |#3|) 120)) (-3187 ((|#4| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3489 (($ $ $) 79 (|has| |#1| (-846)))) (-4105 (($ $ $) 78 (|has| |#1| (-846)))) (-3310 (($ (-1 |#4| |#4|) $) 171)) (-2751 (($ (-1 |#1| |#1|) $) 151)) (-2428 (((-1 $ (-767)) |#2|) 219) (((-1 $ (-767)) $) 206 (|has| |#1| (-233)))) (-2845 (((-3 |#3| "failed") $) 123)) (-3183 (($ $) 149)) (-3193 ((|#1| $) 148)) (-4103 ((|#3| $) 209)) (-1607 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1938 (((-1151) $) 9)) (-2081 (((-112) $) 210)) (-3218 (((-3 (-640 $) "failed") $) 114)) (-3207 (((-3 (-640 $) "failed") $) 115)) (-3228 (((-3 (-2 (|:| |var| |#3|) (|:| -2631 (-767))) "failed") $) 113)) (-1478 (($ $) 208)) (-3249 (((-1113) $) 10)) (-3160 (((-112) $) 166)) (-3170 ((|#1| $) 167)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-1647 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2055 (((-418 $) $) 99 (|has| |#1| (-905)))) (-3448 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 |#1|)) 202 (|has| |#1| (-233)))) (-3974 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-1361 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-767)) 236 (|has| |#1| (-233))) (($ $ (-1169)) 234 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 233 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 232 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 231 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2103 (((-640 |#2|) $) 218)) (-1962 ((|#4| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129) (((-767) $ |#2|) 215)) (-2802 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 104 (-3743 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-563))) 72 (-2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) 168)) (-1304 ((|#1| $ |#4|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-4376 (((-3 $ "failed") $) 73 (-2811 (-3743 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) 28 T CONST)) (-3292 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2543 (((-112) $ $) 89 (|has| |#1| (-555)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-767)) 235 (|has| |#1| (-233))) (($ $ (-1169)) 230 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 229 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 228 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 227 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-2998 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 75 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 77 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 74 (|has| |#1| (-846)))) (-3050 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-253 |#1| |#2| |#3| |#4|) (-140) (-1045) (-846) (-266 |t#2|) (-789)) (T -253)) -((-2428 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 *4)))) (-2903 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-1962 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2092 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2092 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))) (-2417 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-789)) (-4 *2 (-266 *4)))) (-1478 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-2069 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-266 *3)) (-4 *5 (-789)))) (-2428 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6))))) -(-13 (-945 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1034 |t#2|) (-10 -8 (-15 -2428 ((-1 $ (-767)) |t#2|)) (-15 -2103 ((-640 |t#2|) $)) (-15 -2903 ((-767) $ |t#2|)) (-15 -2903 ((-767) $)) (-15 -1962 ((-767) $ |t#2|)) (-15 -2092 ((-640 (-767)) $)) (-15 -2417 ((-767) $)) (-15 -2092 ((-640 (-767)) $ |t#2|)) (-15 -2417 ((-767) $ |t#2|)) (-15 -2081 ((-112) $)) (-15 -4103 (|t#3| $)) (-15 -1478 ($ $)) (-15 -2069 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -2428 ((-1 $ (-767)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#2|) . T) ((-613 |#3|) . T) ((-613 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2811 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-945 |#1| |#4| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#2|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-2156 ((|#1| $) 54)) (-3796 ((|#1| $) 44)) (-3740 (((-112) $ (-767)) 8)) (-3684 (($) 7 T CONST)) (-1311 (($ $) 60)) (-3934 (($ $) 48)) (-1378 ((|#1| |#1| $) 46)) (-1369 ((|#1| $) 45)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-3322 (((-767) $) 61)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-2141 ((|#1| |#1| $) 52)) (-2133 ((|#1| |#1| $) 51)) (-1956 (($ |#1| $) 40)) (-1524 (((-767) $) 55)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1302 ((|#1| $) 62)) (-2123 ((|#1| $) 50)) (-2112 ((|#1| $) 49)) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-1331 ((|#1| |#1| $) 58)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-1321 ((|#1| $) 59)) (-2166 (($) 57) (($ (-640 |#1|)) 56)) (-4359 (((-767) $) 43)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2150 ((|#1| $) 53)) (-4034 (($ (-640 |#1|)) 42)) (-1292 ((|#1| $) 63)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-254 |#1|) (-140) (-1208)) (T -254)) -((-2166 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-2166 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-254 *3)))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-2156 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-2141 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-2133 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-2112 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) (-3934 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) -(-13 (-1114 |t#1|) (-991 |t#1|) (-10 -8 (-15 -2166 ($)) (-15 -2166 ($ (-640 |t#1|))) (-15 -1524 ((-767) $)) (-15 -2156 (|t#1| $)) (-15 -2150 (|t#1| $)) (-15 -2141 (|t#1| |t#1| $)) (-15 -2133 (|t#1| |t#1| $)) (-15 -2123 (|t#1| $)) (-15 -2112 (|t#1| $)) (-15 -3934 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-991 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1114 |#1|) . T) ((-1208) . T)) -((-2177 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 152)) (-2747 (((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379))) 172) (((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 170) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 175) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 171) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 163) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 162) (((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379))) 144) (((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263))) 142) (((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379))) 143) (((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 140)) (-2705 (((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379))) 174) (((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 173) (((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 177) (((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 176) (((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379))) 165) (((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263))) 164) (((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379))) 150) (((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263))) 149) (((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379))) 148) (((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 147) (((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379))) 112) (((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263))) 111) (((-1258) (-1 (-225) (-225)) (-1087 (-379))) 106) (((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263))) 104))) -(((-255) (-10 -7 (-15 -2705 ((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1258) (-1 (-225) (-225)) (-1087 (-379)))) (-15 -2705 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2705 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2705 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2705 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2705 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2705 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2177 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255)) -((-2177 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *2 (-1258)) (-5 *1 (-255)))) (-2705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255))))) -(-10 -7 (-15 -2705 ((-1258) (-1 (-225) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1258) (-1 (-225) (-225)) (-1087 (-379)))) (-15 -2705 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1258) (-873 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2705 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2705 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-875 (-1 (-225) (-225))) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-1 (-939 (-225)) (-225)) (-1087 (-379)))) (-15 -2705 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2705 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-379)) (-1087 (-379)))) (-15 -2705 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2747 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-878 (-1 (-225) (-225) (-225))) (-1087 (-379)) (-1087 (-379)))) (-15 -2177 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-2705 (((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263))) 101))) -(((-256 |#1| |#2|) (-10 -7 (-15 -2705 ((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263))))) (-13 (-555) (-846) (-1034 (-563))) (-430 |#1|)) (T -256)) -((-2705 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1169)) (-5 *5 (-640 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-1258)) (-5 *1 (-256 *6 *7))))) -(-10 -7 (-15 -2705 ((-1258) (-294 |#2|) (-1169) (-1169) (-640 (-263))))) -((-2202 (((-563) (-563)) 73)) (-2213 (((-563) (-563)) 74)) (-2222 (((-225) (-225)) 75)) (-2193 (((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225))) 72)) (-2186 (((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112)) 70))) -(((-257) (-10 -7 (-15 -2186 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112))) (-15 -2193 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -2202 ((-563) (-563))) (-15 -2213 ((-563) (-563))) (-15 -2222 ((-225) (-225))))) (T -257)) -((-2222 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-2213 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257)))) (-2202 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257)))) (-2193 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) (-5 *2 (-1259)) (-5 *1 (-257)))) (-2186 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) (-5 *5 (-112)) (-5 *2 (-1259)) (-5 *1 (-257))))) -(-10 -7 (-15 -2186 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)) (-112))) (-15 -2193 ((-1259) (-1 (-169 (-225)) (-169 (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -2202 ((-563) (-563))) (-15 -2213 ((-563) (-563))) (-15 -2222 ((-225) (-225)))) -((-2062 (((-1085 (-379)) (-1085 (-316 |#1|))) 16))) -(((-258 |#1|) (-10 -7 (-15 -2062 ((-1085 (-379)) (-1085 (-316 |#1|))))) (-13 (-846) (-555) (-611 (-379)))) (T -258)) -((-2062 (*1 *2 *3) (-12 (-5 *3 (-1085 (-316 *4))) (-4 *4 (-13 (-846) (-555) (-611 (-379)))) (-5 *2 (-1085 (-379))) (-5 *1 (-258 *4))))) -(-10 -7 (-15 -2062 ((-1085 (-379)) (-1085 (-316 |#1|))))) -((-2747 (((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379))) 75) (((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 74) (((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379))) 65) (((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 64) (((-1126 (-225)) (-875 |#1|) (-1085 (-379))) 56) (((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263))) 55)) (-2705 (((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379))) 78) (((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 77) (((-1259) |#1| (-1085 (-379)) (-1085 (-379))) 68) (((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263))) 67) (((-1259) (-875 |#1|) (-1085 (-379))) 60) (((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263))) 59) (((-1258) (-873 |#1|) (-1085 (-379))) 47) (((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263))) 46) (((-1258) |#1| (-1085 (-379))) 38) (((-1258) |#1| (-1085 (-379)) (-640 (-263))) 36))) -(((-259 |#1|) (-10 -7 (-15 -2705 ((-1258) |#1| (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1258) |#1| (-1085 (-379)))) (-15 -2705 ((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1258) (-873 |#1|) (-1085 (-379)))) (-15 -2705 ((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-875 |#1|) (-1085 (-379)))) (-15 -2747 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)))) (-15 -2705 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2747 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2705 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)))) (-15 -2747 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379))))) (-13 (-611 (-536)) (-1093))) (T -259)) -((-2747 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *5)))) (-2747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *6)))) (-2705 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *5)))) (-2705 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *6)))) (-2747 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2747 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2705 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1259)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2705 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2747 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *5)))) (-2747 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *6)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *5)))) (-2705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) (-5 *1 (-259 *6)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-873 *5)) (-5 *4 (-1085 (-379))) (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) (-5 *1 (-259 *5)))) (-2705 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-873 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) (-5 *1 (-259 *6)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1258)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) (-2705 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093)))))) -(-10 -7 (-15 -2705 ((-1258) |#1| (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1258) |#1| (-1085 (-379)))) (-15 -2705 ((-1258) (-873 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1258) (-873 |#1|) (-1085 (-379)))) (-15 -2705 ((-1259) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-875 |#1|) (-1085 (-379)))) (-15 -2747 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-875 |#1|) (-1085 (-379)))) (-15 -2705 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2747 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) |#1| (-1085 (-379)) (-1085 (-379)))) (-15 -2705 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2705 ((-1259) (-878 |#1|) (-1085 (-379)) (-1085 (-379)))) (-15 -2747 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379)) (-640 (-263)))) (-15 -2747 ((-1126 (-225)) (-878 |#1|) (-1085 (-379)) (-1085 (-379))))) -((-2705 (((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263))) 23) (((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225))) 24) (((-1258) (-640 (-939 (-225))) (-640 (-263))) 16) (((-1258) (-640 (-939 (-225)))) 17) (((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263))) 20) (((-1258) (-640 (-225)) (-640 (-225))) 21))) -(((-260) (-10 -7 (-15 -2705 ((-1258) (-640 (-225)) (-640 (-225)))) (-15 -2705 ((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263)))) (-15 -2705 ((-1258) (-640 (-939 (-225))))) (-15 -2705 ((-1258) (-640 (-939 (-225))) (-640 (-263)))) (-15 -2705 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)))) (-15 -2705 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263)))))) (T -260)) -((-2705 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-2705 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1259)) (-5 *1 (-260)))) (-2705 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2705 (*1 *2 *3) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2705 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-260)))) (-2705 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1258)) (-5 *1 (-260))))) -(-10 -7 (-15 -2705 ((-1258) (-640 (-225)) (-640 (-225)))) (-15 -2705 ((-1258) (-640 (-225)) (-640 (-225)) (-640 (-263)))) (-15 -2705 ((-1258) (-640 (-939 (-225))))) (-15 -2705 ((-1258) (-640 (-939 (-225))) (-640 (-263)))) (-15 -2705 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)))) (-15 -2705 ((-1259) (-640 (-225)) (-640 (-225)) (-640 (-225)) (-640 (-263))))) -((-2551 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-2366 (((-917) (-640 (-263)) (-917)) 52)) (-2355 (((-917) (-640 (-263)) (-917)) 51)) (-1386 (((-640 (-379)) (-640 (-263)) (-640 (-379))) 68)) (-2403 (((-379) (-640 (-263)) (-379)) 57)) (-2391 (((-917) (-640 (-263)) (-917)) 53)) (-2319 (((-112) (-640 (-263)) (-112)) 27)) (-1538 (((-1151) (-640 (-263)) (-1151)) 19)) (-2308 (((-1151) (-640 (-263)) (-1151)) 26)) (-2378 (((-1126 (-225)) (-640 (-263))) 46)) (-3644 (((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379)))) 40)) (-2330 (((-870) (-640 (-263)) (-870)) 32)) (-2343 (((-870) (-640 (-263)) (-870)) 33)) (-3726 (((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225)))) 63)) (-2298 (((-112) (-640 (-263)) (-112)) 14)) (-3596 (((-112) (-640 (-263)) (-112)) 13))) -(((-261) (-10 -7 (-15 -3596 ((-112) (-640 (-263)) (-112))) (-15 -2298 ((-112) (-640 (-263)) (-112))) (-15 -2551 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1538 ((-1151) (-640 (-263)) (-1151))) (-15 -2308 ((-1151) (-640 (-263)) (-1151))) (-15 -2319 ((-112) (-640 (-263)) (-112))) (-15 -2330 ((-870) (-640 (-263)) (-870))) (-15 -2343 ((-870) (-640 (-263)) (-870))) (-15 -3644 ((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379))))) (-15 -2355 ((-917) (-640 (-263)) (-917))) (-15 -2366 ((-917) (-640 (-263)) (-917))) (-15 -2378 ((-1126 (-225)) (-640 (-263)))) (-15 -2391 ((-917) (-640 (-263)) (-917))) (-15 -2403 ((-379) (-640 (-263)) (-379))) (-15 -3726 ((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -1386 ((-640 (-379)) (-640 (-263)) (-640 (-379)))))) (T -261)) -((-1386 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-379))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3726 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2403 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2391 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2378 (*1 *2 *3) (-12 (-5 *3 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-261)))) (-2366 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2355 (*1 *2 *3 *2) (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3644 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2343 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2330 (*1 *2 *3 *2) (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2319 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2308 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-1538 (*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2551 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-2298 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) (-3596 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))) -(-10 -7 (-15 -3596 ((-112) (-640 (-263)) (-112))) (-15 -2298 ((-112) (-640 (-263)) (-112))) (-15 -2551 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-640 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1538 ((-1151) (-640 (-263)) (-1151))) (-15 -2308 ((-1151) (-640 (-263)) (-1151))) (-15 -2319 ((-112) (-640 (-263)) (-112))) (-15 -2330 ((-870) (-640 (-263)) (-870))) (-15 -2343 ((-870) (-640 (-263)) (-870))) (-15 -3644 ((-640 (-1087 (-379))) (-640 (-263)) (-640 (-1087 (-379))))) (-15 -2355 ((-917) (-640 (-263)) (-917))) (-15 -2366 ((-917) (-640 (-263)) (-917))) (-15 -2378 ((-1126 (-225)) (-640 (-263)))) (-15 -2391 ((-917) (-640 (-263)) (-917))) (-15 -2403 ((-379) (-640 (-263)) (-379))) (-15 -3726 ((-1 (-939 (-225)) (-939 (-225))) (-640 (-263)) (-1 (-939 (-225)) (-939 (-225))))) (-15 -1386 ((-640 (-379)) (-640 (-263)) (-640 (-379))))) -((-2909 (((-3 |#1| "failed") (-640 (-263)) (-1169)) 17))) -(((-262 |#1|) (-10 -7 (-15 -2909 ((-3 |#1| "failed") (-640 (-263)) (-1169)))) (-1208)) (T -262)) -((-2909 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *1 (-262 *2)) (-4 *2 (-1208))))) -(-10 -7 (-15 -2909 ((-3 |#1| "failed") (-640 (-263)) (-1169)))) -((-2049 (((-112) $ $) NIL)) (-2551 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-2366 (($ (-917)) 80)) (-2355 (($ (-917)) 79)) (-2570 (($ (-640 (-379))) 86)) (-2403 (($ (-379)) 66)) (-2391 (($ (-917)) 81)) (-2319 (($ (-112)) 33)) (-1538 (($ (-1151)) 28)) (-2308 (($ (-1151)) 29)) (-2378 (($ (-1126 (-225))) 75)) (-3644 (($ (-640 (-1087 (-379)))) 71)) (-2244 (($ (-640 (-1087 (-379)))) 67) (($ (-640 (-1087 (-407 (-563))))) 70)) (-2277 (($ (-379)) 38) (($ (-870)) 42)) (-2233 (((-112) (-640 $) (-1169)) 99)) (-2909 (((-3 (-52) "failed") (-640 $) (-1169)) 101)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2266 (($ (-379)) 43) (($ (-870)) 44)) (-1818 (($ (-1 (-939 (-225)) (-939 (-225)))) 65)) (-3726 (($ (-1 (-939 (-225)) (-939 (-225)))) 82)) (-2255 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-2062 (((-858) $) 92)) (-2287 (($ (-112)) 34) (($ (-640 (-1087 (-379)))) 60)) (-3596 (($ (-112)) 35)) (-2943 (((-112) $ $) 96))) -(((-263) (-13 (-1093) (-10 -8 (-15 -3596 ($ (-112))) (-15 -2287 ($ (-112))) (-15 -2551 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1538 ($ (-1151))) (-15 -2308 ($ (-1151))) (-15 -2319 ($ (-112))) (-15 -2287 ($ (-640 (-1087 (-379))))) (-15 -1818 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2277 ($ (-379))) (-15 -2277 ($ (-870))) (-15 -2266 ($ (-379))) (-15 -2266 ($ (-870))) (-15 -2255 ($ (-1 (-225) (-225)))) (-15 -2255 ($ (-1 (-225) (-225) (-225)))) (-15 -2255 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -2403 ($ (-379))) (-15 -2244 ($ (-640 (-1087 (-379))))) (-15 -2244 ($ (-640 (-1087 (-407 (-563)))))) (-15 -3644 ($ (-640 (-1087 (-379))))) (-15 -2378 ($ (-1126 (-225)))) (-15 -2355 ($ (-917))) (-15 -2366 ($ (-917))) (-15 -2391 ($ (-917))) (-15 -3726 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2570 ($ (-640 (-379)))) (-15 -2909 ((-3 (-52) "failed") (-640 $) (-1169))) (-15 -2233 ((-112) (-640 $) (-1169)))))) (T -263)) -((-3596 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2287 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2551 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-1538 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))) (-2308 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))) (-2319 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2287 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-1818 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2277 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-2266 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2266 (*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-2255 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-2403 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2244 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-2244 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-407 (-563))))) (-5 *1 (-263)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) (-2378 (*1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-263)))) (-2355 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263)))) (-3726 (*1 *1 *2) (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) (-2570 (*1 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-263)))) (-2909 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-52)) (-5 *1 (-263)))) (-2233 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-112)) (-5 *1 (-263))))) -(-13 (-1093) (-10 -8 (-15 -3596 ($ (-112))) (-15 -2287 ($ (-112))) (-15 -2551 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -1538 ($ (-1151))) (-15 -2308 ($ (-1151))) (-15 -2319 ($ (-112))) (-15 -2287 ($ (-640 (-1087 (-379))))) (-15 -1818 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2277 ($ (-379))) (-15 -2277 ($ (-870))) (-15 -2266 ($ (-379))) (-15 -2266 ($ (-870))) (-15 -2255 ($ (-1 (-225) (-225)))) (-15 -2255 ($ (-1 (-225) (-225) (-225)))) (-15 -2255 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -2403 ($ (-379))) (-15 -2244 ($ (-640 (-1087 (-379))))) (-15 -2244 ($ (-640 (-1087 (-407 (-563)))))) (-15 -3644 ($ (-640 (-1087 (-379))))) (-15 -2378 ($ (-1126 (-225)))) (-15 -2355 ($ (-917))) (-15 -2366 ($ (-917))) (-15 -2391 ($ (-917))) (-15 -3726 ($ (-1 (-939 (-225)) (-939 (-225))))) (-15 -2570 ($ (-640 (-379)))) (-15 -2909 ((-3 (-52) "failed") (-640 $) (-1169))) (-15 -2233 ((-112) (-640 $) (-1169))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2092 (((-640 (-767)) $) NIL) (((-640 (-767)) $ |#2|) NIL)) (-2417 (((-767) $) NIL) (((-767) $ |#2|) NIL)) (-2185 (((-640 |#3|) $) NIL)) (-2021 (((-1165 $) $ |#3|) NIL) (((-1165 |#1|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 |#3|)) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2069 (($ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1118 |#1| |#2|) "failed") $) 23)) (-2589 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1118 |#1| |#2|) $) NIL)) (-3962 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-3302 (($ $ |#1| (-531 |#3|) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))))) (-2903 (((-767) $ |#2|) NIL) (((-767) $) 10)) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-2175 (($ (-1165 |#1|) |#3|) NIL) (($ (-1165 $) |#3|) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ |#3|) NIL)) (-3187 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-640 (-767)) $ (-640 |#3|)) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2428 (((-1 $ (-767)) |#2|) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-2845 (((-3 |#3| "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-4103 ((|#3| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1938 (((-1151) $) NIL)) (-2081 (((-112) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| |#3|) (|:| -2631 (-767))) "failed") $) NIL)) (-1478 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-640 |#3|) (-640 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-640 |#3|) (-640 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 |#2|) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-3974 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-1361 (($ $ |#3|) NIL) (($ $ (-640 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2103 (((-640 |#2|) $) NIL)) (-1962 (((-531 |#3|) $) NIL) (((-767) $ |#3|) NIL) (((-640 (-767)) $ (-640 |#3|)) NIL) (((-767) $ |#2|) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))))) (-3166 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1118 |#1| |#2|)) 32) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ |#3|) NIL) (($ $ (-640 |#3|)) NIL) (($ $ |#3| (-767)) NIL) (($ $ (-640 |#3|) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1118 |#1| |#2|))) (-1045) (-846) (-266 |#2|)) (T -264)) -NIL -(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1034 (-1118 |#1| |#2|))) -((-2417 (((-767) $) 37)) (-2671 (((-3 |#2| "failed") $) 22)) (-2589 ((|#2| $) 33)) (-1361 (($ $) 14) (($ $ (-767)) 18)) (-2062 (((-858) $) 32) (($ |#2|) 11)) (-2943 (((-112) $ $) 26)) (-2966 (((-112) $ $) 36))) -(((-265 |#1| |#2|) (-10 -8 (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1|)) (-15 -2417 ((-767) |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) (-266 |#2|) (-846)) (T -265)) -NIL -(-10 -8 (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1|)) (-15 -2417 ((-767) |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2417 (((-767) $) 22)) (-4040 ((|#1| $) 23)) (-2671 (((-3 |#1| "failed") $) 27)) (-2589 ((|#1| $) 28)) (-2903 (((-767) $) 24)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-2428 (($ |#1| (-767)) 25)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1361 (($ $) 21) (($ $ (-767)) 20)) (-2062 (((-858) $) 11) (($ |#1|) 26)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18))) -(((-266 |#1|) (-140) (-846)) (T -266)) -((-2062 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-2428 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) (-1361 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846))))) -(-13 (-846) (-1034 |t#1|) (-10 -8 (-15 -2428 ($ |t#1| (-767))) (-15 -2903 ((-767) $)) (-15 -4040 (|t#1| $)) (-15 -2417 ((-767) $)) (-15 -1361 ($ $)) (-15 -1361 ($ $ (-767))) (-15 -2062 ($ |t#1|)))) -(((-102) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-846) . T) ((-1034 |#1|) . T) ((-1093) . T)) -((-2185 (((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 54)) (-1347 (((-640 (-1169)) (-316 (-225)) (-767)) 96)) (-2461 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-2471 (((-316 (-225)) (-316 (-225))) 82)) (-2451 (((-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 39)) (-2480 (((-112) (-640 (-316 (-225)))) 106)) (-2520 (((-112) (-316 (-225))) 37)) (-2542 (((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))))) 133)) (-2510 (((-640 (-316 (-225))) (-640 (-316 (-225)))) 109)) (-2501 (((-640 (-316 (-225))) (-640 (-316 (-225)))) 108)) (-2490 (((-684 (-225)) (-640 (-316 (-225))) (-767)) 121)) (-1777 (((-112) (-316 (-225))) 32) (((-112) (-640 (-316 (-225)))) 107)) (-2440 (((-640 (-225)) (-640 (-839 (-225))) (-225)) 15)) (-4029 (((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 127)) (-2531 (((-1031) (-1169) (-1031)) 47))) -(((-267) (-10 -7 (-15 -2440 ((-640 (-225)) (-640 (-839 (-225))) (-225))) (-15 -2451 ((-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -2461 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2471 ((-316 (-225)) (-316 (-225)))) (-15 -2480 ((-112) (-640 (-316 (-225))))) (-15 -1777 ((-112) (-640 (-316 (-225))))) (-15 -1777 ((-112) (-316 (-225)))) (-15 -2490 ((-684 (-225)) (-640 (-316 (-225))) (-767))) (-15 -2501 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -2510 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -2520 ((-112) (-316 (-225)))) (-15 -2185 ((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) (-15 -1347 ((-640 (-1169)) (-316 (-225)) (-767))) (-15 -2531 ((-1031) (-1169) (-1031))) (-15 -4029 ((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) (-15 -2542 ((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))))))) (T -267)) -((-2542 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))))) (-5 *2 (-640 (-1151))) (-5 *1 (-267)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-2531 (*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-267)))) (-1347 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-267)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) (-5 *2 (-640 (-1169))) (-5 *1 (-267)))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2510 (*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267)))) (-2501 (*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267)))) (-2490 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) (-5 *1 (-267)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2480 (*1 *2 *3) (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2471 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-2461 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *1 (-267)))) (-2440 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 *4)) (-5 *1 (-267))))) -(-10 -7 (-15 -2440 ((-640 (-225)) (-640 (-839 (-225))) (-225))) (-15 -2451 ((-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -2461 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -2471 ((-316 (-225)) (-316 (-225)))) (-15 -2480 ((-112) (-640 (-316 (-225))))) (-15 -1777 ((-112) (-640 (-316 (-225))))) (-15 -1777 ((-112) (-316 (-225)))) (-15 -2490 ((-684 (-225)) (-640 (-316 (-225))) (-767))) (-15 -2501 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -2510 ((-640 (-316 (-225))) (-640 (-316 (-225))))) (-15 -2520 ((-112) (-316 (-225)))) (-15 -2185 ((-640 (-1169)) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) (-15 -1347 ((-640 (-1169)) (-316 (-225)) (-767))) (-15 -2531 ((-1031) (-1169) (-1031))) (-15 -4029 ((-379) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) (-15 -2542 ((-640 (-1151)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))))))) -((-2049 (((-112) $ $) NIL)) (-4101 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 56)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 32) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-268) (-835)) (T -268)) -NIL -(-835) -((-2049 (((-112) $ $) NIL)) (-4101 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 75) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 66)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 45) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 47)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-269) (-835)) (T -269)) -NIL -(-835) -((-2049 (((-112) $ $) NIL)) (-4101 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 91) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 86)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 56) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 67)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-270) (-835)) (T -270)) -NIL -(-835) -((-2049 (((-112) $ $) NIL)) (-4101 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 73)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 45) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-271) (-835)) (T -271)) -NIL -(-835) -((-2049 (((-112) $ $) NIL)) (-4101 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 65)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 31) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-272) (-835)) (T -272)) -NIL -(-835) -((-2049 (((-112) $ $) NIL)) (-4101 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 90)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 33) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-273) (-835)) (T -273)) -NIL -(-835) -((-2049 (((-112) $ $) NIL)) (-4101 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 95)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 32) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-274) (-835)) (T -274)) -NIL -(-835) -((-2049 (((-112) $ $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2564 (((-640 (-563)) $) 28)) (-1962 (((-767) $) 26)) (-2062 (((-858) $) 35) (($ (-640 (-563))) 22)) (-2553 (($ (-767)) 32)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 9)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 16))) -(((-275) (-13 (-846) (-10 -8 (-15 -2062 ($ (-640 (-563)))) (-15 -1962 ((-767) $)) (-15 -2564 ((-640 (-563)) $)) (-15 -2553 ($ (-767)))))) (T -275)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) (-2564 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))) (-2553 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275))))) -(-13 (-846) (-10 -8 (-15 -2062 ($ (-640 (-563)))) (-15 -1962 ((-767) $)) (-15 -2564 ((-640 (-563)) $)) (-15 -2553 ($ (-767))))) -((-3419 ((|#2| |#2|) 77)) (-3285 ((|#2| |#2|) 65)) (-1614 (((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-3395 ((|#2| |#2|) 75)) (-3264 ((|#2| |#2|) 63)) (-2242 ((|#2| |#2|) 79)) (-3305 ((|#2| |#2|) 67)) (-2656 ((|#2|) 46)) (-3674 (((-114) (-114)) 100)) (-2497 ((|#2| |#2|) 61)) (-1626 (((-112) |#2|) 147)) (-1498 ((|#2| |#2|) 195)) (-2634 ((|#2| |#2|) 171)) (-2585 ((|#2|) 59)) (-2575 ((|#2|) 58)) (-1475 ((|#2| |#2|) 191)) (-2614 ((|#2| |#2|) 167)) (-1521 ((|#2| |#2|) 199)) (-1391 ((|#2| |#2|) 175)) (-2605 ((|#2| |#2|) 163)) (-2595 ((|#2| |#2|) 165)) (-1531 ((|#2| |#2|) 201)) (-1401 ((|#2| |#2|) 177)) (-1509 ((|#2| |#2|) 197)) (-1379 ((|#2| |#2|) 173)) (-1486 ((|#2| |#2|) 193)) (-2623 ((|#2| |#2|) 169)) (-1564 ((|#2| |#2|) 207)) (-1432 ((|#2| |#2|) 183)) (-1543 ((|#2| |#2|) 203)) (-1409 ((|#2| |#2|) 179)) (-1589 ((|#2| |#2|) 211)) (-1454 ((|#2| |#2|) 187)) (-1600 ((|#2| |#2|) 213)) (-1464 ((|#2| |#2|) 189)) (-1577 ((|#2| |#2|) 209)) (-1445 ((|#2| |#2|) 185)) (-1554 ((|#2| |#2|) 205)) (-1421 ((|#2| |#2|) 181)) (-3177 ((|#2| |#2|) 62)) (-2252 ((|#2| |#2|) 80)) (-3313 ((|#2| |#2|) 68)) (-2231 ((|#2| |#2|) 78)) (-3295 ((|#2| |#2|) 66)) (-3408 ((|#2| |#2|) 76)) (-3273 ((|#2| |#2|) 64)) (-3631 (((-112) (-114)) 98)) (-2285 ((|#2| |#2|) 83)) (-3347 ((|#2| |#2|) 71)) (-2264 ((|#2| |#2|) 81)) (-3325 ((|#2| |#2|) 69)) (-2306 ((|#2| |#2|) 85)) (-3374 ((|#2| |#2|) 73)) (-4205 ((|#2| |#2|) 86)) (-3386 ((|#2| |#2|) 74)) (-2296 ((|#2| |#2|) 84)) (-3361 ((|#2| |#2|) 72)) (-2275 ((|#2| |#2|) 82)) (-3336 ((|#2| |#2|) 70))) -(((-276 |#1| |#2|) (-10 -7 (-15 -3177 (|#2| |#2|)) (-15 -2497 (|#2| |#2|)) (-15 -3264 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -3285 (|#2| |#2|)) (-15 -3295 (|#2| |#2|)) (-15 -3305 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -3336 (|#2| |#2|)) (-15 -3347 (|#2| |#2|)) (-15 -3361 (|#2| |#2|)) (-15 -3374 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -3408 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2252 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2285 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -2656 (|#2|)) (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -2575 (|#2|)) (-15 -2585 (|#2|)) (-15 -2595 (|#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -1391 (|#2| |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -1421 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -1464 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1614 ((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1626 ((-112) |#2|))) (-13 (-846) (-555)) (-13 (-430 |#1|) (-998))) (T -276)) -((-1626 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-998))))) (-1614 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-640 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-276 *4 *2)))) (-1600 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1577 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1564 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1554 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1543 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1521 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1509 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1475 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1464 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1454 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1445 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1432 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1421 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1409 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1401 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1391 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-1379 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2634 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2623 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2614 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2605 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2595 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2585 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-2575 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-3674 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-998))))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998))))) (-2656 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-846) (-555))))) (-4205 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2285 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2252 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3419 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3408 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3361 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3347 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3305 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3295 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3285 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3264 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-2497 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998))))) (-3177 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-998)))))) -(-10 -7 (-15 -3177 (|#2| |#2|)) (-15 -2497 (|#2| |#2|)) (-15 -3264 (|#2| |#2|)) (-15 -3273 (|#2| |#2|)) (-15 -3285 (|#2| |#2|)) (-15 -3295 (|#2| |#2|)) (-15 -3305 (|#2| |#2|)) (-15 -3313 (|#2| |#2|)) (-15 -3325 (|#2| |#2|)) (-15 -3336 (|#2| |#2|)) (-15 -3347 (|#2| |#2|)) (-15 -3361 (|#2| |#2|)) (-15 -3374 (|#2| |#2|)) (-15 -3386 (|#2| |#2|)) (-15 -3395 (|#2| |#2|)) (-15 -3408 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)) (-15 -2242 (|#2| |#2|)) (-15 -2252 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (-15 -2275 (|#2| |#2|)) (-15 -2285 (|#2| |#2|)) (-15 -2296 (|#2| |#2|)) (-15 -2306 (|#2| |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -2656 (|#2|)) (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -2575 (|#2|)) (-15 -2585 (|#2|)) (-15 -2595 (|#2| |#2|)) (-15 -2605 (|#2| |#2|)) (-15 -2614 (|#2| |#2|)) (-15 -2623 (|#2| |#2|)) (-15 -2634 (|#2| |#2|)) (-15 -1379 (|#2| |#2|)) (-15 -1391 (|#2| |#2|)) (-15 -1401 (|#2| |#2|)) (-15 -1409 (|#2| |#2|)) (-15 -1421 (|#2| |#2|)) (-15 -1432 (|#2| |#2|)) (-15 -1445 (|#2| |#2|)) (-15 -1454 (|#2| |#2|)) (-15 -1464 (|#2| |#2|)) (-15 -1475 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -1509 (|#2| |#2|)) (-15 -1521 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -1543 (|#2| |#2|)) (-15 -1554 (|#2| |#2|)) (-15 -1564 (|#2| |#2|)) (-15 -1577 (|#2| |#2|)) (-15 -1589 (|#2| |#2|)) (-15 -1600 (|#2| |#2|)) (-15 -1614 ((-3 |#2| "failed") |#2| (-640 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -1626 ((-112) |#2|))) -((-1662 (((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169)) 154)) (-1685 ((|#2| (-407 (-563)) |#2|) 51)) (-1673 ((|#2| |#2| (-609 |#2|)) 147)) (-1638 (((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169)) 146)) (-1650 ((|#2| |#2| (-1169)) 20) ((|#2| |#2|) 23)) (-2951 ((|#2| |#2| (-1169)) 160) ((|#2| |#2|) 158))) -(((-277 |#1| |#2|) (-10 -7 (-15 -2951 (|#2| |#2|)) (-15 -2951 (|#2| |#2| (-1169))) (-15 -1638 ((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169))) (-15 -1650 (|#2| |#2|)) (-15 -1650 (|#2| |#2| (-1169))) (-15 -1662 ((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169))) (-15 -1673 (|#2| |#2| (-609 |#2|))) (-15 -1685 (|#2| (-407 (-563)) |#2|))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -277)) -((-1685 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-1673 (*1 *2 *2 *3) (-12 (-5 *3 (-609 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)))) (-1662 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-1169)) (-4 *2 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *5 *2)))) (-1650 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-1650 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-1638 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-640 (-609 *3))) (|:| |vals| (-640 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2951 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-2951 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) -(-10 -7 (-15 -2951 (|#2| |#2|)) (-15 -2951 (|#2| |#2| (-1169))) (-15 -1638 ((-2 (|:| |func| |#2|) (|:| |kers| (-640 (-609 |#2|))) (|:| |vals| (-640 |#2|))) |#2| (-1169))) (-15 -1650 (|#2| |#2|)) (-15 -1650 (|#2| |#2| (-1169))) (-15 -1662 ((-3 |#2| "failed") (-640 (-609 |#2|)) |#2| (-1169))) (-15 -1673 (|#2| |#2| (-609 |#2|))) (-15 -1685 (|#2| (-407 (-563)) |#2|))) -((-4169 (((-3 |#3| "failed") |#3|) 121)) (-3419 ((|#3| |#3|) 143)) (-4031 (((-3 |#3| "failed") |#3|) 89)) (-3285 ((|#3| |#3|) 133)) (-4147 (((-3 |#3| "failed") |#3|) 65)) (-3395 ((|#3| |#3|) 141)) (-4013 (((-3 |#3| "failed") |#3|) 53)) (-3264 ((|#3| |#3|) 131)) (-4188 (((-3 |#3| "failed") |#3|) 123)) (-2242 ((|#3| |#3|) 145)) (-4056 (((-3 |#3| "failed") |#3|) 91)) (-3305 ((|#3| |#3|) 135)) (-3984 (((-3 |#3| "failed") |#3| (-767)) 41)) (-4003 (((-3 |#3| "failed") |#3|) 81)) (-2497 ((|#3| |#3|) 130)) (-3992 (((-3 |#3| "failed") |#3|) 51)) (-3177 ((|#3| |#3|) 129)) (-4198 (((-3 |#3| "failed") |#3|) 124)) (-2252 ((|#3| |#3|) 146)) (-4068 (((-3 |#3| "failed") |#3|) 92)) (-3313 ((|#3| |#3|) 136)) (-4178 (((-3 |#3| "failed") |#3|) 122)) (-2231 ((|#3| |#3|) 144)) (-4043 (((-3 |#3| "failed") |#3|) 90)) (-3295 ((|#3| |#3|) 134)) (-4160 (((-3 |#3| "failed") |#3|) 67)) (-3408 ((|#3| |#3|) 142)) (-4022 (((-3 |#3| "failed") |#3|) 55)) (-3273 ((|#3| |#3|) 132)) (-4227 (((-3 |#3| "failed") |#3|) 73)) (-2285 ((|#3| |#3|) 149)) (-4100 (((-3 |#3| "failed") |#3|) 115)) (-3347 ((|#3| |#3|) 155)) (-4209 (((-3 |#3| "failed") |#3|) 69)) (-2264 ((|#3| |#3|) 147)) (-4078 (((-3 |#3| "failed") |#3|) 57)) (-3325 ((|#3| |#3|) 137)) (-4249 (((-3 |#3| "failed") |#3|) 77)) (-2306 ((|#3| |#3|) 151)) (-4124 (((-3 |#3| "failed") |#3|) 61)) (-3374 ((|#3| |#3|) 139)) (-4259 (((-3 |#3| "failed") |#3|) 79)) (-4205 ((|#3| |#3|) 152)) (-4135 (((-3 |#3| "failed") |#3|) 63)) (-3386 ((|#3| |#3|) 140)) (-4239 (((-3 |#3| "failed") |#3|) 75)) (-2296 ((|#3| |#3|) 150)) (-4113 (((-3 |#3| "failed") |#3|) 118)) (-3361 ((|#3| |#3|) 156)) (-4218 (((-3 |#3| "failed") |#3|) 71)) (-2275 ((|#3| |#3|) 148)) (-4089 (((-3 |#3| "failed") |#3|) 59)) (-3336 ((|#3| |#3|) 138)) (** ((|#3| |#3| (-407 (-563))) 47 (|has| |#1| (-363))))) -(((-278 |#1| |#2| |#3|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3177 (|#3| |#3|)) (-15 -2497 (|#3| |#3|)) (-15 -3264 (|#3| |#3|)) (-15 -3273 (|#3| |#3|)) (-15 -3285 (|#3| |#3|)) (-15 -3295 (|#3| |#3|)) (-15 -3305 (|#3| |#3|)) (-15 -3313 (|#3| |#3|)) (-15 -3325 (|#3| |#3|)) (-15 -3336 (|#3| |#3|)) (-15 -3347 (|#3| |#3|)) (-15 -3361 (|#3| |#3|)) (-15 -3374 (|#3| |#3|)) (-15 -3386 (|#3| |#3|)) (-15 -3395 (|#3| |#3|)) (-15 -3408 (|#3| |#3|)) (-15 -3419 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2252 (|#3| |#3|)) (-15 -2264 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2285 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2306 (|#3| |#3|)) (-15 -4205 (|#3| |#3|)))) (-38 (-407 (-563))) (-1248 |#1|) (-1219 |#1| |#2|)) (T -278)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1248 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1219 *4 *5)))) (-3177 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2497 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3264 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3285 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3295 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3305 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3347 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3361 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3408 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-3419 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2252 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2285 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) (-4205 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4))))) -(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3177 (|#3| |#3|)) (-15 -2497 (|#3| |#3|)) (-15 -3264 (|#3| |#3|)) (-15 -3273 (|#3| |#3|)) (-15 -3285 (|#3| |#3|)) (-15 -3295 (|#3| |#3|)) (-15 -3305 (|#3| |#3|)) (-15 -3313 (|#3| |#3|)) (-15 -3325 (|#3| |#3|)) (-15 -3336 (|#3| |#3|)) (-15 -3347 (|#3| |#3|)) (-15 -3361 (|#3| |#3|)) (-15 -3374 (|#3| |#3|)) (-15 -3386 (|#3| |#3|)) (-15 -3395 (|#3| |#3|)) (-15 -3408 (|#3| |#3|)) (-15 -3419 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2252 (|#3| |#3|)) (-15 -2264 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2285 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2306 (|#3| |#3|)) (-15 -4205 (|#3| |#3|)))) -((-4169 (((-3 |#3| "failed") |#3|) 70)) (-3419 ((|#3| |#3|) 137)) (-4031 (((-3 |#3| "failed") |#3|) 54)) (-3285 ((|#3| |#3|) 125)) (-4147 (((-3 |#3| "failed") |#3|) 66)) (-3395 ((|#3| |#3|) 135)) (-4013 (((-3 |#3| "failed") |#3|) 50)) (-3264 ((|#3| |#3|) 123)) (-4188 (((-3 |#3| "failed") |#3|) 74)) (-2242 ((|#3| |#3|) 139)) (-4056 (((-3 |#3| "failed") |#3|) 58)) (-3305 ((|#3| |#3|) 127)) (-3984 (((-3 |#3| "failed") |#3| (-767)) 38)) (-4003 (((-3 |#3| "failed") |#3|) 48)) (-2497 ((|#3| |#3|) 111)) (-3992 (((-3 |#3| "failed") |#3|) 46)) (-3177 ((|#3| |#3|) 122)) (-4198 (((-3 |#3| "failed") |#3|) 76)) (-2252 ((|#3| |#3|) 140)) (-4068 (((-3 |#3| "failed") |#3|) 60)) (-3313 ((|#3| |#3|) 128)) (-4178 (((-3 |#3| "failed") |#3|) 72)) (-2231 ((|#3| |#3|) 138)) (-4043 (((-3 |#3| "failed") |#3|) 56)) (-3295 ((|#3| |#3|) 126)) (-4160 (((-3 |#3| "failed") |#3|) 68)) (-3408 ((|#3| |#3|) 136)) (-4022 (((-3 |#3| "failed") |#3|) 52)) (-3273 ((|#3| |#3|) 124)) (-4227 (((-3 |#3| "failed") |#3|) 78)) (-2285 ((|#3| |#3|) 143)) (-4100 (((-3 |#3| "failed") |#3|) 62)) (-3347 ((|#3| |#3|) 131)) (-4209 (((-3 |#3| "failed") |#3|) 112)) (-2264 ((|#3| |#3|) 141)) (-4078 (((-3 |#3| "failed") |#3|) 100)) (-3325 ((|#3| |#3|) 129)) (-4249 (((-3 |#3| "failed") |#3|) 116)) (-2306 ((|#3| |#3|) 145)) (-4124 (((-3 |#3| "failed") |#3|) 107)) (-3374 ((|#3| |#3|) 133)) (-4259 (((-3 |#3| "failed") |#3|) 117)) (-4205 ((|#3| |#3|) 146)) (-4135 (((-3 |#3| "failed") |#3|) 109)) (-3386 ((|#3| |#3|) 134)) (-4239 (((-3 |#3| "failed") |#3|) 80)) (-2296 ((|#3| |#3|) 144)) (-4113 (((-3 |#3| "failed") |#3|) 64)) (-3361 ((|#3| |#3|) 132)) (-4218 (((-3 |#3| "failed") |#3|) 113)) (-2275 ((|#3| |#3|) 142)) (-4089 (((-3 |#3| "failed") |#3|) 103)) (-3336 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-563))) 44 (|has| |#1| (-363))))) -(((-279 |#1| |#2| |#3| |#4|) (-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3177 (|#3| |#3|)) (-15 -2497 (|#3| |#3|)) (-15 -3264 (|#3| |#3|)) (-15 -3273 (|#3| |#3|)) (-15 -3285 (|#3| |#3|)) (-15 -3295 (|#3| |#3|)) (-15 -3305 (|#3| |#3|)) (-15 -3313 (|#3| |#3|)) (-15 -3325 (|#3| |#3|)) (-15 -3336 (|#3| |#3|)) (-15 -3347 (|#3| |#3|)) (-15 -3361 (|#3| |#3|)) (-15 -3374 (|#3| |#3|)) (-15 -3386 (|#3| |#3|)) (-15 -3395 (|#3| |#3|)) (-15 -3408 (|#3| |#3|)) (-15 -3419 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2252 (|#3| |#3|)) (-15 -2264 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2285 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2306 (|#3| |#3|)) (-15 -4205 (|#3| |#3|)))) (-38 (-407 (-563))) (-1217 |#1|) (-1240 |#1| |#2|) (-979 |#2|)) (T -279)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1217 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1240 *4 *5)) (-4 *6 (-979 *5)))) (-3177 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2497 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3264 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3273 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3285 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3295 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3305 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3313 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3325 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3336 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3347 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3361 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3374 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3386 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3395 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3408 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-3419 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2242 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2252 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2275 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2285 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2296 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-2306 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) (-4205 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4))))) -(-13 (-979 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-563)))) |%noBranch|) (-15 -3177 (|#3| |#3|)) (-15 -2497 (|#3| |#3|)) (-15 -3264 (|#3| |#3|)) (-15 -3273 (|#3| |#3|)) (-15 -3285 (|#3| |#3|)) (-15 -3295 (|#3| |#3|)) (-15 -3305 (|#3| |#3|)) (-15 -3313 (|#3| |#3|)) (-15 -3325 (|#3| |#3|)) (-15 -3336 (|#3| |#3|)) (-15 -3347 (|#3| |#3|)) (-15 -3361 (|#3| |#3|)) (-15 -3374 (|#3| |#3|)) (-15 -3386 (|#3| |#3|)) (-15 -3395 (|#3| |#3|)) (-15 -3408 (|#3| |#3|)) (-15 -3419 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2242 (|#3| |#3|)) (-15 -2252 (|#3| |#3|)) (-15 -2264 (|#3| |#3|)) (-15 -2275 (|#3| |#3|)) (-15 -2285 (|#3| |#3|)) (-15 -2296 (|#3| |#3|)) (-15 -2306 (|#3| |#3|)) (-15 -4205 (|#3| |#3|)))) -((-2289 (((-112) $) 19)) (-1820 (((-183) $) 7)) (-2778 (((-3 (-1169) "failed") $) 14)) (-2767 (((-3 (-640 $) "failed") $) NIL)) (-1710 (((-3 (-1169) "failed") $) 21)) (-1723 (((-3 (-1097) "failed") $) 18)) (-1998 (((-112) $) 16)) (-2062 (((-858) $) NIL)) (-1698 (((-112) $) 9))) -(((-280) (-13 (-610 (-858)) (-10 -8 (-15 -1820 ((-183) $)) (-15 -1998 ((-112) $)) (-15 -1723 ((-3 (-1097) "failed") $)) (-15 -2289 ((-112) $)) (-15 -1710 ((-3 (-1169) "failed") $)) (-15 -1698 ((-112) $)) (-15 -2778 ((-3 (-1169) "failed") $)) (-15 -2767 ((-3 (-640 $) "failed") $))))) (T -280)) -((-1820 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1723 (*1 *2 *1) (|partial| -12 (-5 *2 (-1097)) (-5 *1 (-280)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-1710 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) (-1698 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2778 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) (-2767 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-280))) (-5 *1 (-280))))) -(-13 (-610 (-858)) (-10 -8 (-15 -1820 ((-183) $)) (-15 -1998 ((-112) $)) (-15 -1723 ((-3 (-1097) "failed") $)) (-15 -2289 ((-112) $)) (-15 -1710 ((-3 (-1169) "failed") $)) (-15 -1698 ((-112) $)) (-15 -2778 ((-3 (-1169) "failed") $)) (-15 -2767 ((-3 (-640 $) "failed") $)))) -((-1907 (($ (-1 (-112) |#2|) $) 24)) (-1920 (($ $) 38)) (-2841 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-1417 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-2346 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2530 (($ |#2| $ (-563)) 20) (($ $ $ (-563)) 22)) (-4159 (($ $ (-563)) 11) (($ $ (-1224 (-563))) 14)) (-3065 (($ $ |#2|) 32) (($ $ $) NIL)) (-1951 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-640 $)) NIL))) -(((-281 |#1| |#2|) (-10 -8 (-15 -2346 (|#1| |#1| |#1|)) (-15 -2841 (|#1| |#2| |#1|)) (-15 -2346 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2841 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#2|)) (-15 -2530 (|#1| |#1| |#1| (-563))) (-15 -2530 (|#1| |#2| |#1| (-563))) (-15 -4159 (|#1| |#1| (-1224 (-563)))) (-15 -4159 (|#1| |#1| (-563))) (-15 -1951 (|#1| (-640 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1417 (|#1| |#2| |#1|)) (-15 -1920 (|#1| |#1|))) (-282 |#2|) (-1208)) (T -281)) -NIL -(-10 -8 (-15 -2346 (|#1| |#1| |#1|)) (-15 -2841 (|#1| |#2| |#1|)) (-15 -2346 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2841 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3065 (|#1| |#1| |#2|)) (-15 -2530 (|#1| |#1| |#1| (-563))) (-15 -2530 (|#1| |#2| |#1| (-563))) (-15 -4159 (|#1| |#1| (-1224 (-563)))) (-15 -4159 (|#1| |#1| (-563))) (-15 -1951 (|#1| (-640 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -1417 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1907 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1417 (|#1| |#2| |#1|)) (-15 -1920 (|#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-1736 (($ (-1 (-112) |#1|) $) 85)) (-1907 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-2273 (($ $) 83 (|has| |#1| (-1093)))) (-1920 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1093)))) (-1417 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 51)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2552 (($ (-767) |#1|) 69)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-2346 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1956 (($ |#1| $ (-563)) 88) (($ $ $ (-563)) 87)) (-2530 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 42 (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3357 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-1751 (($ $ (-563)) 91) (($ $ (-1224 (-563))) 90)) (-4159 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 70)) (-3065 (($ $ |#1|) 93) (($ $ $) 92)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-282 |#1|) (-140) (-1208)) (T -282)) -((-3065 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-3065 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-1751 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-2841 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-1956 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-282 *2)) (-4 *2 (-1208)))) (-1956 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-2346 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-1736 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) (-2841 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-2273 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) (-2346 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-846))))) -(-13 (-646 |t#1|) (-10 -8 (-6 -4409) (-15 -3065 ($ $ |t#1|)) (-15 -3065 ($ $ $)) (-15 -1751 ($ $ (-563))) (-15 -1751 ($ $ (-1224 (-563)))) (-15 -2841 ($ (-1 (-112) |t#1|) $)) (-15 -1956 ($ |t#1| $ (-563))) (-15 -1956 ($ $ $ (-563))) (-15 -2346 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1736 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -2841 ($ |t#1| $)) (-15 -2273 ($ $))) |%noBranch|) (IF (|has| |t#1| (-846)) (-15 -2346 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) (-4373 (*1 *1 *1) (-4 *1 (-243)))) +(-13 (-290) (-38 (-407 (-564))) (-10 -8 (-15 ** ($ $ (-564))) (-15 -4373 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-290) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-723) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3426 ((|#1| $) 48)) (-3813 (($ $) 57)) (-2969 (((-112) $ (-768)) 8)) (-3976 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-4147 (($ $ $) 53 (|has| $ (-6 -4412)))) (-3505 (($ $ $) 52 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2818 (($) 7 T CONST)) (-3365 (($ $) 56)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 50)) (-1940 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3919 (($ $) 55)) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2333 (((-641 |#1|) $) 45)) (-1881 (((-112) $) 49)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2389 ((|#1| $) 59)) (-4024 (($ $) 58)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ "value") 47)) (-4209 (((-564) $ $) 44)) (-3572 (((-112) $) 46)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-1807 (($ $ $) 54 (|has| $ (-6 -4412)))) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 51)) (-1584 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-244 |#1|) (-140) (-1209)) (T -244)) +((-2389 (*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-4024 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3365 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3919 (*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-1807 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-4147 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) (-3505 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) +(-13 (-1007 |t#1|) (-10 -8 (-15 -2389 (|t#1| $)) (-15 -4024 ($ $)) (-15 -3813 ($ $)) (-15 -3365 ($ $)) (-15 -3919 ($ $)) (IF (|has| $ (-6 -4412)) (PROGN (-15 -1807 ($ $ $)) (-15 -4147 ($ $ $)) (-15 -3505 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) NIL)) (-2910 ((|#1| $) NIL)) (-3813 (($ $) NIL)) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2402 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2777 (($ $) 10 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-3417 (($ $ $) NIL (|has| $ (-6 -4412)))) (-1716 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-2094 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "rest" $) NIL (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2068 (($ (-1 (-112) |#1|) $) NIL)) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2899 ((|#1| $) NIL)) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1977 (($ $) NIL) (($ $ (-768)) NIL)) (-4181 (($ $) NIL (|has| |#1| (-1094)))) (-1996 (($ $) 7 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2154 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2366 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-2378 (((-112) $) NIL)) (-3305 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3619 (($ (-768) |#1|) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-1457 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2164 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1858 (($ |#1|) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2389 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2974 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2308 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-2174 (((-112) $) NIL)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-768) $ "count") 16)) (-4209 (((-564) $ $) NIL)) (-3778 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2004 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2053 (($ (-641 |#1|)) 22)) (-3572 (((-112) $) NIL)) (-1459 (($ $) NIL)) (-3838 (($ $) NIL (|has| $ (-6 -4412)))) (-3108 (((-768) $) NIL)) (-2857 (($ $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-1807 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1802 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-3742 (($ (-641 |#1|)) 17) (((-641 |#1|) $) 18) (((-859) $) 21 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2641 (((-768) $) 14 (|has| $ (-6 -4411))))) +(((-245 |#1|) (-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -2053 ($ (-641 |#1|))) (-15 -4382 ($ $ "unique")) (-15 -4382 ($ $ "sort")) (-15 -4382 ((-768) $ "count")))) (-847)) (T -245)) +((-2053 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-245 *3)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-847)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-847)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-768)) (-5 *1 (-245 *4)) (-4 *4 (-847))))) +(-13 (-662 |#1|) (-490 (-641 |#1|)) (-10 -8 (-15 -2053 ($ (-641 |#1|))) (-15 -4382 ($ $ "unique")) (-15 -4382 ($ $ "sort")) (-15 -4382 ((-768) $ "count")))) +((-3127 (((-3 (-768) "failed") |#1| |#1| (-768)) 42))) +(((-246 |#1|) (-10 -7 (-15 -3127 ((-3 (-768) "failed") |#1| |#1| (-768)))) (-13 (-723) (-368) (-10 -7 (-15 ** (|#1| |#1| (-564)))))) (T -246)) +((-3127 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-768)) (-4 *3 (-13 (-723) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) (-5 *1 (-246 *3))))) +(-10 -7 (-15 -3127 ((-3 (-768) "failed") |#1| |#1| (-768)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-861 |#1|)) $) NIL)) (-4097 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1948 (($ $) NIL (|has| |#2| (-556)))) (-1832 (((-112) $) NIL (|has| |#2| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2249 (($ $) NIL (|has| |#2| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2239 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-2448 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-1980 (($ $ (-641 (-564))) NIL)) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-906)))) (-1866 (($ $ |#2| (-240 (-2641 |#1|) (-768)) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-4257 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#2| (-240 (-2641 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-861 |#1|)) NIL)) (-3469 (((-240 (-2641 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2799 (($ $ $) NIL (|has| |#2| (-847)))) (-2848 (($ $ $) NIL (|has| |#2| (-847)))) (-1396 (($ (-1 (-240 (-2641 |#1|) (-768)) (-240 (-2641 |#1|) (-768))) $) NIL)) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-1306 (((-3 (-861 |#1|) "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#2| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2217 (((-1152) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -2515 (-768))) "failed") $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#2| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1321 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-4284 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-4117 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2266 (((-240 (-2641 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4329 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ (-407 (-564))) NIL (-4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ (-240 (-2641 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1751 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-247 |#1| |#2|) (-13 (-946 |#2| (-240 (-2641 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -1980 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046)) (T -247)) +((-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1046))))) +(-13 (-946 |#2| (-240 (-2641 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -1980 ($ $ (-641 (-564)))))) +((-3732 (((-112) $ $) NIL)) (-1425 (((-1264) $) 17)) (-1507 (((-183) $) 11)) (-1650 (($ (-183)) 12)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2724 (((-249) $) 7)) (-3742 (((-859) $) 9)) (-1705 (((-112) $ $) 15))) +(((-248) (-13 (-1094) (-10 -8 (-15 -2724 ((-249) $)) (-15 -1507 ((-183) $)) (-15 -1650 ($ (-183))) (-15 -1425 ((-1264) $))))) (T -248)) +((-2724 (*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248)))) (-1507 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248))))) +(-13 (-1094) (-10 -8 (-15 -2724 ((-249) $)) (-15 -1507 ((-183) $)) (-15 -1650 ($ (-183))) (-15 -1425 ((-1264) $)))) +((-3732 (((-112) $ $) NIL)) (-1737 (((-641 (-862)) $) NIL)) (-4324 (((-506) $) NIL)) (-2217 (((-1152) $) NIL)) (-3421 (((-186) $) NIL)) (-3864 (((-1114) $) NIL)) (-3773 (((-641 (-112)) $) NIL)) (-3742 (((-859) $) NIL) (((-187) $) 6)) (-2873 (((-55) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-249) (-13 (-185) (-611 (-187)))) (T -249)) +NIL +(-13 (-185) (-611 (-187))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2595 (($ (-918)) NIL (|has| |#4| (-1046)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-2850 (($ $ $) NIL (|has| |#4| (-790)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-1938 (((-768)) NIL (|has| |#4| (-368)))) (-3265 (((-564) $) NIL (|has| |#4| (-845)))) (-3877 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-2239 ((|#4| $) NIL (|has| |#4| (-1094))) (((-564) $) NIL (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-3039 (((-2 (|:| -2069 (-685 |#4|)) (|:| |vec| (-1259 |#4|))) (-685 $) (-1259 $)) NIL (|has| |#4| (-1046))) (((-685 |#4|) (-685 $)) NIL (|has| |#4| (-1046))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))))) (-3951 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2821 (($) NIL (|has| |#4| (-368)))) (-2619 ((|#4| $ (-564) |#4|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#4| $ (-564)) NIL)) (-3308 (((-112) $) NIL (|has| |#4| (-845)))) (-3616 (((-641 |#4|) $) NIL (|has| $ (-6 -4411)))) (-3840 (((-112) $) NIL (-4030 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2839 (((-112) $) NIL (|has| |#4| (-845)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (-4030 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1386 (((-641 |#4|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (-4030 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-2606 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) NIL)) (-1906 (((-918) $) NIL (|has| |#4| (-368)))) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-1495 (($ (-918)) NIL (|has| |#4| (-368)))) (-3864 (((-1114) $) NIL)) (-1966 ((|#4| $) NIL (|has| (-564) (-847)))) (-3099 (($ $ |#4|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2572 (((-641 |#4|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#4| $ (-564) |#4|) NIL) ((|#4| $ (-564)) 16)) (-2952 ((|#4| $ $) NIL (|has| |#4| (-1046)))) (-4169 (($ (-1259 |#4|)) NIL)) (-3603 (((-134)) NIL (|has| |#4| (-363)))) (-4117 (($ $ (-1 |#4| |#4|) (-768)) NIL (|has| |#4| (-1046))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))))) (-3873 (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-1259 |#4|) $) NIL) (((-859) $) NIL) (($ |#4|) NIL (|has| |#4| (-1094))) (($ (-564)) NIL (-4030 (-12 (|has| |#4| (-1035 (-564))) (|has| |#4| (-1094))) (|has| |#4| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#4| (-1035 (-407 (-564)))) (|has| |#4| (-1094))))) (-3270 (((-768)) NIL (|has| |#4| (-1046)) CONST)) (-1417 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2792 (($ $) NIL (|has| |#4| (-845)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL (-4030 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) CONST)) (-2124 (($ $ (-1 |#4| |#4|) (-768)) NIL (|has| |#4| (-1046))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046)))) (($ $) NIL (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))))) (-1751 (((-112) $ $) NIL (-4030 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1731 (((-112) $ $) NIL (-4030 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (-4030 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1723 (((-112) $ $) NIL (-4030 (|has| |#4| (-790)) (|has| |#4| (-845))))) (-1799 (($ $ |#4|) NIL (|has| |#4| (-363)))) (-1790 (($ $ $) NIL) (($ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) NIL (-4030 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046))))) (($ $ (-918)) NIL (-4030 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (* (($ |#2| $) 18) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL) (($ |#3| $) 22) (($ $ |#4|) NIL (|has| |#4| (-723))) (($ |#4| $) NIL (|has| |#4| (-723))) (($ $ $) NIL (-4030 (-12 (|has| |#4| (-233)) (|has| |#4| (-1046))) (-12 (|has| |#4| (-637 (-564))) (|has| |#4| (-1046))) (|has| |#4| (-723)) (-12 (|has| |#4| (-897 (-1170))) (|has| |#4| (-1046)))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-250 |#1| |#2| |#3| |#4|) (-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|)) (-918) (-1046) (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-644 |#2|)) (T -250)) +NIL +(-13 (-238 |#1| |#4|) (-644 |#2|) (-644 |#3|)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2595 (($ (-918)) NIL (|has| |#3| (-1046)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-2850 (($ $ $) NIL (|has| |#3| (-790)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-1938 (((-768)) NIL (|has| |#3| (-368)))) (-3265 (((-564) $) NIL (|has| |#3| (-845)))) (-3877 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094))) (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-2239 ((|#3| $) NIL (|has| |#3| (-1094))) (((-564) $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-3039 (((-2 (|:| -2069 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1046))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1046))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))))) (-3951 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2821 (($) NIL (|has| |#3| (-368)))) (-2619 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#3| $ (-564)) NIL)) (-3308 (((-112) $) NIL (|has| |#3| (-845)))) (-3616 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-3840 (((-112) $) NIL (-4030 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2839 (((-112) $) NIL (|has| |#3| (-845)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1386 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-2606 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#3| |#3|) $) NIL)) (-1906 (((-918) $) NIL (|has| |#3| (-368)))) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-1495 (($ (-918)) NIL (|has| |#3| (-368)))) (-3864 (((-1114) $) NIL)) (-1966 ((|#3| $) NIL (|has| (-564) (-847)))) (-3099 (($ $ |#3|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-2572 (((-641 |#3|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) 15)) (-2952 ((|#3| $ $) NIL (|has| |#3| (-1046)))) (-4169 (($ (-1259 |#3|)) NIL)) (-3603 (((-134)) NIL (|has| |#3| (-363)))) (-4117 (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))))) (-3873 (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411))) (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-1259 |#3|) $) NIL) (((-859) $) NIL) (($ |#3|) NIL (|has| |#3| (-1094))) (($ (-564)) NIL (-4030 (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094))))) (-3270 (((-768)) NIL (|has| |#3| (-1046)) CONST)) (-1417 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2792 (($ $) NIL (|has| |#3| (-845)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL (-4030 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) CONST)) (-2124 (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))))) (-1751 (((-112) $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1731 (((-112) $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1723 (((-112) $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1799 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1790 (($ $ $) NIL) (($ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) NIL (-4030 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046))))) (($ $ (-918)) NIL (-4030 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (* (($ |#2| $) 17) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-723))) (($ |#3| $) NIL (|has| |#3| (-723))) (($ $ $) NIL (-4030 (-12 (|has| |#3| (-233)) (|has| |#3| (-1046))) (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046))) (|has| |#3| (-723)) (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-251 |#1| |#2| |#3|) (-13 (-238 |#1| |#3|) (-644 |#2|)) (-768) (-1046) (-644 |#2|)) (T -251)) +NIL +(-13 (-238 |#1| |#3|) (-644 |#2|)) +((-2878 (((-641 (-768)) $) 56) (((-641 (-768)) $ |#3|) 59)) (-3564 (((-768) $) 58) (((-768) $ |#3|) 61)) (-2992 (($ $) 76)) (-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 83)) (-1619 (((-768) $ |#3|) 43) (((-768) $) 38)) (-4303 (((-1 $ (-768)) |#3|) 15) (((-1 $ (-768)) $) 88)) (-2550 ((|#4| $) 69)) (-3257 (((-112) $) 67)) (-4345 (($ $) 75)) (-2416 (($ $ (-641 (-294 $))) 114) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) 106) (($ $ |#3| |#2|) NIL) (($ $ (-641 |#3|) (-641 |#2|)) 100)) (-4117 (($ $ |#4|) NIL) (($ $ (-641 |#4|)) NIL) (($ $ |#4| (-768)) NIL) (($ $ (-641 |#4|) (-641 (-768))) NIL) (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-2331 (((-641 |#3|) $) 86)) (-2266 ((|#5| $) NIL) (((-768) $ |#4|) NIL) (((-641 (-768)) $ (-641 |#4|)) NIL) (((-768) $ |#3|) 49)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 78) (($ (-407 (-564))) NIL) (($ $) NIL))) +(((-252 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2416 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#3| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#3| |#1|)) (-15 -4303 ((-1 |#1| (-768)) |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -4345 (|#1| |#1|)) (-15 -2550 (|#4| |#1|)) (-15 -3257 ((-112) |#1|)) (-15 -3564 ((-768) |#1| |#3|)) (-15 -2878 ((-641 (-768)) |#1| |#3|)) (-15 -3564 ((-768) |#1|)) (-15 -2878 ((-641 (-768)) |#1|)) (-15 -2266 ((-768) |#1| |#3|)) (-15 -1619 ((-768) |#1|)) (-15 -1619 ((-768) |#1| |#3|)) (-15 -2331 ((-641 |#3|) |#1|)) (-15 -4303 ((-1 |#1| (-768)) |#3|)) (-15 -3742 (|#1| |#3|)) (-15 -2111 ((-3 |#3| "failed") |#1|)) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1|)) (-15 -2266 ((-641 (-768)) |#1| (-641 |#4|))) (-15 -2266 ((-768) |#1| |#4|)) (-15 -3742 (|#1| |#4|)) (-15 -2111 ((-3 |#4| "failed") |#1|)) (-15 -2416 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#4| |#1|)) (-15 -2416 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#4| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2266 (|#5| |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -4117 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -4117 (|#1| |#1| |#4| (-768))) (-15 -4117 (|#1| |#1| (-641 |#4|))) (-15 -4117 (|#1| |#1| |#4|)) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-253 |#2| |#3| |#4| |#5|) (-1046) (-847) (-266 |#3|) (-790)) (T -252)) +NIL +(-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2416 (|#1| |#1| (-641 |#3|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#3| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#3|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#3| |#1|)) (-15 -4303 ((-1 |#1| (-768)) |#1|)) (-15 -2992 (|#1| |#1|)) (-15 -4345 (|#1| |#1|)) (-15 -2550 (|#4| |#1|)) (-15 -3257 ((-112) |#1|)) (-15 -3564 ((-768) |#1| |#3|)) (-15 -2878 ((-641 (-768)) |#1| |#3|)) (-15 -3564 ((-768) |#1|)) (-15 -2878 ((-641 (-768)) |#1|)) (-15 -2266 ((-768) |#1| |#3|)) (-15 -1619 ((-768) |#1|)) (-15 -1619 ((-768) |#1| |#3|)) (-15 -2331 ((-641 |#3|) |#1|)) (-15 -4303 ((-1 |#1| (-768)) |#3|)) (-15 -3742 (|#1| |#3|)) (-15 -2111 ((-3 |#3| "failed") |#1|)) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1|)) (-15 -2266 ((-641 (-768)) |#1| (-641 |#4|))) (-15 -2266 ((-768) |#1| |#4|)) (-15 -3742 (|#1| |#4|)) (-15 -2111 ((-3 |#4| "failed") |#1|)) (-15 -2416 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#4| |#1|)) (-15 -2416 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#4| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2266 (|#5| |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -4117 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -4117 (|#1| |#1| |#4| (-768))) (-15 -4117 (|#1| |#1| (-641 |#4|))) (-15 -4117 (|#1| |#1| |#4|)) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-2878 (((-641 (-768)) $) 214) (((-641 (-768)) $ |#2|) 212)) (-3564 (((-768) $) 213) (((-768) $ |#2|) 211)) (-4269 (((-641 |#3|) $) 110)) (-4097 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1948 (($ $) 88 (|has| |#1| (-556)))) (-1832 (((-112) $) 90 (|has| |#1| (-556)))) (-3913 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-3239 (((-3 $ "failed") $ $) 19)) (-3679 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2249 (($ $) 98 (|has| |#1| (-452)))) (-3048 (((-418 $) $) 97 (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-2992 (($ $) 207)) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 |#2| "failed") $) 221)) (-2239 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137) ((|#2| $) 222)) (-2448 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-1348 (($ $) 154)) (-3039 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-3951 (((-3 $ "failed") $) 33)) (-1989 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-1334 (((-641 $) $) 109)) (-4188 (((-112) $) 96 (|has| |#1| (-906)))) (-1866 (($ $ |#1| |#4| $) 172)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1619 (((-768) $ |#2|) 217) (((-768) $) 216)) (-3840 (((-112) $) 31)) (-2918 (((-768) $) 169)) (-4257 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-3707 (((-641 $) $) 126)) (-2005 (((-112) $) 152)) (-4245 (($ |#1| |#4|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ |#3|) 120)) (-3469 ((|#4| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-2799 (($ $ $) 79 (|has| |#1| (-847)))) (-2848 (($ $ $) 78 (|has| |#1| (-847)))) (-1396 (($ (-1 |#4| |#4|) $) 171)) (-2187 (($ (-1 |#1| |#1|) $) 151)) (-4303 (((-1 $ (-768)) |#2|) 219) (((-1 $ (-768)) $) 206 (|has| |#1| (-233)))) (-1306 (((-3 |#3| "failed") $) 123)) (-1309 (($ $) 149)) (-1320 ((|#1| $) 148)) (-2550 ((|#3| $) 209)) (-2529 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-2217 (((-1152) $) 9)) (-3257 (((-112) $) 210)) (-3514 (((-3 (-641 $) "failed") $) 114)) (-4386 (((-3 (-641 $) "failed") $) 115)) (-3758 (((-3 (-2 (|:| |var| |#3|) (|:| -2515 (-768))) "failed") $) 113)) (-4345 (($ $) 208)) (-3864 (((-1114) $) 10)) (-4383 (((-112) $) 166)) (-1296 ((|#1| $) 167)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2577 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4127 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1321 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138) (($ $ |#2| $) 205 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) 204 (|has| |#1| (-233))) (($ $ |#2| |#1|) 203 (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) 202 (|has| |#1| (-233)))) (-4284 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4117 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39) (($ $) 238 (|has| |#1| (-233))) (($ $ (-768)) 236 (|has| |#1| (-233))) (($ $ (-1170)) 234 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 233 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 232 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 231 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2331 (((-641 |#2|) $) 218)) (-2266 ((|#4| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129) (((-768) $ |#2|) 215)) (-2235 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4267 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ |#2|) 220) (($ (-407 (-564))) 72 (-4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) 168)) (-2856 ((|#1| $ |#4|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4253 (((-3 $ "failed") $) 73 (-4030 (-4267 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) 28 T CONST)) (-3447 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3360 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35) (($ $) 237 (|has| |#1| (-233))) (($ $ (-768)) 235 (|has| |#1| (-233))) (($ $ (-1170)) 230 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 229 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 228 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 227 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 226) (($ $ (-1 |#1| |#1|)) 225)) (-1751 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1799 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-253 |#1| |#2| |#3| |#4|) (-140) (-1046) (-847) (-266 |t#2|) (-790)) (T -253)) +((-4303 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *4 *3 *5 *6)))) (-2331 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 *4)))) (-1619 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) (-2878 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) (-3564 (*1 *2 *1 *3) (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-112)))) (-2550 (*1 *2 *1) (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-790)) (-4 *2 (-266 *4)))) (-4345 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-266 *3)) (-4 *5 (-790)))) (-2992 (*1 *1 *1) (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-266 *3)) (-4 *5 (-790)))) (-4303 (*1 *2 *1) (-12 (-4 *3 (-233)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *3 *4 *5 *6))))) +(-13 (-946 |t#1| |t#4| |t#3|) (-231 |t#1|) (-1035 |t#2|) (-10 -8 (-15 -4303 ((-1 $ (-768)) |t#2|)) (-15 -2331 ((-641 |t#2|) $)) (-15 -1619 ((-768) $ |t#2|)) (-15 -1619 ((-768) $)) (-15 -2266 ((-768) $ |t#2|)) (-15 -2878 ((-641 (-768)) $)) (-15 -3564 ((-768) $)) (-15 -2878 ((-641 (-768)) $ |t#2|)) (-15 -3564 ((-768) $ |t#2|)) (-15 -3257 ((-112) $)) (-15 -2550 (|t#3| $)) (-15 -4345 ($ $)) (-15 -2992 ($ $)) (IF (|has| |t#1| (-233)) (PROGN (-6 (-514 |t#2| |t#1|)) (-6 (-514 |t#2| $)) (-6 (-309 $)) (-15 -4303 ((-1 $ (-768)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#2|) . T) ((-614 |#3|) . T) ((-614 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-290) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#4|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4030 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#2| |#1|) |has| |#1| (-233)) ((-514 |#2| $) |has| |#1| (-233)) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-946 |#1| |#4| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#2|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2079 ((|#1| $) 54)) (-2519 ((|#1| $) 44)) (-2969 (((-112) $ (-768)) 8)) (-2818 (($) 7 T CONST)) (-1649 (($ $) 60)) (-2797 (($ $) 48)) (-2881 ((|#1| |#1| $) 46)) (-2226 ((|#1| $) 45)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2395 (((-768) $) 61)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2036 ((|#1| |#1| $) 52)) (-2536 ((|#1| |#1| $) 51)) (-2974 (($ |#1| $) 40)) (-3724 (((-768) $) 55)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1945 ((|#1| $) 62)) (-3001 ((|#1| $) 50)) (-1351 ((|#1| $) 49)) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2971 ((|#1| |#1| $) 58)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-3220 ((|#1| $) 59)) (-1718 (($) 57) (($ (-641 |#1|)) 56)) (-3728 (((-768) $) 43)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-2716 ((|#1| $) 53)) (-3745 (($ (-641 |#1|)) 42)) (-3957 ((|#1| $) 63)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-254 |#1|) (-140) (-1209)) (T -254)) +((-1718 (*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1718 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2716 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2036 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2536 (*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) (-2797 (*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(-13 (-1115 |t#1|) (-992 |t#1|) (-10 -8 (-15 -1718 ($)) (-15 -1718 ($ (-641 |t#1|))) (-15 -3724 ((-768) $)) (-15 -2079 (|t#1| $)) (-15 -2716 (|t#1| $)) (-15 -2036 (|t#1| |t#1| $)) (-15 -2536 (|t#1| |t#1| $)) (-15 -3001 (|t#1| $)) (-15 -1351 (|t#1| $)) (-15 -2797 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-992 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1115 |#1|) . T) ((-1209) . T)) +((-3113 (((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 152)) (-1743 (((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 172) (((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 170) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 175) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 171) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 163) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 162) (((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379))) 144) (((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 142) (((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379))) 143) (((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 140)) (-1709 (((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379))) 174) (((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 173) (((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 177) (((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 176) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379))) 165) (((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263))) 164) (((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379))) 150) (((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263))) 149) (((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379))) 148) (((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 147) (((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379))) 112) (((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263))) 111) (((-1260) (-1 (-225) (-225)) (-1088 (-379))) 106) (((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263))) 104))) +(((-255) (-10 -7 (-15 -1709 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -1709 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1709 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1709 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1709 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1709 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1709 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -3113 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -255)) +((-3113 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *2 (-1260)) (-5 *1 (-255)))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255))))) +(-10 -7 (-15 -1709 ((-1260) (-1 (-225) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1260) (-1 (-225) (-225)) (-1088 (-379)))) (-15 -1709 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1260) (-874 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1709 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1709 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-876 (-1 (-225) (-225))) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-1 (-940 (-225)) (-225)) (-1088 (-379)))) (-15 -1709 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1709 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-379)) (-1088 (-379)))) (-15 -1709 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -1743 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-879 (-1 (-225) (-225) (-225))) (-1088 (-379)) (-1088 (-379)))) (-15 -3113 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-1709 (((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))) 101))) +(((-256 |#1| |#2|) (-10 -7 (-15 -1709 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) (-13 (-556) (-847) (-1035 (-564))) (-430 |#1|)) (T -256)) +((-1709 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-1260)) (-5 *1 (-256 *6 *7))))) +(-10 -7 (-15 -1709 ((-1260) (-294 |#2|) (-1170) (-1170) (-641 (-263))))) +((-1704 (((-564) (-564)) 73)) (-3020 (((-564) (-564)) 74)) (-2672 (((-225) (-225)) 75)) (-2039 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225))) 72)) (-2669 (((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112)) 70))) +(((-257) (-10 -7 (-15 -2669 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -2039 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -1704 ((-564) (-564))) (-15 -3020 ((-564) (-564))) (-15 -2672 ((-225) (-225))))) (T -257)) +((-2672 (*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257)))) (-3020 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-1704 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257)))) (-2039 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *2 (-1261)) (-5 *1 (-257)))) (-2669 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257))))) +(-10 -7 (-15 -2669 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)) (-112))) (-15 -2039 ((-1261) (-1 (-169 (-225)) (-169 (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -1704 ((-564) (-564))) (-15 -3020 ((-564) (-564))) (-15 -2672 ((-225) (-225)))) +((-3742 (((-1086 (-379)) (-1086 (-316 |#1|))) 16))) +(((-258 |#1|) (-10 -7 (-15 -3742 ((-1086 (-379)) (-1086 (-316 |#1|))))) (-13 (-847) (-556) (-612 (-379)))) (T -258)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-1086 (-316 *4))) (-4 *4 (-13 (-847) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) (-5 *1 (-258 *4))))) +(-10 -7 (-15 -3742 ((-1086 (-379)) (-1086 (-316 |#1|))))) +((-1743 (((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))) 75) (((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 74) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379))) 65) (((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 64) (((-1127 (-225)) (-876 |#1|) (-1086 (-379))) 56) (((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263))) 55)) (-1709 (((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379))) 78) (((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 77) (((-1261) |#1| (-1086 (-379)) (-1086 (-379))) 68) (((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263))) 67) (((-1261) (-876 |#1|) (-1086 (-379))) 60) (((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263))) 59) (((-1260) (-874 |#1|) (-1086 (-379))) 47) (((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263))) 46) (((-1260) |#1| (-1086 (-379))) 38) (((-1260) |#1| (-1086 (-379)) (-641 (-263))) 36))) +(((-259 |#1|) (-10 -7 (-15 -1709 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1260) |#1| (-1086 (-379)))) (-15 -1709 ((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1260) (-874 |#1|) (-1086 (-379)))) (-15 -1709 ((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-876 |#1|) (-1086 (-379)))) (-15 -1743 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)))) (-15 -1709 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1743 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1709 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -1743 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))))) (-13 (-612 (-536)) (-1094))) (T -259)) +((-1743 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-1743 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-1709 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-1709 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-1743 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1743 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1709 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1709 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1743 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *5)))) (-1743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *6)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *5)))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) (-5 *1 (-259 *6)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-874 *5)) (-5 *4 (-1086 (-379))) (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *5)))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-874 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) (-5 *1 (-259 *6)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) (-1709 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094)))))) +(-10 -7 (-15 -1709 ((-1260) |#1| (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1260) |#1| (-1086 (-379)))) (-15 -1709 ((-1260) (-874 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1260) (-874 |#1|) (-1086 (-379)))) (-15 -1709 ((-1261) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-876 |#1|) (-1086 (-379)))) (-15 -1743 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-876 |#1|) (-1086 (-379)))) (-15 -1709 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1743 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) |#1| (-1086 (-379)) (-1086 (-379)))) (-15 -1709 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1709 ((-1261) (-879 |#1|) (-1086 (-379)) (-1086 (-379)))) (-15 -1743 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379)) (-641 (-263)))) (-15 -1743 ((-1127 (-225)) (-879 |#1|) (-1086 (-379)) (-1086 (-379))))) +((-1709 (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))) 23) (((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225))) 24) (((-1260) (-641 (-940 (-225))) (-641 (-263))) 16) (((-1260) (-641 (-940 (-225)))) 17) (((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263))) 20) (((-1260) (-641 (-225)) (-641 (-225))) 21))) +(((-260) (-10 -7 (-15 -1709 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -1709 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -1709 ((-1260) (-641 (-940 (-225))))) (-15 -1709 ((-1260) (-641 (-940 (-225))) (-641 (-263)))) (-15 -1709 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -1709 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263)))))) (T -260)) +((-1709 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-1709 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) (-1709 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1709 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-260)))) (-1709 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260))))) +(-10 -7 (-15 -1709 ((-1260) (-641 (-225)) (-641 (-225)))) (-15 -1709 ((-1260) (-641 (-225)) (-641 (-225)) (-641 (-263)))) (-15 -1709 ((-1260) (-641 (-940 (-225))))) (-15 -1709 ((-1260) (-641 (-940 (-225))) (-641 (-263)))) (-15 -1709 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)))) (-15 -1709 ((-1261) (-641 (-225)) (-641 (-225)) (-641 (-225)) (-641 (-263))))) +((-2908 (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 25)) (-3385 (((-918) (-641 (-263)) (-918)) 52)) (-3802 (((-918) (-641 (-263)) (-918)) 51)) (-4371 (((-641 (-379)) (-641 (-263)) (-641 (-379))) 68)) (-3145 (((-379) (-641 (-263)) (-379)) 57)) (-1651 (((-918) (-641 (-263)) (-918)) 53)) (-2337 (((-112) (-641 (-263)) (-112)) 27)) (-2612 (((-1152) (-641 (-263)) (-1152)) 19)) (-2557 (((-1152) (-641 (-263)) (-1152)) 26)) (-1851 (((-1127 (-225)) (-641 (-263))) 46)) (-4140 (((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379)))) 40)) (-4060 (((-871) (-641 (-263)) (-871)) 32)) (-2513 (((-871) (-641 (-263)) (-871)) 33)) (-4106 (((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225)))) 63)) (-4040 (((-112) (-641 (-263)) (-112)) 14)) (-1969 (((-112) (-641 (-263)) (-112)) 13))) +(((-261) (-10 -7 (-15 -1969 ((-112) (-641 (-263)) (-112))) (-15 -4040 ((-112) (-641 (-263)) (-112))) (-15 -2908 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2612 ((-1152) (-641 (-263)) (-1152))) (-15 -2557 ((-1152) (-641 (-263)) (-1152))) (-15 -2337 ((-112) (-641 (-263)) (-112))) (-15 -4060 ((-871) (-641 (-263)) (-871))) (-15 -2513 ((-871) (-641 (-263)) (-871))) (-15 -4140 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3802 ((-918) (-641 (-263)) (-918))) (-15 -3385 ((-918) (-641 (-263)) (-918))) (-15 -1851 ((-1127 (-225)) (-641 (-263)))) (-15 -1651 ((-918) (-641 (-263)) (-918))) (-15 -3145 ((-379) (-641 (-263)) (-379))) (-15 -4106 ((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225))))) (-15 -4371 ((-641 (-379)) (-641 (-263)) (-641 (-379)))))) (T -261)) +((-4371 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4106 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3145 (*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1651 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1851 (*1 *2 *3) (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) (-3385 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-3802 (*1 *2 *3 *2) (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4140 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2513 (*1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4060 (*1 *2 *3 *2) (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2337 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2557 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-2908 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-4040 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) (-1969 (*1 *2 *3 *2) (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) +(-10 -7 (-15 -1969 ((-112) (-641 (-263)) (-112))) (-15 -4040 ((-112) (-641 (-263)) (-112))) (-15 -2908 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) (-641 (-263)) (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2612 ((-1152) (-641 (-263)) (-1152))) (-15 -2557 ((-1152) (-641 (-263)) (-1152))) (-15 -2337 ((-112) (-641 (-263)) (-112))) (-15 -4060 ((-871) (-641 (-263)) (-871))) (-15 -2513 ((-871) (-641 (-263)) (-871))) (-15 -4140 ((-641 (-1088 (-379))) (-641 (-263)) (-641 (-1088 (-379))))) (-15 -3802 ((-918) (-641 (-263)) (-918))) (-15 -3385 ((-918) (-641 (-263)) (-918))) (-15 -1851 ((-1127 (-225)) (-641 (-263)))) (-15 -1651 ((-918) (-641 (-263)) (-918))) (-15 -3145 ((-379) (-641 (-263)) (-379))) (-15 -4106 ((-1 (-940 (-225)) (-940 (-225))) (-641 (-263)) (-1 (-940 (-225)) (-940 (-225))))) (-15 -4371 ((-641 (-379)) (-641 (-263)) (-641 (-379))))) +((-2743 (((-3 |#1| "failed") (-641 (-263)) (-1170)) 17))) +(((-262 |#1|) (-10 -7 (-15 -2743 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) (-1209)) (T -262)) +((-2743 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *1 (-262 *2)) (-4 *2 (-1209))))) +(-10 -7 (-15 -2743 ((-3 |#1| "failed") (-641 (-263)) (-1170)))) +((-3732 (((-112) $ $) NIL)) (-2908 (($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 24)) (-3385 (($ (-918)) 80)) (-3802 (($ (-918)) 79)) (-4176 (($ (-641 (-379))) 86)) (-3145 (($ (-379)) 66)) (-1651 (($ (-918)) 81)) (-2337 (($ (-112)) 33)) (-2612 (($ (-1152)) 28)) (-2557 (($ (-1152)) 29)) (-1851 (($ (-1127 (-225))) 75)) (-4140 (($ (-641 (-1088 (-379)))) 71)) (-3089 (($ (-641 (-1088 (-379)))) 67) (($ (-641 (-1088 (-407 (-564))))) 70)) (-2758 (($ (-379)) 38) (($ (-871)) 42)) (-1433 (((-112) (-641 $) (-1170)) 99)) (-2743 (((-3 (-52) "failed") (-641 $) (-1170)) 101)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1690 (($ (-379)) 43) (($ (-871)) 44)) (-1785 (($ (-1 (-940 (-225)) (-940 (-225)))) 65)) (-4106 (($ (-1 (-940 (-225)) (-940 (-225)))) 82)) (-1806 (($ (-1 (-225) (-225))) 48) (($ (-1 (-225) (-225) (-225))) 52) (($ (-1 (-225) (-225) (-225) (-225))) 56)) (-3742 (((-859) $) 92)) (-2301 (($ (-112)) 34) (($ (-641 (-1088 (-379)))) 60)) (-1969 (($ (-112)) 35)) (-1705 (((-112) $ $) 96))) +(((-263) (-13 (-1094) (-10 -8 (-15 -1969 ($ (-112))) (-15 -2301 ($ (-112))) (-15 -2908 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2612 ($ (-1152))) (-15 -2557 ($ (-1152))) (-15 -2337 ($ (-112))) (-15 -2301 ($ (-641 (-1088 (-379))))) (-15 -1785 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -2758 ($ (-379))) (-15 -2758 ($ (-871))) (-15 -1690 ($ (-379))) (-15 -1690 ($ (-871))) (-15 -1806 ($ (-1 (-225) (-225)))) (-15 -1806 ($ (-1 (-225) (-225) (-225)))) (-15 -1806 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3145 ($ (-379))) (-15 -3089 ($ (-641 (-1088 (-379))))) (-15 -3089 ($ (-641 (-1088 (-407 (-564)))))) (-15 -4140 ($ (-641 (-1088 (-379))))) (-15 -1851 ($ (-1127 (-225)))) (-15 -3802 ($ (-918))) (-15 -3385 ($ (-918))) (-15 -1651 ($ (-918))) (-15 -4106 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -4176 ($ (-641 (-379)))) (-15 -2743 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -1433 ((-112) (-641 $) (-1170)))))) (T -263)) +((-1969 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2908 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-263)))) (-2612 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-2557 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) (-2301 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-1785 (*1 *1 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) (-2758 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-2758 (*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) (-1690 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-1690 (*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) (-1806 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263)))) (-1806 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) (-1806 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) (-3145 (*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-3089 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) (-4140 (*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) (-1851 (*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263)))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-3385 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263)))) (-4106 (*1 *1 *2) (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) (-4176 (*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) (-2743 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) (-5 *1 (-263)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) (-5 *1 (-263))))) +(-13 (-1094) (-10 -8 (-15 -1969 ($ (-112))) (-15 -2301 ($ (-112))) (-15 -2908 ($ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2612 ($ (-1152))) (-15 -2557 ($ (-1152))) (-15 -2337 ($ (-112))) (-15 -2301 ($ (-641 (-1088 (-379))))) (-15 -1785 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -2758 ($ (-379))) (-15 -2758 ($ (-871))) (-15 -1690 ($ (-379))) (-15 -1690 ($ (-871))) (-15 -1806 ($ (-1 (-225) (-225)))) (-15 -1806 ($ (-1 (-225) (-225) (-225)))) (-15 -1806 ($ (-1 (-225) (-225) (-225) (-225)))) (-15 -3145 ($ (-379))) (-15 -3089 ($ (-641 (-1088 (-379))))) (-15 -3089 ($ (-641 (-1088 (-407 (-564)))))) (-15 -4140 ($ (-641 (-1088 (-379))))) (-15 -1851 ($ (-1127 (-225)))) (-15 -3802 ($ (-918))) (-15 -3385 ($ (-918))) (-15 -1651 ($ (-918))) (-15 -4106 ($ (-1 (-940 (-225)) (-940 (-225))))) (-15 -4176 ($ (-641 (-379)))) (-15 -2743 ((-3 (-52) "failed") (-641 $) (-1170))) (-15 -1433 ((-112) (-641 $) (-1170))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2878 (((-641 (-768)) $) NIL) (((-641 (-768)) $ |#2|) NIL)) (-3564 (((-768) $) NIL) (((-768) $ |#2|) NIL)) (-4269 (((-641 |#3|) $) NIL)) (-4097 (((-1166 $) $ |#3|) NIL) (((-1166 |#1|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 |#3|)) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2992 (($ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1119 |#1| |#2|) "failed") $) 23)) (-2239 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1119 |#1| |#2|) $) NIL)) (-2448 (($ $ $ |#3|) NIL (|has| |#1| (-172)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-1866 (($ $ |#1| (-531 |#3|) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))))) (-1619 (((-768) $ |#2|) NIL) (((-768) $) 10)) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-4257 (($ (-1166 |#1|) |#3|) NIL) (($ (-1166 $) |#3|) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-531 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ |#3|) NIL)) (-3469 (((-531 |#3|) $) NIL) (((-768) $ |#3|) NIL) (((-641 (-768)) $ (-641 |#3|)) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-531 |#3|) (-531 |#3|)) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-4303 (((-1 $ (-768)) |#2|) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-1306 (((-3 |#3| "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2550 ((|#3| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2217 (((-1152) $) NIL)) (-3257 (((-112) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| |#3|) (|:| -2515 (-768))) "failed") $) NIL)) (-4345 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-641 |#3|) (-641 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-641 |#3|) (-641 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 $)) NIL (|has| |#1| (-233))) (($ $ |#2| |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 |#2|) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-4284 (($ $ |#3|) NIL (|has| |#1| (-172)))) (-4117 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2331 (((-641 |#2|) $) NIL)) (-2266 (((-531 |#3|) $) NIL) (((-768) $ |#3|) NIL) (((-641 (-768)) $ (-641 |#3|)) NIL) (((-768) $ |#2|) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))))) (-4329 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ |#3|) NIL (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) 26) (($ |#3|) 25) (($ |#2|) NIL) (($ (-1119 |#1| |#2|)) 32) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-531 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ |#3|) NIL) (($ $ (-641 |#3|)) NIL) (($ $ |#3| (-768)) NIL) (($ $ (-641 |#3|) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-264 |#1| |#2| |#3|) (-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1035 (-1119 |#1| |#2|))) (-1046) (-847) (-266 |#2|)) (T -264)) +NIL +(-13 (-253 |#1| |#2| |#3| (-531 |#3|)) (-1035 (-1119 |#1| |#2|))) +((-3564 (((-768) $) 37)) (-2111 (((-3 |#2| "failed") $) 22)) (-2239 ((|#2| $) 33)) (-4117 (($ $) 14) (($ $ (-768)) 18)) (-3742 (((-859) $) 32) (($ |#2|) 11)) (-1705 (((-112) $ $) 26)) (-1723 (((-112) $ $) 36))) +(((-265 |#1| |#2|) (-10 -8 (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1|)) (-15 -3564 ((-768) |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) (-266 |#2|) (-847)) (T -265)) +NIL +(-10 -8 (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1|)) (-15 -3564 ((-768) |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-3564 (((-768) $) 22)) (-3851 ((|#1| $) 23)) (-2111 (((-3 |#1| "failed") $) 27)) (-2239 ((|#1| $) 28)) (-1619 (((-768) $) 24)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-4303 (($ |#1| (-768)) 25)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4117 (($ $) 21) (($ $ (-768)) 20)) (-3742 (((-859) $) 11) (($ |#1|) 26)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) +(((-266 |#1|) (-140) (-847)) (T -266)) +((-3742 (*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-4303 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-3564 (*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) (-4117 (*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-266 *3)) (-4 *3 (-847))))) +(-13 (-847) (-1035 |t#1|) (-10 -8 (-15 -4303 ($ |t#1| (-768))) (-15 -1619 ((-768) $)) (-15 -3851 (|t#1| $)) (-15 -3564 ((-768) $)) (-15 -4117 ($ $)) (-15 -4117 ($ $ (-768))) (-15 -3742 ($ |t#1|)))) +(((-102) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-847) . T) ((-1035 |#1|) . T) ((-1094) . T)) +((-4269 (((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 54)) (-3491 (((-641 (-1170)) (-316 (-225)) (-768)) 96)) (-2291 (((-3 (-316 (-225)) "failed") (-316 (-225))) 64)) (-1933 (((-316 (-225)) (-316 (-225))) 82)) (-3806 (((-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 39)) (-2650 (((-112) (-641 (-316 (-225)))) 106)) (-1995 (((-112) (-316 (-225))) 37)) (-3228 (((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))))) 133)) (-3613 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 109)) (-3936 (((-641 (-316 (-225))) (-641 (-316 (-225)))) 108)) (-2296 (((-685 (-225)) (-641 (-316 (-225))) (-768)) 121)) (-2930 (((-112) (-316 (-225))) 32) (((-112) (-641 (-316 (-225)))) 107)) (-3311 (((-641 (-225)) (-641 (-840 (-225))) (-225)) 15)) (-1294 (((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 127)) (-1740 (((-1032) (-1170) (-1032)) 47))) +(((-267) (-10 -7 (-15 -3311 ((-641 (-225)) (-641 (-840 (-225))) (-225))) (-15 -3806 ((-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -2291 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -1933 ((-316 (-225)) (-316 (-225)))) (-15 -2650 ((-112) (-641 (-316 (-225))))) (-15 -2930 ((-112) (-641 (-316 (-225))))) (-15 -2930 ((-112) (-316 (-225)))) (-15 -2296 ((-685 (-225)) (-641 (-316 (-225))) (-768))) (-15 -3936 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -3613 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -1995 ((-112) (-316 (-225)))) (-15 -4269 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) (-15 -3491 ((-641 (-1170)) (-316 (-225)) (-768))) (-15 -1740 ((-1032) (-1170) (-1032))) (-15 -1294 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) (-15 -3228 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))))))) (T -267)) +((-3228 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))))) (-5 *2 (-641 (-1152))) (-5 *1 (-267)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) (-5 *2 (-379)) (-5 *1 (-267)))) (-1740 (*1 *2 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-267)))) (-3491 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-3613 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-3936 (*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) (-5 *1 (-267)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2930 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) (-1933 (*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-2291 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *1 (-267)))) (-3311 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-840 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) (-5 *1 (-267))))) +(-10 -7 (-15 -3311 ((-641 (-225)) (-641 (-840 (-225))) (-225))) (-15 -3806 ((-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -2291 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -1933 ((-316 (-225)) (-316 (-225)))) (-15 -2650 ((-112) (-641 (-316 (-225))))) (-15 -2930 ((-112) (-641 (-316 (-225))))) (-15 -2930 ((-112) (-316 (-225)))) (-15 -2296 ((-685 (-225)) (-641 (-316 (-225))) (-768))) (-15 -3936 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -3613 ((-641 (-316 (-225))) (-641 (-316 (-225))))) (-15 -1995 ((-112) (-316 (-225)))) (-15 -4269 ((-641 (-1170)) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) (-15 -3491 ((-641 (-1170)) (-316 (-225)) (-768))) (-15 -1740 ((-1032) (-1170) (-1032))) (-15 -1294 ((-379) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) (-15 -3228 ((-641 (-1152)) (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))))))) +((-3732 (((-112) $ $) NIL)) (-2600 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 56)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 32) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-268) (-836)) (T -268)) +NIL +(-836) +((-3732 (((-112) $ $) NIL)) (-2600 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 75) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 66)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 45) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 47)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-269) (-836)) (T -269)) +NIL +(-836) +((-3732 (((-112) $ $) NIL)) (-2600 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 91) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 86)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 56) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 67)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-270) (-836)) (T -270)) +NIL +(-836) +((-3732 (((-112) $ $) NIL)) (-2600 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 73)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 45) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-271) (-836)) (T -271)) +NIL +(-836) +((-3732 (((-112) $ $) NIL)) (-2600 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 65)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 31) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-272) (-836)) (T -272)) +NIL +(-836) +((-3732 (((-112) $ $) NIL)) (-2600 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 90)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 33) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-273) (-836)) (T -273)) +NIL +(-836) +((-3732 (((-112) $ $) NIL)) (-2600 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 95)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 32) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-274) (-836)) (T -274)) +NIL +(-836) +((-3732 (((-112) $ $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1683 (((-641 (-564)) $) 28)) (-2266 (((-768) $) 26)) (-3742 (((-859) $) 35) (($ (-641 (-564))) 22)) (-1828 (($ (-768)) 32)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 9)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 16))) +(((-275) (-13 (-847) (-10 -8 (-15 -3742 ($ (-641 (-564)))) (-15 -2266 ((-768) $)) (-15 -1683 ((-641 (-564)) $)) (-15 -1828 ($ (-768)))))) (T -275)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-275)))) (-1683 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) (-1828 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-275))))) +(-13 (-847) (-10 -8 (-15 -3742 ($ (-641 (-564)))) (-15 -2266 ((-768) $)) (-15 -1683 ((-641 (-564)) $)) (-15 -1828 ($ (-768))))) +((-2451 ((|#2| |#2|) 77)) (-2319 ((|#2| |#2|) 65)) (-3210 (((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112))))) 125)) (-2428 ((|#2| |#2|) 75)) (-2297 ((|#2| |#2|) 63)) (-2473 ((|#2| |#2|) 79)) (-2339 ((|#2| |#2|) 67)) (-1655 ((|#2|) 46)) (-4058 (((-114) (-114)) 100)) (-2192 ((|#2| |#2|) 61)) (-2248 (((-112) |#2|) 147)) (-4130 ((|#2| |#2|) 195)) (-2866 ((|#2| |#2|) 171)) (-2065 ((|#2|) 59)) (-3444 ((|#2|) 58)) (-4367 ((|#2| |#2|) 191)) (-1469 ((|#2| |#2|) 167)) (-3604 ((|#2| |#2|) 199)) (-1838 ((|#2| |#2|) 175)) (-3503 ((|#2| |#2|) 163)) (-3815 ((|#2| |#2|) 165)) (-1899 ((|#2| |#2|) 201)) (-3422 ((|#2| |#2|) 177)) (-3868 ((|#2| |#2|) 197)) (-1825 ((|#2| |#2|) 173)) (-4239 ((|#2| |#2|) 193)) (-3085 ((|#2| |#2|) 169)) (-3047 ((|#2| |#2|) 207)) (-2352 ((|#2| |#2|) 183)) (-1726 ((|#2| |#2|) 203)) (-1800 ((|#2| |#2|) 179)) (-3487 ((|#2| |#2|) 211)) (-4088 ((|#2| |#2|) 187)) (-2286 ((|#2| |#2|) 213)) (-2640 ((|#2| |#2|) 189)) (-3683 ((|#2| |#2|) 209)) (-4368 ((|#2| |#2|) 185)) (-3321 ((|#2| |#2|) 205)) (-3689 ((|#2| |#2|) 181)) (-4118 ((|#2| |#2|) 62)) (-2484 ((|#2| |#2|) 80)) (-2348 ((|#2| |#2|) 68)) (-2462 ((|#2| |#2|) 78)) (-2328 ((|#2| |#2|) 66)) (-2438 ((|#2| |#2|) 76)) (-2309 ((|#2| |#2|) 64)) (-2095 (((-112) (-114)) 98)) (-2521 ((|#2| |#2|) 83)) (-2379 ((|#2| |#2|) 71)) (-2495 ((|#2| |#2|) 81)) (-2358 ((|#2| |#2|) 69)) (-2548 ((|#2| |#2|) 85)) (-2404 ((|#2| |#2|) 73)) (-4065 ((|#2| |#2|) 86)) (-2415 ((|#2| |#2|) 74)) (-2534 ((|#2| |#2|) 84)) (-2391 ((|#2| |#2|) 72)) (-2507 ((|#2| |#2|) 82)) (-2367 ((|#2| |#2|) 70))) +(((-276 |#1| |#2|) (-10 -7 (-15 -4118 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2328 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2348 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -2451 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2484 (|#2| |#2|)) (-15 -2495 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -1655 (|#2|)) (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -3444 (|#2|)) (-15 -2065 (|#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -3085 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -1838 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -3689 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -4368 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -4367 (|#2| |#2|)) (-15 -4239 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -3868 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -1899 (|#2| |#2|)) (-15 -1726 (|#2| |#2|)) (-15 -3321 (|#2| |#2|)) (-15 -3047 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -2286 (|#2| |#2|)) (-15 -3210 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2248 ((-112) |#2|))) (-13 (-847) (-556)) (-13 (-430 |#1|) (-999))) (T -276)) +((-2248 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) (-4 *3 (-13 (-430 *4) (-999))))) (-3210 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) (-4 *2 (-13 (-430 *4) (-999))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-276 *4 *2)))) (-2286 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3487 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3683 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3047 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3321 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1726 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1899 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3868 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4130 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4239 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4367 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2640 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4368 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2352 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3689 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1800 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3422 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1838 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1825 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2866 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3085 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-1469 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3503 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-3815 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2065 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-3444 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *4)) (-4 *4 (-13 (-430 *3) (-999))))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-999))))) (-1655 (*1 *2) (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) (-4 *3 (-13 (-847) (-556))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2484 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2451 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2328 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999))))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) (-4 *2 (-13 (-430 *3) (-999)))))) +(-10 -7 (-15 -4118 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -2297 (|#2| |#2|)) (-15 -2309 (|#2| |#2|)) (-15 -2319 (|#2| |#2|)) (-15 -2328 (|#2| |#2|)) (-15 -2339 (|#2| |#2|)) (-15 -2348 (|#2| |#2|)) (-15 -2358 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2404 (|#2| |#2|)) (-15 -2415 (|#2| |#2|)) (-15 -2428 (|#2| |#2|)) (-15 -2438 (|#2| |#2|)) (-15 -2451 (|#2| |#2|)) (-15 -2462 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2484 (|#2| |#2|)) (-15 -2495 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)) (-15 -2521 (|#2| |#2|)) (-15 -2534 (|#2| |#2|)) (-15 -2548 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -1655 (|#2|)) (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -3444 (|#2|)) (-15 -2065 (|#2|)) (-15 -3815 (|#2| |#2|)) (-15 -3503 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -3085 (|#2| |#2|)) (-15 -2866 (|#2| |#2|)) (-15 -1825 (|#2| |#2|)) (-15 -1838 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (-15 -1800 (|#2| |#2|)) (-15 -3689 (|#2| |#2|)) (-15 -2352 (|#2| |#2|)) (-15 -4368 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -4367 (|#2| |#2|)) (-15 -4239 (|#2| |#2|)) (-15 -4130 (|#2| |#2|)) (-15 -3868 (|#2| |#2|)) (-15 -3604 (|#2| |#2|)) (-15 -1899 (|#2| |#2|)) (-15 -1726 (|#2| |#2|)) (-15 -3321 (|#2| |#2|)) (-15 -3047 (|#2| |#2|)) (-15 -3683 (|#2| |#2|)) (-15 -3487 (|#2| |#2|)) (-15 -2286 (|#2| |#2|)) (-15 -3210 ((-3 |#2| "failed") |#2| (-641 (-2 (|:| |func| |#2|) (|:| |pole| (-112)))))) (-15 -2248 ((-112) |#2|))) +((-4158 (((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170)) 154)) (-1745 ((|#2| (-407 (-564)) |#2|) 51)) (-2895 ((|#2| |#2| (-610 |#2|)) 147)) (-2465 (((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170)) 146)) (-2203 ((|#2| |#2| (-1170)) 20) ((|#2| |#2|) 23)) (-2928 ((|#2| |#2| (-1170)) 160) ((|#2| |#2|) 158))) +(((-277 |#1| |#2|) (-10 -7 (-15 -2928 (|#2| |#2|)) (-15 -2928 (|#2| |#2| (-1170))) (-15 -2465 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -2203 (|#2| |#2|)) (-15 -2203 (|#2| |#2| (-1170))) (-15 -4158 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -2895 (|#2| |#2| (-610 |#2|))) (-15 -1745 (|#2| (-407 (-564)) |#2|))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -277)) +((-1745 (*1 *2 *3 *2) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2895 (*1 *2 *2 *3) (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)))) (-4158 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *5 *2)))) (-2203 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2203 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-2465 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) (|:| |vals| (-641 *3)))) (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2928 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2928 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(-10 -7 (-15 -2928 (|#2| |#2|)) (-15 -2928 (|#2| |#2| (-1170))) (-15 -2465 ((-2 (|:| |func| |#2|) (|:| |kers| (-641 (-610 |#2|))) (|:| |vals| (-641 |#2|))) |#2| (-1170))) (-15 -2203 (|#2| |#2|)) (-15 -2203 (|#2| |#2| (-1170))) (-15 -4158 ((-3 |#2| "failed") (-641 (-610 |#2|)) |#2| (-1170))) (-15 -2895 (|#2| |#2| (-610 |#2|))) (-15 -1745 (|#2| (-407 (-564)) |#2|))) +((-4219 (((-3 |#3| "failed") |#3|) 121)) (-2451 ((|#3| |#3|) 143)) (-1547 (((-3 |#3| "failed") |#3|) 89)) (-2319 ((|#3| |#3|) 133)) (-1848 (((-3 |#3| "failed") |#3|) 65)) (-2428 ((|#3| |#3|) 141)) (-3996 (((-3 |#3| "failed") |#3|) 53)) (-2297 ((|#3| |#3|) 131)) (-2311 (((-3 |#3| "failed") |#3|) 123)) (-2473 ((|#3| |#3|) 145)) (-2245 (((-3 |#3| "failed") |#3|) 91)) (-2339 ((|#3| |#3|) 135)) (-4010 (((-3 |#3| "failed") |#3| (-768)) 41)) (-2274 (((-3 |#3| "failed") |#3|) 81)) (-2192 ((|#3| |#3|) 130)) (-3645 (((-3 |#3| "failed") |#3|) 51)) (-4118 ((|#3| |#3|) 129)) (-1951 (((-3 |#3| "failed") |#3|) 124)) (-2484 ((|#3| |#3|) 146)) (-4201 (((-3 |#3| "failed") |#3|) 92)) (-2348 ((|#3| |#3|) 136)) (-3923 (((-3 |#3| "failed") |#3|) 122)) (-2462 ((|#3| |#3|) 144)) (-3438 (((-3 |#3| "failed") |#3|) 90)) (-2328 ((|#3| |#3|) 134)) (-2292 (((-3 |#3| "failed") |#3|) 67)) (-2438 ((|#3| |#3|) 142)) (-3640 (((-3 |#3| "failed") |#3|) 55)) (-2309 ((|#3| |#3|) 132)) (-3955 (((-3 |#3| "failed") |#3|) 73)) (-2521 ((|#3| |#3|) 149)) (-2492 (((-3 |#3| "failed") |#3|) 115)) (-2379 ((|#3| |#3|) 155)) (-1556 (((-3 |#3| "failed") |#3|) 69)) (-2495 ((|#3| |#3|) 147)) (-2761 (((-3 |#3| "failed") |#3|) 57)) (-2358 ((|#3| |#3|) 137)) (-2189 (((-3 |#3| "failed") |#3|) 77)) (-2548 ((|#3| |#3|) 151)) (-3811 (((-3 |#3| "failed") |#3|) 61)) (-2404 ((|#3| |#3|) 139)) (-3870 (((-3 |#3| "failed") |#3|) 79)) (-4065 ((|#3| |#3|) 152)) (-3445 (((-3 |#3| "failed") |#3|) 63)) (-2415 ((|#3| |#3|) 140)) (-2420 (((-3 |#3| "failed") |#3|) 75)) (-2534 ((|#3| |#3|) 150)) (-2173 (((-3 |#3| "failed") |#3|) 118)) (-2391 ((|#3| |#3|) 156)) (-2329 (((-3 |#3| "failed") |#3|) 71)) (-2507 ((|#3| |#3|) 148)) (-4073 (((-3 |#3| "failed") |#3|) 59)) (-2367 ((|#3| |#3|) 138)) (** ((|#3| |#3| (-407 (-564))) 47 (|has| |#1| (-363))))) +(((-278 |#1| |#2| |#3|) (-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4118 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2309 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2328 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2415 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2438 (|#3| |#3|)) (-15 -2451 (|#3| |#3|)) (-15 -2462 (|#3| |#3|)) (-15 -2473 (|#3| |#3|)) (-15 -2484 (|#3| |#3|)) (-15 -2495 (|#3| |#3|)) (-15 -2507 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)) (-15 -2534 (|#3| |#3|)) (-15 -2548 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)))) (-38 (-407 (-564))) (-1250 |#1|) (-1221 |#1| |#2|)) (T -278)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2328 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2451 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2484 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4))))) +(-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4118 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2309 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2328 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2415 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2438 (|#3| |#3|)) (-15 -2451 (|#3| |#3|)) (-15 -2462 (|#3| |#3|)) (-15 -2473 (|#3| |#3|)) (-15 -2484 (|#3| |#3|)) (-15 -2495 (|#3| |#3|)) (-15 -2507 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)) (-15 -2534 (|#3| |#3|)) (-15 -2548 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)))) +((-4219 (((-3 |#3| "failed") |#3|) 70)) (-2451 ((|#3| |#3|) 137)) (-1547 (((-3 |#3| "failed") |#3|) 54)) (-2319 ((|#3| |#3|) 125)) (-1848 (((-3 |#3| "failed") |#3|) 66)) (-2428 ((|#3| |#3|) 135)) (-3996 (((-3 |#3| "failed") |#3|) 50)) (-2297 ((|#3| |#3|) 123)) (-2311 (((-3 |#3| "failed") |#3|) 74)) (-2473 ((|#3| |#3|) 139)) (-2245 (((-3 |#3| "failed") |#3|) 58)) (-2339 ((|#3| |#3|) 127)) (-4010 (((-3 |#3| "failed") |#3| (-768)) 38)) (-2274 (((-3 |#3| "failed") |#3|) 48)) (-2192 ((|#3| |#3|) 111)) (-3645 (((-3 |#3| "failed") |#3|) 46)) (-4118 ((|#3| |#3|) 122)) (-1951 (((-3 |#3| "failed") |#3|) 76)) (-2484 ((|#3| |#3|) 140)) (-4201 (((-3 |#3| "failed") |#3|) 60)) (-2348 ((|#3| |#3|) 128)) (-3923 (((-3 |#3| "failed") |#3|) 72)) (-2462 ((|#3| |#3|) 138)) (-3438 (((-3 |#3| "failed") |#3|) 56)) (-2328 ((|#3| |#3|) 126)) (-2292 (((-3 |#3| "failed") |#3|) 68)) (-2438 ((|#3| |#3|) 136)) (-3640 (((-3 |#3| "failed") |#3|) 52)) (-2309 ((|#3| |#3|) 124)) (-3955 (((-3 |#3| "failed") |#3|) 78)) (-2521 ((|#3| |#3|) 143)) (-2492 (((-3 |#3| "failed") |#3|) 62)) (-2379 ((|#3| |#3|) 131)) (-1556 (((-3 |#3| "failed") |#3|) 112)) (-2495 ((|#3| |#3|) 141)) (-2761 (((-3 |#3| "failed") |#3|) 100)) (-2358 ((|#3| |#3|) 129)) (-2189 (((-3 |#3| "failed") |#3|) 116)) (-2548 ((|#3| |#3|) 145)) (-3811 (((-3 |#3| "failed") |#3|) 107)) (-2404 ((|#3| |#3|) 133)) (-3870 (((-3 |#3| "failed") |#3|) 117)) (-4065 ((|#3| |#3|) 146)) (-3445 (((-3 |#3| "failed") |#3|) 109)) (-2415 ((|#3| |#3|) 134)) (-2420 (((-3 |#3| "failed") |#3|) 80)) (-2534 ((|#3| |#3|) 144)) (-2173 (((-3 |#3| "failed") |#3|) 64)) (-2391 ((|#3| |#3|) 132)) (-2329 (((-3 |#3| "failed") |#3|) 113)) (-2507 ((|#3| |#3|) 142)) (-4073 (((-3 |#3| "failed") |#3|) 103)) (-2367 ((|#3| |#3|) 130)) (** ((|#3| |#3| (-407 (-564))) 44 (|has| |#1| (-363))))) +(((-279 |#1| |#2| |#3| |#4|) (-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4118 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2309 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2328 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2415 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2438 (|#3| |#3|)) (-15 -2451 (|#3| |#3|)) (-15 -2462 (|#3| |#3|)) (-15 -2473 (|#3| |#3|)) (-15 -2484 (|#3| |#3|)) (-15 -2495 (|#3| |#3|)) (-15 -2507 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)) (-15 -2534 (|#3| |#3|)) (-15 -2548 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)))) (-38 (-407 (-564))) (-1219 |#1|) (-1242 |#1| |#2|) (-980 |#2|)) (T -279)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) (-4 *6 (-980 *5)))) (-4118 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2297 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2309 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2319 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2328 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2339 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2348 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2358 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2404 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2415 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2428 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2438 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2451 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2462 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2484 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2507 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2521 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2534 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-2548 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4))))) +(-13 (-980 |#3|) (-10 -7 (IF (|has| |#1| (-363)) (-15 ** (|#3| |#3| (-407 (-564)))) |%noBranch|) (-15 -4118 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -2297 (|#3| |#3|)) (-15 -2309 (|#3| |#3|)) (-15 -2319 (|#3| |#3|)) (-15 -2328 (|#3| |#3|)) (-15 -2339 (|#3| |#3|)) (-15 -2348 (|#3| |#3|)) (-15 -2358 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2404 (|#3| |#3|)) (-15 -2415 (|#3| |#3|)) (-15 -2428 (|#3| |#3|)) (-15 -2438 (|#3| |#3|)) (-15 -2451 (|#3| |#3|)) (-15 -2462 (|#3| |#3|)) (-15 -2473 (|#3| |#3|)) (-15 -2484 (|#3| |#3|)) (-15 -2495 (|#3| |#3|)) (-15 -2507 (|#3| |#3|)) (-15 -2521 (|#3| |#3|)) (-15 -2534 (|#3| |#3|)) (-15 -2548 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)))) +((-1416 (((-112) $) 19)) (-1616 (((-183) $) 7)) (-2360 (((-3 (-1170) "failed") $) 14)) (-3971 (((-3 (-641 $) "failed") $) NIL)) (-3792 (((-3 (-1170) "failed") $) 21)) (-3594 (((-3 (-1098) "failed") $) 18)) (-1804 (((-112) $) 16)) (-3742 (((-859) $) NIL)) (-2132 (((-112) $) 9))) +(((-280) (-13 (-611 (-859)) (-10 -8 (-15 -1616 ((-183) $)) (-15 -1804 ((-112) $)) (-15 -3594 ((-3 (-1098) "failed") $)) (-15 -1416 ((-112) $)) (-15 -3792 ((-3 (-1170) "failed") $)) (-15 -2132 ((-112) $)) (-15 -2360 ((-3 (-1170) "failed") $)) (-15 -3971 ((-3 (-641 $) "failed") $))))) (T -280)) +((-1616 (*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3594 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-3792 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-280)))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) (-2360 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-280)))) (-3971 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280))))) +(-13 (-611 (-859)) (-10 -8 (-15 -1616 ((-183) $)) (-15 -1804 ((-112) $)) (-15 -3594 ((-3 (-1098) "failed") $)) (-15 -1416 ((-112) $)) (-15 -3792 ((-3 (-1170) "failed") $)) (-15 -2132 ((-112) $)) (-15 -2360 ((-3 (-1170) "failed") $)) (-15 -3971 ((-3 (-641 $) "failed") $)))) +((-3548 (($ (-1 (-112) |#2|) $) 24)) (-1996 (($ $) 38)) (-2154 (($ (-1 (-112) |#2|) $) NIL) (($ |#2| $) 36)) (-2366 (($ |#2| $) 34) (($ (-1 (-112) |#2|) $) 18)) (-1457 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 42)) (-2308 (($ |#2| $ (-564)) 20) (($ $ $ (-564)) 22)) (-2004 (($ $ (-564)) 11) (($ $ (-1226 (-564))) 14)) (-1807 (($ $ |#2|) 32) (($ $ $) NIL)) (-1802 (($ $ |#2|) 31) (($ |#2| $) NIL) (($ $ $) 26) (($ (-641 $)) NIL))) +(((-281 |#1| |#2|) (-10 -8 (-15 -1457 (|#1| |#1| |#1|)) (-15 -2154 (|#1| |#2| |#1|)) (-15 -1457 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2154 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1807 (|#1| |#1| |#1|)) (-15 -1807 (|#1| |#1| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-564))) (-15 -2308 (|#1| |#2| |#1| (-564))) (-15 -2004 (|#1| |#1| (-1226 (-564)))) (-15 -2004 (|#1| |#1| (-564))) (-15 -1802 (|#1| (-641 |#1|))) (-15 -1802 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3548 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2366 (|#1| |#2| |#1|)) (-15 -1996 (|#1| |#1|))) (-282 |#2|) (-1209)) (T -281)) +NIL +(-10 -8 (-15 -1457 (|#1| |#1| |#1|)) (-15 -2154 (|#1| |#2| |#1|)) (-15 -1457 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2154 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1807 (|#1| |#1| |#1|)) (-15 -1807 (|#1| |#1| |#2|)) (-15 -2308 (|#1| |#1| |#1| (-564))) (-15 -2308 (|#1| |#2| |#1| (-564))) (-15 -2004 (|#1| |#1| (-1226 (-564)))) (-15 -2004 (|#1| |#1| (-564))) (-15 -1802 (|#1| (-641 |#1|))) (-15 -1802 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -3548 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2366 (|#1| |#2| |#1|)) (-15 -1996 (|#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-2068 (($ (-1 (-112) |#1|) $) 85)) (-3548 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-4181 (($ $) 83 (|has| |#1| (-1094)))) (-1996 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ (-1 (-112) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1094)))) (-2366 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 51)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-3619 (($ (-768) |#1|) 69)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-1457 (($ (-1 (-112) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2974 (($ |#1| $ (-564)) 88) (($ $ $ (-564)) 87)) (-2308 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 42 (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3099 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-3778 (($ $ (-564)) 91) (($ $ (-1226 (-564))) 90)) (-2004 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 70)) (-1807 (($ $ |#1|) 93) (($ $ $) 92)) (-1802 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-282 |#1|) (-140) (-1209)) (T -282)) +((-1807 (*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-1807 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2154 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2974 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) (-2974 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-1457 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2068 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) (-2154 (*1 *1 *2 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-4181 (*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) (-1457 (*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))) +(-13 (-647 |t#1|) (-10 -8 (-6 -4412) (-15 -1807 ($ $ |t#1|)) (-15 -1807 ($ $ $)) (-15 -3778 ($ $ (-564))) (-15 -3778 ($ $ (-1226 (-564)))) (-15 -2154 ($ (-1 (-112) |t#1|) $)) (-15 -2974 ($ |t#1| $ (-564))) (-15 -2974 ($ $ $ (-564))) (-15 -1457 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -2068 ($ (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -2154 ($ |t#1| $)) (-15 -4181 ($ $))) |%noBranch|) (IF (|has| |t#1| (-847)) (-15 -1457 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) ((** (($ $ $) 10))) (((-283 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-284)) (T -283)) NIL (-10 -8 (-15 ** (|#1| |#1| |#1|))) -((-2497 (($ $) 6)) (-3177 (($ $) 7)) (** (($ $ $) 8))) +((-2192 (($ $) 6)) (-4118 (($ $) 7)) (** (($ $ $) 8))) (((-284) (-140)) (T -284)) -((** (*1 *1 *1 *1) (-4 *1 (-284))) (-3177 (*1 *1 *1) (-4 *1 (-284))) (-2497 (*1 *1 *1) (-4 *1 (-284)))) -(-13 (-10 -8 (-15 -2497 ($ $)) (-15 -3177 ($ $)) (-15 ** ($ $ $)))) -((-1787 (((-640 (-1149 |#1|)) (-1149 |#1|) |#1|) 35)) (-1762 ((|#2| |#2| |#1|) 39)) (-1773 ((|#2| |#2| |#1|) 41)) (-1532 ((|#2| |#2| |#1|) 40))) -(((-285 |#1| |#2|) (-10 -7 (-15 -1762 (|#2| |#2| |#1|)) (-15 -1532 (|#2| |#2| |#1|)) (-15 -1773 (|#2| |#2| |#1|)) (-15 -1787 ((-640 (-1149 |#1|)) (-1149 |#1|) |#1|))) (-363) (-1248 |#1|)) (T -285)) -((-1787 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-640 (-1149 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1149 *4)) (-4 *5 (-1248 *4)))) (-1773 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))) (-1532 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3)))) (-1762 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3))))) -(-10 -7 (-15 -1762 (|#2| |#2| |#1|)) (-15 -1532 (|#2| |#2| |#1|)) (-15 -1773 (|#2| |#2| |#1|)) (-15 -1787 ((-640 (-1149 |#1|)) (-1149 |#1|) |#1|))) -((-3858 ((|#2| $ |#1|) 6))) -(((-286 |#1| |#2|) (-140) (-1093) (-1208)) (T -286)) -((-3858 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208))))) -(-13 (-10 -8 (-15 -3858 (|t#2| $ |t#1|)))) -((-4150 ((|#3| $ |#2| |#3|) 12)) (-4085 ((|#3| $ |#2|) 10))) -(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -4150 (|#3| |#1| |#2| |#3|)) (-15 -4085 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1093) (-1208)) (T -287)) -NIL -(-10 -8 (-15 -4150 (|#3| |#1| |#2| |#3|)) (-15 -4085 (|#3| |#1| |#2|))) -((-2189 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4409)))) (-4150 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) 11)) (-3858 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) -(((-288 |#1| |#2|) (-140) (-1093) (-1208)) (T -288)) -((-3858 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-4085 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-2189 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-4150 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208))))) -(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -3858 (|t#2| $ |t#1| |t#2|)) (-15 -4085 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -2189 (|t#2| $ |t#1| |t#2|)) (-15 -4150 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +((** (*1 *1 *1 *1) (-4 *1 (-284))) (-4118 (*1 *1 *1) (-4 *1 (-284))) (-2192 (*1 *1 *1) (-4 *1 (-284)))) +(-13 (-10 -8 (-15 -2192 ($ $)) (-15 -4118 ($ $)) (-15 ** ($ $ $)))) +((-3446 (((-641 (-1150 |#1|)) (-1150 |#1|) |#1|) 35)) (-4025 ((|#2| |#2| |#1|) 39)) (-2697 ((|#2| |#2| |#1|) 41)) (-2375 ((|#2| |#2| |#1|) 40))) +(((-285 |#1| |#2|) (-10 -7 (-15 -4025 (|#2| |#2| |#1|)) (-15 -2375 (|#2| |#2| |#1|)) (-15 -2697 (|#2| |#2| |#1|)) (-15 -3446 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) (-363) (-1250 |#1|)) (T -285)) +((-3446 (*1 *2 *3 *4) (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4)))) (-2697 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-2375 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3)))) (-4025 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) +(-10 -7 (-15 -4025 (|#2| |#2| |#1|)) (-15 -2375 (|#2| |#2| |#1|)) (-15 -2697 (|#2| |#2| |#1|)) (-15 -3446 ((-641 (-1150 |#1|)) (-1150 |#1|) |#1|))) +((-4382 ((|#2| $ |#1|) 6))) +(((-286 |#1| |#2|) (-140) (-1094) (-1209)) (T -286)) +((-4382 (*1 *2 *1 *3) (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -4382 (|t#2| $ |t#1|)))) +((-2619 ((|#3| $ |#2| |#3|) 12)) (-2540 ((|#3| $ |#2|) 10))) +(((-287 |#1| |#2| |#3|) (-10 -8 (-15 -2619 (|#3| |#1| |#2| |#3|)) (-15 -2540 (|#3| |#1| |#2|))) (-288 |#2| |#3|) (-1094) (-1209)) (T -287)) +NIL +(-10 -8 (-15 -2619 (|#3| |#1| |#2| |#3|)) (-15 -2540 (|#3| |#1| |#2|))) +((-3877 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4412)))) (-2619 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) 11)) (-4382 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12))) +(((-288 |#1| |#2|) (-140) (-1094) (-1209)) (T -288)) +((-4382 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2540 (*1 *2 *1 *3) (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-3877 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2619 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209))))) +(-13 (-286 |t#1| |t#2|) (-10 -8 (-15 -4382 (|t#2| $ |t#1| |t#2|)) (-15 -2540 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4412)) (PROGN (-15 -3877 (|t#2| $ |t#1| |t#2|)) (-15 -2619 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) (((-286 |#1| |#2|) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 37)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 44)) (-2554 (($ $) 41)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-3495 (($ $ $) 35)) (-2532 (($ |#2| |#3|) 18)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2712 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1646 ((|#3| $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 19)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2641 (((-3 $ "failed") $ $) NIL)) (-4322 (((-767) $) 36)) (-3858 ((|#2| $ |#2|) 46)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 23)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3192 (((-767)) NIL T CONST)) (-2543 (((-112) $ $) NIL)) (-3790 (($) 31 T CONST)) (-3803 (($) 39 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 40))) -(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -1646 (|#3| $)) (-15 -2062 (|#2| $)) (-15 -2532 ($ |#2| |#3|)) (-15 -2641 ((-3 $ "failed") $ $)) (-15 -3230 ((-3 $ "failed") $)) (-15 -3149 ($ $)) (-15 -3858 (|#2| $ |#2|)))) (-172) (-1233 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289)) -((-3230 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1646 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1233 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2062 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2532 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1233 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2641 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3149 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3858 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1233 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) -(-13 (-307) (-10 -8 (-15 -1646 (|#3| $)) (-15 -2062 (|#2| $)) (-15 -2532 ($ |#2| |#3|)) (-15 -2641 ((-3 $ "failed") $ $)) (-15 -3230 ((-3 $ "failed") $)) (-15 -3149 ($ $)) (-15 -3858 (|#2| $ |#2|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 37)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 44)) (-1948 (($ $) 41)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-1373 (($ $ $) 35)) (-1699 (($ |#2| |#3|) 18)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-3840 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1983 ((|#3| $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 19)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2279 (((-3 $ "failed") $ $) NIL)) (-4061 (((-768) $) 36)) (-4382 ((|#2| $ |#2|) 46)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 23)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3270 (((-768)) NIL T CONST)) (-3360 (((-112) $ $) NIL)) (-4311 (($) 31 T CONST)) (-4321 (($) 39 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 40))) +(((-289 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-307) (-10 -8 (-15 -1983 (|#3| $)) (-15 -3742 (|#2| $)) (-15 -1699 ($ |#2| |#3|)) (-15 -2279 ((-3 $ "failed") $ $)) (-15 -3951 ((-3 $ "failed") $)) (-15 -4373 ($ $)) (-15 -4382 (|#2| $ |#2|)))) (-172) (-1235 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -289)) +((-3951 (*1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1983 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3742 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1699 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2279 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4373 (*1 *1 *1) (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4382 (*1 *2 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))) +(-13 (-307) (-10 -8 (-15 -1983 (|#3| $)) (-15 -3742 (|#2| $)) (-15 -1699 ($ |#2| |#3|)) (-15 -2279 ((-3 $ "failed") $ $)) (-15 -3951 ((-3 $ "failed") $)) (-15 -4373 ($ $)) (-15 -4382 (|#2| $ |#2|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-290) (-140)) (T -290)) NIL -(-13 (-1045) (-111 $ $) (-10 -7 (-6 -4401))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-1834 (($ (-1169) (-1169) (-1097) $) 17)) (-1809 (($ (-1169) (-640 (-961)) $) 22)) (-1858 (((-640 (-1078)) $) 10)) (-1845 (((-3 (-1097) "failed") (-1169) (-1169) $) 16)) (-1821 (((-3 (-640 (-961)) "failed") (-1169) $) 21)) (-2749 (($) 7)) (-2771 (($) 23)) (-2062 (((-858) $) 27)) (-1798 (($) 24))) -(((-291) (-13 (-610 (-858)) (-10 -8 (-15 -2749 ($)) (-15 -1858 ((-640 (-1078)) $)) (-15 -1845 ((-3 (-1097) "failed") (-1169) (-1169) $)) (-15 -1834 ($ (-1169) (-1169) (-1097) $)) (-15 -1821 ((-3 (-640 (-961)) "failed") (-1169) $)) (-15 -1809 ($ (-1169) (-640 (-961)) $)) (-15 -2771 ($)) (-15 -1798 ($))))) (T -291)) -((-2749 (*1 *1) (-5 *1 (-291))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-640 (-1078))) (-5 *1 (-291)))) (-1845 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-291)))) (-1834 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-291)))) (-1821 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-640 (-961))) (-5 *1 (-291)))) (-1809 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-291)))) (-2771 (*1 *1) (-5 *1 (-291))) (-1798 (*1 *1) (-5 *1 (-291)))) -(-13 (-610 (-858)) (-10 -8 (-15 -2749 ($)) (-15 -1858 ((-640 (-1078)) $)) (-15 -1845 ((-3 (-1097) "failed") (-1169) (-1169) $)) (-15 -1834 ($ (-1169) (-1169) (-1097) $)) (-15 -1821 ((-3 (-640 (-961)) "failed") (-1169) $)) (-15 -1809 ($ (-1169) (-640 (-961)) $)) (-15 -2771 ($)) (-15 -1798 ($)))) -((-1915 (((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))) 105)) (-1901 (((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|)))) 100) (((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767)) 41)) (-1928 (((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))) 102)) (-1886 (((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|)))) 77)) (-1872 (((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|)))) 76)) (-3015 (((-948 |#1|) (-684 (-407 (-948 |#1|)))) 57) (((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169)) 58))) -(((-292 |#1|) (-10 -7 (-15 -3015 ((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169))) (-15 -3015 ((-948 |#1|) (-684 (-407 (-948 |#1|))))) (-15 -1872 ((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|))))) (-15 -1886 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))))) (-15 -1901 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767))) (-15 -1901 ((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|))))) (-15 -1915 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|))))) (-15 -1928 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))))) (-452)) (T -292)) -((-1928 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-640 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4)))))) (-1915 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-640 (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4)))))) (-1901 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 *4)))) (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5)))))) (-1901 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1158 (-1169) (-948 *6)))) (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-684 (-407 (-948 *6)))))) (-1886 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5)))))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-4 *4 (-452)) (-5 *2 (-640 (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4))))) (-5 *1 (-292 *4)))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-5 *2 (-948 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-948 *5)))) (-5 *4 (-1169)) (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))) -(-10 -7 (-15 -3015 ((-948 |#1|) (-684 (-407 (-948 |#1|))) (-1169))) (-15 -3015 ((-948 |#1|) (-684 (-407 (-948 |#1|))))) (-15 -1872 ((-640 (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (-684 (-407 (-948 |#1|))))) (-15 -1886 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))))) (-15 -1901 ((-640 (-684 (-407 (-948 |#1|)))) (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|))) (-684 (-407 (-948 |#1|))) (-767) (-767))) (-15 -1901 ((-640 (-684 (-407 (-948 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|)))))) (-684 (-407 (-948 |#1|))))) (-15 -1915 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |geneigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|))))) (-15 -1928 ((-640 (-2 (|:| |eigval| (-3 (-407 (-948 |#1|)) (-1158 (-1169) (-948 |#1|)))) (|:| |eigmult| (-767)) (|:| |eigvec| (-640 (-684 (-407 (-948 |#1|))))))) (-684 (-407 (-948 |#1|)))))) -((-2751 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14))) -(((-293 |#1| |#2|) (-10 -7 (-15 -2751 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1208) (-1208)) (T -293)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))) -(-10 -7 (-15 -2751 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2741 (((-112) $) NIL (|has| |#1| (-21)))) (-1999 (($ $) 12)) (-1482 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2624 (($ $ $) 95 (|has| |#1| (-302)))) (-3684 (($) NIL (-2811 (|has| |#1| (-21)) (|has| |#1| (-722))) CONST)) (-1974 (($ $) 51 (|has| |#1| (-21)))) (-1952 (((-3 $ "failed") $) 62 (|has| |#1| (-722)))) (-4156 ((|#1| $) 11)) (-3230 (((-3 $ "failed") $) 60 (|has| |#1| (-722)))) (-2712 (((-112) $) NIL (|has| |#1| (-722)))) (-2751 (($ (-1 |#1| |#1|) $) 14)) (-4144 ((|#1| $) 10)) (-1987 (($ $) 50 (|has| |#1| (-21)))) (-1963 (((-3 $ "failed") $) 61 (|has| |#1| (-722)))) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3149 (($ $) 64 (-2811 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1940 (((-640 $) $) 85 (|has| |#1| (-555)))) (-1497 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-1169) |#1|) 17 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 21 (|has| |#1| (-514 (-1169) |#1|)))) (-2320 (($ |#1| |#1|) 9)) (-1575 (((-134)) 90 (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) 87 (|has| |#1| (-896 (-1169))))) (-1382 (($ $ $) NIL (|has| |#1| (-473)))) (-2879 (($ $ $) NIL (|has| |#1| (-473)))) (-2062 (($ (-563)) NIL (|has| |#1| (-1045))) (((-112) $) 37 (|has| |#1| (-1093))) (((-858) $) 36 (|has| |#1| (-1093)))) (-3192 (((-767)) 67 (|has| |#1| (-1045)) CONST)) (-3790 (($) 47 (|has| |#1| (-21)) CONST)) (-3803 (($) 57 (|has| |#1| (-722)) CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169))))) (-2943 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1093)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-2811 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3039 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-3027 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-563)) NIL (|has| |#1| (-473))) (($ $ (-767)) NIL (|has| |#1| (-722))) (($ $ (-917)) NIL (|has| |#1| (-1105)))) (* (($ $ |#1|) 55 (|has| |#1| (-1105))) (($ |#1| $) 54 (|has| |#1| (-1105))) (($ $ $) 53 (|has| |#1| (-1105))) (($ (-563) $) 70 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-25))))) -(((-294 |#1|) (-13 (-1208) (-10 -8 (-15 -2943 ($ |#1| |#1|)) (-15 -2320 ($ |#1| |#1|)) (-15 -1999 ($ $)) (-15 -4144 (|#1| $)) (-15 -4156 (|#1| $)) (-15 -2751 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1169) |#1|)) (-6 (-514 (-1169) |#1|)) |%noBranch|) (IF (|has| |#1| (-1093)) (PROGN (-6 (-1093)) (-6 (-610 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -1497 ($ $ $)) (-15 -1497 ($ $ (-640 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3027 ($ |#1| $)) (-15 -3027 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1987 ($ $)) (-15 -1974 ($ $)) (-15 -3039 ($ |#1| $)) (-15 -3039 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -1963 ((-3 $ "failed") $)) (-15 -1952 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -1963 ((-3 $ "failed") $)) (-15 -1952 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -1940 ((-640 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1264 |#1|)) (-15 -3050 ($ $ $)) (-15 -3149 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2624 ($ $ $)) |%noBranch|))) (-1208)) (T -294)) -((-2943 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2320 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-1999 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-4144 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-4156 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) (-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-294 *3)))) (-1497 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)) (-5 *1 (-294 *2)))) (-1497 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)) (-5 *1 (-294 *3)))) (-3027 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) (-3027 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) (-1987 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-1974 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-3039 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-3039 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) (-1963 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208)))) (-1952 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208)))) (-1940 (*1 *2 *1) (-12 (-5 *2 (-640 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-555)) (-4 *3 (-1208)))) (-2624 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1208)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) (-3050 (*1 *1 *1 *1) (-2811 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208))))) (-3149 (*1 *1 *1) (-2811 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208)))))) -(-13 (-1208) (-10 -8 (-15 -2943 ($ |#1| |#1|)) (-15 -2320 ($ |#1| |#1|)) (-15 -1999 ($ $)) (-15 -4144 (|#1| $)) (-15 -4156 (|#1| $)) (-15 -2751 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1169) |#1|)) (-6 (-514 (-1169) |#1|)) |%noBranch|) (IF (|has| |#1| (-1093)) (PROGN (-6 (-1093)) (-6 (-610 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -1497 ($ $ $)) (-15 -1497 ($ $ (-640 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -3027 ($ |#1| $)) (-15 -3027 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1987 ($ $)) (-15 -1974 ($ $)) (-15 -3039 ($ |#1| $)) (-15 -3039 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1105)) (PROGN (-6 (-1105)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-722)) (PROGN (-6 (-722)) (-15 -1963 ((-3 $ "failed") $)) (-15 -1952 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -1963 ((-3 $ "failed") $)) (-15 -1952 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|) (IF (|has| |#1| (-555)) (-15 -1940 ((-640 $) $)) |%noBranch|) (IF (|has| |#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1264 |#1|)) (-15 -3050 ($ $ $)) (-15 -3149 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -2624 ($ $ $)) |%noBranch|))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1435 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#2| $ |#1| |#2|) NIL)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 |#2| "failed") |#1| $) NIL)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) NIL)) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) NIL)) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 ((|#1| $) NIL (|has| |#1| (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 ((|#1| $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2706 (((-640 |#1|) $) NIL)) (-3435 (((-112) |#1| $) NIL)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3404 (((-640 |#1|) $) NIL)) (-3417 (((-112) |#1| $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1884 ((|#2| $) NIL (|has| |#1| (-846)))) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-295 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1093) (-1093)) (T -295)) -NIL -(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) -((-3452 (((-312) (-1151) (-640 (-1151))) 17) (((-312) (-1151) (-1151)) 16) (((-312) (-640 (-1151))) 15) (((-312) (-1151)) 14))) -(((-296) (-10 -7 (-15 -3452 ((-312) (-1151))) (-15 -3452 ((-312) (-640 (-1151)))) (-15 -3452 ((-312) (-1151) (-1151))) (-15 -3452 ((-312) (-1151) (-640 (-1151)))))) (T -296)) -((-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1151))) (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) (-3452 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-312)) (-5 *1 (-296)))) (-3452 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296))))) -(-10 -7 (-15 -3452 ((-312) (-1151))) (-15 -3452 ((-312) (-640 (-1151)))) (-15 -3452 ((-312) (-1151) (-1151))) (-15 -3452 ((-312) (-1151) (-640 (-1151))))) -((-2751 ((|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|)) 18))) -(((-297 |#1| |#2|) (-10 -7 (-15 -2751 (|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|)))) (-302) (-1208)) (T -297)) -((-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1151)) (-5 *5 (-609 *6)) (-4 *6 (-302)) (-4 *2 (-1208)) (-5 *1 (-297 *6 *2))))) -(-10 -7 (-15 -2751 (|#2| (-1 |#2| |#1|) (-1151) (-609 |#1|)))) -((-2751 ((|#2| (-1 |#2| |#1|) (-609 |#1|)) 17))) -(((-298 |#1| |#2|) (-10 -7 (-15 -2751 (|#2| (-1 |#2| |#1|) (-609 |#1|)))) (-302) (-302)) (T -298)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-609 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2))))) -(-10 -7 (-15 -2751 (|#2| (-1 |#2| |#1|) (-609 |#1|)))) -((-2927 (((-112) (-225)) 12))) -(((-299 |#1| |#2|) (-10 -7 (-15 -2927 ((-112) (-225)))) (-225) (-225)) (T -299)) -((-2927 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-10 -7 (-15 -2927 ((-112) (-225)))) -((-3933 (((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225)))) 118)) (-3942 (((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225)))) 135) (((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225)))) 72)) (-4167 (((-640 (-1151)) (-1149 (-225))) NIL)) (-3923 (((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225)))) 69)) (-3951 (((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225)))) 59)) (-4157 (((-640 (-1151)) (-640 (-225))) NIL)) (-4176 (((-225) (-1087 (-839 (-225)))) 29)) (-4186 (((-225) (-1087 (-839 (-225)))) 30)) (-3913 (((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-4133 (((-1151) (-225)) NIL))) -(((-300) (-10 -7 (-15 -4176 ((-225) (-1087 (-839 (-225))))) (-15 -4186 ((-225) (-1087 (-839 (-225))))) (-15 -3913 ((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3923 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -3933 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -3942 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -3942 ((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -3951 ((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225))))) (-15 -4133 ((-1151) (-225))) (-15 -4157 ((-640 (-1151)) (-640 (-225)))) (-15 -4167 ((-640 (-1151)) (-1149 (-225)))))) (T -300)) -((-4167 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-300)))) (-3951 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300)))) (-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-3942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-3933 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) (-3923 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))) -(-10 -7 (-15 -4176 ((-225) (-1087 (-839 (-225))))) (-15 -4186 ((-225) (-1087 (-839 (-225))))) (-15 -3913 ((-112) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3923 ((-640 (-225)) (-316 (-225)) (-1169) (-1087 (-839 (-225))))) (-15 -3933 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -3942 ((-1149 (-225)) (-316 (-225)) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -3942 ((-1149 (-225)) (-1257 (-316 (-225))) (-640 (-1169)) (-1087 (-839 (-225))))) (-15 -3951 ((-640 (-225)) (-948 (-407 (-563))) (-1169) (-1087 (-839 (-225))))) (-15 -4133 ((-1151) (-225))) (-15 -4157 ((-640 (-1151)) (-640 (-225)))) (-15 -4167 ((-640 (-1151)) (-1149 (-225))))) -((-1926 (((-640 (-609 $)) $) 31)) (-2624 (($ $ (-294 $)) 82) (($ $ (-640 (-294 $))) 136) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-2671 (((-3 (-609 $) "failed") $) 124)) (-2589 (((-609 $) $) 123)) (-1383 (($ $) 19) (($ (-640 $)) 57)) (-2034 (((-640 (-114)) $) 39)) (-3674 (((-114) (-114)) 92)) (-4107 (((-112) $) 147)) (-2751 (($ (-1 $ $) (-609 $)) 90)) (-3895 (((-3 (-609 $) "failed") $) 98)) (-2696 (($ (-114) $) 62) (($ (-114) (-640 $)) 109)) (-1854 (((-112) $ (-114)) 129) (((-112) $ (-1169)) 128)) (-1524 (((-767) $) 48)) (-2023 (((-112) $ $) 60) (((-112) $ (-1169)) 52)) (-4118 (((-112) $) 145)) (-1497 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) 134) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 85) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) 70) (($ $ (-1169) (-1 $ $)) 76) (($ $ (-640 (-114)) (-640 (-1 $ $))) 84) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 86) (($ $ (-114) (-1 $ (-640 $))) 72) (($ $ (-114) (-1 $ $)) 78)) (-3858 (($ (-114) $) 63) (($ (-114) $ $) 64) (($ (-114) $ $ $) 65) (($ (-114) $ $ $ $) 66) (($ (-114) (-640 $)) 120)) (-3904 (($ $) 54) (($ $ $) 132)) (-3548 (($ $) 17) (($ (-640 $)) 56)) (-3631 (((-112) (-114)) 23))) -(((-301 |#1|) (-10 -8 (-15 -4107 ((-112) |#1|)) (-15 -4118 ((-112) |#1|)) (-15 -1497 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1497 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -2023 ((-112) |#1| (-1169))) (-15 -2023 ((-112) |#1| |#1|)) (-15 -2751 (|#1| (-1 |#1| |#1|) (-609 |#1|))) (-15 -2696 (|#1| (-114) (-640 |#1|))) (-15 -2696 (|#1| (-114) |#1|)) (-15 -1854 ((-112) |#1| (-1169))) (-15 -1854 ((-112) |#1| (-114))) (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -2034 ((-640 (-114)) |#1|)) (-15 -1926 ((-640 (-609 |#1|)) |#1|)) (-15 -3895 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -1524 ((-767) |#1|)) (-15 -3904 (|#1| |#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -1383 (|#1| (-640 |#1|))) (-15 -1383 (|#1| |#1|)) (-15 -3548 (|#1| (-640 |#1|))) (-15 -3548 (|#1| |#1|)) (-15 -2624 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -2624 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2624 (|#1| |#1| (-294 |#1|))) (-15 -3858 (|#1| (-114) (-640 |#1|))) (-15 -3858 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1497 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -2671 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2589 ((-609 |#1|) |#1|))) (-302)) (T -301)) -((-3674 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))) -(-10 -8 (-15 -4107 ((-112) |#1|)) (-15 -4118 ((-112) |#1|)) (-15 -1497 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1497 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -2023 ((-112) |#1| (-1169))) (-15 -2023 ((-112) |#1| |#1|)) (-15 -2751 (|#1| (-1 |#1| |#1|) (-609 |#1|))) (-15 -2696 (|#1| (-114) (-640 |#1|))) (-15 -2696 (|#1| (-114) |#1|)) (-15 -1854 ((-112) |#1| (-1169))) (-15 -1854 ((-112) |#1| (-114))) (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -2034 ((-640 (-114)) |#1|)) (-15 -1926 ((-640 (-609 |#1|)) |#1|)) (-15 -3895 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -1524 ((-767) |#1|)) (-15 -3904 (|#1| |#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -1383 (|#1| (-640 |#1|))) (-15 -1383 (|#1| |#1|)) (-15 -3548 (|#1| (-640 |#1|))) (-15 -3548 (|#1| |#1|)) (-15 -2624 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -2624 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2624 (|#1| |#1| (-294 |#1|))) (-15 -3858 (|#1| (-114) (-640 |#1|))) (-15 -3858 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1497 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -2671 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2589 ((-609 |#1|) |#1|))) -((-2049 (((-112) $ $) 7)) (-1926 (((-640 (-609 $)) $) 44)) (-2624 (($ $ (-294 $)) 56) (($ $ (-640 (-294 $))) 55) (($ $ (-640 (-609 $)) (-640 $)) 54)) (-2671 (((-3 (-609 $) "failed") $) 69)) (-2589 (((-609 $) $) 70)) (-1383 (($ $) 51) (($ (-640 $)) 50)) (-2034 (((-640 (-114)) $) 43)) (-3674 (((-114) (-114)) 42)) (-4107 (((-112) $) 22 (|has| $ (-1034 (-563))))) (-2011 (((-1165 $) (-609 $)) 25 (|has| $ (-1045)))) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-2751 (($ (-1 $ $) (-609 $)) 36)) (-3895 (((-3 (-609 $) "failed") $) 46)) (-1938 (((-1151) $) 9)) (-2009 (((-640 (-609 $)) $) 45)) (-2696 (($ (-114) $) 38) (($ (-114) (-640 $)) 37)) (-1854 (((-112) $ (-114)) 40) (((-112) $ (-1169)) 39)) (-1524 (((-767) $) 47)) (-3249 (((-1113) $) 10)) (-2023 (((-112) $ $) 35) (((-112) $ (-1169)) 34)) (-4118 (((-112) $) 23 (|has| $ (-1034 (-563))))) (-1497 (($ $ (-609 $) $) 67) (($ $ (-640 (-609 $)) (-640 $)) 66) (($ $ (-640 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-640 $) (-640 $)) 62) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 33) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 32) (($ $ (-1169) (-1 $ (-640 $))) 31) (($ $ (-1169) (-1 $ $)) 30) (($ $ (-640 (-114)) (-640 (-1 $ $))) 29) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 28) (($ $ (-114) (-1 $ (-640 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-3858 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-640 $)) 57)) (-3904 (($ $) 49) (($ $ $) 48)) (-2713 (($ $) 24 (|has| $ (-1045)))) (-2062 (((-858) $) 11) (($ (-609 $)) 68)) (-3548 (($ $) 53) (($ (-640 $)) 52)) (-3631 (((-112) (-114)) 41)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18))) +(-13 (-1046) (-111 $ $) (-10 -7 (-6 -4404))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2867 (($ (-1170) (-1170) (-1098) $) 19)) (-3366 (($ (-1170) (-641 (-962)) $) 23)) (-3380 (((-641 (-1079)) $) 10)) (-3687 (($) 25)) (-1575 (((-687 (-1098)) (-1170) (-1170) $) 18)) (-3064 (((-641 (-962)) (-1170) $) 22)) (-3434 (($) 7)) (-1767 (($) 24)) (-3742 (((-859) $) 29)) (-1601 (($) 26))) +(((-291) (-13 (-611 (-859)) (-10 -8 (-15 -3434 ($)) (-15 -3380 ((-641 (-1079)) $)) (-15 -1575 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -2867 ($ (-1170) (-1170) (-1098) $)) (-15 -3064 ((-641 (-962)) (-1170) $)) (-15 -3366 ($ (-1170) (-641 (-962)) $)) (-15 -1767 ($)) (-15 -3687 ($)) (-15 -1601 ($))))) (T -291)) +((-3434 (*1 *1) (-5 *1 (-291))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291)))) (-1575 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291)))) (-2867 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291)))) (-3064 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-962))) (-5 *1 (-291)))) (-3366 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-291)))) (-1767 (*1 *1) (-5 *1 (-291))) (-3687 (*1 *1) (-5 *1 (-291))) (-1601 (*1 *1) (-5 *1 (-291)))) +(-13 (-611 (-859)) (-10 -8 (-15 -3434 ($)) (-15 -3380 ((-641 (-1079)) $)) (-15 -1575 ((-687 (-1098)) (-1170) (-1170) $)) (-15 -2867 ($ (-1170) (-1170) (-1098) $)) (-15 -3064 ((-641 (-962)) (-1170) $)) (-15 -3366 ($ (-1170) (-641 (-962)) $)) (-15 -1767 ($)) (-15 -3687 ($)) (-15 -1601 ($)))) +((-1583 (((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))) 105)) (-2736 (((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|)))) 100) (((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768)) 41)) (-3567 (((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))) 102)) (-2773 (((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|)))) 77)) (-2076 (((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|)))) 76)) (-2230 (((-949 |#1|) (-685 (-407 (-949 |#1|)))) 57) (((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170)) 58))) +(((-292 |#1|) (-10 -7 (-15 -2230 ((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170))) (-15 -2230 ((-949 |#1|) (-685 (-407 (-949 |#1|))))) (-15 -2076 ((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|))))) (-15 -2773 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))))) (-15 -2736 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768))) (-15 -2736 ((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|))))) (-15 -1583 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))) (-15 -3567 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))))) (-452)) (T -292)) +((-3567 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))) (-1583 (*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 (-641 (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 *4)))))))) (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4)))))) (-2736 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 *4)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))) (-2736 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-407 (-949 *6)) (-1159 (-1170) (-949 *6)))) (-5 *5 (-768)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *6))))) (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-949 *6)))))) (-2773 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5)))))) (-2076 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-4 *4 (-452)) (-5 *2 (-641 (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))) (-5 *1 (-292 *4)))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-5 *2 (-949 *4)) (-5 *1 (-292 *4)) (-4 *4 (-452)))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-949 *5)))) (-5 *4 (-1170)) (-5 *2 (-949 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452))))) +(-10 -7 (-15 -2230 ((-949 |#1|) (-685 (-407 (-949 |#1|))) (-1170))) (-15 -2230 ((-949 |#1|) (-685 (-407 (-949 |#1|))))) (-15 -2076 ((-641 (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (-685 (-407 (-949 |#1|))))) (-15 -2773 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))))) (-15 -2736 ((-641 (-685 (-407 (-949 |#1|)))) (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|))) (-685 (-407 (-949 |#1|))) (-768) (-768))) (-15 -2736 ((-641 (-685 (-407 (-949 |#1|)))) (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|)))))) (-685 (-407 (-949 |#1|))))) (-15 -1583 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |geneigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|))))) (-15 -3567 ((-641 (-2 (|:| |eigval| (-3 (-407 (-949 |#1|)) (-1159 (-1170) (-949 |#1|)))) (|:| |eigmult| (-768)) (|:| |eigvec| (-641 (-685 (-407 (-949 |#1|))))))) (-685 (-407 (-949 |#1|)))))) +((-2187 (((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)) 14))) +(((-293 |#1| |#2|) (-10 -7 (-15 -2187 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) (-1209) (-1209)) (T -293)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6))))) +(-10 -7 (-15 -2187 ((-294 |#2|) (-1 |#2| |#1|) (-294 |#1|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-4173 (((-112) $) NIL (|has| |#1| (-21)))) (-3790 (($ $) 12)) (-3239 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3148 (($ $ $) 95 (|has| |#1| (-302)))) (-2818 (($) NIL (-4030 (|has| |#1| (-21)) (|has| |#1| (-723))) CONST)) (-3096 (($ $) 51 (|has| |#1| (-21)))) (-2621 (((-3 $ "failed") $) 62 (|has| |#1| (-723)))) (-3076 ((|#1| $) 11)) (-3951 (((-3 $ "failed") $) 60 (|has| |#1| (-723)))) (-3840 (((-112) $) NIL (|has| |#1| (-723)))) (-2187 (($ (-1 |#1| |#1|) $) 14)) (-3065 ((|#1| $) 10)) (-1861 (($ $) 50 (|has| |#1| (-21)))) (-4301 (((-3 $ "failed") $) 61 (|has| |#1| (-723)))) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4373 (($ $) 64 (-4030 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4379 (((-641 $) $) 85 (|has| |#1| (-556)))) (-2416 (($ $ $) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 $)) 28 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 21 (|has| |#1| (-514 (-1170) |#1|)))) (-2372 (($ |#1| |#1|) 9)) (-3603 (((-134)) 90 (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) 87 (|has| |#1| (-897 (-1170))))) (-2766 (($ $ $) NIL (|has| |#1| (-473)))) (-3671 (($ $ $) NIL (|has| |#1| (-473)))) (-3742 (($ (-564)) NIL (|has| |#1| (-1046))) (((-112) $) 37 (|has| |#1| (-1094))) (((-859) $) 36 (|has| |#1| (-1094)))) (-3270 (((-768)) 67 (|has| |#1| (-1046)) CONST)) (-4311 (($) 47 (|has| |#1| (-21)) CONST)) (-4321 (($) 57 (|has| |#1| (-723)) CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170))))) (-1705 (($ |#1| |#1|) 8) (((-112) $ $) 32 (|has| |#1| (-1094)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 92 (-4030 (|has| |#1| (-363)) (|has| |#1| (-473))))) (-1790 (($ |#1| $) 45 (|has| |#1| (-21))) (($ $ |#1|) 46 (|has| |#1| (-21))) (($ $ $) 44 (|has| |#1| (-21))) (($ $) 43 (|has| |#1| (-21)))) (-1780 (($ |#1| $) 40 (|has| |#1| (-25))) (($ $ |#1|) 41 (|has| |#1| (-25))) (($ $ $) 39 (|has| |#1| (-25)))) (** (($ $ (-564)) NIL (|has| |#1| (-473))) (($ $ (-768)) NIL (|has| |#1| (-723))) (($ $ (-918)) NIL (|has| |#1| (-1106)))) (* (($ $ |#1|) 55 (|has| |#1| (-1106))) (($ |#1| $) 54 (|has| |#1| (-1106))) (($ $ $) 53 (|has| |#1| (-1106))) (($ (-564) $) 70 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-25))))) +(((-294 |#1|) (-13 (-1209) (-10 -8 (-15 -1705 ($ |#1| |#1|)) (-15 -2372 ($ |#1| |#1|)) (-15 -3790 ($ $)) (-15 -3065 (|#1| $)) (-15 -3076 (|#1| $)) (-15 -2187 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -2416 ($ $ $)) (-15 -2416 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1780 ($ |#1| $)) (-15 -1780 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1861 ($ $)) (-15 -3096 ($ $)) (-15 -1790 ($ |#1| $)) (-15 -1790 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-723)) (PROGN (-6 (-723)) (-15 -4301 ((-3 $ "failed") $)) (-15 -2621 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -4301 ((-3 $ "failed") $)) (-15 -2621 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -4379 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -1799 ($ $ $)) (-15 -4373 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -3148 ($ $ $)) |%noBranch|))) (-1209)) (T -294)) +((-1705 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2372 (*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3790 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3065 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-3076 (*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) (-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-2416 (*1 *1 *1 *1) (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) (-5 *1 (-294 *2)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) (-1780 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-1780 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) (-1861 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-3096 (*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1790 (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-1790 (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) (-4301 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))) (-2621 (*1 *1 *1) (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209)))) (-4379 (*1 *2 *1) (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) (-4 *3 (-1209)))) (-3148 (*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) (-1799 (*1 *1 *1 *1) (-4030 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) (-4373 (*1 *1 *1) (-4030 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209)))))) +(-13 (-1209) (-10 -8 (-15 -1705 ($ |#1| |#1|)) (-15 -2372 ($ |#1| |#1|)) (-15 -3790 ($ $)) (-15 -3065 (|#1| $)) (-15 -3076 (|#1| $)) (-15 -2187 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-514 (-1170) |#1|)) (-6 (-514 (-1170) |#1|)) |%noBranch|) (IF (|has| |#1| (-1094)) (PROGN (-6 (-1094)) (-6 (-611 (-112))) (IF (|has| |#1| (-309 |#1|)) (PROGN (-15 -2416 ($ $ $)) (-15 -2416 ($ $ (-641 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -1780 ($ |#1| $)) (-15 -1780 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1861 ($ $)) (-15 -3096 ($ $)) (-15 -1790 ($ |#1| $)) (-15 -1790 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1106)) (PROGN (-6 (-1106)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-723)) (PROGN (-6 (-723)) (-15 -4301 ((-3 $ "failed") $)) (-15 -2621 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-473)) (PROGN (-6 (-473)) (-15 -4301 ((-3 $ "failed") $)) (-15 -2621 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|) (IF (|has| |#1| (-556)) (-15 -4379 ((-641 $) $)) |%noBranch|) (IF (|has| |#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-1266 |#1|)) (-15 -1799 ($ $ $)) (-15 -4373 ($ $))) |%noBranch|) (IF (|has| |#1| (-302)) (-15 -3148 ($ $ $)) |%noBranch|))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-2645 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#2| $ |#1| |#2|) NIL)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 |#2| "failed") |#1| $) NIL)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) NIL)) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) NIL)) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 ((|#1| $) NIL (|has| |#1| (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 ((|#1| $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1823 (((-641 |#1|) $) NIL)) (-2219 (((-112) |#1| $) NIL)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2312 (((-641 |#1|) $) NIL)) (-4062 (((-112) |#1| $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1966 ((|#2| $) NIL (|has| |#1| (-847)))) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-295 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) (-1094) (-1094)) (T -295)) +NIL +(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) +((-1912 (((-312) (-1152) (-641 (-1152))) 17) (((-312) (-1152) (-1152)) 16) (((-312) (-641 (-1152))) 15) (((-312) (-1152)) 14))) +(((-296) (-10 -7 (-15 -1912 ((-312) (-1152))) (-15 -1912 ((-312) (-641 (-1152)))) (-15 -1912 ((-312) (-1152) (-1152))) (-15 -1912 ((-312) (-1152) (-641 (-1152)))))) (T -296)) +((-1912 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1912 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) (-1912 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296))))) +(-10 -7 (-15 -1912 ((-312) (-1152))) (-15 -1912 ((-312) (-641 (-1152)))) (-15 -1912 ((-312) (-1152) (-1152))) (-15 -1912 ((-312) (-1152) (-641 (-1152))))) +((-2187 ((|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)) 18))) +(((-297 |#1| |#2|) (-10 -7 (-15 -2187 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) (-302) (-1209)) (T -297)) +((-2187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1152)) (-5 *5 (-610 *6)) (-4 *6 (-302)) (-4 *2 (-1209)) (-5 *1 (-297 *6 *2))))) +(-10 -7 (-15 -2187 (|#2| (-1 |#2| |#1|) (-1152) (-610 |#1|)))) +((-2187 ((|#2| (-1 |#2| |#1|) (-610 |#1|)) 17))) +(((-298 |#1| |#2|) (-10 -7 (-15 -2187 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) (-302) (-302)) (T -298)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2))))) +(-10 -7 (-15 -2187 (|#2| (-1 |#2| |#1|) (-610 |#1|)))) +((-1304 (((-112) (-225)) 12))) +(((-299 |#1| |#2|) (-10 -7 (-15 -1304 ((-112) (-225)))) (-225) (-225)) (T -299)) +((-1304 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-10 -7 (-15 -1304 ((-112) (-225)))) +((-2690 (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225)))) 118)) (-2324 (((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225)))) 135) (((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225)))) 72)) (-3335 (((-641 (-1152)) (-1150 (-225))) NIL)) (-4285 (((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225)))) 69)) (-4007 (((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225)))) 59)) (-4314 (((-641 (-1152)) (-641 (-225))) NIL)) (-3726 (((-225) (-1088 (-840 (-225)))) 29)) (-3403 (((-225) (-1088 (-840 (-225)))) 30)) (-1644 (((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 64)) (-3260 (((-1152) (-225)) NIL))) +(((-300) (-10 -7 (-15 -3726 ((-225) (-1088 (-840 (-225))))) (-15 -3403 ((-225) (-1088 (-840 (-225))))) (-15 -1644 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4285 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -2690 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2324 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2324 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -4007 ((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225))))) (-15 -3260 ((-1152) (-225))) (-15 -4314 ((-641 (-1152)) (-641 (-225)))) (-15 -3335 ((-641 (-1152)) (-1150 (-225)))))) (T -300)) +((-3335 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) (-4007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-2324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-2324 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-2690 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) (-4285 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300)))) (-1644 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-112)) (-5 *1 (-300)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300))))) +(-10 -7 (-15 -3726 ((-225) (-1088 (-840 (-225))))) (-15 -3403 ((-225) (-1088 (-840 (-225))))) (-15 -1644 ((-112) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -4285 ((-641 (-225)) (-316 (-225)) (-1170) (-1088 (-840 (-225))))) (-15 -2690 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2324 ((-1150 (-225)) (-316 (-225)) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -2324 ((-1150 (-225)) (-1259 (-316 (-225))) (-641 (-1170)) (-1088 (-840 (-225))))) (-15 -4007 ((-641 (-225)) (-949 (-407 (-564))) (-1170) (-1088 (-840 (-225))))) (-15 -3260 ((-1152) (-225))) (-15 -4314 ((-641 (-1152)) (-641 (-225)))) (-15 -3335 ((-641 (-1152)) (-1150 (-225))))) +((-2084 (((-641 (-610 $)) $) 31)) (-3148 (($ $ (-294 $)) 82) (($ $ (-641 (-294 $))) 136) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2111 (((-3 (-610 $) "failed") $) 124)) (-2239 (((-610 $) $) 123)) (-2211 (($ $) 19) (($ (-641 $)) 57)) (-3423 (((-641 (-114)) $) 39)) (-4058 (((-114) (-114)) 92)) (-1801 (((-112) $) 147)) (-2187 (($ (-1 $ $) (-610 $)) 90)) (-4242 (((-3 (-610 $) "failed") $) 98)) (-1697 (($ (-114) $) 62) (($ (-114) (-641 $)) 109)) (-4211 (((-112) $ (-114)) 129) (((-112) $ (-1170)) 128)) (-3724 (((-768) $) 48)) (-3755 (((-112) $ $) 60) (((-112) $ (-1170)) 52)) (-1497 (((-112) $) 145)) (-2416 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) 134) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 85) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) 70) (($ $ (-1170) (-1 $ $)) 76) (($ $ (-641 (-114)) (-641 (-1 $ $))) 84) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 86) (($ $ (-114) (-1 $ (-641 $))) 72) (($ $ (-114) (-1 $ $)) 78)) (-4382 (($ (-114) $) 63) (($ (-114) $ $) 64) (($ (-114) $ $ $) 65) (($ (-114) $ $ $ $) 66) (($ (-114) (-641 $)) 120)) (-1928 (($ $) 54) (($ $ $) 132)) (-1523 (($ $) 17) (($ (-641 $)) 56)) (-2095 (((-112) (-114)) 23))) +(((-301 |#1|) (-10 -8 (-15 -1801 ((-112) |#1|)) (-15 -1497 ((-112) |#1|)) (-15 -2416 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2416 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -3755 ((-112) |#1| (-1170))) (-15 -3755 ((-112) |#1| |#1|)) (-15 -2187 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -1697 (|#1| (-114) (-641 |#1|))) (-15 -1697 (|#1| (-114) |#1|)) (-15 -4211 ((-112) |#1| (-1170))) (-15 -4211 ((-112) |#1| (-114))) (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -3423 ((-641 (-114)) |#1|)) (-15 -2084 ((-641 (-610 |#1|)) |#1|)) (-15 -4242 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3724 ((-768) |#1|)) (-15 -1928 (|#1| |#1| |#1|)) (-15 -1928 (|#1| |#1|)) (-15 -2211 (|#1| (-641 |#1|))) (-15 -2211 (|#1| |#1|)) (-15 -1523 (|#1| (-641 |#1|))) (-15 -1523 (|#1| |#1|)) (-15 -3148 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3148 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3148 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2416 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2111 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2239 ((-610 |#1|) |#1|))) (-302)) (T -301)) +((-4058 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302))))) +(-10 -8 (-15 -1801 ((-112) |#1|)) (-15 -1497 ((-112) |#1|)) (-15 -2416 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2416 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -3755 ((-112) |#1| (-1170))) (-15 -3755 ((-112) |#1| |#1|)) (-15 -2187 (|#1| (-1 |#1| |#1|) (-610 |#1|))) (-15 -1697 (|#1| (-114) (-641 |#1|))) (-15 -1697 (|#1| (-114) |#1|)) (-15 -4211 ((-112) |#1| (-1170))) (-15 -4211 ((-112) |#1| (-114))) (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -3423 ((-641 (-114)) |#1|)) (-15 -2084 ((-641 (-610 |#1|)) |#1|)) (-15 -4242 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3724 ((-768) |#1|)) (-15 -1928 (|#1| |#1| |#1|)) (-15 -1928 (|#1| |#1|)) (-15 -2211 (|#1| (-641 |#1|))) (-15 -2211 (|#1| |#1|)) (-15 -1523 (|#1| (-641 |#1|))) (-15 -1523 (|#1| |#1|)) (-15 -3148 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3148 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3148 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2416 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -2111 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2239 ((-610 |#1|) |#1|))) +((-3732 (((-112) $ $) 7)) (-2084 (((-641 (-610 $)) $) 44)) (-3148 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-2111 (((-3 (-610 $) "failed") $) 69)) (-2239 (((-610 $) $) 70)) (-2211 (($ $) 51) (($ (-641 $)) 50)) (-3423 (((-641 (-114)) $) 43)) (-4058 (((-114) (-114)) 42)) (-1801 (((-112) $) 22 (|has| $ (-1035 (-564))))) (-2176 (((-1166 $) (-610 $)) 25 (|has| $ (-1046)))) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2187 (($ (-1 $ $) (-610 $)) 36)) (-4242 (((-3 (-610 $) "failed") $) 46)) (-2217 (((-1152) $) 9)) (-4087 (((-641 (-610 $)) $) 45)) (-1697 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-4211 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-3724 (((-768) $) 47)) (-3864 (((-1114) $) 10)) (-3755 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-1497 (((-112) $) 23 (|has| $ (-1035 (-564))))) (-2416 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26)) (-4382 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-1928 (($ $) 49) (($ $ $) 48)) (-3925 (($ $) 24 (|has| $ (-1046)))) (-3742 (((-859) $) 11) (($ (-610 $)) 68)) (-1523 (($ $) 53) (($ (-641 $)) 52)) (-2095 (((-112) (-114)) 41)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) (((-302) (-140)) (T -302)) -((-3858 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3858 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3858 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3858 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-2624 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-2624 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *1))) (-4 *1 (-302)))) (-2624 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-609 *1))) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-3548 (*1 *1 *1) (-4 *1 (-302))) (-3548 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) (-1383 (*1 *1 *1) (-4 *1 (-302))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) (-3904 (*1 *1 *1) (-4 *1 (-302))) (-3904 (*1 *1 *1 *1) (-4 *1 (-302))) (-1524 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767)))) (-3895 (*1 *2 *1) (|partial| -12 (-5 *2 (-609 *1)) (-4 *1 (-302)))) (-2009 (*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302)))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-640 (-114))))) (-3674 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-3631 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-1854 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) (-2696 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2696 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) (-2751 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-609 *1)) (-4 *1 (-302)))) (-2023 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-2023 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-302)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-302)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-609 *1)) (-4 *1 (-1045)) (-4 *1 (-302)) (-5 *2 (-1165 *1)))) (-2713 (*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112))))) -(-13 (-846) (-1034 (-609 $)) (-514 (-609 $) $) (-309 $) (-10 -8 (-15 -3858 ($ (-114) $)) (-15 -3858 ($ (-114) $ $)) (-15 -3858 ($ (-114) $ $ $)) (-15 -3858 ($ (-114) $ $ $ $)) (-15 -3858 ($ (-114) (-640 $))) (-15 -2624 ($ $ (-294 $))) (-15 -2624 ($ $ (-640 (-294 $)))) (-15 -2624 ($ $ (-640 (-609 $)) (-640 $))) (-15 -3548 ($ $)) (-15 -3548 ($ (-640 $))) (-15 -1383 ($ $)) (-15 -1383 ($ (-640 $))) (-15 -3904 ($ $)) (-15 -3904 ($ $ $)) (-15 -1524 ((-767) $)) (-15 -3895 ((-3 (-609 $) "failed") $)) (-15 -2009 ((-640 (-609 $)) $)) (-15 -1926 ((-640 (-609 $)) $)) (-15 -2034 ((-640 (-114)) $)) (-15 -3674 ((-114) (-114))) (-15 -3631 ((-112) (-114))) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1169))) (-15 -2696 ($ (-114) $)) (-15 -2696 ($ (-114) (-640 $))) (-15 -2751 ($ (-1 $ $) (-609 $))) (-15 -2023 ((-112) $ $)) (-15 -2023 ((-112) $ (-1169))) (-15 -1497 ($ $ (-640 (-1169)) (-640 (-1 $ $)))) (-15 -1497 ($ $ (-640 (-1169)) (-640 (-1 $ (-640 $))))) (-15 -1497 ($ $ (-1169) (-1 $ (-640 $)))) (-15 -1497 ($ $ (-1169) (-1 $ $))) (-15 -1497 ($ $ (-640 (-114)) (-640 (-1 $ $)))) (-15 -1497 ($ $ (-640 (-114)) (-640 (-1 $ (-640 $))))) (-15 -1497 ($ $ (-114) (-1 $ (-640 $)))) (-15 -1497 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1045)) (PROGN (-15 -2011 ((-1165 $) (-609 $))) (-15 -2713 ($ $))) |%noBranch|) (IF (|has| $ (-1034 (-563))) (PROGN (-15 -4118 ((-112) $)) (-15 -4107 ((-112) $))) |%noBranch|))) -(((-102) . T) ((-613 #0=(-609 $)) . T) ((-610 (-858)) . T) ((-309 $) . T) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-846) . T) ((-1034 #0#) . T) ((-1093) . T)) -((-4287 (((-640 |#1|) (-640 |#1|)) 10))) -(((-303 |#1|) (-10 -7 (-15 -4287 ((-640 |#1|) (-640 |#1|)))) (-844)) (T -303)) -((-4287 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3))))) -(-10 -7 (-15 -4287 ((-640 |#1|) (-640 |#1|)))) -((-2751 (((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)) 17))) -(((-304 |#1| |#2|) (-10 -7 (-15 -2751 ((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)))) (-1045) (-1045)) (T -304)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-684 *6)) (-5 *1 (-304 *5 *6))))) -(-10 -7 (-15 -2751 ((-684 |#2|) (-1 |#2| |#1|) (-684 |#1|)))) -((-4122 (((-1257 (-316 (-379))) (-1257 (-316 (-225)))) 112)) (-3990 (((-1087 (-839 (-225))) (-1087 (-839 (-379)))) 45)) (-4167 (((-640 (-1151)) (-1149 (-225))) 94)) (-4237 (((-316 (-379)) (-948 (-225))) 55)) (-4247 (((-225) (-948 (-225))) 51)) (-4196 (((-1151) (-379)) 196)) (-3982 (((-839 (-225)) (-839 (-379))) 39)) (-4041 (((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225)))) 165)) (-4206 (((-1031) (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) 208) (((-1031) (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))))) 206)) (-4277 (((-684 (-225)) (-640 (-225)) (-767)) 21)) (-4098 (((-1257 (-694)) (-640 (-225))) 101)) (-4157 (((-640 (-1151)) (-640 (-225))) 81)) (-1467 (((-3 (-316 (-225)) "failed") (-316 (-225))) 129)) (-2927 (((-112) (-225) (-1087 (-839 (-225)))) 118)) (-4225 (((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 225)) (-4176 (((-225) (-1087 (-839 (-225)))) 114)) (-4186 (((-225) (-1087 (-839 (-225)))) 115)) (-4267 (((-225) (-407 (-563))) 33)) (-4145 (((-1151) (-379)) 79)) (-3959 (((-225) (-379)) 24)) (-4029 (((-379) (-1257 (-316 (-225)))) 178)) (-3970 (((-316 (-225)) (-316 (-379))) 30)) (-4011 (((-407 (-563)) (-316 (-225))) 58)) (-4054 (((-316 (-407 (-563))) (-316 (-225))) 75)) (-4111 (((-316 (-379)) (-316 (-225))) 105)) (-4020 (((-225) (-316 (-225))) 59)) (-4076 (((-640 (-225)) (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) 70)) (-4065 (((-1087 (-839 (-225))) (-1087 (-839 (-225)))) 67)) (-4133 (((-1151) (-225)) 78)) (-4087 (((-694) (-225)) 97)) (-4001 (((-407 (-563)) (-225)) 60)) (-4256 (((-316 (-379)) (-225)) 54)) (-2802 (((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379))))) 48)) (-1951 (((-1031) (-640 (-1031))) 192) (((-1031) (-1031) (-1031)) 186)) (-4216 (((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 222))) -(((-305) (-10 -7 (-15 -3959 ((-225) (-379))) (-15 -3970 ((-316 (-225)) (-316 (-379)))) (-15 -3982 ((-839 (-225)) (-839 (-379)))) (-15 -3990 ((-1087 (-839 (-225))) (-1087 (-839 (-379))))) (-15 -2802 ((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379)))))) (-15 -4001 ((-407 (-563)) (-225))) (-15 -4011 ((-407 (-563)) (-316 (-225)))) (-15 -4020 ((-225) (-316 (-225)))) (-15 -1467 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -4029 ((-379) (-1257 (-316 (-225))))) (-15 -4041 ((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225))))) (-15 -4054 ((-316 (-407 (-563))) (-316 (-225)))) (-15 -4065 ((-1087 (-839 (-225))) (-1087 (-839 (-225))))) (-15 -4076 ((-640 (-225)) (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))))) (-15 -4087 ((-694) (-225))) (-15 -4098 ((-1257 (-694)) (-640 (-225)))) (-15 -4111 ((-316 (-379)) (-316 (-225)))) (-15 -4122 ((-1257 (-316 (-379))) (-1257 (-316 (-225))))) (-15 -2927 ((-112) (-225) (-1087 (-839 (-225))))) (-15 -4133 ((-1151) (-225))) (-15 -4145 ((-1151) (-379))) (-15 -4157 ((-640 (-1151)) (-640 (-225)))) (-15 -4167 ((-640 (-1151)) (-1149 (-225)))) (-15 -4176 ((-225) (-1087 (-839 (-225))))) (-15 -4186 ((-225) (-1087 (-839 (-225))))) (-15 -1951 ((-1031) (-1031) (-1031))) (-15 -1951 ((-1031) (-640 (-1031)))) (-15 -4196 ((-1151) (-379))) (-15 -4206 ((-1031) (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))))) (-15 -4206 ((-1031) (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))) (-15 -4216 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4225 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -4237 ((-316 (-379)) (-948 (-225)))) (-15 -4247 ((-225) (-948 (-225)))) (-15 -4256 ((-316 (-379)) (-225))) (-15 -4267 ((-225) (-407 (-563)))) (-15 -4277 ((-684 (-225)) (-640 (-225)) (-767))))) (T -305)) -((-4277 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-225))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) (-5 *1 (-305)))) (-4267 (*1 *2 *3) (-12 (-5 *3 (-407 (-563))) (-5 *2 (-225)) (-5 *1 (-305)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-4237 (*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-4225 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-4216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-4206 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-640 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305)))) (-1951 (*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-4176 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305)))) (-4157 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305)))) (-4145 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-4133 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-305)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-1087 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-4122 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-1257 (-316 (-379)))) (-5 *1 (-305)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1257 (-694))) (-5 *1 (-305)))) (-4087 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-694)) (-5 *1 (-305)))) (-4076 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-5 *2 (-640 (-225))) (-5 *1 (-305)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-563)))) (-5 *1 (-305)))) (-4041 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563)))) (-5 *1 (-305)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-1467 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-4020 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-563))) (-5 *1 (-305)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-563))) (-5 *1 (-305)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-640 (-1087 (-839 (-379))))) (-5 *2 (-640 (-1087 (-839 (-225))))) (-5 *1 (-305)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-1087 (-839 (-379)))) (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305)))) (-3970 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) -(-10 -7 (-15 -3959 ((-225) (-379))) (-15 -3970 ((-316 (-225)) (-316 (-379)))) (-15 -3982 ((-839 (-225)) (-839 (-379)))) (-15 -3990 ((-1087 (-839 (-225))) (-1087 (-839 (-379))))) (-15 -2802 ((-640 (-1087 (-839 (-225)))) (-640 (-1087 (-839 (-379)))))) (-15 -4001 ((-407 (-563)) (-225))) (-15 -4011 ((-407 (-563)) (-316 (-225)))) (-15 -4020 ((-225) (-316 (-225)))) (-15 -1467 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -4029 ((-379) (-1257 (-316 (-225))))) (-15 -4041 ((-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563))) (-1257 (-316 (-225))))) (-15 -4054 ((-316 (-407 (-563))) (-316 (-225)))) (-15 -4065 ((-1087 (-839 (-225))) (-1087 (-839 (-225))))) (-15 -4076 ((-640 (-225)) (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))))) (-15 -4087 ((-694) (-225))) (-15 -4098 ((-1257 (-694)) (-640 (-225)))) (-15 -4111 ((-316 (-379)) (-316 (-225)))) (-15 -4122 ((-1257 (-316 (-379))) (-1257 (-316 (-225))))) (-15 -2927 ((-112) (-225) (-1087 (-839 (-225))))) (-15 -4133 ((-1151) (-225))) (-15 -4145 ((-1151) (-379))) (-15 -4157 ((-640 (-1151)) (-640 (-225)))) (-15 -4167 ((-640 (-1151)) (-1149 (-225)))) (-15 -4176 ((-225) (-1087 (-839 (-225))))) (-15 -4186 ((-225) (-1087 (-839 (-225))))) (-15 -1951 ((-1031) (-1031) (-1031))) (-15 -1951 ((-1031) (-640 (-1031)))) (-15 -4196 ((-1151) (-379))) (-15 -4206 ((-1031) (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))))) (-15 -4206 ((-1031) (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))))) (-15 -4216 ((-1031) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -4225 ((-1031) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -4237 ((-316 (-379)) (-948 (-225)))) (-15 -4247 ((-225) (-948 (-225)))) (-15 -4256 ((-316 (-379)) (-225))) (-15 -4267 ((-225) (-407 (-563)))) (-15 -4277 ((-684 (-225)) (-640 (-225)) (-767)))) -((-4332 (((-112) $ $) 14)) (-3495 (($ $ $) 18)) (-3473 (($ $ $) 17)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 49)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 64)) (-1647 (($ $ $) 24) (($ (-640 $)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 34) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 39)) (-3448 (((-3 $ "failed") $ $) 21)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 52))) -(((-306 |#1|) (-10 -8 (-15 -4299 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -4311 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4311 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1738 |#1|)) |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3473 (|#1| |#1| |#1|)) (-15 -4332 ((-112) |#1| |#1|)) (-15 -3586 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -3597 ((-2 (|:| -2765 (-640 |#1|)) (|:| -1738 |#1|)) (-640 |#1|))) (-15 -1647 (|#1| (-640 |#1|))) (-15 -1647 (|#1| |#1| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306)) -NIL -(-10 -8 (-15 -4299 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -4311 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4311 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1738 |#1|)) |#1| |#1|)) (-15 -3495 (|#1| |#1| |#1|)) (-15 -3473 (|#1| |#1| |#1|)) (-15 -4332 ((-112) |#1| |#1|)) (-15 -3586 ((-3 (-640 |#1|) "failed") (-640 |#1|) |#1|)) (-15 -3597 ((-2 (|:| -2765 (-640 |#1|)) (|:| -1738 |#1|)) (-640 |#1|))) (-15 -1647 (|#1| (-640 |#1|))) (-15 -1647 (|#1| |#1| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-4332 (((-112) $ $) 60)) (-3684 (($) 17 T CONST)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-2712 (((-112) $) 31)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +((-4382 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-4382 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-3148 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302)))) (-3148 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) (-3148 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-1523 (*1 *1 *1) (-4 *1 (-302))) (-1523 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-2211 (*1 *1 *1) (-4 *1 (-302))) (-2211 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) (-1928 (*1 *1 *1) (-4 *1 (-302))) (-1928 (*1 *1 *1 *1) (-4 *1 (-302))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-768)))) (-4242 (*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302)))) (-4087 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114))))) (-4058 (*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-2095 (*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-4211 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) (-4211 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-1697 (*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) (-1697 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) (-2187 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) (-3755 (*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112)))) (-3755 (*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-302)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-1046)) (-4 *1 (-302)) (-5 *2 (-1166 *1)))) (-3925 (*1 *1 *1) (-12 (-4 *1 (-1046)) (-4 *1 (-302)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) (-1801 (*1 *2 *1) (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112))))) +(-13 (-847) (-1035 (-610 $)) (-514 (-610 $) $) (-309 $) (-10 -8 (-15 -4382 ($ (-114) $)) (-15 -4382 ($ (-114) $ $)) (-15 -4382 ($ (-114) $ $ $)) (-15 -4382 ($ (-114) $ $ $ $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -3148 ($ $ (-294 $))) (-15 -3148 ($ $ (-641 (-294 $)))) (-15 -3148 ($ $ (-641 (-610 $)) (-641 $))) (-15 -1523 ($ $)) (-15 -1523 ($ (-641 $))) (-15 -2211 ($ $)) (-15 -2211 ($ (-641 $))) (-15 -1928 ($ $)) (-15 -1928 ($ $ $)) (-15 -3724 ((-768) $)) (-15 -4242 ((-3 (-610 $) "failed") $)) (-15 -4087 ((-641 (-610 $)) $)) (-15 -2084 ((-641 (-610 $)) $)) (-15 -3423 ((-641 (-114)) $)) (-15 -4058 ((-114) (-114))) (-15 -2095 ((-112) (-114))) (-15 -4211 ((-112) $ (-114))) (-15 -4211 ((-112) $ (-1170))) (-15 -1697 ($ (-114) $)) (-15 -1697 ($ (-114) (-641 $))) (-15 -2187 ($ (-1 $ $) (-610 $))) (-15 -3755 ((-112) $ $)) (-15 -3755 ((-112) $ (-1170))) (-15 -2416 ($ $ (-641 (-1170)) (-641 (-1 $ $)))) (-15 -2416 ($ $ (-641 (-1170)) (-641 (-1 $ (-641 $))))) (-15 -2416 ($ $ (-1170) (-1 $ (-641 $)))) (-15 -2416 ($ $ (-1170) (-1 $ $))) (-15 -2416 ($ $ (-641 (-114)) (-641 (-1 $ $)))) (-15 -2416 ($ $ (-641 (-114)) (-641 (-1 $ (-641 $))))) (-15 -2416 ($ $ (-114) (-1 $ (-641 $)))) (-15 -2416 ($ $ (-114) (-1 $ $))) (IF (|has| $ (-1046)) (PROGN (-15 -2176 ((-1166 $) (-610 $))) (-15 -3925 ($ $))) |%noBranch|) (IF (|has| $ (-1035 (-564))) (PROGN (-15 -1497 ((-112) $)) (-15 -1801 ((-112) $))) |%noBranch|))) +(((-102) . T) ((-614 #0=(-610 $)) . T) ((-611 (-859)) . T) ((-309 $) . T) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-847) . T) ((-1035 #0#) . T) ((-1094) . T)) +((-3852 (((-641 |#1|) (-641 |#1|)) 10))) +(((-303 |#1|) (-10 -7 (-15 -3852 ((-641 |#1|) (-641 |#1|)))) (-845)) (T -303)) +((-3852 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-845)) (-5 *1 (-303 *3))))) +(-10 -7 (-15 -3852 ((-641 |#1|) (-641 |#1|)))) +((-2187 (((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)) 17))) +(((-304 |#1| |#2|) (-10 -7 (-15 -2187 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) (-1046) (-1046)) (T -304)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6))))) +(-10 -7 (-15 -2187 ((-685 |#2|) (-1 |#2| |#1|) (-685 |#1|)))) +((-1753 (((-1259 (-316 (-379))) (-1259 (-316 (-225)))) 112)) (-3378 (((-1088 (-840 (-225))) (-1088 (-840 (-379)))) 45)) (-3335 (((-641 (-1152)) (-1150 (-225))) 94)) (-3535 (((-316 (-379)) (-949 (-225))) 55)) (-2023 (((-225) (-949 (-225))) 51)) (-1813 (((-1152) (-379)) 196)) (-3779 (((-840 (-225)) (-840 (-379))) 39)) (-3182 (((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225)))) 165)) (-1382 (((-1032) (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) 208) (((-1032) (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))))) 206)) (-2069 (((-685 (-225)) (-641 (-225)) (-768)) 21)) (-2316 (((-1259 (-695)) (-641 (-225))) 101)) (-4314 (((-641 (-1152)) (-641 (-225))) 81)) (-1777 (((-3 (-316 (-225)) "failed") (-316 (-225))) 129)) (-1304 (((-112) (-225) (-1088 (-840 (-225)))) 118)) (-3772 (((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) 225)) (-3726 (((-225) (-1088 (-840 (-225)))) 114)) (-3403 (((-225) (-1088 (-840 (-225)))) 115)) (-3479 (((-225) (-407 (-564))) 33)) (-2880 (((-1152) (-379)) 79)) (-3531 (((-225) (-379)) 24)) (-1294 (((-379) (-1259 (-316 (-225)))) 178)) (-1997 (((-316 (-225)) (-316 (-379))) 30)) (-3793 (((-407 (-564)) (-316 (-225))) 58)) (-2006 (((-316 (-407 (-564))) (-316 (-225))) 75)) (-2024 (((-316 (-379)) (-316 (-225))) 105)) (-3451 (((-225) (-316 (-225))) 59)) (-2542 (((-641 (-225)) (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) 70)) (-3974 (((-1088 (-840 (-225))) (-1088 (-840 (-225)))) 67)) (-3260 (((-1152) (-225)) 78)) (-3908 (((-695) (-225)) 97)) (-2012 (((-407 (-564)) (-225)) 60)) (-1779 (((-316 (-379)) (-225)) 54)) (-2235 (((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379))))) 48)) (-1802 (((-1032) (-641 (-1032))) 192) (((-1032) (-1032) (-1032)) 186)) (-2146 (((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 222))) +(((-305) (-10 -7 (-15 -3531 ((-225) (-379))) (-15 -1997 ((-316 (-225)) (-316 (-379)))) (-15 -3779 ((-840 (-225)) (-840 (-379)))) (-15 -3378 ((-1088 (-840 (-225))) (-1088 (-840 (-379))))) (-15 -2235 ((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379)))))) (-15 -2012 ((-407 (-564)) (-225))) (-15 -3793 ((-407 (-564)) (-316 (-225)))) (-15 -3451 ((-225) (-316 (-225)))) (-15 -1777 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -1294 ((-379) (-1259 (-316 (-225))))) (-15 -3182 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -2006 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -3974 ((-1088 (-840 (-225))) (-1088 (-840 (-225))))) (-15 -2542 ((-641 (-225)) (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))))) (-15 -3908 ((-695) (-225))) (-15 -2316 ((-1259 (-695)) (-641 (-225)))) (-15 -2024 ((-316 (-379)) (-316 (-225)))) (-15 -1753 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -1304 ((-112) (-225) (-1088 (-840 (-225))))) (-15 -3260 ((-1152) (-225))) (-15 -2880 ((-1152) (-379))) (-15 -4314 ((-641 (-1152)) (-641 (-225)))) (-15 -3335 ((-641 (-1152)) (-1150 (-225)))) (-15 -3726 ((-225) (-1088 (-840 (-225))))) (-15 -3403 ((-225) (-1088 (-840 (-225))))) (-15 -1802 ((-1032) (-1032) (-1032))) (-15 -1802 ((-1032) (-641 (-1032)))) (-15 -1813 ((-1152) (-379))) (-15 -1382 ((-1032) (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -1382 ((-1032) (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))) (-15 -2146 ((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3772 ((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3535 ((-316 (-379)) (-949 (-225)))) (-15 -2023 ((-225) (-949 (-225)))) (-15 -1779 ((-316 (-379)) (-225))) (-15 -3479 ((-225) (-407 (-564)))) (-15 -2069 ((-685 (-225)) (-641 (-225)) (-768))))) (T -305)) +((-2069 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-225))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) (-5 *1 (-305)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-3772 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-2146 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-1382 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-1813 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-641 (-1032))) (-5 *2 (-1032)) (-5 *1 (-305)))) (-1802 (*1 *2 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) (-3403 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3726 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3335 (*1 *2 *3) (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-4314 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305)))) (-2880 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305)))) (-1304 (*1 *2 *3 *4) (-12 (-5 *4 (-1088 (-840 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-305)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) (-5 *1 (-305)))) (-2024 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305)))) (-2316 (*1 *2 *3) (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305)))) (-3908 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305)))) (-2542 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-5 *2 (-641 (-225))) (-5 *1 (-305)))) (-3974 (*1 *2 *2) (-12 (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))) (-2006 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) (-5 *1 (-305)))) (-3182 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) (-5 *1 (-305)))) (-1294 (*1 *2 *3) (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305)))) (-1777 (*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-3451 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305)))) (-3793 (*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-2012 (*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-641 (-1088 (-840 (-379))))) (-5 *2 (-641 (-1088 (-840 (-225))))) (-5 *1 (-305)))) (-3378 (*1 *2 *3) (-12 (-5 *3 (-1088 (-840 (-379)))) (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-840 (-379))) (-5 *2 (-840 (-225))) (-5 *1 (-305)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305)))) (-3531 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) +(-10 -7 (-15 -3531 ((-225) (-379))) (-15 -1997 ((-316 (-225)) (-316 (-379)))) (-15 -3779 ((-840 (-225)) (-840 (-379)))) (-15 -3378 ((-1088 (-840 (-225))) (-1088 (-840 (-379))))) (-15 -2235 ((-641 (-1088 (-840 (-225)))) (-641 (-1088 (-840 (-379)))))) (-15 -2012 ((-407 (-564)) (-225))) (-15 -3793 ((-407 (-564)) (-316 (-225)))) (-15 -3451 ((-225) (-316 (-225)))) (-15 -1777 ((-3 (-316 (-225)) "failed") (-316 (-225)))) (-15 -1294 ((-379) (-1259 (-316 (-225))))) (-15 -3182 ((-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564))) (-1259 (-316 (-225))))) (-15 -2006 ((-316 (-407 (-564))) (-316 (-225)))) (-15 -3974 ((-1088 (-840 (-225))) (-1088 (-840 (-225))))) (-15 -2542 ((-641 (-225)) (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))))) (-15 -3908 ((-695) (-225))) (-15 -2316 ((-1259 (-695)) (-641 (-225)))) (-15 -2024 ((-316 (-379)) (-316 (-225)))) (-15 -1753 ((-1259 (-316 (-379))) (-1259 (-316 (-225))))) (-15 -1304 ((-112) (-225) (-1088 (-840 (-225))))) (-15 -3260 ((-1152) (-225))) (-15 -2880 ((-1152) (-379))) (-15 -4314 ((-641 (-1152)) (-641 (-225)))) (-15 -3335 ((-641 (-1152)) (-1150 (-225)))) (-15 -3726 ((-225) (-1088 (-840 (-225))))) (-15 -3403 ((-225) (-1088 (-840 (-225))))) (-15 -1802 ((-1032) (-1032) (-1032))) (-15 -1802 ((-1032) (-641 (-1032)))) (-15 -1813 ((-1152) (-379))) (-15 -1382 ((-1032) (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))))) (-15 -1382 ((-1032) (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))))) (-15 -2146 ((-1032) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3772 ((-1032) (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))) (-15 -3535 ((-316 (-379)) (-949 (-225)))) (-15 -2023 ((-225) (-949 (-225)))) (-15 -1779 ((-316 (-379)) (-225))) (-15 -3479 ((-225) (-407 (-564)))) (-15 -2069 ((-685 (-225)) (-641 (-225)) (-768)))) +((-2377 (((-112) $ $) 14)) (-1373 (($ $ $) 18)) (-1350 (($ $ $) 17)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 49)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 64)) (-2577 (($ $ $) 24) (($ (-641 $)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 34) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 39)) (-1321 (((-3 $ "failed") $ $) 21)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 52))) +(((-306 |#1|) (-10 -8 (-15 -2418 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -4302 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4302 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1373 (|#1| |#1| |#1|)) (-15 -1350 (|#1| |#1| |#1|)) (-15 -2377 ((-112) |#1| |#1|)) (-15 -3678 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -2052 ((-2 (|:| -1762 (-641 |#1|)) (|:| -1693 |#1|)) (-641 |#1|))) (-15 -2577 (|#1| (-641 |#1|))) (-15 -2577 (|#1| |#1| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|))) (-307)) (T -306)) +NIL +(-10 -8 (-15 -2418 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -4302 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -4302 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1373 (|#1| |#1| |#1|)) (-15 -1350 (|#1| |#1| |#1|)) (-15 -2377 ((-112) |#1| |#1|)) (-15 -3678 ((-3 (-641 |#1|) "failed") (-641 |#1|) |#1|)) (-15 -2052 ((-2 (|:| -1762 (-641 |#1|)) (|:| -1693 |#1|)) (-641 |#1|))) (-15 -2577 (|#1| (-641 |#1|))) (-15 -2577 (|#1| |#1| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2377 (((-112) $ $) 60)) (-2818 (($) 17 T CONST)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-3840 (((-112) $) 31)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-307) (-140)) (T -307)) -((-4332 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-4322 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767)))) (-2588 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-307)))) (-3473 (*1 *1 *1 *1) (-4 *1 (-307))) (-3495 (*1 *1 *1 *1) (-4 *1 (-307))) (-4311 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1738 *1))) (-4 *1 (-307)))) (-4311 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-4299 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-307))))) -(-13 (-916) (-10 -8 (-15 -4332 ((-112) $ $)) (-15 -4322 ((-767) $)) (-15 -2588 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -3473 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -4311 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $)) (-15 -4311 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4299 ((-3 (-640 $) "failed") (-640 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-1497 (($ $ (-640 |#2|) (-640 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-640 (-294 |#2|))) NIL))) -(((-308 |#1| |#2|) (-10 -8 (-15 -1497 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1497 (|#1| |#1| (-294 |#2|))) (-15 -1497 (|#1| |#1| |#2| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#2|) (-640 |#2|)))) (-309 |#2|) (-1093)) (T -308)) -NIL -(-10 -8 (-15 -1497 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1497 (|#1| |#1| (-294 |#2|))) (-15 -1497 (|#1| |#1| |#2| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#2|) (-640 |#2|)))) -((-1497 (($ $ (-640 |#1|) (-640 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-640 (-294 |#1|))) 10))) -(((-309 |#1|) (-140) (-1093)) (T -309)) -((-1497 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1093)))) (-1497 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1093))))) -(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -1497 ($ $ (-294 |t#1|))) (-15 -1497 ($ $ (-640 (-294 |t#1|)))))) +((-2377 (*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112)))) (-4061 (*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-768)))) (-1318 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-307)))) (-1350 (*1 *1 *1 *1) (-4 *1 (-307))) (-1373 (*1 *1 *1 *1) (-4 *1 (-307))) (-4302 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1693 *1))) (-4 *1 (-307)))) (-4302 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-307)))) (-2418 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307))))) +(-13 (-917) (-10 -8 (-15 -2377 ((-112) $ $)) (-15 -4061 ((-768) $)) (-15 -1318 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -1350 ($ $ $)) (-15 -1373 ($ $ $)) (-15 -4302 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $)) (-15 -4302 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -2418 ((-3 (-641 $) "failed") (-641 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2416 (($ $ (-641 |#2|) (-641 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-294 |#2|)) 11) (($ $ (-641 (-294 |#2|))) NIL))) +(((-308 |#1| |#2|) (-10 -8 (-15 -2416 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2416 (|#1| |#1| (-294 |#2|))) (-15 -2416 (|#1| |#1| |#2| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) (-309 |#2|) (-1094)) (T -308)) +NIL +(-10 -8 (-15 -2416 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2416 (|#1| |#1| (-294 |#2|))) (-15 -2416 (|#1| |#1| |#2| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#2|) (-641 |#2|)))) +((-2416 (($ $ (-641 |#1|) (-641 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-294 |#1|)) 11) (($ $ (-641 (-294 |#1|))) 10))) +(((-309 |#1|) (-140) (-1094)) (T -309)) +((-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094))))) +(-13 (-514 |t#1| |t#1|) (-10 -8 (-15 -2416 ($ $ (-294 |t#1|))) (-15 -2416 ($ $ (-641 (-294 |t#1|)))))) (((-514 |#1| |#1|) . T)) -((-1497 ((|#1| (-1 |#1| (-563)) (-1171 (-407 (-563)))) 25))) -(((-310 |#1|) (-10 -7 (-15 -1497 (|#1| (-1 |#1| (-563)) (-1171 (-407 (-563)))))) (-38 (-407 (-563)))) (T -310)) -((-1497 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-563))) (-5 *4 (-1171 (-407 (-563)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-563))))))) -(-10 -7 (-15 -1497 (|#1| (-1 |#1| (-563)) (-1171 (-407 (-563)))))) -((-2049 (((-112) $ $) NIL)) (-4317 (((-563) $) 12)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2784 (((-1128) $) 9)) (-2062 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-311) (-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)) (-15 -4317 ((-563) $))))) (T -311)) -((-2784 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-311)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-311))))) -(-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)) (-15 -4317 ((-563) $)))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 7)) (-2943 (((-112) $ $) 9))) -(((-312) (-1093)) (T -312)) -NIL -(-1093) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 67)) (-3223 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-1243 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-1242 |#2| |#3| |#4|) "failed") $) 26)) (-2589 (((-1243 |#1| |#2| |#3| |#4|) $) NIL) (((-1169) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-563) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-563)))) (((-1242 |#2| |#3| |#4|) $) NIL)) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-1243 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1257 (-1243 |#1| |#2| |#3| |#4|)))) (-684 $) (-1257 $)) NIL) (((-684 (-1243 |#1| |#2| |#3| |#4|)) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-882 (-379))))) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL)) (-2626 (((-1243 |#1| |#2| |#3| |#4|) $) 22)) (-3113 (((-3 $ "failed") $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1144)))) (-2731 (((-112) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-4105 (($ $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-2751 (($ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) $) NIL)) (-3002 (((-3 (-839 |#2|) "failed") $) 87)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-307)))) (-3233 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 (-1243 |#1| |#2| |#3| |#4|)) (-640 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-640 (-294 (-1243 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-309 (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-640 (-1169)) (-640 (-1243 |#1| |#2| |#3| |#4|))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-514 (-1169) (-1243 |#1| |#2| |#3| |#4|)))) (($ $ (-1169) (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-514 (-1169) (-1243 |#1| |#2| |#3| |#4|))))) (-4322 (((-767) $) NIL)) (-3858 (($ $ (-1243 |#1| |#2| |#3| |#4|)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-286 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))) NIL)) (-4362 (($ $) NIL)) (-2636 (((-1243 |#1| |#2| |#3| |#4|) $) 19)) (-2802 (((-888 (-563)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-611 (-536)))) (((-379) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1018))) (((-225) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1018)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1243 |#1| |#2| |#3| |#4|) (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-1243 |#1| |#2| |#3| |#4|)) 30) (($ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-1034 (-1169)))) (($ (-1242 |#2| |#3| |#4|)) 37)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-1243 |#1| |#2| |#3| |#4|) (-905))) (|has| (-1243 |#1| |#2| |#3| |#4|) (-145))))) (-3192 (((-767)) NIL T CONST)) (-3241 (((-1243 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-545)))) (-2543 (((-112) $ $) NIL)) (-3841 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-816)))) (-3790 (($) 42 T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1169)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-896 (-1169)))) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) (-767)) NIL) (($ $ (-1 (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|))) NIL)) (-2998 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-1243 |#1| |#2| |#3| |#4|) (-846)))) (-3050 (($ $ $) 35) (($ (-1243 |#1| |#2| |#3| |#4|) (-1243 |#1| |#2| |#3| |#4|)) 32)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-1243 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1243 |#1| |#2| |#3| |#4|)) NIL))) -(((-313 |#1| |#2| |#3| |#4|) (-13 (-988 (-1243 |#1| |#2| |#3| |#4|)) (-1034 (-1242 |#2| |#3| |#4|)) (-10 -8 (-15 -3002 ((-3 (-839 |#2|) "failed") $)) (-15 -2062 ($ (-1242 |#2| |#3| |#4|))))) (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -313)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1242 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4) (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-3002 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4)))) -(-13 (-988 (-1243 |#1| |#2| |#3| |#4|)) (-1034 (-1242 |#2| |#3| |#4|)) (-10 -8 (-15 -3002 ((-3 (-839 |#2|) "failed") $)) (-15 -2062 ($ (-1242 |#2| |#3| |#4|))))) -((-2751 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2751 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-846) (-846)) (T -314)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))) -(-10 -7 (-15 -2751 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) -((-3106 (((-52) |#2| (-294 |#2|) (-767)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-767)) 35) (((-52) |#2|) 33) (((-52) (-1169)) 26)) (-3444 (((-52) |#2| (-294 |#2|) (-407 (-563))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-563))) 58) (((-52) |#2|) 57) (((-52) (-1169)) 55)) (-3128 (((-52) |#2| (-294 |#2|) (-407 (-563))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-563))) 53) (((-52) |#2|) 52) (((-52) (-1169)) 50)) (-3118 (((-52) |#2| (-294 |#2|) (-563)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-563)) 46) (((-52) |#2|) 45) (((-52) (-1169)) 43))) -(((-315 |#1| |#2|) (-10 -7 (-15 -3106 ((-52) (-1169))) (-15 -3106 ((-52) |#2|)) (-15 -3106 ((-52) |#2| (-767))) (-15 -3106 ((-52) |#2| (-294 |#2|))) (-15 -3106 ((-52) |#2| (-294 |#2|) (-767))) (-15 -3118 ((-52) (-1169))) (-15 -3118 ((-52) |#2|)) (-15 -3118 ((-52) |#2| (-563))) (-15 -3118 ((-52) |#2| (-294 |#2|))) (-15 -3118 ((-52) |#2| (-294 |#2|) (-563))) (-15 -3128 ((-52) (-1169))) (-15 -3128 ((-52) |#2|)) (-15 -3128 ((-52) |#2| (-407 (-563)))) (-15 -3128 ((-52) |#2| (-294 |#2|))) (-15 -3128 ((-52) |#2| (-294 |#2|) (-407 (-563)))) (-15 -3444 ((-52) (-1169))) (-15 -3444 ((-52) |#2|)) (-15 -3444 ((-52) |#2| (-407 (-563)))) (-15 -3444 ((-52) |#2| (-294 |#2|))) (-15 -3444 ((-52) |#2| (-294 |#2|) (-407 (-563))))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -315)) -((-3444 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3444 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-3444 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-3128 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3128 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-3118 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 *5) (-636 *5))) (-5 *5 (-563)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-636 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3118 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-3118 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4))))) (-3106 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-767)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3106 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-3106 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1193) (-430 *4)))))) -(-10 -7 (-15 -3106 ((-52) (-1169))) (-15 -3106 ((-52) |#2|)) (-15 -3106 ((-52) |#2| (-767))) (-15 -3106 ((-52) |#2| (-294 |#2|))) (-15 -3106 ((-52) |#2| (-294 |#2|) (-767))) (-15 -3118 ((-52) (-1169))) (-15 -3118 ((-52) |#2|)) (-15 -3118 ((-52) |#2| (-563))) (-15 -3118 ((-52) |#2| (-294 |#2|))) (-15 -3118 ((-52) |#2| (-294 |#2|) (-563))) (-15 -3128 ((-52) (-1169))) (-15 -3128 ((-52) |#2|)) (-15 -3128 ((-52) |#2| (-407 (-563)))) (-15 -3128 ((-52) |#2| (-294 |#2|))) (-15 -3128 ((-52) |#2| (-294 |#2|) (-407 (-563)))) (-15 -3444 ((-52) (-1169))) (-15 -3444 ((-52) |#2|)) (-15 -3444 ((-52) |#2| (-407 (-563)))) (-15 -3444 ((-52) |#2| (-294 |#2|))) (-15 -3444 ((-52) |#2| (-294 |#2|) (-407 (-563))))) -((-2049 (((-112) $ $) NIL)) (-3933 (((-640 $) $ (-1169)) NIL (|has| |#1| (-555))) (((-640 $) $) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $)) NIL (|has| |#1| (-555))) (((-640 $) (-948 $)) NIL (|has| |#1| (-555)))) (-1489 (($ $ (-1169)) NIL (|has| |#1| (-555))) (($ $) NIL (|has| |#1| (-555))) (($ (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (($ (-1165 $)) NIL (|has| |#1| (-555))) (($ (-948 $)) NIL (|has| |#1| (-555)))) (-2741 (((-112) $) 27 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-2185 (((-640 (-1169)) $) 368)) (-2021 (((-407 (-1165 $)) $ (-609 $)) NIL (|has| |#1| (-555)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-1926 (((-640 (-609 $)) $) NIL)) (-3419 (($ $) 171 (|has| |#1| (-555)))) (-3285 (($ $) 147 (|has| |#1| (-555)))) (-3275 (($ $ (-1085 $)) 232 (|has| |#1| (-555))) (($ $ (-1169)) 228 (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) NIL (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-2624 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) 386) (($ $ (-640 (-609 $)) (-640 $)) 430)) (-1325 (((-418 (-1165 $)) (-1165 $)) 309 (-12 (|has| |#1| (-452)) (|has| |#1| (-555))))) (-2924 (($ $) NIL (|has| |#1| (-555)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-555)))) (-2067 (($ $) NIL (|has| |#1| (-555)))) (-4332 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3395 (($ $) 167 (|has| |#1| (-555)))) (-3264 (($ $) 143 (|has| |#1| (-555)))) (-4341 (($ $ (-563)) 73 (|has| |#1| (-555)))) (-2242 (($ $) 175 (|has| |#1| (-555)))) (-3305 (($ $) 151 (|has| |#1| (-555)))) (-3684 (($) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))) CONST)) (-1503 (((-640 $) $ (-1169)) NIL (|has| |#1| (-555))) (((-640 $) $) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $) (-1169)) NIL (|has| |#1| (-555))) (((-640 $) (-1165 $)) NIL (|has| |#1| (-555))) (((-640 $) (-948 $)) NIL (|has| |#1| (-555)))) (-2691 (($ $ (-1169)) NIL (|has| |#1| (-555))) (($ $) NIL (|has| |#1| (-555))) (($ (-1165 $) (-1169)) 134 (|has| |#1| (-555))) (($ (-1165 $)) NIL (|has| |#1| (-555))) (($ (-948 $)) NIL (|has| |#1| (-555)))) (-2671 (((-3 (-609 $) "failed") $) 18) (((-3 (-1169) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 337 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-948 |#1|)) "failed") $) NIL (|has| |#1| (-555))) (((-3 (-948 |#1|) "failed") $) NIL (|has| |#1| (-1045))) (((-3 (-407 (-563)) "failed") $) 46 (-2811 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-2589 (((-609 $) $) 12) (((-1169) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-948 |#1|)) $) NIL (|has| |#1| (-555))) (((-948 |#1|) $) NIL (|has| |#1| (-1045))) (((-407 (-563)) $) 320 (-2811 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3495 (($ $ $) NIL (|has| |#1| (-555)))) (-3853 (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 125 (|has| |#1| (-1045))) (((-684 |#1|) (-684 $)) 115 (|has| |#1| (-1045))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (-2532 (($ $) 96 (|has| |#1| (-555)))) (-3230 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (-3473 (($ $ $) NIL (|has| |#1| (-555)))) (-1927 (($ $ (-1085 $)) 236 (|has| |#1| (-555))) (($ $ (-1169)) 234 (|has| |#1| (-555)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-555)))) (-3675 (((-112) $) NIL (|has| |#1| (-555)))) (-3873 (($ $ $) 202 (|has| |#1| (-555)))) (-2656 (($) 137 (|has| |#1| (-555)))) (-3243 (($ $ $) 222 (|has| |#1| (-555)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 392 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 399 (|has| |#1| (-882 (-379))))) (-1383 (($ $) NIL) (($ (-640 $)) NIL)) (-2034 (((-640 (-114)) $) NIL)) (-3674 (((-114) (-114)) 277)) (-2712 (((-112) $) 25 (-2811 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (-4107 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-4372 (($ $) 72 (|has| |#1| (-1045)))) (-2626 (((-1118 |#1| (-609 $)) $) 91 (|has| |#1| (-1045)))) (-4350 (((-112) $) 62 (|has| |#1| (-555)))) (-1403 (($ $ (-563)) NIL (|has| |#1| (-555)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-555)))) (-2011 (((-1165 $) (-609 $)) 278 (|has| $ (-1045)))) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 $ $) (-609 $)) 426)) (-3895 (((-3 (-609 $) "failed") $) NIL)) (-2497 (($ $) 141 (|has| |#1| (-555)))) (-2942 (($ $) 247 (|has| |#1| (-555)))) (-1607 (($ (-640 $)) NIL (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-1938 (((-1151) $) NIL)) (-2009 (((-640 (-609 $)) $) 49)) (-2696 (($ (-114) $) NIL) (($ (-114) (-640 $)) 431)) (-3218 (((-3 (-640 $) "failed") $) NIL (|has| |#1| (-1105)))) (-3236 (((-3 (-2 (|:| |val| $) (|:| -2631 (-563))) "failed") $) NIL (|has| |#1| (-1045)))) (-3207 (((-3 (-640 $) "failed") $) 436 (|has| |#1| (-25)))) (-1526 (((-3 (-2 (|:| -2765 (-563)) (|:| |var| (-609 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3228 (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $) NIL (|has| |#1| (-1105))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-114)) NIL (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-1169)) NIL (|has| |#1| (-1045)))) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) 51)) (-3149 (($ $) NIL (-2811 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-3299 (($ $ (-1169)) 251 (|has| |#1| (-555))) (($ $ (-1085 $)) 253 (|has| |#1| (-555)))) (-1524 (((-767) $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) 43)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 302 (|has| |#1| (-555)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-2023 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-3287 (($ $ (-1169)) 226 (|has| |#1| (-555))) (($ $) 224 (|has| |#1| (-555)))) (-1979 (($ $) 218 (|has| |#1| (-555)))) (-1315 (((-418 (-1165 $)) (-1165 $)) 307 (-12 (|has| |#1| (-452)) (|has| |#1| (-555))))) (-2055 (((-418 $) $) NIL (|has| |#1| (-555)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-555))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-555)))) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-555)))) (-3177 (($ $) 139 (|has| |#1| (-555)))) (-4118 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1497 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) 425) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) 379) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1169)) NIL (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-611 (-536)))) (($ $) NIL (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 366 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-114)) (-640 $) (-1169)) 365 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ $)) NIL (|has| |#1| (-1045)))) (-4322 (((-767) $) NIL (|has| |#1| (-555)))) (-3224 (($ $) 239 (|has| |#1| (-555)))) (-3858 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-3904 (($ $) NIL) (($ $ $) NIL)) (-3252 (($ $) 249 (|has| |#1| (-555)))) (-3862 (($ $) 200 (|has| |#1| (-555)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-1045))) (($ $ (-1169)) NIL (|has| |#1| (-1045)))) (-4362 (($ $) 74 (|has| |#1| (-555)))) (-2636 (((-1118 |#1| (-609 $)) $) 93 (|has| |#1| (-555)))) (-2713 (($ $) 318 (|has| $ (-1045)))) (-2252 (($ $) 177 (|has| |#1| (-555)))) (-3313 (($ $) 153 (|has| |#1| (-555)))) (-2231 (($ $) 173 (|has| |#1| (-555)))) (-3295 (($ $) 149 (|has| |#1| (-555)))) (-3408 (($ $) 169 (|has| |#1| (-555)))) (-3273 (($ $) 145 (|has| |#1| (-555)))) (-2802 (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-555))) (((-536) $) 363 (|has| |#1| (-611 (-536))))) (-1382 (($ $ $) NIL (|has| |#1| (-473)))) (-2879 (($ $ $) NIL (|has| |#1| (-473)))) (-2062 (((-858) $) 424) (($ (-609 $)) 415) (($ (-1169)) 381) (($ |#1|) 338) (($ $) NIL (|has| |#1| (-555))) (($ (-48)) 313 (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) (($ (-1118 |#1| (-609 $))) 95 (|has| |#1| (-1045))) (($ (-407 |#1|)) NIL (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) NIL (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) NIL (|has| |#1| (-555))) (($ (-407 (-948 |#1|))) NIL (|has| |#1| (-555))) (($ (-948 |#1|)) NIL (|has| |#1| (-1045))) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-555)) (|has| |#1| (-1034 (-407 (-563)))))) (($ (-563)) 34 (-2811 (|has| |#1| (-1034 (-563))) (|has| |#1| (-1045))))) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL (|has| |#1| (-1045)) CONST)) (-3548 (($ $) NIL) (($ (-640 $)) NIL)) (-2991 (($ $ $) 220 (|has| |#1| (-555)))) (-3903 (($ $ $) 206 (|has| |#1| (-555)))) (-3920 (($ $ $) 210 (|has| |#1| (-555)))) (-3893 (($ $ $) 204 (|has| |#1| (-555)))) (-3912 (($ $ $) 208 (|has| |#1| (-555)))) (-3631 (((-112) (-114)) 10)) (-2285 (($ $) 183 (|has| |#1| (-555)))) (-3347 (($ $) 159 (|has| |#1| (-555)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) 179 (|has| |#1| (-555)))) (-3325 (($ $) 155 (|has| |#1| (-555)))) (-2306 (($ $) 187 (|has| |#1| (-555)))) (-3374 (($ $) 163 (|has| |#1| (-555)))) (-2340 (($ (-1169) $) NIL) (($ (-1169) $ $) NIL) (($ (-1169) $ $ $) NIL) (($ (-1169) $ $ $ $) NIL) (($ (-1169) (-640 $)) NIL)) (-3941 (($ $) 214 (|has| |#1| (-555)))) (-3932 (($ $) 212 (|has| |#1| (-555)))) (-4205 (($ $) 189 (|has| |#1| (-555)))) (-3386 (($ $) 165 (|has| |#1| (-555)))) (-2296 (($ $) 185 (|has| |#1| (-555)))) (-3361 (($ $) 161 (|has| |#1| (-555)))) (-2275 (($ $) 181 (|has| |#1| (-555)))) (-3336 (($ $) 157 (|has| |#1| (-555)))) (-3841 (($ $) 192 (|has| |#1| (-555)))) (-3790 (($) 21 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) CONST)) (-3649 (($ $) 243 (|has| |#1| (-555)))) (-3803 (($) 23 (-2811 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))) CONST)) (-3883 (($ $) 194 (|has| |#1| (-555))) (($ $ $) 196 (|has| |#1| (-555)))) (-3661 (($ $) 241 (|has| |#1| (-555)))) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-1045))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-1045))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-1045))) (($ $ (-1169)) NIL (|has| |#1| (-1045)))) (-3640 (($ $) 245 (|has| |#1| (-555)))) (-3851 (($ $ $) 198 (|has| |#1| (-555)))) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 88)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 86)) (-3050 (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 106 (|has| |#1| (-555))) (($ $ $) 42 (-2811 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-3039 (($ $ $) 40 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ $) 29 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (-3027 (($ $ $) 38 (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))))) (** (($ $ $) 64 (|has| |#1| (-555))) (($ $ (-407 (-563))) 315 (|has| |#1| (-555))) (($ $ (-563)) 80 (-2811 (|has| |#1| (-473)) (|has| |#1| (-555)))) (($ $ (-767)) 75 (-2811 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105)))) (($ $ (-917)) 84 (-2811 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105))))) (* (($ (-407 (-563)) $) NIL (|has| |#1| (-555))) (($ $ (-407 (-563))) NIL (|has| |#1| (-555))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-2811 (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) (|has| |#1| (-1105)))) (($ (-563) $) 32 (-2811 (|has| |#1| (-21)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ (-767) $) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))) (($ (-917) $) NIL (-2811 (|has| |#1| (-25)) (-12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))))))) -(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-555)) (PROGN (-6 (-29 |#1|)) (-6 (-1193)) (-6 (-160)) (-6 (-626)) (-6 (-1132)) (-15 -2532 ($ $)) (-15 -4350 ((-112) $)) (-15 -4341 ($ $ (-563))) (IF (|has| |#1| (-452)) (PROGN (-15 -1315 ((-418 (-1165 $)) (-1165 $))) (-15 -1325 ((-418 (-1165 $)) (-1165 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-563))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) (-846)) (T -316)) -((-2532 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-555)) (-4 *2 (-846)))) (-4350 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-4341 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-1315 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846)))) (-1325 (*1 *2 *3) (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846))))) -(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-555)) (PROGN (-6 (-29 |#1|)) (-6 (-1193)) (-6 (-160)) (-6 (-626)) (-6 (-1132)) (-15 -2532 ($ $)) (-15 -4350 ((-112) $)) (-15 -4341 ($ $ (-563))) (IF (|has| |#1| (-452)) (PROGN (-15 -1315 ((-418 (-1165 $)) (-1165 $))) (-15 -1325 ((-418 (-1165 $)) (-1165 $)))) |%noBranch|) (IF (|has| |#1| (-1034 (-563))) (-6 (-1034 (-48))) |%noBranch|)) |%noBranch|))) -((-4360 (((-52) |#2| (-114) (-294 |#2|) (-640 |#2|)) 94) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 90) (((-52) |#2| (-114) (-294 |#2|) |#2|) 92) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 93) (((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|))) 86) (((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|)) 88) (((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|)) 89) (((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|))) 87) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|)) 95) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 91))) -(((-317 |#1| |#2|) (-10 -7 (-15 -4360 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -4360 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -4360 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -4360 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -4360 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -4360 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -4360 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -4360 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -4360 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -4360 ((-52) |#2| (-114) (-294 |#2|) (-640 |#2|)))) (-13 (-846) (-555) (-611 (-536))) (-430 |#1|)) (T -317)) -((-4360 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-640 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-4360 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-4360 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-4360 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-4360 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-114))) (-5 *6 (-640 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-4360 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4360 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 (-294 *8))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-640 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-4360 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4360 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-640 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-4360 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6))))) -(-10 -7 (-15 -4360 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -4360 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -4360 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -4360 ((-52) (-640 (-294 |#2|)) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -4360 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 |#2|))) (-15 -4360 ((-52) (-640 |#2|) (-640 (-114)) (-294 |#2|) (-640 (-294 |#2|)))) (-15 -4360 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -4360 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -4360 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -4360 ((-52) |#2| (-114) (-294 |#2|) (-640 |#2|)))) -((-4379 (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151)) 67) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563)) 68) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151)) 64) (((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563)) 65)) (-4370 (((-1 (-225) (-225)) (-225)) 66))) -(((-318) (-10 -7 (-15 -4370 ((-1 (-225) (-225)) (-225))) (-15 -4379 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563))) (-15 -4379 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151))) (-15 -4379 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563))) (-15 -4379 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151))))) (T -318)) -((-4379 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *8 (-1151)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-4379 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-4379 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *7 (-1151)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-4379 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) (-4370 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) -(-10 -7 (-15 -4370 ((-1 (-225) (-225)) (-225))) (-15 -4379 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563))) (-15 -4379 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-1 (-225) (-225)) (-563) (-1151))) (-15 -4379 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563))) (-15 -4379 ((-1203 (-922)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-225) (-563) (-1151)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 26)) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-2893 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-2914 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 20)) (-3419 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-2242 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) 34)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2697 (((-112) $) NIL)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) 16)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-407 (-563))) NIL) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2497 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-3204 (($ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-407 (-563))) NIL)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1290 (((-407 (-563)) $) 17)) (-2892 (($ (-1242 |#1| |#2| |#3|)) 11)) (-2631 (((-1242 |#1| |#2| |#3|) $) 12)) (-3177 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1962 (((-407 (-563)) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 10)) (-2062 (((-858) $) 40) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-1304 ((|#1| $ (-407 (-563))) 32)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3219 ((|#1| $) NIL)) (-2285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 28)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 35)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-319 |#1| |#2| |#3|) (-13 (-1238 |#1|) (-788) (-10 -8 (-15 -2892 ($ (-1242 |#1| |#2| |#3|))) (-15 -2631 ((-1242 |#1| |#2| |#3|) $)) (-15 -1290 ((-407 (-563)) $)))) (-13 (-363) (-846)) (-1169) |#1|) (T -319)) -((-2892 (*1 *1 *2) (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-1242 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))) (-1290 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3)))) -(-13 (-1238 |#1|) (-788) (-10 -8 (-15 -2892 ($ (-1242 |#1| |#2| |#3|))) (-15 -2631 ((-1242 |#1| |#2| |#3|) $)) (-15 -1290 ((-407 (-563)) $)))) -((-1403 (((-2 (|:| -2631 (-767)) (|:| -2765 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767)) 35)) (-2497 (((-640 (-2 (|:| -2765 (-767)) (|:| |logand| |#1|))) (-418 |#1|)) 40))) -(((-320 |#1|) (-10 -7 (-15 -1403 ((-2 (|:| -2631 (-767)) (|:| -2765 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767))) (-15 -2497 ((-640 (-2 (|:| -2765 (-767)) (|:| |logand| |#1|))) (-418 |#1|)))) (-555)) (T -320)) -((-2497 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-555)) (-5 *2 (-640 (-2 (|:| -2765 (-767)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-1403 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-555)) (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *5) (|:| |radicand| (-640 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-767))))) -(-10 -7 (-15 -1403 ((-2 (|:| -2631 (-767)) (|:| -2765 |#1|) (|:| |radicand| (-640 |#1|))) (-418 |#1|) (-767))) (-15 -2497 ((-640 (-2 (|:| -2765 (-767)) (|:| |logand| |#1|))) (-418 |#1|)))) -((-2185 (((-640 |#2|) (-1165 |#4|)) 44)) (-1338 ((|#3| (-563)) 47)) (-1319 (((-1165 |#4|) (-1165 |#3|)) 30)) (-1328 (((-1165 |#4|) (-1165 |#4|) (-563)) 64)) (-1309 (((-1165 |#3|) (-1165 |#4|)) 21)) (-1962 (((-640 (-767)) (-1165 |#4|) (-640 |#2|)) 41)) (-1300 (((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|)) 35))) -(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1300 ((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|))) (-15 -1962 ((-640 (-767)) (-1165 |#4|) (-640 |#2|))) (-15 -2185 ((-640 |#2|) (-1165 |#4|))) (-15 -1309 ((-1165 |#3|) (-1165 |#4|))) (-15 -1319 ((-1165 |#4|) (-1165 |#3|))) (-15 -1328 ((-1165 |#4|) (-1165 |#4|) (-563))) (-15 -1338 (|#3| (-563)))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|)) (T -321)) -((-1338 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5)))) (-1328 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *7)) (-5 *3 (-563)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *1 (-321 *4 *5 *6 *7)))) (-1319 (*1 *2 *3) (-12 (-5 *3 (-1165 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1165 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-1309 (*1 *2 *3) (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-640 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-1962 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *8)) (-5 *4 (-640 *6)) (-4 *6 (-846)) (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) (-5 *2 (-640 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) (-1300 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-1165 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) -(-10 -7 (-15 -1300 ((-1165 |#3|) (-1165 |#4|) (-640 |#2|) (-640 |#3|))) (-15 -1962 ((-640 (-767)) (-1165 |#4|) (-640 |#2|))) (-15 -2185 ((-640 |#2|) (-1165 |#4|))) (-15 -1309 ((-1165 |#3|) (-1165 |#4|))) (-15 -1319 ((-1165 |#4|) (-1165 |#3|))) (-15 -1328 ((-1165 |#4|) (-1165 |#4|) (-563))) (-15 -1338 (|#3| (-563)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 19)) (-2914 (((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-563)))) $) 23)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2433 (((-767) $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-2535 ((|#1| $ (-563)) NIL)) (-3281 (((-563) $ (-563)) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3876 (($ (-1 |#1| |#1|) $) NIL)) (-1360 (($ (-1 (-563) (-563)) $) 11)) (-1938 (((-1151) $) NIL)) (-1349 (($ $ $) NIL (|has| (-563) (-788)))) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL) (($ |#1|) NIL)) (-1304 (((-563) |#1| $) NIL)) (-3790 (($) 21 T CONST)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) 28 (|has| |#1| (-846)))) (-3039 (($ $) 12) (($ $ $) 27)) (-3027 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL) (($ (-563) |#1|) 26))) -(((-322 |#1|) (-13 (-21) (-713 (-563)) (-323 |#1| (-563)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1093)) (T -322)) -NIL -(-13 (-21) (-713 (-563)) (-323 |#1| (-563)) (-10 -7 (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2914 (((-640 (-2 (|:| |gen| |#1|) (|:| -3177 |#2|))) $) 27)) (-1482 (((-3 $ "failed") $ $) 19)) (-2433 (((-767) $) 28)) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#1| "failed") $) 32)) (-2589 ((|#1| $) 33)) (-2535 ((|#1| $ (-563)) 25)) (-3281 ((|#2| $ (-563)) 26)) (-3876 (($ (-1 |#1| |#1|) $) 22)) (-1360 (($ (-1 |#2| |#2|) $) 23)) (-1938 (((-1151) $) 9)) (-1349 (($ $ $) 21 (|has| |#2| (-788)))) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ |#1|) 31)) (-1304 ((|#2| |#1| $) 24)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3027 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ |#2| |#1|) 29))) -(((-323 |#1| |#2|) (-140) (-1093) (-131)) (T -323)) -((-3027 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) (-2433 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) (-5 *2 (-767)))) (-2914 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 *4)))))) (-3281 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1093)) (-4 *2 (-131)))) (-2535 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1093)))) (-1304 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) (-1360 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)))) (-3876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)))) (-1349 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)) (-4 *3 (-788))))) -(-13 (-131) (-1034 |t#1|) (-10 -8 (-15 -3027 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2433 ((-767) $)) (-15 -2914 ((-640 (-2 (|:| |gen| |t#1|) (|:| -3177 |t#2|))) $)) (-15 -3281 (|t#2| $ (-563))) (-15 -2535 (|t#1| $ (-563))) (-15 -1304 (|t#2| |t#1| $)) (-15 -1360 ($ (-1 |t#2| |t#2|) $)) (-15 -3876 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-788)) (-15 -1349 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-1034 |#1|) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2914 (((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-767)))) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2433 (((-767) $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-2535 ((|#1| $ (-563)) NIL)) (-3281 (((-767) $ (-563)) NIL)) (-3876 (($ (-1 |#1| |#1|) $) NIL)) (-1360 (($ (-1 (-767) (-767)) $) NIL)) (-1938 (((-1151) $) NIL)) (-1349 (($ $ $) NIL (|has| (-767) (-788)))) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL) (($ |#1|) NIL)) (-1304 (((-767) |#1| $) NIL)) (-3790 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3027 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-767) |#1|) NIL))) -(((-324 |#1|) (-323 |#1| (-767)) (-1093)) (T -324)) -NIL -(-323 |#1| (-767)) -((-2227 (($ $) 71)) (-3302 (($ $ |#2| |#3| $) 14)) (-3310 (($ (-1 |#3| |#3|) $) 51)) (-3160 (((-112) $) 42)) (-3170 ((|#2| $) 44)) (-3448 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 63)) (-3166 ((|#2| $) 67)) (-3234 (((-640 |#2|) $) 56)) (-3292 (($ $ $ (-767)) 37)) (-3050 (($ $ |#2|) 60))) -(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -2227 (|#1| |#1|)) (-15 -3166 (|#2| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3292 (|#1| |#1| |#1| (-767))) (-15 -3302 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3310 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3234 ((-640 |#2|) |#1|)) (-15 -3170 (|#2| |#1|)) (-15 -3160 ((-112) |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3050 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1045) (-788)) (T -325)) -NIL -(-10 -8 (-15 -2227 (|#1| |#1|)) (-15 -3166 (|#2| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3292 (|#1| |#1| |#1| (-767))) (-15 -3302 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3310 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3234 ((-640 |#2|) |#1|)) (-15 -3170 (|#2| |#1|)) (-15 -3160 ((-112) |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3050 (|#1| |#1| |#2|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 91 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 89 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 86)) (-2589 (((-563) $) 90 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 88 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 87)) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-2227 (($ $) 75 (|has| |#1| (-452)))) (-3302 (($ $ |#1| |#2| $) 79)) (-2712 (((-112) $) 31)) (-1528 (((-767) $) 82)) (-1871 (((-112) $) 65)) (-2165 (($ |#1| |#2|) 64)) (-3187 ((|#2| $) 81)) (-3310 (($ (-1 |#2| |#2|) $) 80)) (-2751 (($ (-1 |#1| |#1|) $) 66)) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3160 (((-112) $) 85)) (-3170 ((|#1| $) 84)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-555)))) (-1962 ((|#2| $) 67)) (-3166 ((|#1| $) 76 (|has| |#1| (-452)))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50) (($ (-407 (-563))) 60 (-2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))))) (-3234 (((-640 |#1|) $) 83)) (-1304 ((|#1| $ |#2|) 62)) (-4376 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3292 (($ $ $ (-767)) 78 (|has| |#1| (-172)))) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-326 |#1| |#2|) (-140) (-1045) (-788)) (T -326)) -((-3160 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-112)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-640 *3)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-767)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-3302 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) (-3292 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *3 (-172)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-555)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-2227 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *2 (-452))))) -(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -3160 ((-112) $)) (-15 -3170 (|t#1| $)) (-15 -3234 ((-640 |t#1|) $)) (-15 -1528 ((-767) $)) (-15 -3187 (|t#2| $)) (-15 -3310 ($ (-1 |t#2| |t#2|) $)) (-15 -3302 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3292 ($ $ $ (-767))) |%noBranch|) (IF (|has| |t#1| (-555)) (-15 -3448 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3166 (|t#1| $)) (-15 -2227 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-411 |#1|) . T) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-3004 (((-112) (-112)) NIL)) (-2189 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-1736 (($ (-1 (-112) |#1|) $) NIL)) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-2273 (($ $) NIL (|has| |#1| (-1093)))) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2841 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-2256 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-3013 (($ $ (-563)) NIL)) (-3023 (((-767) $) NIL)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2552 (($ (-767) |#1|) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2346 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1956 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-2530 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3034 (($ (-640 |#1|)) NIL)) (-1884 ((|#1| $) NIL (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-1751 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-3065 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3034 ($ (-640 |#1|))) (-15 -3023 ((-767) $)) (-15 -3013 ($ $ (-563))) (-15 -3004 ((-112) (-112))))) (-1208)) (T -327)) -((-3034 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-327 *3)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1208))))) -(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3034 ($ (-640 |#1|))) (-15 -3023 ((-767) $)) (-15 -3013 ($ $ (-563))) (-15 -3004 ((-112) (-112))))) -((-1819 (((-112) $) 50)) (-1785 (((-767)) 26)) (-3282 ((|#2| $) 54) (($ $ (-917)) 123)) (-2433 (((-767)) 124)) (-1505 (($ (-1257 |#2|)) 23)) (-3277 (((-112) $) 139)) (-3251 ((|#2| $) 56) (($ $ (-917)) 120)) (-2134 (((-1165 |#2|) $) NIL) (((-1165 $) $ (-917)) 111)) (-3332 (((-1165 |#2|) $) 98)) (-3321 (((-1165 |#2|) $) 94) (((-3 (-1165 |#2|) "failed") $ $) 91)) (-3344 (($ $ (-1165 |#2|)) 62)) (-1797 (((-829 (-917))) 33) (((-917)) 51)) (-1575 (((-134)) 30)) (-1962 (((-829 (-917)) $) 35) (((-917) $) 142)) (-3356 (($) 132)) (-1818 (((-1257 |#2|) $) NIL) (((-684 |#2|) (-1257 $)) 45)) (-4376 (($ $) NIL) (((-3 $ "failed") $) 101)) (-1833 (((-112) $) 48))) -(((-328 |#1| |#2|) (-10 -8 (-15 -4376 ((-3 |#1| "failed") |#1|)) (-15 -2433 ((-767))) (-15 -4376 (|#1| |#1|)) (-15 -3321 ((-3 (-1165 |#2|) "failed") |#1| |#1|)) (-15 -3321 ((-1165 |#2|) |#1|)) (-15 -3332 ((-1165 |#2|) |#1|)) (-15 -3344 (|#1| |#1| (-1165 |#2|))) (-15 -3277 ((-112) |#1|)) (-15 -3356 (|#1|)) (-15 -3282 (|#1| |#1| (-917))) (-15 -3251 (|#1| |#1| (-917))) (-15 -2134 ((-1165 |#1|) |#1| (-917))) (-15 -3282 (|#2| |#1|)) (-15 -3251 (|#2| |#1|)) (-15 -1962 ((-917) |#1|)) (-15 -1797 ((-917))) (-15 -2134 ((-1165 |#2|) |#1|)) (-15 -1505 (|#1| (-1257 |#2|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1|)) (-15 -1785 ((-767))) (-15 -1797 ((-829 (-917)))) (-15 -1962 ((-829 (-917)) |#1|)) (-15 -1819 ((-112) |#1|)) (-15 -1833 ((-112) |#1|)) (-15 -1575 ((-134)))) (-329 |#2|) (-363)) (T -328)) -((-1575 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1797 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1785 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1797 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-2433 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))) -(-10 -8 (-15 -4376 ((-3 |#1| "failed") |#1|)) (-15 -2433 ((-767))) (-15 -4376 (|#1| |#1|)) (-15 -3321 ((-3 (-1165 |#2|) "failed") |#1| |#1|)) (-15 -3321 ((-1165 |#2|) |#1|)) (-15 -3332 ((-1165 |#2|) |#1|)) (-15 -3344 (|#1| |#1| (-1165 |#2|))) (-15 -3277 ((-112) |#1|)) (-15 -3356 (|#1|)) (-15 -3282 (|#1| |#1| (-917))) (-15 -3251 (|#1| |#1| (-917))) (-15 -2134 ((-1165 |#1|) |#1| (-917))) (-15 -3282 (|#2| |#1|)) (-15 -3251 (|#2| |#1|)) (-15 -1962 ((-917) |#1|)) (-15 -1797 ((-917))) (-15 -2134 ((-1165 |#2|) |#1|)) (-15 -1505 (|#1| (-1257 |#2|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1|)) (-15 -1785 ((-767))) (-15 -1797 ((-829 (-917)))) (-15 -1962 ((-829 (-917)) |#1|)) (-15 -1819 ((-112) |#1|)) (-15 -1833 ((-112) |#1|)) (-15 -1575 ((-134)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1819 (((-112) $) 95)) (-1785 (((-767)) 91)) (-3282 ((|#1| $) 141) (($ $ (-917)) 138 (|has| |#1| (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) 123 (|has| |#1| (-368)))) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-4332 (((-112) $ $) 60)) (-2433 (((-767)) 113 (|has| |#1| (-368)))) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#1| "failed") $) 102)) (-2589 ((|#1| $) 103)) (-1505 (($ (-1257 |#1|)) 147)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-4301 (($) 110 (|has| |#1| (-368)))) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-2135 (($) 125 (|has| |#1| (-368)))) (-2812 (((-112) $) 126 (|has| |#1| (-368)))) (-2506 (($ $ (-767)) 88 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3675 (((-112) $) 72)) (-2903 (((-917) $) 128 (|has| |#1| (-368))) (((-829 (-917)) $) 85 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2712 (((-112) $) 31)) (-3298 (($) 136 (|has| |#1| (-368)))) (-3277 (((-112) $) 135 (|has| |#1| (-368)))) (-3251 ((|#1| $) 142) (($ $ (-917)) 139 (|has| |#1| (-368)))) (-3113 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-2134 (((-1165 |#1|) $) 146) (((-1165 $) $ (-917)) 140 (|has| |#1| (-368)))) (-3267 (((-917) $) 111 (|has| |#1| (-368)))) (-3332 (((-1165 |#1|) $) 132 (|has| |#1| (-368)))) (-3321 (((-1165 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-3344 (($ $ (-1165 |#1|)) 133 (|has| |#1| (-368)))) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-2956 (($) 115 (|has| |#1| (-368)) CONST)) (-3491 (($ (-917)) 112 (|has| |#1| (-368)))) (-1808 (((-112) $) 94)) (-3249 (((-1113) $) 10)) (-1738 (($) 134 (|has| |#1| (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 122 (|has| |#1| (-368)))) (-2055 (((-418 $) $) 75)) (-1797 (((-829 (-917))) 92) (((-917)) 144)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-2515 (((-767) $) 127 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 86 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1575 (((-134)) 100)) (-1361 (($ $) 119 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-1962 (((-829 (-917)) $) 93) (((-917) $) 143)) (-2713 (((-1165 |#1|)) 145)) (-2750 (($) 124 (|has| |#1| (-368)))) (-3356 (($) 137 (|has| |#1| (-368)))) (-1818 (((-1257 |#1|) $) 149) (((-684 |#1|) (-1257 $)) 148)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 121 (|has| |#1| (-368)))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 101)) (-4376 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3192 (((-767)) 28 T CONST)) (-3288 (((-1257 $)) 151) (((-1257 $) (-917)) 150)) (-2543 (((-112) $ $) 40)) (-1833 (((-112) $) 96)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-1772 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-4191 (($ $) 118 (|has| |#1| (-368))) (($ $ (-767)) 116 (|has| |#1| (-368)))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 66) (($ $ |#1|) 99)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +((-2416 ((|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))) 25))) +(((-310 |#1|) (-10 -7 (-15 -2416 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) (-38 (-407 (-564)))) (T -310)) +((-2416 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564))))))) +(-10 -7 (-15 -2416 (|#1| (-1 |#1| (-564)) (-1172 (-407 (-564)))))) +((-3732 (((-112) $ $) NIL)) (-2117 (((-564) $) 12)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2575 (((-1129) $) 9)) (-3742 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-311) (-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)) (-15 -2117 ((-564) $))))) (T -311)) +((-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311))))) +(-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)) (-15 -2117 ((-564) $)))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 7)) (-1705 (((-112) $ $) 9))) +(((-312) (-1094)) (T -312)) +NIL +(-1094) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 67)) (-1473 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-1245 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 26)) (-2239 (((-1245 |#1| |#2| |#3| |#4|) $) NIL) (((-1170) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-564) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-564)))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-1245 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1259 (-1245 |#1| |#2| |#3| |#4|)))) (-685 $) (-1259 $)) NIL) (((-685 (-1245 |#1| |#2| |#3| |#4|)) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-883 (-379))))) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL)) (-1625 (((-1245 |#1| |#2| |#3| |#4|) $) 22)) (-3907 (((-3 $ "failed") $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)))) (-2839 (((-112) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-2848 (($ $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-2187 (($ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) $) NIL)) (-3216 (((-3 (-840 |#2|) "failed") $) 87)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-307)))) (-3014 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 (-1245 |#1| |#2| |#3| |#4|)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-294 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-294 (-1245 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-309 (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-641 (-1170)) (-641 (-1245 |#1| |#2| |#3| |#4|))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|)))) (($ $ (-1170) (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-514 (-1170) (-1245 |#1| |#2| |#3| |#4|))))) (-4061 (((-768) $) NIL)) (-4382 (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-286 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-768)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-2090 (($ $) NIL)) (-1634 (((-1245 |#1| |#2| |#3| |#4|) $) 19)) (-2235 (((-889 (-564)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-612 (-536)))) (((-379) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1019))) (((-225) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1019)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-1245 |#1| |#2| |#3| |#4|)) 30) (($ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-1035 (-1170)))) (($ (-1244 |#2| |#3| |#4|)) 37)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-1245 |#1| |#2| |#3| |#4|) (-906))) (|has| (-1245 |#1| |#2| |#3| |#4|) (-145))))) (-3270 (((-768)) NIL T CONST)) (-2551 (((-1245 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-545)))) (-3360 (((-112) $ $) NIL)) (-2792 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-817)))) (-4311 (($) 42 T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-233))) (($ $ (-1170)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-897 (-1170)))) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) (-768)) NIL) (($ $ (-1 (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|))) NIL)) (-1751 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-1245 |#1| |#2| |#3| |#4|) (-847)))) (-1799 (($ $ $) 35) (($ (-1245 |#1| |#2| |#3| |#4|) (-1245 |#1| |#2| |#3| |#4|)) 32)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-1245 |#1| |#2| |#3| |#4|) $) 31) (($ $ (-1245 |#1| |#2| |#3| |#4|)) NIL))) +(((-313 |#1| |#2| |#3| |#4|) (-13 (-989 (-1245 |#1| |#2| |#3| |#4|)) (-1035 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -3216 ((-3 (-840 |#2|) "failed") $)) (-15 -3742 ($ (-1244 |#2| |#3| |#4|))))) (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -313)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4) (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *1 (-313 *3 *4 *5 *6)))) (-3216 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-840 *4)) (-5 *1 (-313 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4)))) +(-13 (-989 (-1245 |#1| |#2| |#3| |#4|)) (-1035 (-1244 |#2| |#3| |#4|)) (-10 -8 (-15 -3216 ((-3 (-840 |#2|) "failed") $)) (-15 -3742 ($ (-1244 |#2| |#3| |#4|))))) +((-2187 (((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)) 13))) +(((-314 |#1| |#2|) (-10 -7 (-15 -2187 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) (-847) (-847)) (T -314)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6))))) +(-10 -7 (-15 -2187 ((-316 |#2|) (-1 |#2| |#1|) (-316 |#1|)))) +((-4325 (((-52) |#2| (-294 |#2|) (-768)) 40) (((-52) |#2| (-294 |#2|)) 32) (((-52) |#2| (-768)) 35) (((-52) |#2|) 33) (((-52) (-1170)) 26)) (-2751 (((-52) |#2| (-294 |#2|) (-407 (-564))) 59) (((-52) |#2| (-294 |#2|)) 56) (((-52) |#2| (-407 (-564))) 58) (((-52) |#2|) 57) (((-52) (-1170)) 55)) (-4350 (((-52) |#2| (-294 |#2|) (-407 (-564))) 54) (((-52) |#2| (-294 |#2|)) 51) (((-52) |#2| (-407 (-564))) 53) (((-52) |#2|) 52) (((-52) (-1170)) 50)) (-4338 (((-52) |#2| (-294 |#2|) (-564)) 47) (((-52) |#2| (-294 |#2|)) 44) (((-52) |#2| (-564)) 46) (((-52) |#2|) 45) (((-52) (-1170)) 43))) +(((-315 |#1| |#2|) (-10 -7 (-15 -4325 ((-52) (-1170))) (-15 -4325 ((-52) |#2|)) (-15 -4325 ((-52) |#2| (-768))) (-15 -4325 ((-52) |#2| (-294 |#2|))) (-15 -4325 ((-52) |#2| (-294 |#2|) (-768))) (-15 -4338 ((-52) (-1170))) (-15 -4338 ((-52) |#2|)) (-15 -4338 ((-52) |#2| (-564))) (-15 -4338 ((-52) |#2| (-294 |#2|))) (-15 -4338 ((-52) |#2| (-294 |#2|) (-564))) (-15 -4350 ((-52) (-1170))) (-15 -4350 ((-52) |#2|)) (-15 -4350 ((-52) |#2| (-407 (-564)))) (-15 -4350 ((-52) |#2| (-294 |#2|))) (-15 -4350 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -2751 ((-52) (-1170))) (-15 -2751 ((-52) |#2|)) (-15 -2751 ((-52) |#2| (-407 (-564)))) (-15 -2751 ((-52) |#2| (-294 |#2|))) (-15 -2751 ((-52) |#2| (-294 |#2|) (-407 (-564))))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -315)) +((-2751 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2751 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-2751 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4350 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4350 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4350 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4350 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4338 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 *5) (-637 *5))) (-5 *5 (-564)) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4338 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4338 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-847) (-1035 *4) (-637 *4))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4338 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4))))) (-4325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-294 *3)) (-5 *5 (-768)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-4325 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4325 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) (-4 *5 (-13 (-27) (-1194) (-430 *4)))))) +(-10 -7 (-15 -4325 ((-52) (-1170))) (-15 -4325 ((-52) |#2|)) (-15 -4325 ((-52) |#2| (-768))) (-15 -4325 ((-52) |#2| (-294 |#2|))) (-15 -4325 ((-52) |#2| (-294 |#2|) (-768))) (-15 -4338 ((-52) (-1170))) (-15 -4338 ((-52) |#2|)) (-15 -4338 ((-52) |#2| (-564))) (-15 -4338 ((-52) |#2| (-294 |#2|))) (-15 -4338 ((-52) |#2| (-294 |#2|) (-564))) (-15 -4350 ((-52) (-1170))) (-15 -4350 ((-52) |#2|)) (-15 -4350 ((-52) |#2| (-407 (-564)))) (-15 -4350 ((-52) |#2| (-294 |#2|))) (-15 -4350 ((-52) |#2| (-294 |#2|) (-407 (-564)))) (-15 -2751 ((-52) (-1170))) (-15 -2751 ((-52) |#2|)) (-15 -2751 ((-52) |#2| (-407 (-564)))) (-15 -2751 ((-52) |#2| (-294 |#2|))) (-15 -2751 ((-52) |#2| (-294 |#2|) (-407 (-564))))) +((-3732 (((-112) $ $) NIL)) (-2690 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-949 $)) NIL (|has| |#1| (-556)))) (-1452 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-949 $)) NIL (|has| |#1| (-556)))) (-4173 (((-112) $) 27 (-4030 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-4269 (((-641 (-1170)) $) 368)) (-4097 (((-407 (-1166 $)) $ (-610 $)) NIL (|has| |#1| (-556)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2084 (((-641 (-610 $)) $) NIL)) (-2451 (($ $) 171 (|has| |#1| (-556)))) (-2319 (($ $) 147 (|has| |#1| (-556)))) (-1423 (($ $ (-1086 $)) 232 (|has| |#1| (-556))) (($ $ (-1170)) 228 (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) NIL (-4030 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-3148 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) 386) (($ $ (-641 (-610 $)) (-641 $)) 430)) (-3679 (((-418 (-1166 $)) (-1166 $)) 309 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-2249 (($ $) NIL (|has| |#1| (-556)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-556)))) (-4137 (($ $) NIL (|has| |#1| (-556)))) (-2377 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2428 (($ $) 167 (|has| |#1| (-556)))) (-2297 (($ $) 143 (|has| |#1| (-556)))) (-1700 (($ $ (-564)) 73 (|has| |#1| (-556)))) (-2473 (($ $) 175 (|has| |#1| (-556)))) (-2339 (($ $) 151 (|has| |#1| (-556)))) (-2818 (($) NIL (-4030 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))) CONST)) (-3414 (((-641 $) $ (-1170)) NIL (|has| |#1| (-556))) (((-641 $) $) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $) (-1170)) NIL (|has| |#1| (-556))) (((-641 $) (-1166 $)) NIL (|has| |#1| (-556))) (((-641 $) (-949 $)) NIL (|has| |#1| (-556)))) (-2854 (($ $ (-1170)) NIL (|has| |#1| (-556))) (($ $) NIL (|has| |#1| (-556))) (($ (-1166 $) (-1170)) 134 (|has| |#1| (-556))) (($ (-1166 $)) NIL (|has| |#1| (-556))) (($ (-949 $)) NIL (|has| |#1| (-556)))) (-2111 (((-3 (-610 $) "failed") $) 18) (((-3 (-1170) "failed") $) NIL) (((-3 |#1| "failed") $) 441) (((-3 (-48) "failed") $) 337 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-949 |#1|)) "failed") $) NIL (|has| |#1| (-556))) (((-3 (-949 |#1|) "failed") $) NIL (|has| |#1| (-1046))) (((-3 (-407 (-564)) "failed") $) 46 (-4030 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2239 (((-610 $) $) 12) (((-1170) $) NIL) ((|#1| $) 421) (((-48) $) NIL (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-949 |#1|)) $) NIL (|has| |#1| (-556))) (((-949 |#1|) $) NIL (|has| |#1| (-1046))) (((-407 (-564)) $) 320 (-4030 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-1373 (($ $ $) NIL (|has| |#1| (-556)))) (-3039 (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 125 (|has| |#1| (-1046))) (((-685 |#1|) (-685 $)) 115 (|has| |#1| (-1046))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (-1699 (($ $) 96 (|has| |#1| (-556)))) (-3951 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (-1350 (($ $ $) NIL (|has| |#1| (-556)))) (-3431 (($ $ (-1086 $)) 236 (|has| |#1| (-556))) (($ $ (-1170)) 234 (|has| |#1| (-556)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-556)))) (-4188 (((-112) $) NIL (|has| |#1| (-556)))) (-3122 (($ $ $) 202 (|has| |#1| (-556)))) (-1655 (($) 137 (|has| |#1| (-556)))) (-2742 (($ $ $) 222 (|has| |#1| (-556)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 392 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 399 (|has| |#1| (-883 (-379))))) (-2211 (($ $) NIL) (($ (-641 $)) NIL)) (-3423 (((-641 (-114)) $) NIL)) (-4058 (((-114) (-114)) 277)) (-3840 (((-112) $) 25 (-4030 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (-1801 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-3834 (($ $) 72 (|has| |#1| (-1046)))) (-1625 (((-1119 |#1| (-610 $)) $) 91 (|has| |#1| (-1046)))) (-3374 (((-112) $) 62 (|has| |#1| (-556)))) (-2347 (($ $ (-564)) NIL (|has| |#1| (-556)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-2176 (((-1166 $) (-610 $)) 278 (|has| $ (-1046)))) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 $ $) (-610 $)) 426)) (-4242 (((-3 (-610 $) "failed") $) NIL)) (-2192 (($ $) 141 (|has| |#1| (-556)))) (-3897 (($ $) 247 (|has| |#1| (-556)))) (-2529 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2217 (((-1152) $) NIL)) (-4087 (((-641 (-610 $)) $) 49)) (-1697 (($ (-114) $) NIL) (($ (-114) (-641 $)) 431)) (-3514 (((-3 (-641 $) "failed") $) NIL (|has| |#1| (-1106)))) (-3343 (((-3 (-2 (|:| |val| $) (|:| -2515 (-564))) "failed") $) NIL (|has| |#1| (-1046)))) (-4386 (((-3 (-641 $) "failed") $) 436 (|has| |#1| (-25)))) (-2705 (((-3 (-2 (|:| -1762 (-564)) (|:| |var| (-610 $))) "failed") $) 440 (|has| |#1| (-25)))) (-3758 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $) NIL (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-114)) NIL (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-1170)) NIL (|has| |#1| (-1046)))) (-4211 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) 51)) (-4373 (($ $) NIL (-4030 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-2787 (($ $ (-1170)) 251 (|has| |#1| (-556))) (($ $ (-1086 $)) 253 (|has| |#1| (-556)))) (-3724 (((-768) $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) 43)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 302 (|has| |#1| (-556)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-3755 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4166 (($ $ (-1170)) 226 (|has| |#1| (-556))) (($ $) 224 (|has| |#1| (-556)))) (-3676 (($ $) 218 (|has| |#1| (-556)))) (-3941 (((-418 (-1166 $)) (-1166 $)) 307 (-12 (|has| |#1| (-452)) (|has| |#1| (-556))))) (-4127 (((-418 $) $) NIL (|has| |#1| (-556)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-556)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-556)))) (-4118 (($ $) 139 (|has| |#1| (-556)))) (-1497 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2416 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 425) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) 379) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) NIL (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-612 (-536)))) (($ $) NIL (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 366 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 365 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ $)) NIL (|has| |#1| (-1046)))) (-4061 (((-768) $) NIL (|has| |#1| (-556)))) (-2263 (($ $) 239 (|has| |#1| (-556)))) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-1928 (($ $) NIL) (($ $ $) NIL)) (-2287 (($ $) 249 (|has| |#1| (-556)))) (-1496 (($ $) 200 (|has| |#1| (-556)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1046))) (($ $ (-1170)) NIL (|has| |#1| (-1046)))) (-2090 (($ $) 74 (|has| |#1| (-556)))) (-1634 (((-1119 |#1| (-610 $)) $) 93 (|has| |#1| (-556)))) (-3925 (($ $) 318 (|has| $ (-1046)))) (-2484 (($ $) 177 (|has| |#1| (-556)))) (-2348 (($ $) 153 (|has| |#1| (-556)))) (-2462 (($ $) 173 (|has| |#1| (-556)))) (-2328 (($ $) 149 (|has| |#1| (-556)))) (-2438 (($ $) 169 (|has| |#1| (-556)))) (-2309 (($ $) 145 (|has| |#1| (-556)))) (-2235 (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (($ (-418 $)) NIL (|has| |#1| (-556))) (((-536) $) 363 (|has| |#1| (-612 (-536))))) (-2766 (($ $ $) NIL (|has| |#1| (-473)))) (-3671 (($ $ $) NIL (|has| |#1| (-473)))) (-3742 (((-859) $) 424) (($ (-610 $)) 415) (($ (-1170)) 381) (($ |#1|) 338) (($ $) NIL (|has| |#1| (-556))) (($ (-48)) 313 (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) (($ (-1119 |#1| (-610 $))) 95 (|has| |#1| (-1046))) (($ (-407 |#1|)) NIL (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) NIL (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) NIL (|has| |#1| (-556))) (($ (-407 (-949 |#1|))) NIL (|has| |#1| (-556))) (($ (-949 |#1|)) NIL (|has| |#1| (-1046))) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-556)) (|has| |#1| (-1035 (-407 (-564)))))) (($ (-564)) 34 (-4030 (|has| |#1| (-1035 (-564))) (|has| |#1| (-1046))))) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL (|has| |#1| (-1046)) CONST)) (-1523 (($ $) NIL) (($ (-641 $)) NIL)) (-3181 (($ $ $) 220 (|has| |#1| (-556)))) (-1852 (($ $ $) 206 (|has| |#1| (-556)))) (-4103 (($ $ $) 210 (|has| |#1| (-556)))) (-2195 (($ $ $) 204 (|has| |#1| (-556)))) (-1566 (($ $ $) 208 (|has| |#1| (-556)))) (-2095 (((-112) (-114)) 10)) (-2521 (($ $) 183 (|has| |#1| (-556)))) (-2379 (($ $) 159 (|has| |#1| (-556)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) 179 (|has| |#1| (-556)))) (-2358 (($ $) 155 (|has| |#1| (-556)))) (-2548 (($ $) 187 (|has| |#1| (-556)))) (-2404 (($ $) 163 (|has| |#1| (-556)))) (-2591 (($ (-1170) $) NIL) (($ (-1170) $ $) NIL) (($ (-1170) $ $ $) NIL) (($ (-1170) $ $ $ $) NIL) (($ (-1170) (-641 $)) NIL)) (-2241 (($ $) 214 (|has| |#1| (-556)))) (-2597 (($ $) 212 (|has| |#1| (-556)))) (-4065 (($ $) 189 (|has| |#1| (-556)))) (-2415 (($ $) 165 (|has| |#1| (-556)))) (-2534 (($ $) 185 (|has| |#1| (-556)))) (-2391 (($ $) 161 (|has| |#1| (-556)))) (-2507 (($ $) 181 (|has| |#1| (-556)))) (-2367 (($ $) 157 (|has| |#1| (-556)))) (-2792 (($ $) 192 (|has| |#1| (-556)))) (-4311 (($) 21 (-4030 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) CONST)) (-3372 (($ $) 243 (|has| |#1| (-556)))) (-4321 (($) 23 (-4030 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))) CONST)) (-2770 (($ $) 194 (|has| |#1| (-556))) (($ $ $) 196 (|has| |#1| (-556)))) (-2050 (($ $) 241 (|has| |#1| (-556)))) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-1046))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-1046))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-1046))) (($ $ (-1170)) NIL (|has| |#1| (-1046)))) (-1841 (($ $) 245 (|has| |#1| (-556)))) (-2397 (($ $ $) 198 (|has| |#1| (-556)))) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 88)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 86)) (-1799 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 106 (|has| |#1| (-556))) (($ $ $) 42 (-4030 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1790 (($ $ $) 40 (-4030 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ $) 29 (-4030 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (-1780 (($ $ $) 38 (-4030 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))))) (** (($ $ $) 64 (|has| |#1| (-556))) (($ $ (-407 (-564))) 315 (|has| |#1| (-556))) (($ $ (-564)) 80 (-4030 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-768)) 75 (-4030 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106)))) (($ $ (-918)) 84 (-4030 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106))))) (* (($ (-407 (-564)) $) NIL (|has| |#1| (-556))) (($ $ (-407 (-564))) NIL (|has| |#1| (-556))) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))) (($ $ $) 36 (-4030 (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) (|has| |#1| (-1106)))) (($ (-564) $) 32 (-4030 (|has| |#1| (-21)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ (-768) $) NIL (-4030 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))) (($ (-918) $) NIL (-4030 (|has| |#1| (-25)) (-12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))))))) +(((-316 |#1|) (-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -1699 ($ $)) (-15 -3374 ((-112) $)) (-15 -1700 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -3941 ((-418 (-1166 $)) (-1166 $))) (-15 -3679 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1035 (-564))) (-6 (-1035 (-48))) |%noBranch|)) |%noBranch|))) (-847)) (T -316)) +((-1699 (*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-847)))) (-3374 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-1700 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-3941 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))) (-3679 (*1 *2 *3) (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847))))) +(-13 (-430 |#1|) (-10 -8 (IF (|has| |#1| (-556)) (PROGN (-6 (-29 |#1|)) (-6 (-1194)) (-6 (-160)) (-6 (-627)) (-6 (-1133)) (-15 -1699 ($ $)) (-15 -3374 ((-112) $)) (-15 -1700 ($ $ (-564))) (IF (|has| |#1| (-452)) (PROGN (-15 -3941 ((-418 (-1166 $)) (-1166 $))) (-15 -3679 ((-418 (-1166 $)) (-1166 $)))) |%noBranch|) (IF (|has| |#1| (-1035 (-564))) (-6 (-1035 (-48))) |%noBranch|)) |%noBranch|))) +((-1900 (((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)) 94) (((-52) |#2| (-114) (-294 |#2|) (-294 |#2|)) 90) (((-52) |#2| (-114) (-294 |#2|) |#2|) 92) (((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|) 93) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 86) (((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 88) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|)) 89) (((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|))) 87) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 95) (((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|)) 91))) +(((-317 |#1| |#2|) (-10 -7 (-15 -1900 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -1900 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -1900 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -1900 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -1900 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -1900 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -1900 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -1900 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -1900 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -1900 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-847) (-556) (-612 (-536))) (-430 |#1|)) (T -317)) +((-1900 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) (-4 *3 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *3)))) (-1900 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-1900 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *3)))) (-1900 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *5)))) (-1900 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-1900 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-1900 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *7 *8)))) (-1900 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-1900 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) (-1900 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) (-4 *5 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) (-5 *1 (-317 *5 *6))))) +(-10 -7 (-15 -1900 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-294 |#2|))) (-15 -1900 ((-52) (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -1900 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -1900 ((-52) (-641 (-294 |#2|)) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -1900 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 |#2|))) (-15 -1900 ((-52) (-641 |#2|) (-641 (-114)) (-294 |#2|) (-641 (-294 |#2|)))) (-15 -1900 ((-52) (-294 |#2|) (-114) (-294 |#2|) |#2|)) (-15 -1900 ((-52) |#2| (-114) (-294 |#2|) |#2|)) (-15 -1900 ((-52) |#2| (-114) (-294 |#2|) (-294 |#2|))) (-15 -1900 ((-52) |#2| (-114) (-294 |#2|) (-641 |#2|)))) +((-3346 (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)) 67) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564)) 68) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152)) 64) (((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564)) 65)) (-1734 (((-1 (-225) (-225)) (-225)) 66))) +(((-318) (-10 -7 (-15 -1734 ((-1 (-225) (-225)) (-225))) (-15 -3346 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -3346 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -3346 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -3346 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152))))) (T -318)) +((-3346 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-3346 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-3346 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-3346 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) (-1734 (*1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) +(-10 -7 (-15 -1734 ((-1 (-225) (-225)) (-225))) (-15 -3346 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564))) (-15 -3346 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-1 (-225) (-225)) (-564) (-1152))) (-15 -3346 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564))) (-15 -3346 ((-1204 (-923)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-225) (-564) (-1152)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 26)) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2892 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-3157 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 20)) (-2451 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) 34)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-1988 (((-112) $) NIL)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) 16)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-3128 (($ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-3004 (($ $ (-407 (-564))) NIL)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3642 (((-407 (-564)) $) 17)) (-2759 (($ (-1244 |#1| |#2| |#3|)) 11)) (-2515 (((-1244 |#1| |#2| |#3|) $) 12)) (-4118 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2266 (((-407 (-564)) $) NIL)) (-2484 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 10)) (-3742 (((-859) $) 40) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2856 ((|#1| $ (-407 (-564))) 32)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2212 ((|#1| $) NIL)) (-2521 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 28)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 35)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-319 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-789) (-10 -8 (-15 -2759 ($ (-1244 |#1| |#2| |#3|))) (-15 -2515 ((-1244 |#1| |#2| |#3|) $)) (-15 -3642 ((-407 (-564)) $)))) (-13 (-363) (-847)) (-1170) |#1|) (T -319)) +((-2759 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3)))) +(-13 (-1240 |#1|) (-789) (-10 -8 (-15 -2759 ($ (-1244 |#1| |#2| |#3|))) (-15 -2515 ((-1244 |#1| |#2| |#3|) $)) (-15 -3642 ((-407 (-564)) $)))) +((-2347 (((-2 (|:| -2515 (-768)) (|:| -1762 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768)) 35)) (-2192 (((-641 (-2 (|:| -1762 (-768)) (|:| |logand| |#1|))) (-418 |#1|)) 40))) +(((-320 |#1|) (-10 -7 (-15 -2347 ((-2 (|:| -2515 (-768)) (|:| -1762 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768))) (-15 -2192 ((-641 (-2 (|:| -1762 (-768)) (|:| |logand| |#1|))) (-418 |#1|)))) (-556)) (T -320)) +((-2192 (*1 *2 *3) (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) (-5 *2 (-641 (-2 (|:| -1762 (-768)) (|:| |logand| *4)))) (-5 *1 (-320 *4)))) (-2347 (*1 *2 *3 *4) (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *5) (|:| |radicand| (-641 *5)))) (-5 *1 (-320 *5)) (-5 *4 (-768))))) +(-10 -7 (-15 -2347 ((-2 (|:| -2515 (-768)) (|:| -1762 |#1|) (|:| |radicand| (-641 |#1|))) (-418 |#1|) (-768))) (-15 -2192 ((-641 (-2 (|:| -1762 (-768)) (|:| |logand| |#1|))) (-418 |#1|)))) +((-4269 (((-641 |#2|) (-1166 |#4|)) 44)) (-2460 ((|#3| (-564)) 47)) (-4238 (((-1166 |#4|) (-1166 |#3|)) 30)) (-2729 (((-1166 |#4|) (-1166 |#4|) (-564)) 64)) (-1447 (((-1166 |#3|) (-1166 |#4|)) 21)) (-2266 (((-641 (-768)) (-1166 |#4|) (-641 |#2|)) 41)) (-2318 (((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|)) 35))) +(((-321 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2318 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -2266 ((-641 (-768)) (-1166 |#4|) (-641 |#2|))) (-15 -4269 ((-641 |#2|) (-1166 |#4|))) (-15 -1447 ((-1166 |#3|) (-1166 |#4|))) (-15 -4238 ((-1166 |#4|) (-1166 |#3|))) (-15 -2729 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -2460 (|#3| (-564)))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|)) (T -321)) +((-2460 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1046)) (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5)))) (-2729 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *1 (-321 *4 *5 *6 *7)))) (-4238 (*1 *2 *3) (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-321 *4 *5 *6 *7)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-641 *5)) (-5 *1 (-321 *4 *5 *6 *7)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-847)) (-4 *8 (-946 *7 *5 *6)) (-4 *5 (-790)) (-4 *7 (-1046)) (-5 *2 (-641 (-768))) (-5 *1 (-321 *5 *6 *7 *8)))) (-2318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) +(-10 -7 (-15 -2318 ((-1166 |#3|) (-1166 |#4|) (-641 |#2|) (-641 |#3|))) (-15 -2266 ((-641 (-768)) (-1166 |#4|) (-641 |#2|))) (-15 -4269 ((-641 |#2|) (-1166 |#4|))) (-15 -1447 ((-1166 |#3|) (-1166 |#4|))) (-15 -4238 ((-1166 |#4|) (-1166 |#3|))) (-15 -2729 ((-1166 |#4|) (-1166 |#4|) (-564))) (-15 -2460 (|#3| (-564)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 19)) (-3157 (((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-564)))) $) 23)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1938 (((-768) $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-3950 ((|#1| $ (-564)) NIL)) (-3780 (((-564) $ (-564)) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-3354 (($ (-1 |#1| |#1|) $) NIL)) (-4355 (($ (-1 (-564) (-564)) $) 11)) (-2217 (((-1152) $) NIL)) (-3611 (($ $ $) NIL (|has| (-564) (-789)))) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL) (($ |#1|) NIL)) (-2856 (((-564) |#1| $) NIL)) (-4311 (($) 21 T CONST)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) 28 (|has| |#1| (-847)))) (-1790 (($ $) 12) (($ $ $) 27)) (-1780 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL) (($ (-564) |#1|) 26))) +(((-322 |#1|) (-13 (-21) (-714 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) (-1094)) (T -322)) +NIL +(-13 (-21) (-714 (-564)) (-323 |#1| (-564)) (-10 -7 (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3157 (((-641 (-2 (|:| |gen| |#1|) (|:| -4118 |#2|))) $) 27)) (-3239 (((-3 $ "failed") $ $) 19)) (-1938 (((-768) $) 28)) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#1| "failed") $) 32)) (-2239 ((|#1| $) 33)) (-3950 ((|#1| $ (-564)) 25)) (-3780 ((|#2| $ (-564)) 26)) (-3354 (($ (-1 |#1| |#1|) $) 22)) (-4355 (($ (-1 |#2| |#2|) $) 23)) (-2217 (((-1152) $) 9)) (-3611 (($ $ $) 21 (|has| |#2| (-789)))) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ |#1|) 31)) (-2856 ((|#2| |#1| $) 24)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1780 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ |#2| |#1|) 29))) +(((-323 |#1| |#2|) (-140) (-1094) (-131)) (T -323)) +((-1780 (*1 *1 *2 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-768)))) (-3157 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 *4)))))) (-3780 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) (-4 *2 (-131)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) (-4 *2 (-1094)))) (-2856 (*1 *2 *3 *1) (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) (-4355 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-3354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)))) (-3611 (*1 *1 *1 *1) (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) (-4 *3 (-789))))) +(-13 (-131) (-1035 |t#1|) (-10 -8 (-15 -1780 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -1938 ((-768) $)) (-15 -3157 ((-641 (-2 (|:| |gen| |t#1|) (|:| -4118 |t#2|))) $)) (-15 -3780 (|t#2| $ (-564))) (-15 -3950 (|t#1| $ (-564))) (-15 -2856 (|t#2| |t#1| $)) (-15 -4355 ($ (-1 |t#2| |t#2|) $)) (-15 -3354 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-789)) (-15 -3611 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-1035 |#1|) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3157 (((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-768)))) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1938 (((-768) $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-3950 ((|#1| $ (-564)) NIL)) (-3780 (((-768) $ (-564)) NIL)) (-3354 (($ (-1 |#1| |#1|) $) NIL)) (-4355 (($ (-1 (-768) (-768)) $) NIL)) (-2217 (((-1152) $) NIL)) (-3611 (($ $ $) NIL (|has| (-768) (-789)))) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL) (($ |#1|) NIL)) (-2856 (((-768) |#1| $) NIL)) (-4311 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1780 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-768) |#1|) NIL))) +(((-324 |#1|) (-323 |#1| (-768)) (-1094)) (T -324)) +NIL +(-323 |#1| (-768)) +((-1989 (($ $) 71)) (-1866 (($ $ |#2| |#3| $) 14)) (-1396 (($ (-1 |#3| |#3|) $) 51)) (-4383 (((-112) $) 42)) (-1296 ((|#2| $) 44)) (-1321 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 63)) (-4329 ((|#2| $) 67)) (-3110 (((-641 |#2|) $) 56)) (-3447 (($ $ $ (-768)) 37)) (-1799 (($ $ |#2|) 60))) +(((-325 |#1| |#2| |#3|) (-10 -8 (-15 -1989 (|#1| |#1|)) (-15 -4329 (|#2| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3447 (|#1| |#1| |#1| (-768))) (-15 -1866 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1396 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3110 ((-641 |#2|) |#1|)) (-15 -1296 (|#2| |#1|)) (-15 -4383 ((-112) |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1799 (|#1| |#1| |#2|))) (-326 |#2| |#3|) (-1046) (-789)) (T -325)) +NIL +(-10 -8 (-15 -1989 (|#1| |#1|)) (-15 -4329 (|#2| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3447 (|#1| |#1| |#1| (-768))) (-15 -1866 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1396 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3110 ((-641 |#2|) |#1|)) (-15 -1296 (|#2| |#1|)) (-15 -4383 ((-112) |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1799 (|#1| |#1| |#2|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 91 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 89 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 86)) (-2239 (((-564) $) 90 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 88 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 87)) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1989 (($ $) 75 (|has| |#1| (-452)))) (-1866 (($ $ |#1| |#2| $) 79)) (-3840 (((-112) $) 31)) (-2918 (((-768) $) 82)) (-2005 (((-112) $) 65)) (-4245 (($ |#1| |#2|) 64)) (-3469 ((|#2| $) 81)) (-1396 (($ (-1 |#2| |#2|) $) 80)) (-2187 (($ (-1 |#1| |#1|) $) 66)) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4383 (((-112) $) 85)) (-1296 ((|#1| $) 84)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 77 (|has| |#1| (-556)))) (-2266 ((|#2| $) 67)) (-4329 ((|#1| $) 76 (|has| |#1| (-452)))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50) (($ (-407 (-564))) 60 (-4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3110 (((-641 |#1|) $) 83)) (-2856 ((|#1| $ |#2|) 62)) (-4253 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-3447 (($ $ $ (-768)) 78 (|has| |#1| (-172)))) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-326 |#1| |#2|) (-140) (-1046) (-789)) (T -326)) +((-4383 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-112)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-641 *3)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-768)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-1396 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-1866 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) (-3447 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *3 (-172)))) (-1321 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-556)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-1989 (*1 *1 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *2 (-452))))) +(-13 (-47 |t#1| |t#2|) (-411 |t#1|) (-10 -8 (-15 -4383 ((-112) $)) (-15 -1296 (|t#1| $)) (-15 -3110 ((-641 |t#1|) $)) (-15 -2918 ((-768) $)) (-15 -3469 (|t#2| $)) (-15 -1396 ($ (-1 |t#2| |t#2|) $)) (-15 -1866 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-172)) (-15 -3447 ($ $ $ (-768))) |%noBranch|) (IF (|has| |t#1| (-556)) (-15 -1321 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -4329 (|t#1| $)) (-15 -1989 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-411 |#1|) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3437 (((-112) (-112)) NIL)) (-3877 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-2068 (($ (-1 (-112) |#1|) $) NIL)) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-4181 (($ $) NIL (|has| |#1| (-1094)))) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2154 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-3305 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-2016 (($ $ (-564)) NIL)) (-3810 (((-768) $) NIL)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3619 (($ (-768) |#1|) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-1457 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2974 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2308 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2369 (($ (-641 |#1|)) NIL)) (-1966 ((|#1| $) NIL (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3778 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-1807 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1802 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-327 |#1|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2369 ($ (-641 |#1|))) (-15 -3810 ((-768) $)) (-15 -2016 ($ $ (-564))) (-15 -3437 ((-112) (-112))))) (-1209)) (T -327)) +((-2369 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-2016 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209))))) +(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2369 ($ (-641 |#1|))) (-15 -3810 ((-768) $)) (-15 -2016 ($ $ (-564))) (-15 -3437 ((-112) (-112))))) +((-4217 (((-112) $) 50)) (-3492 (((-768)) 26)) (-3809 ((|#2| $) 54) (($ $ (-918)) 123)) (-1938 (((-768)) 124)) (-2340 (($ (-1259 |#2|)) 23)) (-1530 (((-112) $) 139)) (-3328 ((|#2| $) 56) (($ $ (-918)) 120)) (-2653 (((-1166 |#2|) $) NIL) (((-1166 $) $ (-918)) 111)) (-2528 (((-1166 |#2|) $) 98)) (-2945 (((-1166 |#2|) $) 94) (((-3 (-1166 |#2|) "failed") $ $) 91)) (-4375 (($ $ (-1166 |#2|)) 62)) (-1506 (((-830 (-918))) 33) (((-918)) 51)) (-3603 (((-134)) 30)) (-2266 (((-830 (-918)) $) 35) (((-918) $) 142)) (-4220 (($) 132)) (-1785 (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $)) 45)) (-4253 (($ $) NIL) (((-3 $ "failed") $) 101)) (-2755 (((-112) $) 48))) +(((-328 |#1| |#2|) (-10 -8 (-15 -4253 ((-3 |#1| "failed") |#1|)) (-15 -1938 ((-768))) (-15 -4253 (|#1| |#1|)) (-15 -2945 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -2945 ((-1166 |#2|) |#1|)) (-15 -2528 ((-1166 |#2|) |#1|)) (-15 -4375 (|#1| |#1| (-1166 |#2|))) (-15 -1530 ((-112) |#1|)) (-15 -4220 (|#1|)) (-15 -3809 (|#1| |#1| (-918))) (-15 -3328 (|#1| |#1| (-918))) (-15 -2653 ((-1166 |#1|) |#1| (-918))) (-15 -3809 (|#2| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -2266 ((-918) |#1|)) (-15 -1506 ((-918))) (-15 -2653 ((-1166 |#2|) |#1|)) (-15 -2340 (|#1| (-1259 |#2|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1|)) (-15 -3492 ((-768))) (-15 -1506 ((-830 (-918)))) (-15 -2266 ((-830 (-918)) |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -2755 ((-112) |#1|)) (-15 -3603 ((-134)))) (-329 |#2|) (-363)) (T -328)) +((-3603 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1506 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-830 (-918))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-3492 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1506 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-918)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) (-1938 (*1 *2) (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4))))) +(-10 -8 (-15 -4253 ((-3 |#1| "failed") |#1|)) (-15 -1938 ((-768))) (-15 -4253 (|#1| |#1|)) (-15 -2945 ((-3 (-1166 |#2|) "failed") |#1| |#1|)) (-15 -2945 ((-1166 |#2|) |#1|)) (-15 -2528 ((-1166 |#2|) |#1|)) (-15 -4375 (|#1| |#1| (-1166 |#2|))) (-15 -1530 ((-112) |#1|)) (-15 -4220 (|#1|)) (-15 -3809 (|#1| |#1| (-918))) (-15 -3328 (|#1| |#1| (-918))) (-15 -2653 ((-1166 |#1|) |#1| (-918))) (-15 -3809 (|#2| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -2266 ((-918) |#1|)) (-15 -1506 ((-918))) (-15 -2653 ((-1166 |#2|) |#1|)) (-15 -2340 (|#1| (-1259 |#2|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1|)) (-15 -3492 ((-768))) (-15 -1506 ((-830 (-918)))) (-15 -2266 ((-830 (-918)) |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -2755 ((-112) |#1|)) (-15 -3603 ((-134)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-4217 (((-112) $) 95)) (-3492 (((-768)) 91)) (-3809 ((|#1| $) 141) (($ $ (-918)) 138 (|has| |#1| (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) 123 (|has| |#1| (-368)))) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-2377 (((-112) $ $) 60)) (-1938 (((-768)) 113 (|has| |#1| (-368)))) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#1| "failed") $) 102)) (-2239 ((|#1| $) 103)) (-2340 (($ (-1259 |#1|)) 147)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 129 (|has| |#1| (-368)))) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-2821 (($) 110 (|has| |#1| (-368)))) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-2757 (($) 125 (|has| |#1| (-368)))) (-1313 (((-112) $) 126 (|has| |#1| (-368)))) (-3176 (($ $ (-768)) 88 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4188 (((-112) $) 72)) (-1619 (((-918) $) 128 (|has| |#1| (-368))) (((-830 (-918)) $) 85 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3840 (((-112) $) 31)) (-2680 (($) 136 (|has| |#1| (-368)))) (-1530 (((-112) $) 135 (|has| |#1| (-368)))) (-3328 ((|#1| $) 142) (($ $ (-918)) 139 (|has| |#1| (-368)))) (-3907 (((-3 $ "failed") $) 114 (|has| |#1| (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2653 (((-1166 |#1|) $) 146) (((-1166 $) $ (-918)) 140 (|has| |#1| (-368)))) (-1906 (((-918) $) 111 (|has| |#1| (-368)))) (-2528 (((-1166 |#1|) $) 132 (|has| |#1| (-368)))) (-2945 (((-1166 |#1|) $) 131 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 130 (|has| |#1| (-368)))) (-4375 (($ $ (-1166 |#1|)) 133 (|has| |#1| (-368)))) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-3258 (($) 115 (|has| |#1| (-368)) CONST)) (-1495 (($ (-918)) 112 (|has| |#1| (-368)))) (-3259 (((-112) $) 94)) (-3864 (((-1114) $) 10)) (-1693 (($) 134 (|has| |#1| (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 122 (|has| |#1| (-368)))) (-4127 (((-418 $) $) 75)) (-1506 (((-830 (-918))) 92) (((-918)) 144)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-2819 (((-768) $) 127 (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) 86 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3603 (((-134)) 100)) (-4117 (($ $) 119 (|has| |#1| (-368))) (($ $ (-768)) 117 (|has| |#1| (-368)))) (-2266 (((-830 (-918)) $) 93) (((-918) $) 143)) (-3925 (((-1166 |#1|)) 145)) (-1543 (($) 124 (|has| |#1| (-368)))) (-4220 (($) 137 (|has| |#1| (-368)))) (-1785 (((-1259 |#1|) $) 149) (((-685 |#1|) (-1259 $)) 148)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 121 (|has| |#1| (-368)))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-4253 (($ $) 120 (|has| |#1| (-368))) (((-3 $ "failed") $) 84 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3270 (((-768)) 28 T CONST)) (-4265 (((-1259 $)) 151) (((-1259 $) (-918)) 150)) (-3360 (((-112) $ $) 40)) (-2755 (((-112) $) 96)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2578 (($ $) 90 (|has| |#1| (-368))) (($ $ (-768)) 89 (|has| |#1| (-368)))) (-2124 (($ $) 118 (|has| |#1| (-368))) (($ $ (-768)) 116 (|has| |#1| (-368)))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 66) (($ $ |#1|) 99)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) (((-329 |#1|) (-140) (-363)) (T -329)) -((-3288 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *3)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *4)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1257 *3)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) (-2713 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) (-1797 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-2134 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1165 *1)) (-4 *1 (-329 *4)))) (-3251 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3356 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3298 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3277 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-1738 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-3344 (*1 *1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-3332 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3)))) (-3321 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3)))) (-3321 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1165 *3))))) -(-13 (-1276 |t#1|) (-1034 |t#1|) (-10 -8 (-15 -3288 ((-1257 $))) (-15 -3288 ((-1257 $) (-917))) (-15 -1818 ((-1257 |t#1|) $)) (-15 -1818 ((-684 |t#1|) (-1257 $))) (-15 -1505 ($ (-1257 |t#1|))) (-15 -2134 ((-1165 |t#1|) $)) (-15 -2713 ((-1165 |t#1|))) (-15 -1797 ((-917))) (-15 -1962 ((-917) $)) (-15 -3251 (|t#1| $)) (-15 -3282 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -2134 ((-1165 $) $ (-917))) (-15 -3251 ($ $ (-917))) (-15 -3282 ($ $ (-917))) (-15 -3356 ($)) (-15 -3298 ($)) (-15 -3277 ((-112) $)) (-15 -1738 ($)) (-15 -3344 ($ $ (-1165 |t#1|))) (-15 -3332 ((-1165 |t#1|) $)) (-15 -3321 ((-1165 |t#1|) $)) (-15 -3321 ((-3 (-1165 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1276 |#1|) . T) ((-363) . T) ((-402) -2811 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-368)) ((-1212) . T) ((-1264 |#1|) . T)) -((-2049 (((-112) $ $) NIL)) (-3457 (($ (-1168) $) 104)) (-1295 (($) 93)) (-3370 (((-1113) (-1113)) 9)) (-3623 (($) 94)) (-3426 (($) 108) (($ (-316 (-694))) 116) (($ (-316 (-696))) 112) (($ (-316 (-689))) 120) (($ (-316 (-379))) 127) (($ (-316 (-563))) 123) (($ (-316 (-169 (-379)))) 131)) (-3445 (($ (-1168) $) 105)) (-3403 (($ (-640 (-858))) 95)) (-3391 (((-1262) $) 91)) (-2920 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3434 (($ (-1113)) 60)) (-3382 (((-1097) $) 32)) (-3470 (($ (-1085 (-948 (-563))) $) 101) (($ (-1085 (-948 (-563))) (-948 (-563)) $) 102)) (-1516 (($ (-1113)) 103)) (-1510 (($ (-1168) $) 133) (($ (-1168) $ $) 134)) (-1611 (($ (-1169) (-640 (-1169))) 92)) (-1898 (($ (-1151)) 98) (($ (-640 (-1151))) 96)) (-2062 (((-858) $) 136)) (-1439 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2820 (-112)) (|:| -3556 (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -2244 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3373 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3373 $))) (|:| |commonBranch| (-2 (|:| -3359 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $) 51)) (-4331 (($ (-1151)) 205)) (-3416 (($ (-640 $)) 132)) (-1513 (($ (-1169) (-1151)) 138) (($ (-1169) (-316 (-696))) 178) (($ (-1169) (-316 (-694))) 179) (($ (-1169) (-316 (-689))) 180) (($ (-1169) (-684 (-696))) 141) (($ (-1169) (-684 (-694))) 144) (($ (-1169) (-684 (-689))) 147) (($ (-1169) (-1257 (-696))) 150) (($ (-1169) (-1257 (-694))) 153) (($ (-1169) (-1257 (-689))) 156) (($ (-1169) (-684 (-316 (-696)))) 159) (($ (-1169) (-684 (-316 (-694)))) 162) (($ (-1169) (-684 (-316 (-689)))) 165) (($ (-1169) (-1257 (-316 (-696)))) 168) (($ (-1169) (-1257 (-316 (-694)))) 171) (($ (-1169) (-1257 (-316 (-689)))) 174) (($ (-1169) (-640 (-948 (-563))) (-316 (-696))) 175) (($ (-1169) (-640 (-948 (-563))) (-316 (-694))) 176) (($ (-1169) (-640 (-948 (-563))) (-316 (-689))) 177) (($ (-1169) (-316 (-563))) 202) (($ (-1169) (-316 (-379))) 203) (($ (-1169) (-316 (-169 (-379)))) 204) (($ (-1169) (-684 (-316 (-563)))) 183) (($ (-1169) (-684 (-316 (-379)))) 186) (($ (-1169) (-684 (-316 (-169 (-379))))) 189) (($ (-1169) (-1257 (-316 (-563)))) 192) (($ (-1169) (-1257 (-316 (-379)))) 195) (($ (-1169) (-1257 (-316 (-169 (-379))))) 198) (($ (-1169) (-640 (-948 (-563))) (-316 (-563))) 199) (($ (-1169) (-640 (-948 (-563))) (-316 (-379))) 200) (($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379)))) 201)) (-2943 (((-112) $ $) NIL))) -(((-330) (-13 (-1093) (-10 -8 (-15 -3470 ($ (-1085 (-948 (-563))) $)) (-15 -3470 ($ (-1085 (-948 (-563))) (-948 (-563)) $)) (-15 -3457 ($ (-1168) $)) (-15 -3445 ($ (-1168) $)) (-15 -3434 ($ (-1113))) (-15 -1516 ($ (-1113))) (-15 -1898 ($ (-1151))) (-15 -1898 ($ (-640 (-1151)))) (-15 -4331 ($ (-1151))) (-15 -3426 ($)) (-15 -3426 ($ (-316 (-694)))) (-15 -3426 ($ (-316 (-696)))) (-15 -3426 ($ (-316 (-689)))) (-15 -3426 ($ (-316 (-379)))) (-15 -3426 ($ (-316 (-563)))) (-15 -3426 ($ (-316 (-169 (-379))))) (-15 -1510 ($ (-1168) $)) (-15 -1510 ($ (-1168) $ $)) (-15 -1513 ($ (-1169) (-1151))) (-15 -1513 ($ (-1169) (-316 (-696)))) (-15 -1513 ($ (-1169) (-316 (-694)))) (-15 -1513 ($ (-1169) (-316 (-689)))) (-15 -1513 ($ (-1169) (-684 (-696)))) (-15 -1513 ($ (-1169) (-684 (-694)))) (-15 -1513 ($ (-1169) (-684 (-689)))) (-15 -1513 ($ (-1169) (-1257 (-696)))) (-15 -1513 ($ (-1169) (-1257 (-694)))) (-15 -1513 ($ (-1169) (-1257 (-689)))) (-15 -1513 ($ (-1169) (-684 (-316 (-696))))) (-15 -1513 ($ (-1169) (-684 (-316 (-694))))) (-15 -1513 ($ (-1169) (-684 (-316 (-689))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-696))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-694))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-689))))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-696)))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-694)))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-689)))) (-15 -1513 ($ (-1169) (-316 (-563)))) (-15 -1513 ($ (-1169) (-316 (-379)))) (-15 -1513 ($ (-1169) (-316 (-169 (-379))))) (-15 -1513 ($ (-1169) (-684 (-316 (-563))))) (-15 -1513 ($ (-1169) (-684 (-316 (-379))))) (-15 -1513 ($ (-1169) (-684 (-316 (-169 (-379)))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-563))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-379))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-169 (-379)))))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-563)))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-379)))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379))))) (-15 -3416 ($ (-640 $))) (-15 -1295 ($)) (-15 -3623 ($)) (-15 -3403 ($ (-640 (-858)))) (-15 -1611 ($ (-1169) (-640 (-1169)))) (-15 -2920 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1439 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2820 (-112)) (|:| -3556 (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -2244 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3373 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3373 $))) (|:| |commonBranch| (-2 (|:| -3359 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $)) (-15 -3391 ((-1262) $)) (-15 -3382 ((-1097) $)) (-15 -3370 ((-1113) (-1113)))))) (T -330)) -((-3470 (*1 *1 *2 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *1 (-330)))) (-3470 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *3 (-948 (-563))) (-5 *1 (-330)))) (-3457 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-3445 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-3434 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))) (-1516 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330)))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))) (-1898 (*1 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-330)))) (-4331 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330)))) (-3426 (*1 *1) (-5 *1 (-330))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-330)))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-330)))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-330)))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-330)))) (-3426 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-1510 (*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-1510 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-696))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-694))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-689))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-696))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-694))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-689))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-696))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-694))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-689))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-696)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-694)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-689)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-696)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-694)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-689)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-696))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-694))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-689))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-563))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-563)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-379)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-563)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-379)))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-563))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-1513 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3416 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-330)))) (-1295 (*1 *1) (-5 *1 (-330))) (-3623 (*1 *1) (-5 *1 (-330))) (-3403 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-330)))) (-1611 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-330)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-1439 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -2820 (-112)) (|:| -3556 (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) (|:| |blockBranch| (-640 (-330))) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -2244 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3373 (-330)))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3373 (-330)))) (|:| |commonBranch| (-2 (|:| -3359 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858))))) (-5 *1 (-330)))) (-3391 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-330)))) (-3382 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-330)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330))))) -(-13 (-1093) (-10 -8 (-15 -3470 ($ (-1085 (-948 (-563))) $)) (-15 -3470 ($ (-1085 (-948 (-563))) (-948 (-563)) $)) (-15 -3457 ($ (-1168) $)) (-15 -3445 ($ (-1168) $)) (-15 -3434 ($ (-1113))) (-15 -1516 ($ (-1113))) (-15 -1898 ($ (-1151))) (-15 -1898 ($ (-640 (-1151)))) (-15 -4331 ($ (-1151))) (-15 -3426 ($)) (-15 -3426 ($ (-316 (-694)))) (-15 -3426 ($ (-316 (-696)))) (-15 -3426 ($ (-316 (-689)))) (-15 -3426 ($ (-316 (-379)))) (-15 -3426 ($ (-316 (-563)))) (-15 -3426 ($ (-316 (-169 (-379))))) (-15 -1510 ($ (-1168) $)) (-15 -1510 ($ (-1168) $ $)) (-15 -1513 ($ (-1169) (-1151))) (-15 -1513 ($ (-1169) (-316 (-696)))) (-15 -1513 ($ (-1169) (-316 (-694)))) (-15 -1513 ($ (-1169) (-316 (-689)))) (-15 -1513 ($ (-1169) (-684 (-696)))) (-15 -1513 ($ (-1169) (-684 (-694)))) (-15 -1513 ($ (-1169) (-684 (-689)))) (-15 -1513 ($ (-1169) (-1257 (-696)))) (-15 -1513 ($ (-1169) (-1257 (-694)))) (-15 -1513 ($ (-1169) (-1257 (-689)))) (-15 -1513 ($ (-1169) (-684 (-316 (-696))))) (-15 -1513 ($ (-1169) (-684 (-316 (-694))))) (-15 -1513 ($ (-1169) (-684 (-316 (-689))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-696))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-694))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-689))))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-696)))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-694)))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-689)))) (-15 -1513 ($ (-1169) (-316 (-563)))) (-15 -1513 ($ (-1169) (-316 (-379)))) (-15 -1513 ($ (-1169) (-316 (-169 (-379))))) (-15 -1513 ($ (-1169) (-684 (-316 (-563))))) (-15 -1513 ($ (-1169) (-684 (-316 (-379))))) (-15 -1513 ($ (-1169) (-684 (-316 (-169 (-379)))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-563))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-379))))) (-15 -1513 ($ (-1169) (-1257 (-316 (-169 (-379)))))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-563)))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-379)))) (-15 -1513 ($ (-1169) (-640 (-948 (-563))) (-316 (-169 (-379))))) (-15 -3416 ($ (-640 $))) (-15 -1295 ($)) (-15 -3623 ($)) (-15 -3403 ($ (-640 (-858)))) (-15 -1611 ($ (-1169) (-640 (-1169)))) (-15 -2920 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1439 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1169)) (|:| |arrayIndex| (-640 (-948 (-563)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1168)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2820 (-112)) (|:| -3556 (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) (|:| |blockBranch| (-640 $)) (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) (|:| |forBranch| (-2 (|:| -2244 (-1085 (-948 (-563)))) (|:| |span| (-948 (-563))) (|:| -3373 $))) (|:| |labelBranch| (-1113)) (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3373 $))) (|:| |commonBranch| (-2 (|:| -3359 (-1169)) (|:| |contents| (-640 (-1169))))) (|:| |printBranch| (-640 (-858)))) $)) (-15 -3391 ((-1262) $)) (-15 -3382 ((-1097) $)) (-15 -3370 ((-1113) (-1113))))) -((-2049 (((-112) $ $) NIL)) (-3480 (((-112) $) 13)) (-3264 (($ |#1|) 10)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3273 (($ |#1|) 12)) (-2062 (((-858) $) 19)) (-3458 ((|#1| $) 14)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 21))) -(((-331 |#1|) (-13 (-846) (-10 -8 (-15 -3264 ($ |#1|)) (-15 -3273 ($ |#1|)) (-15 -3480 ((-112) $)) (-15 -3458 (|#1| $)))) (-846)) (T -331)) -((-3264 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-3273 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) (-3480 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846)))) (-3458 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846))))) -(-13 (-846) (-10 -8 (-15 -3264 ($ |#1|)) (-15 -3273 ($ |#1|)) (-15 -3480 ((-112) $)) (-15 -3458 (|#1| $)))) -((-3492 (((-330) (-1169) (-948 (-563))) 23)) (-3502 (((-330) (-1169) (-948 (-563))) 27)) (-3030 (((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563)))) 26) (((-330) (-1169) (-948 (-563)) (-948 (-563))) 24)) (-3512 (((-330) (-1169) (-948 (-563))) 31))) -(((-332) (-10 -7 (-15 -3492 ((-330) (-1169) (-948 (-563)))) (-15 -3030 ((-330) (-1169) (-948 (-563)) (-948 (-563)))) (-15 -3030 ((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563))))) (-15 -3502 ((-330) (-1169) (-948 (-563)))) (-15 -3512 ((-330) (-1169) (-948 (-563)))))) (T -332)) -((-3512 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3502 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3030 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1085 (-948 (-563)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3030 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3492 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) (-5 *1 (-332))))) -(-10 -7 (-15 -3492 ((-330) (-1169) (-948 (-563)))) (-15 -3030 ((-330) (-1169) (-948 (-563)) (-948 (-563)))) (-15 -3030 ((-330) (-1169) (-1085 (-948 (-563))) (-1085 (-948 (-563))))) (-15 -3502 ((-330) (-1169) (-948 (-563)))) (-15 -3512 ((-330) (-1169) (-948 (-563))))) -((-2751 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33))) -(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2751 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1233 |#5|) (-1233 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1233 *9)) (-4 *11 (-1233 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11))))) -(-10 -7 (-15 -2751 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) -((-3541 (((-112) $) 14))) -(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3541 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334)) -NIL -(-10 -8 (-15 -3541 ((-112) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-2532 (($ $) 26)) (-3541 (((-112) $) 25)) (-1938 (((-1151) $) 9)) (-2858 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-3249 (((-1113) $) 10)) (-1738 (((-3 |#4| "failed") $) 24)) (-3551 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-563)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3038 (((-2 (|:| -2519 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20))) -(((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1233 |t#1|) (-1233 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335)) -((-2858 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-3551 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-3551 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-3551 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-563)) (-4 *2 (-363)) (-4 *4 (-1233 *2)) (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-3038 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -2519 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-2532 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-3541 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-1738 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-3551 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2858 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -3551 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -3551 ($ |t#4|)) (-15 -3551 ($ |t#1| |t#1|)) (-15 -3551 ($ |t#1| |t#1| (-563))) (-15 -3038 ((-2 (|:| -2519 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2532 ($ $)) (-15 -3541 ((-112) $)) (-15 -1738 ((-3 |t#4| "failed") $)) (-15 -3551 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2532 (($ $) 33)) (-3541 (((-112) $) NIL)) (-1938 (((-1151) $) NIL)) (-3522 (((-1257 |#4|) $) 135)) (-2858 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-3249 (((-1113) $) NIL)) (-1738 (((-3 |#4| "failed") $) 36)) (-3531 (((-1257 |#4|) $) 127)) (-3551 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-563)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3038 (((-2 (|:| -2519 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2062 (((-858) $) 17)) (-3790 (($) 14 T CONST)) (-2943 (((-112) $ $) 20)) (-3039 (($ $) 27) (($ $ $) NIL)) (-3027 (($ $ $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 23))) -(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3531 ((-1257 |#4|) $)) (-15 -3522 ((-1257 |#4|) $)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336)) -((-3531 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-3522 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5))))) -(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3531 ((-1257 |#4|) $)) (-15 -3522 ((-1257 |#4|) $)))) -((-1497 (($ $ (-1169) |#2|) NIL) (($ $ (-640 (-1169)) (-640 |#2|)) 20) (($ $ (-640 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-640 |#2|) (-640 |#2|)) NIL)) (-3858 (($ $ |#2|) 11))) -(((-337 |#1| |#2|) (-10 -8 (-15 -3858 (|#1| |#1| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#2| |#2|)) (-15 -1497 (|#1| |#1| (-294 |#2|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 |#2|))) (-15 -1497 (|#1| |#1| (-1169) |#2|))) (-338 |#2|) (-1093)) (T -337)) -NIL -(-10 -8 (-15 -3858 (|#1| |#1| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#2| |#2|)) (-15 -1497 (|#1| |#1| (-294 |#2|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 |#2|))) (-15 -1497 (|#1| |#1| (-1169) |#2|))) -((-2751 (($ (-1 |#1| |#1|) $) 6)) (-1497 (($ $ (-1169) |#1|) 17 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 16 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-640 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-640 |#1|) (-640 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-3858 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|))))) -(((-338 |#1|) (-140) (-1093)) (T -338)) -((-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1093))))) -(-13 (-10 -8 (-15 -2751 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1169) |t#1|)) (-6 (-514 (-1169) |t#1|)) |%noBranch|))) -(((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-1169)) $) NIL)) (-3561 (((-112)) 98) (((-112) (-112)) 99)) (-1926 (((-640 (-609 $)) $) NIL)) (-3419 (($ $) NIL)) (-3285 (($ $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2624 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-2067 (($ $) NIL)) (-3395 (($ $) NIL)) (-3264 (($ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-609 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 78) (((-3 $ "failed") (-1169)) 104) (((-3 $ "failed") (-316 (-563))) 66 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-407 (-948 (-563)))) 72 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-948 (-563))) 67 (|has| |#3| (-1034 (-563)))) (((-3 $ "failed") (-316 (-379))) 96 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-407 (-948 (-379)))) 90 (|has| |#3| (-1034 (-379)))) (((-3 $ "failed") (-948 (-379))) 85 (|has| |#3| (-1034 (-379))))) (-2589 (((-609 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 79) (($ (-1169)) 105) (($ (-316 (-563))) 68 (|has| |#3| (-1034 (-563)))) (($ (-407 (-948 (-563)))) 73 (|has| |#3| (-1034 (-563)))) (($ (-948 (-563))) 69 (|has| |#3| (-1034 (-563)))) (($ (-316 (-379))) 97 (|has| |#3| (-1034 (-379)))) (($ (-407 (-948 (-379)))) 91 (|has| |#3| (-1034 (-379)))) (($ (-948 (-379))) 87 (|has| |#3| (-1034 (-379))))) (-3230 (((-3 $ "failed") $) NIL)) (-2656 (($) 10)) (-1383 (($ $) NIL) (($ (-640 $)) NIL)) (-2034 (((-640 (-114)) $) NIL)) (-3674 (((-114) (-114)) NIL)) (-2712 (((-112) $) NIL)) (-4107 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2011 (((-1165 $) (-609 $)) NIL (|has| $ (-1045)))) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 $ $) (-609 $)) NIL)) (-3895 (((-3 (-609 $) "failed") $) NIL)) (-4288 (($ $) 101)) (-2497 (($ $) NIL)) (-1938 (((-1151) $) NIL)) (-2009 (((-640 (-609 $)) $) NIL)) (-2696 (($ (-114) $) 100) (($ (-114) (-640 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-1524 (((-767) $) NIL)) (-3249 (((-1113) $) NIL)) (-2023 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-3177 (($ $) NIL)) (-4118 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1497 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-3858 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-3904 (($ $) NIL) (($ $ $) NIL)) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL)) (-2713 (($ $) NIL (|has| $ (-1045)))) (-3408 (($ $) NIL)) (-3273 (($ $) NIL)) (-2062 (((-858) $) NIL) (($ (-609 $)) NIL) (($ |#3|) NIL) (($ (-563)) NIL) (((-316 |#3|) $) 103)) (-3192 (((-767)) NIL T CONST)) (-3548 (($ $) NIL) (($ (-640 $)) NIL)) (-3631 (((-112) (-114)) NIL)) (-3347 (($ $) NIL)) (-3325 (($ $) NIL)) (-3336 (($ $) NIL)) (-3841 (($ $) NIL)) (-3790 (($) 102 T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3039 (($ $ $) NIL) (($ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) -(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1169)) (-10 -8 (-15 -2589 ($ (-316 |#3|))) (-15 -2671 ((-3 $ "failed") (-316 |#3|))) (-15 -2589 ($ (-1169))) (-15 -2671 ((-3 $ "failed") (-1169))) (-15 -2062 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-563))) (PROGN (-15 -2589 ($ (-316 (-563)))) (-15 -2671 ((-3 $ "failed") (-316 (-563)))) (-15 -2589 ($ (-407 (-948 (-563))))) (-15 -2671 ((-3 $ "failed") (-407 (-948 (-563))))) (-15 -2589 ($ (-948 (-563)))) (-15 -2671 ((-3 $ "failed") (-948 (-563))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -2589 ($ (-316 (-379)))) (-15 -2671 ((-3 $ "failed") (-316 (-379)))) (-15 -2589 ($ (-407 (-948 (-379))))) (-15 -2671 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2589 ($ (-948 (-379)))) (-15 -2671 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -3841 ($ $)) (-15 -2067 ($ $)) (-15 -3177 ($ $)) (-15 -2497 ($ $)) (-15 -4288 ($ $)) (-15 -3264 ($ $)) (-15 -3273 ($ $)) (-15 -3285 ($ $)) (-15 -3325 ($ $)) (-15 -3336 ($ $)) (-15 -3347 ($ $)) (-15 -3395 ($ $)) (-15 -3408 ($ $)) (-15 -3419 ($ $)) (-15 -2656 ($)) (-15 -2185 ((-640 (-1169)) $)) (-15 -3561 ((-112))) (-15 -3561 ((-112) (-112))))) (-640 (-1169)) (-640 (-1169)) (-387)) (T -339)) -((-2589 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-3841 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2067 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3177 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2497 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-4288 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3264 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3273 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3285 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3325 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3336 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3347 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3395 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3408 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-3419 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2656 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-3561 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) (-3561 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387))))) -(-13 (-302) (-38 |#3|) (-1034 |#3|) (-896 (-1169)) (-10 -8 (-15 -2589 ($ (-316 |#3|))) (-15 -2671 ((-3 $ "failed") (-316 |#3|))) (-15 -2589 ($ (-1169))) (-15 -2671 ((-3 $ "failed") (-1169))) (-15 -2062 ((-316 |#3|) $)) (IF (|has| |#3| (-1034 (-563))) (PROGN (-15 -2589 ($ (-316 (-563)))) (-15 -2671 ((-3 $ "failed") (-316 (-563)))) (-15 -2589 ($ (-407 (-948 (-563))))) (-15 -2671 ((-3 $ "failed") (-407 (-948 (-563))))) (-15 -2589 ($ (-948 (-563)))) (-15 -2671 ((-3 $ "failed") (-948 (-563))))) |%noBranch|) (IF (|has| |#3| (-1034 (-379))) (PROGN (-15 -2589 ($ (-316 (-379)))) (-15 -2671 ((-3 $ "failed") (-316 (-379)))) (-15 -2589 ($ (-407 (-948 (-379))))) (-15 -2671 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2589 ($ (-948 (-379)))) (-15 -2671 ((-3 $ "failed") (-948 (-379))))) |%noBranch|) (-15 -3841 ($ $)) (-15 -2067 ($ $)) (-15 -3177 ($ $)) (-15 -2497 ($ $)) (-15 -4288 ($ $)) (-15 -3264 ($ $)) (-15 -3273 ($ $)) (-15 -3285 ($ $)) (-15 -3325 ($ $)) (-15 -3336 ($ $)) (-15 -3347 ($ $)) (-15 -3395 ($ $)) (-15 -3408 ($ $)) (-15 -3419 ($ $)) (-15 -2656 ($)) (-15 -2185 ((-640 (-1169)) $)) (-15 -3561 ((-112))) (-15 -3561 ((-112) (-112))))) -((-2751 ((|#8| (-1 |#5| |#1|) |#4|) 19))) -(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2751 (|#8| (-1 |#5| |#1|) |#4|))) (-1212) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1212) (-1233 |#5|) (-1233 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1212)) (-4 *8 (-1212)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *9 (-1233 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1233 (-407 *9)))))) -(-10 -7 (-15 -2751 (|#8| (-1 |#5| |#1|) |#4|))) -((-3648 (((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) $) 40)) (-1505 (($ (-1257 (-407 |#3|)) (-1257 $)) NIL) (($ (-1257 (-407 |#3|))) NIL) (($ (-1257 |#3|) |#3|) 176)) (-3703 (((-1257 $) (-1257 $)) 160)) (-3570 (((-640 (-640 |#2|))) 129)) (-3842 (((-112) |#2| |#2|) 77)) (-2227 (($ $) 151)) (-3794 (((-767)) 33)) (-3714 (((-1257 $) (-1257 $)) 222)) (-3579 (((-640 (-948 |#2|)) (-1169)) 119)) (-3748 (((-112) $) 173)) (-3735 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-3600 (((-3 |#3| "failed")) 53)) (-3863 (((-767)) 187)) (-3858 ((|#2| $ |#2| |#2|) 143)) (-3610 (((-3 |#3| "failed")) 72)) (-1361 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-767)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-3725 (((-1257 $) (-1257 $)) 166)) (-3589 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-3852 (((-112)) 35))) -(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3570 ((-640 (-640 |#2|)))) (-15 -3579 ((-640 (-948 |#2|)) (-1169))) (-15 -3589 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3600 ((-3 |#3| "failed"))) (-15 -3610 ((-3 |#3| "failed"))) (-15 -3858 (|#2| |#1| |#2| |#2|)) (-15 -2227 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3735 ((-112) |#1| |#3|)) (-15 -3735 ((-112) |#1| |#2|)) (-15 -1505 (|#1| (-1257 |#3|) |#3|)) (-15 -3648 ((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3703 ((-1257 |#1|) (-1257 |#1|))) (-15 -3714 ((-1257 |#1|) (-1257 |#1|))) (-15 -3725 ((-1257 |#1|) (-1257 |#1|))) (-15 -3735 ((-112) |#1|)) (-15 -3748 ((-112) |#1|)) (-15 -3842 ((-112) |#2| |#2|)) (-15 -3852 ((-112))) (-15 -3863 ((-767))) (-15 -3794 ((-767))) (-15 -1361 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -1361 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -1505 (|#1| (-1257 (-407 |#3|)))) (-15 -1505 (|#1| (-1257 (-407 |#3|)) (-1257 |#1|)))) (-342 |#2| |#3| |#4|) (-1212) (-1233 |#2|) (-1233 (-407 |#3|))) (T -341)) -((-3794 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3863 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3852 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-3842 (*1 *2 *3 *3) (-12 (-4 *3 (-1212)) (-4 *5 (-1233 *3)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-3610 (*1 *2) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3600 (*1 *2) (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-640 (-948 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-3570 (*1 *2) (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-640 (-640 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))) -(-10 -8 (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -3570 ((-640 (-640 |#2|)))) (-15 -3579 ((-640 (-948 |#2|)) (-1169))) (-15 -3589 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3600 ((-3 |#3| "failed"))) (-15 -3610 ((-3 |#3| "failed"))) (-15 -3858 (|#2| |#1| |#2| |#2|)) (-15 -2227 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3735 ((-112) |#1| |#3|)) (-15 -3735 ((-112) |#1| |#2|)) (-15 -1505 (|#1| (-1257 |#3|) |#3|)) (-15 -3648 ((-2 (|:| |num| (-1257 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3703 ((-1257 |#1|) (-1257 |#1|))) (-15 -3714 ((-1257 |#1|) (-1257 |#1|))) (-15 -3725 ((-1257 |#1|) (-1257 |#1|))) (-15 -3735 ((-112) |#1|)) (-15 -3748 ((-112) |#1|)) (-15 -3842 ((-112) |#2| |#2|)) (-15 -3852 ((-112))) (-15 -3863 ((-767))) (-15 -3794 ((-767))) (-15 -1361 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -1361 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-767))) (-15 -1505 (|#1| (-1257 (-407 |#3|)))) (-15 -1505 (|#1| (-1257 (-407 |#3|)) (-1257 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3648 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 195)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-2554 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-2533 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-2660 (((-684 (-407 |#2|)) (-1257 $)) 47) (((-684 (-407 |#2|))) 62)) (-3282 (((-407 |#2|) $) 53)) (-2758 (((-1181 (-917) (-767)) (-563)) 146 (|has| (-407 |#2|) (-349)))) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-2102 (((-418 $) $) 114 (|has| (-407 |#2|) (-363)))) (-4332 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-2433 (((-767)) 87 (|has| (-407 |#2|) (-368)))) (-3809 (((-112)) 212)) (-3795 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 169 (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) 164)) (-2589 (((-563) $) 168 (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) 165)) (-1505 (($ (-1257 (-407 |#2|)) (-1257 $)) 49) (($ (-1257 (-407 |#2|))) 65) (($ (-1257 |#2|) |#2|) 194)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-349)))) (-3495 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-2649 (((-684 (-407 |#2|)) $ (-1257 $)) 54) (((-684 (-407 |#2|)) $) 60)) (-3853 (((-684 (-563)) (-684 $)) 163 (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) 161) (((-684 (-407 |#2|)) (-684 $)) 160)) (-3703 (((-1257 $) (-1257 $)) 200)) (-2532 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-3230 (((-3 $ "failed") $) 33)) (-3570 (((-640 (-640 |#1|))) 181 (|has| |#1| (-368)))) (-3842 (((-112) |#1| |#1|) 216)) (-3406 (((-917)) 55)) (-4301 (($) 90 (|has| (-407 |#2|) (-368)))) (-3784 (((-112)) 209)) (-3772 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-3473 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 102 (|has| (-407 |#2|) (-363)))) (-2227 (($ $) 187)) (-2135 (($) 148 (|has| (-407 |#2|) (-349)))) (-2812 (((-112) $) 149 (|has| (-407 |#2|) (-349)))) (-2506 (($ $ (-767)) 140 (|has| (-407 |#2|) (-349))) (($ $) 139 (|has| (-407 |#2|) (-349)))) (-3675 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-2903 (((-917) $) 151 (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) 137 (|has| (-407 |#2|) (-349)))) (-2712 (((-112) $) 31)) (-3794 (((-767)) 219)) (-3714 (((-1257 $) (-1257 $)) 201)) (-3251 (((-407 |#2|) $) 52)) (-3579 (((-640 (-948 |#1|)) (-1169)) 182 (|has| |#1| (-363)))) (-3113 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-349)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| (-407 |#2|) (-363)))) (-2134 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-3267 (((-917) $) 89 (|has| (-407 |#2|) (-368)))) (-2521 ((|#3| $) 155)) (-1607 (($ (-640 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-1938 (((-1151) $) 9)) (-3660 (((-684 (-407 |#2|))) 196)) (-3681 (((-684 (-407 |#2|))) 198)) (-3149 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-3630 (($ (-1257 |#2|) |#2|) 192)) (-3671 (((-684 (-407 |#2|))) 197)) (-3691 (((-684 (-407 |#2|))) 199)) (-3620 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-3639 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 193)) (-3760 (((-1257 $)) 205)) (-1661 (((-1257 $)) 206)) (-3748 (((-112) $) 204)) (-3735 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-2956 (($) 142 (|has| (-407 |#2|) (-349)) CONST)) (-3491 (($ (-917)) 88 (|has| (-407 |#2|) (-368)))) (-3600 (((-3 |#2| "failed")) 184)) (-3249 (((-1113) $) 10)) (-3863 (((-767)) 218)) (-1738 (($) 159)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 101 (|has| (-407 |#2|) (-363)))) (-1647 (($ (-640 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 145 (|has| (-407 |#2|) (-349)))) (-2055 (((-418 $) $) 112 (|has| (-407 |#2|) (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-3448 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| (-407 |#2|) (-363)))) (-4322 (((-767) $) 105 (|has| (-407 |#2|) (-363)))) (-3858 ((|#1| $ |#1| |#1|) 186)) (-3610 (((-3 |#2| "failed")) 185)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-3974 (((-407 |#2|) (-1257 $)) 48) (((-407 |#2|)) 61)) (-2515 (((-767) $) 150 (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) 138 (|has| (-407 |#2|) (-349)))) (-1361 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-640 (-1169)) (-640 (-767))) 129 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3743 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169) (-767)) 130 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3743 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-640 (-1169))) 131 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3743 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169)) 132 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3743 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 134 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-3743 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-3743 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2701 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-2713 ((|#3|) 158)) (-2750 (($) 147 (|has| (-407 |#2|) (-349)))) (-1818 (((-1257 (-407 |#2|)) $ (-1257 $)) 51) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) 50) (((-1257 (-407 |#2|)) $) 67) (((-684 (-407 |#2|)) (-1257 $)) 66)) (-2802 (((-1257 (-407 |#2|)) $) 64) (($ (-1257 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 144 (|has| (-407 |#2|) (-349)))) (-3725 (((-1257 $) (-1257 $)) 202)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-563))) 86 (-2811 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1034 (-407 (-563)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-4376 (($ $) 143 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-3015 ((|#3| $) 46)) (-3192 (((-767)) 28 T CONST)) (-3830 (((-112)) 215)) (-3819 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-3288 (((-1257 $)) 68)) (-2543 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-3589 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-3852 (((-112)) 217)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) 125 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3743 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169) (-767)) 126 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3743 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-640 (-1169))) 127 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3743 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-1169)) 128 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) (-3743 (|has| (-407 |#2|) (-896 (-1169))) (|has| (-407 |#2|) (-363))))) (($ $ (-767)) 133 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-3743 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 135 (-2811 (-3743 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-3743 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-563)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) 118 (|has| (-407 |#2|) (-363))))) -(((-342 |#1| |#2| |#3|) (-140) (-1212) (-1233 |t#1|) (-1233 (-407 |t#2|))) (T -342)) -((-3794 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))) (-3863 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))) (-3852 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3842 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3830 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3819 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3819 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-3809 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3795 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3795 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-3784 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3772 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3772 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-1661 (*1 *2) (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))) (-3760 (*1 *2) (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3725 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-3714 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-3703 (*1 *2 *2) (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-3691 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-3681 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-3671 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-3660 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4))))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4))))) (-1505 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))) (-3639 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4))))) (-3630 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))) (-3620 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-2 (|:| |num| (-684 *5)) (|:| |den| *5))))) (-3735 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) (-3735 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) (-2227 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))))) (-3858 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))))) (-3610 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3)))) (-3600 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3)))) (-3589 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1212)) (-4 *6 (-1233 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-640 (-948 *4))))) (-3570 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-640 (-640 *3)))))) -(-13 (-720 (-407 |t#2|) |t#3|) (-10 -8 (-15 -3794 ((-767))) (-15 -3863 ((-767))) (-15 -3852 ((-112))) (-15 -3842 ((-112) |t#1| |t#1|)) (-15 -3830 ((-112))) (-15 -3819 ((-112) |t#1|)) (-15 -3819 ((-112) |t#2|)) (-15 -3809 ((-112))) (-15 -3795 ((-112) |t#1|)) (-15 -3795 ((-112) |t#2|)) (-15 -3784 ((-112))) (-15 -3772 ((-112) |t#1|)) (-15 -3772 ((-112) |t#2|)) (-15 -1661 ((-1257 $))) (-15 -3760 ((-1257 $))) (-15 -3748 ((-112) $)) (-15 -3735 ((-112) $)) (-15 -3725 ((-1257 $) (-1257 $))) (-15 -3714 ((-1257 $) (-1257 $))) (-15 -3703 ((-1257 $) (-1257 $))) (-15 -3691 ((-684 (-407 |t#2|)))) (-15 -3681 ((-684 (-407 |t#2|)))) (-15 -3671 ((-684 (-407 |t#2|)))) (-15 -3660 ((-684 (-407 |t#2|)))) (-15 -3648 ((-2 (|:| |num| (-1257 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1505 ($ (-1257 |t#2|) |t#2|)) (-15 -3639 ((-2 (|:| |num| (-1257 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -3630 ($ (-1257 |t#2|) |t#2|)) (-15 -3620 ((-2 (|:| |num| (-684 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3735 ((-112) $ |t#1|)) (-15 -3735 ((-112) $ |t#2|)) (-15 -1361 ($ $ (-1 |t#2| |t#2|))) (-15 -2227 ($ $)) (-15 -3858 (|t#1| $ |t#1| |t#1|)) (-15 -3610 ((-3 |t#2| "failed"))) (-15 -3600 ((-3 |t#2| "failed"))) (-15 -3589 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -3579 ((-640 (-948 |t#1|)) (-1169))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -3570 ((-640 (-640 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-613 #0#) -2811 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-613 #1#) . T) ((-613 (-563)) . T) ((-613 $) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-610 (-858)) . T) ((-172) . T) ((-611 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -2811 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -2811 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-555) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-643 #0#) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-643 #1#) . T) ((-643 $) . T) ((-636 #1#) . T) ((-636 (-563)) |has| (-407 |#2|) (-636 (-563))) ((-713 #0#) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-713 #1#) . T) ((-713 $) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-720 #1# |#3|) . T) ((-722) . T) ((-896 (-1169)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169)))) ((-916) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1034 (-407 (-563))) |has| (-407 |#2|) (-1034 (-407 (-563)))) ((-1034 #1#) . T) ((-1034 (-563)) |has| (-407 |#2|) (-1034 (-563))) ((-1051 #0#) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| (-407 |#2|) (-349)) ((-1212) -2811 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-906 |#1|) "failed") $) NIL)) (-2589 (((-906 |#1|) $) NIL)) (-1505 (($ (-1257 (-906 |#1|))) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-906 |#1|) (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) NIL (|has| (-906 |#1|) (-368)))) (-2812 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) NIL (|has| (-906 |#1|) (-368)))) (-3277 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3251 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3267 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-3332 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-3321 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3344 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-3491 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1808 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-3874 (((-954 (-1113))) NIL)) (-1738 (($) NIL (|has| (-906 |#1|) (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2713 (((-1165 (-906 |#1|))) NIL)) (-2750 (($) NIL (|has| (-906 |#1|) (-368)))) (-3356 (($) NIL (|has| (-906 |#1|) (-368)))) (-1818 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-4376 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-1772 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4191 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) -(((-343 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -3874 ((-954 (-1113)))))) (-917) (-917)) (T -343)) -((-3874 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) -(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -3874 ((-954 (-1113)))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 59)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) 57 (|has| |#1| (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL (|has| |#1| (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) 144)) (-2589 ((|#1| $) 115)) (-1505 (($ (-1257 |#1|)) 132)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) 126 (|has| |#1| (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) 162 (|has| |#1| (-368)))) (-2812 (((-112) $) 67 (|has| |#1| (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) 61 (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2712 (((-112) $) 63)) (-3298 (($) 164 (|has| |#1| (-368)))) (-3277 (((-112) $) NIL (|has| |#1| (-368)))) (-3251 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 |#1|) $) 119) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3267 (((-917) $) 174 (|has| |#1| (-368)))) (-3332 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-3321 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3344 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 181)) (-2956 (($) NIL (|has| |#1| (-368)) CONST)) (-3491 (($ (-917)) 99 (|has| |#1| (-368)))) (-1808 (((-112) $) 149)) (-3249 (((-1113) $) NIL)) (-3874 (((-954 (-1113))) 58)) (-1738 (($) 160 (|has| |#1| (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 121 (|has| |#1| (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) 93) (((-917)) 94)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) 163 (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) 156 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2713 (((-1165 |#1|)) 124)) (-2750 (($) 161 (|has| |#1| (-368)))) (-3356 (($) 169 (|has| |#1| (-368)))) (-1818 (((-1257 |#1|) $) 78) (((-684 |#1|) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-2062 (((-858) $) 177) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 103)) (-4376 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3192 (((-767)) 171 T CONST)) (-3288 (((-1257 $)) 146) (((-1257 $) (-917)) 101)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) 68 T CONST)) (-3803 (($) 106 T CONST)) (-1772 (($ $) 110 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4191 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2943 (((-112) $ $) 66)) (-3050 (($ $ $) 179) (($ $ |#1|) 180)) (-3039 (($ $) 159) (($ $ $) NIL)) (-3027 (($ $ $) 87)) (** (($ $ (-917)) 183) (($ $ (-767)) 184) (($ $ (-563)) 182)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 105) (($ $ $) 104) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 178))) -(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3874 ((-954 (-1113)))))) (-349) (-1165 |#1|)) (T -344)) -((-3874 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1165 *3))))) -(-13 (-329 |#1|) (-10 -7 (-15 -3874 ((-954 (-1113)))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL (|has| |#1| (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-1505 (($ (-1257 |#1|)) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| |#1| (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) NIL (|has| |#1| (-368)))) (-2812 (((-112) $) NIL (|has| |#1| (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) NIL (|has| |#1| (-368)))) (-3277 (((-112) $) NIL (|has| |#1| (-368)))) (-3251 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3267 (((-917) $) NIL (|has| |#1| (-368)))) (-3332 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-3321 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3344 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| |#1| (-368)) CONST)) (-3491 (($ (-917)) NIL (|has| |#1| (-368)))) (-1808 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-3874 (((-954 (-1113))) NIL)) (-1738 (($) NIL (|has| |#1| (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| |#1| (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2713 (((-1165 |#1|)) NIL)) (-2750 (($) NIL (|has| |#1| (-368)))) (-3356 (($) NIL (|has| |#1| (-368)))) (-1818 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-4376 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-1772 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4191 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3874 ((-954 (-1113)))))) (-349) (-917)) (T -345)) -((-3874 (*1 *2) (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) -(-13 (-329 |#1|) (-10 -7 (-15 -3874 ((-954 (-1113)))))) -((-2779 (((-767) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113)))))) 61)) (-2689 (((-954 (-1113)) (-1165 |#1|)) 118)) (-2700 (((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) (-1165 |#1|)) 105)) (-2711 (((-684 |#1|) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113)))))) 120)) (-2718 (((-3 (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) "failed") (-917)) 13)) (-2728 (((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113)))))) (-917)) 18))) -(((-346 |#1|) (-10 -7 (-15 -2689 ((-954 (-1113)) (-1165 |#1|))) (-15 -2700 ((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) (-1165 |#1|))) (-15 -2711 ((-684 |#1|) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (-15 -2779 ((-767) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (-15 -2718 ((-3 (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) "failed") (-917))) (-15 -2728 ((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113)))))) (-917)))) (-349)) (T -346)) -((-2728 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-3 (-1165 *4) (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-2718 (*1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-5 *2 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-2779 (*1 *2 *3) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-684 *4)) (-5 *1 (-346 *4)))) (-2700 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) (-5 *1 (-346 *4)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1113))) (-5 *1 (-346 *4))))) -(-10 -7 (-15 -2689 ((-954 (-1113)) (-1165 |#1|))) (-15 -2700 ((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) (-1165 |#1|))) (-15 -2711 ((-684 |#1|) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (-15 -2779 ((-767) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (-15 -2718 ((-3 (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) "failed") (-917))) (-15 -2728 ((-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113)))))) (-917)))) -((-2062 ((|#1| |#3|) 105) ((|#3| |#1|) 88))) -(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -2062 (|#3| |#1|)) (-15 -2062 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347)) -((-2062 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-2062 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4))))) -(-10 -7 (-15 -2062 (|#3| |#1|)) (-15 -2062 (|#1| |#3|))) -((-2812 (((-112) $) 60)) (-2903 (((-829 (-917)) $) 23) (((-917) $) 66)) (-3113 (((-3 $ "failed") $) 18)) (-2956 (($) 9)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 116)) (-2515 (((-3 (-767) "failed") $ $) 94) (((-767) $) 81)) (-1361 (($ $ (-767)) NIL) (($ $) 8)) (-2750 (($) 53)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 38)) (-4376 (((-3 $ "failed") $) 45) (($ $) 44))) -(((-348 |#1|) (-10 -8 (-15 -2903 ((-917) |#1|)) (-15 -2515 ((-767) |#1|)) (-15 -2812 ((-112) |#1|)) (-15 -2750 (|#1|)) (-15 -4386 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -4376 (|#1| |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -2956 (|#1|)) (-15 -3113 ((-3 |#1| "failed") |#1|)) (-15 -2515 ((-3 (-767) "failed") |#1| |#1|)) (-15 -2903 ((-829 (-917)) |#1|)) (-15 -4376 ((-3 |#1| "failed") |#1|)) (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) (-349)) (T -348)) -NIL -(-10 -8 (-15 -2903 ((-917) |#1|)) (-15 -2515 ((-767) |#1|)) (-15 -2812 ((-112) |#1|)) (-15 -2750 (|#1|)) (-15 -4386 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -4376 (|#1| |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -2956 (|#1|)) (-15 -3113 ((-3 |#1| "failed") |#1|)) (-15 -2515 ((-3 (-767) "failed") |#1| |#1|)) (-15 -2903 ((-829 (-917)) |#1|)) (-15 -4376 ((-3 |#1| "failed") |#1|)) (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-2758 (((-1181 (-917) (-767)) (-563)) 94)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-4332 (((-112) $ $) 60)) (-2433 (((-767)) 104)) (-3684 (($) 17 T CONST)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-4301 (($) 107)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-2135 (($) 92)) (-2812 (((-112) $) 91)) (-2506 (($ $) 80) (($ $ (-767)) 79)) (-3675 (((-112) $) 72)) (-2903 (((-829 (-917)) $) 82) (((-917) $) 89)) (-2712 (((-112) $) 31)) (-3113 (((-3 $ "failed") $) 103)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3267 (((-917) $) 106)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-2956 (($) 102 T CONST)) (-3491 (($ (-917)) 105)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 95)) (-2055 (((-418 $) $) 75)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-2515 (((-3 (-767) "failed") $ $) 81) (((-767) $) 90)) (-1361 (($ $ (-767)) 100) (($ $) 98)) (-2750 (($) 93)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 96)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-4376 (((-3 $ "failed") $) 83) (($ $) 97)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-767)) 101) (($ $) 99)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 66)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +((-4265 (*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) (-4265 (*1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *4)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)))) (-2340 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) (-2653 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-3925 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) (-1506 (*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) (-2653 (*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) (-4 *1 (-329 *4)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-3809 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) (-4220 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-2680 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-1530 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) (-1693 (*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) (-4375 (*1 *1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) (-4 *3 (-363)))) (-2528 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-2945 (*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3)))) (-2945 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-1166 *3))))) +(-13 (-1278 |t#1|) (-1035 |t#1|) (-10 -8 (-15 -4265 ((-1259 $))) (-15 -4265 ((-1259 $) (-918))) (-15 -1785 ((-1259 |t#1|) $)) (-15 -1785 ((-685 |t#1|) (-1259 $))) (-15 -2340 ($ (-1259 |t#1|))) (-15 -2653 ((-1166 |t#1|) $)) (-15 -3925 ((-1166 |t#1|))) (-15 -1506 ((-918))) (-15 -2266 ((-918) $)) (-15 -3328 (|t#1| $)) (-15 -3809 (|t#1| $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-349)) (-15 -2653 ((-1166 $) $ (-918))) (-15 -3328 ($ $ (-918))) (-15 -3809 ($ $ (-918))) (-15 -4220 ($)) (-15 -2680 ($)) (-15 -1530 ((-112) $)) (-15 -1693 ($)) (-15 -4375 ($ $ (-1166 |t#1|))) (-15 -2528 ((-1166 |t#1|) $)) (-15 -2945 ((-1166 |t#1|) $)) (-15 -2945 ((-3 (-1166 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4030 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-233) |has| |#1| (-368)) ((-243) . T) ((-290) . T) ((-307) . T) ((-1278 |#1|) . T) ((-363) . T) ((-402) -4030 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-368) |has| |#1| (-368)) ((-349) |has| |#1| (-368)) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-368)) ((-1213) . T) ((-1266 |#1|) . T)) +((-3732 (((-112) $ $) NIL)) (-3692 (($ (-1169) $) 104)) (-3146 (($) 93)) (-1914 (((-1114) (-1114)) 9)) (-1504 (($) 94)) (-2436 (($) 108) (($ (-316 (-695))) 116) (($ (-316 (-697))) 112) (($ (-316 (-690))) 120) (($ (-316 (-379))) 127) (($ (-316 (-564))) 123) (($ (-316 (-169 (-379)))) 131)) (-3854 (($ (-1169) $) 105)) (-2214 (($ (-641 (-859))) 95)) (-3119 (((-1264) $) 91)) (-3002 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 35)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2108 (($ (-1114)) 60)) (-1787 (((-1098) $) 32)) (-3814 (($ (-1086 (-949 (-564))) $) 101) (($ (-1086 (-949 (-564))) (-949 (-564)) $) 102)) (-4083 (($ (-1114)) 103)) (-3172 (($ (-1169) $) 133) (($ (-1169) $ $) 134)) (-2444 (($ (-1170) (-641 (-1170))) 92)) (-3482 (($ (-1152)) 98) (($ (-641 (-1152))) 96)) (-3742 (((-859) $) 136)) (-1328 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4003 (-112)) (|:| -3426 (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -3089 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4337 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4337 $))) (|:| |commonBranch| (-2 (|:| -4324 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $) 51)) (-3251 (($ (-1152)) 205)) (-3929 (($ (-641 $)) 132)) (-4162 (($ (-1170) (-1152)) 138) (($ (-1170) (-316 (-697))) 178) (($ (-1170) (-316 (-695))) 179) (($ (-1170) (-316 (-690))) 180) (($ (-1170) (-685 (-697))) 141) (($ (-1170) (-685 (-695))) 144) (($ (-1170) (-685 (-690))) 147) (($ (-1170) (-1259 (-697))) 150) (($ (-1170) (-1259 (-695))) 153) (($ (-1170) (-1259 (-690))) 156) (($ (-1170) (-685 (-316 (-697)))) 159) (($ (-1170) (-685 (-316 (-695)))) 162) (($ (-1170) (-685 (-316 (-690)))) 165) (($ (-1170) (-1259 (-316 (-697)))) 168) (($ (-1170) (-1259 (-316 (-695)))) 171) (($ (-1170) (-1259 (-316 (-690)))) 174) (($ (-1170) (-641 (-949 (-564))) (-316 (-697))) 175) (($ (-1170) (-641 (-949 (-564))) (-316 (-695))) 176) (($ (-1170) (-641 (-949 (-564))) (-316 (-690))) 177) (($ (-1170) (-316 (-564))) 202) (($ (-1170) (-316 (-379))) 203) (($ (-1170) (-316 (-169 (-379)))) 204) (($ (-1170) (-685 (-316 (-564)))) 183) (($ (-1170) (-685 (-316 (-379)))) 186) (($ (-1170) (-685 (-316 (-169 (-379))))) 189) (($ (-1170) (-1259 (-316 (-564)))) 192) (($ (-1170) (-1259 (-316 (-379)))) 195) (($ (-1170) (-1259 (-316 (-169 (-379))))) 198) (($ (-1170) (-641 (-949 (-564))) (-316 (-564))) 199) (($ (-1170) (-641 (-949 (-564))) (-316 (-379))) 200) (($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379)))) 201)) (-1705 (((-112) $ $) NIL))) +(((-330) (-13 (-1094) (-10 -8 (-15 -3814 ($ (-1086 (-949 (-564))) $)) (-15 -3814 ($ (-1086 (-949 (-564))) (-949 (-564)) $)) (-15 -3692 ($ (-1169) $)) (-15 -3854 ($ (-1169) $)) (-15 -2108 ($ (-1114))) (-15 -4083 ($ (-1114))) (-15 -3482 ($ (-1152))) (-15 -3482 ($ (-641 (-1152)))) (-15 -3251 ($ (-1152))) (-15 -2436 ($)) (-15 -2436 ($ (-316 (-695)))) (-15 -2436 ($ (-316 (-697)))) (-15 -2436 ($ (-316 (-690)))) (-15 -2436 ($ (-316 (-379)))) (-15 -2436 ($ (-316 (-564)))) (-15 -2436 ($ (-316 (-169 (-379))))) (-15 -3172 ($ (-1169) $)) (-15 -3172 ($ (-1169) $ $)) (-15 -4162 ($ (-1170) (-1152))) (-15 -4162 ($ (-1170) (-316 (-697)))) (-15 -4162 ($ (-1170) (-316 (-695)))) (-15 -4162 ($ (-1170) (-316 (-690)))) (-15 -4162 ($ (-1170) (-685 (-697)))) (-15 -4162 ($ (-1170) (-685 (-695)))) (-15 -4162 ($ (-1170) (-685 (-690)))) (-15 -4162 ($ (-1170) (-1259 (-697)))) (-15 -4162 ($ (-1170) (-1259 (-695)))) (-15 -4162 ($ (-1170) (-1259 (-690)))) (-15 -4162 ($ (-1170) (-685 (-316 (-697))))) (-15 -4162 ($ (-1170) (-685 (-316 (-695))))) (-15 -4162 ($ (-1170) (-685 (-316 (-690))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-697))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-695))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-690))))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-697)))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-695)))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-690)))) (-15 -4162 ($ (-1170) (-316 (-564)))) (-15 -4162 ($ (-1170) (-316 (-379)))) (-15 -4162 ($ (-1170) (-316 (-169 (-379))))) (-15 -4162 ($ (-1170) (-685 (-316 (-564))))) (-15 -4162 ($ (-1170) (-685 (-316 (-379))))) (-15 -4162 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-564))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-379))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-564)))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-379)))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379))))) (-15 -3929 ($ (-641 $))) (-15 -3146 ($)) (-15 -1504 ($)) (-15 -2214 ($ (-641 (-859)))) (-15 -2444 ($ (-1170) (-641 (-1170)))) (-15 -3002 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1328 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4003 (-112)) (|:| -3426 (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -3089 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4337 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4337 $))) (|:| |commonBranch| (-2 (|:| -4324 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $)) (-15 -3119 ((-1264) $)) (-15 -1787 ((-1098) $)) (-15 -1914 ((-1114) (-1114)))))) (T -330)) +((-3814 (*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *1 (-330)))) (-3814 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *3 (-949 (-564))) (-5 *1 (-330)))) (-3692 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3854 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330)))) (-3482 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-3482 (*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) (-3251 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330)))) (-2436 (*1 *1) (-5 *1 (-330))) (-2436 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) (-2436 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) (-2436 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) (-2436 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) (-2436 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) (-2436 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3172 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-3172 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-697))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-695))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-690))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-564))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-379))) (-5 *1 (-330)))) (-4162 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330)))) (-3146 (*1 *1) (-5 *1 (-330))) (-1504 (*1 *1) (-5 *1 (-330))) (-2214 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-330)))) (-2444 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-330)))) (-1328 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| (-2 (|:| -4003 (-112)) (|:| -3426 (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |blockBranch| (-641 (-330))) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -3089 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4337 (-330)))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4337 (-330)))) (|:| |commonBranch| (-2 (|:| -4324 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859))))) (-5 *1 (-330)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330)))) (-1914 (*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) +(-13 (-1094) (-10 -8 (-15 -3814 ($ (-1086 (-949 (-564))) $)) (-15 -3814 ($ (-1086 (-949 (-564))) (-949 (-564)) $)) (-15 -3692 ($ (-1169) $)) (-15 -3854 ($ (-1169) $)) (-15 -2108 ($ (-1114))) (-15 -4083 ($ (-1114))) (-15 -3482 ($ (-1152))) (-15 -3482 ($ (-641 (-1152)))) (-15 -3251 ($ (-1152))) (-15 -2436 ($)) (-15 -2436 ($ (-316 (-695)))) (-15 -2436 ($ (-316 (-697)))) (-15 -2436 ($ (-316 (-690)))) (-15 -2436 ($ (-316 (-379)))) (-15 -2436 ($ (-316 (-564)))) (-15 -2436 ($ (-316 (-169 (-379))))) (-15 -3172 ($ (-1169) $)) (-15 -3172 ($ (-1169) $ $)) (-15 -4162 ($ (-1170) (-1152))) (-15 -4162 ($ (-1170) (-316 (-697)))) (-15 -4162 ($ (-1170) (-316 (-695)))) (-15 -4162 ($ (-1170) (-316 (-690)))) (-15 -4162 ($ (-1170) (-685 (-697)))) (-15 -4162 ($ (-1170) (-685 (-695)))) (-15 -4162 ($ (-1170) (-685 (-690)))) (-15 -4162 ($ (-1170) (-1259 (-697)))) (-15 -4162 ($ (-1170) (-1259 (-695)))) (-15 -4162 ($ (-1170) (-1259 (-690)))) (-15 -4162 ($ (-1170) (-685 (-316 (-697))))) (-15 -4162 ($ (-1170) (-685 (-316 (-695))))) (-15 -4162 ($ (-1170) (-685 (-316 (-690))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-697))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-695))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-690))))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-697)))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-695)))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-690)))) (-15 -4162 ($ (-1170) (-316 (-564)))) (-15 -4162 ($ (-1170) (-316 (-379)))) (-15 -4162 ($ (-1170) (-316 (-169 (-379))))) (-15 -4162 ($ (-1170) (-685 (-316 (-564))))) (-15 -4162 ($ (-1170) (-685 (-316 (-379))))) (-15 -4162 ($ (-1170) (-685 (-316 (-169 (-379)))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-564))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-379))))) (-15 -4162 ($ (-1170) (-1259 (-316 (-169 (-379)))))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-564)))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-379)))) (-15 -4162 ($ (-1170) (-641 (-949 (-564))) (-316 (-169 (-379))))) (-15 -3929 ($ (-641 $))) (-15 -3146 ($)) (-15 -1504 ($)) (-15 -2214 ($ (-641 (-859)))) (-15 -2444 ($ (-1170) (-641 (-1170)))) (-15 -3002 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1328 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1170)) (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1169)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -4003 (-112)) (|:| -3426 (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |blockBranch| (-641 $)) (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| (-2 (|:| -3089 (-1086 (-949 (-564)))) (|:| |span| (-949 (-564))) (|:| -4337 $))) (|:| |labelBranch| (-1114)) (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4337 $))) (|:| |commonBranch| (-2 (|:| -4324 (-1170)) (|:| |contents| (-641 (-1170))))) (|:| |printBranch| (-641 (-859)))) $)) (-15 -3119 ((-1264) $)) (-15 -1787 ((-1098) $)) (-15 -1914 ((-1114) (-1114))))) +((-3732 (((-112) $ $) NIL)) (-3398 (((-112) $) 13)) (-2297 (($ |#1|) 10)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2309 (($ |#1|) 12)) (-3742 (((-859) $) 19)) (-2526 ((|#1| $) 14)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 21))) +(((-331 |#1|) (-13 (-847) (-10 -8 (-15 -2297 ($ |#1|)) (-15 -2309 ($ |#1|)) (-15 -3398 ((-112) $)) (-15 -2526 (|#1| $)))) (-847)) (T -331)) +((-2297 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) (-2309 (*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-847)))) (-2526 (*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847))))) +(-13 (-847) (-10 -8 (-15 -2297 ($ |#1|)) (-15 -2309 ($ |#1|)) (-15 -3398 ((-112) $)) (-15 -2526 (|#1| $)))) +((-1791 (((-330) (-1170) (-949 (-564))) 23)) (-1376 (((-330) (-1170) (-949 (-564))) 27)) (-3149 (((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564)))) 26) (((-330) (-1170) (-949 (-564)) (-949 (-564))) 24)) (-4021 (((-330) (-1170) (-949 (-564))) 31))) +(((-332) (-10 -7 (-15 -1791 ((-330) (-1170) (-949 (-564)))) (-15 -3149 ((-330) (-1170) (-949 (-564)) (-949 (-564)))) (-15 -3149 ((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564))))) (-15 -1376 ((-330) (-1170) (-949 (-564)))) (-15 -4021 ((-330) (-1170) (-949 (-564)))))) (T -332)) +((-4021 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1376 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3149 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-949 (-564)))) (-5 *2 (-330)) (-5 *1 (-332)))) (-3149 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332)))) (-1791 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) (-5 *1 (-332))))) +(-10 -7 (-15 -1791 ((-330) (-1170) (-949 (-564)))) (-15 -3149 ((-330) (-1170) (-949 (-564)) (-949 (-564)))) (-15 -3149 ((-330) (-1170) (-1086 (-949 (-564))) (-1086 (-949 (-564))))) (-15 -1376 ((-330) (-1170) (-949 (-564)))) (-15 -4021 ((-330) (-1170) (-949 (-564))))) +((-2187 (((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)) 33))) +(((-333 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2187 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-363) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -333)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *9 (-363)) (-4 *10 (-1235 *9)) (-4 *11 (-1235 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11))))) +(-10 -7 (-15 -2187 ((-336 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-336 |#1| |#2| |#3| |#4|)))) +((-1450 (((-112) $) 14))) +(((-334 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1450 ((-112) |#1|))) (-335 |#2| |#3| |#4| |#5|) (-363) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -334)) +NIL +(-10 -8 (-15 -1450 ((-112) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-1699 (($ $) 26)) (-1450 (((-112) $) 25)) (-2217 (((-1152) $) 9)) (-3197 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 32)) (-3864 (((-1114) $) 10)) (-1693 (((-3 |#4| "failed") $) 24)) (-4197 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-564)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-2795 (((-2 (|:| -3585 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20))) +(((-335 |#1| |#2| |#3| |#4|) (-140) (-363) (-1235 |t#1|) (-1235 (-407 |t#2|)) (-342 |t#1| |t#2| |t#3|)) (T -335)) +((-3197 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-413 *4 (-407 *4) *5 *6)))) (-4197 (*1 *1 *2) (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) (-4 *1 (-335 *3 *4 *5 *6)))) (-4197 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) (-4197 (*1 *1 *2 *2) (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) (-4197 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) (-4 *6 (-342 *2 *4 *5)))) (-2795 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-2 (|:| -3585 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) (-1699 (*1 *1 *1) (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112)))) (-1693 (*1 *2 *1) (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *2 (-342 *3 *4 *5)))) (-4197 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -3197 ((-413 |t#2| (-407 |t#2|) |t#3| |t#4|) $)) (-15 -4197 ($ (-413 |t#2| (-407 |t#2|) |t#3| |t#4|))) (-15 -4197 ($ |t#4|)) (-15 -4197 ($ |t#1| |t#1|)) (-15 -4197 ($ |t#1| |t#1| (-564))) (-15 -2795 ((-2 (|:| -3585 (-413 |t#2| (-407 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1699 ($ $)) (-15 -1450 ((-112) $)) (-15 -1693 ((-3 |t#4| "failed") $)) (-15 -4197 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1699 (($ $) 33)) (-1450 (((-112) $) NIL)) (-2217 (((-1152) $) NIL)) (-3632 (((-1259 |#4|) $) 135)) (-3197 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 31)) (-3864 (((-1114) $) NIL)) (-1693 (((-3 |#4| "failed") $) 36)) (-2587 (((-1259 |#4|) $) 127)) (-4197 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-564)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-2795 (((-2 (|:| -3585 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-3742 (((-859) $) 17)) (-4311 (($) 14 T CONST)) (-1705 (((-112) $ $) 20)) (-1790 (($ $) 27) (($ $ $) NIL)) (-1780 (($ $ $) 25)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 23))) +(((-336 |#1| |#2| |#3| |#4|) (-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2587 ((-1259 |#4|) $)) (-15 -3632 ((-1259 |#4|) $)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -336)) +((-2587 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5)))) (-3632 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) (-4 *6 (-342 *3 *4 *5))))) +(-13 (-335 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2587 ((-1259 |#4|) $)) (-15 -3632 ((-1259 |#4|) $)))) +((-2416 (($ $ (-1170) |#2|) NIL) (($ $ (-641 (-1170)) (-641 |#2|)) 20) (($ $ (-641 (-294 |#2|))) 15) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-4382 (($ $ |#2|) 11))) +(((-337 |#1| |#2|) (-10 -8 (-15 -4382 (|#1| |#1| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#2| |#2|)) (-15 -2416 (|#1| |#1| (-294 |#2|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -2416 (|#1| |#1| (-1170) |#2|))) (-338 |#2|) (-1094)) (T -337)) +NIL +(-10 -8 (-15 -4382 (|#1| |#1| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#2| |#2|)) (-15 -2416 (|#1| |#1| (-294 |#2|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 |#2|))) (-15 -2416 (|#1| |#1| (-1170) |#2|))) +((-2187 (($ (-1 |#1| |#1|) $) 6)) (-2416 (($ $ (-1170) |#1|) 17 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 16 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-641 (-294 |#1|))) 15 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 14 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-309 |#1|))) (($ $ (-641 |#1|) (-641 |#1|)) 12 (|has| |#1| (-309 |#1|)))) (-4382 (($ $ |#1|) 11 (|has| |#1| (-286 |#1| |#1|))))) +(((-338 |#1|) (-140) (-1094)) (T -338)) +((-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094))))) +(-13 (-10 -8 (-15 -2187 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-286 |t#1| |t#1|)) (-6 (-286 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-514 (-1170) |t#1|)) (-6 (-514 (-1170) |t#1|)) |%noBranch|))) +(((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-1170)) $) NIL)) (-3891 (((-112)) 98) (((-112) (-112)) 99)) (-2084 (((-641 (-610 $)) $) NIL)) (-2451 (($ $) NIL)) (-2319 (($ $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3148 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-4137 (($ $) NIL)) (-2428 (($ $) NIL)) (-2297 (($ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-610 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-316 |#3|)) 78) (((-3 $ "failed") (-1170)) 104) (((-3 $ "failed") (-316 (-564))) 66 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-407 (-949 (-564)))) 72 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-949 (-564))) 67 (|has| |#3| (-1035 (-564)))) (((-3 $ "failed") (-316 (-379))) 96 (|has| |#3| (-1035 (-379)))) (((-3 $ "failed") (-407 (-949 (-379)))) 90 (|has| |#3| (-1035 (-379)))) (((-3 $ "failed") (-949 (-379))) 85 (|has| |#3| (-1035 (-379))))) (-2239 (((-610 $) $) NIL) ((|#3| $) NIL) (($ (-316 |#3|)) 79) (($ (-1170)) 105) (($ (-316 (-564))) 68 (|has| |#3| (-1035 (-564)))) (($ (-407 (-949 (-564)))) 73 (|has| |#3| (-1035 (-564)))) (($ (-949 (-564))) 69 (|has| |#3| (-1035 (-564)))) (($ (-316 (-379))) 97 (|has| |#3| (-1035 (-379)))) (($ (-407 (-949 (-379)))) 91 (|has| |#3| (-1035 (-379)))) (($ (-949 (-379))) 87 (|has| |#3| (-1035 (-379))))) (-3951 (((-3 $ "failed") $) NIL)) (-1655 (($) 10)) (-2211 (($ $) NIL) (($ (-641 $)) NIL)) (-3423 (((-641 (-114)) $) NIL)) (-4058 (((-114) (-114)) NIL)) (-3840 (((-112) $) NIL)) (-1801 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2176 (((-1166 $) (-610 $)) NIL (|has| $ (-1046)))) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 $ $) (-610 $)) NIL)) (-4242 (((-3 (-610 $) "failed") $) NIL)) (-4050 (($ $) 101)) (-2192 (($ $) NIL)) (-2217 (((-1152) $) NIL)) (-4087 (((-641 (-610 $)) $) NIL)) (-1697 (($ (-114) $) 100) (($ (-114) (-641 $)) NIL)) (-4211 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-3724 (((-768) $) NIL)) (-3864 (((-1114) $) NIL)) (-3755 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4118 (($ $) NIL)) (-1497 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2416 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1928 (($ $) NIL) (($ $ $) NIL)) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-3925 (($ $) NIL (|has| $ (-1046)))) (-2438 (($ $) NIL)) (-2309 (($ $) NIL)) (-3742 (((-859) $) NIL) (($ (-610 $)) NIL) (($ |#3|) NIL) (($ (-564)) NIL) (((-316 |#3|) $) 103)) (-3270 (((-768)) NIL T CONST)) (-1523 (($ $) NIL) (($ (-641 $)) NIL)) (-2095 (((-112) (-114)) NIL)) (-2379 (($ $) NIL)) (-2358 (($ $) NIL)) (-2367 (($ $) NIL)) (-2792 (($ $) NIL)) (-4311 (($) 102 T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1790 (($ $ $) NIL) (($ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL))) +(((-339 |#1| |#2| |#3|) (-13 (-302) (-38 |#3|) (-1035 |#3|) (-897 (-1170)) (-10 -8 (-15 -2239 ($ (-316 |#3|))) (-15 -2111 ((-3 $ "failed") (-316 |#3|))) (-15 -2239 ($ (-1170))) (-15 -2111 ((-3 $ "failed") (-1170))) (-15 -3742 ((-316 |#3|) $)) (IF (|has| |#3| (-1035 (-564))) (PROGN (-15 -2239 ($ (-316 (-564)))) (-15 -2111 ((-3 $ "failed") (-316 (-564)))) (-15 -2239 ($ (-407 (-949 (-564))))) (-15 -2111 ((-3 $ "failed") (-407 (-949 (-564))))) (-15 -2239 ($ (-949 (-564)))) (-15 -2111 ((-3 $ "failed") (-949 (-564))))) |%noBranch|) (IF (|has| |#3| (-1035 (-379))) (PROGN (-15 -2239 ($ (-316 (-379)))) (-15 -2111 ((-3 $ "failed") (-316 (-379)))) (-15 -2239 ($ (-407 (-949 (-379))))) (-15 -2111 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2239 ($ (-949 (-379)))) (-15 -2111 ((-3 $ "failed") (-949 (-379))))) |%noBranch|) (-15 -2792 ($ $)) (-15 -4137 ($ $)) (-15 -4118 ($ $)) (-15 -2192 ($ $)) (-15 -4050 ($ $)) (-15 -2297 ($ $)) (-15 -2309 ($ $)) (-15 -2319 ($ $)) (-15 -2358 ($ $)) (-15 -2367 ($ $)) (-15 -2379 ($ $)) (-15 -2428 ($ $)) (-15 -2438 ($ $)) (-15 -2451 ($ $)) (-15 -1655 ($)) (-15 -4269 ((-641 (-1170)) $)) (-15 -3891 ((-112))) (-15 -3891 ((-112) (-112))))) (-641 (-1170)) (-641 (-1170)) (-387)) (T -339)) +((-2239 (*1 *1 *2) (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-2792 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4137 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4118 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2192 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4050 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2297 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2309 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2319 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2358 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2428 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2438 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-2451 (*1 *1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-1655 (*1 *1) (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-387)))) (-3891 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387))))) +(-13 (-302) (-38 |#3|) (-1035 |#3|) (-897 (-1170)) (-10 -8 (-15 -2239 ($ (-316 |#3|))) (-15 -2111 ((-3 $ "failed") (-316 |#3|))) (-15 -2239 ($ (-1170))) (-15 -2111 ((-3 $ "failed") (-1170))) (-15 -3742 ((-316 |#3|) $)) (IF (|has| |#3| (-1035 (-564))) (PROGN (-15 -2239 ($ (-316 (-564)))) (-15 -2111 ((-3 $ "failed") (-316 (-564)))) (-15 -2239 ($ (-407 (-949 (-564))))) (-15 -2111 ((-3 $ "failed") (-407 (-949 (-564))))) (-15 -2239 ($ (-949 (-564)))) (-15 -2111 ((-3 $ "failed") (-949 (-564))))) |%noBranch|) (IF (|has| |#3| (-1035 (-379))) (PROGN (-15 -2239 ($ (-316 (-379)))) (-15 -2111 ((-3 $ "failed") (-316 (-379)))) (-15 -2239 ($ (-407 (-949 (-379))))) (-15 -2111 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2239 ($ (-949 (-379)))) (-15 -2111 ((-3 $ "failed") (-949 (-379))))) |%noBranch|) (-15 -2792 ($ $)) (-15 -4137 ($ $)) (-15 -4118 ($ $)) (-15 -2192 ($ $)) (-15 -4050 ($ $)) (-15 -2297 ($ $)) (-15 -2309 ($ $)) (-15 -2319 ($ $)) (-15 -2358 ($ $)) (-15 -2367 ($ $)) (-15 -2379 ($ $)) (-15 -2428 ($ $)) (-15 -2438 ($ $)) (-15 -2451 ($ $)) (-15 -1655 ($)) (-15 -4269 ((-641 (-1170)) $)) (-15 -3891 ((-112))) (-15 -3891 ((-112) (-112))))) +((-2187 ((|#8| (-1 |#5| |#1|) |#4|) 19))) +(((-340 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2187 (|#8| (-1 |#5| |#1|) |#4|))) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#5|) (-1235 (-407 |#6|)) (-342 |#5| |#6| |#7|)) (T -340)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1213)) (-4 *8 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *9 (-1235 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1235 (-407 *9)))))) +(-10 -7 (-15 -2187 (|#8| (-1 |#5| |#1|) |#4|))) +((-3240 (((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) $) 40)) (-2340 (($ (-1259 (-407 |#3|)) (-1259 $)) NIL) (($ (-1259 (-407 |#3|))) NIL) (($ (-1259 |#3|) |#3|) 176)) (-3071 (((-1259 $) (-1259 $)) 160)) (-2299 (((-641 (-641 |#2|))) 129)) (-2900 (((-112) |#2| |#2|) 77)) (-1989 (($ $) 151)) (-2660 (((-768)) 33)) (-2273 (((-1259 $) (-1259 $)) 222)) (-1943 (((-641 (-949 |#2|)) (-1170)) 119)) (-4364 (((-112) $) 173)) (-2505 (((-112) $) 27) (((-112) $ |#2|) 31) (((-112) $ |#3|) 226)) (-2307 (((-3 |#3| "failed")) 53)) (-1582 (((-768)) 187)) (-4382 ((|#2| $ |#2| |#2|) 143)) (-3945 (((-3 |#3| "failed")) 72)) (-4117 (($ $ (-1 (-407 |#3|) (-407 |#3|)) (-768)) NIL) (($ $ (-1 (-407 |#3|) (-407 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 230) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-4005 (((-1259 $) (-1259 $)) 166)) (-2674 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 69)) (-1532 (((-112)) 35))) +(((-341 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2299 ((-641 (-641 |#2|)))) (-15 -1943 ((-641 (-949 |#2|)) (-1170))) (-15 -2674 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2307 ((-3 |#3| "failed"))) (-15 -3945 ((-3 |#3| "failed"))) (-15 -4382 (|#2| |#1| |#2| |#2|)) (-15 -1989 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2505 ((-112) |#1| |#3|)) (-15 -2505 ((-112) |#1| |#2|)) (-15 -2340 (|#1| (-1259 |#3|) |#3|)) (-15 -3240 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3071 ((-1259 |#1|) (-1259 |#1|))) (-15 -2273 ((-1259 |#1|) (-1259 |#1|))) (-15 -4005 ((-1259 |#1|) (-1259 |#1|))) (-15 -2505 ((-112) |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -2900 ((-112) |#2| |#2|)) (-15 -1532 ((-112))) (-15 -1582 ((-768))) (-15 -2660 ((-768))) (-15 -4117 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -4117 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-768))) (-15 -2340 (|#1| (-1259 (-407 |#3|)))) (-15 -2340 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) (-342 |#2| |#3| |#4|) (-1213) (-1235 |#2|) (-1235 (-407 |#3|))) (T -341)) +((-2660 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1582 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-1532 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) (-2900 (*1 *2 *3 *3) (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) (-3945 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-2307 (*1 *2) (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) (-4 *3 (-342 *4 *2 *5)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-949 *5))) (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) (-2299 (*1 *2) (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6))))) +(-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2299 ((-641 (-641 |#2|)))) (-15 -1943 ((-641 (-949 |#2|)) (-1170))) (-15 -2674 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2307 ((-3 |#3| "failed"))) (-15 -3945 ((-3 |#3| "failed"))) (-15 -4382 (|#2| |#1| |#2| |#2|)) (-15 -1989 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2505 ((-112) |#1| |#3|)) (-15 -2505 ((-112) |#1| |#2|)) (-15 -2340 (|#1| (-1259 |#3|) |#3|)) (-15 -3240 ((-2 (|:| |num| (-1259 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3071 ((-1259 |#1|) (-1259 |#1|))) (-15 -2273 ((-1259 |#1|) (-1259 |#1|))) (-15 -4005 ((-1259 |#1|) (-1259 |#1|))) (-15 -2505 ((-112) |#1|)) (-15 -4364 ((-112) |#1|)) (-15 -2900 ((-112) |#2| |#2|)) (-15 -1532 ((-112))) (-15 -1582 ((-768))) (-15 -2660 ((-768))) (-15 -4117 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)))) (-15 -4117 (|#1| |#1| (-1 (-407 |#3|) (-407 |#3|)) (-768))) (-15 -2340 (|#1| (-1259 (-407 |#3|)))) (-15 -2340 (|#1| (-1259 (-407 |#3|)) (-1259 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3240 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 195)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 93 (|has| (-407 |#2|) (-363)))) (-1948 (($ $) 94 (|has| (-407 |#2|) (-363)))) (-1832 (((-112) $) 96 (|has| (-407 |#2|) (-363)))) (-3580 (((-685 (-407 |#2|)) (-1259 $)) 47) (((-685 (-407 |#2|))) 62)) (-3809 (((-407 |#2|) $) 53)) (-4374 (((-1182 (-918) (-768)) (-564)) 146 (|has| (-407 |#2|) (-349)))) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 113 (|has| (-407 |#2|) (-363)))) (-3048 (((-418 $) $) 114 (|has| (-407 |#2|) (-363)))) (-2377 (((-112) $ $) 104 (|has| (-407 |#2|) (-363)))) (-1938 (((-768)) 87 (|has| (-407 |#2|) (-368)))) (-4341 (((-112)) 212)) (-2714 (((-112) |#1|) 211) (((-112) |#2|) 210)) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 169 (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) 164)) (-2239 (((-564) $) 168 (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) 165)) (-2340 (($ (-1259 (-407 |#2|)) (-1259 $)) 49) (($ (-1259 (-407 |#2|))) 65) (($ (-1259 |#2|) |#2|) 194)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| (-407 |#2|) (-349)))) (-1373 (($ $ $) 108 (|has| (-407 |#2|) (-363)))) (-3807 (((-685 (-407 |#2|)) $ (-1259 $)) 54) (((-685 (-407 |#2|)) $) 60)) (-3039 (((-685 (-564)) (-685 $)) 163 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) 161) (((-685 (-407 |#2|)) (-685 $)) 160)) (-3071 (((-1259 $) (-1259 $)) 200)) (-1699 (($ |#3|) 157) (((-3 $ "failed") (-407 |#3|)) 154 (|has| (-407 |#2|) (-363)))) (-3951 (((-3 $ "failed") $) 33)) (-2299 (((-641 (-641 |#1|))) 181 (|has| |#1| (-368)))) (-2900 (((-112) |#1| |#1|) 216)) (-1544 (((-918)) 55)) (-2821 (($) 90 (|has| (-407 |#2|) (-368)))) (-3040 (((-112)) 209)) (-2904 (((-112) |#1|) 208) (((-112) |#2|) 207)) (-1350 (($ $ $) 107 (|has| (-407 |#2|) (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 102 (|has| (-407 |#2|) (-363)))) (-1989 (($ $) 187)) (-2757 (($) 148 (|has| (-407 |#2|) (-349)))) (-1313 (((-112) $) 149 (|has| (-407 |#2|) (-349)))) (-3176 (($ $ (-768)) 140 (|has| (-407 |#2|) (-349))) (($ $) 139 (|has| (-407 |#2|) (-349)))) (-4188 (((-112) $) 115 (|has| (-407 |#2|) (-363)))) (-1619 (((-918) $) 151 (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) 137 (|has| (-407 |#2|) (-349)))) (-3840 (((-112) $) 31)) (-2660 (((-768)) 219)) (-2273 (((-1259 $) (-1259 $)) 201)) (-3328 (((-407 |#2|) $) 52)) (-1943 (((-641 (-949 |#1|)) (-1170)) 182 (|has| |#1| (-363)))) (-3907 (((-3 $ "failed") $) 141 (|has| (-407 |#2|) (-349)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| (-407 |#2|) (-363)))) (-2653 ((|#3| $) 45 (|has| (-407 |#2|) (-363)))) (-1906 (((-918) $) 89 (|has| (-407 |#2|) (-368)))) (-1687 ((|#3| $) 155)) (-2529 (($ (-641 $)) 100 (|has| (-407 |#2|) (-363))) (($ $ $) 99 (|has| (-407 |#2|) (-363)))) (-2217 (((-1152) $) 9)) (-1939 (((-685 (-407 |#2|))) 196)) (-2392 (((-685 (-407 |#2|))) 198)) (-4373 (($ $) 116 (|has| (-407 |#2|) (-363)))) (-2014 (($ (-1259 |#2|) |#2|) 192)) (-3830 (((-685 (-407 |#2|))) 197)) (-1295 (((-685 (-407 |#2|))) 199)) (-3625 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 191)) (-1750 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 193)) (-4240 (((-1259 $)) 205)) (-4054 (((-1259 $)) 206)) (-4364 (((-112) $) 204)) (-2505 (((-112) $) 203) (((-112) $ |#1|) 190) (((-112) $ |#2|) 189)) (-3258 (($) 142 (|has| (-407 |#2|) (-349)) CONST)) (-1495 (($ (-918)) 88 (|has| (-407 |#2|) (-368)))) (-2307 (((-3 |#2| "failed")) 184)) (-3864 (((-1114) $) 10)) (-1582 (((-768)) 218)) (-1693 (($) 159)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| (-407 |#2|) (-363)))) (-2577 (($ (-641 $)) 98 (|has| (-407 |#2|) (-363))) (($ $ $) 97 (|has| (-407 |#2|) (-363)))) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 145 (|has| (-407 |#2|) (-349)))) (-4127 (((-418 $) $) 112 (|has| (-407 |#2|) (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 109 (|has| (-407 |#2|) (-363)))) (-1321 (((-3 $ "failed") $ $) 92 (|has| (-407 |#2|) (-363)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| (-407 |#2|) (-363)))) (-4061 (((-768) $) 105 (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) 186)) (-3945 (((-3 |#2| "failed")) 185)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 106 (|has| (-407 |#2|) (-363)))) (-4284 (((-407 |#2|) (-1259 $)) 48) (((-407 |#2|)) 61)) (-2819 (((-768) $) 150 (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) 138 (|has| (-407 |#2|) (-349)))) (-4117 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) 122 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 121 (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) 188) (($ $ (-641 (-1170)) (-641 (-768))) 129 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4267 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-768)) 130 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4267 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 131 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4267 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 132 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4267 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-768)) 134 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4267 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 136 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4267 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2277 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) 153 (|has| (-407 |#2|) (-363)))) (-3925 ((|#3|) 158)) (-1543 (($) 147 (|has| (-407 |#2|) (-349)))) (-1785 (((-1259 (-407 |#2|)) $ (-1259 $)) 51) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) 50) (((-1259 (-407 |#2|)) $) 67) (((-685 (-407 |#2|)) (-1259 $)) 66)) (-2235 (((-1259 (-407 |#2|)) $) 64) (($ (-1259 (-407 |#2|))) 63) ((|#3| $) 170) (($ |#3|) 156)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| (-407 |#2|) (-349)))) (-4005 (((-1259 $) (-1259 $)) 202)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 |#2|)) 38) (($ (-407 (-564))) 86 (-4030 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-1035 (-407 (-564)))))) (($ $) 91 (|has| (-407 |#2|) (-363)))) (-4253 (($ $) 143 (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) 44 (|has| (-407 |#2|) (-145)))) (-2230 ((|#3| $) 46)) (-3270 (((-768)) 28 T CONST)) (-2342 (((-112)) 215)) (-4000 (((-112) |#1|) 214) (((-112) |#2|) 213)) (-4265 (((-1259 $)) 68)) (-3360 (((-112) $ $) 95 (|has| (-407 |#2|) (-363)))) (-2674 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 183)) (-1532 (((-112)) 217)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) 124 (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) 123 (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) 125 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4267 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170) (-768)) 126 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4267 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-641 (-1170))) 127 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4267 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-1170)) 128 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) (-4267 (|has| (-407 |#2|) (-897 (-1170))) (|has| (-407 |#2|) (-363))))) (($ $ (-768)) 133 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4267 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) 135 (-4030 (-4267 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-233))) (-4267 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 120 (|has| (-407 |#2|) (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 117 (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 |#2|)) 40) (($ (-407 |#2|) $) 39) (($ (-407 (-564)) $) 119 (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) 118 (|has| (-407 |#2|) (-363))))) +(((-342 |#1| |#2| |#3|) (-140) (-1213) (-1235 |t#1|) (-1235 (-407 |t#2|))) (T -342)) +((-2660 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) (-1582 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) (-1532 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2900 (*1 *2 *3 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2342 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4000 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4000 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-4341 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2714 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2714 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-3040 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2904 (*1 *2 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2904 (*1 *2 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-4054 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-4240 (*1 *2) (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-4005 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-2273 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-1295 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-2392 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-3830 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-1939 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4))))) (-3240 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-2340 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-1750 (*1 *2 *1) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4))))) (-2014 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) (-3625 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5))))) (-2505 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) (-2505 (*1 *2 *1 *3) (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) (-1989 (*1 *1 *1) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-4382 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))))) (-3945 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-2307 (*1 *2) (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3)))) (-2674 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) (-4 *6 (-1235 (-407 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-342 *4 *5 *6)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) (-5 *2 (-641 (-949 *4))))) (-2299 (*1 *2) (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3)))))) +(-13 (-721 (-407 |t#2|) |t#3|) (-10 -8 (-15 -2660 ((-768))) (-15 -1582 ((-768))) (-15 -1532 ((-112))) (-15 -2900 ((-112) |t#1| |t#1|)) (-15 -2342 ((-112))) (-15 -4000 ((-112) |t#1|)) (-15 -4000 ((-112) |t#2|)) (-15 -4341 ((-112))) (-15 -2714 ((-112) |t#1|)) (-15 -2714 ((-112) |t#2|)) (-15 -3040 ((-112))) (-15 -2904 ((-112) |t#1|)) (-15 -2904 ((-112) |t#2|)) (-15 -4054 ((-1259 $))) (-15 -4240 ((-1259 $))) (-15 -4364 ((-112) $)) (-15 -2505 ((-112) $)) (-15 -4005 ((-1259 $) (-1259 $))) (-15 -2273 ((-1259 $) (-1259 $))) (-15 -3071 ((-1259 $) (-1259 $))) (-15 -1295 ((-685 (-407 |t#2|)))) (-15 -2392 ((-685 (-407 |t#2|)))) (-15 -3830 ((-685 (-407 |t#2|)))) (-15 -1939 ((-685 (-407 |t#2|)))) (-15 -3240 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2340 ($ (-1259 |t#2|) |t#2|)) (-15 -1750 ((-2 (|:| |num| (-1259 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2014 ($ (-1259 |t#2|) |t#2|)) (-15 -3625 ((-2 (|:| |num| (-685 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2505 ((-112) $ |t#1|)) (-15 -2505 ((-112) $ |t#2|)) (-15 -4117 ($ $ (-1 |t#2| |t#2|))) (-15 -1989 ($ $)) (-15 -4382 (|t#1| $ |t#1| |t#1|)) (-15 -3945 ((-3 |t#2| "failed"))) (-15 -2307 ((-3 |t#2| "failed"))) (-15 -2674 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-363)) (-15 -1943 ((-641 (-949 |t#1|)) (-1170))) |%noBranch|) (IF (|has| |t#1| (-368)) (-15 -2299 ((-641 (-641 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-38 #1=(-407 |#2|)) . T) ((-38 $) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-102) . T) ((-111 #0# #0#) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-145))) ((-147) |has| (-407 |#2|) (-147)) ((-614 #0#) -4030 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-614 #1#) . T) ((-614 (-564)) . T) ((-614 $) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-611 (-859)) . T) ((-172) . T) ((-612 |#3|) . T) ((-231 #1#) |has| (-407 |#2|) (-363)) ((-233) -4030 (|has| (-407 |#2|) (-349)) (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363)))) ((-243) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-290) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-307) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-363) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-402) |has| (-407 |#2|) (-349)) ((-368) -4030 (|has| (-407 |#2|) (-368)) (|has| (-407 |#2|) (-349))) ((-349) |has| (-407 |#2|) (-349)) ((-370 #1# |#3|) . T) ((-409 #1# |#3|) . T) ((-377 #1#) . T) ((-411 #1#) . T) ((-452) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-556) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #0#) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-644 #1#) . T) ((-644 $) . T) ((-637 #1#) . T) ((-637 (-564)) |has| (-407 |#2|) (-637 (-564))) ((-714 #0#) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-714 #1#) . T) ((-714 $) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-721 #1# |#3|) . T) ((-723) . T) ((-897 (-1170)) -12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170)))) ((-917) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1035 (-407 (-564))) |has| (-407 |#2|) (-1035 (-407 (-564)))) ((-1035 #1#) . T) ((-1035 (-564)) |has| (-407 |#2|) (-1035 (-564))) ((-1052 #0#) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363))) ((-1052 #1#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| (-407 |#2|) (-349)) ((-1213) -4030 (|has| (-407 |#2|) (-349)) (|has| (-407 |#2|) (-363)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-907 |#1|) "failed") $) NIL)) (-2239 (((-907 |#1|) $) NIL)) (-2340 (($ (-1259 (-907 |#1|))) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-907 |#1|) (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) NIL (|has| (-907 |#1|) (-368)))) (-1313 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) NIL (|has| (-907 |#1|) (-368)))) (-1530 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3328 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1906 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-2528 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-2945 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-4375 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1495 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3259 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-3246 (((-955 (-1114))) NIL)) (-1693 (($) NIL (|has| (-907 |#1|) (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3925 (((-1166 (-907 |#1|))) NIL)) (-1543 (($) NIL (|has| (-907 |#1|) (-368)))) (-4220 (($) NIL (|has| (-907 |#1|) (-368)))) (-1785 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4253 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2578 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2124 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL))) +(((-343 |#1| |#2|) (-13 (-329 (-907 |#1|)) (-10 -7 (-15 -3246 ((-955 (-1114)))))) (-918) (-918)) (T -343)) +((-3246 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918))))) +(-13 (-329 (-907 |#1|)) (-10 -7 (-15 -3246 ((-955 (-1114)))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 59)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) 57 (|has| |#1| (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL (|has| |#1| (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) 144)) (-2239 ((|#1| $) 115)) (-2340 (($ (-1259 |#1|)) 132)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 123 (|has| |#1| (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) 126 (|has| |#1| (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) 162 (|has| |#1| (-368)))) (-1313 (((-112) $) 67 (|has| |#1| (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) 61 (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3840 (((-112) $) 63)) (-2680 (($) 164 (|has| |#1| (-368)))) (-1530 (((-112) $) NIL (|has| |#1| (-368)))) (-3328 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 |#1|) $) 119) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1906 (((-918) $) 174 (|has| |#1| (-368)))) (-2528 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2945 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4375 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 181)) (-3258 (($) NIL (|has| |#1| (-368)) CONST)) (-1495 (($ (-918)) 99 (|has| |#1| (-368)))) (-3259 (((-112) $) 149)) (-3864 (((-1114) $) NIL)) (-3246 (((-955 (-1114))) 58)) (-1693 (($) 160 (|has| |#1| (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 121 (|has| |#1| (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) 93) (((-918)) 94)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) 163 (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) 156 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3925 (((-1166 |#1|)) 124)) (-1543 (($) 161 (|has| |#1| (-368)))) (-4220 (($) 169 (|has| |#1| (-368)))) (-1785 (((-1259 |#1|) $) 78) (((-685 |#1|) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3742 (((-859) $) 177) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-4253 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3270 (((-768)) 171 T CONST)) (-4265 (((-1259 $)) 146) (((-1259 $) (-918)) 101)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) 68 T CONST)) (-4321 (($) 106 T CONST)) (-2578 (($ $) 110 (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2124 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1705 (((-112) $ $) 66)) (-1799 (($ $ $) 179) (($ $ |#1|) 180)) (-1790 (($ $) 159) (($ $ $) NIL)) (-1780 (($ $ $) 87)) (** (($ $ (-918)) 183) (($ $ (-768)) 184) (($ $ (-564)) 182)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 105) (($ $ $) 104) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 178))) +(((-344 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3246 ((-955 (-1114)))))) (-349) (-1166 |#1|)) (T -344)) +((-3246 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) (-14 *4 (-1166 *3))))) +(-13 (-329 |#1|) (-10 -7 (-15 -3246 ((-955 (-1114)))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL (|has| |#1| (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-2340 (($ (-1259 |#1|)) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| |#1| (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) NIL (|has| |#1| (-368)))) (-1313 (((-112) $) NIL (|has| |#1| (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) NIL (|has| |#1| (-368)))) (-1530 (((-112) $) NIL (|has| |#1| (-368)))) (-3328 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1906 (((-918) $) NIL (|has| |#1| (-368)))) (-2528 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2945 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4375 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| |#1| (-368)) CONST)) (-1495 (($ (-918)) NIL (|has| |#1| (-368)))) (-3259 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-3246 (((-955 (-1114))) NIL)) (-1693 (($) NIL (|has| |#1| (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| |#1| (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3925 (((-1166 |#1|)) NIL)) (-1543 (($) NIL (|has| |#1| (-368)))) (-4220 (($) NIL (|has| |#1| (-368)))) (-1785 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4253 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2578 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2124 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-345 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -3246 ((-955 (-1114)))))) (-349) (-918)) (T -345)) +((-3246 (*1 *2) (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918))))) +(-13 (-329 |#1|) (-10 -7 (-15 -3246 ((-955 (-1114)))))) +((-2417 (((-768) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114)))))) 61)) (-2614 (((-955 (-1114)) (-1166 |#1|)) 118)) (-2190 (((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) (-1166 |#1|)) 105)) (-3759 (((-685 |#1|) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114)))))) 120)) (-3112 (((-3 (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) "failed") (-918)) 13)) (-2644 (((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114)))))) (-918)) 18))) +(((-346 |#1|) (-10 -7 (-15 -2614 ((-955 (-1114)) (-1166 |#1|))) (-15 -2190 ((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) (-1166 |#1|))) (-15 -3759 ((-685 |#1|) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (-15 -2417 ((-768) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (-15 -3112 ((-3 (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) "failed") (-918))) (-15 -2644 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114)))))) (-918)))) (-349)) (T -346)) +((-2644 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-3 (-1166 *4) (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114))))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-3112 (*1 *2 *3) (|partial| -12 (-5 *3 (-918)) (-5 *2 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) (-5 *1 (-346 *4)) (-4 *4 (-349)))) (-2417 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-768)) (-5 *1 (-346 *4)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) (-5 *1 (-346 *4)))) (-2614 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-955 (-1114))) (-5 *1 (-346 *4))))) +(-10 -7 (-15 -2614 ((-955 (-1114)) (-1166 |#1|))) (-15 -2190 ((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) (-1166 |#1|))) (-15 -3759 ((-685 |#1|) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (-15 -2417 ((-768) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (-15 -3112 ((-3 (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) "failed") (-918))) (-15 -2644 ((-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114)))))) (-918)))) +((-3742 ((|#1| |#3|) 105) ((|#3| |#1|) 88))) +(((-347 |#1| |#2| |#3|) (-10 -7 (-15 -3742 (|#3| |#1|)) (-15 -3742 (|#1| |#3|))) (-329 |#2|) (-349) (-329 |#2|)) (T -347)) +((-3742 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) (-4 *3 (-329 *4)))) (-3742 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) (-4 *3 (-329 *4))))) +(-10 -7 (-15 -3742 (|#3| |#1|)) (-15 -3742 (|#1| |#3|))) +((-1313 (((-112) $) 60)) (-1619 (((-830 (-918)) $) 23) (((-918) $) 66)) (-3907 (((-3 $ "failed") $) 18)) (-3258 (($) 9)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 116)) (-2819 (((-3 (-768) "failed") $ $) 94) (((-768) $) 81)) (-4117 (($ $ (-768)) NIL) (($ $) 8)) (-1543 (($) 53)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 38)) (-4253 (((-3 $ "failed") $) 45) (($ $) 44))) +(((-348 |#1|) (-10 -8 (-15 -1619 ((-918) |#1|)) (-15 -2819 ((-768) |#1|)) (-15 -1313 ((-112) |#1|)) (-15 -1543 (|#1|)) (-15 -2723 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -4253 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -3258 (|#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -2819 ((-3 (-768) "failed") |#1| |#1|)) (-15 -1619 ((-830 (-918)) |#1|)) (-15 -4253 ((-3 |#1| "failed") |#1|)) (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-349)) (T -348)) +NIL +(-10 -8 (-15 -1619 ((-918) |#1|)) (-15 -2819 ((-768) |#1|)) (-15 -1313 ((-112) |#1|)) (-15 -1543 (|#1|)) (-15 -2723 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -4253 (|#1| |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -3258 (|#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -2819 ((-3 (-768) "failed") |#1| |#1|)) (-15 -1619 ((-830 (-918)) |#1|)) (-15 -4253 ((-3 |#1| "failed") |#1|)) (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-4374 (((-1182 (-918) (-768)) (-564)) 94)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-2377 (((-112) $ $) 60)) (-1938 (((-768)) 104)) (-2818 (($) 17 T CONST)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 88)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-2821 (($) 107)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-2757 (($) 92)) (-1313 (((-112) $) 91)) (-3176 (($ $) 80) (($ $ (-768)) 79)) (-4188 (((-112) $) 72)) (-1619 (((-830 (-918)) $) 82) (((-918) $) 89)) (-3840 (((-112) $) 31)) (-3907 (((-3 $ "failed") $) 103)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1906 (((-918) $) 106)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-3258 (($) 102 T CONST)) (-1495 (($ (-918)) 105)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 95)) (-4127 (((-418 $) $) 75)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-2819 (((-3 (-768) "failed") $ $) 81) (((-768) $) 90)) (-4117 (($ $ (-768)) 100) (($ $) 98)) (-1543 (($) 93)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 96)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-4253 (((-3 $ "failed") $) 83) (($ $) 97)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-768)) 101) (($ $) 99)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 66)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-349) (-140)) (T -349)) -((-4376 (*1 *1 *1) (-4 *1 (-349))) (-4386 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-349)) (-5 *2 (-1257 *1)))) (-2768 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))))) (-2758 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-563)) (-5 *2 (-1181 (-917) (-767))))) (-2750 (*1 *1) (-4 *1 (-349))) (-2135 (*1 *1) (-4 *1 (-349))) (-2812 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917)))) (-2739 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-402) (-368) (-1144) (-233) (-10 -8 (-15 -4376 ($ $)) (-15 -4386 ((-3 (-1257 $) "failed") (-684 $))) (-15 -2768 ((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563)))))) (-15 -2758 ((-1181 (-917) (-767)) (-563))) (-15 -2750 ($)) (-15 -2135 ($)) (-15 -2812 ((-112) $)) (-15 -2515 ((-767) $)) (-15 -2903 ((-917) $)) (-15 -2739 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) . T) ((-1212) . T)) -((-1672 (((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|) 57)) (-1661 (((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))) 55))) -(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -1661 ((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))) (-15 -1672 ((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $)))) (-1233 |#1|) (-409 |#1| |#2|)) (T -350)) -((-1672 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1661 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(-10 -7 (-15 -1661 ((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))))) (-15 -1672 ((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2779 (((-767)) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-906 |#1|) "failed") $) NIL)) (-2589 (((-906 |#1|) $) NIL)) (-1505 (($ (-1257 (-906 |#1|))) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-906 |#1|) (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) NIL (|has| (-906 |#1|) (-368)))) (-2812 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) NIL (|has| (-906 |#1|) (-368)))) (-3277 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3251 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3267 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-3332 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-3321 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3344 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-3491 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1808 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-2801 (((-1257 (-640 (-2 (|:| -3556 (-906 |#1|)) (|:| -3491 (-1113)))))) NIL)) (-2788 (((-684 (-906 |#1|))) NIL)) (-1738 (($) NIL (|has| (-906 |#1|) (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2713 (((-1165 (-906 |#1|))) NIL)) (-2750 (($) NIL (|has| (-906 |#1|) (-368)))) (-3356 (($) NIL (|has| (-906 |#1|) (-368)))) (-1818 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-4376 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-1772 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4191 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) -(((-351 |#1| |#2|) (-13 (-329 (-906 |#1|)) (-10 -7 (-15 -2801 ((-1257 (-640 (-2 (|:| -3556 (-906 |#1|)) (|:| -3491 (-1113))))))) (-15 -2788 ((-684 (-906 |#1|)))) (-15 -2779 ((-767))))) (-917) (-917)) (T -351)) -((-2801 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -3556 (-906 *3)) (|:| -3491 (-1113)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2788 (*1 *2) (-12 (-5 *2 (-684 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-2779 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917))))) -(-13 (-329 (-906 |#1|)) (-10 -7 (-15 -2801 ((-1257 (-640 (-2 (|:| -3556 (-906 |#1|)) (|:| -3491 (-1113))))))) (-15 -2788 ((-684 (-906 |#1|)))) (-15 -2779 ((-767))))) -((-2049 (((-112) $ $) 76)) (-2741 (((-112) $) 90)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 ((|#1| $) 108) (($ $ (-917)) 106 (|has| |#1| (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) 177 (|has| |#1| (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2779 (((-767)) 105)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) 193 (|has| |#1| (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) 130)) (-2589 ((|#1| $) 107)) (-1505 (($ (-1257 |#1|)) 74)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) 189 (|has| |#1| (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) 178 (|has| |#1| (-368)))) (-2812 (((-112) $) NIL (|has| |#1| (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) 116 (|has| |#1| (-368)))) (-3277 (((-112) $) 206 (|has| |#1| (-368)))) (-3251 ((|#1| $) 110) (($ $ (-917)) 109 (|has| |#1| (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 |#1|) $) 220) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3267 (((-917) $) 154 (|has| |#1| (-368)))) (-3332 (((-1165 |#1|) $) 89 (|has| |#1| (-368)))) (-3321 (((-1165 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-3344 (($ $ (-1165 |#1|)) 85 (|has| |#1| (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 224)) (-2956 (($) NIL (|has| |#1| (-368)) CONST)) (-3491 (($ (-917)) 157 (|has| |#1| (-368)))) (-1808 (((-112) $) 126)) (-3249 (((-1113) $) NIL)) (-2801 (((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113)))))) 99)) (-2788 (((-684 |#1|)) 103)) (-1738 (($) 112 (|has| |#1| (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 180 (|has| |#1| (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) 181)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) 78)) (-2713 (((-1165 |#1|)) 182)) (-2750 (($) 153 (|has| |#1| (-368)))) (-3356 (($) NIL (|has| |#1| (-368)))) (-1818 (((-1257 |#1|) $) 124) (((-684 |#1|) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-2062 (((-858) $) 146) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 73)) (-4376 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3192 (((-767)) 187 T CONST)) (-3288 (((-1257 $)) 203) (((-1257 $) (-917)) 119)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) 140 T CONST)) (-3803 (($) 44 T CONST)) (-1772 (($ $) 125 (|has| |#1| (-368))) (($ $ (-767)) 117 (|has| |#1| (-368)))) (-4191 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2943 (((-112) $ $) 214)) (-3050 (($ $ $) 122) (($ $ |#1|) 123)) (-3039 (($ $) 208) (($ $ $) 212)) (-3027 (($ $ $) 210)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 159)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 217) (($ $ $) 171) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) -(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2801 ((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (-15 -2788 ((-684 |#1|))) (-15 -2779 ((-767))))) (-349) (-3 (-1165 |#1|) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (T -352)) -((-2801 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -3556 *3) (|:| -3491 (-1113)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) *2)))) (-2788 (*1 *2) (-12 (-5 *2 (-684 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) (-1257 (-640 (-2 (|:| -3556 *3) (|:| -3491 (-1113))))))))) (-2779 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) (-1257 (-640 (-2 (|:| -3556 *3) (|:| -3491 (-1113)))))))))) -(-13 (-329 |#1|) (-10 -7 (-15 -2801 ((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (-15 -2788 ((-684 |#1|))) (-15 -2779 ((-767))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2779 (((-767)) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL (|has| |#1| (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-1505 (($ (-1257 |#1|)) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| |#1| (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) NIL (|has| |#1| (-368)))) (-2812 (((-112) $) NIL (|has| |#1| (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) NIL (|has| |#1| (-368)))) (-3277 (((-112) $) NIL (|has| |#1| (-368)))) (-3251 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3267 (((-917) $) NIL (|has| |#1| (-368)))) (-3332 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-3321 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3344 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| |#1| (-368)) CONST)) (-3491 (($ (-917)) NIL (|has| |#1| (-368)))) (-1808 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-2801 (((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113)))))) NIL)) (-2788 (((-684 |#1|)) NIL)) (-1738 (($) NIL (|has| |#1| (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| |#1| (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2713 (((-1165 |#1|)) NIL)) (-2750 (($) NIL (|has| |#1| (-368)))) (-3356 (($) NIL (|has| |#1| (-368)))) (-1818 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-4376 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-1772 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4191 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2801 ((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (-15 -2788 ((-684 |#1|))) (-15 -2779 ((-767))))) (-349) (-917)) (T -353)) -((-2801 (*1 *2) (-12 (-5 *2 (-1257 (-640 (-2 (|:| -3556 *3) (|:| -3491 (-1113)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-2788 (*1 *2) (-12 (-5 *2 (-684 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917)))) (-2779 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) -(-13 (-329 |#1|) (-10 -7 (-15 -2801 ((-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))))) (-15 -2788 ((-684 |#1|))) (-15 -2779 ((-767))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-906 |#1|) (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL (|has| (-906 |#1|) (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-906 |#1|) "failed") $) NIL)) (-2589 (((-906 |#1|) $) NIL)) (-1505 (($ (-1257 (-906 |#1|))) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-906 |#1|) (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-906 |#1|) (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) NIL (|has| (-906 |#1|) (-368)))) (-2812 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368)))) (($ $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| (-906 |#1|) (-368))) (((-829 (-917)) $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) NIL (|has| (-906 |#1|) (-368)))) (-3277 (((-112) $) NIL (|has| (-906 |#1|) (-368)))) (-3251 (((-906 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| (-906 |#1|) (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 (-906 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-3267 (((-917) $) NIL (|has| (-906 |#1|) (-368)))) (-3332 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368)))) (-3321 (((-1165 (-906 |#1|)) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-1165 (-906 |#1|)) "failed") $ $) NIL (|has| (-906 |#1|) (-368)))) (-3344 (($ $ (-1165 (-906 |#1|))) NIL (|has| (-906 |#1|) (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-906 |#1|) (-368)) CONST)) (-3491 (($ (-917)) NIL (|has| (-906 |#1|) (-368)))) (-1808 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-1738 (($) NIL (|has| (-906 |#1|) (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| (-906 |#1|) (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| (-906 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2713 (((-1165 (-906 |#1|))) NIL)) (-2750 (($) NIL (|has| (-906 |#1|) (-368)))) (-3356 (($) NIL (|has| (-906 |#1|) (-368)))) (-1818 (((-1257 (-906 |#1|)) $) NIL) (((-684 (-906 |#1|)) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-906 |#1|) (-368)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-906 |#1|)) NIL)) (-4376 (($ $) NIL (|has| (-906 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| (-906 |#1|) (-145)) (|has| (-906 |#1|) (-368))))) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-1772 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-4191 (($ $) NIL (|has| (-906 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-906 |#1|) (-368)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ (-906 |#1|)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-906 |#1|)) NIL) (($ (-906 |#1|) $) NIL))) -(((-354 |#1| |#2|) (-329 (-906 |#1|)) (-917) (-917)) (T -354)) -NIL -(-329 (-906 |#1|)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) 135 (|has| |#1| (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) 164 (|has| |#1| (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) 109)) (-2589 ((|#1| $) 106)) (-1505 (($ (-1257 |#1|)) 101)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) 98 (|has| |#1| (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) 51 (|has| |#1| (-368)))) (-2812 (((-112) $) NIL (|has| |#1| (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) 136 (|has| |#1| (-368)))) (-3277 (((-112) $) 90 (|has| |#1| (-368)))) (-3251 ((|#1| $) 47) (($ $ (-917)) 52 (|has| |#1| (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 |#1|) $) 79) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3267 (((-917) $) 113 (|has| |#1| (-368)))) (-3332 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-3321 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3344 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| |#1| (-368)) CONST)) (-3491 (($ (-917)) 111 (|has| |#1| (-368)))) (-1808 (((-112) $) 166)) (-3249 (((-1113) $) NIL)) (-1738 (($) 44 (|has| |#1| (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 130 (|has| |#1| (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) 163)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) 71)) (-2713 (((-1165 |#1|)) 104)) (-2750 (($) 141 (|has| |#1| (-368)))) (-3356 (($) NIL (|has| |#1| (-368)))) (-1818 (((-1257 |#1|) $) 66) (((-684 |#1|) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-2062 (((-858) $) 162) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 103)) (-4376 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3192 (((-767)) 168 T CONST)) (-3288 (((-1257 $)) 125) (((-1257 $) (-917)) 60)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) 127 T CONST)) (-3803 (($) 40 T CONST)) (-1772 (($ $) 82 (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4191 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2943 (((-112) $ $) 123)) (-3050 (($ $ $) 115) (($ $ |#1|) 116)) (-3039 (($ $) 96) (($ $ $) 121)) (-3027 (($ $ $) 119)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55) (($ $ (-563)) 145)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 94) (($ $ $) 68) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) -(((-355 |#1| |#2|) (-329 |#1|) (-349) (-1165 |#1|)) (T -355)) +((-4253 (*1 *1 *1) (-4 *1 (-349))) (-2723 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) (-4056 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))))) (-4374 (*1 *2 *3) (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-918) (-768))))) (-1543 (*1 *1) (-4 *1 (-349))) (-2757 (*1 *1) (-4 *1 (-349))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) (-2819 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-768)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-918)))) (-3013 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-402) (-368) (-1145) (-233) (-10 -8 (-15 -4253 ($ $)) (-15 -2723 ((-3 (-1259 $) "failed") (-685 $))) (-15 -4056 ((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564)))))) (-15 -4374 ((-1182 (-918) (-768)) (-564))) (-15 -1543 ($)) (-15 -2757 ($)) (-15 -1313 ((-112) $)) (-15 -2819 ((-768) $)) (-15 -1619 ((-918) $)) (-15 -3013 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-233) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) . T) ((-368) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T)) +((-2791 (((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|) 57)) (-4054 (((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 55))) +(((-350 |#1| |#2| |#3|) (-10 -7 (-15 -4054 ((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -2791 ((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -350)) +((-2791 (*1 *2 *3) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4054 (*1 *2) (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(-10 -7 (-15 -4054 ((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))))) (-15 -2791 ((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2417 (((-768)) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-907 |#1|) "failed") $) NIL)) (-2239 (((-907 |#1|) $) NIL)) (-2340 (($ (-1259 (-907 |#1|))) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-907 |#1|) (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) NIL (|has| (-907 |#1|) (-368)))) (-1313 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) NIL (|has| (-907 |#1|) (-368)))) (-1530 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3328 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1906 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-2528 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-2945 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-4375 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1495 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3259 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-2802 (((-1259 (-641 (-2 (|:| -3426 (-907 |#1|)) (|:| -1495 (-1114)))))) NIL)) (-1982 (((-685 (-907 |#1|))) NIL)) (-1693 (($) NIL (|has| (-907 |#1|) (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3925 (((-1166 (-907 |#1|))) NIL)) (-1543 (($) NIL (|has| (-907 |#1|) (-368)))) (-4220 (($) NIL (|has| (-907 |#1|) (-368)))) (-1785 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4253 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2578 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2124 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL))) +(((-351 |#1| |#2|) (-13 (-329 (-907 |#1|)) (-10 -7 (-15 -2802 ((-1259 (-641 (-2 (|:| -3426 (-907 |#1|)) (|:| -1495 (-1114))))))) (-15 -1982 ((-685 (-907 |#1|)))) (-15 -2417 ((-768))))) (-918) (-918)) (T -351)) +((-2802 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3426 (-907 *3)) (|:| -1495 (-1114)))))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-1982 (*1 *2) (-12 (-5 *2 (-685 (-907 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2417 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918))))) +(-13 (-329 (-907 |#1|)) (-10 -7 (-15 -2802 ((-1259 (-641 (-2 (|:| -3426 (-907 |#1|)) (|:| -1495 (-1114))))))) (-15 -1982 ((-685 (-907 |#1|)))) (-15 -2417 ((-768))))) +((-3732 (((-112) $ $) 76)) (-4173 (((-112) $) 90)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 ((|#1| $) 108) (($ $ (-918)) 106 (|has| |#1| (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) 177 (|has| |#1| (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2417 (((-768)) 105)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) 193 (|has| |#1| (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) 130)) (-2239 ((|#1| $) 107)) (-2340 (($ (-1259 |#1|)) 74)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 219 (|has| |#1| (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) 189 (|has| |#1| (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) 178 (|has| |#1| (-368)))) (-1313 (((-112) $) NIL (|has| |#1| (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) 116 (|has| |#1| (-368)))) (-1530 (((-112) $) 206 (|has| |#1| (-368)))) (-3328 ((|#1| $) 110) (($ $ (-918)) 109 (|has| |#1| (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 |#1|) $) 220) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1906 (((-918) $) 154 (|has| |#1| (-368)))) (-2528 (((-1166 |#1|) $) 89 (|has| |#1| (-368)))) (-2945 (((-1166 |#1|) $) 86 (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) 98 (|has| |#1| (-368)))) (-4375 (($ $ (-1166 |#1|)) 85 (|has| |#1| (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 224)) (-3258 (($) NIL (|has| |#1| (-368)) CONST)) (-1495 (($ (-918)) 157 (|has| |#1| (-368)))) (-3259 (((-112) $) 126)) (-3864 (((-1114) $) NIL)) (-2802 (((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114)))))) 99)) (-1982 (((-685 |#1|)) 103)) (-1693 (($) 112 (|has| |#1| (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 180 (|has| |#1| (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) 181)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) 78)) (-3925 (((-1166 |#1|)) 182)) (-1543 (($) 153 (|has| |#1| (-368)))) (-4220 (($) NIL (|has| |#1| (-368)))) (-1785 (((-1259 |#1|) $) 124) (((-685 |#1|) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3742 (((-859) $) 146) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 73)) (-4253 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3270 (((-768)) 187 T CONST)) (-4265 (((-1259 $)) 203) (((-1259 $) (-918)) 119)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) 140 T CONST)) (-4321 (($) 44 T CONST)) (-2578 (($ $) 125 (|has| |#1| (-368))) (($ $ (-768)) 117 (|has| |#1| (-368)))) (-2124 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1705 (((-112) $ $) 214)) (-1799 (($ $ $) 122) (($ $ |#1|) 123)) (-1790 (($ $) 208) (($ $ $) 212)) (-1780 (($ $ $) 210)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 159)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 217) (($ $ $) 171) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 121))) +(((-352 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2802 ((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (-15 -1982 ((-685 |#1|))) (-15 -2417 ((-768))))) (-349) (-3 (-1166 |#1|) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (T -352)) +((-2802 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3426 *3) (|:| -1495 (-1114)))))) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) (-1982 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -3426 *3) (|:| -1495 (-1114))))))))) (-2417 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) (-1259 (-641 (-2 (|:| -3426 *3) (|:| -1495 (-1114)))))))))) +(-13 (-329 |#1|) (-10 -7 (-15 -2802 ((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (-15 -1982 ((-685 |#1|))) (-15 -2417 ((-768))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2417 (((-768)) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL (|has| |#1| (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-2340 (($ (-1259 |#1|)) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| |#1| (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) NIL (|has| |#1| (-368)))) (-1313 (((-112) $) NIL (|has| |#1| (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) NIL (|has| |#1| (-368)))) (-1530 (((-112) $) NIL (|has| |#1| (-368)))) (-3328 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1906 (((-918) $) NIL (|has| |#1| (-368)))) (-2528 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2945 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4375 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| |#1| (-368)) CONST)) (-1495 (($ (-918)) NIL (|has| |#1| (-368)))) (-3259 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-2802 (((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114)))))) NIL)) (-1982 (((-685 |#1|)) NIL)) (-1693 (($) NIL (|has| |#1| (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| |#1| (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3925 (((-1166 |#1|)) NIL)) (-1543 (($) NIL (|has| |#1| (-368)))) (-4220 (($) NIL (|has| |#1| (-368)))) (-1785 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4253 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2578 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2124 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-353 |#1| |#2|) (-13 (-329 |#1|) (-10 -7 (-15 -2802 ((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (-15 -1982 ((-685 |#1|))) (-15 -2417 ((-768))))) (-349) (-918)) (T -353)) +((-2802 (*1 *2) (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3426 *3) (|:| -1495 (-1114)))))) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))) (-1982 (*1 *2) (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918)))) (-2417 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918))))) +(-13 (-329 |#1|) (-10 -7 (-15 -2802 ((-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))))) (-15 -1982 ((-685 |#1|))) (-15 -2417 ((-768))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-907 |#1|) (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL (|has| (-907 |#1|) (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-907 |#1|) "failed") $) NIL)) (-2239 (((-907 |#1|) $) NIL)) (-2340 (($ (-1259 (-907 |#1|))) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-907 |#1|) (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-907 |#1|) (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) NIL (|has| (-907 |#1|) (-368)))) (-1313 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368)))) (($ $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| (-907 |#1|) (-368))) (((-830 (-918)) $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) NIL (|has| (-907 |#1|) (-368)))) (-1530 (((-112) $) NIL (|has| (-907 |#1|) (-368)))) (-3328 (((-907 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| (-907 |#1|) (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 (-907 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-1906 (((-918) $) NIL (|has| (-907 |#1|) (-368)))) (-2528 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368)))) (-2945 (((-1166 (-907 |#1|)) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-1166 (-907 |#1|)) "failed") $ $) NIL (|has| (-907 |#1|) (-368)))) (-4375 (($ $ (-1166 (-907 |#1|))) NIL (|has| (-907 |#1|) (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-907 |#1|) (-368)) CONST)) (-1495 (($ (-918)) NIL (|has| (-907 |#1|) (-368)))) (-3259 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-1693 (($) NIL (|has| (-907 |#1|) (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| (-907 |#1|) (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| (-907 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3925 (((-1166 (-907 |#1|))) NIL)) (-1543 (($) NIL (|has| (-907 |#1|) (-368)))) (-4220 (($) NIL (|has| (-907 |#1|) (-368)))) (-1785 (((-1259 (-907 |#1|)) $) NIL) (((-685 (-907 |#1|)) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-907 |#1|) (-368)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-907 |#1|)) NIL)) (-4253 (($ $) NIL (|has| (-907 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| (-907 |#1|) (-145)) (|has| (-907 |#1|) (-368))))) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2578 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-2124 (($ $) NIL (|has| (-907 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-907 |#1|) (-368)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL) (($ $ (-907 |#1|)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-907 |#1|)) NIL) (($ (-907 |#1|) $) NIL))) +(((-354 |#1| |#2|) (-329 (-907 |#1|)) (-918) (-918)) (T -354)) +NIL +(-329 (-907 |#1|)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) 135 (|has| |#1| (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) 164 (|has| |#1| (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) 109)) (-2239 ((|#1| $) 106)) (-2340 (($ (-1259 |#1|)) 101)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 132 (|has| |#1| (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) 98 (|has| |#1| (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) 51 (|has| |#1| (-368)))) (-1313 (((-112) $) NIL (|has| |#1| (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) 136 (|has| |#1| (-368)))) (-1530 (((-112) $) 90 (|has| |#1| (-368)))) (-3328 ((|#1| $) 47) (($ $ (-918)) 52 (|has| |#1| (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 |#1|) $) 79) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1906 (((-918) $) 113 (|has| |#1| (-368)))) (-2528 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2945 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4375 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| |#1| (-368)) CONST)) (-1495 (($ (-918)) 111 (|has| |#1| (-368)))) (-3259 (((-112) $) 166)) (-3864 (((-1114) $) NIL)) (-1693 (($) 44 (|has| |#1| (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 130 (|has| |#1| (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) 163)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) 71)) (-3925 (((-1166 |#1|)) 104)) (-1543 (($) 141 (|has| |#1| (-368)))) (-4220 (($) NIL (|has| |#1| (-368)))) (-1785 (((-1259 |#1|) $) 66) (((-685 |#1|) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3742 (((-859) $) 162) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 103)) (-4253 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3270 (((-768)) 168 T CONST)) (-4265 (((-1259 $)) 125) (((-1259 $) (-918)) 60)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) 127 T CONST)) (-4321 (($) 40 T CONST)) (-2578 (($ $) 82 (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2124 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1705 (((-112) $ $) 123)) (-1799 (($ $ $) 115) (($ $ |#1|) 116)) (-1790 (($ $) 96) (($ $ $) 121)) (-1780 (($ $ $) 119)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55) (($ $ (-564)) 145)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 94) (($ $ $) 68) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 92))) +(((-355 |#1| |#2|) (-329 |#1|) (-349) (-1166 |#1|)) (T -355)) NIL (-329 |#1|) -((-2978 ((|#1| (-1165 |#2|)) 65))) -(((-356 |#1| |#2|) (-10 -7 (-15 -2978 (|#1| (-1165 |#2|)))) (-13 (-402) (-10 -7 (-15 -2062 (|#1| |#2|)) (-15 -3267 ((-917) |#1|)) (-15 -3288 ((-1257 |#1|) (-917))) (-15 -1772 (|#1| |#1|)))) (-349)) (T -356)) -((-2978 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -2062 (*2 *4)) (-15 -3267 ((-917) *2)) (-15 -3288 ((-1257 *2) (-917))) (-15 -1772 (*2 *2))))) (-5 *1 (-356 *2 *4))))) -(-10 -7 (-15 -2978 (|#1| (-1165 |#2|)))) -((-2967 (((-954 (-1165 |#1|)) (-1165 |#1|)) 53)) (-4301 (((-1165 |#1|) (-917) (-917)) 164) (((-1165 |#1|) (-917)) 161)) (-2812 (((-112) (-1165 |#1|)) 119)) (-2833 (((-917) (-917)) 98)) (-2843 (((-917) (-917)) 105)) (-2823 (((-917) (-917)) 96)) (-3277 (((-112) (-1165 |#1|)) 123)) (-2911 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 146)) (-2944 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 151)) (-2931 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 150)) (-2921 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 149)) (-2900 (((-3 (-1165 |#1|) "failed") (-1165 |#1|)) 142)) (-2953 (((-1165 |#1|) (-1165 |#1|)) 84)) (-2862 (((-1165 |#1|) (-917)) 156)) (-2890 (((-1165 |#1|) (-917)) 159)) (-2881 (((-1165 |#1|) (-917)) 158)) (-2872 (((-1165 |#1|) (-917)) 157)) (-2853 (((-1165 |#1|) (-917)) 154))) -(((-357 |#1|) (-10 -7 (-15 -2812 ((-112) (-1165 |#1|))) (-15 -3277 ((-112) (-1165 |#1|))) (-15 -2823 ((-917) (-917))) (-15 -2833 ((-917) (-917))) (-15 -2843 ((-917) (-917))) (-15 -2853 ((-1165 |#1|) (-917))) (-15 -2862 ((-1165 |#1|) (-917))) (-15 -2872 ((-1165 |#1|) (-917))) (-15 -2881 ((-1165 |#1|) (-917))) (-15 -2890 ((-1165 |#1|) (-917))) (-15 -2900 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2911 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2921 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2931 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2944 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -4301 ((-1165 |#1|) (-917))) (-15 -4301 ((-1165 |#1|) (-917) (-917))) (-15 -2953 ((-1165 |#1|) (-1165 |#1|))) (-15 -2967 ((-954 (-1165 |#1|)) (-1165 |#1|)))) (-349)) (T -357)) -((-2967 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1165 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1165 *4)))) (-2953 (*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-4301 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2944 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2931 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2921 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2911 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2900 (*1 *2 *2) (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2881 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2872 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2862 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2843 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2833 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2823 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4))))) -(-10 -7 (-15 -2812 ((-112) (-1165 |#1|))) (-15 -3277 ((-112) (-1165 |#1|))) (-15 -2823 ((-917) (-917))) (-15 -2833 ((-917) (-917))) (-15 -2843 ((-917) (-917))) (-15 -2853 ((-1165 |#1|) (-917))) (-15 -2862 ((-1165 |#1|) (-917))) (-15 -2872 ((-1165 |#1|) (-917))) (-15 -2881 ((-1165 |#1|) (-917))) (-15 -2890 ((-1165 |#1|) (-917))) (-15 -2900 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2911 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2921 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2931 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -2944 ((-3 (-1165 |#1|) "failed") (-1165 |#1|))) (-15 -4301 ((-1165 |#1|) (-917))) (-15 -4301 ((-1165 |#1|) (-917) (-917))) (-15 -2953 ((-1165 |#1|) (-1165 |#1|))) (-15 -2967 ((-954 (-1165 |#1|)) (-1165 |#1|)))) -((-1297 (((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|) 40))) -(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -1297 ((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|))) (-349) (-1233 |#1|) (-1233 |#2|)) (T -358)) -((-1297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))) -(-10 -7 (-15 -1297 ((-3 (-640 |#3|) "failed") (-640 |#3|) |#3|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL (|has| |#1| (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-1505 (($ (-1257 |#1|)) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| |#1| (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) NIL (|has| |#1| (-368)))) (-2812 (((-112) $) NIL (|has| |#1| (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| |#1| (-368))) (((-829 (-917)) $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) NIL (|has| |#1| (-368)))) (-3277 (((-112) $) NIL (|has| |#1| (-368)))) (-3251 ((|#1| $) NIL) (($ $ (-917)) NIL (|has| |#1| (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 |#1|) $) NIL) (((-1165 $) $ (-917)) NIL (|has| |#1| (-368)))) (-3267 (((-917) $) NIL (|has| |#1| (-368)))) (-3332 (((-1165 |#1|) $) NIL (|has| |#1| (-368)))) (-3321 (((-1165 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1165 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-3344 (($ $ (-1165 |#1|)) NIL (|has| |#1| (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| |#1| (-368)) CONST)) (-3491 (($ (-917)) NIL (|has| |#1| (-368)))) (-1808 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-1738 (($) NIL (|has| |#1| (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| |#1| (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| |#1| (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2713 (((-1165 |#1|)) NIL)) (-2750 (($) NIL (|has| |#1| (-368)))) (-3356 (($) NIL (|has| |#1| (-368)))) (-1818 (((-1257 |#1|) $) NIL) (((-684 |#1|) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-368)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) NIL)) (-4376 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-1772 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-4191 (($ $) NIL (|has| |#1| (-368))) (($ $ (-767)) NIL (|has| |#1| (-368)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-359 |#1| |#2|) (-329 |#1|) (-349) (-917)) (T -359)) +((-3394 ((|#1| (-1166 |#2|)) 65))) +(((-356 |#1| |#2|) (-10 -7 (-15 -3394 (|#1| (-1166 |#2|)))) (-13 (-402) (-10 -7 (-15 -3742 (|#1| |#2|)) (-15 -1906 ((-918) |#1|)) (-15 -4265 ((-1259 |#1|) (-918))) (-15 -2578 (|#1| |#1|)))) (-349)) (T -356)) +((-3394 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-4 *2 (-13 (-402) (-10 -7 (-15 -3742 (*2 *4)) (-15 -1906 ((-918) *2)) (-15 -4265 ((-1259 *2) (-918))) (-15 -2578 (*2 *2))))) (-5 *1 (-356 *2 *4))))) +(-10 -7 (-15 -3394 (|#1| (-1166 |#2|)))) +((-1771 (((-955 (-1166 |#1|)) (-1166 |#1|)) 53)) (-2821 (((-1166 |#1|) (-918) (-918)) 164) (((-1166 |#1|) (-918)) 161)) (-1313 (((-112) (-1166 |#1|)) 119)) (-2583 (((-918) (-918)) 98)) (-2228 (((-918) (-918)) 105)) (-4200 (((-918) (-918)) 96)) (-1530 (((-112) (-1166 |#1|)) 123)) (-4105 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 146)) (-3424 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 151)) (-1738 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 150)) (-2422 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 149)) (-4332 (((-3 (-1166 |#1|) "failed") (-1166 |#1|)) 142)) (-1949 (((-1166 |#1|) (-1166 |#1|)) 84)) (-3528 (((-1166 |#1|) (-918)) 156)) (-2466 (((-1166 |#1|) (-918)) 159)) (-3860 (((-1166 |#1|) (-918)) 158)) (-2106 (((-1166 |#1|) (-918)) 157)) (-3911 (((-1166 |#1|) (-918)) 154))) +(((-357 |#1|) (-10 -7 (-15 -1313 ((-112) (-1166 |#1|))) (-15 -1530 ((-112) (-1166 |#1|))) (-15 -4200 ((-918) (-918))) (-15 -2583 ((-918) (-918))) (-15 -2228 ((-918) (-918))) (-15 -3911 ((-1166 |#1|) (-918))) (-15 -3528 ((-1166 |#1|) (-918))) (-15 -2106 ((-1166 |#1|) (-918))) (-15 -3860 ((-1166 |#1|) (-918))) (-15 -2466 ((-1166 |#1|) (-918))) (-15 -4332 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -4105 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2422 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1738 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3424 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2821 ((-1166 |#1|) (-918))) (-15 -2821 ((-1166 |#1|) (-918) (-918))) (-15 -1949 ((-1166 |#1|) (-1166 |#1|))) (-15 -1771 ((-955 (-1166 |#1|)) (-1166 |#1|)))) (-349)) (T -357)) +((-1771 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-955 (-1166 *4))) (-5 *1 (-357 *4)) (-5 *3 (-1166 *4)))) (-1949 (*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2821 (*1 *2 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3424 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-1738 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2422 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-4105 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-4332 (*1 *2 *2) (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3)))) (-2466 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-3911 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) (-4 *4 (-349)))) (-2228 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-2583 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-4200 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4)))) (-1313 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-357 *4))))) +(-10 -7 (-15 -1313 ((-112) (-1166 |#1|))) (-15 -1530 ((-112) (-1166 |#1|))) (-15 -4200 ((-918) (-918))) (-15 -2583 ((-918) (-918))) (-15 -2228 ((-918) (-918))) (-15 -3911 ((-1166 |#1|) (-918))) (-15 -3528 ((-1166 |#1|) (-918))) (-15 -2106 ((-1166 |#1|) (-918))) (-15 -3860 ((-1166 |#1|) (-918))) (-15 -2466 ((-1166 |#1|) (-918))) (-15 -4332 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -4105 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2422 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -1738 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -3424 ((-3 (-1166 |#1|) "failed") (-1166 |#1|))) (-15 -2821 ((-1166 |#1|) (-918))) (-15 -2821 ((-1166 |#1|) (-918) (-918))) (-15 -1949 ((-1166 |#1|) (-1166 |#1|))) (-15 -1771 ((-955 (-1166 |#1|)) (-1166 |#1|)))) +((-3561 (((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|) 40))) +(((-358 |#1| |#2| |#3|) (-10 -7 (-15 -3561 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -358)) +((-3561 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3))))) +(-10 -7 (-15 -3561 ((-3 (-641 |#3|) "failed") (-641 |#3|) |#3|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL (|has| |#1| (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-2340 (($ (-1259 |#1|)) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| |#1| (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) NIL (|has| |#1| (-368)))) (-1313 (((-112) $) NIL (|has| |#1| (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| |#1| (-368))) (((-830 (-918)) $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) NIL (|has| |#1| (-368)))) (-1530 (((-112) $) NIL (|has| |#1| (-368)))) (-3328 ((|#1| $) NIL) (($ $ (-918)) NIL (|has| |#1| (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 |#1|) $) NIL) (((-1166 $) $ (-918)) NIL (|has| |#1| (-368)))) (-1906 (((-918) $) NIL (|has| |#1| (-368)))) (-2528 (((-1166 |#1|) $) NIL (|has| |#1| (-368)))) (-2945 (((-1166 |#1|) $) NIL (|has| |#1| (-368))) (((-3 (-1166 |#1|) "failed") $ $) NIL (|has| |#1| (-368)))) (-4375 (($ $ (-1166 |#1|)) NIL (|has| |#1| (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| |#1| (-368)) CONST)) (-1495 (($ (-918)) NIL (|has| |#1| (-368)))) (-3259 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-1693 (($) NIL (|has| |#1| (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| |#1| (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| |#1| (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3925 (((-1166 |#1|)) NIL)) (-1543 (($) NIL (|has| |#1| (-368)))) (-4220 (($) NIL (|has| |#1| (-368)))) (-1785 (((-1259 |#1|) $) NIL) (((-685 |#1|) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-368)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) NIL)) (-4253 (($ $) NIL (|has| |#1| (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2578 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-2124 (($ $) NIL (|has| |#1| (-368))) (($ $ (-768)) NIL (|has| |#1| (-368)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-359 |#1| |#2|) (-329 |#1|) (-349) (-918)) (T -359)) NIL (-329 |#1|) -((-3580 (((-112) (-640 (-948 |#1|))) 40)) (-3601 (((-640 (-948 |#1|)) (-640 (-948 |#1|))) 52)) (-3590 (((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|))) 47))) -(((-360 |#1| |#2|) (-10 -7 (-15 -3580 ((-112) (-640 (-948 |#1|)))) (-15 -3590 ((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|)))) (-15 -3601 ((-640 (-948 |#1|)) (-640 (-948 |#1|))))) (-452) (-640 (-1169))) (T -360)) -((-3601 (*1 *2 *2) (-12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169))))) (-3590 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169))))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-640 (-1169)))))) -(-10 -7 (-15 -3580 ((-112) (-640 (-948 |#1|)))) (-15 -3590 ((-3 (-640 (-948 |#1|)) "failed") (-640 (-948 |#1|)))) (-15 -3601 ((-640 (-948 |#1|)) (-640 (-948 |#1|))))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767) $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) 17)) (-2535 ((|#1| $ (-563)) NIL)) (-2545 (((-563) $ (-563)) NIL)) (-3876 (($ (-1 |#1| |#1|) $) 34)) (-3885 (($ (-1 (-563) (-563)) $) 26)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 28)) (-3249 (((-1113) $) NIL)) (-2524 (((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-563)))) $) 30)) (-1382 (($ $ $) NIL)) (-2879 (($ $ $) NIL)) (-2062 (((-858) $) 40) (($ |#1|) NIL)) (-3803 (($) 11 T CONST)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ |#1| (-563)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) -(((-361 |#1|) (-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-563))) (-15 -2433 ((-767) $)) (-15 -2545 ((-563) $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -3885 ($ (-1 (-563) (-563)) $)) (-15 -3876 ($ (-1 |#1| |#1|) $)) (-15 -2524 ((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-563)))) $)))) (-1093)) (T -361)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-2545 (*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-2535 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) (-3885 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-563) (-563))) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) (-3876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-361 *3)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 (-563))))) (-5 *1 (-361 *3)) (-4 *3 (-1093))))) -(-13 (-473) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-563))) (-15 -2433 ((-767) $)) (-15 -2545 ((-563) $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -3885 ($ (-1 (-563) (-563)) $)) (-15 -3876 ($ (-1 |#1| |#1|) $)) (-15 -2524 ((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-563)))) $)))) -((-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 13)) (-2554 (($ $) 14)) (-2102 (((-418 $) $) 33)) (-3675 (((-112) $) 29)) (-3149 (($ $) 18)) (-1647 (($ $ $) 24) (($ (-640 $)) NIL)) (-2055 (((-418 $) $) 34)) (-3448 (((-3 $ "failed") $ $) 23)) (-4322 (((-767) $) 27)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 38)) (-2543 (((-112) $ $) 15)) (-3050 (($ $ $) 36))) -(((-362 |#1|) (-10 -8 (-15 -3050 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1|)) (-15 -3675 ((-112) |#1|)) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2588 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -4322 ((-767) |#1|)) (-15 -1647 (|#1| (-640 |#1|))) (-15 -1647 (|#1| |#1| |#1|)) (-15 -2543 ((-112) |#1| |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -2565 ((-2 (|:| -2570 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362)) -NIL -(-10 -8 (-15 -3050 (|#1| |#1| |#1|)) (-15 -3149 (|#1| |#1|)) (-15 -3675 ((-112) |#1|)) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2588 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -4322 ((-767) |#1|)) (-15 -1647 (|#1| (-640 |#1|))) (-15 -1647 (|#1| |#1| |#1|)) (-15 -2543 ((-112) |#1| |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -2565 ((-2 (|:| -2570 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-4332 (((-112) $ $) 60)) (-3684 (($) 17 T CONST)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-3675 (((-112) $) 72)) (-2712 (((-112) $) 31)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-2055 (((-418 $) $) 75)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 66)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +((-2020 (((-112) (-641 (-949 |#1|))) 40)) (-4390 (((-641 (-949 |#1|)) (-641 (-949 |#1|))) 52)) (-2778 (((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|))) 47))) +(((-360 |#1| |#2|) (-10 -7 (-15 -2020 ((-112) (-641 (-949 |#1|)))) (-15 -2778 ((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|)))) (-15 -4390 ((-641 (-949 |#1|)) (-641 (-949 |#1|))))) (-452) (-641 (-1170))) (T -360)) +((-4390 (*1 *2 *2) (-12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-2778 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-112)) (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170)))))) +(-10 -7 (-15 -2020 ((-112) (-641 (-949 |#1|)))) (-15 -2778 ((-3 (-641 (-949 |#1|)) "failed") (-641 (-949 |#1|)))) (-15 -4390 ((-641 (-949 |#1|)) (-641 (-949 |#1|))))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768) $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) 17)) (-3950 ((|#1| $ (-564)) NIL)) (-3584 (((-564) $ (-564)) NIL)) (-3354 (($ (-1 |#1| |#1|) $) 34)) (-2869 (($ (-1 (-564) (-564)) $) 26)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 28)) (-3864 (((-1114) $) NIL)) (-2267 (((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-564)))) $) 30)) (-2766 (($ $ $) NIL)) (-3671 (($ $ $) NIL)) (-3742 (((-859) $) 40) (($ |#1|) NIL)) (-4321 (($) 11 T CONST)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ |#1| (-564)) 19)) (* (($ $ $) 53) (($ |#1| $) 23) (($ $ |#1|) 21))) +(((-361 |#1|) (-13 (-473) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -1938 ((-768) $)) (-15 -3584 ((-564) $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -2869 ($ (-1 (-564) (-564)) $)) (-15 -3354 ($ (-1 |#1| |#1|) $)) (-15 -2267 ((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-564)))) $)))) (-1094)) (T -361)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-3584 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) (-3354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 (-564))))) (-5 *1 (-361 *3)) (-4 *3 (-1094))))) +(-13 (-473) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-564))) (-15 -1938 ((-768) $)) (-15 -3584 ((-564) $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -2869 ($ (-1 (-564) (-564)) $)) (-15 -3354 ($ (-1 |#1| |#1|) $)) (-15 -2267 ((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-564)))) $)))) +((-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 13)) (-1948 (($ $) 14)) (-3048 (((-418 $) $) 33)) (-4188 (((-112) $) 29)) (-4373 (($ $) 18)) (-2577 (($ $ $) 24) (($ (-641 $)) NIL)) (-4127 (((-418 $) $) 34)) (-1321 (((-3 $ "failed") $ $) 23)) (-4061 (((-768) $) 27)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 38)) (-3360 (((-112) $ $) 15)) (-1799 (($ $ $) 36))) +(((-362 |#1|) (-10 -8 (-15 -1799 (|#1| |#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 -4188 ((-112) |#1|)) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -1318 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -4061 ((-768) |#1|)) (-15 -2577 (|#1| (-641 |#1|))) (-15 -2577 (|#1| |#1| |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -3719 ((-2 (|:| -4176 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|))) (-363)) (T -362)) +NIL +(-10 -8 (-15 -1799 (|#1| |#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 -4188 ((-112) |#1|)) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -1318 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -4061 ((-768) |#1|)) (-15 -2577 (|#1| (-641 |#1|))) (-15 -2577 (|#1| |#1| |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -3719 ((-2 (|:| -4176 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-2377 (((-112) $ $) 60)) (-2818 (($) 17 T CONST)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-4188 (((-112) $) 72)) (-3840 (((-112) $) 31)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4127 (((-418 $) $) 75)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 66)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-363) (-140)) (T -363)) -((-3050 (*1 *1 *1 *1) (-4 *1 (-363)))) -(-13 (-307) (-1212) (-243) (-10 -8 (-15 -3050 ($ $ $)) (-6 -4406) (-6 -4400))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) -((-2049 (((-112) $ $) 7)) (-2989 ((|#2| $ |#2|) 13)) (-3029 (($ $ (-1151)) 18)) (-2999 ((|#2| $) 14)) (-1934 (($ |#1|) 20) (($ |#1| (-1151)) 19)) (-3359 ((|#1| $) 16)) (-1938 (((-1151) $) 9)) (-3008 (((-1151) $) 15)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3018 (($ $) 17)) (-2943 (((-112) $ $) 6))) -(((-364 |#1| |#2|) (-140) (-1093) (-1093)) (T -364)) -((-1934 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-1934 (*1 *1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1093)) (-4 *4 (-1093)))) (-3029 (*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-3018 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-3008 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-1151)))) (-2999 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-2989 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) -(-13 (-1093) (-10 -8 (-15 -1934 ($ |t#1|)) (-15 -1934 ($ |t#1| (-1151))) (-15 -3029 ($ $ (-1151))) (-15 -3018 ($ $)) (-15 -3359 (|t#1| $)) (-15 -3008 ((-1151) $)) (-15 -2999 (|t#2| $)) (-15 -2989 (|t#2| $ |t#2|)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2989 ((|#1| $ |#1|) 31)) (-3029 (($ $ (-1151)) 23)) (-2061 (((-3 |#1| "failed") $) 30)) (-2999 ((|#1| $) 28)) (-1934 (($ (-388)) 22) (($ (-388) (-1151)) 21)) (-3359 (((-388) $) 25)) (-1938 (((-1151) $) NIL)) (-3008 (((-1151) $) 26)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 20)) (-3018 (($ $) 24)) (-2943 (((-112) $ $) 19))) -(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -2061 ((-3 |#1| "failed") $)))) (-1093)) (T -365)) -((-2061 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1093))))) -(-13 (-364 (-388) |#1|) (-10 -8 (-15 -2061 ((-3 |#1| "failed") $)))) -((-1807 (((-1257 (-684 |#2|)) (-1257 $)) 70)) (-1460 (((-684 |#2|) (-1257 $)) 141)) (-2117 ((|#2| $) 39)) (-1440 (((-684 |#2|) $ (-1257 $)) 144)) (-2661 (((-3 $ "failed") $) 91)) (-2097 ((|#2| $) 42)) (-3061 (((-1165 |#2|) $) 99)) (-1483 ((|#2| (-1257 $)) 124)) (-3248 (((-1165 |#2|) $) 34)) (-3190 (((-112)) 118)) (-1505 (($ (-1257 |#2|) (-1257 $)) 134)) (-3230 (((-3 $ "failed") $) 95)) (-3115 (((-112)) 112)) (-3092 (((-112)) 107)) (-3135 (((-112)) 61)) (-1471 (((-684 |#2|) (-1257 $)) 139)) (-2127 ((|#2| $) 38)) (-1450 (((-684 |#2|) $ (-1257 $)) 143)) (-2673 (((-3 $ "failed") $) 89)) (-2108 ((|#2| $) 41)) (-3071 (((-1165 |#2|) $) 98)) (-1493 ((|#2| (-1257 $)) 122)) (-3260 (((-1165 |#2|) $) 32)) (-3200 (((-112)) 117)) (-3103 (((-112)) 109)) (-3125 (((-112)) 59)) (-3146 (((-112)) 104)) (-3180 (((-112)) 119)) (-1818 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) 130)) (-3239 (((-112)) 115)) (-3080 (((-640 (-1257 |#2|))) 103)) (-3221 (((-112)) 116)) (-3231 (((-112)) 113)) (-3210 (((-112)) 54)) (-3169 (((-112)) 120))) -(((-366 |#1| |#2|) (-10 -8 (-15 -3061 ((-1165 |#2|) |#1|)) (-15 -3071 ((-1165 |#2|) |#1|)) (-15 -3080 ((-640 (-1257 |#2|)))) (-15 -2661 ((-3 |#1| "failed") |#1|)) (-15 -2673 ((-3 |#1| "failed") |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -3092 ((-112))) (-15 -3103 ((-112))) (-15 -3115 ((-112))) (-15 -3125 ((-112))) (-15 -3135 ((-112))) (-15 -3146 ((-112))) (-15 -3169 ((-112))) (-15 -3180 ((-112))) (-15 -3190 ((-112))) (-15 -3200 ((-112))) (-15 -3210 ((-112))) (-15 -3221 ((-112))) (-15 -3231 ((-112))) (-15 -3239 ((-112))) (-15 -3248 ((-1165 |#2|) |#1|)) (-15 -3260 ((-1165 |#2|) |#1|)) (-15 -1460 ((-684 |#2|) (-1257 |#1|))) (-15 -1471 ((-684 |#2|) (-1257 |#1|))) (-15 -1483 (|#2| (-1257 |#1|))) (-15 -1493 (|#2| (-1257 |#1|))) (-15 -1505 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -2097 (|#2| |#1|)) (-15 -2108 (|#2| |#1|)) (-15 -2117 (|#2| |#1|)) (-15 -2127 (|#2| |#1|)) (-15 -1440 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1450 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1807 ((-1257 (-684 |#2|)) (-1257 |#1|)))) (-367 |#2|) (-172)) (T -366)) -((-3239 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3231 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3221 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3210 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3200 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3190 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3180 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3169 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3146 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3135 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3125 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3115 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3103 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3092 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3080 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-640 (-1257 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))) -(-10 -8 (-15 -3061 ((-1165 |#2|) |#1|)) (-15 -3071 ((-1165 |#2|) |#1|)) (-15 -3080 ((-640 (-1257 |#2|)))) (-15 -2661 ((-3 |#1| "failed") |#1|)) (-15 -2673 ((-3 |#1| "failed") |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 -3092 ((-112))) (-15 -3103 ((-112))) (-15 -3115 ((-112))) (-15 -3125 ((-112))) (-15 -3135 ((-112))) (-15 -3146 ((-112))) (-15 -3169 ((-112))) (-15 -3180 ((-112))) (-15 -3190 ((-112))) (-15 -3200 ((-112))) (-15 -3210 ((-112))) (-15 -3221 ((-112))) (-15 -3231 ((-112))) (-15 -3239 ((-112))) (-15 -3248 ((-1165 |#2|) |#1|)) (-15 -3260 ((-1165 |#2|) |#1|)) (-15 -1460 ((-684 |#2|) (-1257 |#1|))) (-15 -1471 ((-684 |#2|) (-1257 |#1|))) (-15 -1483 (|#2| (-1257 |#1|))) (-15 -1493 (|#2| (-1257 |#1|))) (-15 -1505 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -2097 (|#2| |#1|)) (-15 -2108 (|#2| |#1|)) (-15 -2117 (|#2| |#1|)) (-15 -2127 (|#2| |#1|)) (-15 -1440 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1450 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1807 ((-1257 (-684 |#2|)) (-1257 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2570 (((-3 $ "failed")) 37 (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) 19)) (-1807 (((-1257 (-684 |#1|)) (-1257 $)) 78)) (-2138 (((-1257 $)) 81)) (-3684 (($) 17 T CONST)) (-3422 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) 40 (|has| |#1| (-555)))) (-3040 (((-3 $ "failed")) 38 (|has| |#1| (-555)))) (-1460 (((-684 |#1|) (-1257 $)) 65)) (-2117 ((|#1| $) 74)) (-1440 (((-684 |#1|) $ (-1257 $)) 76)) (-2661 (((-3 $ "failed") $) 45 (|has| |#1| (-555)))) (-2690 (($ $ (-917)) 28)) (-2097 ((|#1| $) 72)) (-3061 (((-1165 |#1|) $) 42 (|has| |#1| (-555)))) (-1483 ((|#1| (-1257 $)) 67)) (-3248 (((-1165 |#1|) $) 63)) (-3190 (((-112)) 57)) (-1505 (($ (-1257 |#1|) (-1257 $)) 69)) (-3230 (((-3 $ "failed") $) 47 (|has| |#1| (-555)))) (-3406 (((-917)) 80)) (-3159 (((-112)) 54)) (-1670 (($ $ (-917)) 33)) (-3115 (((-112)) 50)) (-3092 (((-112)) 48)) (-3135 (((-112)) 52)) (-3430 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) 41 (|has| |#1| (-555)))) (-3052 (((-3 $ "failed")) 39 (|has| |#1| (-555)))) (-1471 (((-684 |#1|) (-1257 $)) 66)) (-2127 ((|#1| $) 75)) (-1450 (((-684 |#1|) $ (-1257 $)) 77)) (-2673 (((-3 $ "failed") $) 46 (|has| |#1| (-555)))) (-2681 (($ $ (-917)) 29)) (-2108 ((|#1| $) 73)) (-3071 (((-1165 |#1|) $) 43 (|has| |#1| (-555)))) (-1493 ((|#1| (-1257 $)) 68)) (-3260 (((-1165 |#1|) $) 64)) (-3200 (((-112)) 58)) (-1938 (((-1151) $) 9)) (-3103 (((-112)) 49)) (-3125 (((-112)) 51)) (-3146 (((-112)) 53)) (-3249 (((-1113) $) 10)) (-3180 (((-112)) 56)) (-1818 (((-1257 |#1|) $ (-1257 $)) 71) (((-684 |#1|) (-1257 $) (-1257 $)) 70)) (-1355 (((-640 (-948 |#1|)) (-1257 $)) 79)) (-2879 (($ $ $) 25)) (-3239 (((-112)) 62)) (-2062 (((-858) $) 11)) (-3080 (((-640 (-1257 |#1|))) 44 (|has| |#1| (-555)))) (-2888 (($ $ $ $) 26)) (-3221 (((-112)) 60)) (-2870 (($ $ $) 24)) (-3231 (((-112)) 61)) (-3210 (((-112)) 59)) (-3169 (((-112)) 55)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-1799 (*1 *1 *1 *1) (-4 *1 (-363)))) +(-13 (-307) (-1213) (-243) (-10 -8 (-15 -1799 ($ $ $)) (-6 -4409) (-6 -4403))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-3732 (((-112) $ $) 7)) (-2956 ((|#2| $ |#2|) 13)) (-3024 (($ $ (-1152)) 18)) (-2984 ((|#2| $) 14)) (-1702 (($ |#1|) 20) (($ |#1| (-1152)) 19)) (-4324 ((|#1| $) 16)) (-2217 (((-1152) $) 9)) (-2615 (((-1152) $) 15)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1322 (($ $) 17)) (-1705 (((-112) $ $) 6))) +(((-364 |#1| |#2|) (-140) (-1094) (-1094)) (T -364)) +((-1702 (*1 *1 *2) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-1702 (*1 *1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) (-4 *4 (-1094)))) (-3024 (*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1322 (*1 *1 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-1152)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-2956 (*1 *2 *1 *2) (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -1702 ($ |t#1|)) (-15 -1702 ($ |t#1| (-1152))) (-15 -3024 ($ $ (-1152))) (-15 -1322 ($ $)) (-15 -4324 (|t#1| $)) (-15 -2615 ((-1152) $)) (-15 -2984 (|t#2| $)) (-15 -2956 (|t#2| $ |t#2|)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-2956 ((|#1| $ |#1|) 31)) (-3024 (($ $ (-1152)) 23)) (-3751 (((-3 |#1| "failed") $) 30)) (-2984 ((|#1| $) 28)) (-1702 (($ (-388)) 22) (($ (-388) (-1152)) 21)) (-4324 (((-388) $) 25)) (-2217 (((-1152) $) NIL)) (-2615 (((-1152) $) 26)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 20)) (-1322 (($ $) 24)) (-1705 (((-112) $ $) 19))) +(((-365 |#1|) (-13 (-364 (-388) |#1|) (-10 -8 (-15 -3751 ((-3 |#1| "failed") $)))) (-1094)) (T -365)) +((-3751 (*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094))))) +(-13 (-364 (-388) |#1|) (-10 -8 (-15 -3751 ((-3 |#1| "failed") $)))) +((-3147 (((-1259 (-685 |#2|)) (-1259 $)) 70)) (-3493 (((-685 |#2|) (-1259 $)) 141)) (-3748 ((|#2| $) 39)) (-1952 (((-685 |#2|) $ (-1259 $)) 144)) (-3664 (((-3 $ "failed") $) 91)) (-4369 ((|#2| $) 42)) (-2699 (((-1166 |#2|) $) 99)) (-3359 ((|#2| (-1259 $)) 124)) (-1961 (((-1166 |#2|) $) 34)) (-4293 (((-112)) 118)) (-2340 (($ (-1259 |#2|) (-1259 $)) 134)) (-3951 (((-3 $ "failed") $) 95)) (-3992 (((-112)) 112)) (-2482 (((-112)) 107)) (-3764 (((-112)) 61)) (-4256 (((-685 |#2|) (-1259 $)) 139)) (-3306 ((|#2| $) 38)) (-1789 (((-685 |#2|) $ (-1259 $)) 143)) (-3714 (((-3 $ "failed") $) 89)) (-3371 ((|#2| $) 41)) (-2257 (((-1166 |#2|) $) 98)) (-3738 ((|#2| (-1259 $)) 122)) (-2627 (((-1166 |#2|) $) 32)) (-2756 (((-112)) 117)) (-2270 (((-112)) 109)) (-4213 (((-112)) 59)) (-3435 (((-112)) 104)) (-4154 (((-112)) 119)) (-1785 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 130)) (-2330 (((-112)) 115)) (-3986 (((-641 (-1259 |#2|))) 103)) (-4352 (((-112)) 116)) (-4031 (((-112)) 113)) (-4380 (((-112)) 54)) (-1518 (((-112)) 120))) +(((-366 |#1| |#2|) (-10 -8 (-15 -2699 ((-1166 |#2|) |#1|)) (-15 -2257 ((-1166 |#2|) |#1|)) (-15 -3986 ((-641 (-1259 |#2|)))) (-15 -3664 ((-3 |#1| "failed") |#1|)) (-15 -3714 ((-3 |#1| "failed") |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 -2482 ((-112))) (-15 -2270 ((-112))) (-15 -3992 ((-112))) (-15 -4213 ((-112))) (-15 -3764 ((-112))) (-15 -3435 ((-112))) (-15 -1518 ((-112))) (-15 -4154 ((-112))) (-15 -4293 ((-112))) (-15 -2756 ((-112))) (-15 -4380 ((-112))) (-15 -4352 ((-112))) (-15 -4031 ((-112))) (-15 -2330 ((-112))) (-15 -1961 ((-1166 |#2|) |#1|)) (-15 -2627 ((-1166 |#2|) |#1|)) (-15 -3493 ((-685 |#2|) (-1259 |#1|))) (-15 -4256 ((-685 |#2|) (-1259 |#1|))) (-15 -3359 (|#2| (-1259 |#1|))) (-15 -3738 (|#2| (-1259 |#1|))) (-15 -2340 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4369 (|#2| |#1|)) (-15 -3371 (|#2| |#1|)) (-15 -3748 (|#2| |#1|)) (-15 -3306 (|#2| |#1|)) (-15 -1952 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1789 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3147 ((-1259 (-685 |#2|)) (-1259 |#1|)))) (-367 |#2|) (-172)) (T -366)) +((-2330 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4031 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4352 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4380 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2756 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4293 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4154 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-1518 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3435 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3764 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-4213 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3992 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2270 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-2482 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) (-3986 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4))))) +(-10 -8 (-15 -2699 ((-1166 |#2|) |#1|)) (-15 -2257 ((-1166 |#2|) |#1|)) (-15 -3986 ((-641 (-1259 |#2|)))) (-15 -3664 ((-3 |#1| "failed") |#1|)) (-15 -3714 ((-3 |#1| "failed") |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 -2482 ((-112))) (-15 -2270 ((-112))) (-15 -3992 ((-112))) (-15 -4213 ((-112))) (-15 -3764 ((-112))) (-15 -3435 ((-112))) (-15 -1518 ((-112))) (-15 -4154 ((-112))) (-15 -4293 ((-112))) (-15 -2756 ((-112))) (-15 -4380 ((-112))) (-15 -4352 ((-112))) (-15 -4031 ((-112))) (-15 -2330 ((-112))) (-15 -1961 ((-1166 |#2|) |#1|)) (-15 -2627 ((-1166 |#2|) |#1|)) (-15 -3493 ((-685 |#2|) (-1259 |#1|))) (-15 -4256 ((-685 |#2|) (-1259 |#1|))) (-15 -3359 (|#2| (-1259 |#1|))) (-15 -3738 (|#2| (-1259 |#1|))) (-15 -2340 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -4369 (|#2| |#1|)) (-15 -3371 (|#2| |#1|)) (-15 -3748 (|#2| |#1|)) (-15 -3306 (|#2| |#1|)) (-15 -1952 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1789 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3147 ((-1259 (-685 |#2|)) (-1259 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4176 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) 19)) (-3147 (((-1259 (-685 |#1|)) (-1259 $)) 78)) (-1821 (((-1259 $)) 81)) (-2818 (($) 17 T CONST)) (-3268 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-2934 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-3493 (((-685 |#1|) (-1259 $)) 65)) (-3748 ((|#1| $) 74)) (-1952 (((-685 |#1|) $ (-1259 $)) 76)) (-3664 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-2752 (($ $ (-918)) 28)) (-4369 ((|#1| $) 72)) (-2699 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-3359 ((|#1| (-1259 $)) 67)) (-1961 (((-1166 |#1|) $) 63)) (-4293 (((-112)) 57)) (-2340 (($ (-1259 |#1|) (-1259 $)) 69)) (-3951 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-1544 (((-918)) 80)) (-1878 (((-112)) 54)) (-2545 (($ $ (-918)) 33)) (-3992 (((-112)) 50)) (-2482 (((-112)) 48)) (-3764 (((-112)) 52)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-1628 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-4256 (((-685 |#1|) (-1259 $)) 66)) (-3306 ((|#1| $) 75)) (-1789 (((-685 |#1|) $ (-1259 $)) 77)) (-3714 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-3154 (($ $ (-918)) 29)) (-3371 ((|#1| $) 73)) (-2257 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-3738 ((|#1| (-1259 $)) 68)) (-2627 (((-1166 |#1|) $) 64)) (-2756 (((-112)) 58)) (-2217 (((-1152) $) 9)) (-2270 (((-112)) 49)) (-4213 (((-112)) 51)) (-3435 (((-112)) 53)) (-3864 (((-1114) $) 10)) (-4154 (((-112)) 56)) (-1785 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70)) (-1551 (((-641 (-949 |#1|)) (-1259 $)) 79)) (-3671 (($ $ $) 25)) (-2330 (((-112)) 62)) (-3742 (((-859) $) 11)) (-3986 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-3533 (($ $ $ $) 26)) (-4352 (((-112)) 60)) (-1879 (($ $ $) 24)) (-4031 (((-112)) 61)) (-4380 (((-112)) 59)) (-1518 (((-112)) 55)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-367 |#1|) (-140) (-172)) (T -367)) -((-2138 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-367 *3)))) (-3406 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))))) (-1450 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-1440 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2117 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-2097 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1257 *4)))) (-1818 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-1505 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1483 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3)))) (-3248 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3)))) (-3239 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3231 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3221 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3210 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3200 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3190 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3180 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3169 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3159 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3146 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3135 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3125 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3115 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3103 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3092 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3230 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-2673 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-2661 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) (-3080 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-640 (-1257 *3))))) (-3071 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-1165 *3)))) (-3061 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) (-5 *2 (-1165 *3)))) (-3430 (*1 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3288 (-640 *1)))) (-4 *1 (-367 *3)))) (-3422 (*1 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3288 (-640 *1)))) (-4 *1 (-367 *3)))) (-3052 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))) (-3040 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))) (-2570 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172))))) -(-13 (-740 |t#1|) (-10 -8 (-15 -2138 ((-1257 $))) (-15 -3406 ((-917))) (-15 -1355 ((-640 (-948 |t#1|)) (-1257 $))) (-15 -1807 ((-1257 (-684 |t#1|)) (-1257 $))) (-15 -1450 ((-684 |t#1|) $ (-1257 $))) (-15 -1440 ((-684 |t#1|) $ (-1257 $))) (-15 -2127 (|t#1| $)) (-15 -2117 (|t#1| $)) (-15 -2108 (|t#1| $)) (-15 -2097 (|t#1| $)) (-15 -1818 ((-1257 |t#1|) $ (-1257 $))) (-15 -1818 ((-684 |t#1|) (-1257 $) (-1257 $))) (-15 -1505 ($ (-1257 |t#1|) (-1257 $))) (-15 -1493 (|t#1| (-1257 $))) (-15 -1483 (|t#1| (-1257 $))) (-15 -1471 ((-684 |t#1|) (-1257 $))) (-15 -1460 ((-684 |t#1|) (-1257 $))) (-15 -3260 ((-1165 |t#1|) $)) (-15 -3248 ((-1165 |t#1|) $)) (-15 -3239 ((-112))) (-15 -3231 ((-112))) (-15 -3221 ((-112))) (-15 -3210 ((-112))) (-15 -3200 ((-112))) (-15 -3190 ((-112))) (-15 -3180 ((-112))) (-15 -3169 ((-112))) (-15 -3159 ((-112))) (-15 -3146 ((-112))) (-15 -3135 ((-112))) (-15 -3125 ((-112))) (-15 -3115 ((-112))) (-15 -3103 ((-112))) (-15 -3092 ((-112))) (IF (|has| |t#1| (-555)) (PROGN (-15 -3230 ((-3 $ "failed") $)) (-15 -2673 ((-3 $ "failed") $)) (-15 -2661 ((-3 $ "failed") $)) (-15 -3080 ((-640 (-1257 |t#1|)))) (-15 -3071 ((-1165 |t#1|) $)) (-15 -3061 ((-1165 |t#1|) $)) (-15 -3430 ((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed"))) (-15 -3422 ((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed"))) (-15 -3052 ((-3 $ "failed"))) (-15 -3040 ((-3 $ "failed"))) (-15 -2570 ((-3 $ "failed"))) (-6 -4405)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 7)) (-2433 (((-767)) 16)) (-4301 (($) 13)) (-3267 (((-917) $) 14)) (-1938 (((-1151) $) 9)) (-3491 (($ (-917)) 15)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6))) +((-1821 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3)))) (-1544 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-918)))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))))) (-1789 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-1952 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3306 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4369 (*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-1259 *4)))) (-1785 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2340 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-367 *4)))) (-3738 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-3359 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) (-4256 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-2627 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-1961 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3)))) (-2330 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4031 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4352 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4380 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2756 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4293 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4154 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1518 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-1878 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3435 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3764 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-4213 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3992 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2270 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-2482 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112)))) (-3951 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3714 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3664 (*1 *1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) (-3986 (*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-641 (-1259 *3))))) (-2257 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-2699 (*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) (-5 *2 (-1166 *3)))) (-2906 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4265 (-641 *1)))) (-4 *1 (-367 *3)))) (-3268 (*1 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-5 *2 (-2 (|:| |particular| *1) (|:| -4265 (-641 *1)))) (-4 *1 (-367 *3)))) (-1628 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-2934 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) (-4176 (*1 *1) (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) +(-13 (-741 |t#1|) (-10 -8 (-15 -1821 ((-1259 $))) (-15 -1544 ((-918))) (-15 -1551 ((-641 (-949 |t#1|)) (-1259 $))) (-15 -3147 ((-1259 (-685 |t#1|)) (-1259 $))) (-15 -1789 ((-685 |t#1|) $ (-1259 $))) (-15 -1952 ((-685 |t#1|) $ (-1259 $))) (-15 -3306 (|t#1| $)) (-15 -3748 (|t#1| $)) (-15 -3371 (|t#1| $)) (-15 -4369 (|t#1| $)) (-15 -1785 ((-1259 |t#1|) $ (-1259 $))) (-15 -1785 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -2340 ($ (-1259 |t#1|) (-1259 $))) (-15 -3738 (|t#1| (-1259 $))) (-15 -3359 (|t#1| (-1259 $))) (-15 -4256 ((-685 |t#1|) (-1259 $))) (-15 -3493 ((-685 |t#1|) (-1259 $))) (-15 -2627 ((-1166 |t#1|) $)) (-15 -1961 ((-1166 |t#1|) $)) (-15 -2330 ((-112))) (-15 -4031 ((-112))) (-15 -4352 ((-112))) (-15 -4380 ((-112))) (-15 -2756 ((-112))) (-15 -4293 ((-112))) (-15 -4154 ((-112))) (-15 -1518 ((-112))) (-15 -1878 ((-112))) (-15 -3435 ((-112))) (-15 -3764 ((-112))) (-15 -4213 ((-112))) (-15 -3992 ((-112))) (-15 -2270 ((-112))) (-15 -2482 ((-112))) (IF (|has| |t#1| (-556)) (PROGN (-15 -3951 ((-3 $ "failed") $)) (-15 -3714 ((-3 $ "failed") $)) (-15 -3664 ((-3 $ "failed") $)) (-15 -3986 ((-641 (-1259 |t#1|)))) (-15 -2257 ((-1166 |t#1|) $)) (-15 -2699 ((-1166 |t#1|) $)) (-15 -2906 ((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed"))) (-15 -3268 ((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed"))) (-15 -1628 ((-3 $ "failed"))) (-15 -2934 ((-3 $ "failed"))) (-15 -4176 ((-3 $ "failed"))) (-6 -4408)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-741 |#1|) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 7)) (-1938 (((-768)) 16)) (-2821 (($) 13)) (-1906 (((-918) $) 14)) (-2217 (((-1152) $) 9)) (-1495 (($ (-918)) 15)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6))) (((-368) (-140)) (T -368)) -((-2433 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) (-3491 (*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368)))) (-3267 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917)))) (-4301 (*1 *1) (-4 *1 (-368)))) -(-13 (-1093) (-10 -8 (-15 -2433 ((-767))) (-15 -3491 ($ (-917))) (-15 -3267 ((-917) $)) (-15 -4301 ($)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2660 (((-684 |#2|) (-1257 $)) 47)) (-1505 (($ (-1257 |#2|) (-1257 $)) 41)) (-2649 (((-684 |#2|) $ (-1257 $)) 49)) (-3974 ((|#2| (-1257 $)) 13)) (-1818 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) 27))) -(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -2660 ((-684 |#2|) (-1257 |#1|))) (-15 -3974 (|#2| (-1257 |#1|))) (-15 -1505 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -2649 ((-684 |#2|) |#1| (-1257 |#1|)))) (-370 |#2| |#3|) (-172) (-1233 |#2|)) (T -369)) -NIL -(-10 -8 (-15 -2660 ((-684 |#2|) (-1257 |#1|))) (-15 -3974 (|#2| (-1257 |#1|))) (-15 -1505 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -2649 ((-684 |#2|) |#1| (-1257 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2660 (((-684 |#1|) (-1257 $)) 47)) (-3282 ((|#1| $) 53)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1505 (($ (-1257 |#1|) (-1257 $)) 49)) (-2649 (((-684 |#1|) $ (-1257 $)) 54)) (-3230 (((-3 $ "failed") $) 33)) (-3406 (((-917)) 55)) (-2712 (((-112) $) 31)) (-3251 ((|#1| $) 52)) (-2134 ((|#2| $) 45 (|has| |#1| (-363)))) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3974 ((|#1| (-1257 $)) 48)) (-1818 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-4376 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3015 ((|#2| $) 46)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-370 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -370)) -((-3406 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-917)))) (-2649 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-1818 (*1 *2 *1 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *4)))) (-1818 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-1505 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1233 *4)))) (-3974 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1233 *2)) (-4 *2 (-172)))) (-2660 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-2134 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1233 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3406 ((-917))) (-15 -2649 ((-684 |t#1|) $ (-1257 $))) (-15 -3282 (|t#1| $)) (-15 -3251 (|t#1| $)) (-15 -1818 ((-1257 |t#1|) $ (-1257 $))) (-15 -1818 ((-684 |t#1|) (-1257 $) (-1257 $))) (-15 -1505 ($ (-1257 |t#1|) (-1257 $))) (-15 -3974 (|t#1| (-1257 $))) (-15 -2660 ((-684 |t#1|) (-1257 $))) (-15 -3015 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -2134 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-3409 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-2532 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2751 ((|#4| (-1 |#3| |#1|) |#2|) 23))) -(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2532 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3409 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1208) (-373 |#1|) (-1208) (-373 |#3|)) (T -371)) -((-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5))))) -(-10 -7 (-15 -2751 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2532 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3409 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-2162 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2146 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-4257 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-4294 (($ $) 25)) (-2256 (((-563) (-1 (-112) |#2|) $) NIL) (((-563) |#2| $) 11) (((-563) |#2| $ (-563)) NIL)) (-2383 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) -(((-372 |#1| |#2|) (-10 -8 (-15 -2146 (|#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2162 ((-112) |#1|)) (-15 -4257 (|#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2256 ((-563) |#2| |#1| (-563))) (-15 -2256 ((-563) |#2| |#1|)) (-15 -2256 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -2162 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4257 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4294 (|#1| |#1|)) (-15 -2383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1208)) (T -372)) -NIL -(-10 -8 (-15 -2146 (|#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2162 ((-112) |#1|)) (-15 -4257 (|#1| |#1|)) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2256 ((-563) |#2| |#1| (-563))) (-15 -2256 ((-563) |#2| |#1|)) (-15 -2256 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -2162 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -4257 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -4294 (|#1| |#1|)) (-15 -2383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-3934 (($ $) 90 (|has| $ (-6 -4409)))) (-4294 (($ $) 100)) (-1920 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 51)) (-2256 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2552 (($ (-767) |#1|) 69)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-3489 (($ $ $) 87 (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4105 (($ $ $) 86 (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 42 (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3357 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-4159 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2155 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-2988 (((-112) $ $) 85 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 82 (|has| |#1| (-846)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-373 |#1|) (-140) (-1208)) (T -373)) -((-2383 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-4294 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)))) (-4257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-2162 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-2256 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) (-5 *2 (-563)))) (-2256 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-563)))) (-2256 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)))) (-2383 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) (-4257 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) (-2162 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-846)) (-5 *2 (-112)))) (-2155 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (|has| *1 (-6 -4409)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-3934 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-373 *2)) (-4 *2 (-1208)))) (-2146 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) (-2146 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846))))) -(-13 (-646 |t#1|) (-10 -8 (-6 -4408) (-15 -2383 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -4294 ($ $)) (-15 -4257 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -2162 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -2256 ((-563) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -2256 ((-563) |t#1| $)) (-15 -2256 ((-563) |t#1| $ (-563)))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-6 (-846)) (-15 -2383 ($ $ $)) (-15 -4257 ($ $)) (-15 -2162 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -2155 ($ $ $ (-563))) (-15 -3934 ($ $)) (-15 -2146 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-846)) (-15 -2146 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T)) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1347 (((-640 |#1|) $) 32)) (-1950 (($ $ (-767)) 33)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1885 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 36)) (-1857 (($ $) 34)) (-1899 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 37)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1497 (($ $ |#1| $) 31) (($ $ (-640 |#1|) (-640 $)) 30)) (-1962 (((-767) $) 38)) (-2074 (($ $ $) 29)) (-2062 (((-858) $) 11) (($ |#1|) 41) (((-1272 |#1| |#2|) $) 40) (((-1281 |#1| |#2|) $) 39)) (-2765 ((|#2| (-1281 |#1| |#2|) $) 42)) (-3790 (($) 18 T CONST)) (-2171 (($ (-667 |#1|)) 35)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) -(((-374 |#1| |#2|) (-140) (-846) (-172)) (T -374)) -((-2765 (*1 *2 *3 *1) (-12 (-5 *3 (-1281 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) (-4 *2 (-172)))) (-2062 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1272 *3 *4)))) (-2062 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-1281 *3 *4)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-767)))) (-1899 (*1 *2 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1885 (*1 *2 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2171 (*1 *1 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-1857 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1950 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *2 (-640 *3)))) (-1497 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-846)) (-4 *5 (-172))))) -(-13 (-631 |t#2|) (-10 -8 (-15 -2765 (|t#2| (-1281 |t#1| |t#2|) $)) (-15 -2062 ($ |t#1|)) (-15 -2062 ((-1272 |t#1| |t#2|) $)) (-15 -2062 ((-1281 |t#1| |t#2|) $)) (-15 -1962 ((-767) $)) (-15 -1899 ((-1281 |t#1| |t#2|) (-1281 |t#1| |t#2|) $)) (-15 -1885 ((-1281 |t#1| |t#2|) (-1281 |t#1| |t#2|) $)) (-15 -2171 ($ (-667 |t#1|))) (-15 -1857 ($ $)) (-15 -1950 ($ $ (-767))) (-15 -1347 ((-640 |t#1|) $)) (-15 -1497 ($ $ |t#1| $)) (-15 -1497 ($ $ (-640 |t#1|) (-640 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-631 |#2|) . T) ((-713 |#2|) . T) ((-1051 |#2|) . T) ((-1093) . T)) -((-2198 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 41)) (-2182 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2190 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) -(((-375 |#1| |#2|) (-10 -7 (-15 -2182 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2190 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2198 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1208) (-13 (-373 |#1|) (-10 -7 (-6 -4409)))) (T -375)) -((-2198 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))))) (-2190 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))))) (-2182 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409))))))) -(-10 -7 (-15 -2182 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2190 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2198 (|#2| (-1 (-112) |#1| |#1|) |#2|))) -((-3853 (((-684 |#2|) (-684 $)) NIL) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 22) (((-684 (-563)) (-684 $)) 14))) -(((-376 |#1| |#2|) (-10 -8 (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 |#2|) (-684 |#1|)))) (-377 |#2|) (-1045)) (T -376)) -NIL -(-10 -8 (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 |#2|) (-684 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3853 (((-684 |#1|) (-684 $)) 36) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 35) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 43 (|has| |#1| (-636 (-563)))) (((-684 (-563)) (-684 $)) 42 (|has| |#1| (-636 (-563))))) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-377 |#1|) (-140) (-1045)) (T -377)) -NIL -(-13 (-636 |t#1|) (-10 -7 (IF (|has| |t#1| (-636 (-563))) (-6 (-636 (-563))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2292 (((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|) 51) (((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|) 50) (((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|) 47) (((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|) 41)) (-2303 (((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|) 30) (((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|) 18))) -(((-378 |#1|) (-10 -7 (-15 -2292 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -2292 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|)) (-15 -2292 ((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -2292 ((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -2303 ((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -2303 ((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|))) (-13 (-363) (-844))) (T -378)) -((-2303 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844))))) (-2303 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-2292 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-169 (-563)))))) (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-2292 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-2292 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 (-169 (-563))))))) (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) (-2292 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844)))))) -(-10 -7 (-15 -2292 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -2292 ((-640 (-640 (-294 (-948 (-169 |#1|))))) (-640 (-294 (-407 (-948 (-169 (-563)))))) |#1|)) (-15 -2292 ((-640 (-294 (-948 (-169 |#1|)))) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -2292 ((-640 (-294 (-948 (-169 |#1|)))) (-294 (-407 (-948 (-169 (-563))))) |#1|)) (-15 -2303 ((-640 (-169 |#1|)) (-407 (-948 (-169 (-563)))) |#1|)) (-15 -2303 ((-640 (-640 (-169 |#1|))) (-640 (-407 (-948 (-169 (-563))))) (-640 (-1169)) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 35)) (-3223 (((-563) $) 61)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-2893 (($ $) 141)) (-3419 (($ $) 106)) (-3285 (($ $) 93)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2067 (($ $) 47)) (-4332 (((-112) $ $) NIL)) (-3395 (($ $) 104)) (-3264 (($ $) 87)) (-2107 (((-563) $) 80)) (-1318 (($ $ (-563)) 75)) (-2242 (($ $) NIL)) (-3305 (($ $) NIL)) (-3684 (($) NIL T CONST)) (-3202 (($ $) 143)) (-2671 (((-3 (-563) "failed") $) 236) (((-3 (-407 (-563)) "failed") $) 232)) (-2589 (((-563) $) 234) (((-407 (-563)) $) 230)) (-3495 (($ $ $) NIL)) (-2282 (((-563) $ $) 130)) (-3230 (((-3 $ "failed") $) 145)) (-2272 (((-407 (-563)) $ (-767)) 237) (((-407 (-563)) $ (-767) (-767)) 229)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2961 (((-917)) 95) (((-917) (-917)) 126 (|has| $ (-6 -4399)))) (-2720 (((-112) $) 135)) (-2656 (($) 41)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-2209 (((-1262) (-767)) 197)) (-2218 (((-1262)) 202) (((-1262) (-767)) 203)) (-2239 (((-1262)) 204) (((-1262) (-767)) 205)) (-2228 (((-1262)) 200) (((-1262) (-767)) 201)) (-2903 (((-563) $) 68)) (-2712 (((-112) $) 40)) (-1403 (($ $ (-563)) NIL)) (-2951 (($ $) 51)) (-3251 (($ $) NIL)) (-2731 (((-112) $) 37)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL) (($) NIL (-12 (-3730 (|has| $ (-6 -4391))) (-3730 (|has| $ (-6 -4399)))))) (-4105 (($ $ $) NIL) (($) 127 (-12 (-3730 (|has| $ (-6 -4391))) (-3730 (|has| $ (-6 -4399)))))) (-4385 (((-563) $) 17)) (-2261 (($) 113) (($ $) 119)) (-4288 (($) 118) (($ $) 120)) (-2497 (($ $) 108)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 147)) (-2537 (((-917) (-563)) 46 (|has| $ (-6 -4399)))) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) 59)) (-3233 (($ $) 140)) (-2469 (($ (-563) (-563)) 136) (($ (-563) (-563) (-917)) 137)) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2631 (((-563) $) 19)) (-2249 (($) 121)) (-3177 (($ $) 103)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1658 (((-917)) 128) (((-917) (-917)) 129 (|has| $ (-6 -4399)))) (-1361 (($ $ (-767)) NIL) (($ $) 146)) (-2526 (((-917) (-563)) 50 (|has| $ (-6 -4399)))) (-2252 (($ $) NIL)) (-3313 (($ $) NIL)) (-2231 (($ $) NIL)) (-3295 (($ $) NIL)) (-3408 (($ $) 105)) (-3273 (($ $) 92)) (-2802 (((-379) $) 223) (((-225) $) 224) (((-888 (-379)) $) NIL) (((-1151) $) 208) (((-536) $) 221) (($ (-225)) 228)) (-2062 (((-858) $) 210) (($ (-563)) 233) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-563)) 233) (($ (-407 (-563))) NIL) (((-225) $) 225)) (-3192 (((-767)) NIL T CONST)) (-3241 (($ $) 142)) (-2547 (((-917)) 60) (((-917) (-917)) 82 (|has| $ (-6 -4399)))) (-1433 (((-917)) 131)) (-2285 (($ $) 111)) (-3347 (($ $) 49) (($ $ $) 58)) (-2543 (((-112) $ $) NIL)) (-2264 (($ $) 109)) (-3325 (($ $) 39)) (-2306 (($ $) NIL)) (-3374 (($ $) NIL)) (-4205 (($ $) NIL)) (-3386 (($ $) NIL)) (-2296 (($ $) NIL)) (-3361 (($ $) NIL)) (-2275 (($ $) 110)) (-3336 (($ $) 52)) (-3841 (($ $) 57)) (-3790 (($) 36 T CONST)) (-3803 (($) 43 T CONST)) (-2038 (((-1151) $) 27) (((-1151) $ (-112)) 29) (((-1262) (-818) $) 30) (((-1262) (-818) $ (-112)) 31)) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 56)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 45)) (-3050 (($ $ $) 48) (($ $ (-563)) 42)) (-3039 (($ $) 38) (($ $ $) 53)) (-3027 (($ $ $) 74)) (** (($ $ (-917)) 85) (($ $ (-767)) NIL) (($ $ (-563)) 114) (($ $ (-407 (-563))) 157) (($ $ $) 149)) (* (($ (-917) $) 81) (($ (-767) $) NIL) (($ (-563) $) 86) (($ $ $) 73) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) -(((-379) (-13 (-404) (-233) (-611 (-1151)) (-824) (-610 (-225)) (-1193) (-611 (-536)) (-615 (-225)) (-10 -8 (-15 -3050 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -2951 ($ $)) (-15 -2282 ((-563) $ $)) (-15 -1318 ($ $ (-563))) (-15 -2272 ((-407 (-563)) $ (-767))) (-15 -2272 ((-407 (-563)) $ (-767) (-767))) (-15 -2261 ($)) (-15 -4288 ($)) (-15 -2249 ($)) (-15 -3347 ($ $ $)) (-15 -2261 ($ $)) (-15 -4288 ($ $)) (-15 -2239 ((-1262))) (-15 -2239 ((-1262) (-767))) (-15 -2228 ((-1262))) (-15 -2228 ((-1262) (-767))) (-15 -2218 ((-1262))) (-15 -2218 ((-1262) (-767))) (-15 -2209 ((-1262) (-767))) (-6 -4399) (-6 -4391)))) (T -379)) -((** (*1 *1 *1 *1) (-5 *1 (-379))) (-3050 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-2951 (*1 *1 *1) (-5 *1 (-379))) (-2282 (*1 *2 *1 *1) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-1318 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) (-2272 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))) (-2272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))) (-2261 (*1 *1) (-5 *1 (-379))) (-4288 (*1 *1) (-5 *1 (-379))) (-2249 (*1 *1) (-5 *1 (-379))) (-3347 (*1 *1 *1 *1) (-5 *1 (-379))) (-2261 (*1 *1 *1) (-5 *1 (-379))) (-4288 (*1 *1 *1) (-5 *1 (-379))) (-2239 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-2228 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-2228 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-2218 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379)))) (-2218 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) (-2209 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379))))) -(-13 (-404) (-233) (-611 (-1151)) (-824) (-610 (-225)) (-1193) (-611 (-536)) (-615 (-225)) (-10 -8 (-15 -3050 ($ $ (-563))) (-15 ** ($ $ $)) (-15 -2951 ($ $)) (-15 -2282 ((-563) $ $)) (-15 -1318 ($ $ (-563))) (-15 -2272 ((-407 (-563)) $ (-767))) (-15 -2272 ((-407 (-563)) $ (-767) (-767))) (-15 -2261 ($)) (-15 -4288 ($)) (-15 -2249 ($)) (-15 -3347 ($ $ $)) (-15 -2261 ($ $)) (-15 -4288 ($ $)) (-15 -2239 ((-1262))) (-15 -2239 ((-1262) (-767))) (-15 -2228 ((-1262))) (-15 -2228 ((-1262) (-767))) (-15 -2218 ((-1262))) (-15 -2218 ((-1262) (-767))) (-15 -2209 ((-1262) (-767))) (-6 -4399) (-6 -4391))) -((-1558 (((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|) 46) (((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|) 45) (((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|) 42) (((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|) 36)) (-2314 (((-640 |#1|) (-407 (-948 (-563))) |#1|) 20) (((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|) 30))) -(((-380 |#1|) (-10 -7 (-15 -1558 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|)) (-15 -1558 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|)) (-15 -1558 ((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|)) (-15 -1558 ((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|)) (-15 -2314 ((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|)) (-15 -2314 ((-640 |#1|) (-407 (-948 (-563))) |#1|))) (-13 (-844) (-363))) (T -380)) -((-2314 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-2314 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-844) (-363))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 (-563))))) (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 (-563)))))) (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363)))))) -(-10 -7 (-15 -1558 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-407 (-948 (-563)))) |#1|)) (-15 -1558 ((-640 (-640 (-294 (-948 |#1|)))) (-640 (-294 (-407 (-948 (-563))))) |#1|)) (-15 -1558 ((-640 (-294 (-948 |#1|))) (-407 (-948 (-563))) |#1|)) (-15 -1558 ((-640 (-294 (-948 |#1|))) (-294 (-407 (-948 (-563)))) |#1|)) (-15 -2314 ((-640 (-640 |#1|)) (-640 (-407 (-948 (-563)))) (-640 (-1169)) |#1|)) (-15 -2314 ((-640 |#1|) (-407 (-948 (-563))) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) 30)) (-2589 ((|#2| $) 32)) (-3213 (($ $) NIL)) (-1528 (((-767) $) 11)) (-3197 (((-640 $) $) 23)) (-1871 (((-112) $) NIL)) (-1576 (($ |#2| |#1|) 21)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2325 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-3183 ((|#2| $) 18)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 50) (($ |#2|) 31)) (-3234 (((-640 |#1|) $) 20)) (-1304 ((|#1| $ |#2|) 54)) (-3790 (($) 33 T CONST)) (-4025 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 38) (($ |#2| |#1|) 39))) -(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1045) (-846)) (T -381)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846))))) +((-1938 (*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-768)))) (-1495 (*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-368)))) (-1906 (*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-918)))) (-2821 (*1 *1) (-4 *1 (-368)))) +(-13 (-1094) (-10 -8 (-15 -1938 ((-768))) (-15 -1495 ($ (-918))) (-15 -1906 ((-918) $)) (-15 -2821 ($)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3580 (((-685 |#2|) (-1259 $)) 47)) (-2340 (($ (-1259 |#2|) (-1259 $)) 41)) (-3807 (((-685 |#2|) $ (-1259 $)) 49)) (-4284 ((|#2| (-1259 $)) 13)) (-1785 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) 27))) +(((-369 |#1| |#2| |#3|) (-10 -8 (-15 -3580 ((-685 |#2|) (-1259 |#1|))) (-15 -4284 (|#2| (-1259 |#1|))) (-15 -2340 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3807 ((-685 |#2|) |#1| (-1259 |#1|)))) (-370 |#2| |#3|) (-172) (-1235 |#2|)) (T -369)) +NIL +(-10 -8 (-15 -3580 ((-685 |#2|) (-1259 |#1|))) (-15 -4284 (|#2| (-1259 |#1|))) (-15 -2340 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3807 ((-685 |#2|) |#1| (-1259 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3580 (((-685 |#1|) (-1259 $)) 47)) (-3809 ((|#1| $) 53)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2340 (($ (-1259 |#1|) (-1259 $)) 49)) (-3807 (((-685 |#1|) $ (-1259 $)) 54)) (-3951 (((-3 $ "failed") $) 33)) (-1544 (((-918)) 55)) (-3840 (((-112) $) 31)) (-3328 ((|#1| $) 52)) (-2653 ((|#2| $) 45 (|has| |#1| (-363)))) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4284 ((|#1| (-1259 $)) 48)) (-1785 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-4253 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2230 ((|#2| $) 46)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-370 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -370)) +((-1544 (*1 *2) (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-918)))) (-3807 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) (-1785 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-2340 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) (-4 *2 (-172)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-2230 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-2653 (*1 *2 *1) (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) (-4 *2 (-1235 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -1544 ((-918))) (-15 -3807 ((-685 |t#1|) $ (-1259 $))) (-15 -3809 (|t#1| $)) (-15 -3328 (|t#1| $)) (-15 -1785 ((-1259 |t#1|) $ (-1259 $))) (-15 -1785 ((-685 |t#1|) (-1259 $) (-1259 $))) (-15 -2340 ($ (-1259 |t#1|) (-1259 $))) (-15 -4284 (|t#1| (-1259 $))) (-15 -3580 ((-685 |t#1|) (-1259 $))) (-15 -2230 (|t#2| $)) (IF (|has| |t#1| (-363)) (-15 -2653 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-1525 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25)) (-1699 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17)) (-2187 ((|#4| (-1 |#3| |#1|) |#2|) 23))) +(((-371 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1699 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1525 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1209) (-373 |#1|) (-1209) (-373 |#3|)) (T -371)) +((-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) (-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5))))) +(-10 -7 (-15 -2187 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1699 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1525 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-1445 (((-112) (-1 (-112) |#2| |#2|) $) NIL) (((-112) $) 18)) (-2402 (($ (-1 (-112) |#2| |#2|) $) NIL) (($ $) 28)) (-2777 (($ (-1 (-112) |#2| |#2|) $) 27) (($ $) 22)) (-1856 (($ $) 25)) (-3305 (((-564) (-1 (-112) |#2|) $) NIL) (((-564) |#2| $) 11) (((-564) |#2| $ (-564)) NIL)) (-2164 (($ (-1 (-112) |#2| |#2|) $ $) NIL) (($ $ $) 20))) +(((-372 |#1| |#2|) (-10 -8 (-15 -2402 (|#1| |#1|)) (-15 -2402 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1445 ((-112) |#1|)) (-15 -2777 (|#1| |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -3305 ((-564) |#2| |#1| (-564))) (-15 -3305 ((-564) |#2| |#1|)) (-15 -3305 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1445 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2777 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) (-373 |#2|) (-1209)) (T -372)) +NIL +(-10 -8 (-15 -2402 (|#1| |#1|)) (-15 -2402 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1445 ((-112) |#1|)) (-15 -2777 (|#1| |#1|)) (-15 -2164 (|#1| |#1| |#1|)) (-15 -3305 ((-564) |#2| |#1| (-564))) (-15 -3305 ((-564) |#2| |#1|)) (-15 -3305 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -1445 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2777 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-2797 (($ $) 90 (|has| $ (-6 -4412)))) (-1856 (($ $) 100)) (-1996 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 51)) (-3305 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-3619 (($ (-768) |#1|) 69)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-2799 (($ $ $) 87 (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2848 (($ $ $) 86 (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 42 (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3099 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2004 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1999 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 70)) (-1802 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1741 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 82 (|has| |#1| (-847)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-373 |#1|) (-140) (-1209)) (T -373)) +((-2164 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-1856 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-2777 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-1445 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3305 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) (-5 *2 (-564)))) (-3305 (*1 *2 *3 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-564)))) (-3305 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)))) (-2164 (*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) (-2777 (*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) (-1445 (*1 *2 *1) (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-847)) (-5 *2 (-112)))) (-1999 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4412)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-2797 (*1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) (-2402 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4412)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) (-2402 (*1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847))))) +(-13 (-647 |t#1|) (-10 -8 (-6 -4411) (-15 -2164 ($ (-1 (-112) |t#1| |t#1|) $ $)) (-15 -1856 ($ $)) (-15 -2777 ($ (-1 (-112) |t#1| |t#1|) $)) (-15 -1445 ((-112) (-1 (-112) |t#1| |t#1|) $)) (-15 -3305 ((-564) (-1 (-112) |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3305 ((-564) |t#1| $)) (-15 -3305 ((-564) |t#1| $ (-564)))) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-6 (-847)) (-15 -2164 ($ $ $)) (-15 -2777 ($ $)) (-15 -1445 ((-112) $))) |%noBranch|) (IF (|has| $ (-6 -4412)) (PROGN (-15 -1999 ($ $ $ (-564))) (-15 -2797 ($ $)) (-15 -2402 ($ (-1 (-112) |t#1| |t#1|) $)) (IF (|has| |t#1| (-847)) (-15 -2402 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T)) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3491 (((-641 |#1|) $) 32)) (-2525 (($ $ (-768)) 33)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2691 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 36)) (-3275 (($ $) 34)) (-2481 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 37)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-2416 (($ $ |#1| $) 31) (($ $ (-641 |#1|) (-641 $)) 30)) (-2266 (((-768) $) 38)) (-3753 (($ $ $) 29)) (-3742 (((-859) $) 11) (($ |#1|) 41) (((-1274 |#1| |#2|) $) 40) (((-1283 |#1| |#2|) $) 39)) (-1762 ((|#2| (-1283 |#1| |#2|) $) 42)) (-4311 (($) 18 T CONST)) (-4082 (($ (-668 |#1|)) 35)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#2|) 28 (|has| |#2| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26))) +(((-374 |#1| |#2|) (-140) (-847) (-172)) (T -374)) +((-1762 (*1 *2 *3 *1) (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-847)) (-4 *2 (-172)))) (-3742 (*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-1274 *3 *4)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-1283 *3 *4)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-768)))) (-2481 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-2691 (*1 *2 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-4082 (*1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-4 *1 (-374 *3 *4)) (-4 *4 (-172)))) (-3275 (*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-2525 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *2 (-641 *3)))) (-2416 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) (-4 *4 (-847)) (-4 *5 (-172))))) +(-13 (-632 |t#2|) (-10 -8 (-15 -1762 (|t#2| (-1283 |t#1| |t#2|) $)) (-15 -3742 ($ |t#1|)) (-15 -3742 ((-1274 |t#1| |t#2|) $)) (-15 -3742 ((-1283 |t#1| |t#2|) $)) (-15 -2266 ((-768) $)) (-15 -2481 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -2691 ((-1283 |t#1| |t#2|) (-1283 |t#1| |t#2|) $)) (-15 -4082 ($ (-668 |t#1|))) (-15 -3275 ($ $)) (-15 -2525 ($ $ (-768))) (-15 -3491 ((-641 |t#1|) $)) (-15 -2416 ($ $ |t#1| $)) (-15 -2416 ($ $ (-641 |t#1|) (-641 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-632 |#2|) . T) ((-714 |#2|) . T) ((-1052 |#2|) . T) ((-1094) . T)) +((-1407 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 41)) (-3655 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 13)) (-2963 ((|#2| (-1 (-112) |#1| |#1|) |#2|) 35))) +(((-375 |#1| |#2|) (-10 -7 (-15 -3655 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2963 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1407 (|#2| (-1 (-112) |#1| |#1|) |#2|))) (-1209) (-13 (-373 |#1|) (-10 -7 (-6 -4412)))) (T -375)) +((-1407 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))))) (-2963 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))))) (-3655 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412))))))) +(-10 -7 (-15 -3655 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -2963 (|#2| (-1 (-112) |#1| |#1|) |#2|)) (-15 -1407 (|#2| (-1 (-112) |#1| |#1|) |#2|))) +((-3039 (((-685 |#2|) (-685 $)) NIL) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 22) (((-685 (-564)) (-685 $)) 14))) +(((-376 |#1| |#2|) (-10 -8 (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 |#2|) (-685 |#1|)))) (-377 |#2|) (-1046)) (T -376)) +NIL +(-10 -8 (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 |#2|) (-685 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3039 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 43 (|has| |#1| (-637 (-564)))) (((-685 (-564)) (-685 $)) 42 (|has| |#1| (-637 (-564))))) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-377 |#1|) (-140) (-1046)) (T -377)) +NIL +(-13 (-637 |t#1|) (-10 -7 (IF (|has| |t#1| (-637 (-564))) (-6 (-637 (-564))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-1720 (((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|) 51) (((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|) 50) (((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|) 47) (((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|) 41)) (-3400 (((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|) 30) (((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|) 18))) +(((-378 |#1|) (-10 -7 (-15 -1720 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -1720 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|)) (-15 -1720 ((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -1720 ((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3400 ((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3400 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|))) (-13 (-363) (-845))) (T -378)) +((-3400 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-845))))) (-3400 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 (-169 (-564)))))) (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 (-169 (-564))))))) (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) (-1720 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845)))))) +(-10 -7 (-15 -1720 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -1720 ((-641 (-641 (-294 (-949 (-169 |#1|))))) (-641 (-294 (-407 (-949 (-169 (-564)))))) |#1|)) (-15 -1720 ((-641 (-294 (-949 (-169 |#1|)))) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -1720 ((-641 (-294 (-949 (-169 |#1|)))) (-294 (-407 (-949 (-169 (-564))))) |#1|)) (-15 -3400 ((-641 (-169 |#1|)) (-407 (-949 (-169 (-564)))) |#1|)) (-15 -3400 ((-641 (-641 (-169 |#1|))) (-641 (-407 (-949 (-169 (-564))))) (-641 (-1170)) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 35)) (-1473 (((-564) $) 61)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2892 (($ $) 141)) (-2451 (($ $) 106)) (-2319 (($ $) 93)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-4137 (($ $) 47)) (-2377 (((-112) $ $) NIL)) (-2428 (($ $) 104)) (-2297 (($ $) 87)) (-3265 (((-564) $) 80)) (-2338 (($ $ (-564)) 75)) (-2473 (($ $) NIL)) (-2339 (($ $) NIL)) (-2818 (($) NIL T CONST)) (-3000 (($ $) 143)) (-2111 (((-3 (-564) "failed") $) 236) (((-3 (-407 (-564)) "failed") $) 232)) (-2239 (((-564) $) 234) (((-407 (-564)) $) 230)) (-1373 (($ $ $) NIL)) (-1971 (((-564) $ $) 130)) (-3951 (((-3 $ "failed") $) 145)) (-4094 (((-407 (-564)) $ (-768)) 237) (((-407 (-564)) $ (-768) (-768)) 229)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-2101 (((-918)) 95) (((-918) (-918)) 126 (|has| $ (-6 -4402)))) (-3308 (((-112) $) 135)) (-1655 (($) 41)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-2840 (((-1264) (-768)) 197)) (-2304 (((-1264)) 202) (((-1264) (-768)) 203)) (-3883 (((-1264)) 204) (((-1264) (-768)) 205)) (-2086 (((-1264)) 200) (((-1264) (-768)) 201)) (-1619 (((-564) $) 68)) (-3840 (((-112) $) 40)) (-2347 (($ $ (-564)) NIL)) (-2928 (($ $) 51)) (-3328 (($ $) NIL)) (-2839 (((-112) $) 37)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL) (($) NIL (-12 (-4255 (|has| $ (-6 -4394))) (-4255 (|has| $ (-6 -4402)))))) (-2848 (($ $ $) NIL) (($) 127 (-12 (-4255 (|has| $ (-6 -4394))) (-4255 (|has| $ (-6 -4402)))))) (-2250 (((-564) $) 17)) (-4347 (($) 113) (($ $) 119)) (-4050 (($) 118) (($ $) 120)) (-2192 (($ $) 108)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 147)) (-4129 (((-918) (-564)) 46 (|has| $ (-6 -4402)))) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) 59)) (-3014 (($ $) 140)) (-2140 (($ (-564) (-564)) 136) (($ (-564) (-564) (-918)) 137)) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2515 (((-564) $) 19)) (-2453 (($) 121)) (-4118 (($ $) 103)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3716 (((-918)) 128) (((-918) (-918)) 129 (|has| $ (-6 -4402)))) (-4117 (($ $ (-768)) NIL) (($ $) 146)) (-1315 (((-918) (-564)) 50 (|has| $ (-6 -4402)))) (-2484 (($ $) NIL)) (-2348 (($ $) NIL)) (-2462 (($ $) NIL)) (-2328 (($ $) NIL)) (-2438 (($ $) 105)) (-2309 (($ $) 92)) (-2235 (((-379) $) 223) (((-225) $) 224) (((-889 (-379)) $) NIL) (((-1152) $) 208) (((-536) $) 221) (($ (-225)) 228)) (-3742 (((-859) $) 210) (($ (-564)) 233) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-564)) 233) (($ (-407 (-564))) NIL) (((-225) $) 225)) (-3270 (((-768)) NIL T CONST)) (-2551 (($ $) 142)) (-2504 (((-918)) 60) (((-918) (-918)) 82 (|has| $ (-6 -4402)))) (-3237 (((-918)) 131)) (-2521 (($ $) 111)) (-2379 (($ $) 49) (($ $ $) 58)) (-3360 (((-112) $ $) NIL)) (-2495 (($ $) 109)) (-2358 (($ $) 39)) (-2548 (($ $) NIL)) (-2404 (($ $) NIL)) (-4065 (($ $) NIL)) (-2415 (($ $) NIL)) (-2534 (($ $) NIL)) (-2391 (($ $) NIL)) (-2507 (($ $) 110)) (-2367 (($ $) 52)) (-2792 (($ $) 57)) (-4311 (($) 36 T CONST)) (-4321 (($) 43 T CONST)) (-2412 (((-1152) $) 27) (((-1152) $ (-112)) 29) (((-1264) (-819) $) 30) (((-1264) (-819) $ (-112)) 31)) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 56)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 45)) (-1799 (($ $ $) 48) (($ $ (-564)) 42)) (-1790 (($ $) 38) (($ $ $) 53)) (-1780 (($ $ $) 74)) (** (($ $ (-918)) 85) (($ $ (-768)) NIL) (($ $ (-564)) 114) (($ $ (-407 (-564))) 157) (($ $ $) 149)) (* (($ (-918) $) 81) (($ (-768) $) NIL) (($ (-564) $) 86) (($ $ $) 73) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-379) (-13 (-404) (-233) (-612 (-1152)) (-825) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -1799 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2928 ($ $)) (-15 -1971 ((-564) $ $)) (-15 -2338 ($ $ (-564))) (-15 -4094 ((-407 (-564)) $ (-768))) (-15 -4094 ((-407 (-564)) $ (-768) (-768))) (-15 -4347 ($)) (-15 -4050 ($)) (-15 -2453 ($)) (-15 -2379 ($ $ $)) (-15 -4347 ($ $)) (-15 -4050 ($ $)) (-15 -3883 ((-1264))) (-15 -3883 ((-1264) (-768))) (-15 -2086 ((-1264))) (-15 -2086 ((-1264) (-768))) (-15 -2304 ((-1264))) (-15 -2304 ((-1264) (-768))) (-15 -2840 ((-1264) (-768))) (-6 -4402) (-6 -4394)))) (T -379)) +((** (*1 *1 *1 *1) (-5 *1 (-379))) (-1799 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2928 (*1 *1 *1) (-5 *1 (-379))) (-1971 (*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-2338 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) (-4094 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-4094 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) (-4347 (*1 *1) (-5 *1 (-379))) (-4050 (*1 *1) (-5 *1 (-379))) (-2453 (*1 *1) (-5 *1 (-379))) (-2379 (*1 *1 *1 *1) (-5 *1 (-379))) (-4347 (*1 *1 *1) (-5 *1 (-379))) (-4050 (*1 *1 *1) (-5 *1 (-379))) (-3883 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-3883 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2086 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-2086 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2304 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379)))) (-2304 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))) +(-13 (-404) (-233) (-612 (-1152)) (-825) (-611 (-225)) (-1194) (-612 (-536)) (-616 (-225)) (-10 -8 (-15 -1799 ($ $ (-564))) (-15 ** ($ $ $)) (-15 -2928 ($ $)) (-15 -1971 ((-564) $ $)) (-15 -2338 ($ $ (-564))) (-15 -4094 ((-407 (-564)) $ (-768))) (-15 -4094 ((-407 (-564)) $ (-768) (-768))) (-15 -4347 ($)) (-15 -4050 ($)) (-15 -2453 ($)) (-15 -2379 ($ $ $)) (-15 -4347 ($ $)) (-15 -4050 ($ $)) (-15 -3883 ((-1264))) (-15 -3883 ((-1264) (-768))) (-15 -2086 ((-1264))) (-15 -2086 ((-1264) (-768))) (-15 -2304 ((-1264))) (-15 -2304 ((-1264) (-768))) (-15 -2840 ((-1264) (-768))) (-6 -4402) (-6 -4394))) +((-2443 (((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|) 46) (((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|) 45) (((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|) 42) (((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|) 36)) (-1921 (((-641 |#1|) (-407 (-949 (-564))) |#1|) 20) (((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|) 30))) +(((-380 |#1|) (-10 -7 (-15 -2443 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|)) (-15 -2443 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|)) (-15 -2443 ((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|)) (-15 -2443 ((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|)) (-15 -1921 ((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|)) (-15 -1921 ((-641 |#1|) (-407 (-949 (-564))) |#1|))) (-13 (-845) (-363))) (T -380)) +((-1921 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-1921 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) (-4 *5 (-13 (-845) (-363))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 (-564))))) (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 (-564)))))) (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363)))))) +(-10 -7 (-15 -2443 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-407 (-949 (-564)))) |#1|)) (-15 -2443 ((-641 (-641 (-294 (-949 |#1|)))) (-641 (-294 (-407 (-949 (-564))))) |#1|)) (-15 -2443 ((-641 (-294 (-949 |#1|))) (-407 (-949 (-564))) |#1|)) (-15 -2443 ((-641 (-294 (-949 |#1|))) (-294 (-407 (-949 (-564)))) |#1|)) (-15 -1921 ((-641 (-641 |#1|)) (-641 (-407 (-949 (-564)))) (-641 (-1170)) |#1|)) (-15 -1921 ((-641 |#1|) (-407 (-949 (-564))) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) 30)) (-2239 ((|#2| $) 32)) (-1348 (($ $) NIL)) (-2918 (((-768) $) 11)) (-3707 (((-641 $) $) 23)) (-2005 (((-112) $) NIL)) (-2414 (($ |#2| |#1|) 21)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17)) (-1309 ((|#2| $) 18)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 50) (($ |#2|) 31)) (-3110 (((-641 |#1|) $) 20)) (-2856 ((|#1| $ |#2|) 54)) (-4311 (($) 33 T CONST)) (-2546 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 36) (($ $ |#1|) 37) (($ |#1| |#2|) 38) (($ |#2| |#1|) 39))) +(((-381 |#1| |#2|) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1046) (-847)) (T -381)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847))))) (-13 (-382 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#2| "failed") $) 44)) (-2589 ((|#2| $) 45)) (-3213 (($ $) 30)) (-1528 (((-767) $) 34)) (-3197 (((-640 $) $) 35)) (-1871 (((-112) $) 38)) (-1576 (($ |#2| |#1|) 39)) (-2751 (($ (-1 |#1| |#1|) $) 40)) (-2325 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-3183 ((|#2| $) 33)) (-3193 ((|#1| $) 32)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ |#2|) 43)) (-3234 (((-640 |#1|) $) 36)) (-1304 ((|#1| $ |#2|) 41)) (-3790 (($) 18 T CONST)) (-4025 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) -(((-382 |#1| |#2|) (-140) (-1045) (-1093)) (T -382)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093)))) (-1304 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) (-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)))) (-1576 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-112)))) (-4025 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *3)))) (-3197 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-382 *3 *4)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-767)))) (-3183 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3213 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093))))) -(-13 (-111 |t#1| |t#1|) (-1034 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -1304 (|t#1| $ |t#2|)) (-15 -2751 ($ (-1 |t#1| |t#1|) $)) (-15 -1576 ($ |t#2| |t#1|)) (-15 -1871 ((-112) $)) (-15 -4025 ((-640 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3234 ((-640 |t#1|) $)) (-15 -3197 ((-640 $) $)) (-15 -1528 ((-767) $)) (-15 -3183 (|t#2| $)) (-15 -3193 (|t#1| $)) (-15 -2325 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3213 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-713 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) |has| |#1| (-172)) ((-1034 |#2|) . T) ((-1051 |#1|) . T) ((-1093) . T)) -((-4000 (((-1262) $) 7)) (-2062 (((-858) $) 8) (($ (-684 (-694))) 14) (($ (-640 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 11))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#2| "failed") $) 44)) (-2239 ((|#2| $) 45)) (-1348 (($ $) 30)) (-2918 (((-768) $) 34)) (-3707 (((-641 $) $) 35)) (-2005 (((-112) $) 38)) (-2414 (($ |#2| |#1|) 39)) (-2187 (($ (-1 |#1| |#1|) $) 40)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-1309 ((|#2| $) 33)) (-1320 ((|#1| $) 32)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ |#2|) 43)) (-3110 (((-641 |#1|) $) 36)) (-2856 ((|#1| $ |#2|) 41)) (-4311 (($) 18 T CONST)) (-2546 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42))) +(((-382 |#1| |#2|) (-140) (-1046) (-1094)) (T -382)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))) (-2856 (*1 *2 *1 *3) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) (-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)))) (-2414 (*1 *1 *2 *3) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-2546 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-3707 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-382 *3 *4)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-768)))) (-1309 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) (-1754 (*1 *2 *1) (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1348 (*1 *1 *1) (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094))))) +(-13 (-111 |t#1| |t#1|) (-1035 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2856 (|t#1| $ |t#2|)) (-15 -2187 ($ (-1 |t#1| |t#1|) $)) (-15 -2414 ($ |t#2| |t#1|)) (-15 -2005 ((-112) $)) (-15 -2546 ((-641 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3110 ((-641 |t#1|) $)) (-15 -3707 ((-641 $) $)) (-15 -2918 ((-768) $)) (-15 -1309 (|t#2| $)) (-15 -1320 (|t#1| $)) (-15 -1754 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1348 ($ $)) (IF (|has| |t#1| (-172)) (-6 (-714 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) |has| |#1| (-172)) ((-1035 |#2|) . T) ((-1052 |#1|) . T) ((-1094) . T)) +((-2150 (((-1264) $) 7)) (-3742 (((-859) $) 8) (($ (-685 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 11))) (((-383) (-140)) (T -383)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-684 (-694))) (-4 *1 (-383)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-383)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) (-4 *1 (-383))))) -(-13 (-395) (-10 -8 (-15 -2062 ($ (-684 (-694)))) (-15 -2062 ($ (-640 (-330)))) (-15 -2062 ($ (-330))) (-15 -2062 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330)))))))) -(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) -((-2671 (((-3 $ "failed") (-684 (-316 (-379)))) 21) (((-3 $ "failed") (-684 (-316 (-563)))) 19) (((-3 $ "failed") (-684 (-948 (-379)))) 17) (((-3 $ "failed") (-684 (-948 (-563)))) 15) (((-3 $ "failed") (-684 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-684 (-407 (-948 (-563))))) 11)) (-2589 (($ (-684 (-316 (-379)))) 22) (($ (-684 (-316 (-563)))) 20) (($ (-684 (-948 (-379)))) 18) (($ (-684 (-948 (-563)))) 16) (($ (-684 (-407 (-948 (-379))))) 14) (($ (-684 (-407 (-948 (-563))))) 12)) (-4000 (((-1262) $) 7)) (-2062 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 23))) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) (-4 *1 (-383))))) +(-13 (-395) (-10 -8 (-15 -3742 ($ (-685 (-695)))) (-15 -3742 ($ (-641 (-330)))) (-15 -3742 ($ (-330))) (-15 -3742 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330)))))))) +(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) +((-2111 (((-3 $ "failed") (-685 (-316 (-379)))) 21) (((-3 $ "failed") (-685 (-316 (-564)))) 19) (((-3 $ "failed") (-685 (-949 (-379)))) 17) (((-3 $ "failed") (-685 (-949 (-564)))) 15) (((-3 $ "failed") (-685 (-407 (-949 (-379))))) 13) (((-3 $ "failed") (-685 (-407 (-949 (-564))))) 11)) (-2239 (($ (-685 (-316 (-379)))) 22) (($ (-685 (-316 (-564)))) 20) (($ (-685 (-949 (-379)))) 18) (($ (-685 (-949 (-564)))) 16) (($ (-685 (-407 (-949 (-379))))) 14) (($ (-685 (-407 (-949 (-564))))) 12)) (-2150 (((-1264) $) 7)) (-3742 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 23))) (((-384) (-140)) (T -384)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-384)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) (-4 *1 (-384)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384))))) -(-13 (-395) (-10 -8 (-15 -2062 ($ (-640 (-330)))) (-15 -2062 ($ (-330))) (-15 -2062 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330)))))) (-15 -2589 ($ (-684 (-316 (-379))))) (-15 -2671 ((-3 $ "failed") (-684 (-316 (-379))))) (-15 -2589 ($ (-684 (-316 (-563))))) (-15 -2671 ((-3 $ "failed") (-684 (-316 (-563))))) (-15 -2589 ($ (-684 (-948 (-379))))) (-15 -2671 ((-3 $ "failed") (-684 (-948 (-379))))) (-15 -2589 ($ (-684 (-948 (-563))))) (-15 -2671 ((-3 $ "failed") (-684 (-948 (-563))))) (-15 -2589 ($ (-684 (-407 (-948 (-379)))))) (-15 -2671 ((-3 $ "failed") (-684 (-407 (-948 (-379)))))) (-15 -2589 ($ (-684 (-407 (-948 (-563)))))) (-15 -2671 ((-3 $ "failed") (-684 (-407 (-948 (-563)))))))) -(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-2165 (($ |#1| |#2|) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2994 ((|#2| $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 34)) (-3790 (($) 12 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) -(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) (-1045) (-846)) (T -385)) -NIL -(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-713 |#1|)) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767) $) 71)) (-3684 (($) NIL T CONST)) (-1885 (((-3 $ "failed") $ $) 74)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2556 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 61)) (-2712 (((-112) $) 17)) (-2535 ((|#1| $ (-563)) NIL)) (-2545 (((-767) $ (-563)) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3876 (($ (-1 |#1| |#1|) $) 40)) (-3885 (($ (-1 (-767) (-767)) $) 37)) (-1899 (((-3 $ "failed") $ $) 58)) (-1938 (((-1151) $) NIL)) (-2567 (($ $ $) 28)) (-2578 (($ $ $) 26)) (-3249 (((-1113) $) NIL)) (-2524 (((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-767)))) $) 34)) (-2588 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 67)) (-2062 (((-858) $) 24) (($ |#1|) NIL)) (-3803 (($) 11 T CONST)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) 80 (|has| |#1| (-846)))) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) -(((-386 |#1|) (-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -2578 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -1885 ((-3 $ "failed") $ $)) (-15 -2588 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2556 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2433 ((-767) $)) (-15 -2524 ((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-767)))) $)) (-15 -2545 ((-767) $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -3885 ($ (-1 (-767) (-767)) $)) (-15 -3876 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) (-1093)) (T -386)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-2578 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-2567 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-1899 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-1885 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-2588 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-2556 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 (-767))))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1093)))) (-2535 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) (-3885 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) (-3876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-386 *3))))) -(-13 (-722) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -2578 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -1885 ((-3 $ "failed") $ $)) (-15 -2588 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2556 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2433 ((-767) $)) (-15 -2524 ((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-767)))) $)) (-15 -2545 ((-767) $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -3885 ($ (-1 (-767) (-767)) $)) (-15 -3876 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-846)) (-6 (-846)) |%noBranch|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 48)) (-2589 (((-563) $) 49)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-3489 (($ $ $) 55)) (-4105 (($ $ $) 54)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ $) 43)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 47)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2998 (((-112) $ $) 52)) (-2977 (((-112) $ $) 51)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 53)) (-2966 (((-112) $ $) 50)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) (-4 *1 (-384)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384))))) +(-13 (-395) (-10 -8 (-15 -3742 ($ (-641 (-330)))) (-15 -3742 ($ (-330))) (-15 -3742 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330)))))) (-15 -2239 ($ (-685 (-316 (-379))))) (-15 -2111 ((-3 $ "failed") (-685 (-316 (-379))))) (-15 -2239 ($ (-685 (-316 (-564))))) (-15 -2111 ((-3 $ "failed") (-685 (-316 (-564))))) (-15 -2239 ($ (-685 (-949 (-379))))) (-15 -2111 ((-3 $ "failed") (-685 (-949 (-379))))) (-15 -2239 ($ (-685 (-949 (-564))))) (-15 -2111 ((-3 $ "failed") (-685 (-949 (-564))))) (-15 -2239 ($ (-685 (-407 (-949 (-379)))))) (-15 -2111 ((-3 $ "failed") (-685 (-407 (-949 (-379)))))) (-15 -2239 ($ (-685 (-407 (-949 (-564)))))) (-15 -2111 ((-3 $ "failed") (-685 (-407 (-949 (-564)))))))) +(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-4245 (($ |#1| |#2|) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2556 ((|#2| $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 34)) (-4311 (($) 12 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#1| $) 15) (($ $ |#1|) 18))) +(((-385 |#1| |#2|) (-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|))) (-1046) (-847)) (T -385)) +NIL +(-13 (-111 |#1| |#1|) (-509 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-172)) (-6 (-714 |#1|)) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768) $) 71)) (-2818 (($) NIL T CONST)) (-2691 (((-3 $ "failed") $ $) 74)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2156 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 61)) (-3840 (((-112) $) 17)) (-3950 ((|#1| $ (-564)) NIL)) (-3584 (((-768) $ (-564)) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-3354 (($ (-1 |#1| |#1|) $) 40)) (-2869 (($ (-1 (-768) (-768)) $) 37)) (-2481 (((-3 $ "failed") $ $) 58)) (-2217 (((-1152) $) NIL)) (-3953 (($ $ $) 28)) (-2552 (($ $ $) 26)) (-3864 (((-1114) $) NIL)) (-2267 (((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-768)))) $) 34)) (-1318 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 67)) (-3742 (((-859) $) 24) (($ |#1|) NIL)) (-4321 (($) 11 T CONST)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) 80 (|has| |#1| (-847)))) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ |#1| (-768)) 42)) (* (($ $ $) 52) (($ |#1| $) 32) (($ $ |#1|) 30))) +(((-386 |#1|) (-13 (-723) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -2552 ($ $ $)) (-15 -3953 ($ $ $)) (-15 -2481 ((-3 $ "failed") $ $)) (-15 -2691 ((-3 $ "failed") $ $)) (-15 -1318 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2156 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1938 ((-768) $)) (-15 -2267 ((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-768)))) $)) (-15 -3584 ((-768) $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -2869 ($ (-1 (-768) (-768)) $)) (-15 -3354 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) (-1094)) (T -386)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2552 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-3953 (*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2481 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2691 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-1318 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2156 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 (-768))))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-768) (-768))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) (-3354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3))))) +(-13 (-723) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -2552 ($ $ $)) (-15 -3953 ($ $ $)) (-15 -2481 ((-3 $ "failed") $ $)) (-15 -2691 ((-3 $ "failed") $ $)) (-15 -1318 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2156 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1938 ((-768) $)) (-15 -2267 ((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-768)))) $)) (-15 -3584 ((-768) $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -2869 ($ (-1 (-768) (-768)) $)) (-15 -3354 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-847)) (-6 (-847)) |%noBranch|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 48)) (-2239 (((-564) $) 49)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2799 (($ $ $) 55)) (-2848 (($ $ $) 54)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ $) 43)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 47)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1751 (((-112) $ $) 52)) (-1731 (((-112) $ $) 51)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 53)) (-1723 (((-112) $ $) 50)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-387) (-140)) (T -387)) NIL -(-13 (-555) (-846) (-1034 (-563))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2337 (((-112) $) 25)) (-2351 (((-112) $) 22)) (-2552 (($ (-1151) (-1151) (-1151)) 26)) (-3359 (((-1151) $) 16)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3343 (($ (-1151) (-1151) (-1151)) 14)) (-2372 (((-1151) $) 17)) (-2361 (((-112) $) 18)) (-2485 (((-1151) $) 15)) (-2062 (((-858) $) 12) (($ (-1151)) 13) (((-1151) $) 9)) (-2943 (((-112) $ $) 7))) +(-13 (-556) (-847) (-1035 (-564))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-3369 (((-112) $) 25)) (-1597 (((-112) $) 22)) (-3619 (($ (-1152) (-1152) (-1152)) 26)) (-4324 (((-1152) $) 16)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1352 (($ (-1152) (-1152) (-1152)) 14)) (-2571 (((-1152) $) 17)) (-2985 (((-112) $) 18)) (-4012 (((-1152) $) 15)) (-3742 (((-859) $) 12) (($ (-1152)) 13) (((-1152) $) 9)) (-1705 (((-112) $ $) 7))) (((-388) (-389)) (T -388)) NIL (-389) -((-2049 (((-112) $ $) 7)) (-2337 (((-112) $) 16)) (-2351 (((-112) $) 17)) (-2552 (($ (-1151) (-1151) (-1151)) 15)) (-3359 (((-1151) $) 20)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3343 (($ (-1151) (-1151) (-1151)) 22)) (-2372 (((-1151) $) 19)) (-2361 (((-112) $) 18)) (-2485 (((-1151) $) 21)) (-2062 (((-858) $) 11) (($ (-1151)) 24) (((-1151) $) 23)) (-2943 (((-112) $ $) 6))) +((-3732 (((-112) $ $) 7)) (-3369 (((-112) $) 16)) (-1597 (((-112) $) 17)) (-3619 (($ (-1152) (-1152) (-1152)) 15)) (-4324 (((-1152) $) 20)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1352 (($ (-1152) (-1152) (-1152)) 22)) (-2571 (((-1152) $) 19)) (-2985 (((-112) $) 18)) (-4012 (((-1152) $) 21)) (-3742 (((-859) $) 11) (($ (-1152)) 24) (((-1152) $) 23)) (-1705 (((-112) $ $) 6))) (((-389) (-140)) (T -389)) -((-3343 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))) (-2485 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-3359 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-2372 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) (-2361 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-2351 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-2552 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389))))) -(-13 (-1093) (-490 (-1151)) (-10 -8 (-15 -3343 ($ (-1151) (-1151) (-1151))) (-15 -2485 ((-1151) $)) (-15 -3359 ((-1151) $)) (-15 -2372 ((-1151) $)) (-15 -2361 ((-112) $)) (-15 -2351 ((-112) $)) (-15 -2337 ((-112) $)) (-15 -2552 ($ (-1151) (-1151) (-1151))))) -(((-102) . T) ((-613 #0=(-1151)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2385 (((-858) $) 63)) (-3684 (($) NIL T CONST)) (-2690 (($ $ (-917)) NIL)) (-1670 (($ $ (-917)) NIL)) (-2681 (($ $ (-917)) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1738 (($ (-767)) 37)) (-1575 (((-767)) 18)) (-2399 (((-858) $) 65)) (-2879 (($ $ $) NIL)) (-2062 (((-858) $) NIL)) (-2888 (($ $ $ $) NIL)) (-2870 (($ $ $) NIL)) (-3790 (($) 24 T CONST)) (-2943 (((-112) $ $) 40)) (-3039 (($ $) 47) (($ $ $) 49)) (-3027 (($ $ $) 50)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 51) (($ $ |#3|) NIL) (($ |#3| $) 46))) -(((-390 |#1| |#2| |#3|) (-13 (-740 |#3|) (-10 -8 (-15 -1575 ((-767))) (-15 -2399 ((-858) $)) (-15 -2385 ((-858) $)) (-15 -1738 ($ (-767))))) (-767) (-767) (-172)) (T -390)) -((-1575 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767)) (-4 *5 (-172)))) (-1738 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) -(-13 (-740 |#3|) (-10 -8 (-15 -1575 ((-767))) (-15 -2399 ((-858) $)) (-15 -2385 ((-858) $)) (-15 -1738 ($ (-767))))) -((-2435 (((-1151)) 12)) (-2423 (((-1140 (-1151))) 31)) (-3969 (((-1262) (-1151)) 28) (((-1262) (-388)) 27)) (-3981 (((-1262)) 29)) (-2411 (((-1140 (-1151))) 30))) -(((-391) (-10 -7 (-15 -2411 ((-1140 (-1151)))) (-15 -2423 ((-1140 (-1151)))) (-15 -3981 ((-1262))) (-15 -3969 ((-1262) (-388))) (-15 -3969 ((-1262) (-1151))) (-15 -2435 ((-1151))))) (T -391)) -((-2435 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-391)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-391)))) (-3969 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-391)))) (-3981 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-391)))) (-2423 (*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391)))) (-2411 (*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391))))) -(-10 -7 (-15 -2411 ((-1140 (-1151)))) (-15 -2423 ((-1140 (-1151)))) (-15 -3981 ((-1262))) (-15 -3969 ((-1262) (-388))) (-15 -3969 ((-1262) (-1151))) (-15 -2435 ((-1151)))) -((-2903 (((-767) (-336 |#1| |#2| |#3| |#4|)) 19))) -(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2903 ((-767) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392)) -((-2903 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7))))) -(-10 -7 (-15 -2903 ((-767) (-336 |#1| |#2| |#3| |#4|)))) -((-2062 (((-394) |#1|) 11))) -(((-393 |#1|) (-10 -7 (-15 -2062 ((-394) |#1|))) (-1093)) (T -393)) -((-2062 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1093))))) -(-10 -7 (-15 -2062 ((-394) |#1|))) -((-2049 (((-112) $ $) NIL)) (-1992 (((-640 (-1151)) $ (-640 (-1151))) 43)) (-2446 (((-640 (-1151)) $ (-640 (-1151))) 44)) (-2015 (((-640 (-1151)) $ (-640 (-1151))) 45)) (-2027 (((-640 (-1151)) $) 40)) (-2552 (($) 30)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3875 (((-640 (-1151)) $) 41)) (-2039 (((-640 (-1151)) $) 42)) (-3051 (((-1262) $ (-563)) 38) (((-1262) $) 39)) (-2802 (($ (-858) (-563)) 35)) (-2062 (((-858) $) 54) (($ (-858)) 32)) (-2943 (((-112) $ $) NIL))) -(((-394) (-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2802 ($ (-858) (-563))) (-15 -3051 ((-1262) $ (-563))) (-15 -3051 ((-1262) $)) (-15 -2039 ((-640 (-1151)) $)) (-15 -3875 ((-640 (-1151)) $)) (-15 -2552 ($)) (-15 -2027 ((-640 (-1151)) $)) (-15 -2015 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2446 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -1992 ((-640 (-1151)) $ (-640 (-1151))))))) (T -394)) -((-2802 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-394)))) (-3051 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-394)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-394)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2552 (*1 *1) (-5 *1 (-394))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2015 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-2446 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) (-1992 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))) -(-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2802 ($ (-858) (-563))) (-15 -3051 ((-1262) $ (-563))) (-15 -3051 ((-1262) $)) (-15 -2039 ((-640 (-1151)) $)) (-15 -3875 ((-640 (-1151)) $)) (-15 -2552 ($)) (-15 -2027 ((-640 (-1151)) $)) (-15 -2015 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2446 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -1992 ((-640 (-1151)) $ (-640 (-1151)))))) -((-4000 (((-1262) $) 7)) (-2062 (((-858) $) 8))) +((-1352 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))) (-4012 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-4324 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-2571 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112)))) (-3619 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))) +(-13 (-1094) (-490 (-1152)) (-10 -8 (-15 -1352 ($ (-1152) (-1152) (-1152))) (-15 -4012 ((-1152) $)) (-15 -4324 ((-1152) $)) (-15 -2571 ((-1152) $)) (-15 -2985 ((-112) $)) (-15 -1597 ((-112) $)) (-15 -3369 ((-112) $)) (-15 -3619 ($ (-1152) (-1152) (-1152))))) +(((-102) . T) ((-614 #0=(-1152)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2243 (((-859) $) 63)) (-2818 (($) NIL T CONST)) (-2752 (($ $ (-918)) NIL)) (-2545 (($ $ (-918)) NIL)) (-3154 (($ $ (-918)) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1693 (($ (-768)) 37)) (-3603 (((-768)) 18)) (-4046 (((-859) $) 65)) (-3671 (($ $ $) NIL)) (-3742 (((-859) $) NIL)) (-3533 (($ $ $ $) NIL)) (-1879 (($ $ $) NIL)) (-4311 (($) 24 T CONST)) (-1705 (((-112) $ $) 40)) (-1790 (($ $) 47) (($ $ $) 49)) (-1780 (($ $ $) 50)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 51) (($ $ |#3|) NIL) (($ |#3| $) 46))) +(((-390 |#1| |#2| |#3|) (-13 (-741 |#3|) (-10 -8 (-15 -3603 ((-768))) (-15 -4046 ((-859) $)) (-15 -2243 ((-859) $)) (-15 -1693 ($ (-768))))) (-768) (-768) (-172)) (T -390)) +((-3603 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)) (-4 *5 (-172)))) (-2243 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768)) (-4 *5 (-172)))) (-1693 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-172))))) +(-13 (-741 |#3|) (-10 -8 (-15 -3603 ((-768))) (-15 -4046 ((-859) $)) (-15 -2243 ((-859) $)) (-15 -1693 ($ (-768))))) +((-2009 (((-1152)) 12)) (-2804 (((-1141 (-1152))) 31)) (-2054 (((-1264) (-1152)) 28) (((-1264) (-388)) 27)) (-2063 (((-1264)) 29)) (-2382 (((-1141 (-1152))) 30))) +(((-391) (-10 -7 (-15 -2382 ((-1141 (-1152)))) (-15 -2804 ((-1141 (-1152)))) (-15 -2063 ((-1264))) (-15 -2054 ((-1264) (-388))) (-15 -2054 ((-1264) (-1152))) (-15 -2009 ((-1152))))) (T -391)) +((-2009 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) (-2063 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391)))) (-2804 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391)))) (-2382 (*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) +(-10 -7 (-15 -2382 ((-1141 (-1152)))) (-15 -2804 ((-1141 (-1152)))) (-15 -2063 ((-1264))) (-15 -2054 ((-1264) (-388))) (-15 -2054 ((-1264) (-1152))) (-15 -2009 ((-1152)))) +((-1619 (((-768) (-336 |#1| |#2| |#3| |#4|)) 19))) +(((-392 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1619 ((-768) (-336 |#1| |#2| |#3| |#4|)))) (-13 (-368) (-363)) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -392)) +((-1619 (*1 *2 *3) (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) (-5 *2 (-768)) (-5 *1 (-392 *4 *5 *6 *7))))) +(-10 -7 (-15 -1619 ((-768) (-336 |#1| |#2| |#3| |#4|)))) +((-3742 (((-394) |#1|) 11))) +(((-393 |#1|) (-10 -7 (-15 -3742 ((-394) |#1|))) (-1094)) (T -393)) +((-3742 (*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094))))) +(-10 -7 (-15 -3742 ((-394) |#1|))) +((-3732 (((-112) $ $) NIL)) (-2290 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-1527 (((-641 (-1152)) $ (-641 (-1152))) 44)) (-1393 (((-641 (-1152)) $ (-641 (-1152))) 45)) (-4095 (((-641 (-1152)) $) 40)) (-3619 (($) 30)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2613 (((-641 (-1152)) $) 41)) (-2517 (((-641 (-1152)) $) 42)) (-3589 (((-1264) $ (-564)) 38) (((-1264) $) 39)) (-2235 (($ (-859) (-564)) 35)) (-3742 (((-859) $) 54) (($ (-859)) 32)) (-1705 (((-112) $ $) NIL))) +(((-394) (-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2235 ($ (-859) (-564))) (-15 -3589 ((-1264) $ (-564))) (-15 -3589 ((-1264) $)) (-15 -2517 ((-641 (-1152)) $)) (-15 -2613 ((-641 (-1152)) $)) (-15 -3619 ($)) (-15 -4095 ((-641 (-1152)) $)) (-15 -1393 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1527 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2290 ((-641 (-1152)) $ (-641 (-1152))))))) (T -394)) +((-2235 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-394)))) (-3589 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-3619 (*1 *1) (-5 *1 (-394))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-1393 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-1527 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) (-2290 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) +(-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2235 ($ (-859) (-564))) (-15 -3589 ((-1264) $ (-564))) (-15 -3589 ((-1264) $)) (-15 -2517 ((-641 (-1152)) $)) (-15 -2613 ((-641 (-1152)) $)) (-15 -3619 ($)) (-15 -4095 ((-641 (-1152)) $)) (-15 -1393 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -1527 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2290 ((-641 (-1152)) $ (-641 (-1152)))))) +((-2150 (((-1264) $) 7)) (-3742 (((-859) $) 8))) (((-395) (-140)) (T -395)) -((-4000 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1262))))) -(-13 (-1208) (-610 (-858)) (-10 -8 (-15 -4000 ((-1262) $)))) -(((-610 (-858)) . T) ((-1208) . T)) -((-2671 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-563))) 19) (((-3 $ "failed") (-948 (-379))) 17) (((-3 $ "failed") (-948 (-563))) 15) (((-3 $ "failed") (-407 (-948 (-379)))) 13) (((-3 $ "failed") (-407 (-948 (-563)))) 11)) (-2589 (($ (-316 (-379))) 22) (($ (-316 (-563))) 20) (($ (-948 (-379))) 18) (($ (-948 (-563))) 16) (($ (-407 (-948 (-379)))) 14) (($ (-407 (-948 (-563)))) 12)) (-4000 (((-1262) $) 7)) (-2062 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 23))) +((-2150 (*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264))))) +(-13 (-1209) (-611 (-859)) (-10 -8 (-15 -2150 ((-1264) $)))) +(((-611 (-859)) . T) ((-1209) . T)) +((-2111 (((-3 $ "failed") (-316 (-379))) 21) (((-3 $ "failed") (-316 (-564))) 19) (((-3 $ "failed") (-949 (-379))) 17) (((-3 $ "failed") (-949 (-564))) 15) (((-3 $ "failed") (-407 (-949 (-379)))) 13) (((-3 $ "failed") (-407 (-949 (-564)))) 11)) (-2239 (($ (-316 (-379))) 22) (($ (-316 (-564))) 20) (($ (-949 (-379))) 18) (($ (-949 (-564))) 16) (($ (-407 (-949 (-379)))) 14) (($ (-407 (-949 (-564)))) 12)) (-2150 (((-1264) $) 7)) (-3742 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 23))) (((-396) (-140)) (T -396)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-396)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) (-4 *1 (-396)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396))))) -(-13 (-395) (-10 -8 (-15 -2062 ($ (-640 (-330)))) (-15 -2062 ($ (-330))) (-15 -2062 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330)))))) (-15 -2589 ($ (-316 (-379)))) (-15 -2671 ((-3 $ "failed") (-316 (-379)))) (-15 -2589 ($ (-316 (-563)))) (-15 -2671 ((-3 $ "failed") (-316 (-563)))) (-15 -2589 ($ (-948 (-379)))) (-15 -2671 ((-3 $ "failed") (-948 (-379)))) (-15 -2589 ($ (-948 (-563)))) (-15 -2671 ((-3 $ "failed") (-948 (-563)))) (-15 -2589 ($ (-407 (-948 (-379))))) (-15 -2671 ((-3 $ "failed") (-407 (-948 (-379))))) (-15 -2589 ($ (-407 (-948 (-563))))) (-15 -2671 ((-3 $ "failed") (-407 (-948 (-563))))))) -(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) -((-2466 (((-640 (-1151)) (-640 (-1151))) 9)) (-4000 (((-1262) (-388)) 27)) (-2457 (((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169))) 60) (((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169)) 35) (((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169))) 34))) -(((-397) (-10 -7 (-15 -2457 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)))) (-15 -2457 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169))) (-15 -2457 ((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169)))) (-15 -4000 ((-1262) (-388))) (-15 -2466 ((-640 (-1151)) (-640 (-1151)))))) (T -397)) -((-2466 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-397)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-397)))) (-2457 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *5 (-1172)) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397)))) (-2457 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397)))) (-2457 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-397))))) -(-10 -7 (-15 -2457 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)))) (-15 -2457 ((-1097) (-1169) (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169)))) (-640 (-640 (-3 (|:| |array| (-640 (-1169))) (|:| |scalar| (-1169))))) (-640 (-1169)) (-1169))) (-15 -2457 ((-1097) (-1169) (-640 (-1169)) (-1172) (-640 (-1169)))) (-15 -4000 ((-1262) (-388))) (-15 -2466 ((-640 (-1151)) (-640 (-1151))))) -((-4000 (((-1262) $) 36)) (-2062 (((-858) $) 98) (($ (-330)) 100) (($ (-640 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 97) (($ (-316 (-696))) 53) (($ (-316 (-694))) 73) (($ (-316 (-689))) 86) (($ (-294 (-316 (-696)))) 68) (($ (-294 (-316 (-694)))) 81) (($ (-294 (-316 (-689)))) 94) (($ (-316 (-563))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-563)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139))) -(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -2062 ($ (-330))) (-15 -2062 ($ (-640 (-330)))) (-15 -2062 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330)))))) (-15 -2062 ($ (-316 (-696)))) (-15 -2062 ($ (-316 (-694)))) (-15 -2062 ($ (-316 (-689)))) (-15 -2062 ($ (-294 (-316 (-696))))) (-15 -2062 ($ (-294 (-316 (-694))))) (-15 -2062 ($ (-294 (-316 (-689))))) (-15 -2062 ($ (-316 (-563)))) (-15 -2062 ($ (-316 (-379)))) (-15 -2062 ($ (-316 (-169 (-379))))) (-15 -2062 ($ (-294 (-316 (-563))))) (-15 -2062 ($ (-294 (-316 (-379))))) (-15 -2062 ($ (-294 (-316 (-169 (-379)))))))) (-1169) (-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-640 (-1169)) (-1173)) (T -398)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-696)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-694)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-689)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-563)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-14 *5 (-640 (-1169))) (-14 *6 (-1173))))) -(-13 (-395) (-10 -8 (-15 -2062 ($ (-330))) (-15 -2062 ($ (-640 (-330)))) (-15 -2062 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330)))))) (-15 -2062 ($ (-316 (-696)))) (-15 -2062 ($ (-316 (-694)))) (-15 -2062 ($ (-316 (-689)))) (-15 -2062 ($ (-294 (-316 (-696))))) (-15 -2062 ($ (-294 (-316 (-694))))) (-15 -2062 ($ (-294 (-316 (-689))))) (-15 -2062 ($ (-316 (-563)))) (-15 -2062 ($ (-316 (-379)))) (-15 -2062 ($ (-316 (-169 (-379))))) (-15 -2062 ($ (-294 (-316 (-563))))) (-15 -2062 ($ (-294 (-316 (-379))))) (-15 -2062 ($ (-294 (-316 (-169 (-379)))))))) -((-2049 (((-112) $ $) NIL)) (-2486 ((|#2| $) 38)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2496 (($ (-407 |#2|)) 95)) (-2476 (((-640 (-2 (|:| -2631 (-767)) (|:| -3219 |#2|) (|:| |num| |#2|))) $) 39)) (-1361 (($ $) 34) (($ $ (-767)) 36)) (-2802 (((-407 |#2|) $) 51)) (-2074 (($ (-640 (-2 (|:| -2631 (-767)) (|:| -3219 |#2|) (|:| |num| |#2|)))) 33)) (-2062 (((-858) $) 137)) (-4191 (($ $) 35) (($ $ (-767)) 37)) (-2943 (((-112) $ $) NIL)) (-3027 (($ |#2| $) 41))) -(((-399 |#1| |#2|) (-13 (-1093) (-611 (-407 |#2|)) (-10 -8 (-15 -3027 ($ |#2| $)) (-15 -2496 ($ (-407 |#2|))) (-15 -2486 (|#2| $)) (-15 -2476 ((-640 (-2 (|:| -2631 (-767)) (|:| -3219 |#2|) (|:| |num| |#2|))) $)) (-15 -2074 ($ (-640 (-2 (|:| -2631 (-767)) (|:| -3219 |#2|) (|:| |num| |#2|))))) (-15 -1361 ($ $)) (-15 -4191 ($ $)) (-15 -1361 ($ $ (-767))) (-15 -4191 ($ $ (-767))))) (-13 (-363) (-147)) (-1233 |#1|)) (T -399)) -((-3027 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1233 *3)))) (-2496 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-2486 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-2476 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-640 (-2 (|:| -2631 (-767)) (|:| -3219 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3)))) (-2074 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2631 (-767)) (|:| -3219 *4) (|:| |num| *4)))) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-1361 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1233 *2)))) (-4191 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1233 *2)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3))))) -(-13 (-1093) (-611 (-407 |#2|)) (-10 -8 (-15 -3027 ($ |#2| $)) (-15 -2496 ($ (-407 |#2|))) (-15 -2486 (|#2| $)) (-15 -2476 ((-640 (-2 (|:| -2631 (-767)) (|:| -3219 |#2|) (|:| |num| |#2|))) $)) (-15 -2074 ($ (-640 (-2 (|:| -2631 (-767)) (|:| -3219 |#2|) (|:| |num| |#2|))))) (-15 -1361 ($ $)) (-15 -4191 ($ $)) (-15 -1361 ($ $ (-767))) (-15 -4191 ($ $ (-767))))) -((-2049 (((-112) $ $) 9 (-2811 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 15 (|has| |#1| (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 14 (|has| |#1| (-882 (-563))))) (-1938 (((-1151) $) 13 (-2811 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-3249 (((-1113) $) 12 (-2811 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-2062 (((-858) $) 11 (-2811 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))))) (-2943 (((-112) $ $) 10 (-2811 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379))))))) -(((-400 |#1|) (-140) (-1208)) (T -400)) -NIL -(-13 (-1208) (-10 -7 (IF (|has| |t#1| (-882 (-563))) (-6 (-882 (-563))) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|))) -(((-102) -2811 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-610 (-858)) -2811 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-1093) -2811 (|has| |#1| (-882 (-563))) (|has| |#1| (-882 (-379)))) ((-1208) . T)) -((-2506 (($ $) 12) (($ $ (-767)) 14))) -(((-401 |#1|) (-10 -8 (-15 -2506 (|#1| |#1| (-767))) (-15 -2506 (|#1| |#1|))) (-402)) (T -401)) -NIL -(-10 -8 (-15 -2506 (|#1| |#1| (-767))) (-15 -2506 (|#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-4332 (((-112) $ $) 60)) (-3684 (($) 17 T CONST)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-2506 (($ $) 80) (($ $ (-767)) 79)) (-3675 (((-112) $) 72)) (-2903 (((-829 (-917)) $) 82)) (-2712 (((-112) $) 31)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-2055 (((-418 $) $) 75)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-2515 (((-3 (-767) "failed") $ $) 81)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67)) (-4376 (((-3 $ "failed") $) 83)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 66)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) (-4 *1 (-396)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396))))) +(-13 (-395) (-10 -8 (-15 -3742 ($ (-641 (-330)))) (-15 -3742 ($ (-330))) (-15 -3742 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330)))))) (-15 -2239 ($ (-316 (-379)))) (-15 -2111 ((-3 $ "failed") (-316 (-379)))) (-15 -2239 ($ (-316 (-564)))) (-15 -2111 ((-3 $ "failed") (-316 (-564)))) (-15 -2239 ($ (-949 (-379)))) (-15 -2111 ((-3 $ "failed") (-949 (-379)))) (-15 -2239 ($ (-949 (-564)))) (-15 -2111 ((-3 $ "failed") (-949 (-564)))) (-15 -2239 ($ (-407 (-949 (-379))))) (-15 -2111 ((-3 $ "failed") (-407 (-949 (-379))))) (-15 -2239 ($ (-407 (-949 (-564))))) (-15 -2111 ((-3 $ "failed") (-407 (-949 (-564))))))) +(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) +((-2805 (((-641 (-1152)) (-641 (-1152))) 9)) (-2150 (((-1264) (-388)) 27)) (-3159 (((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170))) 60) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170)) 35) (((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170))) 34))) +(((-397) (-10 -7 (-15 -3159 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -3159 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -3159 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -2150 ((-1264) (-388))) (-15 -2805 ((-641 (-1152)) (-641 (-1152)))))) (T -397)) +((-2805 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) (-3159 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-3159 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397)))) (-3159 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) (-5 *1 (-397))))) +(-10 -7 (-15 -3159 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)))) (-15 -3159 ((-1098) (-1170) (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170)))) (-641 (-641 (-3 (|:| |array| (-641 (-1170))) (|:| |scalar| (-1170))))) (-641 (-1170)) (-1170))) (-15 -3159 ((-1098) (-1170) (-641 (-1170)) (-1173) (-641 (-1170)))) (-15 -2150 ((-1264) (-388))) (-15 -2805 ((-641 (-1152)) (-641 (-1152))))) +((-2150 (((-1264) $) 36)) (-3742 (((-859) $) 98) (($ (-330)) 100) (($ (-641 (-330))) 99) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 97) (($ (-316 (-697))) 53) (($ (-316 (-695))) 73) (($ (-316 (-690))) 86) (($ (-294 (-316 (-697)))) 68) (($ (-294 (-316 (-695)))) 81) (($ (-294 (-316 (-690)))) 94) (($ (-316 (-564))) 105) (($ (-316 (-379))) 118) (($ (-316 (-169 (-379)))) 131) (($ (-294 (-316 (-564)))) 113) (($ (-294 (-316 (-379)))) 126) (($ (-294 (-316 (-169 (-379))))) 139))) +(((-398 |#1| |#2| |#3| |#4|) (-13 (-395) (-10 -8 (-15 -3742 ($ (-330))) (-15 -3742 ($ (-641 (-330)))) (-15 -3742 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330)))))) (-15 -3742 ($ (-316 (-697)))) (-15 -3742 ($ (-316 (-695)))) (-15 -3742 ($ (-316 (-690)))) (-15 -3742 ($ (-294 (-316 (-697))))) (-15 -3742 ($ (-294 (-316 (-695))))) (-15 -3742 ($ (-294 (-316 (-690))))) (-15 -3742 ($ (-316 (-564)))) (-15 -3742 ($ (-316 (-379)))) (-15 -3742 ($ (-316 (-169 (-379))))) (-15 -3742 ($ (-294 (-316 (-564))))) (-15 -3742 ($ (-294 (-316 (-379))))) (-15 -3742 ($ (-294 (-316 (-169 (-379)))))))) (-1170) (-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-641 (-1170)) (-1174)) (T -398)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-14 *5 (-641 (-1170))) (-14 *6 (-1174))))) +(-13 (-395) (-10 -8 (-15 -3742 ($ (-330))) (-15 -3742 ($ (-641 (-330)))) (-15 -3742 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330)))))) (-15 -3742 ($ (-316 (-697)))) (-15 -3742 ($ (-316 (-695)))) (-15 -3742 ($ (-316 (-690)))) (-15 -3742 ($ (-294 (-316 (-697))))) (-15 -3742 ($ (-294 (-316 (-695))))) (-15 -3742 ($ (-294 (-316 (-690))))) (-15 -3742 ($ (-316 (-564)))) (-15 -3742 ($ (-316 (-379)))) (-15 -3742 ($ (-316 (-169 (-379))))) (-15 -3742 ($ (-294 (-316 (-564))))) (-15 -3742 ($ (-294 (-316 (-379))))) (-15 -3742 ($ (-294 (-316 (-169 (-379)))))))) +((-3732 (((-112) $ $) NIL)) (-1958 ((|#2| $) 38)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1675 (($ (-407 |#2|)) 95)) (-4278 (((-641 (-2 (|:| -2515 (-768)) (|:| -2212 |#2|) (|:| |num| |#2|))) $) 39)) (-4117 (($ $) 34) (($ $ (-768)) 36)) (-2235 (((-407 |#2|) $) 51)) (-3753 (($ (-641 (-2 (|:| -2515 (-768)) (|:| -2212 |#2|) (|:| |num| |#2|)))) 33)) (-3742 (((-859) $) 137)) (-2124 (($ $) 35) (($ $ (-768)) 37)) (-1705 (((-112) $ $) NIL)) (-1780 (($ |#2| $) 41))) +(((-399 |#1| |#2|) (-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -1780 ($ |#2| $)) (-15 -1675 ($ (-407 |#2|))) (-15 -1958 (|#2| $)) (-15 -4278 ((-641 (-2 (|:| -2515 (-768)) (|:| -2212 |#2|) (|:| |num| |#2|))) $)) (-15 -3753 ($ (-641 (-2 (|:| -2515 (-768)) (|:| -2212 |#2|) (|:| |num| |#2|))))) (-15 -4117 ($ $)) (-15 -2124 ($ $)) (-15 -4117 ($ $ (-768))) (-15 -2124 ($ $ (-768))))) (-13 (-363) (-147)) (-1235 |#1|)) (T -399)) +((-1780 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) (-4 *2 (-1235 *3)))) (-1675 (*1 *1 *2) (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-1958 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) (-4 *3 (-13 (-363) (-147))))) (-4278 (*1 *2 *1) (-12 (-4 *3 (-13 (-363) (-147))) (-5 *2 (-641 (-2 (|:| -2515 (-768)) (|:| -2212 *4) (|:| |num| *4)))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -2515 (-768)) (|:| -2212 *4) (|:| |num| *4)))) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) (-4117 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-2124 (*1 *1 *1) (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) (-4 *3 (-1235 *2)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3)))) (-2124 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3))))) +(-13 (-1094) (-612 (-407 |#2|)) (-10 -8 (-15 -1780 ($ |#2| $)) (-15 -1675 ($ (-407 |#2|))) (-15 -1958 (|#2| $)) (-15 -4278 ((-641 (-2 (|:| -2515 (-768)) (|:| -2212 |#2|) (|:| |num| |#2|))) $)) (-15 -3753 ($ (-641 (-2 (|:| -2515 (-768)) (|:| -2212 |#2|) (|:| |num| |#2|))))) (-15 -4117 ($ $)) (-15 -2124 ($ $)) (-15 -4117 ($ $ (-768))) (-15 -2124 ($ $ (-768))))) +((-3732 (((-112) $ $) 9 (-4030 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 15 (|has| |#1| (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 14 (|has| |#1| (-883 (-564))))) (-2217 (((-1152) $) 13 (-4030 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-3864 (((-1114) $) 12 (-4030 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-3742 (((-859) $) 11 (-4030 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))))) (-1705 (((-112) $ $) 10 (-4030 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379))))))) +(((-400 |#1|) (-140) (-1209)) (T -400)) +NIL +(-13 (-1209) (-10 -7 (IF (|has| |t#1| (-883 (-564))) (-6 (-883 (-564))) |%noBranch|) (IF (|has| |t#1| (-883 (-379))) (-6 (-883 (-379))) |%noBranch|))) +(((-102) -4030 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-611 (-859)) -4030 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-1094) -4030 (|has| |#1| (-883 (-564))) (|has| |#1| (-883 (-379)))) ((-1209) . T)) +((-3176 (($ $) 12) (($ $ (-768)) 14))) +(((-401 |#1|) (-10 -8 (-15 -3176 (|#1| |#1| (-768))) (-15 -3176 (|#1| |#1|))) (-402)) (T -401)) +NIL +(-10 -8 (-15 -3176 (|#1| |#1| (-768))) (-15 -3176 (|#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-2377 (((-112) $ $) 60)) (-2818 (($) 17 T CONST)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-3176 (($ $) 80) (($ $ (-768)) 79)) (-4188 (((-112) $) 72)) (-1619 (((-830 (-918)) $) 82)) (-3840 (((-112) $) 31)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4127 (((-418 $) $) 75)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-2819 (((-3 (-768) "failed") $ $) 81)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67)) (-4253 (((-3 $ "failed") $) 83)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 66)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-402) (-140)) (T -402)) -((-2903 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917))))) (-2515 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767)))) (-2506 (*1 *1 *1) (-4 *1 (-402))) (-2506 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767))))) -(-13 (-363) (-145) (-10 -8 (-15 -2903 ((-829 (-917)) $)) (-15 -2515 ((-3 (-767) "failed") $ $)) (-15 -2506 ($ $)) (-15 -2506 ($ $ (-767))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) -((-2469 (($ (-563) (-563)) 11) (($ (-563) (-563) (-917)) NIL)) (-1658 (((-917)) 20) (((-917) (-917)) NIL))) -(((-403 |#1|) (-10 -8 (-15 -1658 ((-917) (-917))) (-15 -1658 ((-917))) (-15 -2469 (|#1| (-563) (-563) (-917))) (-15 -2469 (|#1| (-563) (-563)))) (-404)) (T -403)) -((-1658 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404))))) -(-10 -8 (-15 -1658 ((-917) (-917))) (-15 -1658 ((-917))) (-15 -2469 (|#1| (-563) (-563) (-917))) (-15 -2469 (|#1| (-563) (-563)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3223 (((-563) $) 90)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-2893 (($ $) 88)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-2067 (($ $) 98)) (-4332 (((-112) $ $) 60)) (-2107 (((-563) $) 115)) (-3684 (($) 17 T CONST)) (-3202 (($ $) 87)) (-2671 (((-3 (-563) "failed") $) 103) (((-3 (-407 (-563)) "failed") $) 100)) (-2589 (((-563) $) 104) (((-407 (-563)) $) 101)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-3675 (((-112) $) 72)) (-2961 (((-917)) 131) (((-917) (-917)) 128 (|has| $ (-6 -4399)))) (-2720 (((-112) $) 113)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 94)) (-2903 (((-563) $) 137)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 97)) (-3251 (($ $) 93)) (-2731 (((-112) $) 114)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3489 (($ $ $) 112) (($) 125 (-12 (-3730 (|has| $ (-6 -4399))) (-3730 (|has| $ (-6 -4391)))))) (-4105 (($ $ $) 111) (($) 124 (-12 (-3730 (|has| $ (-6 -4399))) (-3730 (|has| $ (-6 -4391)))))) (-4385 (((-563) $) 134)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-2537 (((-917) (-563)) 127 (|has| $ (-6 -4399)))) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-3212 (($ $) 89)) (-3233 (($ $) 91)) (-2469 (($ (-563) (-563)) 139) (($ (-563) (-563) (-917)) 138)) (-2055 (((-418 $) $) 75)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2631 (((-563) $) 135)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-1658 (((-917)) 132) (((-917) (-917)) 129 (|has| $ (-6 -4399)))) (-2526 (((-917) (-563)) 126 (|has| $ (-6 -4399)))) (-2802 (((-379) $) 106) (((-225) $) 105) (((-888 (-379)) $) 95)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-563)) 102) (($ (-407 (-563))) 99)) (-3192 (((-767)) 28 T CONST)) (-3241 (($ $) 92)) (-2547 (((-917)) 133) (((-917) (-917)) 130 (|has| $ (-6 -4399)))) (-1433 (((-917)) 136)) (-2543 (((-112) $ $) 40)) (-3841 (($ $) 116)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2998 (((-112) $ $) 109)) (-2977 (((-112) $ $) 108)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 110)) (-2966 (((-112) $ $) 107)) (-3050 (($ $ $) 66)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 96)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) +((-1619 (*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-830 (-918))))) (-2819 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-768)))) (-3176 (*1 *1 *1) (-4 *1 (-402))) (-3176 (*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-768))))) +(-13 (-363) (-145) (-10 -8 (-15 -1619 ((-830 (-918)) $)) (-15 -2819 ((-3 (-768) "failed") $ $)) (-15 -3176 ($ $)) (-15 -3176 ($ $ (-768))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-145) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2140 (($ (-564) (-564)) 11) (($ (-564) (-564) (-918)) NIL)) (-3716 (((-918)) 20) (((-918) (-918)) NIL))) +(((-403 |#1|) (-10 -8 (-15 -3716 ((-918) (-918))) (-15 -3716 ((-918))) (-15 -2140 (|#1| (-564) (-564) (-918))) (-15 -2140 (|#1| (-564) (-564)))) (-404)) (T -403)) +((-3716 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404))))) +(-10 -8 (-15 -3716 ((-918) (-918))) (-15 -3716 ((-918))) (-15 -2140 (|#1| (-564) (-564) (-918))) (-15 -2140 (|#1| (-564) (-564)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-1473 (((-564) $) 90)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-2892 (($ $) 88)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-4137 (($ $) 98)) (-2377 (((-112) $ $) 60)) (-3265 (((-564) $) 115)) (-2818 (($) 17 T CONST)) (-3000 (($ $) 87)) (-2111 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-2239 (((-564) $) 104) (((-407 (-564)) $) 101)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-4188 (((-112) $) 72)) (-2101 (((-918)) 131) (((-918) (-918)) 128 (|has| $ (-6 -4402)))) (-3308 (((-112) $) 113)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 94)) (-1619 (((-564) $) 137)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 97)) (-3328 (($ $) 93)) (-2839 (((-112) $) 114)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2799 (($ $ $) 112) (($) 125 (-12 (-4255 (|has| $ (-6 -4402))) (-4255 (|has| $ (-6 -4394)))))) (-2848 (($ $ $) 111) (($) 124 (-12 (-4255 (|has| $ (-6 -4402))) (-4255 (|has| $ (-6 -4394)))))) (-2250 (((-564) $) 134)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-4129 (((-918) (-564)) 127 (|has| $ (-6 -4402)))) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-1941 (($ $) 89)) (-3014 (($ $) 91)) (-2140 (($ (-564) (-564)) 139) (($ (-564) (-564) (-918)) 138)) (-4127 (((-418 $) $) 75)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-2515 (((-564) $) 135)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-3716 (((-918)) 132) (((-918) (-918)) 129 (|has| $ (-6 -4402)))) (-1315 (((-918) (-564)) 126 (|has| $ (-6 -4402)))) (-2235 (((-379) $) 106) (((-225) $) 105) (((-889 (-379)) $) 95)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-3270 (((-768)) 28 T CONST)) (-2551 (($ $) 92)) (-2504 (((-918)) 133) (((-918) (-918)) 130 (|has| $ (-6 -4402)))) (-3237 (((-918)) 136)) (-3360 (((-112) $ $) 40)) (-2792 (($ $) 116)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1751 (((-112) $ $) 109)) (-1731 (((-112) $ $) 108)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 110)) (-1723 (((-112) $ $) 107)) (-1799 (($ $ $) 66)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) (((-404) (-140)) (T -404)) -((-2469 (*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-404)))) (-2469 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-4 *1 (-404)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-1433 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-2631 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) (-2547 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-1658 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-2961 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) (-2547 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-2961 (*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-563)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) (-5 *2 (-917)))) (-2526 (*1 *2 *3) (-12 (-5 *3 (-563)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) (-5 *2 (-917)))) (-3489 (*1 *1) (-12 (-4 *1 (-404)) (-3730 (|has| *1 (-6 -4399))) (-3730 (|has| *1 (-6 -4391))))) (-4105 (*1 *1) (-12 (-4 *1 (-404)) (-3730 (|has| *1 (-6 -4399))) (-3730 (|has| *1 (-6 -4391)))))) -(-13 (-1054) (-10 -8 (-6 -1775) (-15 -2469 ($ (-563) (-563))) (-15 -2469 ($ (-563) (-563) (-917))) (-15 -2903 ((-563) $)) (-15 -1433 ((-917))) (-15 -2631 ((-563) $)) (-15 -4385 ((-563) $)) (-15 -2547 ((-917))) (-15 -1658 ((-917))) (-15 -2961 ((-917))) (IF (|has| $ (-6 -4399)) (PROGN (-15 -2547 ((-917) (-917))) (-15 -1658 ((-917) (-917))) (-15 -2961 ((-917) (-917))) (-15 -2537 ((-917) (-563))) (-15 -2526 ((-917) (-563)))) |%noBranch|) (IF (|has| $ (-6 -4391)) |%noBranch| (IF (|has| $ (-6 -4399)) |%noBranch| (PROGN (-15 -3489 ($)) (-15 -4105 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1054) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) -((-2751 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20))) -(((-405 |#1| |#2|) (-10 -7 (-15 -2751 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-555) (-555)) (T -405)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6))))) -(-10 -7 (-15 -2751 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) -((-2751 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13))) -(((-406 |#1| |#2|) (-10 -7 (-15 -2751 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-555) (-555)) (T -406)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6))))) -(-10 -7 (-15 -2751 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 13)) (-3223 ((|#1| $) 21 (|has| |#1| (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| |#1| (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) 17) (((-3 (-1169) "failed") $) NIL (|has| |#1| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 72 (|has| |#1| (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563))))) (-2589 ((|#1| $) 15) (((-1169) $) NIL (|has| |#1| (-1034 (-1169)))) (((-407 (-563)) $) 69 (|has| |#1| (-1034 (-563)))) (((-563) $) NIL (|has| |#1| (-1034 (-563))))) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) 51)) (-4301 (($) NIL (|has| |#1| (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| |#1| (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#1| (-882 (-379))))) (-2712 (((-112) $) 57)) (-4372 (($ $) NIL)) (-2626 ((|#1| $) 73)) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2731 (((-112) $) NIL (|has| |#1| (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| |#1| (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 100)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| |#1| (-307)))) (-3233 ((|#1| $) 28 (|has| |#1| (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) 148 (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) 141 (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-4322 (((-767) $) NIL)) (-3858 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-4362 (($ $) NIL)) (-2636 ((|#1| $) 75)) (-2802 (((-888 (-563)) $) NIL (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#1| (-611 (-888 (-379))))) (((-536) $) NIL (|has| |#1| (-611 (-536)))) (((-379) $) NIL (|has| |#1| (-1018))) (((-225) $) NIL (|has| |#1| (-1018)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 10) (($ (-1169)) NIL (|has| |#1| (-1034 (-1169))))) (-4376 (((-3 $ "failed") $) 102 (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) 103 T CONST)) (-3241 ((|#1| $) 26 (|has| |#1| (-545)))) (-2543 (((-112) $ $) NIL)) (-3841 (($ $) NIL (|has| |#1| (-816)))) (-3790 (($) 22 T CONST)) (-3803 (($) 8 T CONST)) (-2038 (((-1151) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1151) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1262) (-818) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-824)))) (((-1262) (-818) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-824))))) (-4191 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) 66)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) 24 (|has| |#1| (-846)))) (-3050 (($ $ $) 136) (($ |#1| |#1|) 53)) (-3039 (($ $) 25) (($ $ $) 56)) (-3027 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 135)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 61) (($ $ $) 58) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) -(((-407 |#1|) (-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4395)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4406)) (-6 -4395) |%noBranch|) |%noBranch|) |%noBranch|))) (-555)) (T -407)) -NIL -(-13 (-988 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4395)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4406)) (-6 -4395) |%noBranch|) |%noBranch|) |%noBranch|))) -((-2660 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 18)) (-1505 (($ (-1257 |#2|) (-1257 $)) NIL) (($ (-1257 |#2|)) 24)) (-2649 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 40)) (-2134 ((|#3| $) 73)) (-3974 ((|#2| (-1257 $)) NIL) ((|#2|) 20)) (-1818 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 22) (((-684 |#2|) (-1257 $)) 38)) (-2802 (((-1257 |#2|) $) 11) (($ (-1257 |#2|)) 13)) (-3015 ((|#3| $) 55))) -(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -2649 ((-684 |#2|) |#1|)) (-15 -3974 (|#2|)) (-15 -2660 ((-684 |#2|))) (-15 -2802 (|#1| (-1257 |#2|))) (-15 -2802 ((-1257 |#2|) |#1|)) (-15 -1505 (|#1| (-1257 |#2|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1|)) (-15 -2134 (|#3| |#1|)) (-15 -3015 (|#3| |#1|)) (-15 -2660 ((-684 |#2|) (-1257 |#1|))) (-15 -3974 (|#2| (-1257 |#1|))) (-15 -1505 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -2649 ((-684 |#2|) |#1| (-1257 |#1|)))) (-409 |#2| |#3|) (-172) (-1233 |#2|)) (T -408)) -((-2660 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-3974 (*1 *2) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4))))) -(-10 -8 (-15 -2649 ((-684 |#2|) |#1|)) (-15 -3974 (|#2|)) (-15 -2660 ((-684 |#2|))) (-15 -2802 (|#1| (-1257 |#2|))) (-15 -2802 ((-1257 |#2|) |#1|)) (-15 -1505 (|#1| (-1257 |#2|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1|)) (-15 -2134 (|#3| |#1|)) (-15 -3015 (|#3| |#1|)) (-15 -2660 ((-684 |#2|) (-1257 |#1|))) (-15 -3974 (|#2| (-1257 |#1|))) (-15 -1505 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -2649 ((-684 |#2|) |#1| (-1257 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2660 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-3282 ((|#1| $) 53)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1505 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-2649 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-3230 (((-3 $ "failed") $) 33)) (-3406 (((-917)) 55)) (-2712 (((-112) $) 31)) (-3251 ((|#1| $) 52)) (-2134 ((|#2| $) 45 (|has| |#1| (-363)))) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3974 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-1818 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2802 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38)) (-4376 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3015 ((|#2| $) 46)) (-3192 (((-767)) 28 T CONST)) (-3288 (((-1257 $)) 68)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-409 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -409)) -((-3288 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *1)) (-4 *1 (-409 *3 *4)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *3)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1233 *3)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *3)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1233 *3)))) (-2660 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-684 *3)))) (-3974 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-684 *3))))) -(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -3288 ((-1257 $))) (-15 -1818 ((-1257 |t#1|) $)) (-15 -1818 ((-684 |t#1|) (-1257 $))) (-15 -1505 ($ (-1257 |t#1|))) (-15 -2802 ((-1257 |t#1|) $)) (-15 -2802 ($ (-1257 |t#1|))) (-15 -2660 ((-684 |t#1|))) (-15 -3974 (|t#1|)) (-15 -2649 ((-684 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-370 |#1| |#2|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) 27) (((-3 (-563) "failed") $) 19)) (-2589 ((|#2| $) NIL) (((-407 (-563)) $) 24) (((-563) $) 14)) (-2062 (($ |#2|) NIL) (($ (-407 (-563))) 22) (($ (-563)) 11))) -(((-410 |#1| |#2|) (-10 -8 (-15 -2062 (|#1| (-563))) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2062 (|#1| |#2|))) (-411 |#2|) (-1208)) (T -410)) -NIL -(-10 -8 (-15 -2062 (|#1| (-563))) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2062 (|#1| |#2|))) -((-2671 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-563)) "failed") $) 16 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 13 (|has| |#1| (-1034 (-563))))) (-2589 ((|#1| $) 8) (((-407 (-563)) $) 17 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 14 (|has| |#1| (-1034 (-563))))) (-2062 (($ |#1|) 6) (($ (-407 (-563))) 15 (|has| |#1| (-1034 (-407 (-563))))) (($ (-563)) 12 (|has| |#1| (-1034 (-563)))))) -(((-411 |#1|) (-140) (-1208)) (T -411)) -NIL -(-13 (-1034 |t#1|) (-10 -7 (IF (|has| |t#1| (-1034 (-563))) (-6 (-1034 (-563))) |%noBranch|) (IF (|has| |t#1| (-1034 (-407 (-563)))) (-6 (-1034 (-407 (-563)))) |%noBranch|))) -(((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 #1=(-563)) |has| |#1| (-1034 (-563))) ((-613 |#1|) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 #1#) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T)) -((-2751 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35))) -(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2751 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-988 |#1|) (-1233 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|)) (-307) (-988 |#5|) (-1233 |#6|) (-13 (-409 |#6| |#7|) (-1034 |#6|))) (T -412)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *7 (-1233 *6)) (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307)) (-4 *10 (-988 *9)) (-4 *11 (-1233 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1034 *10)))))) -(-10 -7 (-15 -2751 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) -((-2049 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2672 ((|#4| (-767) (-1257 |#4|)) 60)) (-2712 (((-112) $) NIL)) (-2626 (((-1257 |#4|) $) 17)) (-3251 ((|#2| $) 55)) (-1415 (($ $) 163)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 108)) (-2858 (($ (-1257 |#4|)) 107)) (-3249 (((-1113) $) NIL)) (-2636 ((|#1| $) 18)) (-1382 (($ $ $) NIL)) (-2879 (($ $ $) NIL)) (-2062 (((-858) $) 153)) (-3288 (((-1257 |#4|) $) 146)) (-3803 (($) 11 T CONST)) (-2943 (((-112) $ $) 41)) (-3050 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 139)) (* (($ $ $) 135))) -(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -2858 ($ (-1257 |#4|))) (-15 -3288 ((-1257 |#4|) $)) (-15 -3251 (|#2| $)) (-15 -2626 ((-1257 |#4|) $)) (-15 -2636 (|#1| $)) (-15 -1415 ($ $)) (-15 -2672 (|#4| (-767) (-1257 |#4|))))) (-307) (-988 |#1|) (-1233 |#2|) (-13 (-409 |#2| |#3|) (-1034 |#2|))) (T -413)) -((-2858 (*1 *1 *2) (-12 (-5 *2 (-1257 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-3288 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-3251 (*1 *2 *1) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2))))) (-2626 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) (-2636 (*1 *2 *1) (-12 (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-1415 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) (-2672 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1257 *2)) (-4 *5 (-307)) (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1233 *6))))) -(-13 (-473) (-10 -8 (-15 -2858 ($ (-1257 |#4|))) (-15 -3288 ((-1257 |#4|) $)) (-15 -3251 (|#2| $)) (-15 -2626 ((-1257 |#4|) $)) (-15 -2636 (|#1| $)) (-15 -1415 ($ $)) (-15 -2672 (|#4| (-767) (-1257 |#4|))))) -((-2049 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-3251 ((|#2| $) 71)) (-1428 (($ (-1257 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1034 |#2|)))) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 37)) (-3288 (((-1257 |#4|) $) 28)) (-3803 (($) 25 T CONST)) (-2943 (((-112) $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ $ $) 82))) -(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-722) (-10 -8 (-15 -3288 ((-1257 |#4|) $)) (-15 -3251 (|#2| $)) (-15 -1428 ($ (-1257 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -1428 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-988 |#1|) (-1233 |#2|) (-409 |#2| |#3|) (-1257 |#4|)) (T -414)) -((-3288 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-3251 (*1 *2 *1) (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1257 *5)))) (-1428 (*1 *1 *2) (-12 (-5 *2 (-1257 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1428 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))) -(-13 (-722) (-10 -8 (-15 -3288 ((-1257 |#4|) $)) (-15 -3251 (|#2| $)) (-15 -1428 ($ (-1257 |#4|))) (IF (|has| |#4| (-1034 |#2|)) (-15 -1428 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) -((-2751 ((|#3| (-1 |#4| |#2|) |#1|) 32))) -(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))) -(-10 -7 (-15 -2751 (|#3| (-1 |#4| |#2|) |#1|))) -((-2570 (((-3 $ "failed")) 99)) (-1807 (((-1257 (-684 |#2|)) (-1257 $)) NIL) (((-1257 (-684 |#2|))) 104)) (-3422 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) 97)) (-3040 (((-3 $ "failed")) 96)) (-1460 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 115)) (-1440 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 123)) (-3351 (((-1165 (-948 |#2|))) 65)) (-1483 ((|#2| (-1257 $)) NIL) ((|#2|) 119)) (-1505 (($ (-1257 |#2|) (-1257 $)) NIL) (($ (-1257 |#2|)) 125)) (-3430 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) 95)) (-3052 (((-3 $ "failed")) 87)) (-1471 (((-684 |#2|) (-1257 $)) NIL) (((-684 |#2|)) 113)) (-1450 (((-684 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) $) 121)) (-3399 (((-1165 (-948 |#2|))) 64)) (-1493 ((|#2| (-1257 $)) NIL) ((|#2|) 117)) (-1818 (((-1257 |#2|) $ (-1257 $)) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $) 124) (((-684 |#2|) (-1257 $)) 133)) (-2802 (((-1257 |#2|) $) 109) (($ (-1257 |#2|)) 111)) (-1355 (((-640 (-948 |#2|)) (-1257 $)) NIL) (((-640 (-948 |#2|))) 107)) (-2408 (($ (-684 |#2|) $) 103))) -(((-416 |#1| |#2|) (-10 -8 (-15 -2408 (|#1| (-684 |#2|) |#1|)) (-15 -3351 ((-1165 (-948 |#2|)))) (-15 -3399 ((-1165 (-948 |#2|)))) (-15 -1440 ((-684 |#2|) |#1|)) (-15 -1450 ((-684 |#2|) |#1|)) (-15 -1460 ((-684 |#2|))) (-15 -1471 ((-684 |#2|))) (-15 -1483 (|#2|)) (-15 -1493 (|#2|)) (-15 -2802 (|#1| (-1257 |#2|))) (-15 -2802 ((-1257 |#2|) |#1|)) (-15 -1505 (|#1| (-1257 |#2|))) (-15 -1355 ((-640 (-948 |#2|)))) (-15 -1807 ((-1257 (-684 |#2|)))) (-15 -1818 ((-684 |#2|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1|)) (-15 -2570 ((-3 |#1| "failed"))) (-15 -3040 ((-3 |#1| "failed"))) (-15 -3052 ((-3 |#1| "failed"))) (-15 -3422 ((-3 (-2 (|:| |particular| |#1|) (|:| -3288 (-640 |#1|))) "failed"))) (-15 -3430 ((-3 (-2 (|:| |particular| |#1|) (|:| -3288 (-640 |#1|))) "failed"))) (-15 -1460 ((-684 |#2|) (-1257 |#1|))) (-15 -1471 ((-684 |#2|) (-1257 |#1|))) (-15 -1483 (|#2| (-1257 |#1|))) (-15 -1493 (|#2| (-1257 |#1|))) (-15 -1505 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -1440 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1450 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1807 ((-1257 (-684 |#2|)) (-1257 |#1|))) (-15 -1355 ((-640 (-948 |#2|)) (-1257 |#1|)))) (-417 |#2|) (-172)) (T -416)) -((-1807 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1355 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1493 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1483 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-1471 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1460 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3399 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3351 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) -(-10 -8 (-15 -2408 (|#1| (-684 |#2|) |#1|)) (-15 -3351 ((-1165 (-948 |#2|)))) (-15 -3399 ((-1165 (-948 |#2|)))) (-15 -1440 ((-684 |#2|) |#1|)) (-15 -1450 ((-684 |#2|) |#1|)) (-15 -1460 ((-684 |#2|))) (-15 -1471 ((-684 |#2|))) (-15 -1483 (|#2|)) (-15 -1493 (|#2|)) (-15 -2802 (|#1| (-1257 |#2|))) (-15 -2802 ((-1257 |#2|) |#1|)) (-15 -1505 (|#1| (-1257 |#2|))) (-15 -1355 ((-640 (-948 |#2|)))) (-15 -1807 ((-1257 (-684 |#2|)))) (-15 -1818 ((-684 |#2|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1|)) (-15 -2570 ((-3 |#1| "failed"))) (-15 -3040 ((-3 |#1| "failed"))) (-15 -3052 ((-3 |#1| "failed"))) (-15 -3422 ((-3 (-2 (|:| |particular| |#1|) (|:| -3288 (-640 |#1|))) "failed"))) (-15 -3430 ((-3 (-2 (|:| |particular| |#1|) (|:| -3288 (-640 |#1|))) "failed"))) (-15 -1460 ((-684 |#2|) (-1257 |#1|))) (-15 -1471 ((-684 |#2|) (-1257 |#1|))) (-15 -1483 (|#2| (-1257 |#1|))) (-15 -1493 (|#2| (-1257 |#1|))) (-15 -1505 (|#1| (-1257 |#2|) (-1257 |#1|))) (-15 -1818 ((-684 |#2|) (-1257 |#1|) (-1257 |#1|))) (-15 -1818 ((-1257 |#2|) |#1| (-1257 |#1|))) (-15 -1440 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1450 ((-684 |#2|) |#1| (-1257 |#1|))) (-15 -1807 ((-1257 (-684 |#2|)) (-1257 |#1|))) (-15 -1355 ((-640 (-948 |#2|)) (-1257 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2570 (((-3 $ "failed")) 37 (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) 19)) (-1807 (((-1257 (-684 |#1|)) (-1257 $)) 78) (((-1257 (-684 |#1|))) 100)) (-2138 (((-1257 $)) 81)) (-3684 (($) 17 T CONST)) (-3422 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) 40 (|has| |#1| (-555)))) (-3040 (((-3 $ "failed")) 38 (|has| |#1| (-555)))) (-1460 (((-684 |#1|) (-1257 $)) 65) (((-684 |#1|)) 92)) (-2117 ((|#1| $) 74)) (-1440 (((-684 |#1|) $ (-1257 $)) 76) (((-684 |#1|) $) 90)) (-2661 (((-3 $ "failed") $) 45 (|has| |#1| (-555)))) (-3351 (((-1165 (-948 |#1|))) 88 (|has| |#1| (-363)))) (-2690 (($ $ (-917)) 28)) (-2097 ((|#1| $) 72)) (-3061 (((-1165 |#1|) $) 42 (|has| |#1| (-555)))) (-1483 ((|#1| (-1257 $)) 67) ((|#1|) 94)) (-3248 (((-1165 |#1|) $) 63)) (-3190 (((-112)) 57)) (-1505 (($ (-1257 |#1|) (-1257 $)) 69) (($ (-1257 |#1|)) 98)) (-3230 (((-3 $ "failed") $) 47 (|has| |#1| (-555)))) (-3406 (((-917)) 80)) (-3159 (((-112)) 54)) (-1670 (($ $ (-917)) 33)) (-3115 (((-112)) 50)) (-3092 (((-112)) 48)) (-3135 (((-112)) 52)) (-3430 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) 41 (|has| |#1| (-555)))) (-3052 (((-3 $ "failed")) 39 (|has| |#1| (-555)))) (-1471 (((-684 |#1|) (-1257 $)) 66) (((-684 |#1|)) 93)) (-2127 ((|#1| $) 75)) (-1450 (((-684 |#1|) $ (-1257 $)) 77) (((-684 |#1|) $) 91)) (-2673 (((-3 $ "failed") $) 46 (|has| |#1| (-555)))) (-3399 (((-1165 (-948 |#1|))) 89 (|has| |#1| (-363)))) (-2681 (($ $ (-917)) 29)) (-2108 ((|#1| $) 73)) (-3071 (((-1165 |#1|) $) 43 (|has| |#1| (-555)))) (-1493 ((|#1| (-1257 $)) 68) ((|#1|) 95)) (-3260 (((-1165 |#1|) $) 64)) (-3200 (((-112)) 58)) (-1938 (((-1151) $) 9)) (-3103 (((-112)) 49)) (-3125 (((-112)) 51)) (-3146 (((-112)) 53)) (-3249 (((-1113) $) 10)) (-3180 (((-112)) 56)) (-3858 ((|#1| $ (-563)) 101)) (-1818 (((-1257 |#1|) $ (-1257 $)) 71) (((-684 |#1|) (-1257 $) (-1257 $)) 70) (((-1257 |#1|) $) 103) (((-684 |#1|) (-1257 $)) 102)) (-2802 (((-1257 |#1|) $) 97) (($ (-1257 |#1|)) 96)) (-1355 (((-640 (-948 |#1|)) (-1257 $)) 79) (((-640 (-948 |#1|))) 99)) (-2879 (($ $ $) 25)) (-3239 (((-112)) 62)) (-2062 (((-858) $) 11)) (-3288 (((-1257 $)) 104)) (-3080 (((-640 (-1257 |#1|))) 44 (|has| |#1| (-555)))) (-2888 (($ $ $ $) 26)) (-3221 (((-112)) 60)) (-2408 (($ (-684 |#1|) $) 87)) (-2870 (($ $ $) 24)) (-3231 (((-112)) 61)) (-3210 (((-112)) 59)) (-3169 (((-112)) 55)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +((-2140 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) (-2140 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-4 *1 (-404)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-3237 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) (-2504 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-3716 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-2101 (*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) (-2504 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4402)) (-4 *1 (-404)) (-5 *2 (-918)))) (-1315 (*1 *2 *3) (-12 (-5 *3 (-564)) (|has| *1 (-6 -4402)) (-4 *1 (-404)) (-5 *2 (-918)))) (-2799 (*1 *1) (-12 (-4 *1 (-404)) (-4255 (|has| *1 (-6 -4402))) (-4255 (|has| *1 (-6 -4394))))) (-2848 (*1 *1) (-12 (-4 *1 (-404)) (-4255 (|has| *1 (-6 -4402))) (-4255 (|has| *1 (-6 -4394)))))) +(-13 (-1055) (-10 -8 (-6 -2305) (-15 -2140 ($ (-564) (-564))) (-15 -2140 ($ (-564) (-564) (-918))) (-15 -1619 ((-564) $)) (-15 -3237 ((-918))) (-15 -2515 ((-564) $)) (-15 -2250 ((-564) $)) (-15 -2504 ((-918))) (-15 -3716 ((-918))) (-15 -2101 ((-918))) (IF (|has| $ (-6 -4402)) (PROGN (-15 -2504 ((-918) (-918))) (-15 -3716 ((-918) (-918))) (-15 -2101 ((-918) (-918))) (-15 -4129 ((-918) (-564))) (-15 -1315 ((-918) (-564)))) |%noBranch|) (IF (|has| $ (-6 -4394)) |%noBranch| (IF (|has| $ (-6 -4402)) |%noBranch| (PROGN (-15 -2799 ($)) (-15 -2848 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-889 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-883 (-379)) . T) ((-917) . T) ((-999) . T) ((-1019) . T) ((-1055) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2187 (((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)) 20))) +(((-405 |#1| |#2|) (-10 -7 (-15 -2187 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) (-556) (-556)) (T -405)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6))))) +(-10 -7 (-15 -2187 ((-418 |#2|) (-1 |#2| |#1|) (-418 |#1|)))) +((-2187 (((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)) 13))) +(((-406 |#1| |#2|) (-10 -7 (-15 -2187 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) (-556) (-556)) (T -406)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6))))) +(-10 -7 (-15 -2187 ((-407 |#2|) (-1 |#2| |#1|) (-407 |#1|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 13)) (-1473 ((|#1| $) 21 (|has| |#1| (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| |#1| (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) 17) (((-3 (-1170) "failed") $) NIL (|has| |#1| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 72 (|has| |#1| (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564))))) (-2239 ((|#1| $) 15) (((-1170) $) NIL (|has| |#1| (-1035 (-1170)))) (((-407 (-564)) $) 69 (|has| |#1| (-1035 (-564)))) (((-564) $) NIL (|has| |#1| (-1035 (-564))))) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) 51)) (-2821 (($) NIL (|has| |#1| (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) NIL (|has| |#1| (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#1| (-883 (-379))))) (-3840 (((-112) $) 57)) (-3834 (($ $) NIL)) (-1625 ((|#1| $) 73)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-2839 (((-112) $) NIL (|has| |#1| (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| |#1| (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 100)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| |#1| (-307)))) (-3014 ((|#1| $) 28 (|has| |#1| (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) 148 (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) 141 (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4061 (((-768) $) NIL)) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) 64)) (-2090 (($ $) NIL)) (-1634 ((|#1| $) 75)) (-2235 (((-889 (-564)) $) NIL (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#1| (-612 (-889 (-379))))) (((-536) $) NIL (|has| |#1| (-612 (-536)))) (((-379) $) NIL (|has| |#1| (-1019))) (((-225) $) NIL (|has| |#1| (-1019)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 125 (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 10) (($ (-1170)) NIL (|has| |#1| (-1035 (-1170))))) (-4253 (((-3 $ "failed") $) 102 (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) 103 T CONST)) (-2551 ((|#1| $) 26 (|has| |#1| (-545)))) (-3360 (((-112) $ $) NIL)) (-2792 (($ $) NIL (|has| |#1| (-817)))) (-4311 (($) 22 T CONST)) (-4321 (($) 8 T CONST)) (-2412 (((-1152) $) 44 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1152) $ (-112)) 45 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1264) (-819) $) 46 (-12 (|has| |#1| (-545)) (|has| |#1| (-825)))) (((-1264) (-819) $ (-112)) 47 (-12 (|has| |#1| (-545)) (|has| |#1| (-825))))) (-2124 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) 66)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) 24 (|has| |#1| (-847)))) (-1799 (($ $ $) 136) (($ |#1| |#1|) 53)) (-1790 (($ $) 25) (($ $ $) 56)) (-1780 (($ $ $) 54)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 135)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 61) (($ $ $) 58) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 62) (($ $ |#1|) 88))) +(((-407 |#1|) (-13 (-989 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4409)) (-6 -4398) |%noBranch|) |%noBranch|) |%noBranch|))) (-556)) (T -407)) +NIL +(-13 (-989 |#1|) (-10 -7 (IF (|has| |#1| (-545)) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4398)) (IF (|has| |#1| (-452)) (IF (|has| |#1| (-6 -4409)) (-6 -4398) |%noBranch|) |%noBranch|) |%noBranch|))) +((-3580 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 18)) (-2340 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 24)) (-3807 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 40)) (-2653 ((|#3| $) 73)) (-4284 ((|#2| (-1259 $)) NIL) ((|#2|) 20)) (-1785 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 22) (((-685 |#2|) (-1259 $)) 38)) (-2235 (((-1259 |#2|) $) 11) (($ (-1259 |#2|)) 13)) (-2230 ((|#3| $) 55))) +(((-408 |#1| |#2| |#3|) (-10 -8 (-15 -3807 ((-685 |#2|) |#1|)) (-15 -4284 (|#2|)) (-15 -3580 ((-685 |#2|))) (-15 -2235 (|#1| (-1259 |#2|))) (-15 -2235 ((-1259 |#2|) |#1|)) (-15 -2340 (|#1| (-1259 |#2|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1|)) (-15 -2653 (|#3| |#1|)) (-15 -2230 (|#3| |#1|)) (-15 -3580 ((-685 |#2|) (-1259 |#1|))) (-15 -4284 (|#2| (-1259 |#1|))) (-15 -2340 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3807 ((-685 |#2|) |#1| (-1259 |#1|)))) (-409 |#2| |#3|) (-172) (-1235 |#2|)) (T -408)) +((-3580 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) (-4284 (*1 *2) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) (-4 *3 (-409 *2 *4))))) +(-10 -8 (-15 -3807 ((-685 |#2|) |#1|)) (-15 -4284 (|#2|)) (-15 -3580 ((-685 |#2|))) (-15 -2235 (|#1| (-1259 |#2|))) (-15 -2235 ((-1259 |#2|) |#1|)) (-15 -2340 (|#1| (-1259 |#2|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1|)) (-15 -2653 (|#3| |#1|)) (-15 -2230 (|#3| |#1|)) (-15 -3580 ((-685 |#2|) (-1259 |#1|))) (-15 -4284 (|#2| (-1259 |#1|))) (-15 -2340 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -3807 ((-685 |#2|) |#1| (-1259 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3580 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3809 ((|#1| $) 53)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2340 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-3807 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-3951 (((-3 $ "failed") $) 33)) (-1544 (((-918)) 55)) (-3840 (((-112) $) 31)) (-3328 ((|#1| $) 52)) (-2653 ((|#2| $) 45 (|has| |#1| (-363)))) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4284 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-1785 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2235 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38)) (-4253 (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2230 ((|#2| $) 46)) (-3270 (((-768)) 28 T CONST)) (-4265 (((-1259 $)) 68)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-409 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -409)) +((-4265 (*1 *2) (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) (-4 *1 (-409 *3 *4)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) (-2340 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *3)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) (-4 *4 (-1235 *3)))) (-3580 (*1 *2) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3)))) (-4284 (*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) (-3807 (*1 *2 *1) (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-685 *3))))) +(-13 (-370 |t#1| |t#2|) (-10 -8 (-15 -4265 ((-1259 $))) (-15 -1785 ((-1259 |t#1|) $)) (-15 -1785 ((-685 |t#1|) (-1259 $))) (-15 -2340 ($ (-1259 |t#1|))) (-15 -2235 ((-1259 |t#1|) $)) (-15 -2235 ($ (-1259 |t#1|))) (-15 -3580 ((-685 |t#1|))) (-15 -4284 (|t#1|)) (-15 -3807 ((-685 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-370 |#1| |#2|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) 27) (((-3 (-564) "failed") $) 19)) (-2239 ((|#2| $) NIL) (((-407 (-564)) $) 24) (((-564) $) 14)) (-3742 (($ |#2|) NIL) (($ (-407 (-564))) 22) (($ (-564)) 11))) +(((-410 |#1| |#2|) (-10 -8 (-15 -3742 (|#1| (-564))) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -3742 (|#1| |#2|))) (-411 |#2|) (-1209)) (T -410)) +NIL +(-10 -8 (-15 -3742 (|#1| (-564))) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -3742 (|#1| |#2|))) +((-2111 (((-3 |#1| "failed") $) 9) (((-3 (-407 (-564)) "failed") $) 16 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 13 (|has| |#1| (-1035 (-564))))) (-2239 ((|#1| $) 8) (((-407 (-564)) $) 17 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 14 (|has| |#1| (-1035 (-564))))) (-3742 (($ |#1|) 6) (($ (-407 (-564))) 15 (|has| |#1| (-1035 (-407 (-564))))) (($ (-564)) 12 (|has| |#1| (-1035 (-564)))))) +(((-411 |#1|) (-140) (-1209)) (T -411)) +NIL +(-13 (-1035 |t#1|) (-10 -7 (IF (|has| |t#1| (-1035 (-564))) (-6 (-1035 (-564))) |%noBranch|) (IF (|has| |t#1| (-1035 (-407 (-564)))) (-6 (-1035 (-407 (-564)))) |%noBranch|))) +(((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 #1=(-564)) |has| |#1| (-1035 (-564))) ((-614 |#1|) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 #1#) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T)) +((-2187 (((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)) 35))) +(((-412 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2187 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) (-307) (-989 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1035 |#2|)) (-307) (-989 |#5|) (-1235 |#6|) (-13 (-409 |#6| |#7|) (-1035 |#6|))) (T -412)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) (-4 *6 (-989 *5)) (-4 *7 (-1235 *6)) (-4 *8 (-13 (-409 *6 *7) (-1035 *6))) (-4 *9 (-307)) (-4 *10 (-989 *9)) (-4 *11 (-1235 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-409 *10 *11) (-1035 *10)))))) +(-10 -7 (-15 -2187 ((-413 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-413 |#1| |#2| |#3| |#4|)))) +((-3732 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3627 ((|#4| (-768) (-1259 |#4|)) 60)) (-3840 (((-112) $) NIL)) (-1625 (((-1259 |#4|) $) 17)) (-3328 ((|#2| $) 55)) (-1339 (($ $) 163)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 108)) (-3197 (($ (-1259 |#4|)) 107)) (-3864 (((-1114) $) NIL)) (-1634 ((|#1| $) 18)) (-2766 (($ $ $) NIL)) (-3671 (($ $ $) NIL)) (-3742 (((-859) $) 153)) (-4265 (((-1259 |#4|) $) 146)) (-4321 (($) 11 T CONST)) (-1705 (((-112) $ $) 41)) (-1799 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 139)) (* (($ $ $) 135))) +(((-413 |#1| |#2| |#3| |#4|) (-13 (-473) (-10 -8 (-15 -3197 ($ (-1259 |#4|))) (-15 -4265 ((-1259 |#4|) $)) (-15 -3328 (|#2| $)) (-15 -1625 ((-1259 |#4|) $)) (-15 -1634 (|#1| $)) (-15 -1339 ($ $)) (-15 -3627 (|#4| (-768) (-1259 |#4|))))) (-307) (-989 |#1|) (-1235 |#2|) (-13 (-409 |#2| |#3|) (-1035 |#2|))) (T -413)) +((-3197 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-413 *3 *4 *5 *6)))) (-4265 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) (-3328 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-413 *3 *2 *4 *5)) (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1035 *2))))) (-1625 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) (-1634 (*1 *2 *1) (-12 (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) (-1339 (*1 *1 *1) (-12 (-4 *2 (-307)) (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) (-3627 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) (-4 *6 (-989 *5)) (-4 *2 (-13 (-409 *6 *7) (-1035 *6))) (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6))))) +(-13 (-473) (-10 -8 (-15 -3197 ($ (-1259 |#4|))) (-15 -4265 ((-1259 |#4|) $)) (-15 -3328 (|#2| $)) (-15 -1625 ((-1259 |#4|) $)) (-15 -1634 (|#1| $)) (-15 -1339 ($ $)) (-15 -3627 (|#4| (-768) (-1259 |#4|))))) +((-3732 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-3328 ((|#2| $) 71)) (-3136 (($ (-1259 |#4|)) 27) (($ (-413 |#1| |#2| |#3| |#4|)) 86 (|has| |#4| (-1035 |#2|)))) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 37)) (-4265 (((-1259 |#4|) $) 28)) (-4321 (($) 25 T CONST)) (-1705 (((-112) $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ $ $) 82))) +(((-414 |#1| |#2| |#3| |#4| |#5|) (-13 (-723) (-10 -8 (-15 -4265 ((-1259 |#4|) $)) (-15 -3328 (|#2| $)) (-15 -3136 ($ (-1259 |#4|))) (IF (|has| |#4| (-1035 |#2|)) (-15 -3136 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-307) (-989 |#1|) (-1235 |#2|) (-409 |#2| |#3|) (-1259 |#4|)) (T -414)) +((-4265 (*1 *2 *1) (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-4 *6 (-409 *4 *5)) (-14 *7 *2))) (-3328 (*1 *2 *1) (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) (-14 *6 (-1259 *5)))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3136 (*1 *1 *2) (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1035 *4)) (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7))))) +(-13 (-723) (-10 -8 (-15 -4265 ((-1259 |#4|) $)) (-15 -3328 (|#2| $)) (-15 -3136 ($ (-1259 |#4|))) (IF (|has| |#4| (-1035 |#2|)) (-15 -3136 ($ (-413 |#1| |#2| |#3| |#4|))) |%noBranch|))) +((-2187 ((|#3| (-1 |#4| |#2|) |#1|) 32))) +(((-415 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#3| (-1 |#4| |#2|) |#1|))) (-417 |#2|) (-172) (-417 |#4|) (-172)) (T -415)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5))))) +(-10 -7 (-15 -2187 (|#3| (-1 |#4| |#2|) |#1|))) +((-4176 (((-3 $ "failed")) 99)) (-3147 (((-1259 (-685 |#2|)) (-1259 $)) NIL) (((-1259 (-685 |#2|))) 104)) (-3268 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) 97)) (-2934 (((-3 $ "failed")) 96)) (-3493 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 115)) (-1952 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 123)) (-3760 (((-1166 (-949 |#2|))) 65)) (-3359 ((|#2| (-1259 $)) NIL) ((|#2|) 119)) (-2340 (($ (-1259 |#2|) (-1259 $)) NIL) (($ (-1259 |#2|)) 125)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) 95)) (-1628 (((-3 $ "failed")) 87)) (-4256 (((-685 |#2|) (-1259 $)) NIL) (((-685 |#2|)) 113)) (-1789 (((-685 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) $) 121)) (-1903 (((-1166 (-949 |#2|))) 64)) (-3738 ((|#2| (-1259 $)) NIL) ((|#2|) 117)) (-1785 (((-1259 |#2|) $ (-1259 $)) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $) 124) (((-685 |#2|) (-1259 $)) 133)) (-2235 (((-1259 |#2|) $) 109) (($ (-1259 |#2|)) 111)) (-1551 (((-641 (-949 |#2|)) (-1259 $)) NIL) (((-641 (-949 |#2|))) 107)) (-1918 (($ (-685 |#2|) $) 103))) +(((-416 |#1| |#2|) (-10 -8 (-15 -1918 (|#1| (-685 |#2|) |#1|)) (-15 -3760 ((-1166 (-949 |#2|)))) (-15 -1903 ((-1166 (-949 |#2|)))) (-15 -1952 ((-685 |#2|) |#1|)) (-15 -1789 ((-685 |#2|) |#1|)) (-15 -3493 ((-685 |#2|))) (-15 -4256 ((-685 |#2|))) (-15 -3359 (|#2|)) (-15 -3738 (|#2|)) (-15 -2235 (|#1| (-1259 |#2|))) (-15 -2235 ((-1259 |#2|) |#1|)) (-15 -2340 (|#1| (-1259 |#2|))) (-15 -1551 ((-641 (-949 |#2|)))) (-15 -3147 ((-1259 (-685 |#2|)))) (-15 -1785 ((-685 |#2|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1|)) (-15 -4176 ((-3 |#1| "failed"))) (-15 -2934 ((-3 |#1| "failed"))) (-15 -1628 ((-3 |#1| "failed"))) (-15 -3268 ((-3 (-2 (|:| |particular| |#1|) (|:| -4265 (-641 |#1|))) "failed"))) (-15 -2906 ((-3 (-2 (|:| |particular| |#1|) (|:| -4265 (-641 |#1|))) "failed"))) (-15 -3493 ((-685 |#2|) (-1259 |#1|))) (-15 -4256 ((-685 |#2|) (-1259 |#1|))) (-15 -3359 (|#2| (-1259 |#1|))) (-15 -3738 (|#2| (-1259 |#1|))) (-15 -2340 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1952 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1789 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3147 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -1551 ((-641 (-949 |#2|)) (-1259 |#1|)))) (-417 |#2|) (-172)) (T -416)) +((-3147 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1551 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3738 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-3359 (*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) (-4256 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3493 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-1903 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4)))) (-3760 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) (-4 *3 (-417 *4))))) +(-10 -8 (-15 -1918 (|#1| (-685 |#2|) |#1|)) (-15 -3760 ((-1166 (-949 |#2|)))) (-15 -1903 ((-1166 (-949 |#2|)))) (-15 -1952 ((-685 |#2|) |#1|)) (-15 -1789 ((-685 |#2|) |#1|)) (-15 -3493 ((-685 |#2|))) (-15 -4256 ((-685 |#2|))) (-15 -3359 (|#2|)) (-15 -3738 (|#2|)) (-15 -2235 (|#1| (-1259 |#2|))) (-15 -2235 ((-1259 |#2|) |#1|)) (-15 -2340 (|#1| (-1259 |#2|))) (-15 -1551 ((-641 (-949 |#2|)))) (-15 -3147 ((-1259 (-685 |#2|)))) (-15 -1785 ((-685 |#2|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1|)) (-15 -4176 ((-3 |#1| "failed"))) (-15 -2934 ((-3 |#1| "failed"))) (-15 -1628 ((-3 |#1| "failed"))) (-15 -3268 ((-3 (-2 (|:| |particular| |#1|) (|:| -4265 (-641 |#1|))) "failed"))) (-15 -2906 ((-3 (-2 (|:| |particular| |#1|) (|:| -4265 (-641 |#1|))) "failed"))) (-15 -3493 ((-685 |#2|) (-1259 |#1|))) (-15 -4256 ((-685 |#2|) (-1259 |#1|))) (-15 -3359 (|#2| (-1259 |#1|))) (-15 -3738 (|#2| (-1259 |#1|))) (-15 -2340 (|#1| (-1259 |#2|) (-1259 |#1|))) (-15 -1785 ((-685 |#2|) (-1259 |#1|) (-1259 |#1|))) (-15 -1785 ((-1259 |#2|) |#1| (-1259 |#1|))) (-15 -1952 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -1789 ((-685 |#2|) |#1| (-1259 |#1|))) (-15 -3147 ((-1259 (-685 |#2|)) (-1259 |#1|))) (-15 -1551 ((-641 (-949 |#2|)) (-1259 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4176 (((-3 $ "failed")) 37 (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) 19)) (-3147 (((-1259 (-685 |#1|)) (-1259 $)) 78) (((-1259 (-685 |#1|))) 100)) (-1821 (((-1259 $)) 81)) (-2818 (($) 17 T CONST)) (-3268 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) 40 (|has| |#1| (-556)))) (-2934 (((-3 $ "failed")) 38 (|has| |#1| (-556)))) (-3493 (((-685 |#1|) (-1259 $)) 65) (((-685 |#1|)) 92)) (-3748 ((|#1| $) 74)) (-1952 (((-685 |#1|) $ (-1259 $)) 76) (((-685 |#1|) $) 90)) (-3664 (((-3 $ "failed") $) 45 (|has| |#1| (-556)))) (-3760 (((-1166 (-949 |#1|))) 88 (|has| |#1| (-363)))) (-2752 (($ $ (-918)) 28)) (-4369 ((|#1| $) 72)) (-2699 (((-1166 |#1|) $) 42 (|has| |#1| (-556)))) (-3359 ((|#1| (-1259 $)) 67) ((|#1|) 94)) (-1961 (((-1166 |#1|) $) 63)) (-4293 (((-112)) 57)) (-2340 (($ (-1259 |#1|) (-1259 $)) 69) (($ (-1259 |#1|)) 98)) (-3951 (((-3 $ "failed") $) 47 (|has| |#1| (-556)))) (-1544 (((-918)) 80)) (-1878 (((-112)) 54)) (-2545 (($ $ (-918)) 33)) (-3992 (((-112)) 50)) (-2482 (((-112)) 48)) (-3764 (((-112)) 52)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) 41 (|has| |#1| (-556)))) (-1628 (((-3 $ "failed")) 39 (|has| |#1| (-556)))) (-4256 (((-685 |#1|) (-1259 $)) 66) (((-685 |#1|)) 93)) (-3306 ((|#1| $) 75)) (-1789 (((-685 |#1|) $ (-1259 $)) 77) (((-685 |#1|) $) 91)) (-3714 (((-3 $ "failed") $) 46 (|has| |#1| (-556)))) (-1903 (((-1166 (-949 |#1|))) 89 (|has| |#1| (-363)))) (-3154 (($ $ (-918)) 29)) (-3371 ((|#1| $) 73)) (-2257 (((-1166 |#1|) $) 43 (|has| |#1| (-556)))) (-3738 ((|#1| (-1259 $)) 68) ((|#1|) 95)) (-2627 (((-1166 |#1|) $) 64)) (-2756 (((-112)) 58)) (-2217 (((-1152) $) 9)) (-2270 (((-112)) 49)) (-4213 (((-112)) 51)) (-3435 (((-112)) 53)) (-3864 (((-1114) $) 10)) (-4154 (((-112)) 56)) (-4382 ((|#1| $ (-564)) 101)) (-1785 (((-1259 |#1|) $ (-1259 $)) 71) (((-685 |#1|) (-1259 $) (-1259 $)) 70) (((-1259 |#1|) $) 103) (((-685 |#1|) (-1259 $)) 102)) (-2235 (((-1259 |#1|) $) 97) (($ (-1259 |#1|)) 96)) (-1551 (((-641 (-949 |#1|)) (-1259 $)) 79) (((-641 (-949 |#1|))) 99)) (-3671 (($ $ $) 25)) (-2330 (((-112)) 62)) (-3742 (((-859) $) 11)) (-4265 (((-1259 $)) 104)) (-3986 (((-641 (-1259 |#1|))) 44 (|has| |#1| (-556)))) (-3533 (($ $ $ $) 26)) (-4352 (((-112)) 60)) (-1918 (($ (-685 |#1|) $) 87)) (-1879 (($ $ $) 24)) (-4031 (((-112)) 61)) (-4380 (((-112)) 59)) (-1518 (((-112)) 55)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) (((-417 |#1|) (-140) (-172)) (T -417)) -((-3288 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-417 *3)))) (-1818 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) (-1818 (*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-684 *4)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1807 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 (-684 *3))))) (-1355 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-640 (-948 *3))))) (-1505 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-2802 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-1493 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1483 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-1471 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-1460 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-1450 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-1440 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3)))) (-3399 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1165 (-948 *3))))) (-3351 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1165 (-948 *3))))) (-2408 (*1 *1 *2 *1) (-12 (-5 *2 (-684 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))) -(-13 (-367 |t#1|) (-10 -8 (-15 -3288 ((-1257 $))) (-15 -1818 ((-1257 |t#1|) $)) (-15 -1818 ((-684 |t#1|) (-1257 $))) (-15 -3858 (|t#1| $ (-563))) (-15 -1807 ((-1257 (-684 |t#1|)))) (-15 -1355 ((-640 (-948 |t#1|)))) (-15 -1505 ($ (-1257 |t#1|))) (-15 -2802 ((-1257 |t#1|) $)) (-15 -2802 ($ (-1257 |t#1|))) (-15 -1493 (|t#1|)) (-15 -1483 (|t#1|)) (-15 -1471 ((-684 |t#1|))) (-15 -1460 ((-684 |t#1|))) (-15 -1450 ((-684 |t#1|) $)) (-15 -1440 ((-684 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -3399 ((-1165 (-948 |t#1|)))) (-15 -3351 ((-1165 (-948 |t#1|))))) |%noBranch|) (-15 -2408 ($ (-684 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-367 |#1|) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-740 |#1|) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 60)) (-2559 (($ $) 78)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 190)) (-2554 (($ $) NIL)) (-2533 (((-112) $) 48)) (-2570 ((|#1| $) 16)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| |#1| (-1212)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-1212)))) (-2591 (($ |#1| (-563)) 43)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 148)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 74)) (-3230 (((-3 $ "failed") $) 164)) (-3459 (((-3 (-407 (-563)) "failed") $) 84 (|has| |#1| (-545)))) (-3447 (((-112) $) 80 (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) 91 (|has| |#1| (-545)))) (-2601 (($ |#1| (-563)) 45)) (-3675 (((-112) $) 212 (|has| |#1| (-1212)))) (-2712 (((-112) $) 62)) (-2017 (((-767) $) 51)) (-2610 (((-3 "nil" "sqfr" "irred" "prime") $ (-563)) 174)) (-2535 ((|#1| $ (-563)) 173)) (-2619 (((-563) $ (-563)) 172)) (-2640 (($ |#1| (-563)) 42)) (-2751 (($ (-1 |#1| |#1|) $) 182)) (-1981 (($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563))))) 79)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1938 (((-1151) $) NIL)) (-2630 (($ |#1| (-563)) 44)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) 191 (|has| |#1| (-452)))) (-2580 (($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime")) 41)) (-2524 (((-640 (-2 (|:| -2055 |#1|) (|:| -2631 (-563)))) $) 73)) (-3880 (((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $) 12)) (-2055 (((-418 $) $) NIL (|has| |#1| (-1212)))) (-3448 (((-3 $ "failed") $ $) 175)) (-2631 (((-563) $) 167)) (-1864 ((|#1| $) 75)) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 106 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) $) NIL (|has| |#1| (-514 (-1169) $))) (($ $ (-640 (-1169)) (-640 $)) 107 (|has| |#1| (-514 (-1169) $))) (($ $ (-640 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-640 $) (-640 $)) NIL (|has| |#1| (-309 $)))) (-3858 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-1361 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) 181)) (-2802 (((-536) $) 39 (|has| |#1| (-611 (-536)))) (((-379) $) 113 (|has| |#1| (-1018))) (((-225) $) 119 (|has| |#1| (-1018)))) (-2062 (((-858) $) 146) (($ (-563)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563)))))) (-3192 (((-767)) 67 T CONST)) (-2543 (((-112) $ $) NIL)) (-3790 (($) 53 T CONST)) (-3803 (($) 52 T CONST)) (-4191 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2943 (((-112) $ $) 159)) (-3039 (($ $) 161) (($ $ $) NIL)) (-3027 (($ $ $) 179)) (** (($ $ (-917)) NIL) (($ $ (-767)) 125)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) -(((-418 |#1|) (-13 (-555) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -1864 (|#1| $)) (-15 -2631 ((-563) $)) (-15 -1981 ($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))))) (-15 -3880 ((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $)) (-15 -2640 ($ |#1| (-563))) (-15 -2524 ((-640 (-2 (|:| -2055 |#1|) (|:| -2631 (-563)))) $)) (-15 -2630 ($ |#1| (-563))) (-15 -2619 ((-563) $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -2610 ((-3 "nil" "sqfr" "irred" "prime") $ (-563))) (-15 -2017 ((-767) $)) (-15 -2601 ($ |#1| (-563))) (-15 -2591 ($ |#1| (-563))) (-15 -2580 ($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2570 (|#1| $)) (-15 -2559 ($ $)) (-15 -2751 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1212)) (-6 (-1212)) |%noBranch|) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1169) $)) (-6 (-514 (-1169) $)) |%noBranch|))) (-555)) (T -418)) -((-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-555)) (-5 *1 (-418 *3)))) (-1864 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-1981 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-563))))) (-4 *2 (-555)) (-5 *1 (-418 *2)))) (-3880 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-563))))) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-2640 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2055 *3) (|:| -2631 (-563))))) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-2630 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2619 (*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-2535 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2610 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-555)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) (-2601 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2591 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2580 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2570 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-2559 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))) (-3459 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555))))) -(-13 (-555) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -1864 (|#1| $)) (-15 -2631 ((-563) $)) (-15 -1981 ($ |#1| (-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))))) (-15 -3880 ((-640 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-563)))) $)) (-15 -2640 ($ |#1| (-563))) (-15 -2524 ((-640 (-2 (|:| -2055 |#1|) (|:| -2631 (-563)))) $)) (-15 -2630 ($ |#1| (-563))) (-15 -2619 ((-563) $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -2610 ((-3 "nil" "sqfr" "irred" "prime") $ (-563))) (-15 -2017 ((-767) $)) (-15 -2601 ($ |#1| (-563))) (-15 -2591 ($ |#1| (-563))) (-15 -2580 ($ |#1| (-563) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2570 (|#1| $)) (-15 -2559 ($ $)) (-15 -2751 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |#1| (-1212)) (-6 (-1212)) |%noBranch|) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1169) $)) (-6 (-514 (-1169) $)) |%noBranch|))) -((-3272 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-1517 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17))) -(((-419 |#1|) (-10 -7 (-15 -3272 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -1517 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-555)) (T -419)) -((-1517 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-555)) (-5 *1 (-419 *3)))) (-3272 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-555)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4))))) -(-10 -7 (-15 -3272 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -1517 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) -((-1571 ((|#2| |#2|) 186)) (-1539 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112)) 60))) -(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1539 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112))) (-15 -1571 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -420)) -((-1571 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1193) (-430 *3))) (-14 *4 (-1169)) (-14 *5 *2))) (-1539 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-14 *6 (-1169)) (-14 *7 *3)))) -(-10 -7 (-15 -1539 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112))) (-15 -1571 (|#2| |#2|))) -((-2751 ((|#4| (-1 |#3| |#1|) |#2|) 11))) -(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1045) (-846)) (-430 |#1|) (-13 (-1045) (-846)) (-430 |#3|)) (T -421)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846))) (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5))))) -(-10 -7 (-15 -2751 (|#4| (-1 |#3| |#1|) |#2|))) -((-1571 ((|#2| |#2|) 103)) (-1549 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151)) 52)) (-1560 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151)) 170))) -(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1549 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -1560 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -1571 (|#2| |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|) (-10 -8 (-15 -2062 ($ |#3|)))) (-844) (-13 (-1235 |#2| |#3|) (-363) (-1193) (-10 -8 (-15 -1361 ($ $)) (-15 -3204 ($ $)))) (-979 |#4|) (-1169)) (T -422)) -((-1571 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *2 (-13 (-27) (-1193) (-430 *3) (-10 -8 (-15 -2062 ($ *4))))) (-4 *4 (-844)) (-4 *5 (-13 (-1235 *2 *4) (-363) (-1193) (-10 -8 (-15 -1361 ($ $)) (-15 -3204 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1169)))) (-1560 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -2062 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1235 *3 *7) (-363) (-1193) (-10 -8 (-15 -1361 ($ $)) (-15 -3204 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) (-14 *10 (-1169)))) (-1549 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -2062 ($ *7))))) (-4 *7 (-844)) (-4 *8 (-13 (-1235 *3 *7) (-363) (-1193) (-10 -8 (-15 -1361 ($ $)) (-15 -3204 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) (-14 *10 (-1169))))) -(-10 -7 (-15 -1549 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -1560 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151))))) |#2| (-112) (-1151))) (-15 -1571 (|#2| |#2|))) -((-3409 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2532 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2751 ((|#4| (-1 |#3| |#1|) |#2|) 17))) -(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2532 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3409 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1093) (-425 |#1|) (-1093) (-425 |#3|)) (T -423)) -((-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1093)) (-4 *5 (-1093)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1093)) (-4 *2 (-1093)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) -(-10 -7 (-15 -2751 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2532 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3409 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) -((-1583 (($) 52)) (-3738 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-1883 (($ $ $) 45)) (-1870 (((-112) $ $) 34)) (-2433 (((-767)) 56)) (-3158 (($ (-640 |#2|)) 23) (($) NIL)) (-4301 (($) 67)) (-1925 (((-112) $ $) 15)) (-3489 ((|#2| $) 78)) (-4105 ((|#2| $) 76)) (-3267 (((-917) $) 71)) (-1913 (($ $ $) 41)) (-3491 (($ (-917)) 61)) (-1896 (($ $ |#2|) NIL) (($ $ $) 44)) (-3261 (((-767) (-1 (-112) |#2|) $) NIL) (((-767) |#2| $) 31)) (-2074 (($ (-640 |#2|)) 27)) (-1595 (($ $) 54)) (-2062 (((-858) $) 39)) (-1606 (((-767) $) 24)) (-2121 (($ (-640 |#2|)) 22) (($) NIL)) (-2943 (((-112) $ $) 19))) -(((-424 |#1| |#2|) (-10 -8 (-15 -2433 ((-767))) (-15 -3491 (|#1| (-917))) (-15 -3267 ((-917) |#1|)) (-15 -4301 (|#1|)) (-15 -3489 (|#2| |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1583 (|#1|)) (-15 -1595 (|#1| |#1|)) (-15 -1606 ((-767) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -1925 ((-112) |#1| |#1|)) (-15 -2121 (|#1|)) (-15 -2121 (|#1| (-640 |#2|))) (-15 -3158 (|#1|)) (-15 -3158 (|#1| (-640 |#2|))) (-15 -1913 (|#1| |#1| |#1|)) (-15 -1896 (|#1| |#1| |#1|)) (-15 -1896 (|#1| |#1| |#2|)) (-15 -1883 (|#1| |#1| |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1| |#2|)) (-15 -3738 (|#1| |#2| |#1|)) (-15 -2074 (|#1| (-640 |#2|))) (-15 -3261 ((-767) |#2| |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1093)) (T -424)) -((-2433 (*1 *2) (-12 (-4 *4 (-1093)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) -(-10 -8 (-15 -2433 ((-767))) (-15 -3491 (|#1| (-917))) (-15 -3267 ((-917) |#1|)) (-15 -4301 (|#1|)) (-15 -3489 (|#2| |#1|)) (-15 -4105 (|#2| |#1|)) (-15 -1583 (|#1|)) (-15 -1595 (|#1| |#1|)) (-15 -1606 ((-767) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -1925 ((-112) |#1| |#1|)) (-15 -2121 (|#1|)) (-15 -2121 (|#1| (-640 |#2|))) (-15 -3158 (|#1|)) (-15 -3158 (|#1| (-640 |#2|))) (-15 -1913 (|#1| |#1| |#1|)) (-15 -1896 (|#1| |#1| |#1|)) (-15 -1896 (|#1| |#1| |#2|)) (-15 -1883 (|#1| |#1| |#1|)) (-15 -1870 ((-112) |#1| |#1|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -3738 (|#1| |#1| |#2|)) (-15 -3738 (|#1| |#2| |#1|)) (-15 -2074 (|#1| (-640 |#2|))) (-15 -3261 ((-767) |#2| |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|))) -((-2049 (((-112) $ $) 19)) (-1583 (($) 67 (|has| |#1| (-368)))) (-3738 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1883 (($ $ $) 78)) (-1870 (((-112) $ $) 79)) (-3740 (((-112) $ (-767)) 8)) (-2433 (((-767)) 61 (|has| |#1| (-368)))) (-3158 (($ (-640 |#1|)) 74) (($) 73)) (-1736 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-1920 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1417 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-4301 (($) 64 (|has| |#1| (-368)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-1925 (((-112) $ $) 70)) (-3633 (((-112) $ (-767)) 9)) (-3489 ((|#1| $) 65 (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4105 ((|#1| $) 66 (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3267 (((-917) $) 63 (|has| |#1| (-368)))) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22)) (-1913 (($ $ $) 75)) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40)) (-3491 (($ (-917)) 62 (|has| |#1| (-368)))) (-3249 (((-1113) $) 21)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-1896 (($ $ |#1|) 77) (($ $ $) 76)) (-3139 (($) 49) (($ (-640 |#1|)) 48)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 50)) (-1595 (($ $) 68 (|has| |#1| (-368)))) (-2062 (((-858) $) 18)) (-1606 (((-767) $) 69)) (-2121 (($ (-640 |#1|)) 72) (($) 71)) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20)) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-425 |#1|) (-140) (-1093)) (T -425)) -((-1606 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1093)) (-5 *2 (-767)))) (-1595 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-368)))) (-1583 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1093)))) (-4105 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-3489 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846))))) -(-13 (-229 |t#1|) (-1091 |t#1|) (-10 -8 (-6 -4408) (-15 -1606 ((-767) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -1595 ($ $)) (-15 -1583 ($))) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -4105 (|t#1| $)) (-15 -3489 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T)) -((-1620 (((-584 |#2|) |#2| (-1169)) 38)) (-1737 (((-584 |#2|) |#2| (-1169)) 21)) (-4077 ((|#2| |#2| (-1169)) 26))) -(((-426 |#1| |#2|) (-10 -7 (-15 -1737 ((-584 |#2|) |#2| (-1169))) (-15 -1620 ((-584 |#2|) |#2| (-1169))) (-15 -4077 (|#2| |#2| (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-29 |#1|))) (T -426)) -((-4077 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1193) (-29 *4))))) (-1620 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5))))) (-1737 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1193) (-29 *5)))))) -(-10 -7 (-15 -1737 ((-584 |#2|) |#2| (-1169))) (-15 -1620 ((-584 |#2|) |#2| (-1169))) (-15 -4077 (|#2| |#2| (-1169)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-1644 (($ |#2| |#1|) 37)) (-1632 (($ |#2| |#1|) 35)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-3192 (((-767)) NIL T CONST)) (-3790 (($) 10 T CONST)) (-3803 (($) 16 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 36)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4395)) (IF (|has| |#1| (-6 -4395)) (-6 -4395) |%noBranch|) |%noBranch|) (-15 -2062 ($ |#1|)) (-15 -2062 ($ (-331 |#2|))) (-15 -1644 ($ |#2| |#1|)) (-15 -1632 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-563)))) (-13 (-846) (-21))) (T -427)) -((-2062 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-563))))) (-4 *3 (-13 (-846) (-21))))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))))) (-1644 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) (-4 *2 (-13 (-846) (-21))))) (-1632 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) (-4 *2 (-13 (-846) (-21)))))) -(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4395)) (IF (|has| |#1| (-6 -4395)) (-6 -4395) |%noBranch|) |%noBranch|) (-15 -2062 ($ |#1|)) (-15 -2062 ($ (-331 |#2|))) (-15 -1644 ($ |#2| |#1|)) (-15 -1632 ($ |#2| |#1|)))) -((-3204 (((-3 |#2| (-640 |#2|)) |#2| (-1169)) 115))) -(((-428 |#1| |#2|) (-10 -7 (-15 -3204 ((-3 |#2| (-640 |#2|)) |#2| (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -428)) -((-3204 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 *3 (-640 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1193) (-955) (-29 *5)))))) -(-10 -7 (-15 -3204 ((-3 |#2| (-640 |#2|)) |#2| (-1169)))) -((-2185 (((-640 (-1169)) $) 80)) (-2021 (((-407 (-1165 $)) $ (-609 $)) 310)) (-2624 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) 274)) (-2671 (((-3 (-609 $) "failed") $) NIL) (((-3 (-1169) "failed") $) 83) (((-3 (-563) "failed") $) NIL) (((-3 |#2| "failed") $) 270) (((-3 (-407 (-948 |#2|)) "failed") $) 360) (((-3 (-948 |#2|) "failed") $) 272) (((-3 (-407 (-563)) "failed") $) NIL)) (-2589 (((-609 $) $) NIL) (((-1169) $) 30) (((-563) $) NIL) ((|#2| $) 268) (((-407 (-948 |#2|)) $) 342) (((-948 |#2|) $) 269) (((-407 (-563)) $) NIL)) (-3674 (((-114) (-114)) 49)) (-4372 (($ $) 98)) (-3895 (((-3 (-609 $) "failed") $) 265)) (-2009 (((-640 (-609 $)) $) 266)) (-3218 (((-3 (-640 $) "failed") $) 284)) (-3236 (((-3 (-2 (|:| |val| $) (|:| -2631 (-563))) "failed") $) 291)) (-3207 (((-3 (-640 $) "failed") $) 282)) (-1526 (((-3 (-2 (|:| -2765 (-563)) (|:| |var| (-609 $))) "failed") $) 301)) (-3228 (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $) 288) (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-114)) 252) (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-1169)) 254)) (-3160 (((-112) $) 19)) (-3170 ((|#2| $) 21)) (-1497 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) 273) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 108) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1169)) 62) (($ $ (-640 (-1169))) 277) (($ $) 278) (($ $ (-114) $ (-1169)) 65) (($ $ (-640 (-114)) (-640 $) (-1169)) 72) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 119) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 279) (($ $ (-1169) (-767) (-1 $ (-640 $))) 104) (($ $ (-1169) (-767) (-1 $ $)) 103)) (-3858 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) 118)) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) 275)) (-4362 (($ $) 321)) (-2802 (((-888 (-563)) $) 294) (((-888 (-379)) $) 298) (($ (-418 $)) 356) (((-536) $) NIL)) (-2062 (((-858) $) 276) (($ (-609 $)) 92) (($ (-1169)) 26) (($ |#2|) NIL) (($ (-1118 |#2| (-609 $))) NIL) (($ (-407 |#2|)) 326) (($ (-948 (-407 |#2|))) 365) (($ (-407 (-948 (-407 |#2|)))) 338) (($ (-407 (-948 |#2|))) 332) (($ $) NIL) (($ (-948 |#2|)) 214) (($ (-407 (-563))) 370) (($ (-563)) NIL)) (-3192 (((-767)) 87)) (-3631 (((-112) (-114)) 44)) (-2340 (($ (-1169) $) 33) (($ (-1169) $ $) 34) (($ (-1169) $ $ $) 35) (($ (-1169) $ $ $ $) 36) (($ (-1169) (-640 $)) 41)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ |#2| $) 303) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) -(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2062 (|#1| (-563))) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2062 (|#1| (-948 |#2|))) (-15 -2671 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -2589 ((-948 |#2|) |#1|)) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -2062 (|#1| (-407 (-948 |#2|)))) (-15 -2671 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -2589 ((-407 (-948 |#2|)) |#1|)) (-15 -2021 ((-407 (-1165 |#1|)) |#1| (-609 |#1|))) (-15 -2062 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -2062 (|#1| (-948 (-407 |#2|)))) (-15 -2062 (|#1| (-407 |#2|))) (-15 -4362 (|#1| |#1|)) (-15 -2802 (|#1| (-418 |#1|))) (-15 -1497 (|#1| |#1| (-1169) (-767) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-1169) (-767) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| |#1|)))) (-15 -3236 ((-3 (-2 (|:| |val| |#1|) (|:| -2631 (-563))) "failed") |#1|)) (-15 -3228 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -2631 (-563))) "failed") |#1| (-1169))) (-15 -3228 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -2631 (-563))) "failed") |#1| (-114))) (-15 -4372 (|#1| |#1|)) (-15 -2062 (|#1| (-1118 |#2| (-609 |#1|)))) (-15 -1526 ((-3 (-2 (|:| -2765 (-563)) (|:| |var| (-609 |#1|))) "failed") |#1|)) (-15 -3207 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -3228 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -2631 (-563))) "failed") |#1|)) (-15 -3218 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 |#1|) (-1169))) (-15 -1497 (|#1| |#1| (-114) |#1| (-1169))) (-15 -1497 (|#1| |#1|)) (-15 -1497 (|#1| |#1| (-640 (-1169)))) (-15 -1497 (|#1| |#1| (-1169))) (-15 -2340 (|#1| (-1169) (-640 |#1|))) (-15 -2340 (|#1| (-1169) |#1| |#1| |#1| |#1|)) (-15 -2340 (|#1| (-1169) |#1| |#1| |#1|)) (-15 -2340 (|#1| (-1169) |#1| |#1|)) (-15 -2340 (|#1| (-1169) |#1|)) (-15 -2185 ((-640 (-1169)) |#1|)) (-15 -3170 (|#2| |#1|)) (-15 -3160 ((-112) |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2062 (|#1| (-1169))) (-15 -2671 ((-3 (-1169) "failed") |#1|)) (-15 -2589 ((-1169) |#1|)) (-15 -1497 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1497 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -2009 ((-640 (-609 |#1|)) |#1|)) (-15 -3895 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2624 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -2624 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2624 (|#1| |#1| (-294 |#1|))) (-15 -3858 (|#1| (-114) (-640 |#1|))) (-15 -3858 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1497 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -2062 (|#1| (-609 |#1|))) (-15 -2671 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2589 ((-609 |#1|) |#1|)) (-15 -2062 ((-858) |#1|))) (-430 |#2|) (-846)) (T -429)) -((-3674 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-846)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-3192 (*1 *2) (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) -(-10 -8 (-15 * (|#1| (-917) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2062 (|#1| (-563))) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2062 (|#1| (-948 |#2|))) (-15 -2671 ((-3 (-948 |#2|) "failed") |#1|)) (-15 -2589 ((-948 |#2|) |#1|)) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2062 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -2062 (|#1| (-407 (-948 |#2|)))) (-15 -2671 ((-3 (-407 (-948 |#2|)) "failed") |#1|)) (-15 -2589 ((-407 (-948 |#2|)) |#1|)) (-15 -2021 ((-407 (-1165 |#1|)) |#1| (-609 |#1|))) (-15 -2062 (|#1| (-407 (-948 (-407 |#2|))))) (-15 -2062 (|#1| (-948 (-407 |#2|)))) (-15 -2062 (|#1| (-407 |#2|))) (-15 -4362 (|#1| |#1|)) (-15 -2802 (|#1| (-418 |#1|))) (-15 -1497 (|#1| |#1| (-1169) (-767) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-1169) (-767) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-767)) (-640 (-1 |#1| |#1|)))) (-15 -3236 ((-3 (-2 (|:| |val| |#1|) (|:| -2631 (-563))) "failed") |#1|)) (-15 -3228 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -2631 (-563))) "failed") |#1| (-1169))) (-15 -3228 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -2631 (-563))) "failed") |#1| (-114))) (-15 -4372 (|#1| |#1|)) (-15 -2062 (|#1| (-1118 |#2| (-609 |#1|)))) (-15 -1526 ((-3 (-2 (|:| -2765 (-563)) (|:| |var| (-609 |#1|))) "failed") |#1|)) (-15 -3207 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -3228 ((-3 (-2 (|:| |var| (-609 |#1|)) (|:| -2631 (-563))) "failed") |#1|)) (-15 -3218 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 |#1|) (-1169))) (-15 -1497 (|#1| |#1| (-114) |#1| (-1169))) (-15 -1497 (|#1| |#1|)) (-15 -1497 (|#1| |#1| (-640 (-1169)))) (-15 -1497 (|#1| |#1| (-1169))) (-15 -2340 (|#1| (-1169) (-640 |#1|))) (-15 -2340 (|#1| (-1169) |#1| |#1| |#1| |#1|)) (-15 -2340 (|#1| (-1169) |#1| |#1| |#1|)) (-15 -2340 (|#1| (-1169) |#1| |#1|)) (-15 -2340 (|#1| (-1169) |#1|)) (-15 -2185 ((-640 (-1169)) |#1|)) (-15 -3170 (|#2| |#1|)) (-15 -3160 ((-112) |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2062 (|#1| (-1169))) (-15 -2671 ((-3 (-1169) "failed") |#1|)) (-15 -2589 ((-1169) |#1|)) (-15 -1497 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-114) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-114)) (-640 (-1 |#1| |#1|)))) (-15 -1497 (|#1| |#1| (-1169) (-1 |#1| |#1|))) (-15 -1497 (|#1| |#1| (-1169) (-1 |#1| (-640 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| (-640 |#1|))))) (-15 -1497 (|#1| |#1| (-640 (-1169)) (-640 (-1 |#1| |#1|)))) (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -2009 ((-640 (-609 |#1|)) |#1|)) (-15 -3895 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2624 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -2624 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2624 (|#1| |#1| (-294 |#1|))) (-15 -3858 (|#1| (-114) (-640 |#1|))) (-15 -3858 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1| |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1| |#1|)) (-15 -3858 (|#1| (-114) |#1|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1497 (|#1| |#1| (-640 (-609 |#1|)) (-640 |#1|))) (-15 -1497 (|#1| |#1| (-609 |#1|) |#1|)) (-15 -2062 (|#1| (-609 |#1|))) (-15 -2671 ((-3 (-609 |#1|) "failed") |#1|)) (-15 -2589 ((-609 |#1|) |#1|)) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 114 (|has| |#1| (-25)))) (-2185 (((-640 (-1169)) $) 201)) (-2021 (((-407 (-1165 $)) $ (-609 $)) 169 (|has| |#1| (-555)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 141 (|has| |#1| (-555)))) (-2554 (($ $) 142 (|has| |#1| (-555)))) (-2533 (((-112) $) 144 (|has| |#1| (-555)))) (-1926 (((-640 (-609 $)) $) 44)) (-1482 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-2624 (($ $ (-294 $)) 56) (($ $ (-640 (-294 $))) 55) (($ $ (-640 (-609 $)) (-640 $)) 54)) (-2924 (($ $) 161 (|has| |#1| (-555)))) (-2102 (((-418 $) $) 162 (|has| |#1| (-555)))) (-4332 (((-112) $ $) 152 (|has| |#1| (-555)))) (-3684 (($) 102 (-2811 (|has| |#1| (-1105)) (|has| |#1| (-25))) CONST)) (-2671 (((-3 (-609 $) "failed") $) 69) (((-3 (-1169) "failed") $) 214) (((-3 (-563) "failed") $) 208 (|has| |#1| (-1034 (-563)))) (((-3 |#1| "failed") $) 205) (((-3 (-407 (-948 |#1|)) "failed") $) 167 (|has| |#1| (-555))) (((-3 (-948 |#1|) "failed") $) 121 (|has| |#1| (-1045))) (((-3 (-407 (-563)) "failed") $) 96 (-2811 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-2589 (((-609 $) $) 70) (((-1169) $) 215) (((-563) $) 207 (|has| |#1| (-1034 (-563)))) ((|#1| $) 206) (((-407 (-948 |#1|)) $) 168 (|has| |#1| (-555))) (((-948 |#1|) $) 122 (|has| |#1| (-1045))) (((-407 (-563)) $) 97 (-2811 (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563))))))) (-3495 (($ $ $) 156 (|has| |#1| (-555)))) (-3853 (((-684 (-563)) (-684 $)) 135 (-3743 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 134 (-3743 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 133 (|has| |#1| (-1045))) (((-684 |#1|) (-684 $)) 132 (|has| |#1| (-1045)))) (-3230 (((-3 $ "failed") $) 104 (|has| |#1| (-1105)))) (-3473 (($ $ $) 155 (|has| |#1| (-555)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 150 (|has| |#1| (-555)))) (-3675 (((-112) $) 163 (|has| |#1| (-555)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 210 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 209 (|has| |#1| (-882 (-379))))) (-1383 (($ $) 51) (($ (-640 $)) 50)) (-2034 (((-640 (-114)) $) 43)) (-3674 (((-114) (-114)) 42)) (-2712 (((-112) $) 103 (|has| |#1| (-1105)))) (-4107 (((-112) $) 22 (|has| $ (-1034 (-563))))) (-4372 (($ $) 184 (|has| |#1| (-1045)))) (-2626 (((-1118 |#1| (-609 $)) $) 185 (|has| |#1| (-1045)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 159 (|has| |#1| (-555)))) (-2011 (((-1165 $) (-609 $)) 25 (|has| $ (-1045)))) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-2751 (($ (-1 $ $) (-609 $)) 36)) (-3895 (((-3 (-609 $) "failed") $) 46)) (-1607 (($ (-640 $)) 148 (|has| |#1| (-555))) (($ $ $) 147 (|has| |#1| (-555)))) (-1938 (((-1151) $) 9)) (-2009 (((-640 (-609 $)) $) 45)) (-2696 (($ (-114) $) 38) (($ (-114) (-640 $)) 37)) (-3218 (((-3 (-640 $) "failed") $) 190 (|has| |#1| (-1105)))) (-3236 (((-3 (-2 (|:| |val| $) (|:| -2631 (-563))) "failed") $) 181 (|has| |#1| (-1045)))) (-3207 (((-3 (-640 $) "failed") $) 188 (|has| |#1| (-25)))) (-1526 (((-3 (-2 (|:| -2765 (-563)) (|:| |var| (-609 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3228 (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $) 189 (|has| |#1| (-1105))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-114)) 183 (|has| |#1| (-1045))) (((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-1169)) 182 (|has| |#1| (-1045)))) (-1854 (((-112) $ (-114)) 40) (((-112) $ (-1169)) 39)) (-3149 (($ $) 106 (-2811 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-1524 (((-767) $) 47)) (-3249 (((-1113) $) 10)) (-3160 (((-112) $) 203)) (-3170 ((|#1| $) 202)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 149 (|has| |#1| (-555)))) (-1647 (($ (-640 $)) 146 (|has| |#1| (-555))) (($ $ $) 145 (|has| |#1| (-555)))) (-2023 (((-112) $ $) 35) (((-112) $ (-1169)) 34)) (-2055 (((-418 $) $) 160 (|has| |#1| (-555)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-555))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 157 (|has| |#1| (-555)))) (-3448 (((-3 $ "failed") $ $) 140 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 151 (|has| |#1| (-555)))) (-4118 (((-112) $) 23 (|has| $ (-1034 (-563))))) (-1497 (($ $ (-609 $) $) 67) (($ $ (-640 (-609 $)) (-640 $)) 66) (($ $ (-640 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-640 $) (-640 $)) 62) (($ $ (-640 (-1169)) (-640 (-1 $ $))) 33) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) 32) (($ $ (-1169) (-1 $ (-640 $))) 31) (($ $ (-1169) (-1 $ $)) 30) (($ $ (-640 (-114)) (-640 (-1 $ $))) 29) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) 28) (($ $ (-114) (-1 $ (-640 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1169)) 195 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169))) 194 (|has| |#1| (-611 (-536)))) (($ $) 193 (|has| |#1| (-611 (-536)))) (($ $ (-114) $ (-1169)) 192 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-114)) (-640 $) (-1169)) 191 (|has| |#1| (-611 (-536)))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $))) 180 (|has| |#1| (-1045))) (($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $)))) 179 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ (-640 $))) 178 (|has| |#1| (-1045))) (($ $ (-1169) (-767) (-1 $ $)) 177 (|has| |#1| (-1045)))) (-4322 (((-767) $) 153 (|has| |#1| (-555)))) (-3858 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-640 $)) 57)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 154 (|has| |#1| (-555)))) (-3904 (($ $) 49) (($ $ $) 48)) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) 126 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 125 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 124 (|has| |#1| (-1045))) (($ $ (-1169)) 123 (|has| |#1| (-1045)))) (-4362 (($ $) 174 (|has| |#1| (-555)))) (-2636 (((-1118 |#1| (-609 $)) $) 175 (|has| |#1| (-555)))) (-2713 (($ $) 24 (|has| $ (-1045)))) (-2802 (((-888 (-563)) $) 212 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 211 (|has| |#1| (-611 (-888 (-379))))) (($ (-418 $)) 176 (|has| |#1| (-555))) (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-1382 (($ $ $) 109 (|has| |#1| (-473)))) (-2879 (($ $ $) 110 (|has| |#1| (-473)))) (-2062 (((-858) $) 11) (($ (-609 $)) 68) (($ (-1169)) 213) (($ |#1|) 204) (($ (-1118 |#1| (-609 $))) 186 (|has| |#1| (-1045))) (($ (-407 |#1|)) 172 (|has| |#1| (-555))) (($ (-948 (-407 |#1|))) 171 (|has| |#1| (-555))) (($ (-407 (-948 (-407 |#1|)))) 170 (|has| |#1| (-555))) (($ (-407 (-948 |#1|))) 166 (|has| |#1| (-555))) (($ $) 139 (|has| |#1| (-555))) (($ (-948 |#1|)) 120 (|has| |#1| (-1045))) (($ (-407 (-563))) 95 (-2811 (|has| |#1| (-555)) (-12 (|has| |#1| (-1034 (-563))) (|has| |#1| (-555))) (|has| |#1| (-1034 (-407 (-563)))))) (($ (-563)) 94 (-2811 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-563)))))) (-4376 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-3192 (((-767)) 131 (|has| |#1| (-1045)) CONST)) (-3548 (($ $) 53) (($ (-640 $)) 52)) (-3631 (((-112) (-114)) 41)) (-2543 (((-112) $ $) 143 (|has| |#1| (-555)))) (-2340 (($ (-1169) $) 200) (($ (-1169) $ $) 199) (($ (-1169) $ $ $) 198) (($ (-1169) $ $ $ $) 197) (($ (-1169) (-640 $)) 196)) (-3790 (($) 113 (|has| |#1| (-25)) CONST)) (-3803 (($) 101 (|has| |#1| (-1105)) CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) 130 (|has| |#1| (-1045))) (($ $ (-1169) (-767)) 129 (|has| |#1| (-1045))) (($ $ (-640 (-1169))) 128 (|has| |#1| (-1045))) (($ $ (-1169)) 127 (|has| |#1| (-1045)))) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (-3050 (($ (-1118 |#1| (-609 $)) (-1118 |#1| (-609 $))) 173 (|has| |#1| (-555))) (($ $ $) 107 (-2811 (|has| |#1| (-473)) (|has| |#1| (-555))))) (-3039 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-3027 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-563)) 108 (-2811 (|has| |#1| (-473)) (|has| |#1| (-555)))) (($ $ (-767)) 105 (|has| |#1| (-1105))) (($ $ (-917)) 100 (|has| |#1| (-1105)))) (* (($ (-407 (-563)) $) 165 (|has| |#1| (-555))) (($ $ (-407 (-563))) 164 (|has| |#1| (-555))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-563) $) 119 (|has| |#1| (-21))) (($ (-767) $) 115 (|has| |#1| (-25))) (($ (-917) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1105))))) -(((-430 |#1|) (-140) (-846)) (T -430)) -((-3160 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-112)))) (-3170 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-640 (-1169))))) (-2340 (*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-2340 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-2340 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-2340 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) (-2340 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)))) (-1497 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-536))))) (-1497 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-611 (-536))))) (-1497 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-611 (-536))))) (-1497 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1169)) (-4 *1 (-430 *4)) (-4 *4 (-846)) (-4 *4 (-611 (-536))))) (-1497 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 *1)) (-5 *4 (-1169)) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-611 (-536))))) (-3218 (*1 *2 *1) (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-430 *3)))) (-3228 (*1 *2 *1) (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -2631 (-563)))) (-4 *1 (-430 *3)))) (-3207 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-430 *3)))) (-1526 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2765 (-563)) (|:| |var| (-609 *1)))) (-4 *1 (-430 *3)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-1045)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2626 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) (-4 *1 (-430 *3)))) (-4372 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-1045)))) (-3228 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -2631 (-563)))) (-4 *1 (-430 *4)))) (-3228 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-1045)) (-4 *4 (-846)) (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -2631 (-563)))) (-4 *1 (-430 *4)))) (-3236 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-2 (|:| |val| *1) (|:| -2631 (-563)))) (-4 *1 (-430 *3)))) (-1497 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) (-5 *4 (-640 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1497 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) (-5 *4 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1497 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-640 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-1497 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-555)) (-4 *3 (-846)))) (-2636 (*1 *2 *1) (-12 (-4 *3 (-555)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) (-4 *1 (-430 *3)))) (-4362 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-555)))) (-3050 (*1 *1 *2 *2) (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-555)) (-4 *3 (-846)) (-4 *1 (-430 *3)))) (-2021 (*1 *2 *1 *3) (-12 (-5 *3 (-609 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)) (-4 *4 (-555)) (-5 *2 (-407 (-1165 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-1105))))) -(-13 (-302) (-1034 (-1169)) (-880 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -3160 ((-112) $)) (-15 -3170 (|t#1| $)) (-15 -2185 ((-640 (-1169)) $)) (-15 -2340 ($ (-1169) $)) (-15 -2340 ($ (-1169) $ $)) (-15 -2340 ($ (-1169) $ $ $)) (-15 -2340 ($ (-1169) $ $ $ $)) (-15 -2340 ($ (-1169) (-640 $))) (IF (|has| |t#1| (-611 (-536))) (PROGN (-6 (-611 (-536))) (-15 -1497 ($ $ (-1169))) (-15 -1497 ($ $ (-640 (-1169)))) (-15 -1497 ($ $)) (-15 -1497 ($ $ (-114) $ (-1169))) (-15 -1497 ($ $ (-640 (-114)) (-640 $) (-1169)))) |%noBranch|) (IF (|has| |t#1| (-1105)) (PROGN (-6 (-722)) (-15 ** ($ $ (-767))) (-15 -3218 ((-3 (-640 $) "failed") $)) (-15 -3228 ((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3207 ((-3 (-640 $) "failed") $)) (-15 -1526 ((-3 (-2 (|:| -2765 (-563)) (|:| |var| (-609 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-6 (-1045)) (-6 (-1034 (-948 |t#1|))) (-6 (-896 (-1169))) (-6 (-377 |t#1|)) (-15 -2062 ($ (-1118 |t#1| (-609 $)))) (-15 -2626 ((-1118 |t#1| (-609 $)) $)) (-15 -4372 ($ $)) (-15 -3228 ((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-114))) (-15 -3228 ((-3 (-2 (|:| |var| (-609 $)) (|:| -2631 (-563))) "failed") $ (-1169))) (-15 -3236 ((-3 (-2 (|:| |val| $) (|:| -2631 (-563))) "failed") $)) (-15 -1497 ($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ $)))) (-15 -1497 ($ $ (-640 (-1169)) (-640 (-767)) (-640 (-1 $ (-640 $))))) (-15 -1497 ($ $ (-1169) (-767) (-1 $ (-640 $)))) (-15 -1497 ($ $ (-1169) (-767) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-363)) (-6 (-1034 (-407 (-948 |t#1|)))) (-15 -2802 ($ (-418 $))) (-15 -2636 ((-1118 |t#1| (-609 $)) $)) (-15 -4362 ($ $)) (-15 -3050 ($ (-1118 |t#1| (-609 $)) (-1118 |t#1| (-609 $)))) (-15 -2062 ($ (-407 |t#1|))) (-15 -2062 ($ (-948 (-407 |t#1|)))) (-15 -2062 ($ (-407 (-948 (-407 |t#1|))))) (-15 -2021 ((-407 (-1165 $)) $ (-609 $))) (IF (|has| |t#1| (-1034 (-563))) (-6 (-1034 (-407 (-563)))) |%noBranch|)) |%noBranch|))) -(((-21) -2811 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -2811 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2811 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-563))) |has| |#1| (-555)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-555)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-555)) ((-131) -2811 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-555))) ((-613 #1=(-407 (-948 |#1|))) |has| |#1| (-555)) ((-613 (-563)) -2811 (|has| |#1| (-1045)) (|has| |#1| (-1034 (-563))) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-613 #2=(-609 $)) . T) ((-613 #3=(-948 |#1|)) |has| |#1| (-1045)) ((-613 #4=(-1169)) . T) ((-613 |#1|) . T) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) |has| |#1| (-555)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-243) |has| |#1| (-555)) ((-290) |has| |#1| (-555)) ((-307) |has| |#1| (-555)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-555)) ((-377 |#1|) |has| |#1| (-1045)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-555)) ((-473) |has| |#1| (-473)) ((-514 (-609 $) $) . T) ((-514 $ $) . T) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-555)) ((-643 |#1|) |has| |#1| (-172)) ((-643 $) -2811 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-636 (-563)) -12 (|has| |#1| (-636 (-563))) (|has| |#1| (-1045))) ((-636 |#1|) |has| |#1| (-1045)) ((-713 #0#) |has| |#1| (-555)) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) -2811 (|has| |#1| (-1105)) (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-846) . T) ((-896 (-1169)) |has| |#1| (-1045)) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-916) |has| |#1| (-555)) ((-1034 (-407 (-563))) -2811 (|has| |#1| (-1034 (-407 (-563)))) (-12 (|has| |#1| (-555)) (|has| |#1| (-1034 (-563))))) ((-1034 #1#) |has| |#1| (-555)) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 #3#) |has| |#1| (-1045)) ((-1034 #4#) . T) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-555)) ((-1051 |#1|) |has| |#1| (-172)) ((-1051 $) |has| |#1| (-555)) ((-1045) -2811 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1052) -2811 (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1105) -2811 (|has| |#1| (-1105)) (|has| |#1| (-1045)) (|has| |#1| (-555)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1093) . T) ((-1208) . T) ((-1212) |has| |#1| (-555))) -((-3873 ((|#2| |#2| |#2|) 31)) (-3674 (((-114) (-114)) 43)) (-1668 ((|#2| |#2|) 63)) (-1656 ((|#2| |#2|) 66)) (-3862 ((|#2| |#2|) 30)) (-3903 ((|#2| |#2| |#2|) 33)) (-3920 ((|#2| |#2| |#2|) 35)) (-3893 ((|#2| |#2| |#2|) 32)) (-3912 ((|#2| |#2| |#2|) 34)) (-3631 (((-112) (-114)) 41)) (-3941 ((|#2| |#2|) 37)) (-3932 ((|#2| |#2|) 36)) (-3841 ((|#2| |#2|) 25)) (-3883 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-3851 ((|#2| |#2| |#2|) 29))) -(((-431 |#1| |#2|) (-10 -7 (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -3841 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3883 (|#2| |#2| |#2|)) (-15 -3851 (|#2| |#2| |#2|)) (-15 -3862 (|#2| |#2|)) (-15 -3873 (|#2| |#2| |#2|)) (-15 -3893 (|#2| |#2| |#2|)) (-15 -3903 (|#2| |#2| |#2|)) (-15 -3912 (|#2| |#2| |#2|)) (-15 -3920 (|#2| |#2| |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1668 (|#2| |#2|))) (-13 (-846) (-555)) (-430 |#1|)) (T -431)) -((-1668 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1656 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3941 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3932 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3920 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3912 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3903 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3893 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3873 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3862 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3851 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3883 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3883 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3841 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3674 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))) -(-10 -7 (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -3841 (|#2| |#2|)) (-15 -3883 (|#2| |#2|)) (-15 -3883 (|#2| |#2| |#2|)) (-15 -3851 (|#2| |#2| |#2|)) (-15 -3862 (|#2| |#2|)) (-15 -3873 (|#2| |#2| |#2|)) (-15 -3893 (|#2| |#2| |#2|)) (-15 -3903 (|#2| |#2| |#2|)) (-15 -3912 (|#2| |#2| |#2|)) (-15 -3920 (|#2| |#2| |#2|)) (-15 -3932 (|#2| |#2|)) (-15 -3941 (|#2| |#2|)) (-15 -1656 (|#2| |#2|)) (-15 -1668 (|#2| |#2|))) -((-2135 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|) 105 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|)) 68))) -(((-432 |#1| |#2|) (-10 -7 (-15 -2135 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|))) (IF (|has| |#2| (-27)) (-15 -2135 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-555) (-846) (-147)) (-430 |#1|)) (T -432)) -((-2135 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-555) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1165 *3)) (|:| |pol2| (-1165 *3)) (|:| |prim| (-1165 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-555) (-846) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-640 (-1165 *5))) (|:| |prim| (-1165 *5)))) (-5 *1 (-432 *4 *5))))) -(-10 -7 (-15 -2135 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-640 (-1165 |#2|))) (|:| |prim| (-1165 |#2|))) (-640 |#2|))) (IF (|has| |#2| (-27)) (-15 -2135 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1165 |#2|)) (|:| |pol2| (-1165 |#2|)) (|:| |prim| (-1165 |#2|))) |#2| |#2|)) |%noBranch|)) -((-1692 (((-1262)) 19)) (-1680 (((-1165 (-407 (-563))) |#2| (-609 |#2|)) 41) (((-407 (-563)) |#2|) 25))) -(((-433 |#1| |#2|) (-10 -7 (-15 -1680 ((-407 (-563)) |#2|)) (-15 -1680 ((-1165 (-407 (-563))) |#2| (-609 |#2|))) (-15 -1692 ((-1262)))) (-13 (-846) (-555) (-1034 (-563))) (-430 |#1|)) (T -433)) -((-1692 (*1 *2) (-12 (-4 *3 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1262)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-1680 (*1 *2 *3 *4) (-12 (-5 *4 (-609 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-433 *5 *3)))) (-1680 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-407 (-563))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))) -(-10 -7 (-15 -1680 ((-407 (-563)) |#2|)) (-15 -1680 ((-1165 (-407 (-563))) |#2| (-609 |#2|))) (-15 -1692 ((-1262)))) -((-4070 (((-112) $) 32)) (-1704 (((-112) $) 34)) (-2031 (((-112) $) 35)) (-1730 (((-112) $) 38)) (-1757 (((-112) $) 33)) (-1745 (((-112) $) 37)) (-2062 (((-858) $) 20) (($ (-1151)) 31) (($ (-1169)) 26) (((-1169) $) 24) (((-1097) $) 23)) (-1716 (((-112) $) 36)) (-2943 (((-112) $ $) 17))) -(((-434) (-13 (-610 (-858)) (-10 -8 (-15 -2062 ($ (-1151))) (-15 -2062 ($ (-1169))) (-15 -2062 ((-1169) $)) (-15 -2062 ((-1097) $)) (-15 -4070 ((-112) $)) (-15 -1757 ((-112) $)) (-15 -2031 ((-112) $)) (-15 -1745 ((-112) $)) (-15 -1730 ((-112) $)) (-15 -1716 ((-112) $)) (-15 -1704 ((-112) $)) (-15 -2943 ((-112) $ $))))) (T -434)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-434)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-434)))) (-4070 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1745 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1716 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2943 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(-13 (-610 (-858)) (-10 -8 (-15 -2062 ($ (-1151))) (-15 -2062 ($ (-1169))) (-15 -2062 ((-1169) $)) (-15 -2062 ((-1097) $)) (-15 -4070 ((-112) $)) (-15 -1757 ((-112) $)) (-15 -2031 ((-112) $)) (-15 -1745 ((-112) $)) (-15 -1730 ((-112) $)) (-15 -1716 ((-112) $)) (-15 -1704 ((-112) $)) (-15 -2943 ((-112) $ $)))) -((-1781 (((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|) 72)) (-1768 (((-418 |#3|) |#3|) 34)) (-1804 (((-3 (-418 (-1165 (-48))) "failed") |#3|) 46 (|has| |#2| (-1034 (-48))))) (-1793 (((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -2744 (-112))) |#3|) 37))) -(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -1768 ((-418 |#3|) |#3|)) (-15 -1781 ((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|)) (-15 -1793 ((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -2744 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -1804 ((-3 (-418 (-1165 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-555) (-846) (-1034 (-563))) (-430 |#1|) (-1233 |#2|)) (T -435)) -((-1804 (*1 *2 *3) (|partial| -12 (-4 *5 (-1034 (-48))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-1793 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -2744 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-1781 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-407 (-563))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-1768 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5))))) -(-10 -7 (-15 -1768 ((-418 |#3|) |#3|)) (-15 -1781 ((-3 (-418 (-1165 (-407 (-563)))) "failed") |#3|)) (-15 -1793 ((-3 (|:| |overq| (-1165 (-407 (-563)))) (|:| |overan| (-1165 (-48))) (|:| -2744 (-112))) |#3|)) (IF (|has| |#2| (-1034 (-48))) (-15 -1804 ((-3 (-418 (-1165 (-48))) "failed") |#3|)) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-2989 (((-1151) $ (-1151)) NIL)) (-3029 (($ $ (-1151)) NIL)) (-2999 (((-1151) $) NIL)) (-1969 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-1934 (($ (-388)) NIL) (($ (-388) (-1151)) NIL)) (-3359 (((-388) $) NIL)) (-1938 (((-1151) $) NIL)) (-3008 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1958 (((-1262) (-1151)) 9)) (-1946 (((-1262) (-1151)) 10)) (-1935 (((-1262)) 11)) (-2062 (((-858) $) NIL)) (-3018 (($ $) 38)) (-2943 (((-112) $ $) NIL))) -(((-436) (-13 (-364 (-388) (-1151)) (-10 -7 (-15 -1969 ((-388) (-388) (-388))) (-15 -1969 ((-388) (-388))) (-15 -1958 ((-1262) (-1151))) (-15 -1946 ((-1262) (-1151))) (-15 -1935 ((-1262)))))) (T -436)) -((-1969 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1958 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436)))) (-1946 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436)))) (-1935 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-436))))) -(-13 (-364 (-388) (-1151)) (-10 -7 (-15 -1969 ((-388) (-388) (-388))) (-15 -1969 ((-388) (-388))) (-15 -1958 ((-1262) (-1151))) (-15 -1946 ((-1262) (-1151))) (-15 -1935 ((-1262))))) -((-2049 (((-112) $ $) NIL)) (-1922 (((-3 (|:| |fst| (-434)) (|:| -3986 "void")) $) 11)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1893 (($) 35)) (-1853 (($) 41)) (-1867 (($) 37)) (-1829 (($) 39)) (-1880 (($) 36)) (-1840 (($) 38)) (-1815 (($) 40)) (-1908 (((-112) $) 8)) (-2851 (((-640 (-948 (-563))) $) 19)) (-2074 (($ (-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-640 (-1169)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-640 (-948 (-563))) (-112)) 30)) (-2062 (((-858) $) 24) (($ (-434)) 32)) (-2943 (((-112) $ $) NIL))) -(((-437) (-13 (-1093) (-10 -8 (-15 -2062 ($ (-434))) (-15 -1922 ((-3 (|:| |fst| (-434)) (|:| -3986 "void")) $)) (-15 -2851 ((-640 (-948 (-563))) $)) (-15 -1908 ((-112) $)) (-15 -2074 ($ (-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-640 (-1169)) (-112))) (-15 -2074 ($ (-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-640 (-948 (-563))) (-112))) (-15 -1893 ($)) (-15 -1880 ($)) (-15 -1867 ($)) (-15 -1853 ($)) (-15 -1840 ($)) (-15 -1829 ($)) (-15 -1815 ($))))) (T -437)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *1 (-437)))) (-2851 (*1 *2 *1) (-12 (-5 *2 (-640 (-948 (-563)))) (-5 *1 (-437)))) (-1908 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-2074 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *3 (-640 (-1169))) (-5 *4 (-112)) (-5 *1 (-437)))) (-2074 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-1893 (*1 *1) (-5 *1 (-437))) (-1880 (*1 *1) (-5 *1 (-437))) (-1867 (*1 *1) (-5 *1 (-437))) (-1853 (*1 *1) (-5 *1 (-437))) (-1840 (*1 *1) (-5 *1 (-437))) (-1829 (*1 *1) (-5 *1 (-437))) (-1815 (*1 *1) (-5 *1 (-437)))) -(-13 (-1093) (-10 -8 (-15 -2062 ($ (-434))) (-15 -1922 ((-3 (|:| |fst| (-434)) (|:| -3986 "void")) $)) (-15 -2851 ((-640 (-948 (-563))) $)) (-15 -1908 ((-112) $)) (-15 -2074 ($ (-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-640 (-1169)) (-112))) (-15 -2074 ($ (-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-640 (-948 (-563))) (-112))) (-15 -1893 ($)) (-15 -1880 ($)) (-15 -1867 ($)) (-15 -1853 ($)) (-15 -1840 ($)) (-15 -1829 ($)) (-15 -1815 ($)))) -((-2049 (((-112) $ $) NIL)) (-3359 (((-1169) $) 8)) (-1938 (((-1151) $) 17)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 14))) -(((-438 |#1|) (-13 (-1093) (-10 -8 (-15 -3359 ((-1169) $)))) (-1169)) (T -438)) -((-3359 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-438 *3)) (-14 *3 *2)))) -(-13 (-1093) (-10 -8 (-15 -3359 ((-1169) $)))) -((-2049 (((-112) $ $) NIL)) (-1380 (((-1111) $) 7)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 13)) (-2943 (((-112) $ $) 9))) -(((-439) (-13 (-1093) (-10 -8 (-15 -1380 ((-1111) $))))) (T -439)) -((-1380 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-439))))) -(-13 (-1093) (-10 -8 (-15 -1380 ((-1111) $)))) -((-4000 (((-1262) $) 7)) (-2062 (((-858) $) 8) (($ (-1257 (-694))) 14) (($ (-640 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 11))) +((-4265 (*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) (-1785 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-1785 (*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) (-5 *2 (-685 *4)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3147 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) (-1551 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-949 *3))))) (-2340 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-2235 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) (-3738 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-3359 (*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172)))) (-4256 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-3493 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1789 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3)))) (-1903 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-949 *3))))) (-3760 (*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) (-5 *2 (-1166 (-949 *3))))) (-1918 (*1 *1 *2 *1) (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172))))) +(-13 (-367 |t#1|) (-10 -8 (-15 -4265 ((-1259 $))) (-15 -1785 ((-1259 |t#1|) $)) (-15 -1785 ((-685 |t#1|) (-1259 $))) (-15 -4382 (|t#1| $ (-564))) (-15 -3147 ((-1259 (-685 |t#1|)))) (-15 -1551 ((-641 (-949 |t#1|)))) (-15 -2340 ($ (-1259 |t#1|))) (-15 -2235 ((-1259 |t#1|) $)) (-15 -2235 ($ (-1259 |t#1|))) (-15 -3738 (|t#1|)) (-15 -3359 (|t#1|)) (-15 -4256 ((-685 |t#1|))) (-15 -3493 ((-685 |t#1|))) (-15 -1789 ((-685 |t#1|) $)) (-15 -1952 ((-685 |t#1|) $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -1903 ((-1166 (-949 |t#1|)))) (-15 -3760 ((-1166 (-949 |t#1|))))) |%noBranch|) (-15 -1918 ($ (-685 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-367 |#1|) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-741 |#1|) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 60)) (-4342 (($ $) 78)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 190)) (-1948 (($ $) NIL)) (-1832 (((-112) $) 48)) (-4176 ((|#1| $) 16)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-1213)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-1546 (($ |#1| (-564)) 43)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 148)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 74)) (-3951 (((-3 $ "failed") $) 164)) (-2646 (((-3 (-407 (-564)) "failed") $) 84 (|has| |#1| (-545)))) (-4072 (((-112) $) 80 (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) 91 (|has| |#1| (-545)))) (-3086 (($ |#1| (-564)) 45)) (-4188 (((-112) $) 212 (|has| |#1| (-1213)))) (-3840 (((-112) $) 62)) (-1489 (((-768) $) 51)) (-2179 (((-3 "nil" "sqfr" "irred" "prime") $ (-564)) 174)) (-3950 ((|#1| $ (-564)) 173)) (-3879 (((-564) $ (-564)) 172)) (-2183 (($ |#1| (-564)) 42)) (-2187 (($ (-1 |#1| |#1|) $) 182)) (-2493 (($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564))))) 79)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2217 (((-1152) $) NIL)) (-2385 (($ |#1| (-564)) 44)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 191 (|has| |#1| (-452)))) (-2771 (($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime")) 41)) (-2267 (((-641 (-2 (|:| -4127 |#1|) (|:| -2515 (-564)))) $) 73)) (-2464 (((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $) 12)) (-4127 (((-418 $) $) NIL (|has| |#1| (-1213)))) (-1321 (((-3 $ "failed") $ $) 175)) (-2515 (((-564) $) 167)) (-3512 ((|#1| $) 75)) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 100 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 106 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) $) NIL (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-1170)) (-641 $)) 107 (|has| |#1| (-514 (-1170) $))) (($ $ (-641 (-294 $))) 103 (|has| |#1| (-309 $))) (($ $ (-294 $)) NIL (|has| |#1| (-309 $))) (($ $ $ $) NIL (|has| |#1| (-309 $))) (($ $ (-641 $) (-641 $)) NIL (|has| |#1| (-309 $)))) (-4382 (($ $ |#1|) 92 (|has| |#1| (-286 |#1| |#1|))) (($ $ $) 93 (|has| |#1| (-286 $ $)))) (-4117 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) 181)) (-2235 (((-536) $) 39 (|has| |#1| (-612 (-536)))) (((-379) $) 113 (|has| |#1| (-1019))) (((-225) $) 119 (|has| |#1| (-1019)))) (-3742 (((-859) $) 146) (($ (-564)) 65) (($ $) NIL) (($ |#1|) 64) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564)))))) (-3270 (((-768)) 67 T CONST)) (-3360 (((-112) $ $) NIL)) (-4311 (($) 53 T CONST)) (-4321 (($) 52 T CONST)) (-2124 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1705 (((-112) $ $) 159)) (-1790 (($ $) 161) (($ $ $) NIL)) (-1780 (($ $ $) 179)) (** (($ $ (-918)) NIL) (($ $ (-768)) 125)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 69) (($ $ $) 68) (($ |#1| $) 70) (($ $ |#1|) NIL))) +(((-418 |#1|) (-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -3512 (|#1| $)) (-15 -2515 ((-564) $)) (-15 -2493 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -2464 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -2183 ($ |#1| (-564))) (-15 -2267 ((-641 (-2 (|:| -4127 |#1|) (|:| -2515 (-564)))) $)) (-15 -2385 ($ |#1| (-564))) (-15 -3879 ((-564) $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -2179 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -1489 ((-768) $)) (-15 -3086 ($ |#1| (-564))) (-15 -1546 ($ |#1| (-564))) (-15 -2771 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4176 (|#1| $)) (-15 -4342 ($ $)) (-15 -2187 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) (-556)) (T -418)) +((-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) (-3512 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2493 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-564))))) (-4 *2 (-556)) (-5 *1 (-418 *2)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2183 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -4127 *3) (|:| -2515 (-564))))) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-2385 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-3879 (*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2179 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *4)) (-4 *4 (-556)))) (-1489 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) (-3086 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-1546 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-2771 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-4176 (*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-4342 (*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) (-2646 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556))))) +(-13 (-556) (-231 |#1|) (-38 |#1|) (-338 |#1|) (-411 |#1|) (-10 -8 (-15 -3512 (|#1| $)) (-15 -2515 ((-564) $)) (-15 -2493 ($ |#1| (-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))))) (-15 -2464 ((-641 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-564)))) $)) (-15 -2183 ($ |#1| (-564))) (-15 -2267 ((-641 (-2 (|:| -4127 |#1|) (|:| -2515 (-564)))) $)) (-15 -2385 ($ |#1| (-564))) (-15 -3879 ((-564) $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -2179 ((-3 "nil" "sqfr" "irred" "prime") $ (-564))) (-15 -1489 ((-768) $)) (-15 -3086 ($ |#1| (-564))) (-15 -1546 ($ |#1| (-564))) (-15 -2771 ($ |#1| (-564) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4176 (|#1| $)) (-15 -4342 ($ $)) (-15 -2187 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-452)) (-6 (-452)) |%noBranch|) (IF (|has| |#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |#1| (-1213)) (-6 (-1213)) |%noBranch|) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-286 $ $)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |#1| (-309 $)) (-6 (-309 $)) |%noBranch|) (IF (|has| |#1| (-514 (-1170) $)) (-6 (-514 (-1170) $)) |%noBranch|))) +((-2359 (((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|)) 28)) (-3218 (((-418 |#1|) (-418 |#1|) (-418 |#1|)) 17))) +(((-419 |#1|) (-10 -7 (-15 -2359 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3218 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) (-556)) (T -419)) +((-3218 (*1 *2 *2 *2) (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3)))) (-2359 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) (-5 *1 (-419 *4))))) +(-10 -7 (-15 -2359 ((-418 |#1|) (-418 |#1|) (-1 (-418 |#1|) |#1|))) (-15 -3218 ((-418 |#1|) (-418 |#1|) (-418 |#1|)))) +((-2396 ((|#2| |#2|) 186)) (-1324 (((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112)) 60))) +(((-420 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1324 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2396 (|#2| |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -420)) +((-2396 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) (-14 *4 (-1170)) (-14 *5 *2))) (-1324 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-14 *6 (-1170)) (-14 *7 *3)))) +(-10 -7 (-15 -1324 ((-3 (|:| |%expansion| (-313 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112))) (-15 -2396 (|#2| |#2|))) +((-2187 ((|#4| (-1 |#3| |#1|) |#2|) 11))) +(((-421 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-1046) (-847)) (-430 |#1|) (-13 (-1046) (-847)) (-430 |#3|)) (T -421)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1046) (-847))) (-4 *6 (-13 (-1046) (-847))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5))))) +(-10 -7 (-15 -2187 (|#4| (-1 |#3| |#1|) |#2|))) +((-2396 ((|#2| |#2|) 103)) (-4157 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 52)) (-2657 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152)) 170))) +(((-422 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4157 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2657 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2396 (|#2| |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|) (-10 -8 (-15 -3742 ($ |#3|)))) (-845) (-13 (-1237 |#2| |#3|) (-363) (-1194) (-10 -8 (-15 -4117 ($ $)) (-15 -3128 ($ $)))) (-980 |#4|) (-1170)) (T -422)) +((-2396 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -3742 ($ *4))))) (-4 *4 (-845)) (-4 *5 (-13 (-1237 *2 *4) (-363) (-1194) (-10 -8 (-15 -4117 ($ $)) (-15 -3128 ($ $))))) (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-980 *5)) (-14 *7 (-1170)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -3742 ($ *7))))) (-4 *7 (-845)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -4117 ($ $)) (-15 -3128 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) (-14 *10 (-1170)))) (-4157 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -3742 ($ *7))))) (-4 *7 (-845)) (-4 *8 (-13 (-1237 *3 *7) (-363) (-1194) (-10 -8 (-15 -4117 ($ $)) (-15 -3128 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) (-14 *10 (-1170))))) +(-10 -7 (-15 -4157 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2657 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152))))) |#2| (-112) (-1152))) (-15 -2396 (|#2| |#2|))) +((-1525 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1699 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-2187 ((|#4| (-1 |#3| |#1|) |#2|) 17))) +(((-423 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1699 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1525 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1094) (-425 |#1|) (-1094) (-425 |#3|)) (T -423)) +((-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) (-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5))))) +(-10 -7 (-15 -2187 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1699 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1525 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) +((-3026 (($) 52)) (-3518 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 46)) (-2570 (($ $ $) 45)) (-1905 (((-112) $ $) 34)) (-1938 (((-768)) 56)) (-3688 (($ (-641 |#2|)) 23) (($) NIL)) (-2821 (($) 67)) (-3296 (((-112) $ $) 15)) (-2799 ((|#2| $) 78)) (-2848 ((|#2| $) 76)) (-1906 (((-918) $) 71)) (-1353 (($ $ $) 41)) (-1495 (($ (-918)) 61)) (-2365 (($ $ |#2|) NIL) (($ $ $) 44)) (-3873 (((-768) (-1 (-112) |#2|) $) NIL) (((-768) |#2| $) 31)) (-3753 (($ (-641 |#2|)) 27)) (-2926 (($ $) 54)) (-3742 (((-859) $) 39)) (-3749 (((-768) $) 24)) (-4194 (($ (-641 |#2|)) 22) (($) NIL)) (-1705 (((-112) $ $) 19))) +(((-424 |#1| |#2|) (-10 -8 (-15 -1938 ((-768))) (-15 -1495 (|#1| (-918))) (-15 -1906 ((-918) |#1|)) (-15 -2821 (|#1|)) (-15 -2799 (|#2| |#1|)) (-15 -2848 (|#2| |#1|)) (-15 -3026 (|#1|)) (-15 -2926 (|#1| |#1|)) (-15 -3749 ((-768) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -3296 ((-112) |#1| |#1|)) (-15 -4194 (|#1|)) (-15 -4194 (|#1| (-641 |#2|))) (-15 -3688 (|#1|)) (-15 -3688 (|#1| (-641 |#2|))) (-15 -1353 (|#1| |#1| |#1|)) (-15 -2365 (|#1| |#1| |#1|)) (-15 -2365 (|#1| |#1| |#2|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -1905 ((-112) |#1| |#1|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -3518 (|#1| |#1| |#2|)) (-15 -3518 (|#1| |#2| |#1|)) (-15 -3753 (|#1| (-641 |#2|))) (-15 -3873 ((-768) |#2| |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|))) (-425 |#2|) (-1094)) (T -424)) +((-1938 (*1 *2) (-12 (-4 *4 (-1094)) (-5 *2 (-768)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4))))) +(-10 -8 (-15 -1938 ((-768))) (-15 -1495 (|#1| (-918))) (-15 -1906 ((-918) |#1|)) (-15 -2821 (|#1|)) (-15 -2799 (|#2| |#1|)) (-15 -2848 (|#2| |#1|)) (-15 -3026 (|#1|)) (-15 -2926 (|#1| |#1|)) (-15 -3749 ((-768) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -3296 ((-112) |#1| |#1|)) (-15 -4194 (|#1|)) (-15 -4194 (|#1| (-641 |#2|))) (-15 -3688 (|#1|)) (-15 -3688 (|#1| (-641 |#2|))) (-15 -1353 (|#1| |#1| |#1|)) (-15 -2365 (|#1| |#1| |#1|)) (-15 -2365 (|#1| |#1| |#2|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -1905 ((-112) |#1| |#1|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -3518 (|#1| |#1| |#2|)) (-15 -3518 (|#1| |#2| |#1|)) (-15 -3753 (|#1| (-641 |#2|))) (-15 -3873 ((-768) |#2| |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|))) +((-3732 (((-112) $ $) 19)) (-3026 (($) 67 (|has| |#1| (-368)))) (-3518 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-2570 (($ $ $) 78)) (-1905 (((-112) $ $) 79)) (-2969 (((-112) $ (-768)) 8)) (-1938 (((-768)) 61 (|has| |#1| (-368)))) (-3688 (($ (-641 |#1|)) 74) (($) 73)) (-2068 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-1996 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2366 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-2821 (($) 64 (|has| |#1| (-368)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-3296 (((-112) $ $) 70)) (-2275 (((-112) $ (-768)) 9)) (-2799 ((|#1| $) 65 (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2848 ((|#1| $) 66 (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1906 (((-918) $) 63 (|has| |#1| (-368)))) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22)) (-1353 (($ $ $) 75)) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40)) (-1495 (($ (-918)) 62 (|has| |#1| (-368)))) (-3864 (((-1114) $) 21)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-2365 (($ $ |#1|) 77) (($ $ $) 76)) (-4085 (($) 49) (($ (-641 |#1|)) 48)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 50)) (-2926 (($ $) 68 (|has| |#1| (-368)))) (-3742 (((-859) $) 18)) (-3749 (((-768) $) 69)) (-4194 (($ (-641 |#1|)) 72) (($) 71)) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20)) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-425 |#1|) (-140) (-1094)) (T -425)) +((-3749 (*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-768)))) (-2926 (*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368)))) (-3026 (*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094)))) (-2848 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847))))) +(-13 (-229 |t#1|) (-1092 |t#1|) (-10 -8 (-6 -4411) (-15 -3749 ((-768) $)) (IF (|has| |t#1| (-368)) (PROGN (-6 (-368)) (-15 -2926 ($ $)) (-15 -3026 ($))) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-15 -2848 (|t#1| $)) (-15 -2799 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-229 |#1|) . T) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-368) |has| |#1| (-368)) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) +((-2709 (((-585 |#2|) |#2| (-1170)) 38)) (-2147 (((-585 |#2|) |#2| (-1170)) 21)) (-2670 ((|#2| |#2| (-1170)) 26))) +(((-426 |#1| |#2|) (-10 -7 (-15 -2147 ((-585 |#2|) |#2| (-1170))) (-15 -2709 ((-585 |#2|) |#2| (-1170))) (-15 -2670 (|#2| |#2| (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-29 |#1|))) (T -426)) +((-2670 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) (-2709 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5))))) (-2147 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) (-4 *3 (-13 (-1194) (-29 *5)))))) +(-10 -7 (-15 -2147 ((-585 |#2|) |#2| (-1170))) (-15 -2709 ((-585 |#2|) |#2| (-1170))) (-15 -2670 (|#2| |#2| (-1170)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-1814 (($ |#2| |#1|) 37)) (-3695 (($ |#2| |#1|) 35)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-331 |#2|)) 25)) (-3270 (((-768)) NIL T CONST)) (-4311 (($) 10 T CONST)) (-4321 (($) 16 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 36)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-427 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4398)) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|) |%noBranch|) (-15 -3742 ($ |#1|)) (-15 -3742 ($ (-331 |#2|))) (-15 -1814 ($ |#2| |#1|)) (-15 -3695 ($ |#2| |#1|)))) (-13 (-172) (-38 (-407 (-564)))) (-13 (-847) (-21))) (T -427)) +((-3742 (*1 *1 *2) (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) (-4 *3 (-13 (-847) (-21))))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-847) (-21))) (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) (-1814 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-847) (-21))))) (-3695 (*1 *1 *2 *3) (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) (-4 *2 (-13 (-847) (-21)))))) +(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4398)) (IF (|has| |#1| (-6 -4398)) (-6 -4398) |%noBranch|) |%noBranch|) (-15 -3742 ($ |#1|)) (-15 -3742 ($ (-331 |#2|))) (-15 -1814 ($ |#2| |#1|)) (-15 -3695 ($ |#2| |#1|)))) +((-3128 (((-3 |#2| (-641 |#2|)) |#2| (-1170)) 115))) +(((-428 |#1| |#2|) (-10 -7 (-15 -3128 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -428)) +((-3128 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) (-4 *3 (-13 (-1194) (-956) (-29 *5)))))) +(-10 -7 (-15 -3128 ((-3 |#2| (-641 |#2|)) |#2| (-1170)))) +((-4269 (((-641 (-1170)) $) 80)) (-4097 (((-407 (-1166 $)) $ (-610 $)) 310)) (-3148 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) 274)) (-2111 (((-3 (-610 $) "failed") $) NIL) (((-3 (-1170) "failed") $) 83) (((-3 (-564) "failed") $) NIL) (((-3 |#2| "failed") $) 270) (((-3 (-407 (-949 |#2|)) "failed") $) 360) (((-3 (-949 |#2|) "failed") $) 272) (((-3 (-407 (-564)) "failed") $) NIL)) (-2239 (((-610 $) $) NIL) (((-1170) $) 30) (((-564) $) NIL) ((|#2| $) 268) (((-407 (-949 |#2|)) $) 342) (((-949 |#2|) $) 269) (((-407 (-564)) $) NIL)) (-4058 (((-114) (-114)) 49)) (-3834 (($ $) 98)) (-4242 (((-3 (-610 $) "failed") $) 265)) (-4087 (((-641 (-610 $)) $) 266)) (-3514 (((-3 (-641 $) "failed") $) 284)) (-3343 (((-3 (-2 (|:| |val| $) (|:| -2515 (-564))) "failed") $) 291)) (-4386 (((-3 (-641 $) "failed") $) 282)) (-2705 (((-3 (-2 (|:| -1762 (-564)) (|:| |var| (-610 $))) "failed") $) 301)) (-3758 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $) 288) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-114)) 252) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-1170)) 254)) (-4383 (((-112) $) 19)) (-1296 ((|#2| $) 21)) (-2416 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) 273) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 108) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL) (($ $ (-1170)) 62) (($ $ (-641 (-1170))) 277) (($ $) 278) (($ $ (-114) $ (-1170)) 65) (($ $ (-641 (-114)) (-641 $) (-1170)) 72) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 119) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 279) (($ $ (-1170) (-768) (-1 $ (-641 $))) 104) (($ $ (-1170) (-768) (-1 $ $)) 103)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) 118)) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) 275)) (-2090 (($ $) 321)) (-2235 (((-889 (-564)) $) 294) (((-889 (-379)) $) 298) (($ (-418 $)) 356) (((-536) $) NIL)) (-3742 (((-859) $) 276) (($ (-610 $)) 92) (($ (-1170)) 26) (($ |#2|) NIL) (($ (-1119 |#2| (-610 $))) NIL) (($ (-407 |#2|)) 326) (($ (-949 (-407 |#2|))) 365) (($ (-407 (-949 (-407 |#2|)))) 338) (($ (-407 (-949 |#2|))) 332) (($ $) NIL) (($ (-949 |#2|)) 214) (($ (-407 (-564))) 370) (($ (-564)) NIL)) (-3270 (((-768)) 87)) (-2095 (((-112) (-114)) 44)) (-2591 (($ (-1170) $) 33) (($ (-1170) $ $) 34) (($ (-1170) $ $ $) 35) (($ (-1170) $ $ $ $) 36) (($ (-1170) (-641 $)) 41)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#2| $) 303) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL))) +(((-429 |#1| |#2|) (-10 -8 (-15 * (|#1| (-918) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3742 (|#1| (-564))) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -3742 (|#1| (-949 |#2|))) (-15 -2111 ((-3 (-949 |#2|) "failed") |#1|)) (-15 -2239 ((-949 |#2|) |#1|)) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3742 (|#1| (-407 (-949 |#2|)))) (-15 -2111 ((-3 (-407 (-949 |#2|)) "failed") |#1|)) (-15 -2239 ((-407 (-949 |#2|)) |#1|)) (-15 -4097 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -3742 (|#1| (-407 (-949 (-407 |#2|))))) (-15 -3742 (|#1| (-949 (-407 |#2|)))) (-15 -3742 (|#1| (-407 |#2|))) (-15 -2090 (|#1| |#1|)) (-15 -2235 (|#1| (-418 |#1|))) (-15 -2416 (|#1| |#1| (-1170) (-768) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-1170) (-768) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| |#1|)))) (-15 -3343 ((-3 (-2 (|:| |val| |#1|) (|:| -2515 (-564))) "failed") |#1|)) (-15 -3758 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2515 (-564))) "failed") |#1| (-1170))) (-15 -3758 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2515 (-564))) "failed") |#1| (-114))) (-15 -3834 (|#1| |#1|)) (-15 -3742 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -2705 ((-3 (-2 (|:| -1762 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -4386 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3758 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2515 (-564))) "failed") |#1|)) (-15 -3514 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -2416 (|#1| |#1| (-114) |#1| (-1170))) (-15 -2416 (|#1| |#1|)) (-15 -2416 (|#1| |#1| (-641 (-1170)))) (-15 -2416 (|#1| |#1| (-1170))) (-15 -2591 (|#1| (-1170) (-641 |#1|))) (-15 -2591 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -2591 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -2591 (|#1| (-1170) |#1| |#1|)) (-15 -2591 (|#1| (-1170) |#1|)) (-15 -4269 ((-641 (-1170)) |#1|)) (-15 -1296 (|#2| |#1|)) (-15 -4383 ((-112) |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -3742 (|#1| (-1170))) (-15 -2111 ((-3 (-1170) "failed") |#1|)) (-15 -2239 ((-1170) |#1|)) (-15 -2416 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2416 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -4087 ((-641 (-610 |#1|)) |#1|)) (-15 -4242 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3148 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3148 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3148 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2416 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -3742 (|#1| (-610 |#1|))) (-15 -2111 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2239 ((-610 |#1|) |#1|)) (-15 -3742 ((-859) |#1|))) (-430 |#2|) (-847)) (T -429)) +((-4058 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *4 (-847)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) (-3270 (*1 *2) (-12 (-4 *4 (-847)) (-5 *2 (-768)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) +(-10 -8 (-15 * (|#1| (-918) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3742 (|#1| (-564))) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -3742 (|#1| (-949 |#2|))) (-15 -2111 ((-3 (-949 |#2|) "failed") |#1|)) (-15 -2239 ((-949 |#2|) |#1|)) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3742 (|#1| |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -3742 (|#1| (-407 (-949 |#2|)))) (-15 -2111 ((-3 (-407 (-949 |#2|)) "failed") |#1|)) (-15 -2239 ((-407 (-949 |#2|)) |#1|)) (-15 -4097 ((-407 (-1166 |#1|)) |#1| (-610 |#1|))) (-15 -3742 (|#1| (-407 (-949 (-407 |#2|))))) (-15 -3742 (|#1| (-949 (-407 |#2|)))) (-15 -3742 (|#1| (-407 |#2|))) (-15 -2090 (|#1| |#1|)) (-15 -2235 (|#1| (-418 |#1|))) (-15 -2416 (|#1| |#1| (-1170) (-768) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-1170) (-768) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-768)) (-641 (-1 |#1| |#1|)))) (-15 -3343 ((-3 (-2 (|:| |val| |#1|) (|:| -2515 (-564))) "failed") |#1|)) (-15 -3758 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2515 (-564))) "failed") |#1| (-1170))) (-15 -3758 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2515 (-564))) "failed") |#1| (-114))) (-15 -3834 (|#1| |#1|)) (-15 -3742 (|#1| (-1119 |#2| (-610 |#1|)))) (-15 -2705 ((-3 (-2 (|:| -1762 (-564)) (|:| |var| (-610 |#1|))) "failed") |#1|)) (-15 -4386 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -3758 ((-3 (-2 (|:| |var| (-610 |#1|)) (|:| -2515 (-564))) "failed") |#1|)) (-15 -3514 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 |#1|) (-1170))) (-15 -2416 (|#1| |#1| (-114) |#1| (-1170))) (-15 -2416 (|#1| |#1|)) (-15 -2416 (|#1| |#1| (-641 (-1170)))) (-15 -2416 (|#1| |#1| (-1170))) (-15 -2591 (|#1| (-1170) (-641 |#1|))) (-15 -2591 (|#1| (-1170) |#1| |#1| |#1| |#1|)) (-15 -2591 (|#1| (-1170) |#1| |#1| |#1|)) (-15 -2591 (|#1| (-1170) |#1| |#1|)) (-15 -2591 (|#1| (-1170) |#1|)) (-15 -4269 ((-641 (-1170)) |#1|)) (-15 -1296 (|#2| |#1|)) (-15 -4383 ((-112) |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -3742 (|#1| (-1170))) (-15 -2111 ((-3 (-1170) "failed") |#1|)) (-15 -2239 ((-1170) |#1|)) (-15 -2416 (|#1| |#1| (-114) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-114) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-114)) (-641 (-1 |#1| |#1|)))) (-15 -2416 (|#1| |#1| (-1170) (-1 |#1| |#1|))) (-15 -2416 (|#1| |#1| (-1170) (-1 |#1| (-641 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| (-641 |#1|))))) (-15 -2416 (|#1| |#1| (-641 (-1170)) (-641 (-1 |#1| |#1|)))) (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -4087 ((-641 (-610 |#1|)) |#1|)) (-15 -4242 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -3148 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -3148 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -3148 (|#1| |#1| (-294 |#1|))) (-15 -4382 (|#1| (-114) (-641 |#1|))) (-15 -4382 (|#1| (-114) |#1| |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1| |#1|)) (-15 -4382 (|#1| (-114) |#1|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2416 (|#1| |#1| (-641 (-610 |#1|)) (-641 |#1|))) (-15 -2416 (|#1| |#1| (-610 |#1|) |#1|)) (-15 -3742 (|#1| (-610 |#1|))) (-15 -2111 ((-3 (-610 |#1|) "failed") |#1|)) (-15 -2239 ((-610 |#1|) |#1|)) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 114 (|has| |#1| (-25)))) (-4269 (((-641 (-1170)) $) 201)) (-4097 (((-407 (-1166 $)) $ (-610 $)) 169 (|has| |#1| (-556)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 141 (|has| |#1| (-556)))) (-1948 (($ $) 142 (|has| |#1| (-556)))) (-1832 (((-112) $) 144 (|has| |#1| (-556)))) (-2084 (((-641 (-610 $)) $) 44)) (-3239 (((-3 $ "failed") $ $) 116 (|has| |#1| (-21)))) (-3148 (($ $ (-294 $)) 56) (($ $ (-641 (-294 $))) 55) (($ $ (-641 (-610 $)) (-641 $)) 54)) (-2249 (($ $) 161 (|has| |#1| (-556)))) (-3048 (((-418 $) $) 162 (|has| |#1| (-556)))) (-2377 (((-112) $ $) 152 (|has| |#1| (-556)))) (-2818 (($) 102 (-4030 (|has| |#1| (-1106)) (|has| |#1| (-25))) CONST)) (-2111 (((-3 (-610 $) "failed") $) 69) (((-3 (-1170) "failed") $) 214) (((-3 (-564) "failed") $) 208 (|has| |#1| (-1035 (-564)))) (((-3 |#1| "failed") $) 205) (((-3 (-407 (-949 |#1|)) "failed") $) 167 (|has| |#1| (-556))) (((-3 (-949 |#1|) "failed") $) 121 (|has| |#1| (-1046))) (((-3 (-407 (-564)) "failed") $) 96 (-4030 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-2239 (((-610 $) $) 70) (((-1170) $) 215) (((-564) $) 207 (|has| |#1| (-1035 (-564)))) ((|#1| $) 206) (((-407 (-949 |#1|)) $) 168 (|has| |#1| (-556))) (((-949 |#1|) $) 122 (|has| |#1| (-1046))) (((-407 (-564)) $) 97 (-4030 (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564))))))) (-1373 (($ $ $) 156 (|has| |#1| (-556)))) (-3039 (((-685 (-564)) (-685 $)) 135 (-4267 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 134 (-4267 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 133 (|has| |#1| (-1046))) (((-685 |#1|) (-685 $)) 132 (|has| |#1| (-1046)))) (-3951 (((-3 $ "failed") $) 104 (|has| |#1| (-1106)))) (-1350 (($ $ $) 155 (|has| |#1| (-556)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 150 (|has| |#1| (-556)))) (-4188 (((-112) $) 163 (|has| |#1| (-556)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 210 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 209 (|has| |#1| (-883 (-379))))) (-2211 (($ $) 51) (($ (-641 $)) 50)) (-3423 (((-641 (-114)) $) 43)) (-4058 (((-114) (-114)) 42)) (-3840 (((-112) $) 103 (|has| |#1| (-1106)))) (-1801 (((-112) $) 22 (|has| $ (-1035 (-564))))) (-3834 (($ $) 184 (|has| |#1| (-1046)))) (-1625 (((-1119 |#1| (-610 $)) $) 185 (|has| |#1| (-1046)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 159 (|has| |#1| (-556)))) (-2176 (((-1166 $) (-610 $)) 25 (|has| $ (-1046)))) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2187 (($ (-1 $ $) (-610 $)) 36)) (-4242 (((-3 (-610 $) "failed") $) 46)) (-2529 (($ (-641 $)) 148 (|has| |#1| (-556))) (($ $ $) 147 (|has| |#1| (-556)))) (-2217 (((-1152) $) 9)) (-4087 (((-641 (-610 $)) $) 45)) (-1697 (($ (-114) $) 38) (($ (-114) (-641 $)) 37)) (-3514 (((-3 (-641 $) "failed") $) 190 (|has| |#1| (-1106)))) (-3343 (((-3 (-2 (|:| |val| $) (|:| -2515 (-564))) "failed") $) 181 (|has| |#1| (-1046)))) (-4386 (((-3 (-641 $) "failed") $) 188 (|has| |#1| (-25)))) (-2705 (((-3 (-2 (|:| -1762 (-564)) (|:| |var| (-610 $))) "failed") $) 187 (|has| |#1| (-25)))) (-3758 (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $) 189 (|has| |#1| (-1106))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-114)) 183 (|has| |#1| (-1046))) (((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-1170)) 182 (|has| |#1| (-1046)))) (-4211 (((-112) $ (-114)) 40) (((-112) $ (-1170)) 39)) (-4373 (($ $) 106 (-4030 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-3724 (((-768) $) 47)) (-3864 (((-1114) $) 10)) (-4383 (((-112) $) 203)) (-1296 ((|#1| $) 202)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 149 (|has| |#1| (-556)))) (-2577 (($ (-641 $)) 146 (|has| |#1| (-556))) (($ $ $) 145 (|has| |#1| (-556)))) (-3755 (((-112) $ $) 35) (((-112) $ (-1170)) 34)) (-4127 (((-418 $) $) 160 (|has| |#1| (-556)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 158 (|has| |#1| (-556))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 157 (|has| |#1| (-556)))) (-1321 (((-3 $ "failed") $ $) 140 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 151 (|has| |#1| (-556)))) (-1497 (((-112) $) 23 (|has| $ (-1035 (-564))))) (-2416 (($ $ (-610 $) $) 67) (($ $ (-641 (-610 $)) (-641 $)) 66) (($ $ (-641 (-294 $))) 65) (($ $ (-294 $)) 64) (($ $ $ $) 63) (($ $ (-641 $) (-641 $)) 62) (($ $ (-641 (-1170)) (-641 (-1 $ $))) 33) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) 32) (($ $ (-1170) (-1 $ (-641 $))) 31) (($ $ (-1170) (-1 $ $)) 30) (($ $ (-641 (-114)) (-641 (-1 $ $))) 29) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) 28) (($ $ (-114) (-1 $ (-641 $))) 27) (($ $ (-114) (-1 $ $)) 26) (($ $ (-1170)) 195 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170))) 194 (|has| |#1| (-612 (-536)))) (($ $) 193 (|has| |#1| (-612 (-536)))) (($ $ (-114) $ (-1170)) 192 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-114)) (-641 $) (-1170)) 191 (|has| |#1| (-612 (-536)))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $))) 180 (|has| |#1| (-1046))) (($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $)))) 179 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ (-641 $))) 178 (|has| |#1| (-1046))) (($ $ (-1170) (-768) (-1 $ $)) 177 (|has| |#1| (-1046)))) (-4061 (((-768) $) 153 (|has| |#1| (-556)))) (-4382 (($ (-114) $) 61) (($ (-114) $ $) 60) (($ (-114) $ $ $) 59) (($ (-114) $ $ $ $) 58) (($ (-114) (-641 $)) 57)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 154 (|has| |#1| (-556)))) (-1928 (($ $) 49) (($ $ $) 48)) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) 126 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 125 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 124 (|has| |#1| (-1046))) (($ $ (-1170)) 123 (|has| |#1| (-1046)))) (-2090 (($ $) 174 (|has| |#1| (-556)))) (-1634 (((-1119 |#1| (-610 $)) $) 175 (|has| |#1| (-556)))) (-3925 (($ $) 24 (|has| $ (-1046)))) (-2235 (((-889 (-564)) $) 212 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 211 (|has| |#1| (-612 (-889 (-379))))) (($ (-418 $)) 176 (|has| |#1| (-556))) (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-2766 (($ $ $) 109 (|has| |#1| (-473)))) (-3671 (($ $ $) 110 (|has| |#1| (-473)))) (-3742 (((-859) $) 11) (($ (-610 $)) 68) (($ (-1170)) 213) (($ |#1|) 204) (($ (-1119 |#1| (-610 $))) 186 (|has| |#1| (-1046))) (($ (-407 |#1|)) 172 (|has| |#1| (-556))) (($ (-949 (-407 |#1|))) 171 (|has| |#1| (-556))) (($ (-407 (-949 (-407 |#1|)))) 170 (|has| |#1| (-556))) (($ (-407 (-949 |#1|))) 166 (|has| |#1| (-556))) (($ $) 139 (|has| |#1| (-556))) (($ (-949 |#1|)) 120 (|has| |#1| (-1046))) (($ (-407 (-564))) 95 (-4030 (|has| |#1| (-556)) (-12 (|has| |#1| (-1035 (-564))) (|has| |#1| (-556))) (|has| |#1| (-1035 (-407 (-564)))))) (($ (-564)) 94 (-4030 (|has| |#1| (-1046)) (|has| |#1| (-1035 (-564)))))) (-4253 (((-3 $ "failed") $) 136 (|has| |#1| (-145)))) (-3270 (((-768)) 131 (|has| |#1| (-1046)) CONST)) (-1523 (($ $) 53) (($ (-641 $)) 52)) (-2095 (((-112) (-114)) 41)) (-3360 (((-112) $ $) 143 (|has| |#1| (-556)))) (-2591 (($ (-1170) $) 200) (($ (-1170) $ $) 199) (($ (-1170) $ $ $) 198) (($ (-1170) $ $ $ $) 197) (($ (-1170) (-641 $)) 196)) (-4311 (($) 113 (|has| |#1| (-25)) CONST)) (-4321 (($) 101 (|has| |#1| (-1106)) CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) 130 (|has| |#1| (-1046))) (($ $ (-1170) (-768)) 129 (|has| |#1| (-1046))) (($ $ (-641 (-1170))) 128 (|has| |#1| (-1046))) (($ $ (-1170)) 127 (|has| |#1| (-1046)))) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1799 (($ (-1119 |#1| (-610 $)) (-1119 |#1| (-610 $))) 173 (|has| |#1| (-556))) (($ $ $) 107 (-4030 (|has| |#1| (-473)) (|has| |#1| (-556))))) (-1790 (($ $ $) 118 (|has| |#1| (-21))) (($ $) 117 (|has| |#1| (-21)))) (-1780 (($ $ $) 111 (|has| |#1| (-25)))) (** (($ $ (-564)) 108 (-4030 (|has| |#1| (-473)) (|has| |#1| (-556)))) (($ $ (-768)) 105 (|has| |#1| (-1106))) (($ $ (-918)) 100 (|has| |#1| (-1106)))) (* (($ (-407 (-564)) $) 165 (|has| |#1| (-556))) (($ $ (-407 (-564))) 164 (|has| |#1| (-556))) (($ |#1| $) 138 (|has| |#1| (-172))) (($ $ |#1|) 137 (|has| |#1| (-172))) (($ (-564) $) 119 (|has| |#1| (-21))) (($ (-768) $) 115 (|has| |#1| (-25))) (($ (-918) $) 112 (|has| |#1| (-25))) (($ $ $) 99 (|has| |#1| (-1106))))) +(((-430 |#1|) (-140) (-847)) (T -430)) +((-4383 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-112)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-641 (-1170))))) (-2591 (*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-2591 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-2591 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-2591 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) (-2591 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-612 (-536))))) (-2416 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-612 (-536))))) (-2416 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-612 (-536))))) (-2416 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-847)) (-4 *4 (-612 (-536))))) (-2416 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-612 (-536))))) (-3514 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-3758 (*1 *2 *1) (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2515 (-564)))) (-4 *1 (-430 *3)))) (-4386 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-430 *3)))) (-2705 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1762 (-564)) (|:| |var| (-610 *1)))) (-4 *1 (-430 *3)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1046)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-1625 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-1046)))) (-3758 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1046)) (-4 *4 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2515 (-564)))) (-4 *1 (-430 *4)))) (-3758 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1046)) (-4 *4 (-847)) (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2515 (-564)))) (-4 *1 (-430 *4)))) (-3343 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-2 (|:| |val| *1) (|:| -2515 (-564)))) (-4 *1 (-430 *3)))) (-2416 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2416 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2416 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 (-641 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2416 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 *1)) (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) (-4 *3 (-847)))) (-1634 (*1 *2 *1) (-12 (-4 *3 (-556)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) (-4 *1 (-430 *3)))) (-2090 (*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-556)))) (-1799 (*1 *1 *2 *2) (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-847)) (-4 *1 (-430 *3)))) (-4097 (*1 *2 *1 *3) (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)) (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-1106))))) +(-13 (-302) (-1035 (-1170)) (-881 |t#1|) (-400 |t#1|) (-411 |t#1|) (-10 -8 (-15 -4383 ((-112) $)) (-15 -1296 (|t#1| $)) (-15 -4269 ((-641 (-1170)) $)) (-15 -2591 ($ (-1170) $)) (-15 -2591 ($ (-1170) $ $)) (-15 -2591 ($ (-1170) $ $ $)) (-15 -2591 ($ (-1170) $ $ $ $)) (-15 -2591 ($ (-1170) (-641 $))) (IF (|has| |t#1| (-612 (-536))) (PROGN (-6 (-612 (-536))) (-15 -2416 ($ $ (-1170))) (-15 -2416 ($ $ (-641 (-1170)))) (-15 -2416 ($ $)) (-15 -2416 ($ $ (-114) $ (-1170))) (-15 -2416 ($ $ (-641 (-114)) (-641 $) (-1170)))) |%noBranch|) (IF (|has| |t#1| (-1106)) (PROGN (-6 (-723)) (-15 ** ($ $ (-768))) (-15 -3514 ((-3 (-641 $) "failed") $)) (-15 -3758 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-473)) (-6 (-473)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -4386 ((-3 (-641 $) "failed") $)) (-15 -2705 ((-3 (-2 (|:| -1762 (-564)) (|:| |var| (-610 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1046)) (PROGN (-6 (-1046)) (-6 (-1035 (-949 |t#1|))) (-6 (-897 (-1170))) (-6 (-377 |t#1|)) (-15 -3742 ($ (-1119 |t#1| (-610 $)))) (-15 -1625 ((-1119 |t#1| (-610 $)) $)) (-15 -3834 ($ $)) (-15 -3758 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-114))) (-15 -3758 ((-3 (-2 (|:| |var| (-610 $)) (|:| -2515 (-564))) "failed") $ (-1170))) (-15 -3343 ((-3 (-2 (|:| |val| $) (|:| -2515 (-564))) "failed") $)) (-15 -2416 ($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ $)))) (-15 -2416 ($ $ (-641 (-1170)) (-641 (-768)) (-641 (-1 $ (-641 $))))) (-15 -2416 ($ $ (-1170) (-768) (-1 $ (-641 $)))) (-15 -2416 ($ $ (-1170) (-768) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-363)) (-6 (-1035 (-407 (-949 |t#1|)))) (-15 -2235 ($ (-418 $))) (-15 -1634 ((-1119 |t#1| (-610 $)) $)) (-15 -2090 ($ $)) (-15 -1799 ($ (-1119 |t#1| (-610 $)) (-1119 |t#1| (-610 $)))) (-15 -3742 ($ (-407 |t#1|))) (-15 -3742 ($ (-949 (-407 |t#1|)))) (-15 -3742 ($ (-407 (-949 (-407 |t#1|))))) (-15 -4097 ((-407 (-1166 $)) $ (-610 $))) (IF (|has| |t#1| (-1035 (-564))) (-6 (-1035 (-407 (-564)))) |%noBranch|)) |%noBranch|))) +(((-21) -4030 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-23) -4030 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -4030 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-407 (-564))) |has| |#1| (-556)) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-556)) ((-111 |#1| |#1|) |has| |#1| (-172)) ((-111 $ $) |has| |#1| (-556)) ((-131) -4030 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145)) (|has| |#1| (-21))) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-556))) ((-614 #1=(-407 (-949 |#1|))) |has| |#1| (-556)) ((-614 (-564)) -4030 (|has| |#1| (-1046)) (|has| |#1| (-1035 (-564))) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-614 #2=(-610 $)) . T) ((-614 #3=(-949 |#1|)) |has| |#1| (-1046)) ((-614 #4=(-1170)) . T) ((-614 |#1|) . T) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) |has| |#1| (-556)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-243) |has| |#1| (-556)) ((-290) |has| |#1| (-556)) ((-307) |has| |#1| (-556)) ((-309 $) . T) ((-302) . T) ((-363) |has| |#1| (-556)) ((-377 |#1|) |has| |#1| (-1046)) ((-400 |#1|) . T) ((-411 |#1|) . T) ((-452) |has| |#1| (-556)) ((-473) |has| |#1| (-473)) ((-514 (-610 $) $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-556)) ((-644 |#1|) |has| |#1| (-172)) ((-644 $) -4030 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-637 (-564)) -12 (|has| |#1| (-637 (-564))) (|has| |#1| (-1046))) ((-637 |#1|) |has| |#1| (-1046)) ((-714 #0#) |has| |#1| (-556)) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) -4030 (|has| |#1| (-1106)) (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-847) . T) ((-897 (-1170)) |has| |#1| (-1046)) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-917) |has| |#1| (-556)) ((-1035 (-407 (-564))) -4030 (|has| |#1| (-1035 (-407 (-564)))) (-12 (|has| |#1| (-556)) (|has| |#1| (-1035 (-564))))) ((-1035 #1#) |has| |#1| (-556)) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 #3#) |has| |#1| (-1046)) ((-1035 #4#) . T) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-556)) ((-1052 |#1|) |has| |#1| (-172)) ((-1052 $) |has| |#1| (-556)) ((-1046) -4030 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1053) -4030 (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1106) -4030 (|has| |#1| (-1106)) (|has| |#1| (-1046)) (|has| |#1| (-556)) (|has| |#1| (-473)) (|has| |#1| (-172)) (|has| |#1| (-147)) (|has| |#1| (-145))) ((-1094) . T) ((-1209) . T) ((-1213) |has| |#1| (-556))) +((-3122 ((|#2| |#2| |#2|) 31)) (-4058 (((-114) (-114)) 43)) (-3628 ((|#2| |#2|) 63)) (-1713 ((|#2| |#2|) 66)) (-1496 ((|#2| |#2|) 30)) (-1852 ((|#2| |#2| |#2|) 33)) (-4103 ((|#2| |#2| |#2|) 35)) (-2195 ((|#2| |#2| |#2|) 32)) (-1566 ((|#2| |#2| |#2|) 34)) (-2095 (((-112) (-114)) 41)) (-2241 ((|#2| |#2|) 37)) (-2597 ((|#2| |#2|) 36)) (-2792 ((|#2| |#2|) 25)) (-2770 ((|#2| |#2| |#2|) 28) ((|#2| |#2|) 26)) (-2397 ((|#2| |#2| |#2|) 29))) +(((-431 |#1| |#2|) (-10 -7 (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -2792 (|#2| |#2|)) (-15 -2770 (|#2| |#2|)) (-15 -2770 (|#2| |#2| |#2|)) (-15 -2397 (|#2| |#2| |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3122 (|#2| |#2| |#2|)) (-15 -2195 (|#2| |#2| |#2|)) (-15 -1852 (|#2| |#2| |#2|)) (-15 -1566 (|#2| |#2| |#2|)) (-15 -4103 (|#2| |#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -1713 (|#2| |#2|)) (-15 -3628 (|#2| |#2|))) (-13 (-847) (-556)) (-430 |#1|)) (T -431)) +((-3628 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1713 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2597 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4103 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1566 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1852 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2195 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-3122 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-1496 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2397 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2770 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2770 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-2792 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *4)) (-4 *4 (-430 *3)))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4))))) +(-10 -7 (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -2792 (|#2| |#2|)) (-15 -2770 (|#2| |#2|)) (-15 -2770 (|#2| |#2| |#2|)) (-15 -2397 (|#2| |#2| |#2|)) (-15 -1496 (|#2| |#2|)) (-15 -3122 (|#2| |#2| |#2|)) (-15 -2195 (|#2| |#2| |#2|)) (-15 -1852 (|#2| |#2| |#2|)) (-15 -1566 (|#2| |#2| |#2|)) (-15 -4103 (|#2| |#2| |#2|)) (-15 -2597 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -1713 (|#2| |#2|)) (-15 -3628 (|#2| |#2|))) +((-2757 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|) 105 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|)) 68))) +(((-432 |#1| |#2|) (-10 -7 (-15 -2757 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -2757 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-556) (-847) (-147)) (-430 |#1|)) (T -432)) +((-2757 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-556) (-847) (-147))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) (-2757 (*1 *2 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-556) (-847) (-147))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-432 *4 *5))))) +(-10 -7 (-15 -2757 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-641 (-1166 |#2|))) (|:| |prim| (-1166 |#2|))) (-641 |#2|))) (IF (|has| |#2| (-27)) (-15 -2757 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1166 |#2|)) (|:| |pol2| (-1166 |#2|)) (|:| |prim| (-1166 |#2|))) |#2| |#2|)) |%noBranch|)) +((-4264 (((-1264)) 19)) (-2327 (((-1166 (-407 (-564))) |#2| (-610 |#2|)) 41) (((-407 (-564)) |#2|) 25))) +(((-433 |#1| |#2|) (-10 -7 (-15 -2327 ((-407 (-564)) |#2|)) (-15 -2327 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -4264 ((-1264)))) (-13 (-847) (-556) (-1035 (-564))) (-430 |#1|)) (T -433)) +((-4264 (*1 *2) (-12 (-4 *3 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1264)) (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3)))) (-2327 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-407 (-564))) (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4))))) +(-10 -7 (-15 -2327 ((-407 (-564)) |#2|)) (-15 -2327 ((-1166 (-407 (-564))) |#2| (-610 |#2|))) (-15 -4264 ((-1264)))) +((-3177 (((-112) $) 32)) (-1521 (((-112) $) 34)) (-3215 (((-112) $) 35)) (-2864 (((-112) $) 38)) (-3034 (((-112) $) 33)) (-1463 (((-112) $) 37)) (-3742 (((-859) $) 20) (($ (-1152)) 31) (($ (-1170)) 26) (((-1170) $) 24) (((-1098) $) 23)) (-3062 (((-112) $) 36)) (-1705 (((-112) $ $) 17))) +(((-434) (-13 (-611 (-859)) (-10 -8 (-15 -3742 ($ (-1152))) (-15 -3742 ($ (-1170))) (-15 -3742 ((-1170) $)) (-15 -3742 ((-1098) $)) (-15 -3177 ((-112) $)) (-15 -3034 ((-112) $)) (-15 -3215 ((-112) $)) (-15 -1463 ((-112) $)) (-15 -2864 ((-112) $)) (-15 -3062 ((-112) $)) (-15 -1521 ((-112) $)) (-15 -1705 ((-112) $ $))))) (T -434)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434)))) (-3177 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3034 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-2864 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1521 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) (-1705 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(-13 (-611 (-859)) (-10 -8 (-15 -3742 ($ (-1152))) (-15 -3742 ($ (-1170))) (-15 -3742 ((-1170) $)) (-15 -3742 ((-1098) $)) (-15 -3177 ((-112) $)) (-15 -3034 ((-112) $)) (-15 -3215 ((-112) $)) (-15 -1463 ((-112) $)) (-15 -2864 ((-112) $)) (-15 -3062 ((-112) $)) (-15 -1521 ((-112) $)) (-15 -1705 ((-112) $ $)))) +((-4319 (((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|) 72)) (-3427 (((-418 |#3|) |#3|) 34)) (-4089 (((-3 (-418 (-1166 (-48))) "failed") |#3|) 46 (|has| |#2| (-1035 (-48))))) (-4185 (((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -1986 (-112))) |#3|) 37))) +(((-435 |#1| |#2| |#3|) (-10 -7 (-15 -3427 ((-418 |#3|) |#3|)) (-15 -4319 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -4185 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -1986 (-112))) |#3|)) (IF (|has| |#2| (-1035 (-48))) (-15 -4089 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-556) (-847) (-1035 (-564))) (-430 |#1|) (-1235 |#2|)) (T -435)) +((-4089 (*1 *2 *3) (|partial| -12 (-4 *5 (-1035 (-48))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -1986 (-112)))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-4319 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-3427 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -3427 ((-418 |#3|) |#3|)) (-15 -4319 ((-3 (-418 (-1166 (-407 (-564)))) "failed") |#3|)) (-15 -4185 ((-3 (|:| |overq| (-1166 (-407 (-564)))) (|:| |overan| (-1166 (-48))) (|:| -1986 (-112))) |#3|)) (IF (|has| |#2| (-1035 (-48))) (-15 -4089 ((-3 (-418 (-1166 (-48))) "failed") |#3|)) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-2956 (((-1152) $ (-1152)) NIL)) (-3024 (($ $ (-1152)) NIL)) (-2984 (((-1152) $) NIL)) (-3765 (((-388) (-388) (-388)) 17) (((-388) (-388)) 15)) (-1702 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-4324 (((-388) $) NIL)) (-2217 (((-1152) $) NIL)) (-2615 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1934 (((-1264) (-1152)) 9)) (-3825 (((-1264) (-1152)) 10)) (-1847 (((-1264)) 11)) (-3742 (((-859) $) NIL)) (-1322 (($ $) 38)) (-1705 (((-112) $ $) NIL))) +(((-436) (-13 (-364 (-388) (-1152)) (-10 -7 (-15 -3765 ((-388) (-388) (-388))) (-15 -3765 ((-388) (-388))) (-15 -1934 ((-1264) (-1152))) (-15 -3825 ((-1264) (-1152))) (-15 -1847 ((-1264)))))) (T -436)) +((-3765 (*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-3765 (*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) (-1934 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-3825 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436)))) (-1847 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436))))) +(-13 (-364 (-388) (-1152)) (-10 -7 (-15 -3765 ((-388) (-388) (-388))) (-15 -3765 ((-388) (-388))) (-15 -1934 ((-1264) (-1152))) (-15 -3825 ((-1264) (-1152))) (-15 -1847 ((-1264))))) +((-3732 (((-112) $ $) NIL)) (-4155 (((-3 (|:| |fst| (-434)) (|:| -2966 "void")) $) 11)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3349 (($) 35)) (-4111 (($) 41)) (-2830 (($) 37)) (-3658 (($) 39)) (-1640 (($) 36)) (-2201 (($) 38)) (-2698 (($) 40)) (-2136 (((-112) $) 8)) (-1826 (((-641 (-949 (-564))) $) 19)) (-3753 (($ (-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-641 (-1170)) (-112)) 29) (($ (-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-641 (-949 (-564))) (-112)) 30)) (-3742 (((-859) $) 24) (($ (-434)) 32)) (-1705 (((-112) $ $) NIL))) +(((-437) (-13 (-1094) (-10 -8 (-15 -3742 ($ (-434))) (-15 -4155 ((-3 (|:| |fst| (-434)) (|:| -2966 "void")) $)) (-15 -1826 ((-641 (-949 (-564))) $)) (-15 -2136 ((-112) $)) (-15 -3753 ($ (-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-641 (-1170)) (-112))) (-15 -3753 ($ (-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-641 (-949 (-564))) (-112))) (-15 -3349 ($)) (-15 -1640 ($)) (-15 -2830 ($)) (-15 -4111 ($)) (-15 -2201 ($)) (-15 -3658 ($)) (-15 -2698 ($))))) (T -437)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *1 (-437)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-641 (-949 (-564)))) (-5 *1 (-437)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437)))) (-3753 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437)))) (-3753 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) (-3349 (*1 *1) (-5 *1 (-437))) (-1640 (*1 *1) (-5 *1 (-437))) (-2830 (*1 *1) (-5 *1 (-437))) (-4111 (*1 *1) (-5 *1 (-437))) (-2201 (*1 *1) (-5 *1 (-437))) (-3658 (*1 *1) (-5 *1 (-437))) (-2698 (*1 *1) (-5 *1 (-437)))) +(-13 (-1094) (-10 -8 (-15 -3742 ($ (-434))) (-15 -4155 ((-3 (|:| |fst| (-434)) (|:| -2966 "void")) $)) (-15 -1826 ((-641 (-949 (-564))) $)) (-15 -2136 ((-112) $)) (-15 -3753 ($ (-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-641 (-1170)) (-112))) (-15 -3753 ($ (-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-641 (-949 (-564))) (-112))) (-15 -3349 ($)) (-15 -1640 ($)) (-15 -2830 ($)) (-15 -4111 ($)) (-15 -2201 ($)) (-15 -3658 ($)) (-15 -2698 ($)))) +((-3732 (((-112) $ $) NIL)) (-4324 (((-1170) $) 8)) (-2217 (((-1152) $) 17)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 14))) +(((-438 |#1|) (-13 (-1094) (-10 -8 (-15 -4324 ((-1170) $)))) (-1170)) (T -438)) +((-4324 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2)))) +(-13 (-1094) (-10 -8 (-15 -4324 ((-1170) $)))) +((-3732 (((-112) $ $) NIL)) (-4287 (((-1112) $) 7)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 13)) (-1705 (((-112) $ $) 9))) +(((-439) (-13 (-1094) (-10 -8 (-15 -4287 ((-1112) $))))) (T -439)) +((-4287 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439))))) +(-13 (-1094) (-10 -8 (-15 -4287 ((-1112) $)))) +((-2150 (((-1264) $) 7)) (-3742 (((-859) $) 8) (($ (-1259 (-695))) 14) (($ (-641 (-330))) 13) (($ (-330)) 12) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 11))) (((-440) (-140)) (T -440)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-694))) (-4 *1 (-440)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-440)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) (-4 *1 (-440))))) -(-13 (-395) (-10 -8 (-15 -2062 ($ (-1257 (-694)))) (-15 -2062 ($ (-640 (-330)))) (-15 -2062 ($ (-330))) (-15 -2062 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330)))))))) -(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) -((-2671 (((-3 $ "failed") (-1257 (-316 (-379)))) 21) (((-3 $ "failed") (-1257 (-316 (-563)))) 19) (((-3 $ "failed") (-1257 (-948 (-379)))) 17) (((-3 $ "failed") (-1257 (-948 (-563)))) 15) (((-3 $ "failed") (-1257 (-407 (-948 (-379))))) 13) (((-3 $ "failed") (-1257 (-407 (-948 (-563))))) 11)) (-2589 (($ (-1257 (-316 (-379)))) 22) (($ (-1257 (-316 (-563)))) 20) (($ (-1257 (-948 (-379)))) 18) (($ (-1257 (-948 (-563)))) 16) (($ (-1257 (-407 (-948 (-379))))) 14) (($ (-1257 (-407 (-948 (-563))))) 12)) (-4000 (((-1262) $) 7)) (-2062 (((-858) $) 8) (($ (-640 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) 23))) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) (-4 *1 (-440))))) +(-13 (-395) (-10 -8 (-15 -3742 ($ (-1259 (-695)))) (-15 -3742 ($ (-641 (-330)))) (-15 -3742 ($ (-330))) (-15 -3742 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330)))))))) +(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) +((-2111 (((-3 $ "failed") (-1259 (-316 (-379)))) 21) (((-3 $ "failed") (-1259 (-316 (-564)))) 19) (((-3 $ "failed") (-1259 (-949 (-379)))) 17) (((-3 $ "failed") (-1259 (-949 (-564)))) 15) (((-3 $ "failed") (-1259 (-407 (-949 (-379))))) 13) (((-3 $ "failed") (-1259 (-407 (-949 (-564))))) 11)) (-2239 (($ (-1259 (-316 (-379)))) 22) (($ (-1259 (-316 (-564)))) 20) (($ (-1259 (-949 (-379)))) 18) (($ (-1259 (-949 (-564)))) 16) (($ (-1259 (-407 (-949 (-379))))) 14) (($ (-1259 (-407 (-949 (-564))))) 12)) (-2150 (((-1264) $) 7)) (-3742 (((-859) $) 8) (($ (-641 (-330))) 25) (($ (-330)) 24) (($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) 23))) (((-441) (-140)) (T -441)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-441)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) (-4 *1 (-441)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441))))) -(-13 (-395) (-10 -8 (-15 -2062 ($ (-640 (-330)))) (-15 -2062 ($ (-330))) (-15 -2062 ($ (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330)))))) (-15 -2589 ($ (-1257 (-316 (-379))))) (-15 -2671 ((-3 $ "failed") (-1257 (-316 (-379))))) (-15 -2589 ($ (-1257 (-316 (-563))))) (-15 -2671 ((-3 $ "failed") (-1257 (-316 (-563))))) (-15 -2589 ($ (-1257 (-948 (-379))))) (-15 -2671 ((-3 $ "failed") (-1257 (-948 (-379))))) (-15 -2589 ($ (-1257 (-948 (-563))))) (-15 -2671 ((-3 $ "failed") (-1257 (-948 (-563))))) (-15 -2589 ($ (-1257 (-407 (-948 (-379)))))) (-15 -2671 ((-3 $ "failed") (-1257 (-407 (-948 (-379)))))) (-15 -2589 ($ (-1257 (-407 (-948 (-563)))))) (-15 -2671 ((-3 $ "failed") (-1257 (-407 (-948 (-563)))))))) -(((-610 (-858)) . T) ((-395) . T) ((-1208) . T)) -((-2040 (((-112)) 18)) (-2050 (((-112) (-112)) 19)) (-2063 (((-112)) 14)) (-2075 (((-112) (-112)) 15)) (-3937 (((-112)) 16)) (-3946 (((-112) (-112)) 17)) (-2005 (((-917) (-917)) 22) (((-917)) 21)) (-2017 (((-767) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563))))) 51)) (-1994 (((-917) (-917)) 24) (((-917)) 23)) (-2028 (((-2 (|:| -1437 (-563)) (|:| -2524 (-640 |#1|))) |#1|) 94)) (-1981 (((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563))))))) 174)) (-3751 (((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112)) 207)) (-3739 (((-418 |#1|) |#1| (-767) (-767)) 222) (((-418 |#1|) |#1| (-640 (-767)) (-767)) 219) (((-418 |#1|) |#1| (-640 (-767))) 221) (((-418 |#1|) |#1| (-767)) 220) (((-418 |#1|) |#1|) 218)) (-4059 (((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112)) 224) (((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767)) 225) (((-3 |#1| "failed") (-917) |#1| (-640 (-767))) 227) (((-3 |#1| "failed") (-917) |#1| (-767)) 226) (((-3 |#1| "failed") (-917) |#1|) 228)) (-2055 (((-418 |#1|) |#1| (-767) (-767)) 217) (((-418 |#1|) |#1| (-640 (-767)) (-767)) 213) (((-418 |#1|) |#1| (-640 (-767))) 215) (((-418 |#1|) |#1| (-767)) 214) (((-418 |#1|) |#1|) 212)) (-3927 (((-112) |#1|) 43)) (-4047 (((-733 (-767)) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563))))) 99)) (-3953 (((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112) (-1095 (-767)) (-767)) 211))) -(((-442 |#1|) (-10 -7 (-15 -1981 ((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))))) (-15 -4047 ((-733 (-767)) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))))) (-15 -1994 ((-917))) (-15 -1994 ((-917) (-917))) (-15 -2005 ((-917))) (-15 -2005 ((-917) (-917))) (-15 -2017 ((-767) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))))) (-15 -2028 ((-2 (|:| -1437 (-563)) (|:| -2524 (-640 |#1|))) |#1|)) (-15 -2040 ((-112))) (-15 -2050 ((-112) (-112))) (-15 -2063 ((-112))) (-15 -2075 ((-112) (-112))) (-15 -3927 ((-112) |#1|)) (-15 -3937 ((-112))) (-15 -3946 ((-112) (-112))) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2055 ((-418 |#1|) |#1| (-767))) (-15 -2055 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2055 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2055 ((-418 |#1|) |#1| (-767) (-767))) (-15 -3739 ((-418 |#1|) |#1|)) (-15 -3739 ((-418 |#1|) |#1| (-767))) (-15 -3739 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -3739 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -3739 ((-418 |#1|) |#1| (-767) (-767))) (-15 -4059 ((-3 |#1| "failed") (-917) |#1|)) (-15 -4059 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -4059 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)))) (-15 -4059 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767))) (-15 -4059 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112))) (-15 -3751 ((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112))) (-15 -3953 ((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112) (-1095 (-767)) (-767)))) (-1233 (-563))) (T -442)) -((-3953 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1095 (-767))) (-5 *6 (-767)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| *3) (|:| -2581 (-563))))))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3751 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| *3) (|:| -2581 (-563))))))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-4059 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-4059 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-4059 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-4059 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-4059 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) (-3739 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3739 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3739 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2055 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2055 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2055 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3937 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-3927 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2063 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2040 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2028 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1437 (-563)) (|:| -2524 (-640 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2017 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2055 *4) (|:| -1962 (-563))))) (-4 *4 (-1233 (-563))) (-5 *2 (-767)) (-5 *1 (-442 *4)))) (-2005 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-2005 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-1994 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-1994 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2055 *4) (|:| -1962 (-563))))) (-4 *4 (-1233 (-563))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4)))) (-1981 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| *4) (|:| -2581 (-563))))))) (-4 *4 (-1233 (-563))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) -(-10 -7 (-15 -1981 ((-418 |#1|) (-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))))) (-15 -4047 ((-733 (-767)) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))))) (-15 -1994 ((-917))) (-15 -1994 ((-917) (-917))) (-15 -2005 ((-917))) (-15 -2005 ((-917) (-917))) (-15 -2017 ((-767) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))))) (-15 -2028 ((-2 (|:| -1437 (-563)) (|:| -2524 (-640 |#1|))) |#1|)) (-15 -2040 ((-112))) (-15 -2050 ((-112) (-112))) (-15 -2063 ((-112))) (-15 -2075 ((-112) (-112))) (-15 -3927 ((-112) |#1|)) (-15 -3937 ((-112))) (-15 -3946 ((-112) (-112))) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2055 ((-418 |#1|) |#1| (-767))) (-15 -2055 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -2055 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -2055 ((-418 |#1|) |#1| (-767) (-767))) (-15 -3739 ((-418 |#1|) |#1|)) (-15 -3739 ((-418 |#1|) |#1| (-767))) (-15 -3739 ((-418 |#1|) |#1| (-640 (-767)))) (-15 -3739 ((-418 |#1|) |#1| (-640 (-767)) (-767))) (-15 -3739 ((-418 |#1|) |#1| (-767) (-767))) (-15 -4059 ((-3 |#1| "failed") (-917) |#1|)) (-15 -4059 ((-3 |#1| "failed") (-917) |#1| (-767))) (-15 -4059 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)))) (-15 -4059 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767))) (-15 -4059 ((-3 |#1| "failed") (-917) |#1| (-640 (-767)) (-767) (-112))) (-15 -3751 ((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112))) (-15 -3953 ((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112) (-1095 (-767)) (-767)))) -((-3994 (((-563) |#2|) 52) (((-563) |#2| (-767)) 51)) (-3987 (((-563) |#2|) 67)) (-4006 ((|#3| |#2|) 26)) (-3251 ((|#3| |#2| (-917)) 15)) (-3322 ((|#3| |#2|) 16)) (-4015 ((|#3| |#2|) 9)) (-1524 ((|#3| |#2|) 10)) (-3976 ((|#3| |#2| (-917)) 74) ((|#3| |#2|) 34)) (-3963 (((-563) |#2|) 69))) -(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -3963 ((-563) |#2|)) (-15 -3976 (|#3| |#2|)) (-15 -3976 (|#3| |#2| (-917))) (-15 -3987 ((-563) |#2|)) (-15 -3994 ((-563) |#2| (-767))) (-15 -3994 ((-563) |#2|)) (-15 -3251 (|#3| |#2| (-917))) (-15 -4006 (|#3| |#2|)) (-15 -4015 (|#3| |#2|)) (-15 -1524 (|#3| |#2|)) (-15 -3322 (|#3| |#2|))) (-1045) (-1233 |#1|) (-13 (-404) (-1034 |#1|) (-363) (-1193) (-284))) (T -443)) -((-3322 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-1524 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-4015 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-4006 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-3251 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))) (-3994 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))) (-3994 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1233 *5)) (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))))) (-3976 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))) (-3976 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) (-3963 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1233 *4)) (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))))) -(-10 -7 (-15 -3963 ((-563) |#2|)) (-15 -3976 (|#3| |#2|)) (-15 -3976 (|#3| |#2| (-917))) (-15 -3987 ((-563) |#2|)) (-15 -3994 ((-563) |#2| (-767))) (-15 -3994 ((-563) |#2|)) (-15 -3251 (|#3| |#2| (-917))) (-15 -4006 (|#3| |#2|)) (-15 -4015 (|#3| |#2|)) (-15 -1524 (|#3| |#2|)) (-15 -3322 (|#3| |#2|))) -((-3569 ((|#2| (-1257 |#1|)) 45)) (-4035 ((|#2| |#2| |#1|) 61)) (-4023 ((|#2| |#2| |#1|) 53)) (-4294 ((|#2| |#2|) 49)) (-2612 (((-112) |#2|) 36)) (-4071 (((-640 |#2|) (-917) (-418 |#2|)) 24)) (-4059 ((|#2| (-917) (-418 |#2|)) 28)) (-4047 (((-733 (-767)) (-418 |#2|)) 33))) -(((-444 |#1| |#2|) (-10 -7 (-15 -2612 ((-112) |#2|)) (-15 -3569 (|#2| (-1257 |#1|))) (-15 -4294 (|#2| |#2|)) (-15 -4023 (|#2| |#2| |#1|)) (-15 -4035 (|#2| |#2| |#1|)) (-15 -4047 ((-733 (-767)) (-418 |#2|))) (-15 -4059 (|#2| (-917) (-418 |#2|))) (-15 -4071 ((-640 |#2|) (-917) (-418 |#2|)))) (-1045) (-1233 |#1|)) (T -444)) -((-4071 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-1045)) (-5 *2 (-640 *6)) (-5 *1 (-444 *5 *6)))) (-4059 (*1 *2 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1045)))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1045)) (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5)))) (-4035 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-4023 (*1 *2 *2 *3) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-4294 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-1045)) (-4 *2 (-1233 *4)) (-5 *1 (-444 *4 *2)))) (-2612 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -2612 ((-112) |#2|)) (-15 -3569 (|#2| (-1257 |#1|))) (-15 -4294 (|#2| |#2|)) (-15 -4023 (|#2| |#2| |#1|)) (-15 -4035 (|#2| |#2| |#1|)) (-15 -4047 ((-733 (-767)) (-418 |#2|))) (-15 -4059 (|#2| (-917) (-418 |#2|))) (-15 -4071 ((-640 |#2|) (-917) (-418 |#2|)))) -((-4104 (((-767)) 57)) (-4151 (((-767)) 29 (|has| |#1| (-404))) (((-767) (-767)) 28 (|has| |#1| (-404)))) (-4138 (((-563) |#1|) 25 (|has| |#1| (-404)))) (-4127 (((-563) |#1|) 27 (|has| |#1| (-404)))) (-4093 (((-767)) 56) (((-767) (-767)) 55)) (-4081 ((|#1| (-767) (-563)) 36)) (-4116 (((-1262)) 59))) -(((-445 |#1|) (-10 -7 (-15 -4081 (|#1| (-767) (-563))) (-15 -4093 ((-767) (-767))) (-15 -4093 ((-767))) (-15 -4104 ((-767))) (-15 -4116 ((-1262))) (IF (|has| |#1| (-404)) (PROGN (-15 -4127 ((-563) |#1|)) (-15 -4138 ((-563) |#1|)) (-15 -4151 ((-767) (-767))) (-15 -4151 ((-767)))) |%noBranch|)) (-1045)) (T -445)) -((-4151 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-4151 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-4138 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) (-4116 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-4104 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-4093 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-4093 (*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) (-4081 (*1 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-563)) (-5 *1 (-445 *2)) (-4 *2 (-1045))))) -(-10 -7 (-15 -4081 (|#1| (-767) (-563))) (-15 -4093 ((-767) (-767))) (-15 -4093 ((-767))) (-15 -4104 ((-767))) (-15 -4116 ((-1262))) (IF (|has| |#1| (-404)) (PROGN (-15 -4127 ((-563) |#1|)) (-15 -4138 ((-563) |#1|)) (-15 -4151 ((-767) (-767))) (-15 -4151 ((-767)))) |%noBranch|)) -((-4163 (((-640 (-563)) (-563)) 75)) (-3675 (((-112) (-169 (-563))) 81)) (-2055 (((-418 (-169 (-563))) (-169 (-563))) 74))) -(((-446) (-10 -7 (-15 -2055 ((-418 (-169 (-563))) (-169 (-563)))) (-15 -4163 ((-640 (-563)) (-563))) (-15 -3675 ((-112) (-169 (-563)))))) (T -446)) -((-3675 (*1 *2 *3) (-12 (-5 *3 (-169 (-563))) (-5 *2 (-112)) (-5 *1 (-446)))) (-4163 (*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-446)) (-5 *3 (-563)))) (-2055 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-563)))) (-5 *1 (-446)) (-5 *3 (-169 (-563)))))) -(-10 -7 (-15 -2055 ((-418 (-169 (-563))) (-169 (-563)))) (-15 -4163 ((-640 (-563)) (-563))) (-15 -3675 ((-112) (-169 (-563))))) -((-4172 ((|#4| |#4| (-640 |#4|)) 80)) (-4182 (((-640 |#4|) (-640 |#4|) (-1151) (-1151)) 22) (((-640 |#4|) (-640 |#4|) (-1151)) 21) (((-640 |#4|) (-640 |#4|)) 13))) -(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4172 (|#4| |#4| (-640 |#4|))) (-15 -4182 ((-640 |#4|) (-640 |#4|))) (-15 -4182 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -4182 ((-640 |#4|) (-640 |#4|) (-1151) (-1151)))) (-307) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -447)) -((-4182 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-4182 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *7)))) (-4182 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))) (-4172 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2))))) -(-10 -7 (-15 -4172 (|#4| |#4| (-640 |#4|))) (-15 -4182 ((-640 |#4|) (-640 |#4|))) (-15 -4182 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -4182 ((-640 |#4|) (-640 |#4|) (-1151) (-1151)))) -((-4201 (((-640 (-640 |#4|)) (-640 |#4|) (-112)) 89) (((-640 (-640 |#4|)) (-640 |#4|)) 88) (((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112)) 82) (((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|)) 83)) (-4192 (((-640 (-640 |#4|)) (-640 |#4|) (-112)) 54) (((-640 (-640 |#4|)) (-640 |#4|)) 75))) -(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4192 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -4192 ((-640 (-640 |#4|)) (-640 |#4|) (-112))) (-15 -4201 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|))) (-15 -4201 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112))) (-15 -4201 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -4201 ((-640 (-640 |#4|)) (-640 |#4|) (-112)))) (-13 (-307) (-147)) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -448)) -((-4201 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-4201 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-4201 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-4201 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-4192 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) -(-10 -7 (-15 -4192 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -4192 ((-640 (-640 |#4|)) (-640 |#4|) (-112))) (-15 -4201 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|))) (-15 -4201 ((-640 (-640 |#4|)) (-640 |#4|) (-640 |#4|) (-112))) (-15 -4201 ((-640 (-640 |#4|)) (-640 |#4|))) (-15 -4201 ((-640 (-640 |#4|)) (-640 |#4|) (-112)))) -((-1344 (((-767) |#4|) 12)) (-4327 (((-640 (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|)))) 38)) (-4346 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-4337 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-4221 ((|#4| |#4| (-640 |#4|)) 54)) (-4307 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|)) 96)) (-4375 (((-1262) |#4|) 59)) (-1305 (((-1262) (-640 |#4|)) 69)) (-4384 (((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563)) 66)) (-1314 (((-1262) (-563)) 111)) (-4355 (((-640 |#4|) (-640 |#4|)) 103)) (-1334 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|)) |#4| (-767)) 31)) (-4365 (((-563) |#4|) 108)) (-4318 ((|#4| |#4|) 36)) (-4230 (((-640 |#4|) (-640 |#4|) (-563) (-563)) 74)) (-1296 (((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563)) 124)) (-1324 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-4242 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-4295 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-4283 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-4252 (((-112) |#2| |#2|) 75)) (-4273 (((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-4263 (((-112) |#2| |#2| |#2| |#2|) 80)) (-4212 ((|#4| |#4| (-640 |#4|)) 97))) -(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4212 (|#4| |#4| (-640 |#4|))) (-15 -4221 (|#4| |#4| (-640 |#4|))) (-15 -4230 ((-640 |#4|) (-640 |#4|) (-563) (-563))) (-15 -4242 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4252 ((-112) |#2| |#2|)) (-15 -4263 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4273 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4283 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4295 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4307 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|))) (-15 -4318 (|#4| |#4|)) (-15 -4327 ((-640 (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|))))) (-15 -4337 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4346 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4355 ((-640 |#4|) (-640 |#4|))) (-15 -4365 ((-563) |#4|)) (-15 -4375 ((-1262) |#4|)) (-15 -4384 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563))) (-15 -1296 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563))) (-15 -1305 ((-1262) (-640 |#4|))) (-15 -1314 ((-1262) (-563))) (-15 -1324 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1334 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|)) |#4| (-767))) (-15 -1344 ((-767) |#4|))) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -449)) -((-1344 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-1334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -3206 *4))) (-5 *5 (-767)) (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-1324 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1314 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-1305 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1296 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-4384 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *4)))) (-4375 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-4365 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-563)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-4355 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-4346 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-4337 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-846)))) (-4327 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-640 (-2 (|:| |totdeg| (-767)) (|:| -3206 *3)))) (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3)))) (-4318 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-4295 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *4 *3 *5 *6)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6)))) (-4273 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *3)))) (-4263 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-4252 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-4230 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *7)))) (-4221 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2)))) (-4212 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) -(-10 -7 (-15 -4212 (|#4| |#4| (-640 |#4|))) (-15 -4221 (|#4| |#4| (-640 |#4|))) (-15 -4230 ((-640 |#4|) (-640 |#4|) (-563) (-563))) (-15 -4242 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4252 ((-112) |#2| |#2|)) (-15 -4263 ((-112) |#2| |#2| |#2| |#2|)) (-15 -4273 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4283 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4295 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4307 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-640 |#4|))) (-15 -4318 (|#4| |#4|)) (-15 -4327 ((-640 (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|))) |#4| (-767) (-640 (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|))))) (-15 -4337 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4346 ((-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-640 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4355 ((-640 |#4|) (-640 |#4|))) (-15 -4365 ((-563) |#4|)) (-15 -4375 ((-1262) |#4|)) (-15 -4384 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563))) (-15 -1296 ((-563) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-563) (-563) (-563) (-563))) (-15 -1305 ((-1262) (-640 |#4|))) (-15 -1314 ((-1262) (-563))) (-15 -1324 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1334 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-767)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-767)) (|:| -3206 |#4|)) |#4| (-767))) (-15 -1344 ((-767) |#4|))) -((-2013 ((|#4| |#4| (-640 |#4|)) 20 (|has| |#1| (-363)))) (-3601 (((-640 |#4|) (-640 |#4|) (-1151) (-1151)) 46) (((-640 |#4|) (-640 |#4|) (-1151)) 45) (((-640 |#4|) (-640 |#4|)) 34))) -(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3601 ((-640 |#4|) (-640 |#4|))) (-15 -3601 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -3601 ((-640 |#4|) (-640 |#4|) (-1151) (-1151))) (IF (|has| |#1| (-363)) (-15 -2013 (|#4| |#4| (-640 |#4|))) |%noBranch|)) (-452) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -450)) -((-2013 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *2)))) (-3601 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3601 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-450 *4 *5 *6 *7)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6))))) -(-10 -7 (-15 -3601 ((-640 |#4|) (-640 |#4|))) (-15 -3601 ((-640 |#4|) (-640 |#4|) (-1151))) (-15 -3601 ((-640 |#4|) (-640 |#4|) (-1151) (-1151))) (IF (|has| |#1| (-363)) (-15 -2013 (|#4| |#4| (-640 |#4|))) |%noBranch|)) -((-1607 (($ $ $) 14) (($ (-640 $)) 21)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 48)) (-1647 (($ $ $) NIL) (($ (-640 $)) 22))) -(((-451 |#1|) (-10 -8 (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -1607 (|#1| (-640 |#1|))) (-15 -1607 (|#1| |#1| |#1|)) (-15 -1647 (|#1| (-640 |#1|))) (-15 -1647 (|#1| |#1| |#1|))) (-452)) (T -451)) -NIL -(-10 -8 (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -1607 (|#1| (-640 |#1|))) (-15 -1607 (|#1| |#1| |#1|)) (-15 -1647 (|#1| (-640 |#1|))) (-15 -1647 (|#1| |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-3448 (((-3 $ "failed") $ $) 43)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) (-4 *1 (-441)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441))))) +(-13 (-395) (-10 -8 (-15 -3742 ($ (-641 (-330)))) (-15 -3742 ($ (-330))) (-15 -3742 ($ (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330)))))) (-15 -2239 ($ (-1259 (-316 (-379))))) (-15 -2111 ((-3 $ "failed") (-1259 (-316 (-379))))) (-15 -2239 ($ (-1259 (-316 (-564))))) (-15 -2111 ((-3 $ "failed") (-1259 (-316 (-564))))) (-15 -2239 ($ (-1259 (-949 (-379))))) (-15 -2111 ((-3 $ "failed") (-1259 (-949 (-379))))) (-15 -2239 ($ (-1259 (-949 (-564))))) (-15 -2111 ((-3 $ "failed") (-1259 (-949 (-564))))) (-15 -2239 ($ (-1259 (-407 (-949 (-379)))))) (-15 -2111 ((-3 $ "failed") (-1259 (-407 (-949 (-379)))))) (-15 -2239 ($ (-1259 (-407 (-949 (-564)))))) (-15 -2111 ((-3 $ "failed") (-1259 (-407 (-949 (-564)))))))) +(((-611 (-859)) . T) ((-395) . T) ((-1209) . T)) +((-2625 (((-112)) 18)) (-2199 (((-112) (-112)) 19)) (-3820 (((-112)) 14)) (-3454 (((-112) (-112)) 15)) (-1885 (((-112)) 16)) (-1620 (((-112) (-112)) 17)) (-3070 (((-918) (-918)) 22) (((-918)) 21)) (-1489 (((-768) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564))))) 51)) (-1378 (((-918) (-918)) 24) (((-918)) 23)) (-4180 (((-2 (|:| -2913 (-564)) (|:| -2267 (-641 |#1|))) |#1|) 94)) (-2493 (((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564))))))) 174)) (-1626 (((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112)) 207)) (-2877 (((-418 |#1|) |#1| (-768) (-768)) 222) (((-418 |#1|) |#1| (-641 (-768)) (-768)) 219) (((-418 |#1|) |#1| (-641 (-768))) 221) (((-418 |#1|) |#1| (-768)) 220) (((-418 |#1|) |#1|) 218)) (-1465 (((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112)) 224) (((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768)) 225) (((-3 |#1| "failed") (-918) |#1| (-641 (-768))) 227) (((-3 |#1| "failed") (-918) |#1| (-768)) 226) (((-3 |#1| "failed") (-918) |#1|) 228)) (-4127 (((-418 |#1|) |#1| (-768) (-768)) 217) (((-418 |#1|) |#1| (-641 (-768)) (-768)) 213) (((-418 |#1|) |#1| (-641 (-768))) 215) (((-418 |#1|) |#1| (-768)) 214) (((-418 |#1|) |#1|) 212)) (-3466 (((-112) |#1|) 43)) (-2602 (((-734 (-768)) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564))))) 99)) (-4207 (((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)) 211))) +(((-442 |#1|) (-10 -7 (-15 -2493 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))))) (-15 -2602 ((-734 (-768)) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))))) (-15 -1378 ((-918))) (-15 -1378 ((-918) (-918))) (-15 -3070 ((-918))) (-15 -3070 ((-918) (-918))) (-15 -1489 ((-768) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))))) (-15 -4180 ((-2 (|:| -2913 (-564)) (|:| -2267 (-641 |#1|))) |#1|)) (-15 -2625 ((-112))) (-15 -2199 ((-112) (-112))) (-15 -3820 ((-112))) (-15 -3454 ((-112) (-112))) (-15 -3466 ((-112) |#1|)) (-15 -1885 ((-112))) (-15 -1620 ((-112) (-112))) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -4127 ((-418 |#1|) |#1| (-768))) (-15 -4127 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -4127 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -4127 ((-418 |#1|) |#1| (-768) (-768))) (-15 -2877 ((-418 |#1|) |#1|)) (-15 -2877 ((-418 |#1|) |#1| (-768))) (-15 -2877 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -2877 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -2877 ((-418 |#1|) |#1| (-768) (-768))) (-15 -1465 ((-3 |#1| "failed") (-918) |#1|)) (-15 -1465 ((-3 |#1| "failed") (-918) |#1| (-768))) (-15 -1465 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)))) (-15 -1465 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768))) (-15 -1465 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112))) (-15 -1626 ((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112))) (-15 -4207 ((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)))) (-1235 (-564))) (T -442)) +((-4207 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-768))) (-5 *6 (-768)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| *3) (|:| -2943 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| *3) (|:| -2943 (-564))))))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1465 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-1465 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-1465 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-1465 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-918)) (-5 *4 (-768)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-1465 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-918)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) (-2877 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2877 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2877 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2877 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2877 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4127 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4127 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1620 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1885 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3466 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3454 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3820 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2199 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2625 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-4180 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2913 (-564)) (|:| -2267 (-641 *3)))) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4127 *4) (|:| -2266 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-768)) (-5 *1 (-442 *4)))) (-3070 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-3070 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1378 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-1378 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4127 *4) (|:| -2266 (-564))))) (-4 *4 (-1235 (-564))) (-5 *2 (-734 (-768))) (-5 *1 (-442 *4)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| *4) (|:| -2943 (-564))))))) (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) +(-10 -7 (-15 -2493 ((-418 |#1|) (-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))))) (-15 -2602 ((-734 (-768)) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))))) (-15 -1378 ((-918))) (-15 -1378 ((-918) (-918))) (-15 -3070 ((-918))) (-15 -3070 ((-918) (-918))) (-15 -1489 ((-768) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))))) (-15 -4180 ((-2 (|:| -2913 (-564)) (|:| -2267 (-641 |#1|))) |#1|)) (-15 -2625 ((-112))) (-15 -2199 ((-112) (-112))) (-15 -3820 ((-112))) (-15 -3454 ((-112) (-112))) (-15 -3466 ((-112) |#1|)) (-15 -1885 ((-112))) (-15 -1620 ((-112) (-112))) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -4127 ((-418 |#1|) |#1| (-768))) (-15 -4127 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -4127 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -4127 ((-418 |#1|) |#1| (-768) (-768))) (-15 -2877 ((-418 |#1|) |#1|)) (-15 -2877 ((-418 |#1|) |#1| (-768))) (-15 -2877 ((-418 |#1|) |#1| (-641 (-768)))) (-15 -2877 ((-418 |#1|) |#1| (-641 (-768)) (-768))) (-15 -2877 ((-418 |#1|) |#1| (-768) (-768))) (-15 -1465 ((-3 |#1| "failed") (-918) |#1|)) (-15 -1465 ((-3 |#1| "failed") (-918) |#1| (-768))) (-15 -1465 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)))) (-15 -1465 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768))) (-15 -1465 ((-3 |#1| "failed") (-918) |#1| (-641 (-768)) (-768) (-112))) (-15 -1626 ((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112))) (-15 -4207 ((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112) (-1096 (-768)) (-768)))) +((-2622 (((-564) |#2|) 52) (((-564) |#2| (-768)) 51)) (-2993 (((-564) |#2|) 67)) (-1383 ((|#3| |#2|) 26)) (-3328 ((|#3| |#2| (-918)) 15)) (-2395 ((|#3| |#2|) 16)) (-4192 ((|#3| |#2|) 9)) (-3724 ((|#3| |#2|) 10)) (-1299 ((|#3| |#2| (-918)) 74) ((|#3| |#2|) 34)) (-2558 (((-564) |#2|) 69))) +(((-443 |#1| |#2| |#3|) (-10 -7 (-15 -2558 ((-564) |#2|)) (-15 -1299 (|#3| |#2|)) (-15 -1299 (|#3| |#2| (-918))) (-15 -2993 ((-564) |#2|)) (-15 -2622 ((-564) |#2| (-768))) (-15 -2622 ((-564) |#2|)) (-15 -3328 (|#3| |#2| (-918))) (-15 -1383 (|#3| |#2|)) (-15 -4192 (|#3| |#2|)) (-15 -3724 (|#3| |#2|)) (-15 -2395 (|#3| |#2|))) (-1046) (-1235 |#1|) (-13 (-404) (-1035 |#1|) (-363) (-1194) (-284))) (T -443)) +((-2395 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3724 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-4192 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-1383 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-3328 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-2622 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) (-4 *6 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))))) (-2993 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))))) (-1299 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) (-1299 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) (-2558 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) (-4 *3 (-1235 *4)) (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))))) +(-10 -7 (-15 -2558 ((-564) |#2|)) (-15 -1299 (|#3| |#2|)) (-15 -1299 (|#3| |#2| (-918))) (-15 -2993 ((-564) |#2|)) (-15 -2622 ((-564) |#2| (-768))) (-15 -2622 ((-564) |#2|)) (-15 -3328 (|#3| |#2| (-918))) (-15 -1383 (|#3| |#2|)) (-15 -4192 (|#3| |#2|)) (-15 -3724 (|#3| |#2|)) (-15 -2395 (|#3| |#2|))) +((-3494 ((|#2| (-1259 |#1|)) 45)) (-3857 ((|#2| |#2| |#1|) 61)) (-2437 ((|#2| |#2| |#1|) 53)) (-1856 ((|#2| |#2|) 49)) (-4348 (((-112) |#2|) 36)) (-3274 (((-641 |#2|) (-918) (-418 |#2|)) 24)) (-1465 ((|#2| (-918) (-418 |#2|)) 28)) (-2602 (((-734 (-768)) (-418 |#2|)) 33))) +(((-444 |#1| |#2|) (-10 -7 (-15 -4348 ((-112) |#2|)) (-15 -3494 (|#2| (-1259 |#1|))) (-15 -1856 (|#2| |#2|)) (-15 -2437 (|#2| |#2| |#1|)) (-15 -3857 (|#2| |#2| |#1|)) (-15 -2602 ((-734 (-768)) (-418 |#2|))) (-15 -1465 (|#2| (-918) (-418 |#2|))) (-15 -3274 ((-641 |#2|) (-918) (-418 |#2|)))) (-1046) (-1235 |#1|)) (T -444)) +((-3274 (*1 *2 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-1046)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6)))) (-1465 (*1 *2 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-444 *5 *2)) (-4 *5 (-1046)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1046)) (-5 *2 (-734 (-768))) (-5 *1 (-444 *4 *5)))) (-3857 (*1 *2 *2 *3) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-2437 (*1 *2 *2 *3) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1046)) (-4 *2 (-1235 *4)) (-5 *1 (-444 *4 *2)))) (-4348 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -4348 ((-112) |#2|)) (-15 -3494 (|#2| (-1259 |#1|))) (-15 -1856 (|#2| |#2|)) (-15 -2437 (|#2| |#2| |#1|)) (-15 -3857 (|#2| |#2| |#1|)) (-15 -2602 ((-734 (-768)) (-418 |#2|))) (-15 -1465 (|#2| (-918) (-418 |#2|))) (-15 -3274 ((-641 |#2|) (-918) (-418 |#2|)))) +((-2810 (((-768)) 57)) (-2826 (((-768)) 29 (|has| |#1| (-404))) (((-768) (-768)) 28 (|has| |#1| (-404)))) (-2405 (((-564) |#1|) 25 (|has| |#1| (-404)))) (-4057 (((-564) |#1|) 27 (|has| |#1| (-404)))) (-3094 (((-768)) 56) (((-768) (-768)) 55)) (-2967 ((|#1| (-768) (-564)) 36)) (-1300 (((-1264)) 59))) +(((-445 |#1|) (-10 -7 (-15 -2967 (|#1| (-768) (-564))) (-15 -3094 ((-768) (-768))) (-15 -3094 ((-768))) (-15 -2810 ((-768))) (-15 -1300 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -4057 ((-564) |#1|)) (-15 -2405 ((-564) |#1|)) (-15 -2826 ((-768) (-768))) (-15 -2826 ((-768)))) |%noBranch|)) (-1046)) (T -445)) +((-2826 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-2826 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-2405 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-4057 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) (-1300 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-2810 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-3094 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) (-2967 (*1 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1046))))) +(-10 -7 (-15 -2967 (|#1| (-768) (-564))) (-15 -3094 ((-768) (-768))) (-15 -3094 ((-768))) (-15 -2810 ((-768))) (-15 -1300 ((-1264))) (IF (|has| |#1| (-404)) (PROGN (-15 -4057 ((-564) |#1|)) (-15 -2405 ((-564) |#1|)) (-15 -2826 ((-768) (-768))) (-15 -2826 ((-768)))) |%noBranch|)) +((-2087 (((-641 (-564)) (-564)) 75)) (-4188 (((-112) (-169 (-564))) 81)) (-4127 (((-418 (-169 (-564))) (-169 (-564))) 74))) +(((-446) (-10 -7 (-15 -4127 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -2087 ((-641 (-564)) (-564))) (-15 -4188 ((-112) (-169 (-564)))))) (T -446)) +((-4188 (*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) (-2087 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564)))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) (-5 *3 (-169 (-564)))))) +(-10 -7 (-15 -4127 ((-418 (-169 (-564))) (-169 (-564)))) (-15 -2087 ((-641 (-564)) (-564))) (-15 -4188 ((-112) (-169 (-564))))) +((-1441 ((|#4| |#4| (-641 |#4|)) 80)) (-2982 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 22) (((-641 |#4|) (-641 |#4|) (-1152)) 21) (((-641 |#4|) (-641 |#4|)) 13))) +(((-447 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1441 (|#4| |#4| (-641 |#4|))) (-15 -2982 ((-641 |#4|) (-641 |#4|))) (-15 -2982 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -2982 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) (-307) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -447)) +((-2982 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2982 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *7)))) (-2982 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-447 *3 *4 *5 *6)))) (-1441 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *2))))) +(-10 -7 (-15 -1441 (|#4| |#4| (-641 |#4|))) (-15 -2982 ((-641 |#4|) (-641 |#4|))) (-15 -2982 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -2982 ((-641 |#4|) (-641 |#4|) (-1152) (-1152)))) +((-2168 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 89) (((-641 (-641 |#4|)) (-641 |#4|)) 88) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112)) 82) (((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|)) 83)) (-2631 (((-641 (-641 |#4|)) (-641 |#4|) (-112)) 54) (((-641 (-641 |#4|)) (-641 |#4|)) 75))) +(((-448 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2631 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2631 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2168 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2168 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2168 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2168 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) (-13 (-307) (-147)) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -448)) +((-2168 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2168 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2168 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2168 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) (-2631 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(-10 -7 (-15 -2631 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2631 ((-641 (-641 |#4|)) (-641 |#4|) (-112))) (-15 -2168 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|))) (-15 -2168 ((-641 (-641 |#4|)) (-641 |#4|) (-641 |#4|) (-112))) (-15 -2168 ((-641 (-641 |#4|)) (-641 |#4|))) (-15 -2168 ((-641 (-641 |#4|)) (-641 |#4|) (-112)))) +((-3214 (((-768) |#4|) 12)) (-3291 (((-641 (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|)))) 38)) (-4148 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49)) (-2898 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52)) (-1509 ((|#4| |#4| (-641 |#4|)) 54)) (-1883 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|)) 96)) (-4145 (((-1264) |#4|) 59)) (-2957 (((-1264) (-641 |#4|)) 69)) (-2611 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564)) 66)) (-3839 (((-1264) (-564)) 111)) (-2662 (((-641 |#4|) (-641 |#4|)) 103)) (-4235 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|)) |#4| (-768)) 31)) (-1301 (((-564) |#4|) 108)) (-1766 ((|#4| |#4|) 36)) (-4241 (((-641 |#4|) (-641 |#4|) (-564) (-564)) 74)) (-3449 (((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564)) 124)) (-3587 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20)) (-2730 (((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78)) (-3200 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76)) (-1508 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47)) (-1368 (((-112) |#2| |#2|) 75)) (-2788 (((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48)) (-4272 (((-112) |#2| |#2| |#2| |#2|) 80)) (-3675 ((|#4| |#4| (-641 |#4|)) 97))) +(((-449 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3675 (|#4| |#4| (-641 |#4|))) (-15 -1509 (|#4| |#4| (-641 |#4|))) (-15 -4241 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2730 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1368 ((-112) |#2| |#2|)) (-15 -4272 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2788 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1508 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3200 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1883 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -1766 (|#4| |#4|)) (-15 -3291 ((-641 (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|))))) (-15 -2898 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4148 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2662 ((-641 |#4|) (-641 |#4|))) (-15 -1301 ((-564) |#4|)) (-15 -4145 ((-1264) |#4|)) (-15 -2611 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -3449 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -2957 ((-1264) (-641 |#4|))) (-15 -3839 ((-1264) (-564))) (-15 -3587 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4235 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|)) |#4| (-768))) (-15 -3214 ((-768) |#4|))) (-452) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -449)) +((-3214 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-4235 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-768)) (|:| -4268 *4))) (-5 *5 (-768)) (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-449 *6 *7 *8 *4)))) (-3587 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-2957 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)))) (-3449 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *4)))) (-2611 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *4)))) (-4145 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-1301 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-564)) (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-2662 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-4148 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-790)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) (-4 *4 (-452)) (-4 *6 (-847)))) (-3291 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-768)) (|:| -4268 *3)))) (-5 *4 (-768)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *3)))) (-1766 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-1883 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-449 *5 *6 *7 *3)))) (-3200 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-790)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *4 *3 *5 *6)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6)))) (-2788 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-790)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *3)))) (-4272 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-1368 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7)))) (-4241 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *7)))) (-1509 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2)))) (-3675 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2))))) +(-10 -7 (-15 -3675 (|#4| |#4| (-641 |#4|))) (-15 -1509 (|#4| |#4| (-641 |#4|))) (-15 -4241 ((-641 |#4|) (-641 |#4|) (-564) (-564))) (-15 -2730 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1368 ((-112) |#2| |#2|)) (-15 -4272 ((-112) |#2| |#2| |#2| |#2|)) (-15 -2788 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1508 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3200 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1883 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-641 |#4|))) (-15 -1766 (|#4| |#4|)) (-15 -3291 ((-641 (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|))) |#4| (-768) (-641 (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|))))) (-15 -2898 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4148 ((-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-641 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2662 ((-641 |#4|) (-641 |#4|))) (-15 -1301 ((-564) |#4|)) (-15 -4145 ((-1264) |#4|)) (-15 -2611 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564))) (-15 -3449 ((-564) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-564) (-564) (-564) (-564))) (-15 -2957 ((-1264) (-641 |#4|))) (-15 -3839 ((-1264) (-564))) (-15 -3587 ((-112) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4235 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-768)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-768)) (|:| -4268 |#4|)) |#4| (-768))) (-15 -3214 ((-768) |#4|))) +((-4320 ((|#4| |#4| (-641 |#4|)) 20 (|has| |#1| (-363)))) (-4390 (((-641 |#4|) (-641 |#4|) (-1152) (-1152)) 46) (((-641 |#4|) (-641 |#4|) (-1152)) 45) (((-641 |#4|) (-641 |#4|)) 34))) +(((-450 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4390 ((-641 |#4|) (-641 |#4|))) (-15 -4390 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -4390 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -4320 (|#4| |#4| (-641 |#4|))) |%noBranch|)) (-452) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -450)) +((-4320 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *2)))) (-4390 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *7)))) (-4390 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-450 *4 *5 *6 *7)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-450 *3 *4 *5 *6))))) +(-10 -7 (-15 -4390 ((-641 |#4|) (-641 |#4|))) (-15 -4390 ((-641 |#4|) (-641 |#4|) (-1152))) (-15 -4390 ((-641 |#4|) (-641 |#4|) (-1152) (-1152))) (IF (|has| |#1| (-363)) (-15 -4320 (|#4| |#4| (-641 |#4|))) |%noBranch|)) +((-2529 (($ $ $) 14) (($ (-641 $)) 21)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 48)) (-2577 (($ $ $) NIL) (($ (-641 $)) 22))) +(((-451 |#1|) (-10 -8 (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2529 (|#1| (-641 |#1|))) (-15 -2529 (|#1| |#1| |#1|)) (-15 -2577 (|#1| (-641 |#1|))) (-15 -2577 (|#1| |#1| |#1|))) (-452)) (T -451)) +NIL +(-10 -8 (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -2529 (|#1| (-641 |#1|))) (-15 -2529 (|#1| |#1| |#1|)) (-15 -2577 (|#1| (-641 |#1|))) (-15 -2577 (|#1| |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-1321 (((-3 $ "failed") $ $) 43)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-452) (-140)) (T -452)) -((-1647 (*1 *1 *1 *1) (-4 *1 (-452))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) (-1607 (*1 *1 *1 *1) (-4 *1 (-452))) (-1607 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) (-1335 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-452))))) -(-13 (-555) (-10 -8 (-15 -1647 ($ $ $)) (-15 -1647 ($ (-640 $))) (-15 -1607 ($ $ $)) (-15 -1607 ($ (-640 $))) (-15 -1335 ((-1165 $) (-1165 $) (-1165 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2570 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1807 (((-1257 (-684 (-407 (-948 |#1|)))) (-1257 $)) NIL) (((-1257 (-684 (-407 (-948 |#1|))))) NIL)) (-2138 (((-1257 $)) NIL)) (-3684 (($) NIL T CONST)) (-3422 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL)) (-3040 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-1460 (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL) (((-684 (-407 (-948 |#1|)))) NIL)) (-2117 (((-407 (-948 |#1|)) $) NIL)) (-1440 (((-684 (-407 (-948 |#1|))) $ (-1257 $)) NIL) (((-684 (-407 (-948 |#1|))) $) NIL)) (-2661 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-3351 (((-1165 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1165 (-407 (-948 |#1|)))) 94 (|has| |#1| (-555)))) (-2690 (($ $ (-917)) NIL)) (-2097 (((-407 (-948 |#1|)) $) NIL)) (-3061 (((-1165 (-407 (-948 |#1|))) $) 92 (|has| (-407 (-948 |#1|)) (-555)))) (-1483 (((-407 (-948 |#1|)) (-1257 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-3248 (((-1165 (-407 (-948 |#1|))) $) NIL)) (-3190 (((-112)) NIL)) (-1505 (($ (-1257 (-407 (-948 |#1|))) (-1257 $)) 118) (($ (-1257 (-407 (-948 |#1|)))) NIL)) (-3230 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-3406 (((-917)) NIL)) (-3159 (((-112)) NIL)) (-1670 (($ $ (-917)) NIL)) (-3115 (((-112)) NIL)) (-3092 (((-112)) NIL)) (-3135 (((-112)) NIL)) (-3430 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL)) (-3052 (((-3 $ "failed")) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-1471 (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL) (((-684 (-407 (-948 |#1|)))) NIL)) (-2127 (((-407 (-948 |#1|)) $) NIL)) (-1450 (((-684 (-407 (-948 |#1|))) $ (-1257 $)) NIL) (((-684 (-407 (-948 |#1|))) $) NIL)) (-2673 (((-3 $ "failed") $) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-3399 (((-1165 (-948 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-363))) (((-1165 (-407 (-948 |#1|)))) 93 (|has| |#1| (-555)))) (-2681 (($ $ (-917)) NIL)) (-2108 (((-407 (-948 |#1|)) $) NIL)) (-3071 (((-1165 (-407 (-948 |#1|))) $) 87 (|has| (-407 (-948 |#1|)) (-555)))) (-1493 (((-407 (-948 |#1|)) (-1257 $)) NIL) (((-407 (-948 |#1|))) NIL)) (-3260 (((-1165 (-407 (-948 |#1|))) $) NIL)) (-3200 (((-112)) NIL)) (-1938 (((-1151) $) NIL)) (-3103 (((-112)) NIL)) (-3125 (((-112)) NIL)) (-3146 (((-112)) NIL)) (-3249 (((-1113) $) NIL)) (-1375 (((-407 (-948 |#1|)) $ $) 78 (|has| |#1| (-555)))) (-3328 (((-407 (-948 |#1|)) $) 104 (|has| |#1| (-555)))) (-3316 (((-407 (-948 |#1|)) $) 108 (|has| |#1| (-555)))) (-3339 (((-1165 (-407 (-948 |#1|))) $) 98 (|has| |#1| (-555)))) (-1366 (((-407 (-948 |#1|))) 79 (|has| |#1| (-555)))) (-1397 (((-407 (-948 |#1|)) $ $) 71 (|has| |#1| (-555)))) (-3377 (((-407 (-948 |#1|)) $) 103 (|has| |#1| (-555)))) (-3365 (((-407 (-948 |#1|)) $) 107 (|has| |#1| (-555)))) (-3389 (((-1165 (-407 (-948 |#1|))) $) 97 (|has| |#1| (-555)))) (-1387 (((-407 (-948 |#1|))) 75 (|has| |#1| (-555)))) (-3410 (($) 114) (($ (-1169)) 122) (($ (-1257 (-1169))) 121) (($ (-1257 $)) 109) (($ (-1169) (-1257 $)) 120) (($ (-1257 (-1169)) (-1257 $)) 119)) (-3180 (((-112)) NIL)) (-3858 (((-407 (-948 |#1|)) $ (-563)) NIL)) (-1818 (((-1257 (-407 (-948 |#1|))) $ (-1257 $)) 111) (((-684 (-407 (-948 |#1|))) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 (-948 |#1|))) $) 45) (((-684 (-407 (-948 |#1|))) (-1257 $)) NIL)) (-2802 (((-1257 (-407 (-948 |#1|))) $) NIL) (($ (-1257 (-407 (-948 |#1|)))) 42)) (-1355 (((-640 (-948 (-407 (-948 |#1|)))) (-1257 $)) NIL) (((-640 (-948 (-407 (-948 |#1|))))) NIL) (((-640 (-948 |#1|)) (-1257 $)) 112 (|has| |#1| (-555))) (((-640 (-948 |#1|))) 113 (|has| |#1| (-555)))) (-2879 (($ $ $) NIL)) (-3239 (((-112)) NIL)) (-2062 (((-858) $) NIL) (($ (-1257 (-407 (-948 |#1|)))) NIL)) (-3288 (((-1257 $)) 67)) (-3080 (((-640 (-1257 (-407 (-948 |#1|))))) NIL (|has| (-407 (-948 |#1|)) (-555)))) (-2888 (($ $ $ $) NIL)) (-3221 (((-112)) NIL)) (-2408 (($ (-684 (-407 (-948 |#1|))) $) NIL)) (-2870 (($ $ $) NIL)) (-3231 (((-112)) NIL)) (-3210 (((-112)) NIL)) (-3169 (((-112)) NIL)) (-3790 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) 110)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 63) (($ $ (-407 (-948 |#1|))) NIL) (($ (-407 (-948 |#1|)) $) NIL) (($ (-1135 |#2| (-407 (-948 |#1|))) $) NIL))) -(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-948 |#1|))) (-643 (-1135 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -2062 ($ (-1257 (-407 (-948 |#1|))))) (-15 -3430 ((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed"))) (-15 -3422 ((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed"))) (-15 -3410 ($)) (-15 -3410 ($ (-1169))) (-15 -3410 ($ (-1257 (-1169)))) (-15 -3410 ($ (-1257 $))) (-15 -3410 ($ (-1169) (-1257 $))) (-15 -3410 ($ (-1257 (-1169)) (-1257 $))) (IF (|has| |#1| (-555)) (PROGN (-15 -3399 ((-1165 (-407 (-948 |#1|))))) (-15 -3389 ((-1165 (-407 (-948 |#1|))) $)) (-15 -3377 ((-407 (-948 |#1|)) $)) (-15 -3365 ((-407 (-948 |#1|)) $)) (-15 -3351 ((-1165 (-407 (-948 |#1|))))) (-15 -3339 ((-1165 (-407 (-948 |#1|))) $)) (-15 -3328 ((-407 (-948 |#1|)) $)) (-15 -3316 ((-407 (-948 |#1|)) $)) (-15 -1397 ((-407 (-948 |#1|)) $ $)) (-15 -1387 ((-407 (-948 |#1|)))) (-15 -1375 ((-407 (-948 |#1|)) $ $)) (-15 -1366 ((-407 (-948 |#1|)))) (-15 -1355 ((-640 (-948 |#1|)) (-1257 $))) (-15 -1355 ((-640 (-948 |#1|))))) |%noBranch|))) (-172) (-917) (-640 (-1169)) (-1257 (-684 |#1|))) (T -453)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 *3)))) (-4 *3 (-172)) (-14 *6 (-1257 (-684 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))))) (-3430 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -3288 (-640 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3422 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -3288 (-640 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3410 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) (-14 *4 (-640 (-1169))) (-14 *5 (-1257 (-684 *2))))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 *2)) (-14 *6 (-1257 (-684 *3))))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-1257 (-1169))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3410 (*1 *1 *2) (-12 (-5 *2 (-1257 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3410 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 *2)) (-14 *7 (-1257 (-684 *4))))) (-3410 (*1 *1 *2 *3) (-12 (-5 *2 (-1257 (-1169))) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))) (-3399 (*1 *2) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3389 (*1 *2 *1) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3377 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3365 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3351 (*1 *2) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3339 (*1 *2 *1) (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-3316 (*1 *2 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-1397 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-1387 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-1375 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-1366 (*1 *2) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *2 (-640 (-948 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *4 (-172)) (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))) (-1355 (*1 *2) (-12 (-5 *2 (-640 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(-13 (-417 (-407 (-948 |#1|))) (-643 (-1135 |#2| (-407 (-948 |#1|)))) (-10 -8 (-15 -2062 ($ (-1257 (-407 (-948 |#1|))))) (-15 -3430 ((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed"))) (-15 -3422 ((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed"))) (-15 -3410 ($)) (-15 -3410 ($ (-1169))) (-15 -3410 ($ (-1257 (-1169)))) (-15 -3410 ($ (-1257 $))) (-15 -3410 ($ (-1169) (-1257 $))) (-15 -3410 ($ (-1257 (-1169)) (-1257 $))) (IF (|has| |#1| (-555)) (PROGN (-15 -3399 ((-1165 (-407 (-948 |#1|))))) (-15 -3389 ((-1165 (-407 (-948 |#1|))) $)) (-15 -3377 ((-407 (-948 |#1|)) $)) (-15 -3365 ((-407 (-948 |#1|)) $)) (-15 -3351 ((-1165 (-407 (-948 |#1|))))) (-15 -3339 ((-1165 (-407 (-948 |#1|))) $)) (-15 -3328 ((-407 (-948 |#1|)) $)) (-15 -3316 ((-407 (-948 |#1|)) $)) (-15 -1397 ((-407 (-948 |#1|)) $ $)) (-15 -1387 ((-407 (-948 |#1|)))) (-15 -1375 ((-407 (-948 |#1|)) $ $)) (-15 -1366 ((-407 (-948 |#1|)))) (-15 -1355 ((-640 (-948 |#1|)) (-1257 $))) (-15 -1355 ((-640 (-948 |#1|))))) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 18)) (-2185 (((-640 (-860 |#1|)) $) 93)) (-2021 (((-1165 $) $ (-860 |#1|)) 59) (((-1165 |#2|) $) 142)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-2554 (($ $) NIL (|has| |#2| (-555)))) (-2533 (((-112) $) NIL (|has| |#2| (-555)))) (-3176 (((-767) $) 27) (((-767) $ (-640 (-860 |#1|))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2924 (($ $) NIL (|has| |#2| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#2| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) 57) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2589 ((|#2| $) 55) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-3962 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3744 (($ $ (-640 (-563))) 99)) (-3213 (($ $) 87)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#2| (-905)))) (-3302 (($ $ |#2| |#3| $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) 72)) (-2175 (($ (-1165 |#2|) (-860 |#1|)) 147) (($ (-1165 $) (-860 |#1|)) 65)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) 75)) (-2165 (($ |#2| |#3|) 38) (($ $ (-860 |#1|) (-767)) 40) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-860 |#1|)) NIL)) (-3187 ((|#3| $) NIL) (((-767) $ (-860 |#1|)) 63) (((-640 (-767)) $ (-640 (-860 |#1|))) 70)) (-3489 (($ $ $) NIL (|has| |#2| (-846)))) (-4105 (($ $ $) NIL (|has| |#2| (-846)))) (-3310 (($ (-1 |#3| |#3|) $) NIL)) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-2845 (((-3 (-860 |#1|) "failed") $) 52)) (-3183 (($ $) NIL)) (-3193 ((|#2| $) 54)) (-1607 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1938 (((-1151) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -2631 (-767))) "failed") $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) 53)) (-3170 ((|#2| $) 140)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) 152 (|has| |#2| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3448 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) 106) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) 112) (($ $ (-860 |#1|) $) 104) (($ $ (-640 (-860 |#1|)) (-640 $)) 130)) (-3974 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1361 (($ $ (-860 |#1|)) 66) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1962 ((|#3| $) 86) (((-767) $ (-860 |#1|)) 49) (((-640 (-767)) $ (-640 (-860 |#1|))) 69)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3166 ((|#2| $) 149 (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2062 (((-858) $) 177) (($ (-563)) NIL) (($ |#2|) 105) (($ (-860 |#1|)) 42) (($ (-407 (-563))) NIL (-2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ |#3|) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#2| (-555)))) (-3790 (($) 22 T CONST)) (-3803 (($) 31 T CONST)) (-4191 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2998 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3050 (($ $ |#2|) 84 (|has| |#2| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 135)) (** (($ $ (-917)) NIL) (($ $ (-767)) 133)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 39) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) 83) (($ $ |#2|) NIL))) -(((-454 |#1| |#2| |#3|) (-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -3744 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045) (-238 (-1708 |#1|) (-767))) (T -454)) -((-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-14 *3 (-640 (-1169))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-238 (-1708 *3) (-767)))))) -(-13 (-945 |#2| |#3| (-860 |#1|)) (-10 -8 (-15 -3744 ($ $ (-640 (-563)))))) -((-3476 (((-112) |#1| (-640 |#2|)) 92)) (-3453 (((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|)) 101)) (-3465 (((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|))) 103)) (-2299 ((|#2| |#2| |#1|) 35)) (-3440 (((-767) |#2| (-640 |#2|)) 26))) -(((-455 |#1| |#2|) (-10 -7 (-15 -2299 (|#2| |#2| |#1|)) (-15 -3440 ((-767) |#2| (-640 |#2|))) (-15 -3453 ((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|))) (-15 -3465 ((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|)))) (-15 -3476 ((-112) |#1| (-640 |#2|)))) (-307) (-1233 |#1|)) (T -455)) -((-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *5)) (-4 *5 (-1233 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-3465 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1257 (-640 *3))) (-4 *4 (-307)) (-5 *2 (-640 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1233 *4)))) (-3453 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1233 *4)) (-5 *2 (-1257 (-640 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-640 *6)))) (-3440 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-307)) (-5 *2 (-767)) (-5 *1 (-455 *5 *3)))) (-2299 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1233 *3))))) -(-10 -7 (-15 -2299 (|#2| |#2| |#1|)) (-15 -3440 ((-767) |#2| (-640 |#2|))) (-15 -3453 ((-3 (-1257 (-640 |#2|)) "failed") (-767) |#1| (-640 |#2|))) (-15 -3465 ((-3 (-640 |#2|) "failed") |#2| |#1| (-1257 (-640 |#2|)))) (-15 -3476 ((-112) |#1| (-640 |#2|)))) -((-2055 (((-418 |#5|) |#5|) 24))) -(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2055 ((-418 |#5|) |#5|))) (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169))))) (-789) (-555) (-555) (-945 |#4| |#2| |#1|)) (T -456)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169)))))) (-4 *5 (-789)) (-4 *7 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-555)) (-4 *3 (-945 *7 *5 *4))))) -(-10 -7 (-15 -2055 ((-418 |#5|) |#5|))) -((-4357 ((|#3|) 40)) (-1335 (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 36))) -(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1335 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -4357 (|#3|))) (-789) (-846) (-905) (-945 |#3| |#1| |#2|)) (T -457)) -((-4357 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1335 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6))))) -(-10 -7 (-15 -1335 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -4357 (|#3|))) -((-2055 (((-418 (-1165 |#1|)) (-1165 |#1|)) 43))) -(((-458 |#1|) (-10 -7 (-15 -2055 ((-418 (-1165 |#1|)) (-1165 |#1|)))) (-307)) (T -458)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1165 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1165 *4))))) -(-10 -7 (-15 -2055 ((-418 (-1165 |#1|)) (-1165 |#1|)))) -((-3106 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767))) 44) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767))) 43) (((-52) |#2| (-1169) (-294 |#2|)) 36) (((-52) (-1 |#2| (-563)) (-294 |#2|)) 29)) (-3444 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 87) (((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 86) (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563))) 85) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563))) 84) (((-52) |#2| (-1169) (-294 |#2|)) 79) (((-52) (-1 |#2| (-563)) (-294 |#2|)) 78)) (-3128 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 73) (((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))) 71)) (-3118 (((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563))) 50) (((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563))) 49))) -(((-459 |#1| |#2|) (-10 -7 (-15 -3106 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -3106 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -3106 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767)))) (-15 -3106 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767)))) (-15 -3118 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -3118 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -3128 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3128 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3444 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -3444 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -3444 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -3444 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -3444 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3444 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -459)) -((-3444 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3444 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) (-4 *8 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3444 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3444 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3444 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3444 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-3128 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-3128 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) (-4 *8 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-3118 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3118 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3106 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-767))) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-3106 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-767))) (-4 *7 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-3106 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))) -(-10 -7 (-15 -3106 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -3106 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -3106 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-767)))) (-15 -3106 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-767)))) (-15 -3118 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -3118 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -3128 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3128 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3444 ((-52) (-1 |#2| (-563)) (-294 |#2|))) (-15 -3444 ((-52) |#2| (-1169) (-294 |#2|))) (-15 -3444 ((-52) (-1 |#2| (-563)) (-294 |#2|) (-1224 (-563)))) (-15 -3444 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-563)))) (-15 -3444 ((-52) (-1 |#2| (-407 (-563))) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563)))) (-15 -3444 ((-52) |#2| (-1169) (-294 |#2|) (-1224 (-407 (-563))) (-407 (-563))))) -((-2299 ((|#2| |#2| |#1|) 15)) (-3498 (((-640 |#2|) |#2| (-640 |#2|) |#1| (-917)) 84)) (-3486 (((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917)) 70))) -(((-460 |#1| |#2|) (-10 -7 (-15 -3486 ((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917))) (-15 -3498 ((-640 |#2|) |#2| (-640 |#2|) |#1| (-917))) (-15 -2299 (|#2| |#2| |#1|))) (-307) (-1233 |#1|)) (T -460)) -((-2299 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1233 *3)))) (-3498 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-640 *3)) (-5 *5 (-917)) (-4 *3 (-1233 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-3486 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1233 *5)) (-5 *2 (-2 (|:| |plist| (-640 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-640 *3))))) -(-10 -7 (-15 -3486 ((-2 (|:| |plist| (-640 |#2|)) (|:| |modulo| |#1|)) |#2| (-640 |#2|) |#1| (-917))) (-15 -3498 ((-640 |#2|) |#2| (-640 |#2|) |#1| (-917))) (-15 -2299 (|#2| |#2| |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 28)) (-3525 (($ |#3|) 25)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3213 (($ $) 32)) (-3507 (($ |#2| |#4| $) 33)) (-2165 (($ |#2| (-709 |#3| |#4| |#5|)) 24)) (-3183 (((-709 |#3| |#4| |#5|) $) 15)) (-3527 ((|#3| $) 19)) (-3537 ((|#4| $) 17)) (-3193 ((|#2| $) 29)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-3517 (($ |#2| |#3| |#4|) 26)) (-3790 (($) 36 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 34)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -3193 (|#2| $)) (-15 -3183 ((-709 |#3| |#4| |#5|) $)) (-15 -3537 (|#4| $)) (-15 -3527 (|#3| $)) (-15 -3213 ($ $)) (-15 -2165 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -3525 ($ |#3|)) (-15 -3517 ($ |#2| |#3| |#4|)) (-15 -3507 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-640 (-1169)) (-172) (-846) (-238 (-1708 |#1|) (-767)) (-1 (-112) (-2 (|:| -3491 |#3|) (|:| -2631 |#4|)) (-2 (|:| -3491 |#3|) (|:| -2631 |#4|))) (-945 |#2| |#4| (-860 |#1|))) (T -461)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-1708 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *6)) (-2 (|:| -3491 *5) (|:| -2631 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) (-4 *2 (-945 *4 *6 (-860 *3))))) (-3193 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *5 (-238 (-1708 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *4) (|:| -2631 *5)) (-2 (|:| -3491 *4) (|:| -2631 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *2 *5 (-860 *3))))) (-3183 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *6 (-238 (-1708 *3) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *6)) (-2 (|:| -3491 *5) (|:| -2631 *6)))) (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3))))) (-3537 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *2)) (-2 (|:| -3491 *5) (|:| -2631 *2)))) (-4 *2 (-238 (-1708 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3))))) (-3527 (*1 *2 *1) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-1708 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *2) (|:| -2631 *5)) (-2 (|:| -3491 *2) (|:| -2631 *5)))) (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-3213 (*1 *1 *1) (-12 (-14 *2 (-640 (-1169))) (-4 *3 (-172)) (-4 *5 (-238 (-1708 *2) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *4) (|:| -2631 *5)) (-2 (|:| -3491 *4) (|:| -2631 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) (-4 *7 (-945 *3 *5 (-860 *2))))) (-2165 (*1 *1 *2 *3) (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) (-4 *6 (-238 (-1708 *4) (-767))) (-14 *7 (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *6)) (-2 (|:| -3491 *5) (|:| -2631 *6)))) (-14 *4 (-640 (-1169))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4))))) (-3525 (*1 *1 *2) (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) (-4 *5 (-238 (-1708 *3) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *2) (|:| -2631 *5)) (-2 (|:| -3491 *2) (|:| -2631 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) (-4 *7 (-945 *4 *5 (-860 *3))))) (-3517 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-640 (-1169))) (-4 *2 (-172)) (-4 *4 (-238 (-1708 *5) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *3) (|:| -2631 *4)) (-2 (|:| -3491 *3) (|:| -2631 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) (-4 *7 (-945 *2 *4 (-860 *5))))) (-3507 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-640 (-1169))) (-4 *2 (-172)) (-4 *3 (-238 (-1708 *4) (-767))) (-14 *6 (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *3)) (-2 (|:| -3491 *5) (|:| -2631 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) (-4 *7 (-945 *2 *3 (-860 *4)))))) -(-13 (-713 |#6|) (-713 |#2|) (-10 -8 (-15 -3193 (|#2| $)) (-15 -3183 ((-709 |#3| |#4| |#5|) $)) (-15 -3537 (|#4| $)) (-15 -3527 (|#3| $)) (-15 -3213 ($ $)) (-15 -2165 ($ |#2| (-709 |#3| |#4| |#5|))) (-15 -3525 ($ |#3|)) (-15 -3517 ($ |#2| |#3| |#4|)) (-15 -3507 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) -((-3546 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) -(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3546 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|) (-13 (-1034 (-407 (-563))) (-363) (-10 -8 (-15 -2062 ($ |#4|)) (-15 -2626 (|#4| $)) (-15 -2636 (|#4| $))))) (T -462)) -((-3546 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) (-4 *6 (-555)) (-4 *7 (-945 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1034 (-407 (-563))) (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $)))))))) -(-10 -7 (-15 -3546 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) -((-2049 (((-112) $ $) NIL)) (-2185 (((-640 |#3|) $) 41)) (-1556 (((-112) $) NIL)) (-1456 (((-112) $) NIL (|has| |#1| (-555)))) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-1907 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-1512 (((-112) $) NIL (|has| |#1| (-555)))) (-1534 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1523 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1545 (((-112) $) NIL (|has| |#1| (-555)))) (-1466 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) 49)) (-2589 (($ (-640 |#4|)) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1417 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408)))) (-4236 (((-640 |#4|) $) 18 (|has| $ (-6 -4408)))) (-2674 ((|#3| $) 47)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#4|) $) 14 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-4139 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 21)) (-1616 (((-640 |#3|) $) NIL)) (-1602 (((-112) |#3| $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-3249 (((-1113) $) NIL)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3837 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 39)) (-2749 (($) 17)) (-3261 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) 16)) (-2802 (((-536) $) NIL (|has| |#4| (-611 (-536)))) (($ (-640 |#4|)) 51)) (-2074 (($ (-640 |#4|)) 13)) (-1566 (($ $ |#3|) NIL)) (-1591 (($ $ |#3|) NIL)) (-1579 (($ $ |#3|) NIL)) (-2062 (((-858) $) 38) (((-640 |#4|) $) 50)) (-3848 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 30)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-463 |#1| |#2| |#3| |#4|) (-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2802 ($ (-640 |#4|))) (-6 -4408) (-6 -4409))) (-1045) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -463)) -((-2802 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6))))) -(-13 (-972 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2802 ($ (-640 |#4|))) (-6 -4408) (-6 -4409))) -((-3790 (($) 11)) (-3803 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) -(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -3803 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3790 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464)) -NIL -(-10 -8 (-15 -3803 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3790 (|#1|))) -((-2049 (((-112) $ $) 7)) (-2671 (((-3 |#1| "failed") $) 26)) (-2589 ((|#1| $) 27)) (-1927 (($ $ $) 23)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1962 ((|#2| $) 19)) (-2062 (((-858) $) 11) (($ |#1|) 25)) (-3790 (($) 18 T CONST)) (-3803 (($) 24 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 15) (($ $ $) 13)) (-3027 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-2577 (*1 *1 *1 *1) (-4 *1 (-452))) (-2577 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-2529 (*1 *1 *1 *1) (-4 *1 (-452))) (-2529 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) (-4349 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452))))) +(-13 (-556) (-10 -8 (-15 -2577 ($ $ $)) (-15 -2577 ($ (-641 $))) (-15 -2529 ($ $ $)) (-15 -2529 ($ (-641 $))) (-15 -4349 ((-1166 $) (-1166 $) (-1166 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4176 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3147 (((-1259 (-685 (-407 (-949 |#1|)))) (-1259 $)) NIL) (((-1259 (-685 (-407 (-949 |#1|))))) NIL)) (-1821 (((-1259 $)) NIL)) (-2818 (($) NIL T CONST)) (-3268 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL)) (-2934 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3493 (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-949 |#1|)))) NIL)) (-3748 (((-407 (-949 |#1|)) $) NIL)) (-1952 (((-685 (-407 (-949 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-949 |#1|))) $) NIL)) (-3664 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3760 (((-1166 (-949 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-363))) (((-1166 (-407 (-949 |#1|)))) 94 (|has| |#1| (-556)))) (-2752 (($ $ (-918)) NIL)) (-4369 (((-407 (-949 |#1|)) $) NIL)) (-2699 (((-1166 (-407 (-949 |#1|))) $) 92 (|has| (-407 (-949 |#1|)) (-556)))) (-3359 (((-407 (-949 |#1|)) (-1259 $)) NIL) (((-407 (-949 |#1|))) NIL)) (-1961 (((-1166 (-407 (-949 |#1|))) $) NIL)) (-4293 (((-112)) NIL)) (-2340 (($ (-1259 (-407 (-949 |#1|))) (-1259 $)) 118) (($ (-1259 (-407 (-949 |#1|)))) NIL)) (-3951 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-1544 (((-918)) NIL)) (-1878 (((-112)) NIL)) (-2545 (($ $ (-918)) NIL)) (-3992 (((-112)) NIL)) (-2482 (((-112)) NIL)) (-3764 (((-112)) NIL)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL)) (-1628 (((-3 $ "failed")) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-4256 (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL) (((-685 (-407 (-949 |#1|)))) NIL)) (-3306 (((-407 (-949 |#1|)) $) NIL)) (-1789 (((-685 (-407 (-949 |#1|))) $ (-1259 $)) NIL) (((-685 (-407 (-949 |#1|))) $) NIL)) (-3714 (((-3 $ "failed") $) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-1903 (((-1166 (-949 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-363))) (((-1166 (-407 (-949 |#1|)))) 93 (|has| |#1| (-556)))) (-3154 (($ $ (-918)) NIL)) (-3371 (((-407 (-949 |#1|)) $) NIL)) (-2257 (((-1166 (-407 (-949 |#1|))) $) 87 (|has| (-407 (-949 |#1|)) (-556)))) (-3738 (((-407 (-949 |#1|)) (-1259 $)) NIL) (((-407 (-949 |#1|))) NIL)) (-2627 (((-1166 (-407 (-949 |#1|))) $) NIL)) (-2756 (((-112)) NIL)) (-2217 (((-1152) $) NIL)) (-2270 (((-112)) NIL)) (-4213 (((-112)) NIL)) (-3435 (((-112)) NIL)) (-3864 (((-1114) $) NIL)) (-2678 (((-407 (-949 |#1|)) $ $) 78 (|has| |#1| (-556)))) (-3399 (((-407 (-949 |#1|)) $) 104 (|has| |#1| (-556)))) (-3785 (((-407 (-949 |#1|)) $) 108 (|has| |#1| (-556)))) (-1979 (((-1166 (-407 (-949 |#1|))) $) 98 (|has| |#1| (-556)))) (-3153 (((-407 (-949 |#1|))) 79 (|has| |#1| (-556)))) (-2978 (((-407 (-949 |#1|)) $ $) 71 (|has| |#1| (-556)))) (-1358 (((-407 (-949 |#1|)) $) 103 (|has| |#1| (-556)))) (-2594 (((-407 (-949 |#1|)) $) 107 (|has| |#1| (-556)))) (-4170 (((-1166 (-407 (-949 |#1|))) $) 97 (|has| |#1| (-556)))) (-3105 (((-407 (-949 |#1|))) 75 (|has| |#1| (-556)))) (-1618 (($) 114) (($ (-1170)) 122) (($ (-1259 (-1170))) 121) (($ (-1259 $)) 109) (($ (-1170) (-1259 $)) 120) (($ (-1259 (-1170)) (-1259 $)) 119)) (-4154 (((-112)) NIL)) (-4382 (((-407 (-949 |#1|)) $ (-564)) NIL)) (-1785 (((-1259 (-407 (-949 |#1|))) $ (-1259 $)) 111) (((-685 (-407 (-949 |#1|))) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 (-949 |#1|))) $) 45) (((-685 (-407 (-949 |#1|))) (-1259 $)) NIL)) (-2235 (((-1259 (-407 (-949 |#1|))) $) NIL) (($ (-1259 (-407 (-949 |#1|)))) 42)) (-1551 (((-641 (-949 (-407 (-949 |#1|)))) (-1259 $)) NIL) (((-641 (-949 (-407 (-949 |#1|))))) NIL) (((-641 (-949 |#1|)) (-1259 $)) 112 (|has| |#1| (-556))) (((-641 (-949 |#1|))) 113 (|has| |#1| (-556)))) (-3671 (($ $ $) NIL)) (-2330 (((-112)) NIL)) (-3742 (((-859) $) NIL) (($ (-1259 (-407 (-949 |#1|)))) NIL)) (-4265 (((-1259 $)) 67)) (-3986 (((-641 (-1259 (-407 (-949 |#1|))))) NIL (|has| (-407 (-949 |#1|)) (-556)))) (-3533 (($ $ $ $) NIL)) (-4352 (((-112)) NIL)) (-1918 (($ (-685 (-407 (-949 |#1|))) $) NIL)) (-1879 (($ $ $) NIL)) (-4031 (((-112)) NIL)) (-4380 (((-112)) NIL)) (-1518 (((-112)) NIL)) (-4311 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) 110)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 63) (($ $ (-407 (-949 |#1|))) NIL) (($ (-407 (-949 |#1|)) $) NIL) (($ (-1136 |#2| (-407 (-949 |#1|))) $) NIL))) +(((-453 |#1| |#2| |#3| |#4|) (-13 (-417 (-407 (-949 |#1|))) (-644 (-1136 |#2| (-407 (-949 |#1|)))) (-10 -8 (-15 -3742 ($ (-1259 (-407 (-949 |#1|))))) (-15 -2906 ((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed"))) (-15 -3268 ((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed"))) (-15 -1618 ($)) (-15 -1618 ($ (-1170))) (-15 -1618 ($ (-1259 (-1170)))) (-15 -1618 ($ (-1259 $))) (-15 -1618 ($ (-1170) (-1259 $))) (-15 -1618 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -1903 ((-1166 (-407 (-949 |#1|))))) (-15 -4170 ((-1166 (-407 (-949 |#1|))) $)) (-15 -1358 ((-407 (-949 |#1|)) $)) (-15 -2594 ((-407 (-949 |#1|)) $)) (-15 -3760 ((-1166 (-407 (-949 |#1|))))) (-15 -1979 ((-1166 (-407 (-949 |#1|))) $)) (-15 -3399 ((-407 (-949 |#1|)) $)) (-15 -3785 ((-407 (-949 |#1|)) $)) (-15 -2978 ((-407 (-949 |#1|)) $ $)) (-15 -3105 ((-407 (-949 |#1|)))) (-15 -2678 ((-407 (-949 |#1|)) $ $)) (-15 -3153 ((-407 (-949 |#1|)))) (-15 -1551 ((-641 (-949 |#1|)) (-1259 $))) (-15 -1551 ((-641 (-949 |#1|))))) |%noBranch|))) (-172) (-918) (-641 (-1170)) (-1259 (-685 |#1|))) (T -453)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 *3)))) (-4 *3 (-172)) (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))))) (-2906 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4265 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3268 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-453 *3 *4 *5 *6)) (|:| -4265 (-641 (-453 *3 *4 *5 *6))))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1618 (*1 *1) (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-918)) (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2))))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1618 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) (-1618 (*1 *1 *2 *3) (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-1903 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-4170 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2594 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3760 (*1 *2) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2978 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3105 (*1 *2) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-2678 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-3153 (*1 *2) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) (-1551 (*1 *2 *3) (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-949 *4))) (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) (-1551 (*1 *2) (-12 (-5 *2 (-641 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(-13 (-417 (-407 (-949 |#1|))) (-644 (-1136 |#2| (-407 (-949 |#1|)))) (-10 -8 (-15 -3742 ($ (-1259 (-407 (-949 |#1|))))) (-15 -2906 ((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed"))) (-15 -3268 ((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed"))) (-15 -1618 ($)) (-15 -1618 ($ (-1170))) (-15 -1618 ($ (-1259 (-1170)))) (-15 -1618 ($ (-1259 $))) (-15 -1618 ($ (-1170) (-1259 $))) (-15 -1618 ($ (-1259 (-1170)) (-1259 $))) (IF (|has| |#1| (-556)) (PROGN (-15 -1903 ((-1166 (-407 (-949 |#1|))))) (-15 -4170 ((-1166 (-407 (-949 |#1|))) $)) (-15 -1358 ((-407 (-949 |#1|)) $)) (-15 -2594 ((-407 (-949 |#1|)) $)) (-15 -3760 ((-1166 (-407 (-949 |#1|))))) (-15 -1979 ((-1166 (-407 (-949 |#1|))) $)) (-15 -3399 ((-407 (-949 |#1|)) $)) (-15 -3785 ((-407 (-949 |#1|)) $)) (-15 -2978 ((-407 (-949 |#1|)) $ $)) (-15 -3105 ((-407 (-949 |#1|)))) (-15 -2678 ((-407 (-949 |#1|)) $ $)) (-15 -3153 ((-407 (-949 |#1|)))) (-15 -1551 ((-641 (-949 |#1|)) (-1259 $))) (-15 -1551 ((-641 (-949 |#1|))))) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 18)) (-4269 (((-641 (-861 |#1|)) $) 93)) (-4097 (((-1166 $) $ (-861 |#1|)) 59) (((-1166 |#2|) $) 142)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1948 (($ $) NIL (|has| |#2| (-556)))) (-1832 (((-112) $) NIL (|has| |#2| (-556)))) (-3913 (((-768) $) 27) (((-768) $ (-641 (-861 |#1|))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2249 (($ $) NIL (|has| |#2| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) 57) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2239 ((|#2| $) 55) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-2448 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-1980 (($ $ (-641 (-564))) 99)) (-1348 (($ $) 87)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-906)))) (-1866 (($ $ |#2| |#3| $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) 72)) (-4257 (($ (-1166 |#2|) (-861 |#1|)) 147) (($ (-1166 $) (-861 |#1|)) 65)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) 75)) (-4245 (($ |#2| |#3|) 38) (($ $ (-861 |#1|) (-768)) 40) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-861 |#1|)) NIL)) (-3469 ((|#3| $) NIL) (((-768) $ (-861 |#1|)) 63) (((-641 (-768)) $ (-641 (-861 |#1|))) 70)) (-2799 (($ $ $) NIL (|has| |#2| (-847)))) (-2848 (($ $ $) NIL (|has| |#2| (-847)))) (-1396 (($ (-1 |#3| |#3|) $) NIL)) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-1306 (((-3 (-861 |#1|) "failed") $) 52)) (-1309 (($ $) NIL)) (-1320 ((|#2| $) 54)) (-2529 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2217 (((-1152) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -2515 (-768))) "failed") $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) 53)) (-1296 ((|#2| $) 140)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) 152 (|has| |#2| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1321 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) 106) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) 112) (($ $ (-861 |#1|) $) 104) (($ $ (-641 (-861 |#1|)) (-641 $)) 130)) (-4284 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-4117 (($ $ (-861 |#1|)) 66) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2266 ((|#3| $) 86) (((-768) $ (-861 |#1|)) 49) (((-641 (-768)) $ (-641 (-861 |#1|))) 69)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4329 ((|#2| $) 149 (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3742 (((-859) $) 177) (($ (-564)) NIL) (($ |#2|) 105) (($ (-861 |#1|)) 42) (($ (-407 (-564))) NIL (-4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ |#3|) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4311 (($) 22 T CONST)) (-4321 (($) 31 T CONST)) (-2124 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1751 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1799 (($ $ |#2|) 84 (|has| |#2| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 135)) (** (($ $ (-918)) NIL) (($ $ (-768)) 133)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) 83) (($ $ |#2|) NIL))) +(((-454 |#1| |#2| |#3|) (-13 (-946 |#2| |#3| (-861 |#1|)) (-10 -8 (-15 -1980 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046) (-238 (-2641 |#1|) (-768))) (T -454)) +((-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-238 (-2641 *3) (-768)))))) +(-13 (-946 |#2| |#3| (-861 |#1|)) (-10 -8 (-15 -1980 ($ $ (-641 (-564)))))) +((-2996 (((-112) |#1| (-641 |#2|)) 92)) (-3250 (((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|)) 101)) (-1606 (((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|))) 103)) (-4172 ((|#2| |#2| |#1|) 35)) (-1553 (((-768) |#2| (-641 |#2|)) 26))) +(((-455 |#1| |#2|) (-10 -7 (-15 -4172 (|#2| |#2| |#1|)) (-15 -1553 ((-768) |#2| (-641 |#2|))) (-15 -3250 ((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|))) (-15 -1606 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -2996 ((-112) |#1| (-641 |#2|)))) (-307) (-1235 |#1|)) (T -455)) +((-2996 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) (-5 *2 (-112)) (-5 *1 (-455 *3 *5)))) (-1606 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4)))) (-3250 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6)))) (-1553 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) (-5 *2 (-768)) (-5 *1 (-455 *5 *3)))) (-4172 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3))))) +(-10 -7 (-15 -4172 (|#2| |#2| |#1|)) (-15 -1553 ((-768) |#2| (-641 |#2|))) (-15 -3250 ((-3 (-1259 (-641 |#2|)) "failed") (-768) |#1| (-641 |#2|))) (-15 -1606 ((-3 (-641 |#2|) "failed") |#2| |#1| (-1259 (-641 |#2|)))) (-15 -2996 ((-112) |#1| (-641 |#2|)))) +((-4127 (((-418 |#5|) |#5|) 24))) +(((-456 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4127 ((-418 |#5|) |#5|))) (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170))))) (-790) (-556) (-556) (-946 |#4| |#2| |#1|)) (T -456)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170)))))) (-4 *5 (-790)) (-4 *7 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) (-4 *3 (-946 *7 *5 *4))))) +(-10 -7 (-15 -4127 ((-418 |#5|) |#5|))) +((-2886 ((|#3|) 40)) (-4349 (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 36))) +(((-457 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4349 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2886 (|#3|))) (-790) (-847) (-906) (-946 |#3| |#1| |#2|)) (T -457)) +((-2886 (*1 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4)))) (-4349 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6))))) +(-10 -7 (-15 -4349 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2886 (|#3|))) +((-4127 (((-418 (-1166 |#1|)) (-1166 |#1|)) 43))) +(((-458 |#1|) (-10 -7 (-15 -4127 ((-418 (-1166 |#1|)) (-1166 |#1|)))) (-307)) (T -458)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) (-5 *3 (-1166 *4))))) +(-10 -7 (-15 -4127 ((-418 (-1166 |#1|)) (-1166 |#1|)))) +((-4325 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768))) 44) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768))) 43) (((-52) |#2| (-1170) (-294 |#2|)) 36) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 29)) (-2751 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 87) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 86) (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 85) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 84) (((-52) |#2| (-1170) (-294 |#2|)) 79) (((-52) (-1 |#2| (-564)) (-294 |#2|)) 78)) (-4350 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 73) (((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))) 71)) (-4338 (((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564))) 50) (((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564))) 49))) +(((-459 |#1| |#2|) (-10 -7 (-15 -4325 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -4325 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -4325 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768)))) (-15 -4325 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768)))) (-15 -4338 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -4338 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -4350 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -4350 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2751 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2751 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -2751 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -2751 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -2751 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2751 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -459)) +((-2751 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-2751 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-2751 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) (-4350 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) (-4350 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) (-4 *8 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) (-4338 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-4338 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-4325 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-768))) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) (-4325 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-768))) (-4 *7 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) (-4325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) (-4325 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) (-4 *6 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6))))) +(-10 -7 (-15 -4325 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -4325 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -4325 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-768)))) (-15 -4325 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-768)))) (-15 -4338 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -4338 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -4350 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -4350 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2751 ((-52) (-1 |#2| (-564)) (-294 |#2|))) (-15 -2751 ((-52) |#2| (-1170) (-294 |#2|))) (-15 -2751 ((-52) (-1 |#2| (-564)) (-294 |#2|) (-1226 (-564)))) (-15 -2751 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-564)))) (-15 -2751 ((-52) (-1 |#2| (-407 (-564))) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564)))) (-15 -2751 ((-52) |#2| (-1170) (-294 |#2|) (-1226 (-407 (-564))) (-407 (-564))))) +((-4172 ((|#2| |#2| |#1|) 15)) (-2155 (((-641 |#2|) |#2| (-641 |#2|) |#1| (-918)) 84)) (-2588 (((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918)) 70))) +(((-460 |#1| |#2|) (-10 -7 (-15 -2588 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918))) (-15 -2155 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-918))) (-15 -4172 (|#2| |#2| |#1|))) (-307) (-1235 |#1|)) (T -460)) +((-4172 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) (-2155 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-641 *3)) (-5 *5 (-918)) (-4 *3 (-1235 *4)) (-4 *4 (-307)) (-5 *1 (-460 *4 *3)))) (-2588 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-918)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3))))) +(-10 -7 (-15 -2588 ((-2 (|:| |plist| (-641 |#2|)) (|:| |modulo| |#1|)) |#2| (-641 |#2|) |#1| (-918))) (-15 -2155 ((-641 |#2|) |#2| (-641 |#2|) |#1| (-918))) (-15 -4172 (|#2| |#2| |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 28)) (-2595 (($ |#3|) 25)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1348 (($ $) 32)) (-3700 (($ |#2| |#4| $) 33)) (-4245 (($ |#2| (-710 |#3| |#4| |#5|)) 24)) (-1309 (((-710 |#3| |#4| |#5|) $) 15)) (-3453 ((|#3| $) 19)) (-3456 ((|#4| $) 17)) (-1320 ((|#2| $) 29)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-3234 (($ |#2| |#3| |#4|) 26)) (-4311 (($) 36 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 34)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-461 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-714 |#6|) (-714 |#2|) (-10 -8 (-15 -1320 (|#2| $)) (-15 -1309 ((-710 |#3| |#4| |#5|) $)) (-15 -3456 (|#4| $)) (-15 -3453 (|#3| $)) (-15 -1348 ($ $)) (-15 -4245 ($ |#2| (-710 |#3| |#4| |#5|))) (-15 -2595 ($ |#3|)) (-15 -3234 ($ |#2| |#3| |#4|)) (-15 -3700 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-641 (-1170)) (-172) (-847) (-238 (-2641 |#1|) (-768)) (-1 (-112) (-2 (|:| -1495 |#3|) (|:| -2515 |#4|)) (-2 (|:| -1495 |#3|) (|:| -2515 |#4|))) (-946 |#2| |#4| (-861 |#1|))) (T -461)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2641 *3) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *6)) (-2 (|:| -1495 *5) (|:| -2515 *6)))) (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-847)) (-4 *2 (-946 *4 *6 (-861 *3))))) (-1320 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2641 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1495 *4) (|:| -2515 *5)) (-2 (|:| -1495 *4) (|:| -2515 *5)))) (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-847)) (-4 *7 (-946 *2 *5 (-861 *3))))) (-1309 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *6 (-238 (-2641 *3) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *6)) (-2 (|:| -1495 *5) (|:| -2515 *6)))) (-5 *2 (-710 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) (-4 *5 (-847)) (-4 *8 (-946 *4 *6 (-861 *3))))) (-3456 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-14 *6 (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *2)) (-2 (|:| -1495 *5) (|:| -2515 *2)))) (-4 *2 (-238 (-2641 *3) (-768))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) (-4 *5 (-847)) (-4 *7 (-946 *4 *2 (-861 *3))))) (-3453 (*1 *2 *1) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2641 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1495 *2) (|:| -2515 *5)) (-2 (|:| -1495 *2) (|:| -2515 *5)))) (-4 *2 (-847)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *7 (-946 *4 *5 (-861 *3))))) (-1348 (*1 *1 *1) (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) (-4 *5 (-238 (-2641 *2) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1495 *4) (|:| -2515 *5)) (-2 (|:| -1495 *4) (|:| -2515 *5)))) (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-847)) (-4 *7 (-946 *3 *5 (-861 *2))))) (-4245 (*1 *1 *2 *3) (-12 (-5 *3 (-710 *5 *6 *7)) (-4 *5 (-847)) (-4 *6 (-238 (-2641 *4) (-768))) (-14 *7 (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *6)) (-2 (|:| -1495 *5) (|:| -2515 *6)))) (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-946 *2 *6 (-861 *4))))) (-2595 (*1 *1 *2) (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) (-4 *5 (-238 (-2641 *3) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1495 *2) (|:| -2515 *5)) (-2 (|:| -1495 *2) (|:| -2515 *5)))) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-847)) (-4 *7 (-946 *4 *5 (-861 *3))))) (-3234 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) (-4 *4 (-238 (-2641 *5) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1495 *3) (|:| -2515 *4)) (-2 (|:| -1495 *3) (|:| -2515 *4)))) (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-847)) (-4 *7 (-946 *2 *4 (-861 *5))))) (-3700 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) (-4 *3 (-238 (-2641 *4) (-768))) (-14 *6 (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *3)) (-2 (|:| -1495 *5) (|:| -2515 *3)))) (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-847)) (-4 *7 (-946 *2 *3 (-861 *4)))))) +(-13 (-714 |#6|) (-714 |#2|) (-10 -8 (-15 -1320 (|#2| $)) (-15 -1309 ((-710 |#3| |#4| |#5|) $)) (-15 -3456 (|#4| $)) (-15 -3453 (|#3| $)) (-15 -1348 ($ $)) (-15 -4245 ($ |#2| (-710 |#3| |#4| |#5|))) (-15 -2595 ($ |#3|)) (-15 -3234 ($ |#2| |#3| |#4|)) (-15 -3700 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) +((-3072 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39))) +(((-462 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3072 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|) (-13 (-1035 (-407 (-564))) (-363) (-10 -8 (-15 -3742 ($ |#4|)) (-15 -1625 (|#4| $)) (-15 -1634 (|#4| $))))) (T -462)) +((-3072 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-847)) (-4 *5 (-790)) (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3)) (-5 *1 (-462 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1035 (-407 (-564))) (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $)))))))) +(-10 -7 (-15 -3072 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) +((-3732 (((-112) $ $) NIL)) (-4269 (((-641 |#3|) $) 41)) (-3547 (((-112) $) NIL)) (-4281 (((-112) $) NIL (|has| |#1| (-556)))) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3548 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-4076 (((-112) $) NIL (|has| |#1| (-556)))) (-2072 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2494 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3791 (((-112) $) NIL (|has| |#1| (-556)))) (-2868 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) 49)) (-2239 (($ (-641 |#4|)) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2366 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411)))) (-3616 (((-641 |#4|) $) 18 (|has| $ (-6 -4411)))) (-3782 ((|#3| $) 47)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#4|) $) 14 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 26 (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2606 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 21)) (-3483 (((-641 |#3|) $) NIL)) (-1410 (((-112) |#3| $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3864 (((-1114) $) NIL)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3736 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 39)) (-3434 (($) 17)) (-3873 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) 16)) (-2235 (((-536) $) NIL (|has| |#4| (-612 (-536)))) (($ (-641 |#4|)) 51)) (-3753 (($ (-641 |#4|)) 13)) (-2031 (($ $ |#3|) NIL)) (-2401 (($ $ |#3|) NIL)) (-2624 (($ $ |#3|) NIL)) (-3742 (((-859) $) 38) (((-641 |#4|) $) 50)) (-1417 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 30)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-463 |#1| |#2| |#3| |#4|) (-13 (-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2235 ($ (-641 |#4|))) (-6 -4411) (-6 -4412))) (-1046) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -463)) +((-2235 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-463 *3 *4 *5 *6))))) +(-13 (-973 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2235 ($ (-641 |#4|))) (-6 -4411) (-6 -4412))) +((-4311 (($) 11)) (-4321 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16))) +(((-464 |#1| |#2| |#3|) (-10 -8 (-15 -4321 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4311 (|#1|))) (-465 |#2| |#3|) (-172) (-23)) (T -464)) +NIL +(-10 -8 (-15 -4321 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -4311 (|#1|))) +((-3732 (((-112) $ $) 7)) (-2111 (((-3 |#1| "failed") $) 26)) (-2239 ((|#1| $) 27)) (-3431 (($ $ $) 23)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-2266 ((|#2| $) 19)) (-3742 (((-859) $) 11) (($ |#1|) 25)) (-4311 (($) 18 T CONST)) (-4321 (($) 24 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 15) (($ $ $) 13)) (-1780 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-465 |#1| |#2|) (-140) (-172) (-23)) (T -465)) -((-3803 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1927 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-470 |t#1| |t#2|) (-1034 |t#1|) (-10 -8 (-15 (-3803) ($) -2495) (-15 -1927 ($ $ $)))) -(((-102) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-470 |#1| |#2|) . T) ((-1034 |#1|) . T) ((-1093) . T)) -((-3557 (((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917)) 29)) (-3566 (((-1257 (-1257 (-563))) (-917)) 24))) -(((-466) (-10 -7 (-15 -3557 ((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917))) (-15 -3566 ((-1257 (-1257 (-563))) (-917))))) (T -466)) -((-3566 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 (-563)))) (-5 *1 (-466)))) (-3557 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 (-1257 (-563)))) (-5 *3 (-917)) (-5 *1 (-466))))) -(-10 -7 (-15 -3557 ((-1257 (-1257 (-563))) (-1257 (-1257 (-563))) (-917))) (-15 -3566 ((-1257 (-1257 (-563))) (-917)))) -((-3901 (((-563) (-563)) 32) (((-563)) 24)) (-2746 (((-563) (-563)) 28) (((-563)) 20)) (-2724 (((-563) (-563)) 30) (((-563)) 22)) (-3585 (((-112) (-112)) 14) (((-112)) 12)) (-3575 (((-112) (-112)) 13) (((-112)) 11)) (-3596 (((-112) (-112)) 26) (((-112)) 17))) -(((-467) (-10 -7 (-15 -3575 ((-112))) (-15 -3585 ((-112))) (-15 -3575 ((-112) (-112))) (-15 -3585 ((-112) (-112))) (-15 -3596 ((-112))) (-15 -2724 ((-563))) (-15 -2746 ((-563))) (-15 -3901 ((-563))) (-15 -3596 ((-112) (-112))) (-15 -2724 ((-563) (-563))) (-15 -2746 ((-563) (-563))) (-15 -3901 ((-563) (-563))))) (T -467)) -((-3901 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-2746 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-2724 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-3596 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3901 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-2746 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-2724 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) (-3596 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3585 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3575 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3585 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-3575 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(-10 -7 (-15 -3575 ((-112))) (-15 -3585 ((-112))) (-15 -3575 ((-112) (-112))) (-15 -3585 ((-112) (-112))) (-15 -3596 ((-112))) (-15 -2724 ((-563))) (-15 -2746 ((-563))) (-15 -3901 ((-563))) (-15 -3596 ((-112) (-112))) (-15 -2724 ((-563) (-563))) (-15 -2746 ((-563) (-563))) (-15 -3901 ((-563) (-563)))) -((-2049 (((-112) $ $) NIL)) (-1386 (((-640 (-379)) $) 34) (((-640 (-379)) $ (-640 (-379))) 144)) (-3644 (((-640 (-1087 (-379))) $) 16) (((-640 (-1087 (-379))) $ (-640 (-1087 (-379)))) 140)) (-3616 (((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870))) 58)) (-3654 (((-640 (-640 (-939 (-225)))) $) 135)) (-3415 (((-1262) $ (-939 (-225)) (-870)) 160)) (-3666 (($ $) 134) (($ (-640 (-640 (-939 (-225))))) 147) (($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917))) 146) (($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263))) 148)) (-1938 (((-1151) $) NIL)) (-3320 (((-563) $) 108)) (-3249 (((-1113) $) NIL)) (-3677 (($) 145)) (-3606 (((-640 (-225)) (-640 (-640 (-939 (-225))))) 88)) (-3635 (((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917)) 153) (((-1262) $ (-939 (-225))) 155) (((-1262) $ (-939 (-225)) (-870) (-870) (-917)) 154)) (-2062 (((-858) $) 166) (($ (-640 (-640 (-939 (-225))))) 161)) (-3626 (((-1262) $ (-939 (-225))) 159)) (-2943 (((-112) $ $) NIL))) -(((-468) (-13 (-1093) (-10 -8 (-15 -3677 ($)) (-15 -3666 ($ $)) (-15 -3666 ($ (-640 (-640 (-939 (-225)))))) (-15 -3666 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)))) (-15 -3666 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263)))) (-15 -3654 ((-640 (-640 (-939 (-225)))) $)) (-15 -3320 ((-563) $)) (-15 -3644 ((-640 (-1087 (-379))) $)) (-15 -3644 ((-640 (-1087 (-379))) $ (-640 (-1087 (-379))))) (-15 -1386 ((-640 (-379)) $)) (-15 -1386 ((-640 (-379)) $ (-640 (-379)))) (-15 -3635 ((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917))) (-15 -3635 ((-1262) $ (-939 (-225)))) (-15 -3635 ((-1262) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -3626 ((-1262) $ (-939 (-225)))) (-15 -3415 ((-1262) $ (-939 (-225)) (-870))) (-15 -2062 ($ (-640 (-640 (-939 (-225)))))) (-15 -2062 ((-858) $)) (-15 -3616 ((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870)))) (-15 -3606 ((-640 (-225)) (-640 (-640 (-939 (-225))))))))) (T -468)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468)))) (-3677 (*1 *1) (-5 *1 (-468))) (-3666 (*1 *1 *1) (-5 *1 (-468))) (-3666 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-3666 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *4 (-640 (-917))) (-5 *1 (-468)))) (-3666 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *4 (-640 (-917))) (-5 *5 (-640 (-263))) (-5 *1 (-468)))) (-3654 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-468)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))) (-3644 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) (-1386 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) (-3635 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-3635 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) (-3635 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-3626 (*1 *2 *1 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) (-3415 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-468)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) (-3616 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) (-5 *1 (-468)))) (-3606 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-225))) (-5 *1 (-468))))) -(-13 (-1093) (-10 -8 (-15 -3677 ($)) (-15 -3666 ($ $)) (-15 -3666 ($ (-640 (-640 (-939 (-225)))))) (-15 -3666 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)))) (-15 -3666 ($ (-640 (-640 (-939 (-225)))) (-640 (-870)) (-640 (-870)) (-640 (-917)) (-640 (-263)))) (-15 -3654 ((-640 (-640 (-939 (-225)))) $)) (-15 -3320 ((-563) $)) (-15 -3644 ((-640 (-1087 (-379))) $)) (-15 -3644 ((-640 (-1087 (-379))) $ (-640 (-1087 (-379))))) (-15 -1386 ((-640 (-379)) $)) (-15 -1386 ((-640 (-379)) $ (-640 (-379)))) (-15 -3635 ((-1262) $ (-640 (-939 (-225))) (-870) (-870) (-917))) (-15 -3635 ((-1262) $ (-939 (-225)))) (-15 -3635 ((-1262) $ (-939 (-225)) (-870) (-870) (-917))) (-15 -3626 ((-1262) $ (-939 (-225)))) (-15 -3415 ((-1262) $ (-939 (-225)) (-870))) (-15 -2062 ($ (-640 (-640 (-939 (-225)))))) (-15 -2062 ((-858) $)) (-15 -3616 ((-640 (-640 (-939 (-225)))) (-640 (-640 (-939 (-225)))) (-640 (-870)))) (-15 -3606 ((-640 (-225)) (-640 (-640 (-939 (-225)))))))) -((-3039 (($ $) NIL) (($ $ $) 11))) -(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469)) -NIL -(-10 -8 (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1962 ((|#2| $) 19)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 15) (($ $ $) 13)) (-3027 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) +((-4321 (*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3431 (*1 *1 *1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-470 |t#1| |t#2|) (-1035 |t#1|) (-10 -8 (-15 (-4321) ($) -2091) (-15 -3431 ($ $ $)))) +(((-102) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-470 |#1| |#2|) . T) ((-1035 |#1|) . T) ((-1094) . T)) +((-1610 (((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918)) 29)) (-3173 (((-1259 (-1259 (-564))) (-918)) 24))) +(((-466) (-10 -7 (-15 -1610 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918))) (-15 -3173 ((-1259 (-1259 (-564))) (-918))))) (T -466)) +((-3173 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466)))) (-1610 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-918)) (-5 *1 (-466))))) +(-10 -7 (-15 -1610 ((-1259 (-1259 (-564))) (-1259 (-1259 (-564))) (-918))) (-15 -3173 ((-1259 (-1259 (-564))) (-918)))) +((-2844 (((-564) (-564)) 32) (((-564)) 24)) (-2449 (((-564) (-564)) 28) (((-564)) 20)) (-2353 (((-564) (-564)) 30) (((-564)) 22)) (-4288 (((-112) (-112)) 14) (((-112)) 12)) (-2816 (((-112) (-112)) 13) (((-112)) 11)) (-1969 (((-112) (-112)) 26) (((-112)) 17))) +(((-467) (-10 -7 (-15 -2816 ((-112))) (-15 -4288 ((-112))) (-15 -2816 ((-112) (-112))) (-15 -4288 ((-112) (-112))) (-15 -1969 ((-112))) (-15 -2353 ((-564))) (-15 -2449 ((-564))) (-15 -2844 ((-564))) (-15 -1969 ((-112) (-112))) (-15 -2353 ((-564) (-564))) (-15 -2449 ((-564) (-564))) (-15 -2844 ((-564) (-564))))) (T -467)) +((-2844 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2449 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2353 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1969 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2844 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2449 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-2353 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) (-1969 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-4288 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2816 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-4288 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) (-2816 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(-10 -7 (-15 -2816 ((-112))) (-15 -4288 ((-112))) (-15 -2816 ((-112) (-112))) (-15 -4288 ((-112) (-112))) (-15 -1969 ((-112))) (-15 -2353 ((-564))) (-15 -2449 ((-564))) (-15 -2844 ((-564))) (-15 -1969 ((-112) (-112))) (-15 -2353 ((-564) (-564))) (-15 -2449 ((-564) (-564))) (-15 -2844 ((-564) (-564)))) +((-3732 (((-112) $ $) NIL)) (-4371 (((-641 (-379)) $) 34) (((-641 (-379)) $ (-641 (-379))) 144)) (-4140 (((-641 (-1088 (-379))) $) 16) (((-641 (-1088 (-379))) $ (-641 (-1088 (-379)))) 140)) (-3190 (((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871))) 58)) (-2626 (((-641 (-641 (-940 (-225)))) $) 135)) (-2713 (((-1264) $ (-940 (-225)) (-871)) 160)) (-1483 (($ $) 134) (($ (-641 (-641 (-940 (-225))))) 147) (($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918))) 146) (($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263))) 148)) (-2217 (((-1152) $) NIL)) (-1327 (((-564) $) 108)) (-3864 (((-1114) $) NIL)) (-3174 (($) 145)) (-1685 (((-641 (-225)) (-641 (-641 (-940 (-225))))) 88)) (-1329 (((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918)) 153) (((-1264) $ (-940 (-225))) 155) (((-1264) $ (-940 (-225)) (-871) (-871) (-918)) 154)) (-3742 (((-859) $) 166) (($ (-641 (-641 (-940 (-225))))) 161)) (-2841 (((-1264) $ (-940 (-225))) 159)) (-1705 (((-112) $ $) NIL))) +(((-468) (-13 (-1094) (-10 -8 (-15 -3174 ($)) (-15 -1483 ($ $)) (-15 -1483 ($ (-641 (-641 (-940 (-225)))))) (-15 -1483 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)))) (-15 -1483 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263)))) (-15 -2626 ((-641 (-641 (-940 (-225)))) $)) (-15 -1327 ((-564) $)) (-15 -4140 ((-641 (-1088 (-379))) $)) (-15 -4140 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -4371 ((-641 (-379)) $)) (-15 -4371 ((-641 (-379)) $ (-641 (-379)))) (-15 -1329 ((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918))) (-15 -1329 ((-1264) $ (-940 (-225)))) (-15 -1329 ((-1264) $ (-940 (-225)) (-871) (-871) (-918))) (-15 -2841 ((-1264) $ (-940 (-225)))) (-15 -2713 ((-1264) $ (-940 (-225)) (-871))) (-15 -3742 ($ (-641 (-641 (-940 (-225)))))) (-15 -3742 ((-859) $)) (-15 -3190 ((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871)))) (-15 -1685 ((-641 (-225)) (-641 (-641 (-940 (-225))))))))) (T -468)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468)))) (-3174 (*1 *1) (-5 *1 (-468))) (-1483 (*1 *1 *1) (-5 *1 (-468))) (-1483 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-1483 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *4 (-641 (-918))) (-5 *1 (-468)))) (-1483 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *4 (-641 (-918))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-4140 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-4371 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) (-1329 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1329 (*1 *2 *1 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-1329 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-2841 (*1 *2 *1 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) (-2713 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-468)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) (-3190 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) (-5 *1 (-468)))) (-1685 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-225))) (-5 *1 (-468))))) +(-13 (-1094) (-10 -8 (-15 -3174 ($)) (-15 -1483 ($ $)) (-15 -1483 ($ (-641 (-641 (-940 (-225)))))) (-15 -1483 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)))) (-15 -1483 ($ (-641 (-641 (-940 (-225)))) (-641 (-871)) (-641 (-871)) (-641 (-918)) (-641 (-263)))) (-15 -2626 ((-641 (-641 (-940 (-225)))) $)) (-15 -1327 ((-564) $)) (-15 -4140 ((-641 (-1088 (-379))) $)) (-15 -4140 ((-641 (-1088 (-379))) $ (-641 (-1088 (-379))))) (-15 -4371 ((-641 (-379)) $)) (-15 -4371 ((-641 (-379)) $ (-641 (-379)))) (-15 -1329 ((-1264) $ (-641 (-940 (-225))) (-871) (-871) (-918))) (-15 -1329 ((-1264) $ (-940 (-225)))) (-15 -1329 ((-1264) $ (-940 (-225)) (-871) (-871) (-918))) (-15 -2841 ((-1264) $ (-940 (-225)))) (-15 -2713 ((-1264) $ (-940 (-225)) (-871))) (-15 -3742 ($ (-641 (-641 (-940 (-225)))))) (-15 -3742 ((-859) $)) (-15 -3190 ((-641 (-641 (-940 (-225)))) (-641 (-641 (-940 (-225)))) (-641 (-871)))) (-15 -1685 ((-641 (-225)) (-641 (-641 (-940 (-225)))))))) +((-1790 (($ $) NIL) (($ $ $) 11))) +(((-469 |#1| |#2| |#3|) (-10 -8 (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|))) (-470 |#2| |#3|) (-172) (-23)) (T -469)) +NIL +(-10 -8 (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-2266 ((|#2| $) 19)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 15) (($ $ $) 13)) (-1780 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16))) (((-470 |#1| |#2|) (-140) (-172) (-23)) (T -470)) -((-1962 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-3790 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3039 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3027 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-3039 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) -(-13 (-1093) (-10 -8 (-15 -1962 (|t#2| $)) (-15 (-3790) ($) -2495) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -3039 ($ $)) (-15 -3027 ($ $ $)) (-15 -3039 ($ $ $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-3697 (((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|))) 136)) (-3686 (((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))) 133)) (-3709 (((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))) 86))) -(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -3686 ((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -3697 ((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -3709 ((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))))) (-640 (-1169)) (-452) (-452)) (T -471)) -((-3709 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-640 (-247 *5 *6))) (|:| |coords| (-640 (-563))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452)))) (-3697 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-3686 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-640 (-640 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452))))) -(-10 -7 (-15 -3686 ((-640 (-640 (-247 |#1| |#2|))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -3697 ((-3 (-640 (-481 |#1| |#2|)) "failed") (-640 (-481 |#1| |#2|)) (-640 (-860 |#1|)))) (-15 -3709 ((-2 (|:| |dpolys| (-640 (-247 |#1| |#2|))) (|:| |coords| (-640 (-563)))) (-640 (-247 |#1| |#2|)) (-640 (-860 |#1|))))) -((-3230 (((-3 $ "failed") $) 11)) (-1382 (($ $ $) 23)) (-2879 (($ $ $) 24)) (-3050 (($ $ $) 9)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 22))) -(((-472 |#1|) (-10 -8 (-15 -2879 (|#1| |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -3050 (|#1| |#1| |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-473)) (T -472)) -NIL -(-10 -8 (-15 -2879 (|#1| |#1| |#1|)) (-15 -1382 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -3050 (|#1| |#1| |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) -((-2049 (((-112) $ $) 7)) (-3684 (($) 18 T CONST)) (-3230 (((-3 $ "failed") $) 15)) (-2712 (((-112) $) 17)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 24)) (-3249 (((-1113) $) 10)) (-1382 (($ $ $) 21)) (-2879 (($ $ $) 20)) (-2062 (((-858) $) 11)) (-3803 (($) 19 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 23)) (** (($ $ (-917)) 13) (($ $ (-767)) 16) (($ $ (-563)) 22)) (* (($ $ $) 14))) +((-2266 (*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) (-4311 (*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1790 (*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1780 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) (-1790 (*1 *1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23))))) +(-13 (-1094) (-10 -8 (-15 -2266 (|t#2| $)) (-15 (-4311) ($) -2091) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -1790 ($ $)) (-15 -1780 ($ $ $)) (-15 -1790 ($ $ $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3746 (((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|))) 136)) (-1865 (((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))) 133)) (-1873 (((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))) 86))) +(((-471 |#1| |#2| |#3|) (-10 -7 (-15 -1865 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -3746 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -1873 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))))) (-641 (-1170)) (-452) (-452)) (T -471)) +((-1873 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-2 (|:| |dpolys| (-641 (-247 *5 *6))) (|:| |coords| (-641 (-564))))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452)))) (-3746 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) (-4 *6 (-452)))) (-1865 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) +(-10 -7 (-15 -1865 ((-641 (-641 (-247 |#1| |#2|))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -3746 ((-3 (-641 (-481 |#1| |#2|)) "failed") (-641 (-481 |#1| |#2|)) (-641 (-861 |#1|)))) (-15 -1873 ((-2 (|:| |dpolys| (-641 (-247 |#1| |#2|))) (|:| |coords| (-641 (-564)))) (-641 (-247 |#1| |#2|)) (-641 (-861 |#1|))))) +((-3951 (((-3 $ "failed") $) 11)) (-2766 (($ $ $) 23)) (-3671 (($ $ $) 24)) (-1799 (($ $ $) 9)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 22))) +(((-472 |#1|) (-10 -8 (-15 -3671 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1799 (|#1| |#1| |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) (-473)) (T -472)) +NIL +(-10 -8 (-15 -3671 (|#1| |#1| |#1|)) (-15 -2766 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1799 (|#1| |#1| |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) +((-3732 (((-112) $ $) 7)) (-2818 (($) 18 T CONST)) (-3951 (((-3 $ "failed") $) 15)) (-3840 (((-112) $) 17)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 24)) (-3864 (((-1114) $) 10)) (-2766 (($ $ $) 21)) (-3671 (($ $ $) 20)) (-3742 (((-859) $) 11)) (-4321 (($) 19 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 23)) (** (($ $ (-918)) 13) (($ $ (-768)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14))) (((-473) (-140)) (T -473)) -((-3149 (*1 *1 *1) (-4 *1 (-473))) (-3050 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-563)))) (-1382 (*1 *1 *1 *1) (-4 *1 (-473))) (-2879 (*1 *1 *1 *1) (-4 *1 (-473)))) -(-13 (-722) (-10 -8 (-15 -3149 ($ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ (-563))) (-6 -4405) (-15 -1382 ($ $ $)) (-15 -2879 ($ $ $)))) -(((-102) . T) ((-610 (-858)) . T) ((-722) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 18)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-2893 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-2914 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-3419 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-2242 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2697 (((-112) $) NIL)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-407 (-563))) NIL) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) 25)) (-2497 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-3204 (($ $) 29 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 35 (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 30 (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-407 (-563))) NIL)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3177 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 16)) (-1962 (((-407 (-563)) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1253 |#2|)) NIL) (($ (-1242 |#1| |#2| |#3|)) 9) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-1304 ((|#1| $ (-407 (-563))) NIL)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3219 ((|#1| $) 21)) (-2285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) 27)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-474 |#1| |#2| |#3|) (-13 (-1238 |#1|) (-10 -8 (-15 -2062 ($ (-1253 |#2|))) (-15 -2062 ($ (-1242 |#1| |#2| |#3|))) (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -474)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) -(-13 (-1238 |#1|) (-10 -8 (-15 -2062 ($ (-1253 |#2|))) (-15 -2062 ($ (-1242 |#1| |#2| |#3|))) (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1435 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#2| $ |#1| |#2|) 18)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 |#2| "failed") |#1| $) 19)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 16)) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) NIL)) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 ((|#1| $) NIL (|has| |#1| (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 ((|#1| $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2706 (((-640 |#1|) $) NIL)) (-3435 (((-112) |#1| $) NIL)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3404 (((-640 |#1|) $) NIL)) (-3417 (((-112) |#1| $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1884 ((|#2| $) NIL (|has| |#1| (-846)))) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-475 |#1| |#2| |#3| |#4|) (-1184 |#1| |#2|) (-1093) (-1093) (-1184 |#1| |#2|) |#2|) (T -475)) -NIL -(-1184 |#1| |#2|) -((-2049 (((-112) $ $) NIL)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) NIL)) (-1353 (((-640 $) (-640 |#4|)) NIL)) (-2185 (((-640 |#3|) $) NIL)) (-1556 (((-112) $) NIL)) (-1456 (((-112) $) NIL (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1413 ((|#4| |#4| $) NIL)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-1907 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3684 (($) NIL T CONST)) (-1512 (((-112) $) 29 (|has| |#1| (-555)))) (-1534 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1523 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1545 (((-112) $) NIL (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1466 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2589 (($ (-640 |#4|)) NIL)) (-1897 (((-3 $ "failed") $) 45)) (-1384 ((|#4| |#4| $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1417 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1365 ((|#4| |#4| $) NIL)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) NIL)) (-4236 (((-640 |#4|) $) 18 (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2674 ((|#3| $) 38)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#4|) $) 19 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-4139 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 23)) (-1616 (((-640 |#3|) $) NIL)) (-1602 (((-112) |#3| $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1442 (((-3 |#4| "failed") $) 42)) (-1514 (((-640 |#4|) $) NIL)) (-1447 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1395 ((|#4| |#4| $) NIL)) (-3449 (((-112) $ $) NIL)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1405 ((|#4| |#4| $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-3 |#4| "failed") $) 40)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1323 (((-3 $ "failed") $ |#4|) 56)) (-2884 (($ $ |#4|) NIL)) (-3837 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 17)) (-2749 (($) 14)) (-1962 (((-767) $) NIL)) (-3261 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) 13)) (-2802 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 22)) (-1566 (($ $ |#3|) 52)) (-1591 (($ $ |#3|) 53)) (-1373 (($ $) NIL)) (-1579 (($ $ |#3|) NIL)) (-2062 (((-858) $) 35) (((-640 |#4|) $) 46)) (-1313 (((-767) $) NIL (|has| |#3| (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-3848 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) NIL)) (-1833 (((-112) |#3| $) NIL)) (-2943 (((-112) $ $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-476 |#1| |#2| |#3| |#4|) (-1201 |#1| |#2| |#3| |#4|) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -476)) -NIL -(-1201 |#1| |#2| |#3| |#4|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2589 (((-563) $) NIL) (((-407 (-563)) $) NIL)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2656 (($) 17)) (-2712 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2802 (((-379) $) 21) (((-225) $) 24) (((-407 (-1165 (-563))) $) 18) (((-536) $) 53)) (-2062 (((-858) $) 51) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (((-225) $) 23) (((-379) $) 20)) (-3192 (((-767)) NIL T CONST)) (-2543 (((-112) $ $) NIL)) (-3790 (($) 37 T CONST)) (-3803 (($) 8 T CONST)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) -(((-477) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))) (-1018) (-610 (-225)) (-610 (-379)) (-611 (-407 (-1165 (-563)))) (-611 (-536)) (-10 -8 (-15 -2656 ($))))) (T -477)) -((-2656 (*1 *1) (-5 *1 (-477)))) -(-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))) (-1018) (-610 (-225)) (-610 (-379)) (-611 (-407 (-1165 (-563)))) (-611 (-536)) (-10 -8 (-15 -2656 ($)))) -((-2049 (((-112) $ $) NIL)) (-4156 (((-1128) $) 11)) (-4144 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-478) (-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1128) $))))) (T -478)) -((-4144 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478))))) -(-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1128) $)))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1435 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#2| $ |#1| |#2|) 16)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 |#2| "failed") |#1| $) 20)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 18)) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) NIL)) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 ((|#1| $) NIL (|has| |#1| (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 ((|#1| $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2706 (((-640 |#1|) $) 13)) (-3435 (((-112) |#1| $) NIL)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3404 (((-640 |#1|) $) NIL)) (-3417 (((-112) |#1| $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1884 ((|#2| $) NIL (|has| |#1| (-846)))) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 19)) (-3858 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 11 (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1708 (((-767) $) 15 (|has| $ (-6 -4408))))) -(((-479 |#1| |#2| |#3|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1093) (-1093) (-1151)) (T -479)) -NIL -(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) -((-3721 (((-563) (-563) (-563)) 19)) (-3731 (((-112) (-563) (-563) (-563) (-563)) 26)) (-1827 (((-1257 (-640 (-563))) (-767) (-767)) 39))) -(((-480) (-10 -7 (-15 -3721 ((-563) (-563) (-563))) (-15 -3731 ((-112) (-563) (-563) (-563) (-563))) (-15 -1827 ((-1257 (-640 (-563))) (-767) (-767))))) (T -480)) -((-1827 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1257 (-640 (-563)))) (-5 *1 (-480)))) (-3731 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-480)))) (-3721 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-480))))) -(-10 -7 (-15 -3721 ((-563) (-563) (-563))) (-15 -3731 ((-112) (-563) (-563) (-563) (-563))) (-15 -1827 ((-1257 (-640 (-563))) (-767) (-767)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-860 |#1|)) $) NIL)) (-2021 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-2554 (($ $) NIL (|has| |#2| (-555)))) (-2533 (((-112) $) NIL (|has| |#2| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2924 (($ $) NIL (|has| |#2| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#2| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2589 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-3962 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3744 (($ $ (-640 (-563))) NIL)) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#2| (-905)))) (-3302 (($ $ |#2| (-482 (-1708 |#1|) (-767)) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-2175 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#2| (-482 (-1708 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-860 |#1|)) NIL)) (-3187 (((-482 (-1708 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3489 (($ $ $) NIL (|has| |#2| (-846)))) (-4105 (($ $ $) NIL (|has| |#2| (-846)))) (-3310 (($ (-1 (-482 (-1708 |#1|) (-767)) (-482 (-1708 |#1|) (-767))) $) NIL)) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-2845 (((-3 (-860 |#1|) "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#2| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1938 (((-1151) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -2631 (-767))) "failed") $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#2| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3448 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-3974 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1361 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1962 (((-482 (-1708 |#1|) (-767)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3166 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ (-407 (-563))) NIL (-2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ (-482 (-1708 |#1|) (-767))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#2| (-555)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2998 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-481 |#1| |#2|) (-13 (-945 |#2| (-482 (-1708 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3744 ($ $ (-640 (-563)))))) (-640 (-1169)) (-1045)) (T -481)) -((-3744 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-481 *3 *4)) (-14 *3 (-640 (-1169))) (-4 *4 (-1045))))) -(-13 (-945 |#2| (-482 (-1708 |#1|) (-767)) (-860 |#1|)) (-10 -8 (-15 -3744 ($ $ (-640 (-563)))))) -((-2049 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-2741 (((-112) $) NIL (|has| |#2| (-131)))) (-3525 (($ (-917)) NIL (|has| |#2| (-1045)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3367 (($ $ $) NIL (|has| |#2| (-789)))) (-1482 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3740 (((-112) $ (-767)) NIL)) (-2433 (((-767)) NIL (|has| |#2| (-368)))) (-2107 (((-563) $) NIL (|has| |#2| (-844)))) (-2189 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1093)))) (-2589 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) NIL (|has| |#2| (-1093)))) (-3853 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3230 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-4301 (($) NIL (|has| |#2| (-368)))) (-4150 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ (-563)) 15)) (-2720 (((-112) $) NIL (|has| |#2| (-844)))) (-4236 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2712 (((-112) $) NIL (|has| |#2| (-722)))) (-2731 (((-112) $) NIL (|has| |#2| (-844)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1572 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4139 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-3267 (((-917) $) NIL (|has| |#2| (-368)))) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#2| (-1093)))) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3491 (($ (-917)) NIL (|has| |#2| (-368)))) (-3249 (((-1113) $) NIL (|has| |#2| (-1093)))) (-1884 ((|#2| $) NIL (|has| (-563) (-846)))) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL)) (-3396 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2101 (($ (-1257 |#2|)) NIL)) (-1575 (((-134)) NIL (|has| |#2| (-363)))) (-1361 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3261 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-1257 |#2|) $) NIL) (($ (-563)) NIL (-2811 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) NIL (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-3192 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-3848 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3841 (($ $) NIL (|has| |#2| (-844)))) (-3790 (($) NIL (|has| |#2| (-131)) CONST)) (-3803 (($) NIL (|has| |#2| (-722)) CONST)) (-4191 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2998 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2977 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2943 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-2988 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2966 (((-112) $ $) 21 (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3027 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-482 |#1| |#2|) (-238 |#1| |#2|) (-767) (-789)) (T -482)) +((-4373 (*1 *1 *1) (-4 *1 (-473))) (-1799 (*1 *1 *1 *1) (-4 *1 (-473))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) (-2766 (*1 *1 *1 *1) (-4 *1 (-473))) (-3671 (*1 *1 *1 *1) (-4 *1 (-473)))) +(-13 (-723) (-10 -8 (-15 -4373 ($ $)) (-15 -1799 ($ $ $)) (-15 ** ($ $ (-564))) (-6 -4408) (-15 -2766 ($ $ $)) (-15 -3671 ($ $ $)))) +(((-102) . T) ((-611 (-859)) . T) ((-723) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 18)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2892 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-3157 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-1988 (((-112) $) NIL)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-407 (-564))) NIL) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) 25)) (-2192 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-3128 (($ $) 29 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 35 (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 30 (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-3004 (($ $ (-407 (-564))) NIL)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4118 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 28 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 14 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 16)) (-2266 (((-407 (-564)) $) NIL)) (-2484 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1255 |#2|)) NIL) (($ (-1244 |#1| |#2| |#3|)) 9) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2856 ((|#1| $ (-407 (-564))) NIL)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2212 ((|#1| $) 21)) (-2521 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) 27)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 26) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-474 |#1| |#2| |#3|) (-13 (-1240 |#1|) (-10 -8 (-15 -3742 ($ (-1255 |#2|))) (-15 -3742 ($ (-1244 |#1| |#2| |#3|))) (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -474)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) +(-13 (-1240 |#1|) (-10 -8 (-15 -3742 ($ (-1255 |#2|))) (-15 -3742 ($ (-1244 |#1| |#2| |#3|))) (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-2645 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#2| $ |#1| |#2|) 18)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 |#2| "failed") |#1| $) 19)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 16)) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) NIL)) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 ((|#1| $) NIL (|has| |#1| (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 ((|#1| $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1823 (((-641 |#1|) $) NIL)) (-2219 (((-112) |#1| $) NIL)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2312 (((-641 |#1|) $) NIL)) (-4062 (((-112) |#1| $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1966 ((|#2| $) NIL (|has| |#1| (-847)))) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-475 |#1| |#2| |#3| |#4|) (-1185 |#1| |#2|) (-1094) (-1094) (-1185 |#1| |#2|) |#2|) (T -475)) +NIL +(-1185 |#1| |#2|) +((-3732 (((-112) $ $) NIL)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) NIL)) (-1454 (((-641 $) (-641 |#4|)) NIL)) (-4269 (((-641 |#3|) $) NIL)) (-3547 (((-112) $) NIL)) (-4281 (((-112) $) NIL (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2244 ((|#4| |#4| $) NIL)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3548 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2818 (($) NIL T CONST)) (-4076 (((-112) $) 29 (|has| |#1| (-556)))) (-2072 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2494 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3791 (((-112) $) NIL (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2868 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2239 (($ (-641 |#4|)) NIL)) (-1977 (((-3 $ "failed") $) 45)) (-4263 ((|#4| |#4| $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2366 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2920 ((|#4| |#4| $) NIL)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) NIL)) (-3616 (((-641 |#4|) $) 18 (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3782 ((|#3| $) 38)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#4|) $) 19 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2606 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 23)) (-3483 (((-641 |#3|) $) NIL)) (-1410 (((-112) |#3| $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-2389 (((-3 |#4| "failed") $) 42)) (-4258 (((-641 |#4|) $) NIL)) (-1591 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4266 ((|#4| |#4| $) NIL)) (-4179 (((-112) $ $) NIL)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2601 ((|#4| |#4| $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-3 |#4| "failed") $) 40)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3465 (((-3 $ "failed") $ |#4|) 56)) (-3004 (($ $ |#4|) NIL)) (-3736 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 17)) (-3434 (($) 14)) (-2266 (((-768) $) NIL)) (-3873 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) 13)) (-2235 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 22)) (-2031 (($ $ |#3|) 52)) (-2401 (($ $ |#3|) 53)) (-2158 (($ $) NIL)) (-2624 (($ $ |#3|) NIL)) (-3742 (((-859) $) 35) (((-641 |#4|) $) 46)) (-1849 (((-768) $) NIL (|has| |#3| (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-1417 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) NIL)) (-2755 (((-112) |#3| $) NIL)) (-1705 (((-112) $ $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-476 |#1| |#2| |#3| |#4|) (-1202 |#1| |#2| |#3| |#4|) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -476)) +NIL +(-1202 |#1| |#2| |#3| |#4|) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2239 (((-564) $) NIL) (((-407 (-564)) $) NIL)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-1655 (($) 17)) (-3840 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2235 (((-379) $) 21) (((-225) $) 24) (((-407 (-1166 (-564))) $) 18) (((-536) $) 53)) (-3742 (((-859) $) 51) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (((-225) $) 23) (((-379) $) 20)) (-3270 (((-768)) NIL T CONST)) (-3360 (((-112) $ $) NIL)) (-4311 (($) 37 T CONST)) (-4321 (($) 8 T CONST)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-477) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))) (-1019) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -1655 ($))))) (T -477)) +((-1655 (*1 *1) (-5 *1 (-477)))) +(-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))) (-1019) (-611 (-225)) (-611 (-379)) (-612 (-407 (-1166 (-564)))) (-612 (-536)) (-10 -8 (-15 -1655 ($)))) +((-3732 (((-112) $ $) NIL)) (-3076 (((-1129) $) 11)) (-3065 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-478) (-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1129) $))))) (T -478)) +((-3065 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478))))) +(-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1129) $)))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-2645 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#2| $ |#1| |#2|) 16)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 |#2| "failed") |#1| $) 20)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 18)) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) NIL)) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 ((|#1| $) NIL (|has| |#1| (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 ((|#1| $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1823 (((-641 |#1|) $) 13)) (-2219 (((-112) |#1| $) NIL)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2312 (((-641 |#1|) $) NIL)) (-4062 (((-112) |#1| $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1966 ((|#2| $) NIL (|has| |#1| (-847)))) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 19)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 11 (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2641 (((-768) $) 15 (|has| $ (-6 -4411))))) +(((-479 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) (-1094) (-1094) (-1152)) (T -479)) +NIL +(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) +((-1679 (((-564) (-564) (-564)) 19)) (-3351 (((-112) (-564) (-564) (-564) (-564)) 26)) (-3472 (((-1259 (-641 (-564))) (-768) (-768)) 39))) +(((-480) (-10 -7 (-15 -1679 ((-564) (-564) (-564))) (-15 -3351 ((-112) (-564) (-564) (-564) (-564))) (-15 -3472 ((-1259 (-641 (-564))) (-768) (-768))))) (T -480)) +((-3472 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) (-3351 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480)))) (-1679 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480))))) +(-10 -7 (-15 -1679 ((-564) (-564) (-564))) (-15 -3351 ((-112) (-564) (-564) (-564) (-564))) (-15 -3472 ((-1259 (-641 (-564))) (-768) (-768)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-861 |#1|)) $) NIL)) (-4097 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1948 (($ $) NIL (|has| |#2| (-556)))) (-1832 (((-112) $) NIL (|has| |#2| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2249 (($ $) NIL (|has| |#2| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2239 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-2448 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-1980 (($ $ (-641 (-564))) NIL)) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-906)))) (-1866 (($ $ |#2| (-482 (-2641 |#1|) (-768)) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-4257 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#2| (-482 (-2641 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-861 |#1|)) NIL)) (-3469 (((-482 (-2641 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2799 (($ $ $) NIL (|has| |#2| (-847)))) (-2848 (($ $ $) NIL (|has| |#2| (-847)))) (-1396 (($ (-1 (-482 (-2641 |#1|) (-768)) (-482 (-2641 |#1|) (-768))) $) NIL)) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-1306 (((-3 (-861 |#1|) "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#2| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2217 (((-1152) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -2515 (-768))) "failed") $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#2| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1321 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-4284 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-4117 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2266 (((-482 (-2641 |#1|) (-768)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4329 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ (-407 (-564))) NIL (-4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ (-482 (-2641 |#1|) (-768))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1751 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-481 |#1| |#2|) (-13 (-946 |#2| (-482 (-2641 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -1980 ($ $ (-641 (-564)))))) (-641 (-1170)) (-1046)) (T -481)) +((-1980 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) (-14 *3 (-641 (-1170))) (-4 *4 (-1046))))) +(-13 (-946 |#2| (-482 (-2641 |#1|) (-768)) (-861 |#1|)) (-10 -8 (-15 -1980 ($ $ (-641 (-564)))))) +((-3732 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-4173 (((-112) $) NIL (|has| |#2| (-131)))) (-2595 (($ (-918)) NIL (|has| |#2| (-1046)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-2850 (($ $ $) NIL (|has| |#2| (-790)))) (-3239 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2969 (((-112) $ (-768)) NIL)) (-1938 (((-768)) NIL (|has| |#2| (-368)))) (-3265 (((-564) $) NIL (|has| |#2| (-845)))) (-3877 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-2239 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-3039 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-3951 (((-3 $ "failed") $) NIL (|has| |#2| (-723)))) (-2821 (($) NIL (|has| |#2| (-368)))) (-2619 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ (-564)) 15)) (-3308 (((-112) $) NIL (|has| |#2| (-845)))) (-3616 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3840 (((-112) $) NIL (|has| |#2| (-723)))) (-2839 (((-112) $) NIL (|has| |#2| (-845)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1386 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2606 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-1906 (((-918) $) NIL (|has| |#2| (-368)))) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#2| (-1094)))) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-1495 (($ (-918)) NIL (|has| |#2| (-368)))) (-3864 (((-1114) $) NIL (|has| |#2| (-1094)))) (-1966 ((|#2| $) NIL (|has| (-564) (-847)))) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-2952 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4169 (($ (-1259 |#2|)) NIL)) (-3603 (((-134)) NIL (|has| |#2| (-363)))) (-4117 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3873 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-4030 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-3270 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-1417 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2792 (($ $) NIL (|has| |#2| (-845)))) (-4311 (($) NIL (|has| |#2| (-131)) CONST)) (-4321 (($) NIL (|has| |#2| (-723)) CONST)) (-2124 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1751 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1731 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1705 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1741 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1723 (((-112) $ $) 21 (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1780 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) NIL (|has| |#2| (-723))) (($ $ |#2|) NIL (|has| |#2| (-723))) (($ |#2| $) NIL (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-482 |#1| |#2|) (-238 |#1| |#2|) (-768) (-790)) (T -482)) NIL (-238 |#1| |#2|) -((-2049 (((-112) $ $) NIL)) (-2309 (((-640 (-506)) $) 14)) (-3359 (((-506) $) 12)) (-1938 (((-1151) $) NIL)) (-3756 (($ (-506) (-640 (-506))) 10)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 23) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-483) (-13 (-1076) (-10 -8 (-15 -3756 ($ (-506) (-640 (-506)))) (-15 -3359 ((-506) $)) (-15 -2309 ((-640 (-506)) $))))) (T -483)) -((-3756 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-2309 (*1 *2 *1) (-12 (-5 *2 (-640 (-506))) (-5 *1 (-483))))) -(-13 (-1076) (-10 -8 (-15 -3756 ($ (-506) (-640 (-506)))) (-15 -3359 ((-506) $)) (-15 -2309 ((-640 (-506)) $)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) NIL)) (-3684 (($) NIL T CONST)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-2346 (($ $ $) 48)) (-2383 (($ $ $) 47)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4105 ((|#1| $) 38)) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 18)) (-3767 (($ (-640 |#1|)) 19)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3847 ((|#1| $) 34)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 11)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 45)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) 29 (|has| $ (-6 -4408))))) -(((-484 |#1|) (-13 (-964 |#1|) (-10 -8 (-15 -3767 ($ (-640 |#1|))))) (-846)) (T -484)) -((-3767 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3))))) -(-13 (-964 |#1|) (-10 -8 (-15 -3767 ($ (-640 |#1|))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2532 (($ $) 76)) (-3541 (((-112) $) NIL)) (-1938 (((-1151) $) NIL)) (-2858 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 49)) (-3249 (((-1113) $) NIL)) (-1738 (((-3 |#4| "failed") $) 121)) (-3551 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 86) (($ |#4|) 35) (($ |#1| |#1|) 131) (($ |#1| |#1| (-563)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 144)) (-3038 (((-2 (|:| -2519 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 51)) (-2062 (((-858) $) 115)) (-3790 (($) 36 T CONST)) (-2943 (((-112) $ $) 125)) (-3039 (($ $) 82) (($ $ $) NIL)) (-3027 (($ $ $) 77)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 83))) -(((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485)) +((-3732 (((-112) $ $) NIL)) (-1467 (((-641 (-506)) $) 14)) (-4324 (((-506) $) 12)) (-2217 (((-1152) $) NIL)) (-3822 (($ (-506) (-641 (-506))) 10)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 23) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-483) (-13 (-1077) (-10 -8 (-15 -3822 ($ (-506) (-641 (-506)))) (-15 -4324 ((-506) $)) (-15 -1467 ((-641 (-506)) $))))) (T -483)) +((-3822 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) (-1467 (*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483))))) +(-13 (-1077) (-10 -8 (-15 -3822 ($ (-506) (-641 (-506)))) (-15 -4324 ((-506) $)) (-15 -1467 ((-641 (-506)) $)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) NIL)) (-2818 (($) NIL T CONST)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-1457 (($ $ $) 48)) (-2164 (($ $ $) 47)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2848 ((|#1| $) 38)) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 18)) (-3656 (($ (-641 |#1|)) 19)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1292 ((|#1| $) 34)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 11)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 45)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) 29 (|has| $ (-6 -4411))))) +(((-484 |#1|) (-13 (-965 |#1|) (-10 -8 (-15 -3656 ($ (-641 |#1|))))) (-847)) (T -484)) +((-3656 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-484 *3))))) +(-13 (-965 |#1|) (-10 -8 (-15 -3656 ($ (-641 |#1|))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1699 (($ $) 76)) (-1450 (((-112) $) NIL)) (-2217 (((-1152) $) NIL)) (-3197 (((-413 |#2| (-407 |#2|) |#3| |#4|) $) 49)) (-3864 (((-1114) $) NIL)) (-1693 (((-3 |#4| "failed") $) 121)) (-4197 (($ (-413 |#2| (-407 |#2|) |#3| |#4|)) 86) (($ |#4|) 35) (($ |#1| |#1|) 131) (($ |#1| |#1| (-564)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 144)) (-2795 (((-2 (|:| -3585 (-413 |#2| (-407 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 51)) (-3742 (((-859) $) 115)) (-4311 (($) 36 T CONST)) (-1705 (((-112) $ $) 125)) (-1790 (($ $) 82) (($ $ $) NIL)) (-1780 (($ $ $) 77)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 83))) +(((-485 |#1| |#2| |#3| |#4|) (-335 |#1| |#2| |#3| |#4|) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -485)) NIL (-335 |#1| |#2| |#3| |#4|) -((-3815 (((-563) (-640 (-563))) 53)) (-3779 ((|#1| (-640 |#1|)) 94)) (-3802 (((-640 |#1|) (-640 |#1|)) 95)) (-3791 (((-640 |#1|) (-640 |#1|)) 97)) (-1647 ((|#1| (-640 |#1|)) 96)) (-3166 (((-640 (-563)) (-640 |#1|)) 56))) -(((-486 |#1|) (-10 -7 (-15 -1647 (|#1| (-640 |#1|))) (-15 -3779 (|#1| (-640 |#1|))) (-15 -3791 ((-640 |#1|) (-640 |#1|))) (-15 -3802 ((-640 |#1|) (-640 |#1|))) (-15 -3166 ((-640 (-563)) (-640 |#1|))) (-15 -3815 ((-563) (-640 (-563))))) (-1233 (-563))) (T -486)) -((-3815 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-563)) (-5 *1 (-486 *4)) (-4 *4 (-1233 *2)))) (-3166 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1233 (-563))) (-5 *2 (-640 (-563))) (-5 *1 (-486 *4)))) (-3802 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3)))) (-3791 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3)))) (-3779 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563))))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563)))))) -(-10 -7 (-15 -1647 (|#1| (-640 |#1|))) (-15 -3779 (|#1| (-640 |#1|))) (-15 -3791 ((-640 |#1|) (-640 |#1|))) (-15 -3802 ((-640 |#1|) (-640 |#1|))) (-15 -3166 ((-640 (-563)) (-640 |#1|))) (-15 -3815 ((-563) (-640 (-563))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 (((-563) $) NIL (|has| (-563) (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| (-563) (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-563) (-1034 (-563))))) (-2589 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-563) (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| (-563) (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL)) (-2626 (((-563) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-2731 (((-112) $) NIL (|has| (-563) (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| (-563) (-846)))) (-2751 (($ (-1 (-563) (-563)) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-563) (-1144)) CONST)) (-3826 (($ (-407 (-563))) 9)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) NIL)) (-3233 (((-563) $) NIL (|has| (-563) (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-4322 (((-767) $) NIL)) (-3858 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-4362 (($ $) NIL)) (-2636 (((-563) $) NIL)) (-2802 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 8) (($ (-563)) NIL) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL) (((-1000 16) $) 10)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-3192 (((-767)) NIL T CONST)) (-3241 (((-563) $) NIL (|has| (-563) (-545)))) (-2543 (((-112) $ $) NIL)) (-3841 (($ $) NIL (|has| (-563) (-816)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-2998 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-563) (-846)))) (-3050 (($ $ $) NIL) (($ (-563) (-563)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) NIL) (($ $ (-563)) NIL))) -(((-487) (-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 16)) (-10 -8 (-15 -3212 ((-407 (-563)) $)) (-15 -3826 ($ (-407 (-563))))))) (T -487)) -((-3212 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487)))) (-3826 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487))))) -(-13 (-988 (-563)) (-610 (-407 (-563))) (-610 (-1000 16)) (-10 -8 (-15 -3212 ((-407 (-563)) $)) (-15 -3826 ($ (-407 (-563)))))) -((-1572 (((-640 |#2|) $) 29)) (-1949 (((-112) |#2| $) 34)) (-3837 (((-112) (-1 (-112) |#2|) $) 24)) (-1497 (($ $ (-640 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-640 |#2|) (-640 |#2|)) NIL)) (-3261 (((-767) (-1 (-112) |#2|) $) 28) (((-767) |#2| $) 32)) (-2062 (((-858) $) 43)) (-3848 (((-112) (-1 (-112) |#2|) $) 23)) (-2943 (((-112) $ $) 37)) (-1708 (((-767) $) 18))) -(((-488 |#1| |#2|) (-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -1497 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#2| |#2|)) (-15 -1497 (|#1| |#1| (-294 |#2|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1949 ((-112) |#2| |#1|)) (-15 -3261 ((-767) |#2| |#1|)) (-15 -1572 ((-640 |#2|) |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1708 ((-767) |#1|))) (-489 |#2|) (-1208)) (T -488)) -NIL -(-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -1497 (|#1| |#1| (-640 |#2|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#2| |#2|)) (-15 -1497 (|#1| |#1| (-294 |#2|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#2|)))) (-15 -1949 ((-112) |#2| |#1|)) (-15 -3261 ((-767) |#2| |#1|)) (-15 -1572 ((-640 |#2|) |#1|)) (-15 -3261 ((-767) (-1 (-112) |#2|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1708 ((-767) |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-3684 (($) 7 T CONST)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-489 |#1|) (-140) (-1208)) (T -489)) -((-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1208)))) (-4139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-489 *3)) (-4 *3 (-1208)))) (-3848 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-3837 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-3261 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) (-4 *4 (-1208)) (-5 *2 (-767)))) (-4236 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-1572 (*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-3261 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-767)))) (-1949 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |t#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |t#1| (-1093)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2751 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4409)) (-15 -4139 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4408)) (PROGN (-15 -3848 ((-112) (-1 (-112) |t#1|) $)) (-15 -3837 ((-112) (-1 (-112) |t#1|) $)) (-15 -3261 ((-767) (-1 (-112) |t#1|) $)) (-15 -4236 ((-640 |t#1|) $)) (-15 -1572 ((-640 |t#1|) $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -3261 ((-767) |t#1| $)) (-15 -1949 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2062 ((|#1| $) 6) (($ |#1|) 9))) -(((-490 |#1|) (-140) (-1208)) (T -490)) -NIL -(-13 (-610 |t#1|) (-613 |t#1|)) -(((-613 |#1|) . T) ((-610 |#1|) . T)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3859 (($ (-1151)) 8)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 15) (((-1151) $) 12)) (-2943 (((-112) $ $) 11))) -(((-491) (-13 (-1093) (-610 (-1151)) (-10 -8 (-15 -3859 ($ (-1151)))))) (T -491)) -((-3859 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-491))))) -(-13 (-1093) (-610 (-1151)) (-10 -8 (-15 -3859 ($ (-1151))))) -((-3419 (($ $) 15)) (-3395 (($ $) 24)) (-2242 (($ $) 12)) (-2252 (($ $) 10)) (-2231 (($ $) 17)) (-3408 (($ $) 22))) -(((-492 |#1|) (-10 -8 (-15 -3408 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3419 (|#1| |#1|))) (-493)) (T -492)) -NIL -(-10 -8 (-15 -3408 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3419 (|#1| |#1|))) -((-3419 (($ $) 11)) (-3395 (($ $) 10)) (-2242 (($ $) 9)) (-2252 (($ $) 8)) (-2231 (($ $) 7)) (-3408 (($ $) 6))) +((-3681 (((-564) (-641 (-564))) 53)) (-3856 ((|#1| (-641 |#1|)) 94)) (-2049 (((-641 |#1|) (-641 |#1|)) 95)) (-2346 (((-641 |#1|) (-641 |#1|)) 97)) (-2577 ((|#1| (-641 |#1|)) 96)) (-4329 (((-641 (-564)) (-641 |#1|)) 56))) +(((-486 |#1|) (-10 -7 (-15 -2577 (|#1| (-641 |#1|))) (-15 -3856 (|#1| (-641 |#1|))) (-15 -2346 ((-641 |#1|) (-641 |#1|))) (-15 -2049 ((-641 |#1|) (-641 |#1|))) (-15 -4329 ((-641 (-564)) (-641 |#1|))) (-15 -3681 ((-564) (-641 (-564))))) (-1235 (-564))) (T -486)) +((-3681 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) (-4 *4 (-1235 *2)))) (-4329 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) (-5 *1 (-486 *4)))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3)))) (-3856 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))) +(-10 -7 (-15 -2577 (|#1| (-641 |#1|))) (-15 -3856 (|#1| (-641 |#1|))) (-15 -2346 ((-641 |#1|) (-641 |#1|))) (-15 -2049 ((-641 |#1|) (-641 |#1|))) (-15 -4329 ((-641 (-564)) (-641 |#1|))) (-15 -3681 ((-564) (-641 (-564))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 (((-564) $) NIL (|has| (-564) (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| (-564) (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-564) (-1035 (-564))))) (-2239 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-564) (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) NIL (|has| (-564) (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL)) (-1625 (((-564) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2839 (((-112) $) NIL (|has| (-564) (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| (-564) (-847)))) (-2187 (($ (-1 (-564) (-564)) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-564) (-1145)) CONST)) (-3282 (($ (-407 (-564))) 9)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) NIL)) (-3014 (((-564) $) NIL (|has| (-564) (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-4061 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2090 (($ $) NIL)) (-1634 (((-564) $) NIL)) (-2235 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 8) (($ (-564)) NIL) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL) (((-1001 16) $) 10)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-3270 (((-768)) NIL T CONST)) (-2551 (((-564) $) NIL (|has| (-564) (-545)))) (-3360 (((-112) $ $) NIL)) (-2792 (($ $) NIL (|has| (-564) (-817)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1751 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1799 (($ $ $) NIL) (($ (-564) (-564)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) NIL) (($ $ (-564)) NIL))) +(((-487) (-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 16)) (-10 -8 (-15 -1941 ((-407 (-564)) $)) (-15 -3282 ($ (-407 (-564))))))) (T -487)) +((-1941 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) (-3282 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))) +(-13 (-989 (-564)) (-611 (-407 (-564))) (-611 (-1001 16)) (-10 -8 (-15 -1941 ((-407 (-564)) $)) (-15 -3282 ($ (-407 (-564)))))) +((-1386 (((-641 |#2|) $) 29)) (-2431 (((-112) |#2| $) 34)) (-3736 (((-112) (-1 (-112) |#2|) $) 24)) (-2416 (($ $ (-641 (-294 |#2|))) 13) (($ $ (-294 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-641 |#2|) (-641 |#2|)) NIL)) (-3873 (((-768) (-1 (-112) |#2|) $) 28) (((-768) |#2| $) 32)) (-3742 (((-859) $) 43)) (-1417 (((-112) (-1 (-112) |#2|) $) 23)) (-1705 (((-112) $ $) 37)) (-2641 (((-768) $) 18))) +(((-488 |#1| |#2|) (-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2416 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#2| |#2|)) (-15 -2416 (|#1| |#1| (-294 |#2|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2431 ((-112) |#2| |#1|)) (-15 -3873 ((-768) |#2| |#1|)) (-15 -1386 ((-641 |#2|) |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2641 ((-768) |#1|))) (-489 |#2|) (-1209)) (T -488)) +NIL +(-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2416 (|#1| |#1| (-641 |#2|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#2| |#2|)) (-15 -2416 (|#1| |#1| (-294 |#2|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#2|)))) (-15 -2431 ((-112) |#2| |#1|)) (-15 -3873 ((-768) |#2| |#1|)) (-15 -1386 ((-641 |#2|) |#1|)) (-15 -3873 ((-768) (-1 (-112) |#2|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2641 ((-768) |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-2818 (($) 7 T CONST)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-489 |#1|) (-140) (-1209)) (T -489)) +((-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-2606 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) (-1417 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3736 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-3873 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) (-4 *4 (-1209)) (-5 *2 (-768)))) (-3616 (*1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-1386 (*1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-3873 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-768)))) (-2431 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |t#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |t#1| (-1094)) (IF (|has| |t#1| (-309 |t#1|)) (-6 (-309 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2187 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4412)) (-15 -2606 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4411)) (PROGN (-15 -1417 ((-112) (-1 (-112) |t#1|) $)) (-15 -3736 ((-112) (-1 (-112) |t#1|) $)) (-15 -3873 ((-768) (-1 (-112) |t#1|) $)) (-15 -3616 ((-641 |t#1|) $)) (-15 -1386 ((-641 |t#1|) $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -3873 ((-768) |t#1| $)) (-15 -2431 ((-112) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3742 ((|#1| $) 6) (($ |#1|) 9))) +(((-490 |#1|) (-140) (-1209)) (T -490)) +NIL +(-13 (-611 |t#1|) (-614 |t#1|)) +(((-614 |#1|) . T) ((-611 |#1|) . T)) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-4273 (($ (-1152)) 8)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 15) (((-1152) $) 12)) (-1705 (((-112) $ $) 11))) +(((-491) (-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -4273 ($ (-1152)))))) (T -491)) +((-4273 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491))))) +(-13 (-1094) (-611 (-1152)) (-10 -8 (-15 -4273 ($ (-1152))))) +((-2451 (($ $) 15)) (-2428 (($ $) 24)) (-2473 (($ $) 12)) (-2484 (($ $) 10)) (-2462 (($ $) 17)) (-2438 (($ $) 22))) +(((-492 |#1|) (-10 -8 (-15 -2438 (|#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2451 (|#1| |#1|))) (-493)) (T -492)) +NIL +(-10 -8 (-15 -2438 (|#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2451 (|#1| |#1|))) +((-2451 (($ $) 11)) (-2428 (($ $) 10)) (-2473 (($ $) 9)) (-2484 (($ $) 8)) (-2462 (($ $) 7)) (-2438 (($ $) 6))) (((-493) (-140)) (T -493)) -((-3419 (*1 *1 *1) (-4 *1 (-493))) (-3395 (*1 *1 *1) (-4 *1 (-493))) (-2242 (*1 *1 *1) (-4 *1 (-493))) (-2252 (*1 *1 *1) (-4 *1 (-493))) (-2231 (*1 *1 *1) (-4 *1 (-493))) (-3408 (*1 *1 *1) (-4 *1 (-493)))) -(-13 (-10 -8 (-15 -3408 ($ $)) (-15 -2231 ($ $)) (-15 -2252 ($ $)) (-15 -2242 ($ $)) (-15 -3395 ($ $)) (-15 -3419 ($ $)))) -((-2055 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54))) -(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1233 |#1|) (-13 (-363) (-147) (-720 |#1| |#2|)) (-1233 |#3|)) (T -494)) -((-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1233 *7))))) -(-10 -7 (-15 -2055 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) -((-2049 (((-112) $ $) NIL)) (-3933 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-1489 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-2741 (((-112) $) 38)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-3869 (((-112) $ $) 72)) (-1926 (((-640 (-609 $)) $) 49)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2624 (($ $ (-294 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2067 (($ $) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-1503 (((-640 $) (-1165 $) (-1169)) NIL) (((-640 $) (-1165 $)) NIL) (((-640 $) (-948 $)) NIL)) (-2691 (($ (-1165 $) (-1169)) NIL) (($ (-1165 $)) NIL) (($ (-948 $)) NIL)) (-2671 (((-3 (-609 $) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL)) (-2589 (((-609 $) $) NIL) (((-563) $) NIL) (((-407 (-563)) $) 54)) (-3495 (($ $ $) NIL)) (-3853 (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -4277 (-684 (-407 (-563)))) (|:| |vec| (-1257 (-407 (-563))))) (-684 $) (-1257 $)) NIL) (((-684 (-407 (-563))) (-684 $)) NIL)) (-2532 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-1383 (($ $) NIL) (($ (-640 $)) NIL)) (-2034 (((-640 (-114)) $) NIL)) (-3674 (((-114) (-114)) NIL)) (-2712 (((-112) $) 41)) (-4107 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-2626 (((-1118 (-563) (-609 $)) $) 36)) (-1403 (($ $ (-563)) NIL)) (-3251 (((-1165 $) (-1165 $) (-609 $)) 86) (((-1165 $) (-1165 $) (-640 (-609 $))) 61) (($ $ (-609 $)) 75) (($ $ (-640 (-609 $))) 76)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2011 (((-1165 $) (-609 $)) 73 (|has| $ (-1045)))) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 $ $) (-609 $)) NIL)) (-3895 (((-3 (-609 $) "failed") $) NIL)) (-1607 (($ (-640 $)) NIL) (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-2009 (((-640 (-609 $)) $) NIL)) (-2696 (($ (-114) $) NIL) (($ (-114) (-640 $)) NIL)) (-1854 (((-112) $ (-114)) NIL) (((-112) $ (-1169)) NIL)) (-3149 (($ $) NIL)) (-1524 (((-767) $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2023 (((-112) $ $) NIL) (((-112) $ (-1169)) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4118 (((-112) $) NIL (|has| $ (-1034 (-563))))) (-1497 (($ $ (-609 $) $) NIL) (($ $ (-640 (-609 $)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-1169)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-1169) (-1 $ (-640 $))) NIL) (($ $ (-1169) (-1 $ $)) NIL) (($ $ (-640 (-114)) (-640 (-1 $ $))) NIL) (($ $ (-640 (-114)) (-640 (-1 $ (-640 $)))) NIL) (($ $ (-114) (-1 $ (-640 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4322 (((-767) $) NIL)) (-3858 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-640 $)) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-3904 (($ $) NIL) (($ $ $) NIL)) (-1361 (($ $ (-767)) NIL) (($ $) 35)) (-2636 (((-1118 (-563) (-609 $)) $) 19)) (-2713 (($ $) NIL (|has| $ (-1045)))) (-2802 (((-379) $) 100) (((-225) $) 108) (((-169 (-379)) $) 116)) (-2062 (((-858) $) NIL) (($ (-609 $)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-1118 (-563) (-609 $))) 20)) (-3192 (((-767)) NIL T CONST)) (-3548 (($ $) NIL) (($ (-640 $)) NIL)) (-3631 (((-112) (-114)) 92)) (-2543 (((-112) $ $) NIL)) (-3790 (($) 10 T CONST)) (-3803 (($) 21 T CONST)) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 23)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3050 (($ $ $) 43)) (-3039 (($ $ $) NIL) (($ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-407 (-563))) NIL) (($ $ (-563)) 47) (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ $ $) 26) (($ (-563) $) NIL) (($ (-767) $) NIL) (($ (-917) $) NIL))) -(((-495) (-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -2062 ($ (-1118 (-563) (-609 $)))) (-15 -2626 ((-1118 (-563) (-609 $)) $)) (-15 -2636 ((-1118 (-563) (-609 $)) $)) (-15 -2532 ($ $)) (-15 -3869 ((-112) $ $)) (-15 -3251 ((-1165 $) (-1165 $) (-609 $))) (-15 -3251 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3251 ($ $ (-609 $))) (-15 -3251 ($ $ (-640 (-609 $))))))) (T -495)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2626 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2636 (*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) (-2532 (*1 *1 *1) (-5 *1 (-495))) (-3869 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-3251 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-609 (-495))) (-5 *1 (-495)))) (-3251 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-640 (-609 (-495)))) (-5 *1 (-495)))) (-3251 (*1 *1 *1 *2) (-12 (-5 *2 (-609 (-495))) (-5 *1 (-495)))) (-3251 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-495)))) (-5 *1 (-495))))) -(-13 (-302) (-27) (-1034 (-563)) (-1034 (-407 (-563))) (-636 (-563)) (-1018) (-636 (-407 (-563))) (-147) (-611 (-169 (-379))) (-233) (-10 -8 (-15 -2062 ($ (-1118 (-563) (-609 $)))) (-15 -2626 ((-1118 (-563) (-609 $)) $)) (-15 -2636 ((-1118 (-563) (-609 $)) $)) (-15 -2532 ($ $)) (-15 -3869 ((-112) $ $)) (-15 -3251 ((-1165 $) (-1165 $) (-609 $))) (-15 -3251 ((-1165 $) (-1165 $) (-640 (-609 $)))) (-15 -3251 ($ $ (-609 $))) (-15 -3251 ($ $ (-640 (-609 $)))))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) |#1|) 36 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) 32 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 31)) (-2256 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2552 (($ (-767) |#1|) 17)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 15 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) 34 (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 22 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 25) (($ (-1 |#1| |#1| |#1|) $ $) 28)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) NIL (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) 13 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 16)) (-3858 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 35) (($ $ (-1224 (-563))) NIL)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1708 (((-767) $) 9 (|has| $ (-6 -4408))))) -(((-496 |#1| |#2|) (-19 |#1|) (-1208) (-563)) (T -496)) +((-2451 (*1 *1 *1) (-4 *1 (-493))) (-2428 (*1 *1 *1) (-4 *1 (-493))) (-2473 (*1 *1 *1) (-4 *1 (-493))) (-2484 (*1 *1 *1) (-4 *1 (-493))) (-2462 (*1 *1 *1) (-4 *1 (-493))) (-2438 (*1 *1 *1) (-4 *1 (-493)))) +(-13 (-10 -8 (-15 -2438 ($ $)) (-15 -2462 ($ $)) (-15 -2484 ($ $)) (-15 -2473 ($ $)) (-15 -2428 ($ $)) (-15 -2451 ($ $)))) +((-4127 (((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)) 54))) +(((-494 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4127 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) (-363) (-1235 |#1|) (-13 (-363) (-147) (-721 |#1| |#2|)) (-1235 |#3|)) (T -494)) +((-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-13 (-363) (-147) (-721 *5 *6))) (-5 *2 (-418 *3)) (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7))))) +(-10 -7 (-15 -4127 ((-418 |#4|) |#4| (-1 (-418 |#2|) |#2|)))) +((-3732 (((-112) $ $) NIL)) (-2690 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-1452 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-4173 (((-112) $) 38)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4068 (((-112) $ $) 72)) (-2084 (((-641 (-610 $)) $) 49)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3148 (($ $ (-294 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-4137 (($ $) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3414 (((-641 $) (-1166 $) (-1170)) NIL) (((-641 $) (-1166 $)) NIL) (((-641 $) (-949 $)) NIL)) (-2854 (($ (-1166 $) (-1170)) NIL) (($ (-1166 $)) NIL) (($ (-949 $)) NIL)) (-2111 (((-3 (-610 $) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL)) (-2239 (((-610 $) $) NIL) (((-564) $) NIL) (((-407 (-564)) $) 54)) (-1373 (($ $ $) NIL)) (-3039 (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2069 (-685 (-407 (-564)))) (|:| |vec| (-1259 (-407 (-564))))) (-685 $) (-1259 $)) NIL) (((-685 (-407 (-564))) (-685 $)) NIL)) (-1699 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-2211 (($ $) NIL) (($ (-641 $)) NIL)) (-3423 (((-641 (-114)) $) NIL)) (-4058 (((-114) (-114)) NIL)) (-3840 (((-112) $) 41)) (-1801 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-1625 (((-1119 (-564) (-610 $)) $) 36)) (-2347 (($ $ (-564)) NIL)) (-3328 (((-1166 $) (-1166 $) (-610 $)) 86) (((-1166 $) (-1166 $) (-641 (-610 $))) 61) (($ $ (-610 $)) 75) (($ $ (-641 (-610 $))) 76)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2176 (((-1166 $) (-610 $)) 73 (|has| $ (-1046)))) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 $ $) (-610 $)) NIL)) (-4242 (((-3 (-610 $) "failed") $) NIL)) (-2529 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-4087 (((-641 (-610 $)) $) NIL)) (-1697 (($ (-114) $) NIL) (($ (-114) (-641 $)) NIL)) (-4211 (((-112) $ (-114)) NIL) (((-112) $ (-1170)) NIL)) (-4373 (($ $) NIL)) (-3724 (((-768) $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3755 (((-112) $ $) NIL) (((-112) $ (-1170)) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1497 (((-112) $) NIL (|has| $ (-1035 (-564))))) (-2416 (($ $ (-610 $) $) NIL) (($ $ (-641 (-610 $)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-1170)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-1170) (-1 $ (-641 $))) NIL) (($ $ (-1170) (-1 $ $)) NIL) (($ $ (-641 (-114)) (-641 (-1 $ $))) NIL) (($ $ (-641 (-114)) (-641 (-1 $ (-641 $)))) NIL) (($ $ (-114) (-1 $ (-641 $))) NIL) (($ $ (-114) (-1 $ $)) NIL)) (-4061 (((-768) $) NIL)) (-4382 (($ (-114) $) NIL) (($ (-114) $ $) NIL) (($ (-114) $ $ $) NIL) (($ (-114) $ $ $ $) NIL) (($ (-114) (-641 $)) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-1928 (($ $) NIL) (($ $ $) NIL)) (-4117 (($ $ (-768)) NIL) (($ $) 35)) (-1634 (((-1119 (-564) (-610 $)) $) 19)) (-3925 (($ $) NIL (|has| $ (-1046)))) (-2235 (((-379) $) 100) (((-225) $) 108) (((-169 (-379)) $) 116)) (-3742 (((-859) $) NIL) (($ (-610 $)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-1119 (-564) (-610 $))) 20)) (-3270 (((-768)) NIL T CONST)) (-1523 (($ $) NIL) (($ (-641 $)) NIL)) (-2095 (((-112) (-114)) 92)) (-3360 (((-112) $ $) NIL)) (-4311 (($) 10 T CONST)) (-4321 (($) 21 T CONST)) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 23)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1799 (($ $ $) 43)) (-1790 (($ $ $) NIL) (($ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-407 (-564))) NIL) (($ $ (-564)) 47) (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ $ $) 26) (($ (-564) $) NIL) (($ (-768) $) NIL) (($ (-918) $) NIL))) +(((-495) (-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -3742 ($ (-1119 (-564) (-610 $)))) (-15 -1625 ((-1119 (-564) (-610 $)) $)) (-15 -1634 ((-1119 (-564) (-610 $)) $)) (-15 -1699 ($ $)) (-15 -4068 ((-112) $ $)) (-15 -3328 ((-1166 $) (-1166 $) (-610 $))) (-15 -3328 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -3328 ($ $ (-610 $))) (-15 -3328 ($ $ (-641 (-610 $))))))) (T -495)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1625 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1634 (*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) (-1699 (*1 *1 *1) (-5 *1 (-495))) (-4068 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) (-5 *1 (-495)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) (-3328 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495))))) +(-13 (-302) (-27) (-1035 (-564)) (-1035 (-407 (-564))) (-637 (-564)) (-1019) (-637 (-407 (-564))) (-147) (-612 (-169 (-379))) (-233) (-10 -8 (-15 -3742 ($ (-1119 (-564) (-610 $)))) (-15 -1625 ((-1119 (-564) (-610 $)) $)) (-15 -1634 ((-1119 (-564) (-610 $)) $)) (-15 -1699 ($ $)) (-15 -4068 ((-112) $ $)) (-15 -3328 ((-1166 $) (-1166 $) (-610 $))) (-15 -3328 ((-1166 $) (-1166 $) (-641 (-610 $)))) (-15 -3328 ($ $ (-610 $))) (-15 -3328 ($ $ (-641 (-610 $)))))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) |#1|) 36 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) 32 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 31)) (-3305 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3619 (($ (-768) |#1|) 17)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 15 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) 34 (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 22 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 25) (($ (-1 |#1| |#1| |#1|) $ $) 28)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) NIL (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) 13 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 16)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 35) (($ $ (-1226 (-564))) NIL)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-1802 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2641 (((-768) $) 9 (|has| $ (-6 -4411))))) +(((-496 |#1| |#2|) (-19 |#1|) (-1209) (-564)) (T -496)) NIL (-19 |#1|) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4121 (($ $ (-563) (-496 |#1| |#3|)) NIL)) (-4110 (($ $ (-563) (-496 |#1| |#2|)) NIL)) (-3684 (($) NIL T CONST)) (-3082 (((-496 |#1| |#3|) $ (-563)) NIL)) (-4150 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4085 ((|#1| $ (-563) (-563)) NIL)) (-4236 (((-640 |#1|) $) NIL)) (-3955 (((-767) $) NIL)) (-2552 (($ (-767) (-767) |#1|) NIL)) (-3965 (((-767) $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3127 (((-563) $) NIL)) (-3105 (((-563) $) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3117 (((-563) $) NIL)) (-3094 (((-563) $) NIL)) (-4139 (($ (-1 |#1| |#1|) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3357 (($ $ |#1|) NIL)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-3073 (((-496 |#1| |#2|) $ (-563)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1208) (-563) (-563)) (T -497)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL)) (-1673 (($ $ (-564) (-496 |#1| |#3|)) NIL)) (-1947 (($ $ (-564) (-496 |#1| |#2|)) NIL)) (-2818 (($) NIL T CONST)) (-4236 (((-496 |#1| |#3|) $ (-564)) NIL)) (-2619 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2540 ((|#1| $ (-564) (-564)) NIL)) (-3616 (((-641 |#1|) $) NIL)) (-2659 (((-768) $) NIL)) (-3619 (($ (-768) (-768) |#1|) NIL)) (-2671 (((-768) $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-1305 (((-564) $) NIL)) (-1392 (((-564) $) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4212 (((-564) $) NIL)) (-2739 (((-564) $) NIL)) (-2606 (($ (-1 |#1| |#1|) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3099 (($ $ |#1|) NIL)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-1346 (((-496 |#1| |#2|) $ (-564)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-497 |#1| |#2| |#3|) (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) (-1209) (-564) (-564)) (T -497)) NIL (-57 |#1| (-496 |#1| |#3|) (-496 |#1| |#2|)) -((-3890 (((-640 (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767)) 33)) (-3880 (((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767)) 43)) (-1465 (((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)) 110))) -(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -3880 ((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767))) (-15 -3890 ((-640 (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767))) (-15 -1465 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)))) (-349) (-1233 |#1|) (-1233 |#2|)) (T -498)) -((-1465 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-2 (|:| -3288 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7))))) (-5 *5 (-767)) (-4 *8 (-1233 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -3288 (-684 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-684 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-3890 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3288 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -3288 (-684 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-684 *6)))) (-4 *7 (-1233 *6)))) (-3880 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1233 *3)) (-5 *2 (-640 (-1165 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1233 *5))))) -(-10 -7 (-15 -3880 ((-640 (-1165 |#1|)) |#1| (-767) (-767) (-767))) (-15 -3890 ((-640 (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-767) (-767))) (-15 -1465 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) (-640 |#3|) (-640 (-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) (-767)))) -((-2754 (((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))) 74)) (-3900 ((|#1| (-684 |#1|) |#1| (-767)) 27)) (-2723 (((-767) (-767) (-767)) 36)) (-2745 (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 54)) (-2735 (((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|) 62) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 59)) (-3909 ((|#1| (-684 |#1|) (-684 |#1|) |#1| (-563)) 31)) (-1408 ((|#1| (-684 |#1|)) 18))) -(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -1408 (|#1| (-684 |#1|))) (-15 -3900 (|#1| (-684 |#1|) |#1| (-767))) (-15 -3909 (|#1| (-684 |#1|) (-684 |#1|) |#1| (-563))) (-15 -2723 ((-767) (-767) (-767))) (-15 -2735 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2735 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2745 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2754 ((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))))) (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $)))) (-1233 |#1|) (-409 |#1| |#2|)) (T -499)) -((-2754 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2745 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2735 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2735 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2723 (*1 *2 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3909 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-684 *2)) (-5 *4 (-563)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-3900 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-684 *2)) (-5 *4 (-767)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-1408 (*1 *2 *3) (-12 (-5 *3 (-684 *2)) (-4 *4 (-1233 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))) -(-10 -7 (-15 -1408 (|#1| (-684 |#1|))) (-15 -3900 (|#1| (-684 |#1|) |#1| (-767))) (-15 -3909 (|#1| (-684 |#1|) (-684 |#1|) |#1| (-563))) (-15 -2723 ((-767) (-767) (-767))) (-15 -2735 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2735 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2745 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2754 ((-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|))) (-2 (|:| -3288 (-684 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-684 |#1|)))))) -((-2049 (((-112) $ $) NIL)) (-1909 (($ $) NIL)) (-3766 (($ $ $) 39)) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) $) NIL (|has| (-112) (-846))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2146 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-112) (-846)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-4257 (($ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-2189 (((-112) $ (-1224 (-563)) (-112)) NIL (|has| $ (-6 -4409))) (((-112) $ (-563) (-112)) 41 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-1417 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-2532 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-4150 (((-112) $ (-563) (-112)) NIL (|has| $ (-6 -4409)))) (-4085 (((-112) $ (-563)) NIL)) (-2256 (((-563) (-112) $ (-563)) NIL (|has| (-112) (-1093))) (((-563) (-112) $) NIL (|has| (-112) (-1093))) (((-563) (-1 (-112) (-112)) $) NIL)) (-4236 (((-640 (-112)) $) NIL (|has| $ (-6 -4408)))) (-3755 (($ $ $) 37)) (-3730 (($ $) NIL)) (-2409 (($ $ $) NIL)) (-2552 (($ (-767) (-112)) 26)) (-1374 (($ $ $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 8 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL)) (-2383 (($ $ $) NIL (|has| (-112) (-846))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1572 (((-640 (-112)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL)) (-4139 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-112) (-112) (-112)) $ $) 34) (($ (-1 (-112) (-112)) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-2530 (($ $ $ (-563)) NIL) (($ (-112) $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-112) $) NIL (|has| (-563) (-846)))) (-1828 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3357 (($ $ (-112)) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-112)) (-640 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093)))) (($ $ (-640 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093))))) (-3427 (((-640 (-112)) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 27)) (-3858 (($ $ (-1224 (-563))) NIL) (((-112) $ (-563)) 21) (((-112) $ (-563) (-112)) NIL)) (-4159 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-3261 (((-767) (-112) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-112) (-1093)))) (((-767) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) 28)) (-2802 (((-536) $) NIL (|has| (-112) (-611 (-536))))) (-2074 (($ (-640 (-112))) NIL)) (-1951 (($ (-640 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-2062 (((-858) $) 25)) (-3848 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4408)))) (-3743 (($ $ $) 35)) (-3670 (($ $ $) NIL)) (-1734 (($ $ $) 44)) (-1749 (($ $) 42)) (-1720 (($ $ $) 43)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 29)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 30)) (-3658 (($ $ $) NIL)) (-1708 (((-767) $) 13 (|has| $ (-6 -4408))))) -(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -1749 ($ $)) (-15 -1734 ($ $ $)) (-15 -1720 ($ $ $)))) (-563)) (T -500)) -((-1749 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) (-1734 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) (-1720 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563))))) -(-13 (-123) (-10 -8 (-15 -1749 ($ $)) (-15 -1734 ($ $ $)) (-15 -1720 ($ $ $)))) -((-2775 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|)) 34)) (-2763 (((-1165 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1165 |#4|)) 21)) (-2785 (((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|))) 48)) (-2795 (((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|) 57))) -(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2763 (|#2| (-1 |#1| |#4|) (-1165 |#4|))) (-15 -2763 ((-1165 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2775 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|))) (-15 -2785 ((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|)))) (-15 -2795 ((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|))) (-1045) (-1233 |#1|) (-1233 |#2|) (-1045)) (T -501)) -((-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1233 *6)))) (-2785 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-684 (-1165 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-1233 *5)) (-5 *2 (-684 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1233 *6)))) (-2775 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2)))) (-2763 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *4 (-1233 *5)) (-5 *2 (-1165 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1233 *4)))) (-2763 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2))))) -(-10 -7 (-15 -2763 (|#2| (-1 |#1| |#4|) (-1165 |#4|))) (-15 -2763 ((-1165 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2775 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1165 |#4|))) (-15 -2785 ((-3 (-684 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-684 (-1165 |#4|)))) (-15 -2795 ((-1165 (-1165 |#4|)) (-1 |#4| |#1|) |#3|))) -((-2049 (((-112) $ $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2807 (((-1262) $) 25)) (-3858 (((-1151) $ (-1169)) 30)) (-3051 (((-1262) $) 17)) (-2062 (((-858) $) 27) (($ (-1151)) 26)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 11)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 9))) -(((-502) (-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $)) (-15 -2062 ($ (-1151)))))) (T -502)) -((-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1151)) (-5 *1 (-502)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-502))))) -(-13 (-846) (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) (-15 -2807 ((-1262) $)) (-15 -2062 ($ (-1151))))) -((-3812 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3787 ((|#1| |#4|) 10)) (-3800 ((|#3| |#4|) 17))) -(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3787 (|#1| |#4|)) (-15 -3800 (|#3| |#4|)) (-15 -3812 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-555) (-988 |#1|) (-373 |#1|) (-373 |#2|)) (T -503)) -((-3812 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-3800 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))) -(-10 -7 (-15 -3787 (|#1| |#4|)) (-15 -3800 (|#3| |#4|)) (-15 -3812 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) -((-2049 (((-112) $ $) NIL)) (-2905 (((-112) $ (-640 |#3|)) 128) (((-112) $) 129)) (-2741 (((-112) $) 180)) (-2827 (($ $ |#4|) 119) (($ $ |#4| (-640 |#3|)) 123)) (-2817 (((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|)) 173 (|has| |#3| (-611 (-1169))))) (-2896 (($ $ $) 107) (($ $ |#4|) 105)) (-2712 (((-112) $) 179)) (-2868 (($ $) 133)) (-1938 (((-1151) $) NIL)) (-1913 (($ $ $) 99) (($ (-640 $)) 101)) (-2916 (((-112) |#4| $) 131)) (-2927 (((-112) $ $) 85)) (-2858 (($ (-640 |#4|)) 106)) (-3249 (((-1113) $) NIL)) (-2848 (($ (-640 |#4|)) 177)) (-2838 (((-112) $) 178)) (-3601 (($ $) 88)) (-4308 (((-640 |#4|) $) 72)) (-2886 (((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|)) NIL)) (-2937 (((-112) |#4| $) 92)) (-1575 (((-563) $ (-640 |#3|)) 135) (((-563) $) 136)) (-2062 (((-858) $) 176) (($ (-640 |#4|)) 102)) (-2877 (($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $))) NIL)) (-2943 (((-112) $ $) 87)) (-3027 (($ $ $) 109)) (** (($ $ (-767)) 117)) (* (($ $ $) 115))) -(((-504 |#1| |#2| |#3| |#4|) (-13 (-1093) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -3027 ($ $ $)) (-15 -2712 ((-112) $)) (-15 -2741 ((-112) $)) (-15 -2937 ((-112) |#4| $)) (-15 -2927 ((-112) $ $)) (-15 -2916 ((-112) |#4| $)) (-15 -2905 ((-112) $ (-640 |#3|))) (-15 -2905 ((-112) $)) (-15 -1913 ($ $ $)) (-15 -1913 ($ (-640 $))) (-15 -2896 ($ $ $)) (-15 -2896 ($ $ |#4|)) (-15 -3601 ($ $)) (-15 -2886 ((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|))) (-15 -2877 ($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)))) (-15 -1575 ((-563) $ (-640 |#3|))) (-15 -1575 ((-563) $)) (-15 -2868 ($ $)) (-15 -2858 ($ (-640 |#4|))) (-15 -2848 ($ (-640 |#4|))) (-15 -2838 ((-112) $)) (-15 -4308 ((-640 |#4|) $)) (-15 -2062 ($ (-640 |#4|))) (-15 -2827 ($ $ |#4|)) (-15 -2827 ($ $ |#4| (-640 |#3|))) (IF (|has| |#3| (-611 (-1169))) (-15 -2817 ((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|))) |%noBranch|))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -504)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-3027 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2712 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2741 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2937 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-2927 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2916 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6)))) (-2905 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-2905 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1913 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-1913 (*1 *1 *2) (-12 (-5 *2 (-640 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2896 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2896 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-3601 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2886 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-2 (|:| |mval| (-684 *4)) (|:| |invmval| (-684 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-2877 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-684 *3)) (|:| |invmval| (-684 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *2 (-563)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) (-1575 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2868 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-2858 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2838 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-4308 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) (-2827 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) (-2827 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-611 (-1169))) (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1158 (-640 (-948 *4)) (-640 (-294 (-948 *4))))) (-5 *1 (-504 *4 *5 *6 *7))))) -(-13 (-1093) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 -3027 ($ $ $)) (-15 -2712 ((-112) $)) (-15 -2741 ((-112) $)) (-15 -2937 ((-112) |#4| $)) (-15 -2927 ((-112) $ $)) (-15 -2916 ((-112) |#4| $)) (-15 -2905 ((-112) $ (-640 |#3|))) (-15 -2905 ((-112) $)) (-15 -1913 ($ $ $)) (-15 -1913 ($ (-640 $))) (-15 -2896 ($ $ $)) (-15 -2896 ($ $ |#4|)) (-15 -3601 ($ $)) (-15 -2886 ((-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)) $ (-640 |#3|))) (-15 -2877 ($ (-2 (|:| |mval| (-684 |#1|)) (|:| |invmval| (-684 |#1|)) (|:| |genIdeal| $)))) (-15 -1575 ((-563) $ (-640 |#3|))) (-15 -1575 ((-563) $)) (-15 -2868 ($ $)) (-15 -2858 ($ (-640 |#4|))) (-15 -2848 ($ (-640 |#4|))) (-15 -2838 ((-112) $)) (-15 -4308 ((-640 |#4|) $)) (-15 -2062 ($ (-640 |#4|))) (-15 -2827 ($ $ |#4|)) (-15 -2827 ($ $ |#4| (-640 |#3|))) (IF (|has| |#3| (-611 (-1169))) (-15 -2817 ((-1158 (-640 (-948 |#1|)) (-640 (-294 (-948 |#1|)))) (-640 |#4|))) |%noBranch|))) -((-2949 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 177)) (-2959 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 178)) (-2350 (((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 128)) (-3675 (((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) NIL)) (-2973 (((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) 180)) (-2984 (((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|))) 195))) -(((-505 |#1| |#2|) (-10 -7 (-15 -2949 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2959 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3675 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2350 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2973 ((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2984 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|))))) (-640 (-1169)) (-767)) (T -505)) -((-2984 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *1 (-505 *4 *5)))) (-2973 (*1 *2 *3) (-12 (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-640 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))))) (-2350 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-563)) (-240 *4 (-767)) (-860 *3) (-247 *3 (-407 (-563))))) (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4)))) (-3675 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) (-247 *4 (-407 (-563))))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5))))) -(-10 -7 (-15 -2949 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2959 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -3675 ((-112) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2350 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2973 ((-640 (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563))))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))))) (-15 -2984 ((-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-504 (-407 (-563)) (-240 |#2| (-767)) (-860 |#1|) (-247 |#1| (-407 (-563)))) (-640 (-860 |#1|))))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 11) (((-1169) $) 9)) (-2943 (((-112) $ $) 7))) -(((-506) (-13 (-1093) (-610 (-1169)))) (T -506)) -NIL -(-13 (-1093) (-610 (-1169))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-2165 (($ |#1| |#2|) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2994 ((|#2| $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-3790 (($) 12 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) 11) (($ $ $) 34)) (-3027 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 21))) -(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-846)) (T -507)) +((-1992 (((-641 (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768)) 33)) (-2464 (((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768)) 43)) (-2740 (((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)) 110))) +(((-498 |#1| |#2| |#3|) (-10 -7 (-15 -2464 ((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768))) (-15 -1992 ((-641 (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768))) (-15 -2740 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)))) (-349) (-1235 |#1|) (-1235 |#2|)) (T -498)) +((-2740 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-2 (|:| -4265 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7))))) (-5 *5 (-768)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) (-5 *2 (-2 (|:| -4265 (-685 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-685 *7)))) (-5 *1 (-498 *6 *7 *8)))) (-1992 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-768)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -4265 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6))))) (-5 *1 (-498 *5 *6 *7)) (-5 *3 (-2 (|:| -4265 (-685 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-685 *6)))) (-4 *7 (-1235 *6)))) (-2464 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-768)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) (-4 *6 (-1235 *5))))) +(-10 -7 (-15 -2464 ((-641 (-1166 |#1|)) |#1| (-768) (-768) (-768))) (-15 -1992 ((-641 (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-768) (-768))) (-15 -2740 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) (-641 |#3|) (-641 (-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) (-768)))) +((-3276 (((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))) 74)) (-2738 ((|#1| (-685 |#1|) |#1| (-768)) 27)) (-3556 (((-768) (-768) (-768)) 36)) (-1429 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 54)) (-2547 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 62) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 59)) (-4330 ((|#1| (-685 |#1|) (-685 |#1|) |#1| (-564)) 31)) (-2865 ((|#1| (-685 |#1|)) 18))) +(((-499 |#1| |#2| |#3|) (-10 -7 (-15 -2865 (|#1| (-685 |#1|))) (-15 -2738 (|#1| (-685 |#1|) |#1| (-768))) (-15 -4330 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -3556 ((-768) (-768) (-768))) (-15 -2547 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2547 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1429 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3276 ((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $)))) (-1235 |#1|) (-409 |#1| |#2|)) (T -499)) +((-3276 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1429 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2547 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-2547 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-3556 (*1 *2 *2 *2) (-12 (-5 *2 (-768)) (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4330 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2738 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-685 *2)) (-5 *4 (-768)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5)))) (-2865 (*1 *2 *3) (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) (-4 *2 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4))))) +(-10 -7 (-15 -2865 (|#1| (-685 |#1|))) (-15 -2738 (|#1| (-685 |#1|) |#1| (-768))) (-15 -4330 (|#1| (-685 |#1|) (-685 |#1|) |#1| (-564))) (-15 -3556 ((-768) (-768) (-768))) (-15 -2547 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -2547 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1429 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3276 ((-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|))) (-2 (|:| -4265 (-685 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-685 |#1|)))))) +((-3732 (((-112) $ $) NIL)) (-1680 (($ $) NIL)) (-4289 (($ $ $) 39)) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) $) NIL (|has| (-112) (-847))) (((-112) (-1 (-112) (-112) (-112)) $) NIL)) (-2402 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-112) (-847)))) (($ (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2777 (($ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3877 (((-112) $ (-1226 (-564)) (-112)) NIL (|has| $ (-6 -4412))) (((-112) $ (-564) (-112)) 41 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2366 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411))) (($ (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-1699 (((-112) (-1 (-112) (-112) (-112)) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112)) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-112) (-112)) $ (-112) (-112)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2619 (((-112) $ (-564) (-112)) NIL (|has| $ (-6 -4412)))) (-2540 (((-112) $ (-564)) NIL)) (-3305 (((-564) (-112) $ (-564)) NIL (|has| (-112) (-1094))) (((-564) (-112) $) NIL (|has| (-112) (-1094))) (((-564) (-1 (-112) (-112)) $) NIL)) (-3616 (((-641 (-112)) $) NIL (|has| $ (-6 -4411)))) (-4279 (($ $ $) 37)) (-4255 (($ $) NIL)) (-3624 (($ $ $) NIL)) (-3619 (($ (-768) (-112)) 26)) (-2260 (($ $ $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 8 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL)) (-2164 (($ $ $) NIL (|has| (-112) (-847))) (($ (-1 (-112) (-112) (-112)) $ $) NIL)) (-1386 (((-641 (-112)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL)) (-2606 (($ (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-112) (-112) (-112)) $ $) 34) (($ (-1 (-112) (-112)) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-2308 (($ $ $ (-564)) NIL) (($ (-112) $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-112) $) NIL (|has| (-564) (-847)))) (-3582 (((-3 (-112) "failed") (-1 (-112) (-112)) $) NIL)) (-3099 (($ $ (-112)) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-112)) (-641 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-112) (-112)) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-294 (-112))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094)))) (($ $ (-641 (-294 (-112)))) NIL (-12 (|has| (-112) (-309 (-112))) (|has| (-112) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094))))) (-2572 (((-641 (-112)) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 27)) (-4382 (($ $ (-1226 (-564))) NIL) (((-112) $ (-564)) 21) (((-112) $ (-564) (-112)) NIL)) (-2004 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3873 (((-768) (-112) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-112) (-1094)))) (((-768) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) 28)) (-2235 (((-536) $) NIL (|has| (-112) (-612 (-536))))) (-3753 (($ (-641 (-112))) NIL)) (-1802 (($ (-641 $)) NIL) (($ $ $) NIL) (($ (-112) $) NIL) (($ $ (-112)) NIL)) (-3742 (((-859) $) 25)) (-1417 (((-112) (-1 (-112) (-112)) $) NIL (|has| $ (-6 -4411)))) (-4267 (($ $ $) 35)) (-4042 (($ $ $) NIL)) (-1549 (($ $ $) 44)) (-1560 (($ $) 42)) (-1537 (($ $ $) 43)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 29)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 30)) (-4029 (($ $ $) NIL)) (-2641 (((-768) $) 13 (|has| $ (-6 -4411))))) +(((-500 |#1|) (-13 (-123) (-10 -8 (-15 -1560 ($ $)) (-15 -1549 ($ $ $)) (-15 -1537 ($ $ $)))) (-564)) (T -500)) +((-1560 (*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-1549 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) (-1537 (*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564))))) +(-13 (-123) (-10 -8 (-15 -1560 ($ $)) (-15 -1549 ($ $ $)) (-15 -1537 ($ $ $)))) +((-3330 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|)) 34)) (-3661 (((-1166 |#4|) (-1 |#4| |#1|) |#2|) 30) ((|#2| (-1 |#1| |#4|) (-1166 |#4|)) 21)) (-1763 (((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|))) 48)) (-4333 (((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|) 57))) +(((-501 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3661 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -3661 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3330 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -1763 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -4333 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) (-1046) (-1235 |#1|) (-1235 |#2|) (-1046)) (T -501)) +((-4333 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6)))) (-1763 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) (-4 *7 (-1235 *6)))) (-3330 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) (-4 *6 (-1235 *4)))) (-3661 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2))))) +(-10 -7 (-15 -3661 (|#2| (-1 |#1| |#4|) (-1166 |#4|))) (-15 -3661 ((-1166 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3330 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1166 |#4|))) (-15 -1763 ((-3 (-685 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-685 (-1166 |#4|)))) (-15 -4333 ((-1166 (-1166 |#4|)) (-1 |#4| |#1|) |#3|))) +((-3732 (((-112) $ $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2096 (((-1264) $) 25)) (-4382 (((-1152) $ (-1170)) 30)) (-3589 (((-1264) $) 17)) (-3742 (((-859) $) 27) (($ (-1152)) 26)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 11)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 9))) +(((-502) (-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $)) (-15 -3742 ($ (-1152)))))) (T -502)) +((-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502))))) +(-13 (-847) (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) (-15 -2096 ((-1264) $)) (-15 -3742 ($ (-1152))))) +((-1540 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3350 ((|#1| |#4|) 10)) (-1909 ((|#3| |#4|) 17))) +(((-503 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3350 (|#1| |#4|)) (-15 -1909 (|#3| |#4|)) (-15 -1540 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-556) (-989 |#1|) (-373 |#1|) (-373 |#2|)) (T -503)) +((-1540 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) (-1909 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-4 *2 (-373 *4)) (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-373 *4))))) +(-10 -7 (-15 -3350 (|#1| |#4|)) (-15 -1909 (|#3| |#4|)) (-15 -1540 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) +((-3732 (((-112) $ $) NIL)) (-3715 (((-112) $ (-641 |#3|)) 128) (((-112) $) 129)) (-4173 (((-112) $) 180)) (-3357 (($ $ |#4|) 119) (($ $ |#4| (-641 |#3|)) 123)) (-1819 (((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|)) 173 (|has| |#3| (-612 (-1170))))) (-1935 (($ $ $) 107) (($ $ |#4|) 105)) (-3840 (((-112) $) 179)) (-2842 (($ $) 133)) (-2217 (((-1152) $) NIL)) (-1353 (($ $ $) 99) (($ (-641 $)) 101)) (-3352 (((-112) |#4| $) 131)) (-1304 (((-112) $ $) 85)) (-3197 (($ (-641 |#4|)) 106)) (-3864 (((-1114) $) NIL)) (-1630 (($ (-641 |#4|)) 177)) (-1895 (((-112) $) 178)) (-4390 (($ $) 88)) (-2003 (((-641 |#4|) $) 72)) (-3261 (((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|)) NIL)) (-4203 (((-112) |#4| $) 92)) (-3603 (((-564) $ (-641 |#3|)) 135) (((-564) $) 136)) (-3742 (((-859) $) 176) (($ (-641 |#4|)) 102)) (-1563 (($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $))) NIL)) (-1705 (((-112) $ $) 87)) (-1780 (($ $ $) 109)) (** (($ $ (-768)) 117)) (* (($ $ $) 115))) +(((-504 |#1| |#2| |#3| |#4|) (-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 -1780 ($ $ $)) (-15 -3840 ((-112) $)) (-15 -4173 ((-112) $)) (-15 -4203 ((-112) |#4| $)) (-15 -1304 ((-112) $ $)) (-15 -3352 ((-112) |#4| $)) (-15 -3715 ((-112) $ (-641 |#3|))) (-15 -3715 ((-112) $)) (-15 -1353 ($ $ $)) (-15 -1353 ($ (-641 $))) (-15 -1935 ($ $ $)) (-15 -1935 ($ $ |#4|)) (-15 -4390 ($ $)) (-15 -3261 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -1563 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -3603 ((-564) $ (-641 |#3|))) (-15 -3603 ((-564) $)) (-15 -2842 ($ $)) (-15 -3197 ($ (-641 |#4|))) (-15 -1630 ($ (-641 |#4|))) (-15 -1895 ((-112) $)) (-15 -2003 ((-641 |#4|) $)) (-15 -3742 ($ (-641 |#4|))) (-15 -3357 ($ $ |#4|)) (-15 -3357 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -1819 ((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|))) |%noBranch|))) (-363) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -504)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1780 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3840 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4173 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-4203 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-1304 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3352 (*1 *2 *3 *1) (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6)))) (-3715 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-3715 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1353 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-1353 (*1 *1 *2) (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-1935 (*1 *1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-1935 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-4390 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3261 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4)) (|:| |genIdeal| (-504 *4 *5 *6 *7)))) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-1563 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) (|:| |genIdeal| (-504 *3 *4 *5 *6)))) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3603 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) (-3603 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2842 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-3197 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1630 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-1895 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-2003 (*1 *2 *1) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *6)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) (-3357 (*1 *1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) (-3357 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6)))) (-1819 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-612 (-1170))) (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1159 (-641 (-949 *4)) (-641 (-294 (-949 *4))))) (-5 *1 (-504 *4 *5 *6 *7))))) +(-13 (-1094) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 -1780 ($ $ $)) (-15 -3840 ((-112) $)) (-15 -4173 ((-112) $)) (-15 -4203 ((-112) |#4| $)) (-15 -1304 ((-112) $ $)) (-15 -3352 ((-112) |#4| $)) (-15 -3715 ((-112) $ (-641 |#3|))) (-15 -3715 ((-112) $)) (-15 -1353 ($ $ $)) (-15 -1353 ($ (-641 $))) (-15 -1935 ($ $ $)) (-15 -1935 ($ $ |#4|)) (-15 -4390 ($ $)) (-15 -3261 ((-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)) $ (-641 |#3|))) (-15 -1563 ($ (-2 (|:| |mval| (-685 |#1|)) (|:| |invmval| (-685 |#1|)) (|:| |genIdeal| $)))) (-15 -3603 ((-564) $ (-641 |#3|))) (-15 -3603 ((-564) $)) (-15 -2842 ($ $)) (-15 -3197 ($ (-641 |#4|))) (-15 -1630 ($ (-641 |#4|))) (-15 -1895 ((-112) $)) (-15 -2003 ((-641 |#4|) $)) (-15 -3742 ($ (-641 |#4|))) (-15 -3357 ($ $ |#4|)) (-15 -3357 ($ $ |#4| (-641 |#3|))) (IF (|has| |#3| (-612 (-1170))) (-15 -1819 ((-1159 (-641 (-949 |#1|)) (-641 (-294 (-949 |#1|)))) (-641 |#4|))) |%noBranch|))) +((-2706 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 177)) (-1355 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 178)) (-3569 (((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 128)) (-4188 (((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) NIL)) (-4190 (((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) 180)) (-2658 (((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))) 195))) +(((-505 |#1| |#2|) (-10 -7 (-15 -2706 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1355 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4188 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3569 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4190 ((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2658 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))))) (-641 (-1170)) (-768)) (T -505)) +((-2658 (*1 *2 *2 *3) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *1 (-505 *4 *5)))) (-4190 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-641 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564)))))) (-5 *1 (-505 *4 *5)) (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))))) (-3569 (*1 *2 *2) (-12 (-5 *2 (-504 (-407 (-564)) (-240 *4 (-768)) (-861 *3) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-505 *3 *4)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-1355 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5)))) (-2706 (*1 *2 *3) (-12 (-5 *3 (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) (-247 *4 (-407 (-564))))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) (-5 *1 (-505 *4 *5))))) +(-10 -7 (-15 -2706 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -1355 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4188 ((-112) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -3569 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -4190 ((-641 (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564))))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))))) (-15 -2658 ((-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-504 (-407 (-564)) (-240 |#2| (-768)) (-861 |#1|) (-247 |#1| (-407 (-564)))) (-641 (-861 |#1|))))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 11) (((-1170) $) 9)) (-1705 (((-112) $ $) 7))) +(((-506) (-13 (-1094) (-611 (-1170)))) (T -506)) +NIL +(-13 (-1094) (-611 (-1170))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-4245 (($ |#1| |#2|) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2556 ((|#2| $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4311 (($) 12 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) 11) (($ $ $) 34)) (-1780 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 21))) +(((-507 |#1| |#2|) (-13 (-21) (-509 |#1| |#2|)) (-21) (-847)) (T -507)) NIL (-13 (-21) (-509 |#1| |#2|)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 13)) (-3684 (($) NIL T CONST)) (-3213 (($ $) 40)) (-2165 (($ |#1| |#2|) 37)) (-2751 (($ (-1 |#1| |#1|) $) 39)) (-2994 ((|#2| $) NIL)) (-3193 ((|#1| $) 41)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-3790 (($) 10 T CONST)) (-2943 (((-112) $ $) NIL)) (-3027 (($ $ $) 25)) (* (($ (-917) $) NIL) (($ (-767) $) 35))) -(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-846)) (T -508)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 13)) (-2818 (($) NIL T CONST)) (-1348 (($ $) 40)) (-4245 (($ |#1| |#2|) 37)) (-2187 (($ (-1 |#1| |#1|) $) 39)) (-2556 ((|#2| $) NIL)) (-1320 ((|#1| $) 41)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4311 (($) 10 T CONST)) (-1705 (((-112) $ $) NIL)) (-1780 (($ $ $) 25)) (* (($ (-918) $) NIL) (($ (-768) $) 35))) +(((-508 |#1| |#2|) (-13 (-23) (-509 |#1| |#2|)) (-23) (-847)) (T -508)) NIL (-13 (-23) (-509 |#1| |#2|)) -((-2049 (((-112) $ $) 7)) (-3213 (($ $) 13)) (-2165 (($ |#1| |#2|) 16)) (-2751 (($ (-1 |#1| |#1|) $) 17)) (-2994 ((|#2| $) 14)) (-3193 ((|#1| $) 15)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6))) -(((-509 |#1| |#2|) (-140) (-1093) (-846)) (T -509)) -((-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-846)))) (-2165 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1093)))) (-2994 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-846)))) (-3213 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846))))) -(-13 (-1093) (-10 -8 (-15 -2751 ($ (-1 |t#1| |t#1|) $)) (-15 -2165 ($ |t#1| |t#2|)) (-15 -3193 (|t#1| $)) (-15 -2994 (|t#2| $)) (-15 -3213 ($ $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-2165 (($ |#1| |#2|) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2994 ((|#2| $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-3790 (($) NIL T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 20)) (-3027 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) -(((-510 |#1| |#2|) (-13 (-788) (-509 |#1| |#2|)) (-788) (-846)) (T -510)) -NIL -(-13 (-788) (-509 |#1| |#2|)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3367 (($ $ $) 22)) (-1482 (((-3 $ "failed") $ $) 18)) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-2165 (($ |#1| |#2|) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2994 ((|#2| $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-3790 (($) NIL T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3027 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) -(((-511 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-846)) (T -511)) +((-3732 (((-112) $ $) 7)) (-1348 (($ $) 13)) (-4245 (($ |#1| |#2|) 16)) (-2187 (($ (-1 |#1| |#1|) $) 17)) (-2556 ((|#2| $) 14)) (-1320 ((|#1| $) 15)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6))) +(((-509 |#1| |#2|) (-140) (-1094) (-847)) (T -509)) +((-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-847)))) (-4245 (*1 *1 *2 *3) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1094)))) (-2556 (*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-847)))) (-1348 (*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847))))) +(-13 (-1094) (-10 -8 (-15 -2187 ($ (-1 |t#1| |t#1|) $)) (-15 -4245 ($ |t#1| |t#2|)) (-15 -1320 (|t#1| $)) (-15 -2556 (|t#2| $)) (-15 -1348 ($ $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-4245 (($ |#1| |#2|) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2556 ((|#2| $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4311 (($) NIL T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 20)) (-1780 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL))) +(((-510 |#1| |#2|) (-13 (-789) (-509 |#1| |#2|)) (-789) (-847)) (T -510)) NIL (-13 (-789) (-509 |#1| |#2|)) -((-2049 (((-112) $ $) NIL)) (-3213 (($ $) 31)) (-2165 (($ |#1| |#2|) 27)) (-2751 (($ (-1 |#1| |#1|) $) 29)) (-2994 ((|#2| $) 33)) (-3193 ((|#1| $) 32)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 26)) (-2943 (((-112) $ $) 19))) -(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1093) (-846)) (T -512)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2850 (($ $ $) 22)) (-3239 (((-3 $ "failed") $ $) 18)) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-4245 (($ |#1| |#2|) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2556 ((|#2| $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4311 (($) NIL T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1780 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL))) +(((-511 |#1| |#2|) (-13 (-790) (-509 |#1| |#2|)) (-790) (-847)) (T -511)) +NIL +(-13 (-790) (-509 |#1| |#2|)) +((-3732 (((-112) $ $) NIL)) (-1348 (($ $) 31)) (-4245 (($ |#1| |#2|) 27)) (-2187 (($ (-1 |#1| |#1|) $) 29)) (-2556 ((|#2| $) 33)) (-1320 ((|#1| $) 32)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 26)) (-1705 (((-112) $ $) 19))) +(((-512 |#1| |#2|) (-509 |#1| |#2|) (-1094) (-847)) (T -512)) NIL (-509 |#1| |#2|) -((-1497 (($ $ (-640 |#2|) (-640 |#3|)) NIL) (($ $ |#2| |#3|) 12))) -(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -1497 (|#1| |#1| |#2| |#3|)) (-15 -1497 (|#1| |#1| (-640 |#2|) (-640 |#3|)))) (-514 |#2| |#3|) (-1093) (-1208)) (T -513)) +((-2416 (($ $ (-641 |#2|) (-641 |#3|)) NIL) (($ $ |#2| |#3|) 12))) +(((-513 |#1| |#2| |#3|) (-10 -8 (-15 -2416 (|#1| |#1| |#2| |#3|)) (-15 -2416 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) (-514 |#2| |#3|) (-1094) (-1209)) (T -513)) NIL -(-10 -8 (-15 -1497 (|#1| |#1| |#2| |#3|)) (-15 -1497 (|#1| |#1| (-640 |#2|) (-640 |#3|)))) -((-1497 (($ $ (-640 |#1|) (-640 |#2|)) 7) (($ $ |#1| |#2|) 6))) -(((-514 |#1| |#2|) (-140) (-1093) (-1208)) (T -514)) -((-1497 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1208)))) (-1497 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1208))))) -(-13 (-10 -8 (-15 -1497 ($ $ |t#1| |t#2|)) (-15 -1497 ($ $ (-640 |t#1|) (-640 |t#2|))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 17)) (-2914 (((-640 (-2 (|:| |gen| |#1|) (|:| -3177 |#2|))) $) 19)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2433 (((-767) $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-2535 ((|#1| $ (-563)) 24)) (-3281 ((|#2| $ (-563)) 22)) (-3876 (($ (-1 |#1| |#1|) $) 48)) (-1360 (($ (-1 |#2| |#2|) $) 45)) (-1938 (((-1151) $) NIL)) (-1349 (($ $ $) 55 (|has| |#2| (-788)))) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 44) (($ |#1|) NIL)) (-1304 ((|#2| |#1| $) 51)) (-3790 (($) 11 T CONST)) (-2943 (((-112) $ $) 30)) (-3027 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-917) $) NIL) (($ (-767) $) 37) (($ |#2| |#1|) 32))) -(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1093) (-131) |#2|) (T -515)) +(-10 -8 (-15 -2416 (|#1| |#1| |#2| |#3|)) (-15 -2416 (|#1| |#1| (-641 |#2|) (-641 |#3|)))) +((-2416 (($ $ (-641 |#1|) (-641 |#2|)) 7) (($ $ |#1| |#2|) 6))) +(((-514 |#1| |#2|) (-140) (-1094) (-1209)) (T -514)) +((-2416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1209)))) (-2416 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209))))) +(-13 (-10 -8 (-15 -2416 ($ $ |t#1| |t#2|)) (-15 -2416 ($ $ (-641 |t#1|) (-641 |t#2|))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 17)) (-3157 (((-641 (-2 (|:| |gen| |#1|) (|:| -4118 |#2|))) $) 19)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1938 (((-768) $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-3950 ((|#1| $ (-564)) 24)) (-3780 ((|#2| $ (-564)) 22)) (-3354 (($ (-1 |#1| |#1|) $) 48)) (-4355 (($ (-1 |#2| |#2|) $) 45)) (-2217 (((-1152) $) NIL)) (-3611 (($ $ $) 55 (|has| |#2| (-789)))) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 44) (($ |#1|) NIL)) (-2856 ((|#2| |#1| $) 51)) (-4311 (($) 11 T CONST)) (-1705 (((-112) $ $) 30)) (-1780 (($ $ $) 28) (($ |#1| $) 26)) (* (($ (-918) $) NIL) (($ (-768) $) 37) (($ |#2| |#1|) 32))) +(((-515 |#1| |#2| |#3|) (-323 |#1| |#2|) (-1094) (-131) |#2|) (T -515)) NIL (-323 |#1| |#2|) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-3004 (((-112) (-112)) 32)) (-2189 ((|#1| $ (-563) |#1|) 42 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-1736 (($ (-1 (-112) |#1|) $) 78)) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-2273 (($ $) 82 (|has| |#1| (-1093)))) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2841 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) 65)) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-2256 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-3013 (($ $ (-563)) 19)) (-3023 (((-767) $) 13)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2552 (($ (-767) |#1|) 31)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 29 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2346 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 56)) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) 57) (($ $ $) NIL (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) 28 (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1956 (($ $ $ (-563)) 74) (($ |#1| $ (-563)) 58)) (-2530 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3034 (($ (-640 |#1|)) 43)) (-1884 ((|#1| $) NIL (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) 24 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 61)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 21)) (-3858 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 54) (($ $ (-1224 (-563))) NIL)) (-1751 (($ $ (-1224 (-563))) 72) (($ $ (-563)) 66)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) 62 (|has| $ (-6 -4409)))) (-2208 (($ $) 53)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-3065 (($ $ $) 63) (($ $ |#1|) 60)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) 59) (($ $ $) NIL) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1708 (((-767) $) 22 (|has| $ (-6 -4408))))) -(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3034 ($ (-640 |#1|))) (-15 -3023 ((-767) $)) (-15 -3013 ($ $ (-563))) (-15 -3004 ((-112) (-112))))) (-1208) (-563)) (T -516)) -((-3034 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-516 *3 *4)) (-14 *4 (-563)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 (-563)))) (-3013 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 *2))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 (-563))))) -(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -3034 ($ (-640 |#1|))) (-15 -3023 ((-767) $)) (-15 -3013 ($ $ (-563))) (-15 -3004 ((-112) (-112))))) -((-2049 (((-112) $ $) NIL)) (-3057 (((-1128) $) 11)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3045 (((-1128) $) 13)) (-4306 (((-1128) $) 9)) (-2062 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-517) (-13 (-1076) (-10 -8 (-15 -4306 ((-1128) $)) (-15 -3057 ((-1128) $)) (-15 -3045 ((-1128) $))))) (T -517)) -((-4306 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) (-3045 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517))))) -(-13 (-1076) (-10 -8 (-15 -4306 ((-1128) $)) (-15 -3057 ((-1128) $)) (-15 -3045 ((-1128) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 (((-580 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-580 |#1|) (-368)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL (|has| (-580 |#1|) (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-580 |#1|) "failed") $) NIL)) (-2589 (((-580 |#1|) $) NIL)) (-1505 (($ (-1257 (-580 |#1|))) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-580 |#1|) (-368)))) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-580 |#1|) (-368)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) NIL (|has| (-580 |#1|) (-368)))) (-2812 (((-112) $) NIL (|has| (-580 |#1|) (-368)))) (-2506 (($ $ (-767)) NIL (-2811 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368)))) (($ $) NIL (-2811 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-3675 (((-112) $) NIL)) (-2903 (((-917) $) NIL (|has| (-580 |#1|) (-368))) (((-829 (-917)) $) NIL (-2811 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-2712 (((-112) $) NIL)) (-3298 (($) NIL (|has| (-580 |#1|) (-368)))) (-3277 (((-112) $) NIL (|has| (-580 |#1|) (-368)))) (-3251 (((-580 |#1|) $) NIL) (($ $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-3113 (((-3 $ "failed") $) NIL (|has| (-580 |#1|) (-368)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 (-580 |#1|)) $) NIL) (((-1165 $) $ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-3267 (((-917) $) NIL (|has| (-580 |#1|) (-368)))) (-3332 (((-1165 (-580 |#1|)) $) NIL (|has| (-580 |#1|) (-368)))) (-3321 (((-1165 (-580 |#1|)) $) NIL (|has| (-580 |#1|) (-368))) (((-3 (-1165 (-580 |#1|)) "failed") $ $) NIL (|has| (-580 |#1|) (-368)))) (-3344 (($ $ (-1165 (-580 |#1|))) NIL (|has| (-580 |#1|) (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-580 |#1|) (-368)) CONST)) (-3491 (($ (-917)) NIL (|has| (-580 |#1|) (-368)))) (-1808 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-1738 (($) NIL (|has| (-580 |#1|) (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| (-580 |#1|) (-368)))) (-2055 (((-418 $) $) NIL)) (-1797 (((-829 (-917))) NIL) (((-917)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-767) $) NIL (|has| (-580 |#1|) (-368))) (((-3 (-767) "failed") $ $) NIL (-2811 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-1575 (((-134)) NIL)) (-1361 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-1962 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2713 (((-1165 (-580 |#1|))) NIL)) (-2750 (($) NIL (|has| (-580 |#1|) (-368)))) (-3356 (($) NIL (|has| (-580 |#1|) (-368)))) (-1818 (((-1257 (-580 |#1|)) $) NIL) (((-684 (-580 |#1|)) (-1257 $)) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-580 |#1|) (-368)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-580 |#1|)) NIL)) (-4376 (($ $) NIL (|has| (-580 |#1|) (-368))) (((-3 $ "failed") $) NIL (-2811 (|has| (-580 |#1|) (-145)) (|has| (-580 |#1|) (-368))))) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL) (((-1257 $) (-917)) NIL)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-1772 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-4191 (($ $) NIL (|has| (-580 |#1|) (-368))) (($ $ (-767)) NIL (|has| (-580 |#1|) (-368)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL) (($ $ (-580 |#1|)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-580 |#1|)) NIL) (($ (-580 |#1|) $) NIL))) -(((-518 |#1| |#2|) (-329 (-580 |#1|)) (-917) (-917)) (T -518)) -NIL -(-329 (-580 |#1|)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) (-563) |#1|) 50)) (-4121 (($ $ (-563) |#4|) NIL)) (-4110 (($ $ (-563) |#5|) NIL)) (-3684 (($) NIL T CONST)) (-3082 ((|#4| $ (-563)) NIL)) (-4150 ((|#1| $ (-563) (-563) |#1|) 49)) (-4085 ((|#1| $ (-563) (-563)) 45)) (-4236 (((-640 |#1|) $) NIL)) (-3955 (((-767) $) 33)) (-2552 (($ (-767) (-767) |#1|) 30)) (-3965 (((-767) $) 38)) (-3633 (((-112) $ (-767)) NIL)) (-3127 (((-563) $) 31)) (-3105 (((-563) $) 32)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3117 (((-563) $) 37)) (-3094 (((-563) $) 39)) (-4139 (($ (-1 |#1| |#1|) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) 54 (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3357 (($ $ |#1|) NIL)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 14)) (-2749 (($) 16)) (-3858 ((|#1| $ (-563) (-563)) 47) ((|#1| $ (-563) (-563) |#1|) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-3073 ((|#5| $ (-563)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1208) (-563) (-563) (-373 |#1|) (-373 |#1|)) (T -519)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3437 (((-112) (-112)) 32)) (-3877 ((|#1| $ (-564) |#1|) 42 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-2068 (($ (-1 (-112) |#1|) $) 78)) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-4181 (($ $) 82 (|has| |#1| (-1094)))) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2154 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 65)) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-3305 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-2016 (($ $ (-564)) 19)) (-3810 (((-768) $) 13)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3619 (($ (-768) |#1|) 31)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 29 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-1457 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 56)) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) 57) (($ $ $) NIL (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) 28 (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2974 (($ $ $ (-564)) 74) (($ |#1| $ (-564)) 58)) (-2308 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2369 (($ (-641 |#1|)) 43)) (-1966 ((|#1| $) NIL (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) 24 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 61)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 21)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 54) (($ $ (-1226 (-564))) NIL)) (-3778 (($ $ (-1226 (-564))) 72) (($ $ (-564)) 66)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) 62 (|has| $ (-6 -4412)))) (-3896 (($ $) 53)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-1807 (($ $ $) 63) (($ $ |#1|) 60)) (-1802 (($ $ |#1|) NIL) (($ |#1| $) 59) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2641 (((-768) $) 22 (|has| $ (-6 -4411))))) +(((-516 |#1| |#2|) (-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2369 ($ (-641 |#1|))) (-15 -3810 ((-768) $)) (-15 -2016 ($ $ (-564))) (-15 -3437 ((-112) (-112))))) (-1209) (-564)) (T -516)) +((-2369 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) (-14 *4 (-564)))) (-3810 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564)))) (-2016 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2))) (-3437 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 (-564))))) +(-13 (-19 |#1|) (-282 |#1|) (-10 -8 (-15 -2369 ($ (-641 |#1|))) (-15 -3810 ((-768) $)) (-15 -2016 ($ $ (-564))) (-15 -3437 ((-112) (-112))))) +((-3732 (((-112) $ $) NIL)) (-4016 (((-1129) $) 11)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2302 (((-1129) $) 13)) (-4052 (((-1129) $) 9)) (-3742 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-517) (-13 (-1077) (-10 -8 (-15 -4052 ((-1129) $)) (-15 -4016 ((-1129) $)) (-15 -2302 ((-1129) $))))) (T -517)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) (-2302 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) +(-13 (-1077) (-10 -8 (-15 -4052 ((-1129) $)) (-15 -4016 ((-1129) $)) (-15 -2302 ((-1129) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 (((-581 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-581 |#1|) (-368)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL (|has| (-581 |#1|) (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-581 |#1|) "failed") $) NIL)) (-2239 (((-581 |#1|) $) NIL)) (-2340 (($ (-1259 (-581 |#1|))) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-581 |#1|) (-368)))) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-581 |#1|) (-368)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) NIL (|has| (-581 |#1|) (-368)))) (-1313 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-3176 (($ $ (-768)) NIL (-4030 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368)))) (($ $) NIL (-4030 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-4188 (((-112) $) NIL)) (-1619 (((-918) $) NIL (|has| (-581 |#1|) (-368))) (((-830 (-918)) $) NIL (-4030 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3840 (((-112) $) NIL)) (-2680 (($) NIL (|has| (-581 |#1|) (-368)))) (-1530 (((-112) $) NIL (|has| (-581 |#1|) (-368)))) (-3328 (((-581 |#1|) $) NIL) (($ $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-3907 (((-3 $ "failed") $) NIL (|has| (-581 |#1|) (-368)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 (-581 |#1|)) $) NIL) (((-1166 $) $ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-1906 (((-918) $) NIL (|has| (-581 |#1|) (-368)))) (-2528 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368)))) (-2945 (((-1166 (-581 |#1|)) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-1166 (-581 |#1|)) "failed") $ $) NIL (|has| (-581 |#1|) (-368)))) (-4375 (($ $ (-1166 (-581 |#1|))) NIL (|has| (-581 |#1|) (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-581 |#1|) (-368)) CONST)) (-1495 (($ (-918)) NIL (|has| (-581 |#1|) (-368)))) (-3259 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-1693 (($) NIL (|has| (-581 |#1|) (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| (-581 |#1|) (-368)))) (-4127 (((-418 $) $) NIL)) (-1506 (((-830 (-918))) NIL) (((-918)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-768) $) NIL (|has| (-581 |#1|) (-368))) (((-3 (-768) "failed") $ $) NIL (-4030 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3603 (((-134)) NIL)) (-4117 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-2266 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3925 (((-1166 (-581 |#1|))) NIL)) (-1543 (($) NIL (|has| (-581 |#1|) (-368)))) (-4220 (($) NIL (|has| (-581 |#1|) (-368)))) (-1785 (((-1259 (-581 |#1|)) $) NIL) (((-685 (-581 |#1|)) (-1259 $)) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-581 |#1|) (-368)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-581 |#1|)) NIL)) (-4253 (($ $) NIL (|has| (-581 |#1|) (-368))) (((-3 $ "failed") $) NIL (-4030 (|has| (-581 |#1|) (-145)) (|has| (-581 |#1|) (-368))))) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL) (((-1259 $) (-918)) NIL)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2578 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-2124 (($ $) NIL (|has| (-581 |#1|) (-368))) (($ $ (-768)) NIL (|has| (-581 |#1|) (-368)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL) (($ $ (-581 |#1|)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-581 |#1|)) NIL) (($ (-581 |#1|) $) NIL))) +(((-518 |#1| |#2|) (-329 (-581 |#1|)) (-918) (-918)) (T -518)) +NIL +(-329 (-581 |#1|)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) 50)) (-1673 (($ $ (-564) |#4|) NIL)) (-1947 (($ $ (-564) |#5|) NIL)) (-2818 (($) NIL T CONST)) (-4236 ((|#4| $ (-564)) NIL)) (-2619 ((|#1| $ (-564) (-564) |#1|) 49)) (-2540 ((|#1| $ (-564) (-564)) 45)) (-3616 (((-641 |#1|) $) NIL)) (-2659 (((-768) $) 33)) (-3619 (($ (-768) (-768) |#1|) 30)) (-2671 (((-768) $) 38)) (-2275 (((-112) $ (-768)) NIL)) (-1305 (((-564) $) 31)) (-1392 (((-564) $) 32)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4212 (((-564) $) 37)) (-2739 (((-564) $) 39)) (-2606 (($ (-1 |#1| |#1|) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) 54 (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3099 (($ $ |#1|) NIL)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 14)) (-3434 (($) 16)) (-4382 ((|#1| $ (-564) (-564)) 47) ((|#1| $ (-564) (-564) |#1|) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-1346 ((|#5| $ (-564)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-519 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1209) (-564) (-564) (-373 |#1|) (-373 |#1|)) (T -519)) NIL (-57 |#1| |#4| |#5|) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) NIL)) (-3931 ((|#1| $) NIL)) (-1588 (($ $) NIL)) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) 73 (|has| $ (-6 -4409)))) (-2162 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2146 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4409)))) (-4257 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-3472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-3032 (($ $ $) 23 (|has| $ (-6 -4409)))) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-3043 ((|#1| $ |#1|) 21 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4409))) (($ $ "rest" $) 24 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-1736 (($ (-1 (-112) |#1|) $) NIL)) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3919 ((|#1| $) NIL)) (-3684 (($) NIL T CONST)) (-3934 (($ $) 28 (|has| $ (-6 -4409)))) (-4294 (($ $) 29)) (-1897 (($ $) 18) (($ $ (-767)) 35)) (-2273 (($ $) 66 (|has| |#1| (-1093)))) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2841 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-3089 (((-112) $) NIL)) (-2256 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-4236 (((-640 |#1|) $) 27 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2552 (($ (-767) |#1|) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 31 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2346 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2383 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2335 (($ |#1|) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) NIL)) (-1938 (((-1151) $) 62 (|has| |#1| (-1093)))) (-1442 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1956 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-2530 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) 13) (($ $ (-767)) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3101 (((-112) $) NIL)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 12)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) 17)) (-2749 (($) 16)) (-3858 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) NIL) ((|#1| $ (-563) |#1|) NIL)) (-3514 (((-563) $ $) NIL)) (-1751 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-4159 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2181 (((-112) $) 39)) (-3074 (($ $) NIL)) (-3055 (($ $) NIL (|has| $ (-6 -4409)))) (-3083 (((-767) $) NIL)) (-3095 (($ $) 44)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) 40)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 26)) (-3065 (($ $ $) 65) (($ $ |#1|) NIL)) (-1951 (($ $ $) NIL) (($ |#1| $) 10) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-2062 (((-858) $) 54 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) 58 (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1708 (((-767) $) 9 (|has| $ (-6 -4408))))) -(((-520 |#1| |#2|) (-661 |#1|) (-1208) (-563)) (T -520)) -NIL -(-661 |#1|) -((-3063 ((|#4| |#4|) 37)) (-3406 (((-767) |#4|) 46)) (-3054 (((-767) |#4|) 47)) (-3042 (((-640 |#3|) |#4|) 56 (|has| |#3| (-6 -4409)))) (-1755 (((-3 |#4| "failed") |#4|) 70)) (-3067 ((|#4| |#4|) 62)) (-1400 ((|#1| |#4|) 61))) -(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3063 (|#4| |#4|)) (-15 -3406 ((-767) |#4|)) (-15 -3054 ((-767) |#4|)) (IF (|has| |#3| (-6 -4409)) (-15 -3042 ((-640 |#3|) |#4|)) |%noBranch|) (-15 -1400 (|#1| |#4|)) (-15 -3067 (|#4| |#4|)) (-15 -1755 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -521)) -((-1755 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3067 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-1400 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) (-3042 (*1 *2 *3) (-12 (|has| *6 (-6 -4409)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-3054 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) -(-10 -7 (-15 -3063 (|#4| |#4|)) (-15 -3406 ((-767) |#4|)) (-15 -3054 ((-767) |#4|)) (IF (|has| |#3| (-6 -4409)) (-15 -3042 ((-640 |#3|) |#4|)) |%noBranch|) (-15 -1400 (|#1| |#4|)) (-15 -3067 (|#4| |#4|)) (-15 -1755 ((-3 |#4| "failed") |#4|))) -((-3063 ((|#8| |#4|) 20)) (-3042 (((-640 |#3|) |#4|) 29 (|has| |#7| (-6 -4409)))) (-1755 (((-3 |#8| "failed") |#4|) 23))) -(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3063 (|#8| |#4|)) (-15 -1755 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4409)) (-15 -3042 ((-640 |#3|) |#4|)) |%noBranch|)) (-555) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|) (-988 |#1|) (-373 |#5|) (-373 |#5|) (-682 |#5| |#6| |#7|)) (T -522)) -((-3042 (*1 *2 *3) (-12 (|has| *9 (-6 -4409)) (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-640 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-682 *4 *5 *6)) (-4 *10 (-682 *7 *8 *9)))) (-1755 (*1 *2 *3) (|partial| -12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))) -(-10 -7 (-15 -3063 (|#8| |#4|)) (-15 -1755 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4409)) (-15 -3042 ((-640 |#3|) |#4|)) |%noBranch|)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1696 (($ (-767) (-767)) NIL)) (-3211 (($ $ $) NIL)) (-2899 (($ (-599 |#1| |#3|)) NIL) (($ $) NIL)) (-3148 (((-112) $) NIL)) (-3201 (($ $ (-563) (-563)) 20)) (-3191 (($ $ (-563) (-563)) NIL)) (-3181 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-3232 (($ $) NIL)) (-3172 (((-112) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-3171 (($ $ (-563) (-563) $) NIL)) (-2189 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-4121 (($ $ (-563) (-599 |#1| |#3|)) NIL)) (-4110 (($ $ (-563) (-599 |#1| |#2|)) NIL)) (-1444 (($ (-767) |#1|) NIL)) (-3684 (($) NIL T CONST)) (-3063 (($ $) 29 (|has| |#1| (-307)))) (-3082 (((-599 |#1| |#3|) $ (-563)) NIL)) (-3406 (((-767) $) 32 (|has| |#1| (-555)))) (-4150 ((|#1| $ (-563) (-563) |#1|) NIL)) (-4085 ((|#1| $ (-563) (-563)) NIL)) (-4236 (((-640 |#1|) $) NIL)) (-3054 (((-767) $) 34 (|has| |#1| (-555)))) (-3042 (((-640 (-599 |#1| |#2|)) $) 37 (|has| |#1| (-555)))) (-3955 (((-767) $) NIL)) (-2552 (($ (-767) (-767) |#1|) NIL)) (-3965 (((-767) $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-1390 ((|#1| $) 27 (|has| |#1| (-6 (-4410 "*"))))) (-3127 (((-563) $) 10)) (-3105 (((-563) $) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3117 (((-563) $) 13)) (-3094 (((-563) $) NIL)) (-3840 (($ (-640 (-640 |#1|))) NIL)) (-4139 (($ (-1 |#1| |#1|) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1791 (((-640 (-640 |#1|)) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1755 (((-3 $ "failed") $) 41 (|has| |#1| (-363)))) (-3222 (($ $ $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3357 (($ $ |#1|) NIL)) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-1431 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL)) (-3162 (((-112) $) NIL)) (-1400 ((|#1| $) 25 (|has| |#1| (-6 (-4410 "*"))))) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-3073 (((-599 |#1| |#2|) $ (-563)) NIL)) (-2062 (($ (-599 |#1| |#2|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3137 (((-112) $) NIL)) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $ $) NIL) (($ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-599 |#1| |#2|) $ (-599 |#1| |#2|)) NIL) (((-599 |#1| |#3|) (-599 |#1| |#3|) $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-523 |#1| |#2| |#3|) (-682 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) (-1045) (-563) (-563)) (T -523)) -NIL -(-682 |#1| (-599 |#1| |#3|) (-599 |#1| |#2|)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3076 (((-640 (-1207)) $) 13)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL) (($ (-640 (-1207))) 11)) (-2943 (((-112) $ $) NIL))) -(((-524) (-13 (-1076) (-10 -8 (-15 -2062 ($ (-640 (-1207)))) (-15 -3076 ((-640 (-1207)) $))))) (T -524)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524))))) -(-13 (-1076) (-10 -8 (-15 -2062 ($ (-640 (-1207)))) (-15 -3076 ((-640 (-1207)) $)))) -((-2049 (((-112) $ $) NIL)) (-3085 (((-1128) $) 14)) (-1938 (((-1151) $) NIL)) (-3097 (((-1169) $) 11)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-525) (-13 (-1076) (-10 -8 (-15 -3097 ((-1169) $)) (-15 -3085 ((-1128) $))))) (T -525)) -((-3097 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-525)))) (-3085 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-525))))) -(-13 (-1076) (-10 -8 (-15 -3097 ((-1169) $)) (-15 -3085 ((-1128) $)))) -((-3165 (((-686 (-1215)) $) 15)) (-3121 (((-686 (-1214)) $) 39)) (-3140 (((-686 (-1213)) $) 30)) (-3175 (((-686 (-548)) $) 12)) (-3131 (((-686 (-547)) $) 43)) (-3153 (((-686 (-546)) $) 34)) (-3109 (((-767) $ (-128)) 55))) -(((-526 |#1|) (-10 -8 (-15 -3109 ((-767) |#1| (-128))) (-15 -3121 ((-686 (-1214)) |#1|)) (-15 -3131 ((-686 (-547)) |#1|)) (-15 -3140 ((-686 (-1213)) |#1|)) (-15 -3153 ((-686 (-546)) |#1|)) (-15 -3165 ((-686 (-1215)) |#1|)) (-15 -3175 ((-686 (-548)) |#1|))) (-527)) (T -526)) -NIL -(-10 -8 (-15 -3109 ((-767) |#1| (-128))) (-15 -3121 ((-686 (-1214)) |#1|)) (-15 -3131 ((-686 (-547)) |#1|)) (-15 -3140 ((-686 (-1213)) |#1|)) (-15 -3153 ((-686 (-546)) |#1|)) (-15 -3165 ((-686 (-1215)) |#1|)) (-15 -3175 ((-686 (-548)) |#1|))) -((-3165 (((-686 (-1215)) $) 12)) (-3121 (((-686 (-1214)) $) 8)) (-3140 (((-686 (-1213)) $) 10)) (-3175 (((-686 (-548)) $) 13)) (-3131 (((-686 (-547)) $) 9)) (-3153 (((-686 (-546)) $) 11)) (-3109 (((-767) $ (-128)) 7)) (-3186 (((-686 (-129)) $) 14)) (-3018 (($ $) 6))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) NIL)) (-2910 ((|#1| $) NIL)) (-3813 (($ $) NIL)) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) 73 (|has| $ (-6 -4412)))) (-1445 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2402 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) 68 (|has| $ (-6 -4412)))) (-2777 (($ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-3417 (($ $ $) 23 (|has| $ (-6 -4412)))) (-1716 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-2094 ((|#1| $ |#1|) 21 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4412))) (($ $ "rest" $) 24 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2068 (($ (-1 (-112) |#1|) $) NIL)) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2899 ((|#1| $) NIL)) (-2818 (($) NIL T CONST)) (-2797 (($ $) 28 (|has| $ (-6 -4412)))) (-1856 (($ $) 29)) (-1977 (($ $) 18) (($ $ (-768)) 35)) (-4181 (($ $) 66 (|has| |#1| (-1094)))) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2154 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2366 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-2378 (((-112) $) NIL)) (-3305 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3616 (((-641 |#1|) $) 27 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3619 (($ (-768) |#1|) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 31 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-1457 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 69)) (-2164 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 64 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1858 (($ |#1|) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) NIL)) (-2217 (((-1152) $) 62 (|has| |#1| (-1094)))) (-2389 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2974 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2308 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) 13) (($ $ (-768)) NIL)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-2174 (((-112) $) NIL)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 12)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) 17)) (-3434 (($) 16)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) NIL) ((|#1| $ (-564) |#1|) NIL)) (-4209 (((-564) $ $) NIL)) (-3778 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2004 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3572 (((-112) $) 39)) (-1459 (($ $) NIL)) (-3838 (($ $) NIL (|has| $ (-6 -4412)))) (-3108 (((-768) $) NIL)) (-2857 (($ $) 44)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) 40)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 26)) (-1807 (($ $ $) 65) (($ $ |#1|) NIL)) (-1802 (($ $ $) NIL) (($ |#1| $) 10) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-3742 (((-859) $) 54 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) 58 (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2641 (((-768) $) 9 (|has| $ (-6 -4411))))) +(((-520 |#1| |#2|) (-662 |#1|) (-1209) (-564)) (T -520)) +NIL +(-662 |#1|) +((-2903 ((|#4| |#4|) 37)) (-1544 (((-768) |#4|) 46)) (-3735 (((-768) |#4|) 47)) (-1973 (((-641 |#3|) |#4|) 56 (|has| |#3| (-6 -4412)))) (-4110 (((-3 |#4| "failed") |#4|) 70)) (-1944 ((|#4| |#4|) 62)) (-3337 ((|#1| |#4|) 61))) +(((-521 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2903 (|#4| |#4|)) (-15 -1544 ((-768) |#4|)) (-15 -3735 ((-768) |#4|)) (IF (|has| |#3| (-6 -4412)) (-15 -1973 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -3337 (|#1| |#4|)) (-15 -1944 (|#4| |#4|)) (-15 -4110 ((-3 |#4| "failed") |#4|))) (-363) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -521)) +((-4110 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1944 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-1973 (*1 *2 *3) (-12 (|has| *6 (-6 -4412)) (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1544 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2903 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(-10 -7 (-15 -2903 (|#4| |#4|)) (-15 -1544 ((-768) |#4|)) (-15 -3735 ((-768) |#4|)) (IF (|has| |#3| (-6 -4412)) (-15 -1973 ((-641 |#3|) |#4|)) |%noBranch|) (-15 -3337 (|#1| |#4|)) (-15 -1944 (|#4| |#4|)) (-15 -4110 ((-3 |#4| "failed") |#4|))) +((-2903 ((|#8| |#4|) 20)) (-1973 (((-641 |#3|) |#4|) 29 (|has| |#7| (-6 -4412)))) (-4110 (((-3 |#8| "failed") |#4|) 23))) +(((-522 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2903 (|#8| |#4|)) (-15 -4110 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4412)) (-15 -1973 ((-641 |#3|) |#4|)) |%noBranch|)) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-989 |#1|) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -522)) +((-1973 (*1 *2 *3) (-12 (|has| *9 (-6 -4412)) (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) (-4 *10 (-683 *7 *8 *9)))) (-4110 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) (-2903 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) (-4 *8 (-373 *7)) (-4 *9 (-373 *7))))) +(-10 -7 (-15 -2903 (|#8| |#4|)) (-15 -4110 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4412)) (-15 -1973 ((-641 |#3|) |#4|)) |%noBranch|)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1515 (($ (-768) (-768)) NIL)) (-2345 (($ $ $) NIL)) (-2284 (($ (-600 |#1| |#3|)) NIL) (($ $) NIL)) (-2335 (((-112) $) NIL)) (-2888 (($ $ (-564) (-564)) 20)) (-3158 (($ $ (-564) (-564)) NIL)) (-3003 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-4142 (($ $) NIL)) (-1695 (((-112) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-1621 (($ $ (-564) (-564) $) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1673 (($ $ (-564) (-600 |#1| |#3|)) NIL)) (-1947 (($ $ (-564) (-600 |#1| |#2|)) NIL)) (-2294 (($ (-768) |#1|) NIL)) (-2818 (($) NIL T CONST)) (-2903 (($ $) 29 (|has| |#1| (-307)))) (-4236 (((-600 |#1| |#3|) $ (-564)) NIL)) (-1544 (((-768) $) 32 (|has| |#1| (-556)))) (-2619 ((|#1| $ (-564) (-564) |#1|) NIL)) (-2540 ((|#1| $ (-564) (-564)) NIL)) (-3616 (((-641 |#1|) $) NIL)) (-3735 (((-768) $) 34 (|has| |#1| (-556)))) (-1973 (((-641 (-600 |#1| |#2|)) $) 37 (|has| |#1| (-556)))) (-2659 (((-768) $) NIL)) (-3619 (($ (-768) (-768) |#1|) NIL)) (-2671 (((-768) $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-3786 ((|#1| $) 27 (|has| |#1| (-6 (-4413 "*"))))) (-1305 (((-564) $) 10)) (-1392 (((-564) $) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4212 (((-564) $) 13)) (-2739 (((-564) $) NIL)) (-1915 (($ (-641 (-641 |#1|))) NIL)) (-2606 (($ (-1 |#1| |#1|) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3299 (((-641 (-641 |#1|)) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4110 (((-3 $ "failed") $) 41 (|has| |#1| (-363)))) (-1388 (($ $ $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3099 (($ $ |#1|) NIL)) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-3545 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL)) (-2041 (((-112) $) NIL)) (-3337 ((|#1| $) 25 (|has| |#1| (-6 (-4413 "*"))))) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-1346 (((-600 |#1| |#2|) $ (-564)) NIL)) (-3742 (($ (-600 |#1| |#2|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3938 (((-112) $) NIL)) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $ $) NIL) (($ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-600 |#1| |#2|) $ (-600 |#1| |#2|)) NIL) (((-600 |#1| |#3|) (-600 |#1| |#3|) $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-523 |#1| |#2| |#3|) (-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) (-1046) (-564) (-564)) (T -523)) +NIL +(-683 |#1| (-600 |#1| |#3|) (-600 |#1| |#2|)) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-1659 (((-641 (-1208)) $) 13)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL) (($ (-641 (-1208))) 11)) (-1705 (((-112) $ $) NIL))) +(((-524) (-13 (-1077) (-10 -8 (-15 -3742 ($ (-641 (-1208)))) (-15 -1659 ((-641 (-1208)) $))))) (T -524)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))) +(-13 (-1077) (-10 -8 (-15 -3742 ($ (-641 (-1208)))) (-15 -1659 ((-641 (-1208)) $)))) +((-3732 (((-112) $ $) NIL)) (-3327 (((-1129) $) 14)) (-2217 (((-1152) $) NIL)) (-1871 (((-1170) $) 11)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-525) (-13 (-1077) (-10 -8 (-15 -1871 ((-1170) $)) (-15 -3327 ((-1129) $))))) (T -525)) +((-1871 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-525)))) (-3327 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) +(-13 (-1077) (-10 -8 (-15 -1871 ((-1170) $)) (-15 -3327 ((-1129) $)))) +((-2268 (((-687 (-1217)) $) 15)) (-3297 (((-687 (-1215)) $) 39)) (-4193 (((-687 (-1214)) $) 30)) (-3832 (((-687 (-549)) $) 12)) (-1567 (((-687 (-547)) $) 43)) (-2636 (((-687 (-546)) $) 34)) (-1694 (((-768) $ (-128)) 55))) +(((-526 |#1|) (-10 -8 (-15 -1694 ((-768) |#1| (-128))) (-15 -3297 ((-687 (-1215)) |#1|)) (-15 -1567 ((-687 (-547)) |#1|)) (-15 -4193 ((-687 (-1214)) |#1|)) (-15 -2636 ((-687 (-546)) |#1|)) (-15 -2268 ((-687 (-1217)) |#1|)) (-15 -3832 ((-687 (-549)) |#1|))) (-527)) (T -526)) +NIL +(-10 -8 (-15 -1694 ((-768) |#1| (-128))) (-15 -3297 ((-687 (-1215)) |#1|)) (-15 -1567 ((-687 (-547)) |#1|)) (-15 -4193 ((-687 (-1214)) |#1|)) (-15 -2636 ((-687 (-546)) |#1|)) (-15 -2268 ((-687 (-1217)) |#1|)) (-15 -3832 ((-687 (-549)) |#1|))) +((-2268 (((-687 (-1217)) $) 12)) (-3297 (((-687 (-1215)) $) 8)) (-4193 (((-687 (-1214)) $) 10)) (-3832 (((-687 (-549)) $) 13)) (-1567 (((-687 (-547)) $) 9)) (-2636 (((-687 (-546)) $) 11)) (-1694 (((-768) $ (-128)) 7)) (-3356 (((-687 (-129)) $) 14)) (-1322 (($ $) 6))) (((-527) (-140)) (T -527)) -((-3186 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-129))))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-548))))) (-3165 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1215))))) (-3153 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-546))))) (-3140 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1213))))) (-3131 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-547))))) (-3121 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1214))))) (-3109 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767))))) -(-13 (-173) (-10 -8 (-15 -3186 ((-686 (-129)) $)) (-15 -3175 ((-686 (-548)) $)) (-15 -3165 ((-686 (-1215)) $)) (-15 -3153 ((-686 (-546)) $)) (-15 -3140 ((-686 (-1213)) $)) (-15 -3131 ((-686 (-547)) $)) (-15 -3121 ((-686 (-1214)) $)) (-15 -3109 ((-767) $ (-128))))) +((-3356 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129))))) (-3832 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549))))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217))))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546))))) (-4193 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214))))) (-1567 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215))))) (-1694 (*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-768))))) +(-13 (-173) (-10 -8 (-15 -3356 ((-687 (-129)) $)) (-15 -3832 ((-687 (-549)) $)) (-15 -2268 ((-687 (-1217)) $)) (-15 -2636 ((-687 (-546)) $)) (-15 -4193 ((-687 (-1214)) $)) (-15 -1567 ((-687 (-547)) $)) (-15 -3297 ((-687 (-1215)) $)) (-15 -1694 ((-768) $ (-128))))) (((-173) . T)) -((-3216 (((-1165 |#1|) (-767)) 113)) (-3282 (((-1257 |#1|) (-1257 |#1|) (-917)) 106)) (-3196 (((-1262) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) |#1|) 122)) (-3235 (((-1257 |#1|) (-1257 |#1|) (-767)) 53)) (-4301 (((-1257 |#1|) (-917)) 108)) (-3255 (((-1257 |#1|) (-1257 |#1|) (-563)) 30)) (-3206 (((-1165 |#1|) (-1257 |#1|)) 114)) (-3298 (((-1257 |#1|) (-917)) 135)) (-3277 (((-112) (-1257 |#1|)) 118)) (-3251 (((-1257 |#1|) (-1257 |#1|) (-917)) 98)) (-2134 (((-1165 |#1|) (-1257 |#1|)) 129)) (-3267 (((-917) (-1257 |#1|)) 94)) (-3149 (((-1257 |#1|) (-1257 |#1|)) 38)) (-3491 (((-1257 |#1|) (-917) (-917)) 138)) (-3244 (((-1257 |#1|) (-1257 |#1|) (-1113) (-1113)) 29)) (-3227 (((-1257 |#1|) (-1257 |#1|) (-767) (-1113)) 54)) (-3288 (((-1257 (-1257 |#1|)) (-917)) 134)) (-3050 (((-1257 |#1|) (-1257 |#1|) (-1257 |#1|)) 119)) (** (((-1257 |#1|) (-1257 |#1|) (-563)) 65)) (* (((-1257 |#1|) (-1257 |#1|) (-1257 |#1|)) 31))) -(((-528 |#1|) (-10 -7 (-15 -3196 ((-1262) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) |#1|)) (-15 -4301 ((-1257 |#1|) (-917))) (-15 -3491 ((-1257 |#1|) (-917) (-917))) (-15 -3206 ((-1165 |#1|) (-1257 |#1|))) (-15 -3216 ((-1165 |#1|) (-767))) (-15 -3227 ((-1257 |#1|) (-1257 |#1|) (-767) (-1113))) (-15 -3235 ((-1257 |#1|) (-1257 |#1|) (-767))) (-15 -3244 ((-1257 |#1|) (-1257 |#1|) (-1113) (-1113))) (-15 -3255 ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 ** ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 * ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -3050 ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -3251 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -3282 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -3149 ((-1257 |#1|) (-1257 |#1|))) (-15 -3267 ((-917) (-1257 |#1|))) (-15 -3277 ((-112) (-1257 |#1|))) (-15 -3288 ((-1257 (-1257 |#1|)) (-917))) (-15 -3298 ((-1257 |#1|) (-917))) (-15 -2134 ((-1165 |#1|) (-1257 |#1|)))) (-349)) (T -528)) -((-2134 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3277 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-3267 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-917)) (-5 *1 (-528 *4)))) (-3149 (*1 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-3282 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3251 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3050 (*1 *2 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3255 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3244 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1113)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3235 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3227 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1257 *5)) (-5 *3 (-767)) (-5 *4 (-1113)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)))) (-3491 (*1 *2 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4301 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3196 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) (-4 *4 (-349)) (-5 *2 (-1262)) (-5 *1 (-528 *4))))) -(-10 -7 (-15 -3196 ((-1262) (-1257 (-640 (-2 (|:| -3556 |#1|) (|:| -3491 (-1113))))) |#1|)) (-15 -4301 ((-1257 |#1|) (-917))) (-15 -3491 ((-1257 |#1|) (-917) (-917))) (-15 -3206 ((-1165 |#1|) (-1257 |#1|))) (-15 -3216 ((-1165 |#1|) (-767))) (-15 -3227 ((-1257 |#1|) (-1257 |#1|) (-767) (-1113))) (-15 -3235 ((-1257 |#1|) (-1257 |#1|) (-767))) (-15 -3244 ((-1257 |#1|) (-1257 |#1|) (-1113) (-1113))) (-15 -3255 ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 ** ((-1257 |#1|) (-1257 |#1|) (-563))) (-15 * ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -3050 ((-1257 |#1|) (-1257 |#1|) (-1257 |#1|))) (-15 -3251 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -3282 ((-1257 |#1|) (-1257 |#1|) (-917))) (-15 -3149 ((-1257 |#1|) (-1257 |#1|))) (-15 -3267 ((-917) (-1257 |#1|))) (-15 -3277 ((-112) (-1257 |#1|))) (-15 -3288 ((-1257 (-1257 |#1|)) (-917))) (-15 -3298 ((-1257 |#1|) (-917))) (-15 -2134 ((-1165 |#1|) (-1257 |#1|)))) -((-3165 (((-686 (-1215)) $) NIL)) (-3121 (((-686 (-1214)) $) NIL)) (-3140 (((-686 (-1213)) $) NIL)) (-3175 (((-686 (-548)) $) NIL)) (-3131 (((-686 (-547)) $) NIL)) (-3153 (((-686 (-546)) $) NIL)) (-3109 (((-767) $ (-128)) NIL)) (-3186 (((-686 (-129)) $) 25)) (-2142 (((-1113) $ (-1113)) 30)) (-2256 (((-1113) $) 29)) (-1322 (((-112) $) 19)) (-2158 (($ (-388)) 14) (($ (-1151)) 16)) (-2151 (((-112) $) 26)) (-2062 (((-858) $) 33)) (-3018 (($ $) 27))) -(((-529) (-13 (-527) (-610 (-858)) (-10 -8 (-15 -2158 ($ (-388))) (-15 -2158 ($ (-1151))) (-15 -2151 ((-112) $)) (-15 -1322 ((-112) $)) (-15 -2256 ((-1113) $)) (-15 -2142 ((-1113) $ (-1113)))))) (T -529)) -((-2158 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-2158 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-529)))) (-2151 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))) (-2142 (*1 *2 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-529))))) -(-13 (-527) (-610 (-858)) (-10 -8 (-15 -2158 ($ (-388))) (-15 -2158 ($ (-1151))) (-15 -2151 ((-112) $)) (-15 -1322 ((-112) $)) (-15 -2256 ((-1113) $)) (-15 -2142 ((-1113) $ (-1113))))) -((-1851 (((-1 |#1| |#1|) |#1|) 11)) (-2167 (((-1 |#1| |#1|)) 10))) -(((-530 |#1|) (-10 -7 (-15 -2167 ((-1 |#1| |#1|))) (-15 -1851 ((-1 |#1| |#1|) |#1|))) (-13 (-722) (-25))) (T -530)) -((-1851 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25))))) (-2167 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) -(-10 -7 (-15 -2167 ((-1 |#1| |#1|))) (-15 -1851 ((-1 |#1| |#1|) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3367 (($ $ $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-2165 (($ (-767) |#1|) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 (-767) (-767)) $) NIL)) (-2994 ((|#1| $) NIL)) (-3193 (((-767) $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 27)) (-3790 (($) NIL T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3027 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL))) -(((-531 |#1|) (-13 (-789) (-509 (-767) |#1|)) (-846)) (T -531)) -NIL -(-13 (-789) (-509 (-767) |#1|)) -((-2187 (((-640 |#2|) (-1165 |#1|) |#3|) 98)) (-2194 (((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|))) 114)) (-2178 (((-1165 |#1|) (-684 |#1|)) 110))) -(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -2178 ((-1165 |#1|) (-684 |#1|))) (-15 -2187 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -2194 ((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|))))) (-363) (-363) (-13 (-363) (-844))) (T -532)) -((-2194 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *6)) (-5 *5 (-1 (-418 (-1165 *6)) (-1165 *6))) (-4 *6 (-363)) (-5 *2 (-640 (-2 (|:| |outval| *7) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-363)) (-5 *2 (-640 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *2 (-1165 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844)))))) -(-10 -7 (-15 -2178 ((-1165 |#1|) (-684 |#1|))) (-15 -2187 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -2194 ((-640 (-2 (|:| |outval| |#2|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#2|))))) (-684 |#1|) |#3| (-1 (-418 (-1165 |#1|)) (-1165 |#1|))))) -((-1293 (((-686 (-1215)) $ (-1215)) NIL)) (-1303 (((-686 (-548)) $ (-548)) NIL)) (-4382 (((-767) $ (-128)) 41)) (-1312 (((-686 (-129)) $ (-129)) 42)) (-3165 (((-686 (-1215)) $) NIL)) (-3121 (((-686 (-1214)) $) NIL)) (-3140 (((-686 (-1213)) $) NIL)) (-3175 (((-686 (-548)) $) NIL)) (-3131 (((-686 (-547)) $) NIL)) (-3153 (((-686 (-546)) $) NIL)) (-3109 (((-767) $ (-128)) 37)) (-3186 (((-686 (-129)) $) 39)) (-2918 (((-112) $) 29)) (-2929 (((-686 $) (-578) (-950)) 19) (((-686 $) (-491) (-950)) 26)) (-2062 (((-858) $) 51)) (-3018 (($ $) 43))) -(((-533) (-13 (-763 (-578)) (-610 (-858)) (-10 -8 (-15 -2929 ((-686 $) (-491) (-950)))))) (T -533)) -((-2929 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-686 (-533))) (-5 *1 (-533))))) -(-13 (-763 (-578)) (-610 (-858)) (-10 -8 (-15 -2929 ((-686 $) (-491) (-950))))) -((-1725 (((-839 (-563))) 12)) (-1739 (((-839 (-563))) 14)) (-2667 (((-829 (-563))) 9))) -(((-534) (-10 -7 (-15 -2667 ((-829 (-563)))) (-15 -1725 ((-839 (-563)))) (-15 -1739 ((-839 (-563)))))) (T -534)) -((-1739 (*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) (-1725 (*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) (-2667 (*1 *2) (-12 (-5 *2 (-829 (-563))) (-5 *1 (-534))))) -(-10 -7 (-15 -2667 ((-829 (-563)))) (-15 -1725 ((-839 (-563)))) (-15 -1739 ((-839 (-563))))) -((-2234 (((-536) (-1169)) 15)) (-1826 ((|#1| (-536)) 20))) -(((-535 |#1|) (-10 -7 (-15 -2234 ((-536) (-1169))) (-15 -1826 (|#1| (-536)))) (-1208)) (T -535)) -((-1826 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1208)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1208))))) -(-10 -7 (-15 -2234 ((-536) (-1169))) (-15 -1826 (|#1| (-536)))) -((-2049 (((-112) $ $) NIL)) (-2214 (((-1151) $) 57)) (-2043 (((-112) $) 53)) (-2774 (((-1169) $) 54)) (-2054 (((-112) $) 51)) (-2725 (((-1151) $) 52)) (-2204 (($ (-1151)) 58)) (-2078 (((-112) $) NIL)) (-2100 (((-112) $) NIL)) (-2066 (((-112) $) NIL)) (-1938 (((-1151) $) NIL)) (-2098 (($ $ (-640 (-1169))) 22)) (-1826 (((-52) $) 24)) (-2031 (((-112) $) NIL)) (-2794 (((-563) $) NIL)) (-3249 (((-1113) $) NIL)) (-2729 (($ $ (-640 (-1169)) (-1169)) 75)) (-2020 (((-112) $) NIL)) (-2469 (((-225) $) NIL)) (-3696 (($ $) 46)) (-3999 (((-858) $) NIL)) (-3087 (((-112) $ $) NIL)) (-3858 (($ $ (-563)) NIL) (($ $ (-640 (-563))) NIL)) (-2131 (((-640 $) $) 32)) (-2849 (((-1169) (-640 $)) 59)) (-2802 (($ (-1151)) NIL) (($ (-1169)) 20) (($ (-563)) 9) (($ (-225)) 30) (($ (-858)) NIL) (($ (-640 $)) 67) (((-1097) $) 13) (($ (-1097)) 14)) (-1339 (((-1169) (-1169) (-640 $)) 62)) (-2062 (((-858) $) 56)) (-2360 (($ $) 61)) (-2348 (($ $) 60)) (-2224 (($ $ (-640 $)) 68)) (-2088 (((-112) $) 31)) (-3790 (($) 10 T CONST)) (-3803 (($) 12 T CONST)) (-2943 (((-112) $ $) 76)) (-3050 (($ $ $) 84)) (-3027 (($ $ $) 77)) (** (($ $ (-767)) 83) (($ $ (-563)) 82)) (* (($ $ $) 78)) (-1708 (((-563) $) NIL))) -(((-536) (-13 (-1096 (-1151) (-1169) (-563) (-225) (-858)) (-611 (-1097)) (-10 -8 (-15 -1826 ((-52) $)) (-15 -2802 ($ (-1097))) (-15 -2224 ($ $ (-640 $))) (-15 -2729 ($ $ (-640 (-1169)) (-1169))) (-15 -2098 ($ $ (-640 (-1169)))) (-15 -3027 ($ $ $)) (-15 * ($ $ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-563))) (-15 0 ($) -2495) (-15 1 ($) -2495) (-15 -3696 ($ $)) (-15 -2214 ((-1151) $)) (-15 -2204 ($ (-1151))) (-15 -2849 ((-1169) (-640 $))) (-15 -1339 ((-1169) (-1169) (-640 $)))))) (T -536)) -((-1826 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-536)))) (-2224 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-536))) (-5 *1 (-536)))) (-2729 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1169)) (-5 *1 (-536)))) (-2098 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-536)))) (-3027 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-3050 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-536)))) (-3790 (*1 *1) (-5 *1 (-536))) (-3803 (*1 *1) (-5 *1 (-536))) (-3696 (*1 *1 *1) (-5 *1 (-536))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-536)))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-536)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-640 (-536))) (-5 *2 (-1169)) (-5 *1 (-536)))) (-1339 (*1 *2 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-536))) (-5 *1 (-536))))) -(-13 (-1096 (-1151) (-1169) (-563) (-225) (-858)) (-611 (-1097)) (-10 -8 (-15 -1826 ((-52) $)) (-15 -2802 ($ (-1097))) (-15 -2224 ($ $ (-640 $))) (-15 -2729 ($ $ (-640 (-1169)) (-1169))) (-15 -2098 ($ $ (-640 (-1169)))) (-15 -3027 ($ $ $)) (-15 * ($ $ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ (-563))) (-15 (-3790) ($) -2495) (-15 (-3803) ($) -2495) (-15 -3696 ($ $)) (-15 -2214 ((-1151) $)) (-15 -2204 ($ (-1151))) (-15 -2849 ((-1169) (-640 $))) (-15 -1339 ((-1169) (-1169) (-640 $))))) -((-3143 ((|#2| |#2|) 17)) (-3124 ((|#2| |#2|) 13)) (-3156 ((|#2| |#2| (-563) (-563)) 20)) (-3134 ((|#2| |#2|) 15))) -(((-537 |#1| |#2|) (-10 -7 (-15 -3124 (|#2| |#2|)) (-15 -3134 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3156 (|#2| |#2| (-563) (-563)))) (-13 (-555) (-147)) (-1248 |#1|)) (T -537)) -((-3156 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1248 *4)))) (-3143 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3)))) (-3134 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3)))) (-3124 (*1 *2 *2) (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1248 *3))))) -(-10 -7 (-15 -3124 (|#2| |#2|)) (-15 -3134 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3156 (|#2| |#2| (-563) (-563)))) -((-2267 (((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169))) 32)) (-2245 (((-640 |#2|) (-948 |#1|) |#3|) 54) (((-640 |#2|) (-1165 |#1|) |#3|) 53)) (-2257 (((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|) 106))) -(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -2245 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -2245 ((-640 |#2|) (-948 |#1|) |#3|)) (-15 -2257 ((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|)) (-15 -2267 ((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169))))) (-452) (-363) (-13 (-363) (-844))) (T -538)) -((-2267 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1169))) (-4 *6 (-363)) (-5 *2 (-640 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844))))) (-2257 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-640 (-640 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-844))))) (-2245 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) (-2245 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) -(-10 -7 (-15 -2245 ((-640 |#2|) (-1165 |#1|) |#3|)) (-15 -2245 ((-640 |#2|) (-948 |#1|) |#3|)) (-15 -2257 ((-640 (-640 |#2|)) (-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)) |#3|)) (-15 -2267 ((-640 (-294 (-948 |#2|))) (-640 |#2|) (-640 (-1169))))) -((-2299 ((|#2| |#2| |#1|) 17)) (-2278 ((|#2| (-640 |#2|)) 33)) (-2288 ((|#2| (-640 |#2|)) 56))) -(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2278 (|#2| (-640 |#2|))) (-15 -2288 (|#2| (-640 |#2|))) (-15 -2299 (|#2| |#2| |#1|))) (-307) (-1233 |#1|) |#1| (-1 |#1| |#1| (-767))) (T -539)) -((-2299 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1233 *3)))) (-2288 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767))))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) -(-10 -7 (-15 -2278 (|#2| (-640 |#2|))) (-15 -2288 (|#2| (-640 |#2|))) (-15 -2299 (|#2| |#2| |#1|))) -((-2055 (((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|))) 94) (((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|))) 220))) -(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 ((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|)))) (-15 -2055 ((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|))))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -540)) -((-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1165 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1165 *8)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-945 *7 *6 *5))))) -(-10 -7 (-15 -2055 ((-418 |#4|) |#4| (-1 (-418 (-1165 |#3|)) (-1165 |#3|)))) (-15 -2055 ((-418 (-1165 |#4|)) (-1165 |#4|) (-1 (-418 (-1165 |#3|)) (-1165 |#3|))))) -((-3143 ((|#4| |#4|) 73)) (-3124 ((|#4| |#4|) 69)) (-3156 ((|#4| |#4| (-563) (-563)) 75)) (-3134 ((|#4| |#4|) 71))) -(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3124 (|#4| |#4|)) (-15 -3134 (|#4| |#4|)) (-15 -3143 (|#4| |#4|)) (-15 -3156 (|#4| |#4| (-563) (-563)))) (-13 (-363) (-368) (-611 (-563))) (-1233 |#1|) (-720 |#1| |#2|) (-1248 |#3|)) (T -541)) -((-3156 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-4 *5 (-1233 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1248 *6)))) (-3143 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) (-3134 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) (-3124 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5))))) -(-10 -7 (-15 -3124 (|#4| |#4|)) (-15 -3134 (|#4| |#4|)) (-15 -3143 (|#4| |#4|)) (-15 -3156 (|#4| |#4| (-563) (-563)))) -((-3143 ((|#2| |#2|) 27)) (-3124 ((|#2| |#2|) 23)) (-3156 ((|#2| |#2| (-563) (-563)) 29)) (-3134 ((|#2| |#2|) 25))) -(((-542 |#1| |#2|) (-10 -7 (-15 -3124 (|#2| |#2|)) (-15 -3134 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3156 (|#2| |#2| (-563) (-563)))) (-13 (-363) (-368) (-611 (-563))) (-1248 |#1|)) (T -542)) -((-3156 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1248 *4)))) (-3143 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3)))) (-3134 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3)))) (-3124 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1248 *3))))) -(-10 -7 (-15 -3124 (|#2| |#2|)) (-15 -3134 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3156 (|#2| |#2| (-563) (-563)))) -((-2310 (((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|)) 18) (((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|)) 14) (((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|)) 32))) -(((-543 |#1| |#2|) (-10 -7 (-15 -2310 ((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -2310 ((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -2310 ((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|)))) (-1045) (-1233 |#1|)) (T -543)) -((-2310 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))) (-2310 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))) (-2310 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-563) "failed") *5)) (-4 *5 (-1045)) (-5 *2 (-563)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1233 *5))))) -(-10 -7 (-15 -2310 ((-3 (-563) "failed") |#2| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -2310 ((-3 (-563) "failed") |#2| |#1| (-563) (-1 (-3 (-563) "failed") |#1|))) (-15 -2310 ((-3 (-563) "failed") |#2| |#1| (-1 (-3 (-563) "failed") |#1|)))) -((-2379 (($ $ $) 82)) (-2102 (((-418 $) $) 50)) (-2671 (((-3 (-563) "failed") $) 62)) (-2589 (((-563) $) 40)) (-3459 (((-3 (-407 (-563)) "failed") $) 77)) (-3447 (((-112) $) 25)) (-3437 (((-407 (-563)) $) 75)) (-3675 (((-112) $) 53)) (-2331 (($ $ $ $) 90)) (-2720 (((-112) $) 16)) (-3243 (($ $ $) 60)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 72)) (-3113 (((-3 $ "failed") $) 67)) (-2450 (($ $) 23)) (-2321 (($ $ $) 88)) (-2956 (($) 63)) (-1979 (($ $) 56)) (-2055 (((-418 $) $) 48)) (-4118 (((-112) $) 14)) (-4322 (((-767) $) 30)) (-1361 (($ $ (-767)) NIL) (($ $) 11)) (-2208 (($ $) 17)) (-2802 (((-563) $) NIL) (((-536) $) 39) (((-888 (-563)) $) 43) (((-379) $) 33) (((-225) $) 36)) (-3192 (((-767)) 9)) (-2404 (((-112) $ $) 20)) (-2991 (($ $ $) 58))) -(((-544 |#1|) (-10 -8 (-15 -2321 (|#1| |#1| |#1|)) (-15 -2331 (|#1| |#1| |#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2208 (|#1| |#1|)) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2404 ((-112) |#1| |#1|)) (-15 -4118 ((-112) |#1|)) (-15 -2956 (|#1|)) (-15 -3113 ((-3 |#1| "failed") |#1|)) (-15 -2802 ((-225) |#1|)) (-15 -2802 ((-379) |#1|)) (-15 -3243 (|#1| |#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -2991 (|#1| |#1| |#1|)) (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2802 ((-563) |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -2720 ((-112) |#1|)) (-15 -4322 ((-767) |#1|)) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -3675 ((-112) |#1|)) (-15 -3192 ((-767)))) (-545)) (T -544)) -((-3192 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545))))) -(-10 -8 (-15 -2321 (|#1| |#1| |#1|)) (-15 -2331 (|#1| |#1| |#1| |#1|)) (-15 -2450 (|#1| |#1|)) (-15 -2208 (|#1| |#1|)) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -2379 (|#1| |#1| |#1|)) (-15 -2404 ((-112) |#1| |#1|)) (-15 -4118 ((-112) |#1|)) (-15 -2956 (|#1|)) (-15 -3113 ((-3 |#1| "failed") |#1|)) (-15 -2802 ((-225) |#1|)) (-15 -2802 ((-379) |#1|)) (-15 -3243 (|#1| |#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -2991 (|#1| |#1| |#1|)) (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2802 ((-563) |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -2720 ((-112) |#1|)) (-15 -4322 ((-767) |#1|)) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -3675 ((-112) |#1|)) (-15 -3192 ((-767)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-2379 (($ $ $) 85)) (-1482 (((-3 $ "failed") $ $) 19)) (-2356 (($ $ $ $) 74)) (-2924 (($ $) 52)) (-2102 (((-418 $) $) 53)) (-4332 (((-112) $ $) 125)) (-2107 (((-563) $) 114)) (-1318 (($ $ $) 88)) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 106)) (-2589 (((-563) $) 107)) (-3495 (($ $ $) 129)) (-3853 (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 104) (((-684 (-563)) (-684 $)) 103)) (-3230 (((-3 $ "failed") $) 33)) (-3459 (((-3 (-407 (-563)) "failed") $) 82)) (-3447 (((-112) $) 84)) (-3437 (((-407 (-563)) $) 83)) (-4301 (($) 81) (($ $) 80)) (-3473 (($ $ $) 128)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 123)) (-3675 (((-112) $) 54)) (-2331 (($ $ $ $) 72)) (-2392 (($ $ $) 86)) (-2720 (((-112) $) 116)) (-3243 (($ $ $) 97)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 100)) (-2712 (((-112) $) 31)) (-4107 (((-112) $) 92)) (-3113 (((-3 $ "failed") $) 94)) (-2731 (((-112) $) 115)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 132)) (-2344 (($ $ $ $) 73)) (-3489 (($ $ $) 117)) (-4105 (($ $ $) 118)) (-2450 (($ $) 76)) (-3322 (($ $) 89)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-2321 (($ $ $) 71)) (-2956 (($) 93 T CONST)) (-2051 (($ $) 78)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-1979 (($ $) 98)) (-2055 (((-418 $) $) 51)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 130)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 124)) (-4118 (((-112) $) 91)) (-4322 (((-767) $) 126)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 127)) (-1361 (($ $ (-767)) 111) (($ $) 109)) (-3394 (($ $) 77)) (-2208 (($ $) 79)) (-2802 (((-563) $) 108) (((-536) $) 102) (((-888 (-563)) $) 101) (((-379) $) 96) (((-225) $) 95)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 105)) (-3192 (((-767)) 28 T CONST)) (-2404 (((-112) $ $) 87)) (-2991 (($ $ $) 99)) (-1433 (($) 90)) (-2543 (((-112) $ $) 40)) (-2367 (($ $ $ $) 75)) (-3841 (($ $) 113)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-767)) 112) (($ $) 110)) (-2998 (((-112) $ $) 120)) (-2977 (((-112) $ $) 121)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 119)) (-2966 (((-112) $ $) 122)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) +((-3252 (((-1166 |#1|) (-768)) 113)) (-3809 (((-1259 |#1|) (-1259 |#1|) (-918)) 106)) (-3620 (((-1264) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) |#1|) 122)) (-3209 (((-1259 |#1|) (-1259 |#1|) (-768)) 53)) (-2821 (((-1259 |#1|) (-918)) 108)) (-3617 (((-1259 |#1|) (-1259 |#1|) (-564)) 30)) (-4268 (((-1166 |#1|) (-1259 |#1|)) 114)) (-2680 (((-1259 |#1|) (-918)) 135)) (-1530 (((-112) (-1259 |#1|)) 118)) (-3328 (((-1259 |#1|) (-1259 |#1|) (-918)) 98)) (-2653 (((-1166 |#1|) (-1259 |#1|)) 129)) (-1906 (((-918) (-1259 |#1|)) 94)) (-4373 (((-1259 |#1|) (-1259 |#1|)) 38)) (-1495 (((-1259 |#1|) (-918) (-918)) 138)) (-2849 (((-1259 |#1|) (-1259 |#1|) (-1114) (-1114)) 29)) (-3643 (((-1259 |#1|) (-1259 |#1|) (-768) (-1114)) 54)) (-4265 (((-1259 (-1259 |#1|)) (-918)) 134)) (-1799 (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 119)) (** (((-1259 |#1|) (-1259 |#1|) (-564)) 65)) (* (((-1259 |#1|) (-1259 |#1|) (-1259 |#1|)) 31))) +(((-528 |#1|) (-10 -7 (-15 -3620 ((-1264) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) |#1|)) (-15 -2821 ((-1259 |#1|) (-918))) (-15 -1495 ((-1259 |#1|) (-918) (-918))) (-15 -4268 ((-1166 |#1|) (-1259 |#1|))) (-15 -3252 ((-1166 |#1|) (-768))) (-15 -3643 ((-1259 |#1|) (-1259 |#1|) (-768) (-1114))) (-15 -3209 ((-1259 |#1|) (-1259 |#1|) (-768))) (-15 -2849 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -3617 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1799 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -3328 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -3809 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -4373 ((-1259 |#1|) (-1259 |#1|))) (-15 -1906 ((-918) (-1259 |#1|))) (-15 -1530 ((-112) (-1259 |#1|))) (-15 -4265 ((-1259 (-1259 |#1|)) (-918))) (-15 -2680 ((-1259 |#1|) (-918))) (-15 -2653 ((-1166 |#1|) (-1259 |#1|)))) (-349)) (T -528)) +((-2653 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4265 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-1530 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-528 *4)))) (-1906 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-918)) (-5 *1 (-528 *4)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (-3809 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3328 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-1799 (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3617 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-2849 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3209 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-528 *4)))) (-3643 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1259 *5)) (-5 *3 (-768)) (-5 *4 (-1114)) (-4 *5 (-349)) (-5 *1 (-528 *5)))) (-3252 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)))) (-1495 (*1 *2 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) (-4 *4 (-349)))) (-3620 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4))))) +(-10 -7 (-15 -3620 ((-1264) (-1259 (-641 (-2 (|:| -3426 |#1|) (|:| -1495 (-1114))))) |#1|)) (-15 -2821 ((-1259 |#1|) (-918))) (-15 -1495 ((-1259 |#1|) (-918) (-918))) (-15 -4268 ((-1166 |#1|) (-1259 |#1|))) (-15 -3252 ((-1166 |#1|) (-768))) (-15 -3643 ((-1259 |#1|) (-1259 |#1|) (-768) (-1114))) (-15 -3209 ((-1259 |#1|) (-1259 |#1|) (-768))) (-15 -2849 ((-1259 |#1|) (-1259 |#1|) (-1114) (-1114))) (-15 -3617 ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 ** ((-1259 |#1|) (-1259 |#1|) (-564))) (-15 * ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -1799 ((-1259 |#1|) (-1259 |#1|) (-1259 |#1|))) (-15 -3328 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -3809 ((-1259 |#1|) (-1259 |#1|) (-918))) (-15 -4373 ((-1259 |#1|) (-1259 |#1|))) (-15 -1906 ((-918) (-1259 |#1|))) (-15 -1530 ((-112) (-1259 |#1|))) (-15 -4265 ((-1259 (-1259 |#1|)) (-918))) (-15 -2680 ((-1259 |#1|) (-918))) (-15 -2653 ((-1166 |#1|) (-1259 |#1|)))) +((-2268 (((-687 (-1217)) $) NIL)) (-3297 (((-687 (-1215)) $) NIL)) (-4193 (((-687 (-1214)) $) NIL)) (-3832 (((-687 (-549)) $) NIL)) (-1567 (((-687 (-547)) $) NIL)) (-2636 (((-687 (-546)) $) NIL)) (-1694 (((-768) $ (-128)) NIL)) (-3356 (((-687 (-129)) $) 25)) (-3314 (((-1114) $ (-1114)) 30)) (-3305 (((-1114) $) 29)) (-3342 (((-112) $) 19)) (-2165 (($ (-388)) 14) (($ (-1152)) 16)) (-2824 (((-112) $) 26)) (-3742 (((-859) $) 33)) (-1322 (($ $) 27))) +(((-529) (-13 (-527) (-611 (-859)) (-10 -8 (-15 -2165 ($ (-388))) (-15 -2165 ($ (-1152))) (-15 -2824 ((-112) $)) (-15 -3342 ((-112) $)) (-15 -3305 ((-1114) $)) (-15 -3314 ((-1114) $ (-1114)))))) (T -529)) +((-2165 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529)))) (-2165 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) (-2824 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) (-3305 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) (-3314 (*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))) +(-13 (-527) (-611 (-859)) (-10 -8 (-15 -2165 ($ (-388))) (-15 -2165 ($ (-1152))) (-15 -2824 ((-112) $)) (-15 -3342 ((-112) $)) (-15 -3305 ((-1114) $)) (-15 -3314 ((-1114) $ (-1114))))) +((-3499 (((-1 |#1| |#1|) |#1|) 11)) (-1803 (((-1 |#1| |#1|)) 10))) +(((-530 |#1|) (-10 -7 (-15 -1803 ((-1 |#1| |#1|))) (-15 -3499 ((-1 |#1| |#1|) |#1|))) (-13 (-723) (-25))) (T -530)) +((-3499 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25))))) (-1803 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25)))))) +(-10 -7 (-15 -1803 ((-1 |#1| |#1|))) (-15 -3499 ((-1 |#1| |#1|) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2850 (($ $ $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-4245 (($ (-768) |#1|) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 (-768) (-768)) $) NIL)) (-2556 ((|#1| $) NIL)) (-1320 (((-768) $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 27)) (-4311 (($) NIL T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1780 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL))) +(((-531 |#1|) (-13 (-790) (-509 (-768) |#1|)) (-847)) (T -531)) +NIL +(-13 (-790) (-509 (-768) |#1|)) +((-2774 (((-641 |#2|) (-1166 |#1|) |#3|) 98)) (-2126 (((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))) 114)) (-3221 (((-1166 |#1|) (-685 |#1|)) 110))) +(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -3221 ((-1166 |#1|) (-685 |#1|))) (-15 -2774 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -2126 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) (-363) (-363) (-13 (-363) (-845))) (T -532)) +((-2126 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) (-4 *6 (-363)) (-5 *2 (-641 (-2 (|:| |outval| *7) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *7)))))) (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-845))))) (-2774 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-845)))))) +(-10 -7 (-15 -3221 ((-1166 |#1|) (-685 |#1|))) (-15 -2774 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -2126 ((-641 (-2 (|:| |outval| |#2|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#2|))))) (-685 |#1|) |#3| (-1 (-418 (-1166 |#1|)) (-1166 |#1|))))) +((-4075 (((-687 (-1217)) $ (-1217)) NIL)) (-2047 (((-687 (-549)) $ (-549)) NIL)) (-3674 (((-768) $ (-128)) 41)) (-1768 (((-687 (-129)) $ (-129)) 42)) (-2268 (((-687 (-1217)) $) NIL)) (-3297 (((-687 (-1215)) $) NIL)) (-4193 (((-687 (-1214)) $) NIL)) (-3832 (((-687 (-549)) $) NIL)) (-1567 (((-687 (-547)) $) NIL)) (-2636 (((-687 (-546)) $) NIL)) (-1694 (((-768) $ (-128)) 37)) (-3356 (((-687 (-129)) $) 39)) (-3575 (((-112) $) 29)) (-1534 (((-687 $) (-579) (-951)) 19) (((-687 $) (-491) (-951)) 26)) (-3742 (((-859) $) 51)) (-1322 (($ $) 43))) +(((-533) (-13 (-764 (-579)) (-611 (-859)) (-10 -8 (-15 -1534 ((-687 $) (-491) (-951)))))) (T -533)) +((-1534 (*1 *2 *3 *4) (-12 (-5 *3 (-491)) (-5 *4 (-951)) (-5 *2 (-687 (-533))) (-5 *1 (-533))))) +(-13 (-764 (-579)) (-611 (-859)) (-10 -8 (-15 -1534 ((-687 $) (-491) (-951))))) +((-1557 (((-840 (-564))) 12)) (-1568 (((-840 (-564))) 14)) (-1666 (((-830 (-564))) 9))) +(((-534) (-10 -7 (-15 -1666 ((-830 (-564)))) (-15 -1557 ((-840 (-564)))) (-15 -1568 ((-840 (-564)))))) (T -534)) +((-1568 (*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) (-1557 (*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) (-1666 (*1 *2) (-12 (-5 *2 (-830 (-564))) (-5 *1 (-534))))) +(-10 -7 (-15 -1666 ((-830 (-564)))) (-15 -1557 ((-840 (-564)))) (-15 -1568 ((-840 (-564))))) +((-1539 (((-536) (-1170)) 15)) (-3382 ((|#1| (-536)) 20))) +(((-535 |#1|) (-10 -7 (-15 -1539 ((-536) (-1170))) (-15 -3382 (|#1| (-536)))) (-1209)) (T -535)) +((-3382 (*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209)))) (-1539 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) (-4 *4 (-1209))))) +(-10 -7 (-15 -1539 ((-536) (-1170))) (-15 -3382 (|#1| (-536)))) +((-3732 (((-112) $ $) NIL)) (-3129 (((-1152) $) 55)) (-2907 (((-112) $) 51)) (-2561 (((-1170) $) 52)) (-1325 (((-112) $) 49)) (-3961 (((-1152) $) 50)) (-1808 (($ (-1152)) 56)) (-4304 (((-112) $) NIL)) (-1577 (((-112) $) NIL)) (-4091 (((-112) $) NIL)) (-2217 (((-1152) $) NIL)) (-3264 (($ $ (-641 (-1170))) 21)) (-3382 (((-52) $) 23)) (-3215 (((-112) $) NIL)) (-2589 (((-564) $) NIL)) (-3864 (((-1114) $) NIL)) (-2390 (($ $ (-641 (-1170)) (-1170)) 73)) (-1719 (((-112) $) NIL)) (-2140 (((-225) $) NIL)) (-1561 (($ $) 44)) (-3808 (((-859) $) NIL)) (-4032 (((-112) $ $) NIL)) (-4382 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-4206 (((-641 $) $) 30)) (-1886 (((-1170) (-641 $)) 57)) (-2235 (($ (-1152)) NIL) (($ (-1170)) 19) (($ (-564)) 8) (($ (-225)) 28) (($ (-859)) NIL) (($ (-641 $)) 65) (((-1098) $) 12) (($ (-1098)) 13)) (-4204 (((-1170) (-1170) (-641 $)) 60)) (-3742 (((-859) $) 54)) (-1877 (($ $) 59)) (-1867 (($ $) 58)) (-2811 (($ $ (-641 $)) 66)) (-2652 (((-112) $) 29)) (-4311 (($) 9 T CONST)) (-4321 (($) 11 T CONST)) (-1705 (((-112) $ $) 74)) (-1799 (($ $ $) 82)) (-1780 (($ $ $) 75)) (** (($ $ (-768)) 81) (($ $ (-564)) 80)) (* (($ $ $) 76)) (-2641 (((-564) $) NIL))) +(((-536) (-13 (-1097 (-1152) (-1170) (-564) (-225) (-859)) (-612 (-1098)) (-10 -8 (-15 -3382 ((-52) $)) (-15 -2235 ($ (-1098))) (-15 -2811 ($ $ (-641 $))) (-15 -2390 ($ $ (-641 (-1170)) (-1170))) (-15 -3264 ($ $ (-641 (-1170)))) (-15 -1780 ($ $ $)) (-15 * ($ $ $)) (-15 -1799 ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ (-564))) (-15 0 ($) -2091) (-15 1 ($) -2091) (-15 -1561 ($ $)) (-15 -3129 ((-1152) $)) (-15 -1808 ($ (-1152))) (-15 -1886 ((-1170) (-641 $))) (-15 -4204 ((-1170) (-1170) (-641 $)))))) (T -536)) +((-3382 (*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536)))) (-2811 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536)))) (-2390 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) (-3264 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536)))) (-1780 (*1 *1 *1 *1) (-5 *1 (-536))) (* (*1 *1 *1 *1) (-5 *1 (-536))) (-1799 (*1 *1 *1 *1) (-5 *1 (-536))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-536)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) (-4311 (*1 *1) (-5 *1 (-536))) (-4321 (*1 *1) (-5 *1 (-536))) (-1561 (*1 *1 *1) (-5 *1 (-536))) (-3129 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-1808 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536)))) (-4204 (*1 *2 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536))))) +(-13 (-1097 (-1152) (-1170) (-564) (-225) (-859)) (-612 (-1098)) (-10 -8 (-15 -3382 ((-52) $)) (-15 -2235 ($ (-1098))) (-15 -2811 ($ $ (-641 $))) (-15 -2390 ($ $ (-641 (-1170)) (-1170))) (-15 -3264 ($ $ (-641 (-1170)))) (-15 -1780 ($ $ $)) (-15 * ($ $ $)) (-15 -1799 ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ (-564))) (-15 (-4311) ($) -2091) (-15 (-4321) ($) -2091) (-15 -1561 ($ $)) (-15 -3129 ((-1152) $)) (-15 -1808 ($ (-1152))) (-15 -1886 ((-1170) (-641 $))) (-15 -4204 ((-1170) (-1170) (-641 $))))) +((-3229 ((|#2| |#2|) 17)) (-2186 ((|#2| |#2|) 13)) (-2917 ((|#2| |#2| (-564) (-564)) 20)) (-3685 ((|#2| |#2|) 15))) +(((-537 |#1| |#2|) (-10 -7 (-15 -2186 (|#2| |#2|)) (-15 -3685 (|#2| |#2|)) (-15 -3229 (|#2| |#2|)) (-15 -2917 (|#2| |#2| (-564) (-564)))) (-13 (-556) (-147)) (-1250 |#1|)) (T -537)) +((-2917 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) (-4 *2 (-1250 *4)))) (-3229 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-3685 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3)))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) (-4 *2 (-1250 *3))))) +(-10 -7 (-15 -2186 (|#2| |#2|)) (-15 -3685 (|#2| |#2|)) (-15 -3229 (|#2| |#2|)) (-15 -2917 (|#2| |#2| (-564) (-564)))) +((-3705 (((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))) 32)) (-3223 (((-641 |#2|) (-949 |#1|) |#3|) 54) (((-641 |#2|) (-1166 |#1|) |#3|) 53)) (-1925 (((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|) 106))) +(((-538 |#1| |#2| |#3|) (-10 -7 (-15 -3223 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3223 ((-641 |#2|) (-949 |#1|) |#3|)) (-15 -1925 ((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|)) (-15 -3705 ((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))))) (-452) (-363) (-13 (-363) (-845))) (T -538)) +((-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) (-5 *2 (-641 (-294 (-949 *6)))) (-5 *1 (-538 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-13 (-363) (-845))))) (-1925 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) (-4 *5 (-13 (-363) (-845))))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) (-3223 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845)))))) +(-10 -7 (-15 -3223 ((-641 |#2|) (-1166 |#1|) |#3|)) (-15 -3223 ((-641 |#2|) (-949 |#1|) |#3|)) (-15 -1925 ((-641 (-641 |#2|)) (-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)) |#3|)) (-15 -3705 ((-641 (-294 (-949 |#2|))) (-641 |#2|) (-641 (-1170))))) +((-4172 ((|#2| |#2| |#1|) 17)) (-2860 ((|#2| (-641 |#2|)) 33)) (-4370 ((|#2| (-641 |#2|)) 56))) +(((-539 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2860 (|#2| (-641 |#2|))) (-15 -4370 (|#2| (-641 |#2|))) (-15 -4172 (|#2| |#2| |#1|))) (-307) (-1235 |#1|) |#1| (-1 |#1| |#1| (-768))) (T -539)) +((-4172 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-768))) (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3)))) (-4370 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768))))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768)))))) +(-10 -7 (-15 -2860 (|#2| (-641 |#2|))) (-15 -4370 (|#2| (-641 |#2|))) (-15 -4172 (|#2| |#2| |#1|))) +((-4127 (((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 94) (((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|))) 220))) +(((-540 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4127 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -4127 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) (-847) (-790) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -540)) +((-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *8 (-946 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) (-4 *3 (-946 *7 *6 *5))))) +(-10 -7 (-15 -4127 ((-418 |#4|) |#4| (-1 (-418 (-1166 |#3|)) (-1166 |#3|)))) (-15 -4127 ((-418 (-1166 |#4|)) (-1166 |#4|) (-1 (-418 (-1166 |#3|)) (-1166 |#3|))))) +((-3229 ((|#4| |#4|) 73)) (-2186 ((|#4| |#4|) 69)) (-2917 ((|#4| |#4| (-564) (-564)) 75)) (-3685 ((|#4| |#4|) 71))) +(((-541 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2186 (|#4| |#4|)) (-15 -3685 (|#4| |#4|)) (-15 -3229 (|#4| |#4|)) (-15 -2917 (|#4| |#4| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1235 |#1|) (-721 |#1| |#2|) (-1250 |#3|)) (T -541)) +((-2917 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-4 *5 (-1235 *4)) (-4 *6 (-721 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) (-4 *2 (-1250 *6)))) (-3229 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-3685 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5))))) +(-10 -7 (-15 -2186 (|#4| |#4|)) (-15 -3685 (|#4| |#4|)) (-15 -3229 (|#4| |#4|)) (-15 -2917 (|#4| |#4| (-564) (-564)))) +((-3229 ((|#2| |#2|) 27)) (-2186 ((|#2| |#2|) 23)) (-2917 ((|#2| |#2| (-564) (-564)) 29)) (-3685 ((|#2| |#2|) 25))) +(((-542 |#1| |#2|) (-10 -7 (-15 -2186 (|#2| |#2|)) (-15 -3685 (|#2| |#2|)) (-15 -3229 (|#2| |#2|)) (-15 -2917 (|#2| |#2| (-564) (-564)))) (-13 (-363) (-368) (-612 (-564))) (-1250 |#1|)) (T -542)) +((-2917 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) (-3229 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-3685 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3)))) (-2186 (*1 *2 *2) (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) (-4 *2 (-1250 *3))))) +(-10 -7 (-15 -2186 (|#2| |#2|)) (-15 -3685 (|#2| |#2|)) (-15 -3229 (|#2| |#2|)) (-15 -2917 (|#2| |#2| (-564) (-564)))) +((-2685 (((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)) 18) (((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|)) 14) (((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|)) 32))) +(((-543 |#1| |#2|) (-10 -7 (-15 -2685 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2685 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2685 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) (-1046) (-1235 |#1|)) (T -543)) +((-2685 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-2685 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) (-2685 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1046)) (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -2685 ((-3 (-564) "failed") |#2| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2685 ((-3 (-564) "failed") |#2| |#1| (-564) (-1 (-3 (-564) "failed") |#1|))) (-15 -2685 ((-3 (-564) "failed") |#2| |#1| (-1 (-3 (-564) "failed") |#1|)))) +((-1929 (($ $ $) 82)) (-3048 (((-418 $) $) 50)) (-2111 (((-3 (-564) "failed") $) 62)) (-2239 (((-564) $) 40)) (-2646 (((-3 (-407 (-564)) "failed") $) 77)) (-4072 (((-112) $) 25)) (-2350 (((-407 (-564)) $) 75)) (-4188 (((-112) $) 53)) (-4167 (($ $ $ $) 90)) (-3308 (((-112) $) 16)) (-2742 (($ $ $) 60)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 72)) (-3907 (((-3 $ "failed") $) 67)) (-1494 (($ $) 23)) (-1326 (($ $ $) 88)) (-3258 (($) 63)) (-3676 (($ $) 56)) (-4127 (((-418 $) $) 48)) (-1497 (((-112) $) 14)) (-4061 (((-768) $) 30)) (-4117 (($ $ (-768)) NIL) (($ $) 11)) (-3896 (($ $) 17)) (-2235 (((-564) $) NIL) (((-536) $) 39) (((-889 (-564)) $) 43) (((-379) $) 33) (((-225) $) 36)) (-3270 (((-768)) 9)) (-3248 (((-112) $ $) 20)) (-3181 (($ $ $) 58))) +(((-544 |#1|) (-10 -8 (-15 -1326 (|#1| |#1| |#1|)) (-15 -4167 (|#1| |#1| |#1| |#1|)) (-15 -1494 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -1929 (|#1| |#1| |#1|)) (-15 -3248 ((-112) |#1| |#1|)) (-15 -1497 ((-112) |#1|)) (-15 -3258 (|#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -2235 ((-225) |#1|)) (-15 -2235 ((-379) |#1|)) (-15 -2742 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3181 (|#1| |#1| |#1|)) (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2235 ((-564) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -3308 ((-112) |#1|)) (-15 -4061 ((-768) |#1|)) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -4188 ((-112) |#1|)) (-15 -3270 ((-768)))) (-545)) (T -544)) +((-3270 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-544 *3)) (-4 *3 (-545))))) +(-10 -8 (-15 -1326 (|#1| |#1| |#1|)) (-15 -4167 (|#1| |#1| |#1| |#1|)) (-15 -1494 (|#1| |#1|)) (-15 -3896 (|#1| |#1|)) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -1929 (|#1| |#1| |#1|)) (-15 -3248 ((-112) |#1| |#1|)) (-15 -1497 ((-112) |#1|)) (-15 -3258 (|#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -2235 ((-225) |#1|)) (-15 -2235 ((-379) |#1|)) (-15 -2742 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -3181 (|#1| |#1| |#1|)) (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2235 ((-564) |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -3308 ((-112) |#1|)) (-15 -4061 ((-768) |#1|)) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -4188 ((-112) |#1|)) (-15 -3270 ((-768)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-1929 (($ $ $) 85)) (-3239 (((-3 $ "failed") $ $) 19)) (-3887 (($ $ $ $) 74)) (-2249 (($ $) 52)) (-3048 (((-418 $) $) 53)) (-2377 (((-112) $ $) 125)) (-3265 (((-564) $) 114)) (-2338 (($ $ $) 88)) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 106)) (-2239 (((-564) $) 107)) (-1373 (($ $ $) 129)) (-3039 (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 104) (((-685 (-564)) (-685 $)) 103)) (-3951 (((-3 $ "failed") $) 33)) (-2646 (((-3 (-407 (-564)) "failed") $) 82)) (-4072 (((-112) $) 84)) (-2350 (((-407 (-564)) $) 83)) (-2821 (($) 81) (($ $) 80)) (-1350 (($ $ $) 128)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 123)) (-4188 (((-112) $) 54)) (-4167 (($ $ $ $) 72)) (-1744 (($ $ $) 86)) (-3308 (((-112) $) 116)) (-2742 (($ $ $) 97)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 100)) (-3840 (((-112) $) 31)) (-1801 (((-112) $) 92)) (-3907 (((-3 $ "failed") $) 94)) (-2839 (((-112) $) 115)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 132)) (-2634 (($ $ $ $) 73)) (-2799 (($ $ $) 117)) (-2848 (($ $ $) 118)) (-1494 (($ $) 76)) (-2395 (($ $) 89)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-1326 (($ $ $) 71)) (-3258 (($) 93 T CONST)) (-4171 (($ $) 78)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-3676 (($ $) 98)) (-4127 (((-418 $) $) 51)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 131) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 130)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 124)) (-1497 (((-112) $) 91)) (-4061 (((-768) $) 126)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 127)) (-4117 (($ $ (-768)) 111) (($ $) 109)) (-1901 (($ $) 77)) (-3896 (($ $) 79)) (-2235 (((-564) $) 108) (((-536) $) 102) (((-889 (-564)) $) 101) (((-379) $) 96) (((-225) $) 95)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 105)) (-3270 (((-768)) 28 T CONST)) (-3248 (((-112) $ $) 87)) (-3181 (($ $ $) 99)) (-3237 (($) 90)) (-3360 (((-112) $ $) 40)) (-3501 (($ $ $ $) 75)) (-2792 (($ $) 113)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-768)) 112) (($ $) 110)) (-1751 (((-112) $ $) 120)) (-1731 (((-112) $ $) 121)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 119)) (-1723 (((-112) $ $) 122)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) (((-545) (-140)) (T -545)) -((-4107 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1433 (*1 *1) (-4 *1 (-545))) (-3322 (*1 *1 *1) (-4 *1 (-545))) (-1318 (*1 *1 *1 *1) (-4 *1 (-545))) (-2404 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2392 (*1 *1 *1 *1) (-4 *1 (-545))) (-2379 (*1 *1 *1 *1) (-4 *1 (-545))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) (-3459 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) (-4301 (*1 *1) (-4 *1 (-545))) (-4301 (*1 *1 *1) (-4 *1 (-545))) (-2208 (*1 *1 *1) (-4 *1 (-545))) (-2051 (*1 *1 *1) (-4 *1 (-545))) (-3394 (*1 *1 *1) (-4 *1 (-545))) (-2450 (*1 *1 *1) (-4 *1 (-545))) (-2367 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2356 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2344 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2331 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2321 (*1 *1 *1 *1) (-4 *1 (-545)))) -(-13 (-1212) (-307) (-816) (-233) (-611 (-563)) (-1034 (-563)) (-636 (-563)) (-611 (-536)) (-611 (-888 (-563))) (-882 (-563)) (-143) (-1018) (-147) (-1144) (-10 -8 (-15 -4107 ((-112) $)) (-15 -4118 ((-112) $)) (-6 -4407) (-15 -1433 ($)) (-15 -3322 ($ $)) (-15 -1318 ($ $ $)) (-15 -2404 ((-112) $ $)) (-15 -2392 ($ $ $)) (-15 -2379 ($ $ $)) (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $)) (-15 -4301 ($)) (-15 -4301 ($ $)) (-15 -2208 ($ $)) (-15 -2051 ($ $)) (-15 -3394 ($ $)) (-15 -2450 ($ $)) (-15 -2367 ($ $ $ $)) (-15 -2356 ($ $ $ $)) (-15 -2344 ($ $ $ $)) (-15 -2331 ($ $ $ $)) (-15 -2321 ($ $ $)) (-6 -4406))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-143) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-536)) . T) ((-611 (-563)) . T) ((-611 (-888 (-563))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-636 (-563)) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-816) . T) ((-844) . T) ((-846) . T) ((-882 (-563)) . T) ((-916) . T) ((-1018) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) . T) ((-1212) . T)) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) NIL T CONST)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-3267 (((-917) $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-546) (-13 (-840) (-10 -8 (-15 -3684 ($) -2495)))) (T -546)) -((-3684 (*1 *1) (-5 *1 (-546)))) -(-13 (-840) (-10 -8 (-15 -3684 ($) -2495))) +((-1801 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-3237 (*1 *1) (-4 *1 (-545))) (-2395 (*1 *1 *1) (-4 *1 (-545))) (-2338 (*1 *1 *1 *1) (-4 *1 (-545))) (-3248 (*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-1744 (*1 *1 *1 *1) (-4 *1 (-545))) (-1929 (*1 *1 *1 *1) (-4 *1 (-545))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2646 (*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) (-2821 (*1 *1) (-4 *1 (-545))) (-2821 (*1 *1 *1) (-4 *1 (-545))) (-3896 (*1 *1 *1) (-4 *1 (-545))) (-4171 (*1 *1 *1) (-4 *1 (-545))) (-1901 (*1 *1 *1) (-4 *1 (-545))) (-1494 (*1 *1 *1) (-4 *1 (-545))) (-3501 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-3887 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-2634 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-4167 (*1 *1 *1 *1 *1) (-4 *1 (-545))) (-1326 (*1 *1 *1 *1) (-4 *1 (-545)))) +(-13 (-1213) (-307) (-817) (-233) (-612 (-564)) (-1035 (-564)) (-637 (-564)) (-612 (-536)) (-612 (-889 (-564))) (-883 (-564)) (-143) (-1019) (-147) (-1145) (-10 -8 (-15 -1801 ((-112) $)) (-15 -1497 ((-112) $)) (-6 -4410) (-15 -3237 ($)) (-15 -2395 ($ $)) (-15 -2338 ($ $ $)) (-15 -3248 ((-112) $ $)) (-15 -1744 ($ $ $)) (-15 -1929 ($ $ $)) (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $)) (-15 -2821 ($)) (-15 -2821 ($ $)) (-15 -3896 ($ $)) (-15 -4171 ($ $)) (-15 -1901 ($ $)) (-15 -1494 ($ $)) (-15 -3501 ($ $ $ $)) (-15 -3887 ($ $ $ $)) (-15 -2634 ($ $ $ $)) (-15 -4167 ($ $ $ $)) (-15 -1326 ($ $ $)) (-6 -4409))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-143) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-536)) . T) ((-612 (-564)) . T) ((-612 (-889 (-564))) . T) ((-233) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-637 (-564)) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-817) . T) ((-845) . T) ((-847) . T) ((-883 (-564)) . T) ((-917) . T) ((-1019) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) . T) ((-1213) . T)) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-546) (-13 (-841) (-10 -8 (-15 -2818 ($) -2091)))) (T -546)) +((-2818 (*1 *1) (-5 *1 (-546)))) +(-13 (-841) (-10 -8 (-15 -2818 ($) -2091))) ((|Integer|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) NIL T CONST)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-3267 (((-917) $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-547) (-13 (-840) (-10 -8 (-15 -3684 ($) -2495)))) (T -547)) -((-3684 (*1 *1) (-5 *1 (-547)))) -(-13 (-840) (-10 -8 (-15 -3684 ($) -2495))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-547) (-13 (-841) (-10 -8 (-15 -2818 ($) -2091)))) (T -547)) +((-2818 (*1 *1) (-5 *1 (-547)))) +(-13 (-841) (-10 -8 (-15 -2818 ($) -2091))) ((|Integer|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) NIL T CONST)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-3267 (((-917) $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-548) (-13 (-840) (-10 -8 (-15 -3684 ($) -2495)))) (T -548)) -((-3684 (*1 *1) (-5 *1 (-548)))) -(-13 (-840) (-10 -8 (-15 -3684 ($) -2495))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-548) (-13 (-841) (-10 -8 (-15 -2818 ($) -2091)))) (T -548)) +((-2818 (*1 *1) (-5 *1 (-548)))) +(-13 (-841) (-10 -8 (-15 -2818 ($) -2091))) +((|Integer|) (COND ((< 64 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-549) (-13 (-841) (-10 -8 (-15 -2818 ($) -2091)))) (T -549)) +((-2818 (*1 *1) (-5 *1 (-549)))) +(-13 (-841) (-10 -8 (-15 -2818 ($) -2091))) ((|Integer|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1435 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#2| $ |#1| |#2|) NIL)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 |#2| "failed") |#1| $) NIL)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) NIL)) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) NIL)) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 ((|#1| $) NIL (|has| |#1| (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 ((|#1| $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2706 (((-640 |#1|) $) NIL)) (-3435 (((-112) |#1| $) NIL)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3404 (((-640 |#1|) $) NIL)) (-3417 (((-112) |#1| $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1884 ((|#2| $) NIL (|has| |#1| (-846)))) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-549 |#1| |#2| |#3|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1093) (-1093) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408)))) (T -549)) -NIL -(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) -((-2418 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|))) 52))) -(((-550 |#1| |#2|) (-10 -7 (-15 -2418 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|))))) (-13 (-846) (-555)) (-13 (-27) (-430 |#1|))) (T -550)) -((-2418 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-1 (-1165 *3) (-1165 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-846) (-555))) (-5 *2 (-584 *3)) (-5 *1 (-550 *6 *3))))) -(-10 -7 (-15 -2418 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-1 (-1165 |#2|) (-1165 |#2|))))) -((-2441 (((-584 |#5|) |#5| (-1 |#3| |#3|)) 222)) (-2452 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 218)) (-2429 (((-584 |#5|) |#5| (-1 |#3| |#3|)) 226))) -(((-551 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2429 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2441 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2452 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-846) (-555) (-1034 (-563))) (-13 (-27) (-430 |#1|)) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -551)) -((-2452 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-4 *7 (-1233 (-407 *6))) (-5 *1 (-551 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-2441 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-2429 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8))))) -(-10 -7 (-15 -2429 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2441 ((-584 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2452 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) -((-2481 (((-112) (-563) (-563)) 12)) (-2462 (((-563) (-563)) 7)) (-2472 (((-563) (-563) (-563)) 10))) -(((-552) (-10 -7 (-15 -2462 ((-563) (-563))) (-15 -2472 ((-563) (-563) (-563))) (-15 -2481 ((-112) (-563) (-563))))) (T -552)) -((-2481 (*1 *2 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-552)))) (-2472 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552))))) -(-10 -7 (-15 -2462 ((-563) (-563))) (-15 -2472 ((-563) (-563) (-563))) (-15 -2481 ((-112) (-563) (-563)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1686 ((|#1| $) 62)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-3419 (($ $) 92)) (-3285 (($ $) 75)) (-3367 ((|#1| $) 63)) (-1482 (((-3 $ "failed") $ $) 19)) (-2067 (($ $) 74)) (-3395 (($ $) 91)) (-3264 (($ $) 76)) (-2242 (($ $) 90)) (-3305 (($ $) 77)) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 70)) (-2589 (((-563) $) 71)) (-3230 (((-3 $ "failed") $) 33)) (-2511 (($ |#1| |#1|) 67)) (-2720 (((-112) $) 61)) (-2656 (($) 102)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 73)) (-2731 (((-112) $) 60)) (-3489 (($ $ $) 108)) (-4105 (($ $ $) 107)) (-2497 (($ $) 99)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-2522 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-563))) 65)) (-2502 ((|#1| $) 64)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-3448 (((-3 $ "failed") $ $) 43)) (-3177 (($ $) 100)) (-2252 (($ $) 89)) (-3313 (($ $) 78)) (-2231 (($ $) 88)) (-3295 (($ $) 79)) (-3408 (($ $) 87)) (-3273 (($ $) 80)) (-2491 (((-112) $ |#1|) 59)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-563)) 69)) (-3192 (((-767)) 28 T CONST)) (-2285 (($ $) 98)) (-3347 (($ $) 86)) (-2543 (((-112) $ $) 40)) (-2264 (($ $) 97)) (-3325 (($ $) 85)) (-2306 (($ $) 96)) (-3374 (($ $) 84)) (-4205 (($ $) 95)) (-3386 (($ $) 83)) (-2296 (($ $) 94)) (-3361 (($ $) 82)) (-2275 (($ $) 93)) (-3336 (($ $) 81)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2998 (((-112) $ $) 105)) (-2977 (((-112) $ $) 104)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 106)) (-2966 (((-112) $ $) 103)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ $) 101) (($ $ (-407 (-563))) 72)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-553 |#1|) (-140) (-13 (-404) (-1193))) (T -553)) -((-2522 (*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2511 (*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2522 (*1 *1 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2522 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))))) (-2502 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-3367 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-1686 (*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) (-2720 (*1 *2 *1) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) (-2491 (*1 *2 *1 *3) (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112))))) -(-13 (-452) (-846) (-1193) (-998) (-1034 (-563)) (-10 -8 (-6 -1775) (-15 -2522 ($ |t#1| |t#1|)) (-15 -2511 ($ |t#1| |t#1|)) (-15 -2522 ($ |t#1|)) (-15 -2522 ($ (-407 (-563)))) (-15 -2502 (|t#1| $)) (-15 -3367 (|t#1| $)) (-15 -1686 (|t#1| $)) (-15 -2720 ((-112) $)) (-15 -2731 ((-112) $)) (-15 -2491 ((-112) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-846) . T) ((-998) . T) ((-1034 (-563)) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) . T) ((-1196) . T)) -((-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 9)) (-2554 (($ $) 11)) (-2533 (((-112) $) 20)) (-3230 (((-3 $ "failed") $) 16)) (-2543 (((-112) $ $) 22))) -(((-554 |#1|) (-10 -8 (-15 -2533 ((-112) |#1|)) (-15 -2543 ((-112) |#1| |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -2565 ((-2 (|:| -2570 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|))) (-555)) (T -554)) -NIL -(-10 -8 (-15 -2533 ((-112) |#1|)) (-15 -2543 ((-112) |#1| |#1|)) (-15 -2554 (|#1| |#1|)) (-15 -2565 ((-2 (|:| -2570 |#1|) (|:| -4395 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ $) 43)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-555) (-140)) (T -555)) -((-3448 (*1 *1 *1 *1) (|partial| -4 *1 (-555))) (-2565 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2570 *1) (|:| -4395 *1) (|:| |associate| *1))) (-4 *1 (-555)))) (-2554 (*1 *1 *1) (-4 *1 (-555))) (-2543 (*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) -(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -3448 ((-3 $ "failed") $ $)) (-15 -2565 ((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $)) (-15 -2554 ($ $)) (-15 -2543 ((-112) $ $)) (-15 -2533 ((-112) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2586 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|)) 39)) (-2606 (((-584 |#2|) |#2| (-1169)) 64)) (-2596 (((-3 |#2| "failed") |#2| (-1169)) 157)) (-2615 (((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|))) 160)) (-2576 (((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|) 42))) -(((-556 |#1| |#2|) (-10 -7 (-15 -2576 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|)) (-15 -2586 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|))) (-15 -2596 ((-3 |#2| "failed") |#2| (-1169))) (-15 -2606 ((-584 |#2|) |#2| (-1169))) (-15 -2615 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|))))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -556)) -((-2615 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1169)) (-5 *6 (-640 (-609 *3))) (-5 *5 (-609 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *7))) (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) (-5 *1 (-556 *7 *3)))) (-2606 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-556 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-2596 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-2586 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-556 *6 *3)))) (-2576 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) (-5 *1 (-556 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) -(-10 -7 (-15 -2576 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) |#2|)) (-15 -2586 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1169) (-640 |#2|))) (-15 -2596 ((-3 |#2| "failed") |#2| (-1169))) (-15 -2606 ((-584 |#2|) |#2| (-1169))) (-15 -2615 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1169) (-609 |#2|) (-640 (-609 |#2|))))) -((-2102 (((-418 |#1|) |#1|) 18)) (-2055 (((-418 |#1|) |#1|) 33)) (-2635 (((-3 |#1| "failed") |#1|) 49)) (-2625 (((-418 |#1|) |#1|) 63))) -(((-557 |#1|) (-10 -7 (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -2625 ((-418 |#1|) |#1|)) (-15 -2635 ((-3 |#1| "failed") |#1|))) (-545)) (T -557)) -((-2635 (*1 *2 *2) (|partial| -12 (-5 *1 (-557 *2)) (-4 *2 (-545)))) (-2625 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) (-2102 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) (-2055 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -2055 ((-418 |#1|) |#1|)) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -2625 ((-418 |#1|) |#1|)) (-15 -2635 ((-3 |#1| "failed") |#1|))) -((-2645 (($) 9)) (-4024 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-2706 (((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-1956 (($ (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2666 (($ (-640 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-3704 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-3427 (((-640 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-2655 (((-1262)) 12))) -(((-558) (-10 -8 (-15 -2645 ($)) (-15 -2655 ((-1262))) (-15 -2706 ((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2666 ($ (-640 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1956 ($ (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4024 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3427 ((-640 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3704 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -558)) -((-3704 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-558)))) (-3427 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-558)))) (-4024 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-558)))) (-1956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-558)))) (-2666 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-558)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-558)))) (-2655 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-558)))) (-2645 (*1 *1) (-5 *1 (-558)))) -(-10 -8 (-15 -2645 ($)) (-15 -2655 ((-1262))) (-15 -2706 ((-640 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2666 ($ (-640 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -1956 ($ (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4024 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3427 ((-640 (-2 (|:| -3320 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3704 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1149 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2244 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-2021 (((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|)) 35)) (-2694 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|)) 115)) (-2677 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 85) (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|)) 55)) (-2685 (((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|))) 92) (((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|)) 114)) (-2707 (((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|)) 116)) (-1455 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))) 135 (|has| |#3| (-651 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|)) 134 (|has| |#3| (-651 |#2|)))) (-2175 ((|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|) 53)) (-2521 (((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|)) 34))) -(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -2677 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -2677 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2685 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|))) (-15 -2685 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2694 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|))) (-15 -2694 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2707 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|))) (-15 -2707 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2021 ((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|))) (-15 -2175 (|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|)) (-15 -2521 ((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -1455 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -1455 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))) (-13 (-430 |#1|) (-27) (-1193)) (-1093)) (T -559)) -((-1455 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-407 (-1165 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-1455 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-1165 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-2521 (*1 *2 *3 *4) (-12 (-5 *4 (-609 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-1165 (-407 (-1165 *6)))) (-5 *1 (-559 *5 *6 *7)) (-5 *3 (-1165 *6)) (-4 *7 (-1093)))) (-2175 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1165 (-407 (-1165 *2)))) (-5 *4 (-609 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *5 *2 *6)) (-4 *6 (-1093)))) (-2021 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-1165 (-407 (-1165 *3)))) (-5 *1 (-559 *6 *3 *7)) (-5 *5 (-1165 *3)) (-4 *7 (-1093)))) (-2707 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-407 (-1165 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))) (-2707 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-1165 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))) (-2694 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))) (-2694 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-1165 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))) (-2685 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-2685 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-2677 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) (-2677 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093))))) -(-10 -7 (-15 -2677 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -2677 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2685 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| |#2| (-1165 |#2|))) (-15 -2685 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2| (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2694 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) |#2| (-1165 |#2|))) (-15 -2694 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2707 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) |#2| (-1165 |#2|))) (-15 -2707 ((-3 |#2| "failed") |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)) (-609 |#2|) |#2| (-407 (-1165 |#2|)))) (-15 -2021 ((-1165 (-407 (-1165 |#2|))) |#2| (-609 |#2|) (-609 |#2|) (-1165 |#2|))) (-15 -2175 (|#2| (-1165 (-407 (-1165 |#2|))) (-609 |#2|) |#2|)) (-15 -2521 ((-1165 (-407 (-1165 |#2|))) (-1165 |#2|) (-609 |#2|))) (IF (|has| |#3| (-651 |#2|)) (PROGN (-15 -1455 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) |#2| (-1165 |#2|))) (-15 -1455 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-609 |#2|) |#2| (-407 (-1165 |#2|))))) |%noBranch|)) -((-1565 (((-563) (-563) (-767)) 88)) (-1555 (((-563) (-563)) 86)) (-1544 (((-563) (-563)) 84)) (-1533 (((-563) (-563)) 91)) (-3035 (((-563) (-563) (-563)) 68)) (-1522 (((-563) (-563) (-563)) 65)) (-1511 (((-407 (-563)) (-563)) 29)) (-1499 (((-563) (-563)) 35)) (-1487 (((-563) (-563)) 77)) (-3005 (((-563) (-563)) 50)) (-1476 (((-640 (-563)) (-563)) 83)) (-1465 (((-563) (-563) (-563) (-563) (-563)) 62)) (-2962 (((-407 (-563)) (-563)) 59))) -(((-560) (-10 -7 (-15 -2962 ((-407 (-563)) (-563))) (-15 -1465 ((-563) (-563) (-563) (-563) (-563))) (-15 -1476 ((-640 (-563)) (-563))) (-15 -3005 ((-563) (-563))) (-15 -1487 ((-563) (-563))) (-15 -1499 ((-563) (-563))) (-15 -1511 ((-407 (-563)) (-563))) (-15 -1522 ((-563) (-563) (-563))) (-15 -3035 ((-563) (-563) (-563))) (-15 -1533 ((-563) (-563))) (-15 -1544 ((-563) (-563))) (-15 -1555 ((-563) (-563))) (-15 -1565 ((-563) (-563) (-767))))) (T -560)) -((-1565 (*1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-767)) (-5 *1 (-560)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1533 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3035 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1522 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1511 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))) (-1499 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1487 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-3005 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))) (-1465 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) (-2962 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563))))) -(-10 -7 (-15 -2962 ((-407 (-563)) (-563))) (-15 -1465 ((-563) (-563) (-563) (-563) (-563))) (-15 -1476 ((-640 (-563)) (-563))) (-15 -3005 ((-563) (-563))) (-15 -1487 ((-563) (-563))) (-15 -1499 ((-563) (-563))) (-15 -1511 ((-407 (-563)) (-563))) (-15 -1522 ((-563) (-563) (-563))) (-15 -3035 ((-563) (-563) (-563))) (-15 -1533 ((-563) (-563))) (-15 -1544 ((-563) (-563))) (-15 -1555 ((-563) (-563))) (-15 -1565 ((-563) (-563) (-767)))) -((-1578 (((-2 (|:| |answer| |#4|) (|:| -3960 |#4|)) |#4| (-1 |#2| |#2|)) 57))) -(((-561 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1578 ((-2 (|:| |answer| |#4|) (|:| -3960 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -561)) -((-1578 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3960 *3))) (-5 *1 (-561 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))) -(-10 -7 (-15 -1578 ((-2 (|:| |answer| |#4|) (|:| -3960 |#4|)) |#4| (-1 |#2| |#2|)))) -((-1578 (((-2 (|:| |answer| (-407 |#2|)) (|:| -3960 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18))) -(((-562 |#1| |#2|) (-10 -7 (-15 -1578 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3960 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -562)) -((-1578 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -3960 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-562 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -1578 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3960 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 30)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 93)) (-2554 (($ $) 94)) (-2533 (((-112) $) NIL)) (-2379 (($ $ $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2356 (($ $ $ $) 51)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL)) (-1318 (($ $ $) 88)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL)) (-2589 (((-563) $) NIL)) (-3495 (($ $ $) 53)) (-3853 (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 76) (((-684 (-563)) (-684 $)) 72)) (-3230 (((-3 $ "failed") $) 90)) (-3459 (((-3 (-407 (-563)) "failed") $) NIL)) (-3447 (((-112) $) NIL)) (-3437 (((-407 (-563)) $) NIL)) (-4301 (($) 78) (($ $) 79)) (-3473 (($ $ $) 87)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2331 (($ $ $ $) NIL)) (-2392 (($ $ $) 69)) (-2720 (((-112) $) NIL)) (-3243 (($ $ $) NIL)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-2712 (((-112) $) 34)) (-4107 (((-112) $) 82)) (-3113 (((-3 $ "failed") $) NIL)) (-2731 (((-112) $) 43)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2344 (($ $ $ $) 54)) (-3489 (($ $ $) 84)) (-4105 (($ $ $) 83)) (-2450 (($ $) NIL)) (-3322 (($ $) 49)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) 68)) (-2321 (($ $ $) NIL)) (-2956 (($) NIL T CONST)) (-2051 (($ $) 38)) (-3249 (((-1113) $) 42)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 125)) (-1647 (($ $ $) 91) (($ (-640 $)) NIL)) (-1979 (($ $) NIL)) (-2055 (((-418 $) $) 111)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL)) (-3448 (((-3 $ "failed") $ $) 109)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4118 (((-112) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 86)) (-1361 (($ $ (-767)) NIL) (($ $) NIL)) (-3394 (($ $) 40)) (-2208 (($ $) 36)) (-2802 (((-563) $) 48) (((-536) $) 63) (((-888 (-563)) $) NIL) (((-379) $) 57) (((-225) $) 60) (((-1151) $) 65)) (-2062 (((-858) $) 46) (($ (-563)) 47) (($ $) NIL) (($ (-563)) 47)) (-3192 (((-767)) NIL T CONST)) (-2404 (((-112) $ $) NIL)) (-2991 (($ $ $) NIL)) (-1433 (($) 35)) (-2543 (((-112) $ $) NIL)) (-2367 (($ $ $ $) 50)) (-3841 (($ $) 77)) (-3790 (($) 6 T CONST)) (-3803 (($) 31 T CONST)) (-2038 (((-1151) $) 26) (((-1151) $ (-112)) 27) (((-1262) (-818) $) 28) (((-1262) (-818) $ (-112)) 29)) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 33)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 10)) (-3039 (($ $) 16) (($ $ $) 39)) (-3027 (($ $ $) 37)) (** (($ $ (-917)) NIL) (($ $ (-767)) 81)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 80) (($ $ $) 52))) -(((-563) (-13 (-545) (-611 (-1151)) (-824) (-10 -8 (-15 -4301 ($ $)) (-6 -4395) (-6 -4400) (-6 -4396) (-6 -4390)))) (T -563)) -((-4301 (*1 *1 *1) (-5 *1 (-563)))) -(-13 (-545) (-611 (-1151)) (-824) (-10 -8 (-15 -4301 ($ $)) (-6 -4395) (-6 -4400) (-6 -4396) (-6 -4390))) -((-4072 (((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057)) 119) (((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765)) 121)) (-3204 (((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169)) 196) (((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151)) 195) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057)) 200) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379)) 201) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379)) 202) (((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379))))) 203) (((-1031) (-316 (-379)) (-1087 (-839 (-379)))) 191) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379)) 190) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379)) 186) (((-1031) (-765)) 178) (((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057)) 185))) -(((-564) (-10 -7 (-15 -3204 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057))) (-15 -3204 ((-1031) (-765))) (-15 -3204 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379))) (-15 -3204 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379))) (-15 -3204 ((-1031) (-316 (-379)) (-1087 (-839 (-379))))) (-15 -3204 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))))) (-15 -3204 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379))) (-15 -3204 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379))) (-15 -3204 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -3204 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151))) (-15 -3204 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169))))) (T -564)) -((-3204 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) (-5 *5 (-1169)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) (-5 *5 (-1151)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-765)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *1 (-564)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-564)))) (-3204 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564))))) -(-10 -7 (-15 -3204 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379) (-1057))) (-15 -3204 ((-1031) (-765))) (-15 -3204 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379) (-379))) (-15 -3204 ((-1031) (-316 (-379)) (-1087 (-839 (-379))) (-379))) (-15 -3204 ((-1031) (-316 (-379)) (-1087 (-839 (-379))))) (-15 -3204 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))))) (-15 -3204 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379))) (-15 -3204 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379))) (-15 -3204 ((-1031) (-316 (-379)) (-640 (-1087 (-839 (-379)))) (-379) (-379) (-1057))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031))) (-765) (-1057))) (-15 -3204 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1151))) (-15 -3204 ((-3 (-1031) "failed") (-316 (-379)) (-1085 (-839 (-379))) (-1169)))) -((-1615 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|)) 202)) (-1590 (((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|)) 102)) (-1601 (((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|) 198)) (-1627 (((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169))) 207)) (-1639 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169)) 216 (|has| |#3| (-651 |#2|))))) -(((-565 |#1| |#2| |#3|) (-10 -7 (-15 -1590 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|))) (-15 -1601 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|)) (-15 -1615 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|))) (-15 -1627 ((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)))) (IF (|has| |#3| (-651 |#2|)) (-15 -1639 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563))) (-13 (-430 |#1|) (-27) (-1193)) (-1093)) (T -565)) -((-1639 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-609 *4)) (-5 *6 (-1169)) (-4 *4 (-13 (-430 *7) (-27) (-1193))) (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) (-1627 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-609 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-4 *2 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1093)))) (-1615 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1093)))) (-1601 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093)))) (-1590 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193))) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) (-5 *2 (-584 *3)) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093))))) -(-10 -7 (-15 -1590 ((-584 |#2|) |#2| (-609 |#2|) (-609 |#2|))) (-15 -1601 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-609 |#2|) (-609 |#2|) |#2|)) (-15 -1615 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-609 |#2|) (-609 |#2|) (-640 |#2|))) (-15 -1627 ((-3 |#2| "failed") |#2| |#2| |#2| (-609 |#2|) (-609 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1169)))) (IF (|has| |#3| (-651 |#2|)) (-15 -1639 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3288 (-640 |#2|))) |#3| |#2| (-609 |#2|) (-609 |#2|) (-1169))) |%noBranch|)) -((-1651 (((-2 (|:| -3081 |#2|) (|:| |nconst| |#2|)) |#2| (-1169)) 63)) (-1674 (((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|)) 180 (-12 (|has| |#2| (-1132)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)) 159 (-12 (|has| |#2| (-626)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563)))))) (-1663 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)) 161 (-12 (|has| |#2| (-626)) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-882 (-563))))))) -(((-566 |#1| |#2|) (-10 -7 (-15 -1651 ((-2 (|:| -3081 |#2|) (|:| |nconst| |#2|)) |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (PROGN (IF (|has| |#2| (-626)) (PROGN (-15 -1663 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) (-15 -1674 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) (IF (|has| |#2| (-1132)) (-15 -1674 ((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-846) (-1034 (-563)) (-452) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -566)) -((-1674 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1169)) (-5 *4 (-839 *2)) (-4 *2 (-1132)) (-4 *2 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *1 (-566 *5 *2)))) (-1674 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-1663 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-1651 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) (-5 *2 (-2 (|:| -3081 *3) (|:| |nconst| *3))) (-5 *1 (-566 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) -(-10 -7 (-15 -1651 ((-2 (|:| -3081 |#2|) (|:| |nconst| |#2|)) |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (PROGN (IF (|has| |#2| (-626)) (PROGN (-15 -1663 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) (-15 -1674 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) (IF (|has| |#2| (-1132)) (-15 -1674 ((-3 |#2| "failed") |#2| (-1169) (-839 |#2|) (-839 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1711 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|))) 41)) (-3204 (((-584 (-407 |#2|)) (-407 |#2|)) 28)) (-1687 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-1699 (((-3 (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48))) -(((-567 |#1| |#2|) (-10 -7 (-15 -3204 ((-584 (-407 |#2|)) (-407 |#2|))) (-15 -1687 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -1699 ((-3 (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -1711 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -567)) -((-1711 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-640 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-567 *5 *6)))) (-1699 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -3971 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))) (-1687 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147) (-1034 (-563)))) (-5 *1 (-567 *3 *4)))) (-3204 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-584 (-407 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5))))) -(-10 -7 (-15 -3204 ((-584 (-407 |#2|)) (-407 |#2|))) (-15 -1687 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -1699 ((-3 (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -1711 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-640 (-407 |#2|))))) -((-1724 (((-3 (-563) "failed") |#1|) 14)) (-2031 (((-112) |#1|) 13)) (-2794 (((-563) |#1|) 9))) -(((-568 |#1|) (-10 -7 (-15 -2794 ((-563) |#1|)) (-15 -2031 ((-112) |#1|)) (-15 -1724 ((-3 (-563) "failed") |#1|))) (-1034 (-563))) (T -568)) -((-1724 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))) (-2031 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-1034 (-563))))) (-2794 (*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2))))) -(-10 -7 (-15 -2794 ((-563) |#1|)) (-15 -2031 ((-112) |#1|)) (-15 -1724 ((-3 (-563) "failed") |#1|))) -((-1763 (((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|)))) 48)) (-1737 (((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169)) 28)) (-1752 (((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169)) 23)) (-1776 (((-3 (-2 (|:| -3971 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))) 35))) -(((-569 |#1|) (-10 -7 (-15 -1737 ((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -1752 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169))) (-15 -1763 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|))))) (-15 -1776 ((-3 (-2 (|:| -3971 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))))) (-13 (-555) (-1034 (-563)) (-147))) (T -569)) -((-1776 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-2 (|:| -3971 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5))))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5))))) (-1763 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-569 *6)))) (-1752 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-1034 (-563)) (-147))) (-5 *1 (-569 *4)))) (-1737 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) (-5 *2 (-584 (-407 (-948 *5)))) (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5)))))) -(-10 -7 (-15 -1737 ((-584 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -1752 ((-3 (-407 (-948 |#1|)) "failed") (-407 (-948 |#1|)) (-1169))) (-15 -1763 ((-3 (-2 (|:| |mainpart| (-407 (-948 |#1|))) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 (-948 |#1|))) (|:| |logand| (-407 (-948 |#1|))))))) "failed") (-407 (-948 |#1|)) (-1169) (-640 (-407 (-948 |#1|))))) (-15 -1776 ((-3 (-2 (|:| -3971 (-407 (-948 |#1|))) (|:| |coeff| (-407 (-948 |#1|)))) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))))) -((-2049 (((-112) $ $) 73)) (-2741 (((-112) $) 47)) (-1686 ((|#1| $) 39)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) 77)) (-3419 (($ $) 137)) (-3285 (($ $) 117)) (-3367 ((|#1| $) 37)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2067 (($ $) NIL)) (-3395 (($ $) 139)) (-3264 (($ $) 113)) (-2242 (($ $) 141)) (-3305 (($ $) 121)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) 92)) (-2589 (((-563) $) 94)) (-3230 (((-3 $ "failed") $) 76)) (-2511 (($ |#1| |#1|) 35)) (-2720 (((-112) $) 43)) (-2656 (($) 103)) (-2712 (((-112) $) 54)) (-1403 (($ $ (-563)) NIL)) (-2731 (((-112) $) 44)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2497 (($ $) 105)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-2522 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-563))) 91)) (-2502 ((|#1| $) 36)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) 79) (($ (-640 $)) NIL)) (-3448 (((-3 $ "failed") $ $) 78)) (-3177 (($ $) 107)) (-2252 (($ $) 145)) (-3313 (($ $) 119)) (-2231 (($ $) 147)) (-3295 (($ $) 123)) (-3408 (($ $) 143)) (-3273 (($ $) 115)) (-2491 (((-112) $ |#1|) 41)) (-2062 (((-858) $) 99) (($ (-563)) 81) (($ $) NIL) (($ (-563)) 81)) (-3192 (((-767)) 101 T CONST)) (-2285 (($ $) 159)) (-3347 (($ $) 129)) (-2543 (((-112) $ $) NIL)) (-2264 (($ $) 157)) (-3325 (($ $) 125)) (-2306 (($ $) 155)) (-3374 (($ $) 135)) (-4205 (($ $) 153)) (-3386 (($ $) 133)) (-2296 (($ $) 151)) (-3361 (($ $) 131)) (-2275 (($ $) 149)) (-3336 (($ $) 127)) (-3790 (($) 30 T CONST)) (-3803 (($) 10 T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 48)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 46)) (-3039 (($ $) 52) (($ $ $) 53)) (-3027 (($ $ $) 51)) (** (($ $ (-917)) 69) (($ $ (-767)) NIL) (($ $ $) 109) (($ $ (-407 (-563))) 161)) (* (($ (-917) $) 64) (($ (-767) $) NIL) (($ (-563) $) 63) (($ $ $) 60))) -(((-570 |#1|) (-553 |#1|) (-13 (-404) (-1193))) (T -570)) -NIL -(-553 |#1|) -((-1297 (((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563))) 27))) -(((-571) (-10 -7 (-15 -1297 ((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563)))))) (T -571)) -((-1297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 (-563)))) (-5 *3 (-1165 (-563))) (-5 *1 (-571))))) -(-10 -7 (-15 -1297 ((-3 (-640 (-1165 (-563))) "failed") (-640 (-1165 (-563))) (-1165 (-563))))) -((-1788 (((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169)) 19)) (-1822 (((-640 (-609 |#2|)) (-640 |#2|) (-1169)) 23)) (-3738 (((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|))) 11)) (-1835 ((|#2| |#2| (-1169)) 59 (|has| |#1| (-555)))) (-1846 ((|#2| |#2| (-1169)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-1810 (((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169)) 25)) (-1799 (((-609 |#2|) (-640 (-609 |#2|))) 24)) (-1859 (((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-626)) (|has| |#2| (-1034 (-1169))) (|has| |#1| (-611 (-888 (-563)))) (|has| |#1| (-452)) (|has| |#1| (-882 (-563))))))) -(((-572 |#1| |#2|) (-10 -7 (-15 -1788 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169))) (-15 -1799 ((-609 |#2|) (-640 (-609 |#2|)))) (-15 -1810 ((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169))) (-15 -3738 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|)))) (-15 -1822 ((-640 (-609 |#2|)) (-640 |#2|) (-1169))) (IF (|has| |#1| (-555)) (-15 -1835 (|#2| |#2| (-1169))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -1846 (|#2| |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (IF (|has| |#2| (-626)) (IF (|has| |#2| (-1034 (-1169))) (-15 -1859 ((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-846) (-430 |#1|)) (T -572)) -((-1859 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-584 *3) *3 (-1169))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1169))) (-4 *3 (-284)) (-4 *3 (-626)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1169)) (-4 *7 (-611 (-888 (-563)))) (-4 *7 (-452)) (-4 *7 (-882 (-563))) (-4 *7 (-846)) (-5 *2 (-584 *3)) (-5 *1 (-572 *7 *3)))) (-1846 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-452)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-1835 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-555)) (-4 *4 (-846)) (-5 *1 (-572 *4 *2)) (-4 *2 (-430 *4)))) (-1822 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-1169)) (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *2 (-640 (-609 *6))) (-5 *1 (-572 *5 *6)))) (-3738 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-609 *4))) (-4 *4 (-430 *3)) (-4 *3 (-846)) (-5 *1 (-572 *3 *4)))) (-1810 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-609 *6))) (-5 *4 (-1169)) (-5 *2 (-609 *6)) (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *1 (-572 *5 *6)))) (-1799 (*1 *2 *3) (-12 (-5 *3 (-640 (-609 *5))) (-4 *4 (-846)) (-5 *2 (-609 *5)) (-5 *1 (-572 *4 *5)) (-4 *5 (-430 *4)))) (-1788 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-609 *5))) (-5 *3 (-1169)) (-4 *5 (-430 *4)) (-4 *4 (-846)) (-5 *1 (-572 *4 *5))))) -(-10 -7 (-15 -1788 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-1169))) (-15 -1799 ((-609 |#2|) (-640 (-609 |#2|)))) (-15 -1810 ((-609 |#2|) (-609 |#2|) (-640 (-609 |#2|)) (-1169))) (-15 -3738 ((-640 (-609 |#2|)) (-640 (-609 |#2|)) (-640 (-609 |#2|)))) (-15 -1822 ((-640 (-609 |#2|)) (-640 |#2|) (-1169))) (IF (|has| |#1| (-555)) (-15 -1835 (|#2| |#2| (-1169))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -1846 (|#2| |#2| (-1169))) (IF (|has| |#1| (-611 (-888 (-563)))) (IF (|has| |#1| (-882 (-563))) (IF (|has| |#2| (-626)) (IF (|has| |#2| (-1034 (-1169))) (-15 -1859 ((-584 |#2|) |#2| (-1169) (-1 (-584 |#2|) |#2| (-1169)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1169)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) -((-1902 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|)) 200)) (-1941 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|))) 177)) (-1975 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|))) 174)) (-1988 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 165)) (-1873 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-1964 (((-3 (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 203)) (-1916 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 206)) (-2012 (((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-2024 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-1953 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|))) 181)) (-2000 (((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|)) 169)) (-1887 (((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|)) 191)) (-1929 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|)) 211))) -(((-573 |#1| |#2|) (-10 -7 (-15 -1873 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1887 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -1902 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|))) (-15 -1916 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -1929 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|))) (-15 -1941 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|)))) (-15 -1953 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|)))) (-15 -1964 ((-3 (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -1975 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|)))) (-15 -1988 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2000 ((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -2012 ((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2024 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -573)) -((-2024 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-573 *5 *3)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-584 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))) (-2000 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-620 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2665 *4) (|:| |sol?| (-112))) (-563) *4)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *1 (-573 *4 *5)))) (-1988 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3971 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-573 *4 *2)) (-4 *2 (-1233 *4)))) (-1975 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-640 (-407 *7))) (-4 *7 (-1233 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *6 *7)))) (-1964 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3971 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6)))) (-1953 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2665 *7) (|:| |sol?| (-112))) (-563) *7)) (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-573 *7 *8)))) (-1941 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3971 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-573 *7 *8)))) (-1929 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2665 *6) (|:| |sol?| (-112))) (-563) *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -3971 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-1916 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3971 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -3971 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-1902 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-640 *6) "failed") (-563) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-1887 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2665 *6) (|:| |sol?| (-112))) (-563) *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7)))) (-1873 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3971 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) -(-10 -7 (-15 -1873 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -1887 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -1902 ((-2 (|:| |answer| (-584 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-640 |#1|) "failed") (-563) |#1| |#1|))) (-15 -1916 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -1929 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-407 |#2|))) (-15 -1941 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-640 (-407 |#2|)))) (-15 -1953 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|) (-640 (-407 |#2|)))) (-15 -1964 ((-3 (-2 (|:| -3971 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -1975 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-640 (-407 |#2|)))) (-15 -1988 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2000 ((-3 (-620 |#1| |#2|) "failed") (-620 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2665 |#1|) (|:| |sol?| (-112))) (-563) |#1|))) (-15 -2012 ((-2 (|:| |ir| (-584 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -2024 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) -((-2035 (((-3 |#2| "failed") |#2| (-1169) (-1169)) 10))) -(((-574 |#1| |#2|) (-10 -7 (-15 -2035 ((-3 |#2| "failed") |#2| (-1169) (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-1132) (-29 |#1|))) (T -574)) -((-2035 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-574 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-1132) (-29 *4)))))) -(-10 -7 (-15 -2035 ((-3 |#2| "failed") |#2| (-1169) (-1169)))) -((-1293 (((-686 (-1215)) $ (-1215)) 26)) (-1303 (((-686 (-548)) $ (-548)) 25)) (-4382 (((-767) $ (-128)) 27)) (-1312 (((-686 (-129)) $ (-129)) 24)) (-3165 (((-686 (-1215)) $) 12)) (-3121 (((-686 (-1214)) $) 8)) (-3140 (((-686 (-1213)) $) 10)) (-3175 (((-686 (-548)) $) 13)) (-3131 (((-686 (-547)) $) 9)) (-3153 (((-686 (-546)) $) 11)) (-3109 (((-767) $ (-128)) 7)) (-3186 (((-686 (-129)) $) 14)) (-3018 (($ $) 6))) -(((-575) (-140)) (T -575)) -NIL -(-13 (-527) (-856)) -(((-173) . T) ((-527) . T) ((-856) . T)) -((-1293 (((-686 (-1215)) $ (-1215)) NIL)) (-1303 (((-686 (-548)) $ (-548)) NIL)) (-4382 (((-767) $ (-128)) NIL)) (-1312 (((-686 (-129)) $ (-129)) NIL)) (-3165 (((-686 (-1215)) $) NIL)) (-3121 (((-686 (-1214)) $) NIL)) (-3140 (((-686 (-1213)) $) NIL)) (-3175 (((-686 (-548)) $) NIL)) (-3131 (((-686 (-547)) $) NIL)) (-3153 (((-686 (-546)) $) NIL)) (-3109 (((-767) $ (-128)) NIL)) (-3186 (((-686 (-129)) $) NIL)) (-1322 (((-112) $) NIL)) (-2045 (($ (-388)) 14) (($ (-1151)) 16)) (-2062 (((-858) $) NIL)) (-3018 (($ $) NIL))) -(((-576) (-13 (-575) (-610 (-858)) (-10 -8 (-15 -2045 ($ (-388))) (-15 -2045 ($ (-1151))) (-15 -1322 ((-112) $))))) (T -576)) -((-2045 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-576)))) (-2045 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-576)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576))))) -(-13 (-575) (-610 (-858)) (-10 -8 (-15 -2045 ($ (-388))) (-15 -2045 ($ (-1151))) (-15 -1322 ((-112) $)))) -((-2049 (((-112) $ $) NIL)) (-1989 (($) 7 T CONST)) (-1938 (((-1151) $) NIL)) (-3102 (($) 6 T CONST)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 14)) (-2058 (($) 8 T CONST)) (-2943 (((-112) $ $) 10))) -(((-577) (-13 (-1093) (-10 -8 (-15 -3102 ($) -2495) (-15 -1989 ($) -2495) (-15 -2058 ($) -2495)))) (T -577)) -((-3102 (*1 *1) (-5 *1 (-577))) (-1989 (*1 *1) (-5 *1 (-577))) (-2058 (*1 *1) (-5 *1 (-577)))) -(-13 (-1093) (-10 -8 (-15 -3102 ($) -2495) (-15 -1989 ($) -2495) (-15 -2058 ($) -2495))) -((-2049 (((-112) $ $) NIL)) (-4293 (((-686 $) (-491)) 21)) (-1938 (((-1151) $) NIL)) (-2083 (($ (-1151)) 14)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 36)) (-2070 (((-213 4 (-129)) $) 24)) (-2943 (((-112) $ $) 26))) -(((-578) (-13 (-1093) (-10 -8 (-15 -2083 ($ (-1151))) (-15 -2070 ((-213 4 (-129)) $)) (-15 -4293 ((-686 $) (-491)))))) (T -578)) -((-2083 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-578)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-578)))) (-4293 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-686 (-578))) (-5 *1 (-578))))) -(-13 (-1093) (-10 -8 (-15 -2083 ($ (-1151))) (-15 -2070 ((-213 4 (-129)) $)) (-15 -4293 ((-686 $) (-491))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2067 (($ $ (-563)) 77)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-1608 (($ (-1165 (-563)) (-563)) 83)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) 68)) (-1621 (($ $) 43)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2903 (((-767) $) 16)) (-2712 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1646 (((-563)) 37)) (-1634 (((-563) $) 41)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2884 (($ $ (-563)) 24)) (-3448 (((-3 $ "failed") $ $) 73)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) 17)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 74)) (-1658 (((-1149 (-563)) $) 19)) (-2686 (($ $) 26)) (-2062 (((-858) $) 103) (($ (-563)) 63) (($ $) NIL)) (-3192 (((-767)) 15 T CONST)) (-2543 (((-112) $ $) NIL)) (-1775 (((-563) $ (-563)) 46)) (-3790 (($) 44 T CONST)) (-3803 (($) 21 T CONST)) (-2943 (((-112) $ $) 54)) (-3039 (($ $) 62) (($ $ $) 48)) (-3027 (($ $ $) 61)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 64) (($ $ $) 65))) -(((-579 |#1| |#2|) (-865 |#1|) (-563) (-112)) (T -579)) -NIL -(-865 |#1|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 30)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-2758 (((-1181 (-917) (-767)) (-563)) 59)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 $ "failed") $) 98)) (-2589 (($ $) 97)) (-1505 (($ (-1257 $)) 96)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) 44)) (-4301 (($) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) 61)) (-2812 (((-112) $) NIL)) (-2506 (($ $) NIL) (($ $ (-767)) NIL)) (-3675 (((-112) $) NIL)) (-2903 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2712 (((-112) $) NIL)) (-3298 (($) 49 (|has| $ (-368)))) (-3277 (((-112) $) NIL (|has| $ (-368)))) (-3251 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-3113 (((-3 $ "failed") $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 $) $ (-917)) NIL (|has| $ (-368))) (((-1165 $) $) 107)) (-3267 (((-917) $) 67)) (-3332 (((-1165 $) $) NIL (|has| $ (-368)))) (-3321 (((-3 (-1165 $) "failed") $ $) NIL (|has| $ (-368))) (((-1165 $) $) NIL (|has| $ (-368)))) (-3344 (($ $ (-1165 $)) NIL (|has| $ (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL T CONST)) (-3491 (($ (-917)) 60)) (-1808 (((-112) $) 90)) (-3249 (((-1113) $) NIL)) (-1738 (($) 28 (|has| $ (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 54)) (-2055 (((-418 $) $) NIL)) (-1797 (((-917)) 89) (((-829 (-917))) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-1575 (((-134)) NIL)) (-1361 (($ $ (-767)) NIL) (($ $) NIL)) (-1962 (((-917) $) 88) (((-829 (-917)) $) NIL)) (-2713 (((-1165 $)) 105)) (-2750 (($) 66)) (-3356 (($) 50 (|has| $ (-368)))) (-1818 (((-684 $) (-1257 $)) NIL) (((-1257 $) $) 94)) (-2802 (((-563) $) 40)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) 42) (($ $) NIL) (($ (-407 (-563))) NIL)) (-4376 (((-3 $ "failed") $) NIL) (($ $) 108)) (-3192 (((-767)) 51 T CONST)) (-3288 (((-1257 $) (-917)) 100) (((-1257 $)) 99)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) 31 T CONST)) (-3803 (($) 27 T CONST)) (-1772 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 34)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 84) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) -(((-580 |#1|) (-13 (-349) (-329 $) (-611 (-563))) (-917)) (T -580)) -NIL -(-13 (-349) (-329 $) (-611 (-563))) -((-2093 (((-1262) (-1151)) 10))) -(((-581) (-10 -7 (-15 -2093 ((-1262) (-1151))))) (T -581)) -((-2093 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-581))))) -(-10 -7 (-15 -2093 ((-1262) (-1151)))) -((-2919 (((-584 |#2|) (-584 |#2|)) 41)) (-1864 (((-640 |#2|) (-584 |#2|)) 43)) (-4066 ((|#2| (-584 |#2|)) 49))) -(((-582 |#1| |#2|) (-10 -7 (-15 -2919 ((-584 |#2|) (-584 |#2|))) (-15 -1864 ((-640 |#2|) (-584 |#2|))) (-15 -4066 (|#2| (-584 |#2|)))) (-13 (-452) (-1034 (-563)) (-846) (-636 (-563))) (-13 (-29 |#1|) (-1193))) (T -582)) -((-4066 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-29 *4) (-1193))) (-5 *1 (-582 *4 *2)) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-584 *5)) (-4 *5 (-13 (-29 *4) (-1193))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-640 *5)) (-5 *1 (-582 *4 *5)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-584 *4)) (-4 *4 (-13 (-29 *3) (-1193))) (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *1 (-582 *3 *4))))) -(-10 -7 (-15 -2919 ((-584 |#2|) (-584 |#2|))) (-15 -1864 ((-640 |#2|) (-584 |#2|))) (-15 -4066 (|#2| (-584 |#2|)))) -((-2751 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|)) 30))) -(((-583 |#1| |#2|) (-10 -7 (-15 -2751 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|))) (-15 -2751 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2751 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2751 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -583)) -((-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-583 *5 *6)))) (-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-583 *5 *2)))) (-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3971 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -3971 *6) (|:| |coeff| *6))) (-5 *1 (-583 *5 *6)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-584 *6)) (-5 *1 (-583 *5 *6))))) -(-10 -7 (-15 -2751 ((-584 |#2|) (-1 |#2| |#1|) (-584 |#1|))) (-15 -2751 ((-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3971 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2751 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2751 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) 76)) (-2589 ((|#1| $) NIL)) (-3971 ((|#1| $) 30)) (-2113 (((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3983 (($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3960 (((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $) 31)) (-1938 (((-1151) $) NIL)) (-3299 (($ |#1| |#1|) 38) (($ |#1| (-1169)) 49 (|has| |#1| (-1034 (-1169))))) (-3249 (((-1113) $) NIL)) (-2104 (((-112) $) 35)) (-1361 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1169)) 89 (|has| |#1| (-896 (-1169))))) (-2062 (((-858) $) 112) (($ |#1|) 29)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) 17) (($ $ $) NIL)) (-3027 (($ $ $) 85)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 16) (($ (-407 (-563)) $) 41) (($ $ (-407 (-563))) NIL))) -(((-584 |#1|) (-13 (-713 (-407 (-563))) (-1034 |#1|) (-10 -8 (-15 -3983 ($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3971 (|#1| $)) (-15 -3960 ((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $)) (-15 -2113 ((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2104 ((-112) $)) (-15 -3299 ($ |#1| |#1|)) (-15 -1361 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1169))) (-15 -1361 (|#1| $ (-1169))) |%noBranch|) (IF (|has| |#1| (-1034 (-1169))) (-15 -3299 ($ |#1| (-1169))) |%noBranch|))) (-363)) (T -584)) -((-3983 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *2)) (|:| |logand| (-1165 *2))))) (-5 *4 (-640 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-584 *2)))) (-3971 (*1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-3960 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *3)) (|:| |logand| (-1165 *3))))) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-363)))) (-3299 (*1 *1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-1361 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-584 *2)) (-4 *2 (-363)))) (-1361 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-584 *2)) (-5 *3 (-1169)))) (-3299 (*1 *1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *1 (-584 *2)) (-4 *2 (-1034 *3)) (-4 *2 (-363))))) -(-13 (-713 (-407 (-563))) (-1034 |#1|) (-10 -8 (-15 -3983 ($ |#1| (-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) (-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3971 (|#1| $)) (-15 -3960 ((-640 (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 |#1|)) (|:| |logand| (-1165 |#1|)))) $)) (-15 -2113 ((-640 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2104 ((-112) $)) (-15 -3299 ($ |#1| |#1|)) (-15 -1361 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-896 (-1169))) (-15 -1361 (|#1| $ (-1169))) |%noBranch|) (IF (|has| |#1| (-1034 (-1169))) (-15 -3299 ($ |#1| (-1169))) |%noBranch|))) -((-4021 (((-112) |#1|) 16)) (-4030 (((-3 |#1| "failed") |#1|) 14)) (-4002 (((-2 (|:| -1433 |#1|) (|:| -2631 (-767))) |#1|) 38) (((-3 |#1| "failed") |#1| (-767)) 18)) (-3991 (((-112) |#1| (-767)) 19)) (-4042 ((|#1| |#1|) 42)) (-4012 ((|#1| |#1| (-767)) 45))) -(((-585 |#1|) (-10 -7 (-15 -3991 ((-112) |#1| (-767))) (-15 -4002 ((-3 |#1| "failed") |#1| (-767))) (-15 -4002 ((-2 (|:| -1433 |#1|) (|:| -2631 (-767))) |#1|)) (-15 -4012 (|#1| |#1| (-767))) (-15 -4021 ((-112) |#1|)) (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -4042 (|#1| |#1|))) (-545)) (T -585)) -((-4042 (*1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-4030 (*1 *2 *2) (|partial| -12 (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-4021 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545)))) (-4012 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-4002 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1433 *3) (|:| -2631 (-767)))) (-5 *1 (-585 *3)) (-4 *3 (-545)))) (-4002 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) (-3991 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -3991 ((-112) |#1| (-767))) (-15 -4002 ((-3 |#1| "failed") |#1| (-767))) (-15 -4002 ((-2 (|:| -1433 |#1|) (|:| -2631 (-767))) |#1|)) (-15 -4012 (|#1| |#1| (-767))) (-15 -4021 ((-112) |#1|)) (-15 -4030 ((-3 |#1| "failed") |#1|)) (-15 -4042 (|#1| |#1|))) -((-4055 (((-1165 |#1|) (-917)) 43))) -(((-586 |#1|) (-10 -7 (-15 -4055 ((-1165 |#1|) (-917)))) (-349)) (T -586)) -((-4055 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-586 *4)) (-4 *4 (-349))))) -(-10 -7 (-15 -4055 ((-1165 |#1|) (-917)))) -((-2919 (((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|)))) 27)) (-3204 (((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169)) 34 (|has| |#1| (-147)))) (-1864 (((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|)))) 19)) (-4077 (((-316 |#1|) (-407 (-948 |#1|)) (-1169)) 32 (|has| |#1| (-147)))) (-4066 (((-316 |#1|) (-584 (-407 (-948 |#1|)))) 21))) -(((-587 |#1|) (-10 -7 (-15 -2919 ((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|))))) (-15 -1864 ((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|))))) (-15 -4066 ((-316 |#1|) (-584 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3204 ((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -4077 ((-316 |#1|) (-407 (-948 |#1|)) (-1169)))) |%noBranch|)) (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (T -587)) -((-4077 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-316 *5)) (-5 *1 (-587 *5)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-3 (-316 *5) (-640 (-316 *5)))) (-5 *1 (-587 *5)))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-584 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-316 *4)) (-5 *1 (-587 *4)))) (-1864 (*1 *2 *3) (-12 (-5 *3 (-584 (-407 (-948 *4)))) (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *2 (-640 (-316 *4))) (-5 *1 (-587 *4)))) (-2919 (*1 *2 *2) (-12 (-5 *2 (-584 (-407 (-948 *3)))) (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) (-5 *1 (-587 *3))))) -(-10 -7 (-15 -2919 ((-584 (-407 (-948 |#1|))) (-584 (-407 (-948 |#1|))))) (-15 -1864 ((-640 (-316 |#1|)) (-584 (-407 (-948 |#1|))))) (-15 -4066 ((-316 |#1|) (-584 (-407 (-948 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3204 ((-3 (-316 |#1|) (-640 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -4077 ((-316 |#1|) (-407 (-948 |#1|)) (-1169)))) |%noBranch|)) -((-4099 (((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563)))) 74) (((-640 (-684 (-563))) (-640 (-563))) 75) (((-684 (-563)) (-640 (-563)) (-901 (-563))) 68)) (-4088 (((-767) (-640 (-563))) 65))) -(((-588) (-10 -7 (-15 -4088 ((-767) (-640 (-563)))) (-15 -4099 ((-684 (-563)) (-640 (-563)) (-901 (-563)))) (-15 -4099 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -4099 ((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563))))))) (T -588)) -((-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-563))) (-5 *4 (-640 (-901 (-563)))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588)))) (-4099 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588)))) (-4099 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-563))) (-5 *4 (-901 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-588)))) (-4088 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-767)) (-5 *1 (-588))))) -(-10 -7 (-15 -4088 ((-767) (-640 (-563)))) (-15 -4099 ((-684 (-563)) (-640 (-563)) (-901 (-563)))) (-15 -4099 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -4099 ((-640 (-684 (-563))) (-640 (-563)) (-640 (-901 (-563)))))) -((-1707 (((-640 |#5|) |#5| (-112)) 99)) (-4112 (((-112) |#5| (-640 |#5|)) 34))) -(((-589 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1707 ((-640 |#5|) |#5| (-112))) (-15 -4112 ((-112) |#5| (-640 |#5|)))) (-13 (-307) (-147)) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -589)) -((-4112 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-589 *5 *6 *7 *8 *3)))) (-1707 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-640 *3)) (-5 *1 (-589 *5 *6 *7 *8 *3)) (-4 *3 (-1102 *5 *6 *7 *8))))) -(-10 -7 (-15 -1707 ((-640 |#5|) |#5| (-112))) (-15 -4112 ((-112) |#5| (-640 |#5|)))) -((-2049 (((-112) $ $) NIL)) (-4156 (((-1128) $) 11)) (-4144 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-590) (-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1128) $))))) (T -590)) -((-4144 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590))))) -(-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1128) $)))) -((-2049 (((-112) $ $) NIL (|has| (-144) (-1093)))) (-2940 (($ $) 38)) (-2952 (($ $) NIL)) (-2908 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2342 (((-112) $ $) 66)) (-2318 (((-112) $ $ (-563)) 60)) (-2919 (((-640 $) $ (-144)) 74) (((-640 $) $ (-141)) 75)) (-2162 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-2146 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-144) (-846))))) (-4257 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 (((-144) $ (-563) (-144)) 57 (|has| $ (-6 -4409))) (((-144) $ (-1224 (-563)) (-144)) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-2972 (($ $ (-144)) 79) (($ $ (-141)) 80)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-2930 (($ $ (-1224 (-563)) $) 56)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-1417 (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4150 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4409)))) (-4085 (((-144) $ (-563)) NIL)) (-2365 (((-112) $ $) 93)) (-2256 (((-563) (-1 (-112) (-144)) $) NIL) (((-563) (-144) $) NIL (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 63 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 61) (((-563) (-141) $ (-563)) 65)) (-4236 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-2552 (($ (-767) (-144)) 9)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 32 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| (-144) (-846)))) (-2383 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-1572 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-3383 (((-563) $) 47 (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| (-144) (-846)))) (-2254 (((-112) $ $ (-144)) 94)) (-2434 (((-767) $ $ (-144)) 91)) (-4139 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2965 (($ $) 41)) (-2976 (($ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-2983 (($ $ (-144)) 76) (($ $ (-141)) 77)) (-1938 (((-1151) $) 43 (|has| (-144) (-1093)))) (-2530 (($ (-144) $ (-563)) NIL) (($ $ $ (-563)) 27)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-563) $) 90) (((-1113) $) NIL (|has| (-144) (-1093)))) (-1884 (((-144) $) NIL (|has| (-563) (-846)))) (-1828 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3357 (($ $ (-144)) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-3427 (((-640 (-144)) $) NIL)) (-2820 (((-112) $) 15)) (-2749 (($) 10)) (-3858 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) 67) (($ $ (-1224 (-563))) 25) (($ $ $) NIL)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3261 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2155 (($ $ $ (-563)) 82 (|has| $ (-6 -4409)))) (-2208 (($ $) 20)) (-2802 (((-536) $) NIL (|has| (-144) (-611 (-536))))) (-2074 (($ (-640 (-144))) NIL)) (-1951 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-640 $)) 83)) (-2062 (($ (-144)) NIL) (((-858) $) 31 (|has| (-144) (-610 (-858))))) (-3848 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2943 (((-112) $ $) 17 (|has| (-144) (-1093)))) (-2988 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2966 (((-112) $ $) 18 (|has| (-144) (-846)))) (-1708 (((-767) $) 16 (|has| $ (-6 -4408))))) -(((-591 |#1|) (-13 (-1137) (-10 -8 (-15 -3249 ((-563) $)))) (-563)) (T -591)) -((-3249 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-591 *3)) (-14 *3 *2)))) -(-13 (-1137) (-10 -8 (-15 -3249 ((-563) $)))) -((-3887 (((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|)) 32))) -(((-592 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3887 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|))) (-15 -3887 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|)) (T -592)) -((-3887 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-3887 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1087 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789)) (-4 *4 (-846)) (-4 *7 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) (-5 *1 (-592 *6 *4 *7 *3))))) -(-10 -7 (-15 -3887 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2| (-1087 |#4|))) (-15 -3887 ((-2 (|:| |num| |#4|) (|:| |den| (-563))) |#4| |#2|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 71)) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-2893 (($ $ (-563)) 57) (($ $ (-563) (-563)) 58)) (-2914 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 64)) (-1330 (($ $) 107)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1310 (((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563))) 240)) (-3444 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 36)) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2697 (((-112) $) NIL)) (-2903 (((-563) $) 62) (((-563) $ (-563)) 63)) (-2712 (((-112) $) NIL)) (-2947 (($ $ (-917)) 83)) (-3214 (($ (-1 |#1| (-563)) $) 80)) (-1871 (((-112) $) 26)) (-2165 (($ |#1| (-563)) 22) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) 75)) (-1370 (($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 13)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3204 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-1340 (((-3 $ "failed") $ $ (-112)) 106)) (-1320 (($ $ $) 114)) (-3249 (((-1113) $) NIL)) (-1350 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 15)) (-1362 (((-1022 (-839 (-563))) $) 14)) (-2884 (($ $ (-563)) 47)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1497 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563)))))) (-3858 ((|#1| $ (-563)) 61) (($ $ $) NIL (|has| (-563) (-1105)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-1962 (((-563) $) NIL)) (-2686 (($ $) 48)) (-2062 (((-858) $) NIL) (($ (-563)) 29) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 28 (|has| |#1| (-172)))) (-1304 ((|#1| $ (-563)) 60)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) 39 T CONST)) (-3219 ((|#1| $) NIL)) (-4217 (($ $) 198 (|has| |#1| (-38 (-407 (-563)))))) (-4342 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-4238 (($ $) 202 (|has| |#1| (-38 (-407 (-563)))))) (-4361 (($ $) 173 (|has| |#1| (-38 (-407 (-563)))))) (-4197 (($ $) 201 (|has| |#1| (-38 (-407 (-563)))))) (-4323 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-1291 (($ $ (-407 (-563))) 176 (|has| |#1| (-38 (-407 (-563)))))) (-1301 (($ $ |#1|) 156 (|has| |#1| (-38 (-407 (-563)))))) (-4371 (($ $) 204 (|has| |#1| (-38 (-407 (-563)))))) (-4380 (($ $) 159 (|has| |#1| (-38 (-407 (-563)))))) (-4187 (($ $) 203 (|has| |#1| (-38 (-407 (-563)))))) (-4312 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-4207 (($ $) 199 (|has| |#1| (-38 (-407 (-563)))))) (-4333 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-4226 (($ $) 200 (|has| |#1| (-38 (-407 (-563)))))) (-4351 (($ $) 171 (|has| |#1| (-38 (-407 (-563)))))) (-4158 (($ $) 209 (|has| |#1| (-38 (-407 (-563)))))) (-4278 (($ $) 185 (|has| |#1| (-38 (-407 (-563)))))) (-4177 (($ $) 206 (|has| |#1| (-38 (-407 (-563)))))) (-4300 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-4134 (($ $) 213 (|has| |#1| (-38 (-407 (-563)))))) (-4258 (($ $) 189 (|has| |#1| (-38 (-407 (-563)))))) (-4123 (($ $) 215 (|has| |#1| (-38 (-407 (-563)))))) (-4248 (($ $) 191 (|has| |#1| (-38 (-407 (-563)))))) (-4146 (($ $) 211 (|has| |#1| (-38 (-407 (-563)))))) (-4268 (($ $) 187 (|has| |#1| (-38 (-407 (-563)))))) (-4168 (($ $) 208 (|has| |#1| (-38 (-407 (-563)))))) (-4289 (($ $) 183 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1775 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-3790 (($) 30 T CONST)) (-3803 (($) 40 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-2943 (((-112) $ $) 73)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) 90) (($ $ $) 72)) (-3027 (($ $ $) 87)) (** (($ $ (-917)) NIL) (($ $ (-767)) 109)) (* (($ (-917) $) 97) (($ (-767) $) 95) (($ (-563) $) 92) (($ $ $) 103) (($ $ |#1|) NIL) (($ |#1| $) 121) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-593 |#1|) (-13 (-1235 |#1| (-563)) (-10 -8 (-15 -1370 ($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -1362 ((-1022 (-839 (-563))) $)) (-15 -1350 ((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $)) (-15 -3444 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -1871 ((-112) $)) (-15 -3214 ($ (-1 |#1| (-563)) $)) (-15 -1340 ((-3 $ "failed") $ $ (-112))) (-15 -1330 ($ $)) (-15 -1320 ($ $ $)) (-15 -1310 ((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $)) (-15 -1301 ($ $ |#1|)) (-15 -1291 ($ $ (-407 (-563)))) (-15 -4380 ($ $)) (-15 -4371 ($ $)) (-15 -4361 ($ $)) (-15 -4351 ($ $)) (-15 -4342 ($ $)) (-15 -4333 ($ $)) (-15 -4323 ($ $)) (-15 -4312 ($ $)) (-15 -4300 ($ $)) (-15 -4289 ($ $)) (-15 -4278 ($ $)) (-15 -4268 ($ $)) (-15 -4258 ($ $)) (-15 -4248 ($ $)) (-15 -4238 ($ $)) (-15 -4226 ($ $)) (-15 -4217 ($ $)) (-15 -4207 ($ $)) (-15 -4197 ($ $)) (-15 -4187 ($ $)) (-15 -4177 ($ $)) (-15 -4168 ($ $)) (-15 -4158 ($ $)) (-15 -4146 ($ $)) (-15 -4134 ($ $)) (-15 -4123 ($ $))) |%noBranch|))) (-1045)) (T -593)) -((-1871 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-1370 (*1 *1 *2 *3) (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *4)))) (-4 *4 (-1045)) (-5 *1 (-593 *4)))) (-1362 (*1 *2 *1) (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-1350 (*1 *2 *1) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-3444 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) (-3214 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) (-1340 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) (-1330 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))) (-1320 (*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045)))) (-1310 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *6)))) (-5 *4 (-1022 (-839 (-563)))) (-5 *5 (-1169)) (-5 *7 (-407 (-563))) (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-593 *6)))) (-3204 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1301 (*1 *1 *1 *2) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-1291 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-593 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1045)))) (-4380 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4371 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4361 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4351 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4342 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4333 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4323 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4312 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4300 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4289 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4278 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4268 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4258 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4248 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4226 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4217 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4207 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4197 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4187 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4177 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4168 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4158 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4146 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4134 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) (-4123 (*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(-13 (-1235 |#1| (-563)) (-10 -8 (-15 -1370 ($ (-1022 (-839 (-563))) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -1362 ((-1022 (-839 (-563))) $)) (-15 -1350 ((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $)) (-15 -3444 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))))) (-15 -1871 ((-112) $)) (-15 -3214 ($ (-1 |#1| (-563)) $)) (-15 -1340 ((-3 $ "failed") $ $ (-112))) (-15 -1330 ($ $)) (-15 -1320 ($ $ $)) (-15 -1310 ((-858) (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) (-1022 (-839 (-563))) (-1169) |#1| (-407 (-563)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $)) (-15 -1301 ($ $ |#1|)) (-15 -1291 ($ $ (-407 (-563)))) (-15 -4380 ($ $)) (-15 -4371 ($ $)) (-15 -4361 ($ $)) (-15 -4351 ($ $)) (-15 -4342 ($ $)) (-15 -4333 ($ $)) (-15 -4323 ($ $)) (-15 -4312 ($ $)) (-15 -4300 ($ $)) (-15 -4289 ($ $)) (-15 -4278 ($ $)) (-15 -4268 ($ $)) (-15 -4258 ($ $)) (-15 -4248 ($ $)) (-15 -4238 ($ $)) (-15 -4226 ($ $)) (-15 -4217 ($ $)) (-15 -4207 ($ $)) (-15 -4197 ($ $)) (-15 -4187 ($ $)) (-15 -4177 ($ $)) (-15 -4168 ($ $)) (-15 -4158 ($ $)) (-15 -4146 ($ $)) (-15 -4134 ($ $)) (-15 -4123 ($ $))) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-3444 (($ (-1149 |#1|)) 9)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) 48)) (-2697 (((-112) $) 58)) (-2903 (((-767) $) 63) (((-767) $ (-767)) 62)) (-2712 (((-112) $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3448 (((-3 $ "failed") $ $) 50 (|has| |#1| (-555)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-1149 |#1|) $) 29)) (-3192 (((-767)) 57 T CONST)) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) 10 T CONST)) (-3803 (($) 14 T CONST)) (-2943 (((-112) $ $) 28)) (-3039 (($ $) 36) (($ $ $) 16)) (-3027 (($ $ $) 31)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-563)) 42))) -(((-594 |#1|) (-13 (-1045) (-10 -8 (-15 -3234 ((-1149 |#1|) $)) (-15 -3444 ($ (-1149 |#1|))) (-15 -2697 ((-112) $)) (-15 -2903 ((-767) $)) (-15 -2903 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-563))) (IF (|has| |#1| (-555)) (-6 (-555)) |%noBranch|))) (-1045)) (T -594)) -((-3234 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-3444 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (-2903 (*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-594 *3)) (-4 *3 (-1045))))) -(-13 (-1045) (-10 -8 (-15 -3234 ((-1149 |#1|) $)) (-15 -3444 ($ (-1149 |#1|))) (-15 -2697 ((-112) $)) (-15 -2903 ((-767) $)) (-15 -2903 ((-767) $ (-767))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-563))) (IF (|has| |#1| (-555)) (-6 (-555)) |%noBranch|))) -((-2751 (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 15))) -(((-595 |#1| |#2|) (-10 -7 (-15 -2751 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) (-1208) (-1208)) (T -595)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6))))) -(-10 -7 (-15 -2751 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) -((-2751 (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|)) 20) (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|)) 19) (((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)) 18))) -(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -2751 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -2751 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|))) (-15 -2751 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|)))) (-1208) (-1208) (-1208)) (T -596)) -((-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1149 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-596 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-596 *6 *7 *8)))) (-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-598 *8)) (-5 *1 (-596 *6 *7 *8))))) -(-10 -7 (-15 -2751 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))) (-15 -2751 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-598 |#2|))) (-15 -2751 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-1149 |#2|)))) -((-1423 ((|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169))) 57)) (-1410 (((-169 |#2|) |#3|) 123)) (-1381 ((|#3| (-169 |#2|)) 46)) (-1392 ((|#2| |#3|) 21)) (-1402 ((|#3| |#2|) 35))) -(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -1381 (|#3| (-169 |#2|))) (-15 -1392 (|#2| |#3|)) (-15 -1402 (|#3| |#2|)) (-15 -1410 ((-169 |#2|) |#3|)) (-15 -1423 (|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169))))) (-13 (-555) (-846)) (-13 (-430 |#1|) (-998) (-1193)) (-13 (-430 (-169 |#1|)) (-998) (-1193))) (T -597)) -((-1423 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-640 (-1169))) (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1193))) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-597 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-998) (-1193))))) (-1410 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-5 *2 (-169 *5)) (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193))))) (-1402 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1193))))) (-1392 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-5 *1 (-597 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193))))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) (-4 *4 (-13 (-555) (-846))) (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) (-5 *1 (-597 *4 *5 *2))))) -(-10 -7 (-15 -1381 (|#3| (-169 |#2|))) (-15 -1392 (|#2| |#3|)) (-15 -1402 (|#3| |#2|)) (-15 -1410 ((-169 |#2|) |#3|)) (-15 -1423 (|#3| |#3| (-640 (-609 |#3|)) (-640 (-1169))))) -((-1907 (($ (-1 (-112) |#1|) $) 17)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-1827 (($ (-1 |#1| |#1|) |#1|) 9)) (-1878 (($ (-1 (-112) |#1|) $) 13)) (-1891 (($ (-1 (-112) |#1|) $) 15)) (-2074 (((-1149 |#1|) $) 18)) (-2062 (((-858) $) NIL))) -(((-598 |#1|) (-13 (-610 (-858)) (-10 -8 (-15 -2751 ($ (-1 |#1| |#1|) $)) (-15 -1878 ($ (-1 (-112) |#1|) $)) (-15 -1891 ($ (-1 (-112) |#1|) $)) (-15 -1907 ($ (-1 (-112) |#1|) $)) (-15 -1827 ($ (-1 |#1| |#1|) |#1|)) (-15 -2074 ((-1149 |#1|) $)))) (-1208)) (T -598)) -((-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-1878 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-1891 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-1907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-1827 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) (-2074 (*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1208))))) -(-13 (-610 (-858)) (-10 -8 (-15 -2751 ($ (-1 |#1| |#1|) $)) (-15 -1878 ($ (-1 (-112) |#1|) $)) (-15 -1891 ($ (-1 (-112) |#1|) $)) (-15 -1907 ($ (-1 (-112) |#1|) $)) (-15 -1827 ($ (-1 |#1| |#1|) |#1|)) (-15 -2074 ((-1149 |#1|) $)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1696 (($ (-767)) NIL (|has| |#1| (-23)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-2256 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3804 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-2552 (($ (-767) |#1|) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3375 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3604 (((-112) $ (-767)) NIL)) (-3322 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) NIL (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3396 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3387 (($ $ $) NIL (|has| |#1| (-1045)))) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3039 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3027 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-599 |#1| |#2|) (-1255 |#1|) (-1208) (-563)) (T -599)) -NIL -(-1255 |#1|) -((-1435 (((-1262) $ |#2| |#2|) 36)) (-3371 ((|#2| $) 23)) (-3383 ((|#2| $) 21)) (-4139 (($ (-1 |#3| |#3|) $) 32)) (-2751 (($ (-1 |#3| |#3|) $) 30)) (-1884 ((|#3| $) 26)) (-3357 (($ $ |#3|) 33)) (-3392 (((-112) |#3| $) 17)) (-3427 (((-640 |#3|) $) 15)) (-3858 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) -(((-600 |#1| |#2| |#3|) (-10 -8 (-15 -1435 ((-1262) |#1| |#2| |#2|)) (-15 -3357 (|#1| |#1| |#3|)) (-15 -1884 (|#3| |#1|)) (-15 -3371 (|#2| |#1|)) (-15 -3383 (|#2| |#1|)) (-15 -3392 ((-112) |#3| |#1|)) (-15 -3427 ((-640 |#3|) |#1|)) (-15 -3858 (|#3| |#1| |#2|)) (-15 -3858 (|#3| |#1| |#2| |#3|)) (-15 -4139 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2751 (|#1| (-1 |#3| |#3|) |#1|))) (-601 |#2| |#3|) (-1093) (-1208)) (T -600)) -NIL -(-10 -8 (-15 -1435 ((-1262) |#1| |#2| |#2|)) (-15 -3357 (|#1| |#1| |#3|)) (-15 -1884 (|#3| |#1|)) (-15 -3371 (|#2| |#1|)) (-15 -3383 (|#2| |#1|)) (-15 -3392 ((-112) |#3| |#1|)) (-15 -3427 ((-640 |#3|) |#1|)) (-15 -3858 (|#3| |#1| |#2|)) (-15 -3858 (|#3| |#1| |#2| |#3|)) (-15 -4139 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2751 (|#1| (-1 |#3| |#3|) |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#2| (-1093)))) (-1435 (((-1262) $ |#1| |#1|) 40 (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4409)))) (-3684 (($) 7 T CONST)) (-4150 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) 51)) (-4236 (((-640 |#2|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-3371 ((|#1| $) 43 (|has| |#1| (-846)))) (-1572 (((-640 |#2|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-3383 ((|#1| $) 44 (|has| |#1| (-846)))) (-4139 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#2| |#2|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#2| (-1093)))) (-3404 (((-640 |#1|) $) 46)) (-3417 (((-112) |#1| $) 47)) (-3249 (((-1113) $) 21 (|has| |#2| (-1093)))) (-1884 ((|#2| $) 42 (|has| |#1| (-846)))) (-3357 (($ $ |#2|) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3261 (((-767) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4408))) (((-767) |#2| $) 28 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#2| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#2| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-601 |#1| |#2|) (-140) (-1093) (-1208)) (T -601)) -((-3427 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-640 *4)))) (-3417 (*1 *2 *3 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-640 *3)))) (-3392 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1093)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-3383 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-3371 (*1 *2 *1) (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) (-4 *2 (-846)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *3 (-846)) (-4 *2 (-1208)))) (-3357 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) (-1435 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) (-5 *2 (-1262))))) -(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -3427 ((-640 |t#2|) $)) (-15 -3417 ((-112) |t#1| $)) (-15 -3404 ((-640 |t#1|) $)) (IF (|has| |t#2| (-1093)) (IF (|has| $ (-6 -4408)) (-15 -3392 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-846)) (PROGN (-15 -3383 (|t#1| $)) (-15 -3371 (|t#1| $)) (-15 -1884 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -3357 ($ $ |t#2|)) (-15 -1435 ((-1262) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#2| (-1093)) ((-610 (-858)) -2811 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-1093) |has| |#2| (-1093)) ((-1208) . T)) -((-2062 (((-858) $) 19) (($ (-129)) 13) (((-129) $) 14))) -(((-602) (-13 (-610 (-858)) (-490 (-129)))) (T -602)) -NIL -(-13 (-610 (-858)) (-490 (-129))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL) (($ (-1174)) NIL) (((-1174) $) NIL) (((-1207) $) 14) (($ (-640 (-1207))) 13)) (-3820 (((-640 (-1207)) $) 10)) (-2943 (((-112) $ $) NIL))) -(((-603) (-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -2062 ($ (-640 (-1207)))) (-15 -3820 ((-640 (-1207)) $))))) (T -603)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603)))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603))))) -(-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -2062 ($ (-640 (-1207)))) (-15 -3820 ((-640 (-1207)) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2570 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1807 (((-1257 (-684 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1257 (-684 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2138 (((-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3684 (($) NIL T CONST)) (-3422 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3040 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1460 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2117 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1440 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2661 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3351 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2690 (($ $ (-917)) NIL)) (-2097 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3061 (((-1165 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1483 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3248 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3190 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1505 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1257 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3230 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3406 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-3159 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1670 (($ $ (-917)) NIL)) (-3115 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3092 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3135 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3430 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3052 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1471 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2127 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1450 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2673 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3399 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2681 (($ $ (-917)) NIL)) (-2108 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3071 (((-1165 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1493 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3260 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3200 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1938 (((-1151) $) NIL)) (-3103 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3125 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3146 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3249 (((-1113) $) NIL)) (-3180 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3858 ((|#1| $ (-563)) NIL (|has| |#2| (-417 |#1|)))) (-1818 (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $) (-1257 $)) NIL (|has| |#2| (-367 |#1|))) (((-1257 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2802 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1355 (((-640 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-640 (-948 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2879 (($ $ $) NIL)) (-3239 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2062 (((-858) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3288 (((-1257 $)) NIL (|has| |#2| (-417 |#1|)))) (-3080 (((-640 (-1257 |#1|))) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2888 (($ $ $ $) NIL)) (-3221 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2408 (($ (-684 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2870 (($ $ $) NIL)) (-3231 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3210 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3169 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3790 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) 24)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) -(((-604 |#1| |#2|) (-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -2062 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -604)) -((-2062 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-604 *3 *2)) (-4 *2 (-740 *3))))) -(-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -2062 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-2989 (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) 39)) (-2541 (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL) (($) NIL)) (-1435 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-1151) |#1|) 49)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 |#1| "failed") (-1151) $) 52)) (-3684 (($) NIL T CONST)) (-3029 (($ $ (-1151)) 25)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093))))) (-2841 (((-3 |#1| "failed") (-1151) $) 53) (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL (|has| $ (-6 -4408)))) (-1417 (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (($ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093))))) (-2532 (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093))))) (-2999 (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) 38)) (-4150 ((|#1| $ (-1151) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-1151)) NIL)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408))) (((-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-3785 (($ $) 54)) (-1934 (($ (-388)) 23) (($ (-388) (-1151)) 22)) (-3359 (((-388) $) 40)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-1151) $) NIL (|has| (-1151) (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408))) (((-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (((-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093))))) (-3383 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-2706 (((-640 (-1151)) $) 45)) (-3435 (((-112) (-1151) $) NIL)) (-3008 (((-1151) $) 41)) (-3835 (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL)) (-3404 (((-640 (-1151)) $) NIL)) (-3417 (((-112) (-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 ((|#1| $) NIL (|has| (-1151) (-846)))) (-1828 (((-3 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) "failed") (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (($ $ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (($ $ (-640 (-294 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 43)) (-3858 ((|#1| $ (-1151) |#1|) NIL) ((|#1| $ (-1151)) 48)) (-3139 (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL) (($) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (((-767) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (((-767) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL)) (-2062 (((-858) $) 21)) (-3018 (($ $) 26)) (-4034 (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20)) (-1708 (((-767) $) 47 (|has| $ (-6 -4408))))) -(((-605 |#1|) (-13 (-364 (-388) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) (-1184 (-1151) |#1|) (-10 -8 (-6 -4408) (-15 -3785 ($ $)))) (-1093)) (T -605)) -((-3785 (*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1093))))) -(-13 (-364 (-388) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) (-1184 (-1151) |#1|) (-10 -8 (-6 -4408) (-15 -3785 ($ $)))) -((-1949 (((-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) $) 16)) (-2706 (((-640 |#2|) $) 20)) (-3435 (((-112) |#2| $) 12))) -(((-606 |#1| |#2| |#3|) (-10 -8 (-15 -2706 ((-640 |#2|) |#1|)) (-15 -3435 ((-112) |#2| |#1|)) (-15 -1949 ((-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|))) (-607 |#2| |#3|) (-1093) (-1093)) (T -606)) -NIL -(-10 -8 (-15 -2706 ((-640 |#2|) |#1|)) (-15 -3435 ((-112) |#2| |#1|)) (-15 -1949 ((-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|))) -((-2049 (((-112) $ $) 19 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 45 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 55 (|has| $ (-6 -4408)))) (-3742 (((-3 |#2| "failed") |#1| $) 61)) (-3684 (($) 7 T CONST)) (-1920 (($ $) 58 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 62)) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 54 (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 56 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 52 (|has| $ (-6 -4408)))) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-2706 (((-640 |#1|) $) 63)) (-3435 (((-112) |#1| $) 64)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 39)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 40)) (-3249 (((-1113) $) 21 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 51)) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 41)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) 26 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 25 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 24 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 23 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3139 (($) 49) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 48)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 50)) (-2062 (((-858) $) 18 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 42)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-607 |#1| |#2|) (-140) (-1093) (-1093)) (T -607)) -((-3435 (*1 *2 *3 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-112)))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-5 *2 (-640 *3)))) (-2841 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-3742 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) -(-13 (-229 (-2 (|:| -3320 |t#1|) (|:| -3704 |t#2|))) (-10 -8 (-15 -3435 ((-112) |t#1| $)) (-15 -2706 ((-640 |t#1|) $)) (-15 -2841 ((-3 |t#2| "failed") |t#1| $)) (-15 -3742 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T) ((-102) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) ((-610 (-858)) -2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858)))) ((-151 #0#) . T) ((-611 (-536)) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) ((-1093) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) ((-1208) . T)) -((-3471 (((-609 |#2|) |#1|) 17)) (-3481 (((-3 |#1| "failed") (-609 |#2|)) 21))) -(((-608 |#1| |#2|) (-10 -7 (-15 -3471 ((-609 |#2|) |#1|)) (-15 -3481 ((-3 |#1| "failed") (-609 |#2|)))) (-846) (-846)) (T -608)) -((-3481 (*1 *2 *3) (|partial| -12 (-5 *3 (-609 *4)) (-4 *4 (-846)) (-4 *2 (-846)) (-5 *1 (-608 *2 *4)))) (-3471 (*1 *2 *3) (-12 (-5 *2 (-609 *4)) (-5 *1 (-608 *3 *4)) (-4 *3 (-846)) (-4 *4 (-846))))) -(-10 -7 (-15 -3471 ((-609 |#2|) |#1|)) (-15 -3481 ((-3 |#1| "failed") (-609 |#2|)))) -((-2049 (((-112) $ $) NIL)) (-3446 (((-3 (-1169) "failed") $) 46)) (-1492 (((-1262) $ (-767)) 26)) (-2256 (((-767) $) 25)) (-3674 (((-114) $) 12)) (-3359 (((-1169) $) 20)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-2696 (($ (-114) (-640 |#1|) (-767)) 36) (($ (-1169)) 37)) (-1854 (((-112) $ (-114)) 18) (((-112) $ (-1169)) 16)) (-1524 (((-767) $) 22)) (-3249 (((-1113) $) NIL)) (-2802 (((-888 (-563)) $) 90 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 97 (|has| |#1| (-611 (-888 (-379))))) (((-536) $) 83 (|has| |#1| (-611 (-536))))) (-2062 (((-858) $) 67)) (-3458 (((-640 |#1|) $) 24)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 50)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 52))) -(((-609 |#1|) (-13 (-132) (-880 |#1|) (-10 -8 (-15 -3359 ((-1169) $)) (-15 -3674 ((-114) $)) (-15 -3458 ((-640 |#1|) $)) (-15 -1524 ((-767) $)) (-15 -2696 ($ (-114) (-640 |#1|) (-767))) (-15 -2696 ($ (-1169))) (-15 -3446 ((-3 (-1169) "failed") $)) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1169))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) (-846)) (T -609)) -((-3359 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-3674 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-3458 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-2696 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-846)) (-5 *1 (-609 *5)))) (-2696 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-3446 (*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846)))) (-1854 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846))))) -(-13 (-132) (-880 |#1|) (-10 -8 (-15 -3359 ((-1169) $)) (-15 -3674 ((-114) $)) (-15 -3458 ((-640 |#1|) $)) (-15 -1524 ((-767) $)) (-15 -2696 ($ (-114) (-640 |#1|) (-767))) (-15 -2696 ($ (-1169))) (-15 -3446 ((-3 (-1169) "failed") $)) (-15 -1854 ((-112) $ (-114))) (-15 -1854 ((-112) $ (-1169))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) -((-2062 ((|#1| $) 6))) -(((-610 |#1|) (-140) (-1208)) (T -610)) -((-2062 (*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1208))))) -(-13 (-10 -8 (-15 -2062 (|t#1| $)))) -((-2802 ((|#1| $) 6))) -(((-611 |#1|) (-140) (-1208)) (T -611)) -((-2802 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1208))))) -(-13 (-10 -8 (-15 -2802 (|t#1| $)))) -((-3493 (((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16))) -(((-612 |#1| |#2|) (-10 -7 (-15 -3493 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3493 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -612)) -((-3493 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-1165 (-407 *6))) (-5 *1 (-612 *5 *6)) (-5 *3 (-407 *6)))) (-3493 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-1165 (-407 *5))) (-5 *1 (-612 *4 *5)) (-5 *3 (-407 *5))))) -(-10 -7 (-15 -3493 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -3493 ((-3 (-1165 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) -((-2062 (($ |#1|) 6))) -(((-613 |#1|) (-140) (-1208)) (T -613)) -((-2062 (*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1208))))) -(-13 (-10 -8 (-15 -2062 ($ |t#1|)))) -((-2049 (((-112) $ $) NIL)) (-2941 (($) 11 T CONST)) (-2863 (($) 12 T CONST)) (-3755 (($ $ $) 26)) (-3730 (($ $) 24)) (-1938 (((-1151) $) NIL)) (-2333 (($ $ $) 27)) (-3249 (((-1113) $) NIL)) (-1657 (($) 9 T CONST)) (-2322 (($ $ $) 28)) (-2062 (((-858) $) 32)) (-3778 (((-112) $ (|[\|\|]| -1657)) 21) (((-112) $ (|[\|\|]| -2941)) 23) (((-112) $ (|[\|\|]| -2863)) 18)) (-3743 (($ $ $) 25)) (-2943 (((-112) $ $) 15))) -(((-614) (-13 (-963) (-10 -8 (-15 -1657 ($) -2495) (-15 -2941 ($) -2495) (-15 -2863 ($) -2495) (-15 -3778 ((-112) $ (|[\|\|]| -1657))) (-15 -3778 ((-112) $ (|[\|\|]| -2941))) (-15 -3778 ((-112) $ (|[\|\|]| -2863)))))) (T -614)) -((-1657 (*1 *1) (-5 *1 (-614))) (-2941 (*1 *1) (-5 *1 (-614))) (-2863 (*1 *1) (-5 *1 (-614))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1657)) (-5 *2 (-112)) (-5 *1 (-614)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2941)) (-5 *2 (-112)) (-5 *1 (-614)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2863)) (-5 *2 (-112)) (-5 *1 (-614))))) -(-13 (-963) (-10 -8 (-15 -1657 ($) -2495) (-15 -2941 ($) -2495) (-15 -2863 ($) -2495) (-15 -3778 ((-112) $ (|[\|\|]| -1657))) (-15 -3778 ((-112) $ (|[\|\|]| -2941))) (-15 -3778 ((-112) $ (|[\|\|]| -2863))))) -((-2802 (($ |#1|) 6))) -(((-615 |#1|) (-140) (-1208)) (T -615)) -((-2802 (*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1208))))) -(-13 (-10 -8 (-15 -2802 ($ |t#1|)))) -((-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10))) -(((-616 |#1| |#2|) (-10 -8 (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-617 |#2|) (-1045)) (T -616)) -NIL -(-10 -8 (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 36)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#1| $) 37))) -(((-617 |#1|) (-140) (-1045)) (T -617)) -((-2062 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1045))))) -(-13 (-1045) (-643 |t#1|) (-10 -8 (-15 -2062 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2107 (((-563) $) NIL (|has| |#1| (-844)))) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2720 (((-112) $) NIL (|has| |#1| (-844)))) (-2712 (((-112) $) NIL)) (-2626 ((|#1| $) 13)) (-2731 (((-112) $) NIL (|has| |#1| (-844)))) (-3489 (($ $ $) NIL (|has| |#1| (-844)))) (-4105 (($ $ $) NIL (|has| |#1| (-844)))) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2636 ((|#3| $) 15)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL)) (-3192 (((-767)) 20 T CONST)) (-3841 (($ $) NIL (|has| |#1| (-844)))) (-3790 (($) NIL T CONST)) (-3803 (($) 12 T CONST)) (-2998 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-844)))) (-3050 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-618 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -3050 ($ $ |#3|)) (-15 -3050 ($ |#1| |#3|)) (-15 -2626 (|#1| $)) (-15 -2636 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -618)) -((-3050 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-3050 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-618 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-2626 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-618 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-2636 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4))))) -(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (-15 -3050 ($ $ |#3|)) (-15 -3050 ($ |#1| |#3|)) (-15 -2626 (|#1| $)) (-15 -2636 (|#3| $)))) -((-3503 ((|#2| |#2| (-1169) (-1169)) 16))) -(((-619 |#1| |#2|) (-10 -7 (-15 -3503 (|#2| |#2| (-1169) (-1169)))) (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-955) (-29 |#1|))) (T -619)) -((-3503 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-619 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-29 *4)))))) -(-10 -7 (-15 -3503 (|#2| |#2| (-1169) (-1169)))) -((-2049 (((-112) $ $) 64)) (-2741 (((-112) $) 58)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-3513 ((|#1| $) 55)) (-1482 (((-3 $ "failed") $ $) NIL)) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3916 (((-2 (|:| -2486 $) (|:| -2476 (-407 |#2|))) (-407 |#2|)) 110 (|has| |#1| (-363)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 98) (((-3 |#2| "failed") $) 94)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) 27)) (-3230 (((-3 $ "failed") $) 88)) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2903 (((-563) $) 22)) (-2712 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) 40)) (-2165 (($ |#1| (-563)) 24)) (-3193 ((|#1| $) 57)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 115 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-3448 (((-3 $ "failed") $ $) 92)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-4322 (((-767) $) 114 (|has| |#1| (-363)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 113 (|has| |#1| (-363)))) (-1361 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1962 (((-563) $) 38)) (-2802 (((-407 |#2|) $) 47)) (-2062 (((-858) $) 69) (($ (-563)) 35) (($ $) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 34) (($ |#2|) 25)) (-1304 ((|#1| $ (-563)) 72)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) 32 T CONST)) (-2543 (((-112) $ $) NIL)) (-3790 (($) 9 T CONST)) (-3803 (($) 14 T CONST)) (-4191 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2943 (((-112) $ $) 21)) (-3039 (($ $) 51) (($ $ $) NIL)) (-3027 (($ $ $) 89)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 29) (($ $ $) 49))) -(((-620 |#1| |#2|) (-13 (-231 |#2|) (-555) (-611 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -1871 ((-112) $)) (-15 -1962 ((-563) $)) (-15 -2903 ((-563) $)) (-15 -3213 ($ $)) (-15 -3193 (|#1| $)) (-15 -3513 (|#1| $)) (-15 -1304 (|#1| $ (-563))) (-15 -2165 ($ |#1| (-563))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -3916 ((-2 (|:| -2486 $) (|:| -2476 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-555) (-1233 |#1|)) (T -620)) -((-1871 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-112)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-1962 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-2903 (*1 *2 *1) (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) (-4 *4 (-1233 *3)))) (-3213 (*1 *1 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-3193 (*1 *2 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-3513 (*1 *2 *1) (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) (-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1233 *2)))) (-2165 (*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) (-4 *4 (-1233 *2)))) (-3916 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-555)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -2486 (-620 *4 *5)) (|:| -2476 (-407 *5)))) (-5 *1 (-620 *4 *5)) (-5 *3 (-407 *5))))) -(-13 (-231 |#2|) (-555) (-611 (-407 |#2|)) (-411 |#1|) (-1034 |#2|) (-10 -8 (-15 -1871 ((-112) $)) (-15 -1962 ((-563) $)) (-15 -2903 ((-563) $)) (-15 -3213 ($ $)) (-15 -3193 (|#1| $)) (-15 -3513 (|#1| $)) (-15 -1304 (|#1| $ (-563))) (-15 -2165 ($ |#1| (-563))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -3916 ((-2 (|:| -2486 $) (|:| -2476 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) -((-1353 (((-640 |#6|) (-640 |#4|) (-112)) 53)) (-3523 ((|#6| |#6|) 47))) -(((-621 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3523 (|#6| |#6|)) (-15 -1353 ((-640 |#6|) (-640 |#4|) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|) (-1102 |#1| |#2| |#3| |#4|)) (T -621)) -((-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *10)) (-5 *1 (-621 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *10 (-1102 *5 *6 *7 *8)))) (-3523 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-621 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1102 *3 *4 *5 *6))))) -(-10 -7 (-15 -3523 (|#6| |#6|)) (-15 -1353 ((-640 |#6|) (-640 |#4|) (-112)))) -((-3532 (((-112) |#3| (-767) (-640 |#3|)) 32)) (-3542 (((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2524 (-640 (-2 (|:| |irr| |#4|) (|:| -2581 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|)) 73))) -(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3532 ((-112) |#3| (-767) (-640 |#3|))) (-15 -3542 ((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2524 (-640 (-2 (|:| |irr| |#4|) (|:| -2581 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|)))) (-846) (-789) (-307) (-945 |#3| |#2| |#1|)) (T -622)) -((-3542 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2524 (-640 (-2 (|:| |irr| *10) (|:| -2581 (-563))))))) (-5 *6 (-640 *3)) (-5 *7 (-640 *8)) (-4 *8 (-846)) (-4 *3 (-307)) (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789)) (-5 *2 (-2 (|:| |polfac| (-640 *10)) (|:| |correct| *3) (|:| |corrfact| (-640 (-1165 *3))))) (-5 *1 (-622 *8 *9 *3 *10)) (-5 *4 (-640 (-1165 *3))))) (-3532 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-767)) (-5 *5 (-640 *3)) (-4 *3 (-307)) (-4 *6 (-846)) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-622 *6 *7 *3 *8)) (-4 *8 (-945 *3 *7 *6))))) -(-10 -7 (-15 -3532 ((-112) |#3| (-767) (-640 |#3|))) (-15 -3542 ((-3 (-2 (|:| |polfac| (-640 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-640 (-1165 |#3|)))) "failed") |#3| (-640 (-1165 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2524 (-640 (-2 (|:| |irr| |#4|) (|:| -2581 (-563)))))) (-640 |#3|) (-640 |#1|) (-640 |#3|)))) -((-2049 (((-112) $ $) NIL)) (-4156 (((-1128) $) 11)) (-4144 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-623) (-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1128) $))))) (T -623)) -((-4144 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623))))) -(-13 (-1076) (-10 -8 (-15 -4144 ((-1128) $)) (-15 -4156 ((-1128) $)))) -((-2049 (((-112) $ $) NIL)) (-1347 (((-640 |#1|) $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-1857 (($ $) 77)) (-2497 (((-659 |#1| |#2|) $) 60)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 81)) (-3552 (((-640 (-294 |#2|)) $ $) 42)) (-3249 (((-1113) $) NIL)) (-3177 (($ (-659 |#1| |#2|)) 56)) (-1382 (($ $ $) NIL)) (-2879 (($ $ $) NIL)) (-2062 (((-858) $) 66) (((-1272 |#1| |#2|) $) NIL) (((-1277 |#1| |#2|) $) 74)) (-3803 (($) 61 T CONST)) (-3562 (((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $) 41)) (-3571 (((-640 (-659 |#1| |#2|)) (-640 |#1|)) 73)) (-4025 (((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) 46)) (-2943 (((-112) $ $) 62)) (-3050 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 52))) -(((-624 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -3177 ($ (-659 |#1| |#2|))) (-15 -2497 ((-659 |#1| |#2|) $)) (-15 -4025 ((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -2062 ((-1272 |#1| |#2|) $)) (-15 -2062 ((-1277 |#1| |#2|) $)) (-15 -1857 ($ $)) (-15 -1347 ((-640 |#1|) $)) (-15 -3571 ((-640 (-659 |#1| |#2|)) (-640 |#1|))) (-15 -3562 ((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $)) (-15 -3552 ((-640 (-294 |#2|)) $ $)))) (-846) (-13 (-172) (-713 (-407 (-563)))) (-917)) (T -624)) -((-3177 (*1 *1 *2) (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-5 *1 (-624 *3 *4 *5)) (-14 *5 (-917)))) (-2497 (*1 *2 *1) (-12 (-5 *2 (-659 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-1857 (*1 *1 *1) (-12 (-5 *1 (-624 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-13 (-172) (-713 (-407 (-563))))) (-14 *4 (-917)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-3571 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-659 *4 *5))) (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-563))))) (-14 *6 (-917)))) (-3562 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-667 *3)) (|:| |c| *4)))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) (-3552 (*1 *2 *1 *1) (-12 (-5 *2 (-640 (-294 *4))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))) -(-13 (-473) (-10 -8 (-15 -3177 ($ (-659 |#1| |#2|))) (-15 -2497 ((-659 |#1| |#2|) $)) (-15 -4025 ((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $)) (-15 -2062 ((-1272 |#1| |#2|) $)) (-15 -2062 ((-1277 |#1| |#2|) $)) (-15 -1857 ($ $)) (-15 -1347 ((-640 |#1|) $)) (-15 -3571 ((-640 (-659 |#1| |#2|)) (-640 |#1|))) (-15 -3562 ((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $)) (-15 -3552 ((-640 (-294 |#2|)) $ $)))) -((-1353 (((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)) 102) (((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112)) 76)) (-3580 (((-112) (-640 (-776 |#1| (-860 |#2|)))) 26)) (-3621 (((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)) 101)) (-3611 (((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112)) 75)) (-3601 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|)))) 30)) (-3590 (((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|)))) 29))) -(((-625 |#1| |#2|) (-10 -7 (-15 -3580 ((-112) (-640 (-776 |#1| (-860 |#2|))))) (-15 -3590 ((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|))))) (-15 -3601 ((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))))) (-15 -3611 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -3621 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1353 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1353 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)))) (-452) (-640 (-1169))) (T -625)) -((-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-625 *5 *6)))) (-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))) (-3621 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) (-5 *1 (-625 *5 *6)))) (-3611 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-625 *5 *6)))) (-3601 (*1 *2 *2) (-12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4)))) (-3590 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4)))) (-3580 (*1 *2 *3) (-12 (-5 *3 (-640 (-776 *4 (-860 *5)))) (-4 *4 (-452)) (-14 *5 (-640 (-1169))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5))))) -(-10 -7 (-15 -3580 ((-112) (-640 (-776 |#1| (-860 |#2|))))) (-15 -3590 ((-3 (-640 (-776 |#1| (-860 |#2|))) "failed") (-640 (-776 |#1| (-860 |#2|))))) (-15 -3601 ((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))))) (-15 -3611 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -3621 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1353 ((-640 (-1042 |#1| |#2|)) (-640 (-776 |#1| (-860 |#2|))) (-112))) (-15 -1353 ((-640 (-1139 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|)))) (-640 (-776 |#1| (-860 |#2|))) (-112)))) -((-3419 (($ $) 38)) (-3285 (($ $) 21)) (-3395 (($ $) 37)) (-3264 (($ $) 22)) (-2242 (($ $) 36)) (-3305 (($ $) 23)) (-2656 (($) 48)) (-2497 (($ $) 45)) (-2942 (($ $) 17)) (-3299 (($ $ (-1085 $)) 7) (($ $ (-1169)) 6)) (-3177 (($ $) 46)) (-3224 (($ $) 15)) (-3252 (($ $) 16)) (-2252 (($ $) 35)) (-3313 (($ $) 24)) (-2231 (($ $) 34)) (-3295 (($ $) 25)) (-3408 (($ $) 33)) (-3273 (($ $) 26)) (-2285 (($ $) 44)) (-3347 (($ $) 32)) (-2264 (($ $) 43)) (-3325 (($ $) 31)) (-2306 (($ $) 42)) (-3374 (($ $) 30)) (-4205 (($ $) 41)) (-3386 (($ $) 29)) (-2296 (($ $) 40)) (-3361 (($ $) 28)) (-2275 (($ $) 39)) (-3336 (($ $) 27)) (-3649 (($ $) 19)) (-3661 (($ $) 20)) (-3640 (($ $) 18)) (** (($ $ $) 47))) -(((-626) (-140)) (T -626)) -((-3661 (*1 *1 *1) (-4 *1 (-626))) (-3649 (*1 *1 *1) (-4 *1 (-626))) (-3640 (*1 *1 *1) (-4 *1 (-626))) (-2942 (*1 *1 *1) (-4 *1 (-626))) (-3252 (*1 *1 *1) (-4 *1 (-626))) (-3224 (*1 *1 *1) (-4 *1 (-626)))) -(-13 (-955) (-1193) (-10 -8 (-15 -3661 ($ $)) (-15 -3649 ($ $)) (-15 -3640 ($ $)) (-15 -2942 ($ $)) (-15 -3252 ($ $)) (-15 -3224 ($ $)))) -(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-955) . T) ((-1193) . T) ((-1196) . T)) -((-3674 (((-114) (-114)) 90)) (-2942 ((|#2| |#2|) 28)) (-3299 ((|#2| |#2| (-1085 |#2|)) 86) ((|#2| |#2| (-1169)) 50)) (-3224 ((|#2| |#2|) 27)) (-3252 ((|#2| |#2|) 29)) (-3631 (((-112) (-114)) 33)) (-3649 ((|#2| |#2|) 24)) (-3661 ((|#2| |#2|) 26)) (-3640 ((|#2| |#2|) 25))) -(((-627 |#1| |#2|) (-10 -7 (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -3661 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -2942 (|#2| |#2|)) (-15 -3224 (|#2| |#2|)) (-15 -3252 (|#2| |#2|)) (-15 -3299 (|#2| |#2| (-1169))) (-15 -3299 (|#2| |#2| (-1085 |#2|)))) (-13 (-846) (-555)) (-13 (-430 |#1|) (-998) (-1193))) (T -627)) -((-3299 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)))) (-3299 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193))))) (-3252 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-3224 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-2942 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-3640 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-3649 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-3661 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) (-4 *2 (-13 (-430 *3) (-998) (-1193))))) (-3674 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *4)) (-4 *4 (-13 (-430 *3) (-998) (-1193))))) (-3631 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-627 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193)))))) -(-10 -7 (-15 -3631 ((-112) (-114))) (-15 -3674 ((-114) (-114))) (-15 -3661 (|#2| |#2|)) (-15 -3649 (|#2| |#2|)) (-15 -3640 (|#2| |#2|)) (-15 -2942 (|#2| |#2|)) (-15 -3224 (|#2| |#2|)) (-15 -3252 (|#2| |#2|)) (-15 -3299 (|#2| |#2| (-1169))) (-15 -3299 (|#2| |#2| (-1085 |#2|)))) -((-3773 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-3692 (((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 93)) (-3705 (((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|)) 95) (((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|)) 94)) (-3672 (((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|))) 138)) (-3749 (((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 108)) (-3682 (((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|))) 148)) (-3726 (((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|))) 72)) (-3715 (((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|))) 48)) (-3761 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|))) 64)) (-3736 (((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|))) 116))) -(((-628 |#1| |#2|) (-10 -7 (-15 -3672 ((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|)))) (-15 -3682 ((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|)))) (-15 -3692 ((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3705 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3705 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3715 ((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3726 ((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|)))) (-15 -3736 ((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -3749 ((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3761 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -3773 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-640 (-1169)) (-452)) (T -628)) -((-3773 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-628 *4 *5)))) (-3761 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))) (-3749 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-860 *4)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5)))) (-3736 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-640 (-1169))) (-5 *1 (-628 *5 *6)))) (-3726 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-1257 *6)) (-5 *1 (-628 *5 *6)))) (-3715 (*1 *2 *2) (-12 (-5 *2 (-640 (-481 *3 *4))) (-14 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-628 *3 *4)))) (-3705 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))) (-3705 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) (-4 *6 (-452)))) (-3692 (*1 *2 *3) (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-640 (-247 *4 *5))) (-5 *1 (-628 *4 *5)))) (-3682 (*1 *2 *3) (-12 (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-640 (-247 *4 *5))) (|:| |glval| (-640 (-563))))) (-5 *1 (-628 *4 *5)) (-5 *3 (-640 (-247 *4 *5))))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-640 (-247 *4 *5))) (|:| |gvlist| (-640 (-563))))) (-5 *1 (-628 *4 *5))))) -(-10 -7 (-15 -3672 ((-2 (|:| |gblist| (-640 (-247 |#1| |#2|))) (|:| |gvlist| (-640 (-563)))) (-640 (-481 |#1| |#2|)))) (-15 -3682 ((-2 (|:| |glbase| (-640 (-247 |#1| |#2|))) (|:| |glval| (-640 (-563)))) (-640 (-247 |#1| |#2|)))) (-15 -3692 ((-640 (-247 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3705 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3705 ((-481 |#1| |#2|) (-640 (-481 |#1| |#2|)) (-860 |#1|))) (-15 -3715 ((-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3726 ((-1257 |#2|) (-481 |#1| |#2|) (-640 (-481 |#1| |#2|)))) (-15 -3736 ((-247 |#1| |#2|) (-640 |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -3749 ((-640 (-481 |#1| |#2|)) (-860 |#1|) (-640 (-481 |#1| |#2|)) (-640 (-481 |#1| |#2|)))) (-15 -3761 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-640 (-247 |#1| |#2|)))) (-15 -3773 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) NIL)) (-1435 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 (((-52) $ (-1151) (-52)) 16) (((-52) $ (-1169) (-52)) 17)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 (-52) "failed") (-1151) $) NIL)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093))))) (-2841 (($ (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-52) "failed") (-1151) $) NIL)) (-1417 (($ (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $ (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093)))) (((-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $ (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-4150 (((-52) $ (-1151) (-52)) NIL (|has| $ (-6 -4409)))) (-4085 (((-52) $ (-1151)) NIL)) (-4236 (((-640 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-3785 (($ $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-1151) $) NIL (|has| (-1151) (-846)))) (-1572 (((-640 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-3383 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3114 (($ (-388)) 9)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093))))) (-2706 (((-640 (-1151)) $) NIL)) (-3435 (((-112) (-1151) $) NIL)) (-3835 (((-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) $) NIL)) (-1956 (($ (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) $) NIL)) (-3404 (((-640 (-1151)) $) NIL)) (-3417 (((-112) (-1151) $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093))))) (-1884 (((-52) $) NIL (|has| (-1151) (-846)))) (-1828 (((-3 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) "failed") (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL)) (-3357 (($ $ (-52)) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093)))) (($ $ (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-3427 (((-640 (-52)) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 (((-52) $ (-1151)) 14) (((-52) $ (-1151) (-52)) NIL) (((-52) $ (-1169)) 15)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 (-52))) (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-629) (-13 (-1184 (-1151) (-52)) (-10 -8 (-15 -3114 ($ (-388))) (-15 -3785 ($ $)) (-15 -3858 ((-52) $ (-1169))) (-15 -2189 ((-52) $ (-1169) (-52)))))) (T -629)) -((-3114 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-629)))) (-3785 (*1 *1 *1) (-5 *1 (-629))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-52)) (-5 *1 (-629)))) (-2189 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1169)) (-5 *1 (-629))))) -(-13 (-1184 (-1151) (-52)) (-10 -8 (-15 -3114 ($ (-388))) (-15 -3785 ($ $)) (-15 -3858 ((-52) $ (-1169))) (-15 -2189 ((-52) $ (-1169) (-52))))) -((-3050 (($ $ |#2|) 10))) -(((-630 |#1| |#2|) (-10 -8 (-15 -3050 (|#1| |#1| |#2|))) (-631 |#2|) (-172)) (T -630)) -NIL -(-10 -8 (-15 -3050 (|#1| |#1| |#2|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2074 (($ $ $) 29)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-631 |#1|) (-140) (-172)) (T -631)) -((-2074 (*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)))) (-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(-13 (-713 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2074 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -3050 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2570 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1807 (((-1257 (-684 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1257 (-684 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2138 (((-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3684 (($) NIL T CONST)) (-3422 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3040 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1460 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2117 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1440 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2661 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3351 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2690 (($ $ (-917)) NIL)) (-2097 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3061 (((-1165 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1483 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3248 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3190 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1505 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1257 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3230 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3406 (((-917)) NIL (|has| |#2| (-367 |#1|)))) (-3159 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1670 (($ $ (-917)) NIL)) (-3115 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3092 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3135 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3430 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3052 (((-3 $ "failed")) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1471 (((-684 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2127 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1450 (((-684 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2673 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-3399 (((-1165 (-948 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2681 (($ $ (-917)) NIL)) (-2108 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-3071 (((-1165 |#1|) $) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-1493 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-3260 (((-1165 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-3200 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1938 (((-1151) $) NIL)) (-3103 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3125 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3146 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3249 (((-1113) $) NIL)) (-3180 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3858 ((|#1| $ (-563)) NIL (|has| |#2| (-417 |#1|)))) (-1818 (((-684 |#1|) (-1257 $)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-684 |#1|) (-1257 $) (-1257 $)) NIL (|has| |#2| (-367 |#1|))) (((-1257 |#1|) $ (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2802 (($ (-1257 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1257 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1355 (((-640 (-948 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-640 (-948 |#1|)) (-1257 $)) NIL (|has| |#2| (-367 |#1|)))) (-2879 (($ $ $) NIL)) (-3239 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2062 (((-858) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3288 (((-1257 $)) NIL (|has| |#2| (-417 |#1|)))) (-3080 (((-640 (-1257 |#1|))) NIL (-2811 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))))) (-2888 (($ $ $ $) NIL)) (-3221 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2408 (($ (-684 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-2870 (($ $ $) NIL)) (-3231 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3210 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3169 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3790 (($) 19 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) 20)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-632 |#1| |#2|) (-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -2062 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-740 |#1|)) (T -632)) -((-2062 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-632 *3 *2)) (-4 *2 (-740 *3))))) -(-13 (-740 |#1|) (-610 |#2|) (-10 -8 (-15 -2062 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) -((-3810 (((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151)) 105) (((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|))) 130)) (-3797 (((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|))) 135))) -(((-633 |#1| |#2|) (-10 -7 (-15 -3810 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -3797 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -3810 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151)))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -633)) -((-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1151)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-839 *3)) (-5 *1 (-633 *6 *3)))) (-3797 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-829 *3))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-829 *3)) (-5 *1 (-633 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1193) (-430 *5))) (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-633 *5 *3))))) -(-10 -7 (-15 -3810 ((-3 (-839 |#2|) (-2 (|:| |leftHandLimit| (-3 (-839 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-839 |#2|) "failed"))) "failed") |#2| (-294 (-839 |#2|)))) (-15 -3797 ((-3 (-829 |#2|) "failed") |#2| (-294 (-829 |#2|)))) (-15 -3810 ((-3 (-839 |#2|) "failed") |#2| (-294 |#2|) (-1151)))) -((-3810 (((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151)) 85) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 20) (((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|)))) 35)) (-3797 (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 23) (((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|)))) 43))) -(((-634 |#1|) (-10 -7 (-15 -3810 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -3810 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3797 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -3797 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3810 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151)))) (-452)) (T -634)) -((-3810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1151)) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3)) (-5 *1 (-634 *6)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-634 *5)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5))))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-839 *3) (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) "failed")) (-5 *1 (-634 *5)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-839 (-407 (-948 *5))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))) "failed")) (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5)))))) -(-10 -7 (-15 -3810 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-839 (-948 |#1|))))) (-15 -3810 ((-3 (-839 (-407 (-948 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-839 (-407 (-948 |#1|))) "failed"))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3797 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-829 (-948 |#1|))))) (-15 -3797 ((-829 (-407 (-948 |#1|))) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -3810 ((-3 (-839 (-407 (-948 |#1|))) "failed") (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))) (-1151)))) -((-3843 (((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|) 64 (-3730 (|has| |#1| (-363)))) (((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-3821 (((-112) (-1257 |#2|)) 33)) (-3831 (((-3 (-1257 |#1|) "failed") (-1257 |#2|)) 40))) -(((-635 |#1| |#2|) (-10 -7 (-15 -3821 ((-112) (-1257 |#2|))) (-15 -3831 ((-3 (-1257 |#1|) "failed") (-1257 |#2|))) (IF (|has| |#1| (-363)) (-15 -3843 ((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|)) (-15 -3843 ((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|)))) (-555) (-636 |#1|)) (T -635)) -((-3843 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-3730 (-4 *5 (-363))) (-4 *5 (-555)) (-5 *2 (-1257 (-407 *5))) (-5 *1 (-635 *5 *4)))) (-3843 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-4 *5 (-363)) (-4 *5 (-555)) (-5 *2 (-1257 *5)) (-5 *1 (-635 *5 *4)))) (-3831 (*1 *2 *3) (|partial| -12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) (-5 *2 (-1257 *4)) (-5 *1 (-635 *4 *5)))) (-3821 (*1 *2 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) (-5 *2 (-112)) (-5 *1 (-635 *4 *5))))) -(-10 -7 (-15 -3821 ((-112) (-1257 |#2|))) (-15 -3831 ((-3 (-1257 |#1|) "failed") (-1257 |#2|))) (IF (|has| |#1| (-363)) (-15 -3843 ((-3 (-1257 |#1|) "failed") (-1257 |#2|) |#2|)) (-15 -3843 ((-3 (-1257 (-407 |#1|)) "failed") (-1257 |#2|) |#2|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3853 (((-684 |#1|) (-684 $)) 36) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 35)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-636 |#1|) (-140) (-1045)) (T -636)) -((-3853 (*1 *2 *3) (-12 (-5 *3 (-684 *1)) (-4 *1 (-636 *4)) (-4 *4 (-1045)) (-5 *2 (-684 *4)))) (-3853 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *1)) (-5 *4 (-1257 *1)) (-4 *1 (-636 *5)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -4277 (-684 *5)) (|:| |vec| (-1257 *5))))))) -(-13 (-1045) (-10 -8 (-15 -3853 ((-684 |t#1|) (-684 $))) (-15 -3853 ((-2 (|:| -4277 (-684 |t#1|)) (|:| |vec| (-1257 |t#1|))) (-684 $) (-1257 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2434 ((|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|) 17) ((|#2| (-640 |#1|) (-640 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|)) 12))) -(((-637 |#1| |#2|) (-10 -7 (-15 -2434 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|))) (-15 -2434 (|#2| (-640 |#1|) (-640 |#2|) |#1|)) (-15 -2434 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|)) (-15 -2434 (|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|)) (-15 -2434 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|))) (-15 -2434 (|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|)))) (-1093) (-1208)) (T -637)) -((-2434 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-2434 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-637 *5 *6)))) (-2434 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-2434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 *5)) (-4 *6 (-1093)) (-4 *5 (-1208)) (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5)))) (-2434 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) (-2434 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6))))) -(-10 -7 (-15 -2434 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|))) (-15 -2434 (|#2| (-640 |#1|) (-640 |#2|) |#1|)) (-15 -2434 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) |#2|)) (-15 -2434 (|#2| (-640 |#1|) (-640 |#2|) |#1| |#2|)) (-15 -2434 ((-1 |#2| |#1|) (-640 |#1|) (-640 |#2|) (-1 |#2| |#1|))) (-15 -2434 (|#2| (-640 |#1|) (-640 |#2|) |#1| (-1 |#2| |#1|)))) -((-3409 (((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|) 16)) (-2532 ((|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|) 18)) (-2751 (((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|)) 13))) -(((-638 |#1| |#2|) (-10 -7 (-15 -3409 ((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2532 (|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2751 ((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|)))) (-1208) (-1208)) (T -638)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-638 *5 *6)))) (-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-638 *5 *2)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-640 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-640 *5)) (-5 *1 (-638 *6 *5))))) -(-10 -7 (-15 -3409 ((-640 |#2|) (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2532 (|#2| (-1 |#2| |#1| |#2|) (-640 |#1|) |#2|)) (-15 -2751 ((-640 |#2|) (-1 |#2| |#1|) (-640 |#1|)))) -((-2751 (((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|)) 21))) -(((-639 |#1| |#2| |#3|) (-10 -7 (-15 -2751 ((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|)))) (-1208) (-1208) (-1208)) (T -639)) -((-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-640 *6)) (-5 *5 (-640 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-640 *8)) (-5 *1 (-639 *6 *7 *8))))) -(-10 -7 (-15 -2751 ((-640 |#3|) (-1 |#3| |#1| |#2|) (-640 |#1|) (-640 |#2|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) NIL)) (-3931 ((|#1| $) NIL)) (-1588 (($ $) NIL)) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) $) NIL (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2146 (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-4257 (($ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-3472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-3032 (($ $ $) NIL (|has| $ (-6 -4409)))) (-3021 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-3043 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "rest" $) NIL (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-2393 (($ $ $) 36 (|has| |#1| (-1093)))) (-2380 (($ $ $) 40 (|has| |#1| (-1093)))) (-2368 (($ $ $) 43 (|has| |#1| (-1093)))) (-1736 (($ (-1 (-112) |#1|) $) NIL)) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3919 ((|#1| $) NIL)) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1897 (($ $) 22) (($ $ (-767)) NIL)) (-2273 (($ $) NIL (|has| |#1| (-1093)))) (-1920 (($ $) 35 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2841 (($ |#1| $) NIL (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) NIL)) (-1417 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-3089 (((-112) $) NIL)) (-2256 (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093))) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) NIL)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3720 (((-112) $) 11)) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2960 (($) 9)) (-2552 (($ (-767) |#1|) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2346 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2383 (($ $ $) NIL (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 39 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2335 (($ |#1|) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1442 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-1956 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-2530 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) 19) (($ $ (-767)) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3101 (((-112) $) NIL)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) 38)) (-2749 (($) 37)) (-3858 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) 41) ((|#1| $ (-563) |#1|) NIL)) (-3514 (((-563) $ $) NIL)) (-1751 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-4159 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-2181 (((-112) $) NIL)) (-3074 (($ $) NIL)) (-3055 (($ $) NIL (|has| $ (-6 -4409)))) (-3083 (((-767) $) NIL)) (-3095 (($ $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) 52 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-3151 (($ |#1| $) 12)) (-3065 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1951 (($ $ $) 34) (($ |#1| $) 42) (($ (-640 $)) NIL) (($ $ |#1|) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1633 (($ $ $) 13)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2038 (((-1151) $) 30 (|has| |#1| (-824))) (((-1151) $ (-112)) 31 (|has| |#1| (-824))) (((-1262) (-818) $) 32 (|has| |#1| (-824))) (((-1262) (-818) $ (-112)) 33 (|has| |#1| (-824)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-640 |#1|) (-13 (-661 |#1|) (-10 -8 (-15 -2960 ($)) (-15 -3720 ((-112) $)) (-15 -3151 ($ |#1| $)) (-15 -1633 ($ $ $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -2393 ($ $ $)) (-15 -2380 ($ $ $)) (-15 -2368 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) (-1208)) (T -640)) -((-2960 (*1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-3720 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1208)))) (-3151 (*1 *1 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-1633 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) (-2393 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))) (-2380 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)))) (-2368 (*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))))) -(-13 (-661 |#1|) (-10 -8 (-15 -2960 ($)) (-15 -3720 ((-112) $)) (-15 -3151 ($ |#1| $)) (-15 -1633 ($ $ $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -2393 ($ $ $)) (-15 -2380 ($ $ $)) (-15 -2368 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-824)) (-6 (-824)) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 11) (($ (-1174)) NIL) (((-1174) $) NIL) ((|#1| $) 8)) (-2943 (((-112) $ $) NIL))) -(((-641 |#1|) (-13 (-1076) (-610 |#1|)) (-1093)) (T -641)) -NIL -(-13 (-1076) (-610 |#1|)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1910 (($ |#1| |#1| $) 47)) (-3740 (((-112) $ (-767)) NIL)) (-1736 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-2273 (($ $) 49)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2841 (($ |#1| $) 59 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4408)))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4236 (((-640 |#1|) $) 9 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 38)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3835 ((|#1| $) 51)) (-1956 (($ |#1| $) 29) (($ |#1| $ (-767)) 46)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3847 ((|#1| $) 54)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 23)) (-2749 (($) 28)) (-3864 (((-112) $) 57)) (-2262 (((-640 (-2 (|:| -3704 |#1|) (|:| -3261 (-767)))) $) 69)) (-3139 (($) 26) (($ (-640 |#1|)) 19)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) 66 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) 20)) (-2802 (((-536) $) 35 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-2062 (((-858) $) 14 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 24)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 71 (|has| |#1| (-1093)))) (-1708 (((-767) $) 17 (|has| $ (-6 -4408))))) -(((-642 |#1|) (-13 (-690 |#1|) (-10 -8 (-6 -4408) (-15 -3864 ((-112) $)) (-15 -1910 ($ |#1| |#1| $)))) (-1093)) (T -642)) -((-3864 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1093)))) (-1910 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1093))))) -(-13 (-690 |#1|) (-10 -8 (-6 -4408) (-15 -3864 ((-112) $)) (-15 -1910 ($ |#1| |#1| $)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23))) -(((-643 |#1|) (-140) (-1052)) (T -643)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1052))))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-2645 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#2| $ |#1| |#2|) NIL)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 |#2| "failed") |#1| $) NIL)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) NIL)) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) NIL)) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 ((|#1| $) NIL (|has| |#1| (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 ((|#1| $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1823 (((-641 |#1|) $) NIL)) (-2219 (((-112) |#1| $) NIL)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2312 (((-641 |#1|) $) NIL)) (-4062 (((-112) |#1| $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1966 ((|#2| $) NIL (|has| |#1| (-847)))) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-550 |#1| |#2| |#3|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) (-1094) (-1094) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411)))) (T -550)) +NIL +(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) +((-3652 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))) 52))) +(((-551 |#1| |#2|) (-10 -7 (-15 -3652 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) (-13 (-847) (-556)) (-13 (-27) (-430 |#1|))) (T -551)) +((-3652 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-847) (-556))) (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3))))) +(-10 -7 (-15 -3652 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-1 (-1166 |#2|) (-1166 |#2|))))) +((-3436 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 222)) (-3912 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 218)) (-1319 (((-585 |#5|) |#5| (-1 |#3| |#3|)) 226))) +(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1319 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3436 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3912 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-847) (-556) (-1035 (-564))) (-13 (-27) (-430 |#1|)) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -552)) +((-3912 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-27) (-430 *4))) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) (-4 *2 (-342 *5 *6 *7)))) (-3436 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8)))) (-1319 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-27) (-430 *5))) (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-342 *6 *7 *8))))) +(-10 -7 (-15 -1319 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3436 ((-585 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3912 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) +((-2764 (((-112) (-564) (-564)) 12)) (-2381 (((-564) (-564)) 7)) (-2011 (((-564) (-564) (-564)) 10))) +(((-553) (-10 -7 (-15 -2381 ((-564) (-564))) (-15 -2011 ((-564) (-564) (-564))) (-15 -2764 ((-112) (-564) (-564))))) (T -553)) +((-2764 (*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553)))) (-2011 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553)))) (-2381 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) +(-10 -7 (-15 -2381 ((-564) (-564))) (-15 -2011 ((-564) (-564) (-564))) (-15 -2764 ((-112) (-564) (-564)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-2741 ((|#1| $) 62)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-2451 (($ $) 92)) (-2319 (($ $) 75)) (-2850 ((|#1| $) 63)) (-3239 (((-3 $ "failed") $ $) 19)) (-4137 (($ $) 74)) (-2428 (($ $) 91)) (-2297 (($ $) 76)) (-2473 (($ $) 90)) (-2339 (($ $) 77)) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 70)) (-2239 (((-564) $) 71)) (-3951 (((-3 $ "failed") $) 33)) (-3702 (($ |#1| |#1|) 67)) (-3308 (((-112) $) 61)) (-1655 (($) 102)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 73)) (-2839 (((-112) $) 60)) (-2799 (($ $ $) 108)) (-2848 (($ $ $) 107)) (-2192 (($ $) 99)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-2085 (($ |#1| |#1|) 68) (($ |#1|) 66) (($ (-407 (-564))) 65)) (-4023 ((|#1| $) 64)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-1321 (((-3 $ "failed") $ $) 43)) (-4118 (($ $) 100)) (-2484 (($ $) 89)) (-2348 (($ $) 78)) (-2462 (($ $) 88)) (-2328 (($ $) 79)) (-2438 (($ $) 87)) (-2309 (($ $) 80)) (-4356 (((-112) $ |#1|) 59)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-564)) 69)) (-3270 (((-768)) 28 T CONST)) (-2521 (($ $) 98)) (-2379 (($ $) 86)) (-3360 (((-112) $ $) 40)) (-2495 (($ $) 97)) (-2358 (($ $) 85)) (-2548 (($ $) 96)) (-2404 (($ $) 84)) (-4065 (($ $) 95)) (-2415 (($ $) 83)) (-2534 (($ $) 94)) (-2391 (($ $) 82)) (-2507 (($ $) 93)) (-2367 (($ $) 81)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1751 (((-112) $ $) 105)) (-1731 (((-112) $ $) 104)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 106)) (-1723 (((-112) $ $) 103)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ $) 101) (($ $ (-407 (-564))) 72)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-554 |#1|) (-140) (-13 (-404) (-1194))) (T -554)) +((-2085 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3702 (*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2085 (*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))))) (-4023 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2850 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) (-4356 (*1 *2 *1 *3) (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))) +(-13 (-452) (-847) (-1194) (-999) (-1035 (-564)) (-10 -8 (-6 -2305) (-15 -2085 ($ |t#1| |t#1|)) (-15 -3702 ($ |t#1| |t#1|)) (-15 -2085 ($ |t#1|)) (-15 -2085 ($ (-407 (-564)))) (-15 -4023 (|t#1| $)) (-15 -2850 (|t#1| $)) (-15 -2741 (|t#1| $)) (-15 -3308 ((-112) $)) (-15 -2839 ((-112) $)) (-15 -4356 ((-112) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-284) . T) ((-290) . T) ((-452) . T) ((-493) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-847) . T) ((-999) . T) ((-1035 (-564)) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) . T) ((-1197) . T)) +((-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 9)) (-1948 (($ $) 11)) (-1832 (((-112) $) 20)) (-3951 (((-3 $ "failed") $) 16)) (-3360 (((-112) $ $) 22))) +(((-555 |#1|) (-10 -8 (-15 -1832 ((-112) |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -3719 ((-2 (|:| -4176 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|))) (-556)) (T -555)) +NIL +(-10 -8 (-15 -1832 ((-112) |#1|)) (-15 -3360 ((-112) |#1| |#1|)) (-15 -1948 (|#1| |#1|)) (-15 -3719 ((-2 (|:| -4176 |#1|) (|:| -4398 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ $) 43)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-556) (-140)) (T -556)) +((-1321 (*1 *1 *1 *1) (|partial| -4 *1 (-556))) (-3719 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4176 *1) (|:| -4398 *1) (|:| |associate| *1))) (-4 *1 (-556)))) (-1948 (*1 *1 *1) (-4 *1 (-556))) (-3360 (*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) +(-13 (-172) (-38 $) (-290) (-10 -8 (-15 -1321 ((-3 $ "failed") $ $)) (-15 -3719 ((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $)) (-15 -1948 ($ $)) (-15 -3360 ((-112) $ $)) (-15 -1832 ((-112) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2185 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|)) 39)) (-1884 (((-585 |#2|) |#2| (-1170)) 64)) (-3939 (((-3 |#2| "failed") |#2| (-1170)) 157)) (-1589 (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))) 160)) (-3578 (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|) 42))) +(((-557 |#1| |#2|) (-10 -7 (-15 -3578 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -2185 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -3939 ((-3 |#2| "failed") |#2| (-1170))) (-15 -1884 ((-585 |#2|) |#2| (-1170))) (-15 -1589 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -557)) +((-1589 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) (-4 *7 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-557 *7 *3)))) (-1884 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3939 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-2185 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-557 *6 *3)))) (-3578 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(-10 -7 (-15 -3578 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) |#2|)) (-15 -2185 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1170) (-641 |#2|))) (-15 -3939 ((-3 |#2| "failed") |#2| (-1170))) (-15 -1884 ((-585 |#2|) |#2| (-1170))) (-15 -1589 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1170) (-610 |#2|) (-641 (-610 |#2|))))) +((-3048 (((-418 |#1|) |#1|) 18)) (-4127 (((-418 |#1|) |#1|) 33)) (-2979 (((-3 |#1| "failed") |#1|) 49)) (-3242 (((-418 |#1|) |#1|) 63))) +(((-558 |#1|) (-10 -7 (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -3242 ((-418 |#1|) |#1|)) (-15 -2979 ((-3 |#1| "failed") |#1|))) (-545)) (T -558)) +((-2979 (*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545)))) (-3242 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-3048 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -3242 ((-418 |#1|) |#1|)) (-15 -2979 ((-3 |#1| "failed") |#1|))) +((-1485 (($) 9)) (-1451 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 35)) (-1823 (((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 32)) (-2974 (($ (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2808 (($ (-641 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-2423 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 39)) (-2572 (((-641 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-3080 (((-1264)) 12))) +(((-559) (-10 -8 (-15 -1485 ($)) (-15 -3080 ((-1264))) (-15 -1823 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2808 ($ (-641 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2974 ($ (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1451 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2572 ((-641 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2423 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -559)) +((-2423 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-2572 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-1451 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-559)))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-559)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-559)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-559)))) (-3080 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559)))) (-1485 (*1 *1) (-5 *1 (-559)))) +(-10 -8 (-15 -1485 ($)) (-15 -3080 ((-1264))) (-15 -1823 ((-641 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2808 ($ (-641 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2974 ($ (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1451 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2572 ((-641 (-2 (|:| -1327 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2423 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1150 (-225))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3089 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-4097 (((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|)) 35)) (-1898 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 105) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|)) 115)) (-4015 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 85) (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 55)) (-3583 (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|))) 92) (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|)) 114)) (-1528 (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 110) (((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|)) 116)) (-4174 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))) 135 (|has| |#3| (-652 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|)) 134 (|has| |#3| (-652 |#2|)))) (-4257 ((|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|) 53)) (-1687 (((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|)) 34))) +(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -4015 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4015 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3583 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -3583 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -1898 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -1898 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -1528 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -1528 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -4097 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -4257 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -1687 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -4174 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4174 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -560)) +((-4174 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-4174 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-1687 (*1 *2 *3 *4) (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) (-4257 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) (-4097 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) (-1528 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-1528 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) (-4 *2 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) (-1898 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-1898 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) (-4 *3 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) (-3583 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-3583 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-4015 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) (-4015 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))) +(-10 -7 (-15 -4015 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4015 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -3583 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| |#2| (-1166 |#2|))) (-15 -3583 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2| (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -1898 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) |#2| (-1166 |#2|))) (-15 -1898 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -1528 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) |#2| (-1166 |#2|))) (-15 -1528 ((-3 |#2| "failed") |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)) (-610 |#2|) |#2| (-407 (-1166 |#2|)))) (-15 -4097 ((-1166 (-407 (-1166 |#2|))) |#2| (-610 |#2|) (-610 |#2|) (-1166 |#2|))) (-15 -4257 (|#2| (-1166 (-407 (-1166 |#2|))) (-610 |#2|) |#2|)) (-15 -1687 ((-1166 (-407 (-1166 |#2|))) (-1166 |#2|) (-610 |#2|))) (IF (|has| |#3| (-652 |#2|)) (PROGN (-15 -4174 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) |#2| (-1166 |#2|))) (-15 -4174 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-610 |#2|) |#2| (-407 (-1166 |#2|))))) |%noBranch|)) +((-1946 (((-564) (-564) (-768)) 88)) (-3429 (((-564) (-564)) 86)) (-1793 (((-564) (-564)) 84)) (-1990 (((-564) (-564)) 91)) (-2512 (((-564) (-564) (-564)) 68)) (-2388 (((-564) (-564) (-564)) 65)) (-3967 (((-407 (-564)) (-564)) 29)) (-2991 (((-564) (-564)) 35)) (-4340 (((-564) (-564)) 77)) (-3574 (((-564) (-564)) 50)) (-2762 (((-641 (-564)) (-564)) 83)) (-2740 (((-564) (-564) (-564) (-564) (-564)) 62)) (-1476 (((-407 (-564)) (-564)) 59))) +(((-561) (-10 -7 (-15 -1476 ((-407 (-564)) (-564))) (-15 -2740 ((-564) (-564) (-564) (-564) (-564))) (-15 -2762 ((-641 (-564)) (-564))) (-15 -3574 ((-564) (-564))) (-15 -4340 ((-564) (-564))) (-15 -2991 ((-564) (-564))) (-15 -3967 ((-407 (-564)) (-564))) (-15 -2388 ((-564) (-564) (-564))) (-15 -2512 ((-564) (-564) (-564))) (-15 -1990 ((-564) (-564))) (-15 -1793 ((-564) (-564))) (-15 -3429 ((-564) (-564))) (-15 -1946 ((-564) (-564) (-768))))) (T -561)) +((-1946 (*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-768)) (-5 *1 (-561)))) (-3429 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1793 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2512 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2388 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3967 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2991 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-4340 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-3574 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-2762 (*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) (-2740 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) +(-10 -7 (-15 -1476 ((-407 (-564)) (-564))) (-15 -2740 ((-564) (-564) (-564) (-564) (-564))) (-15 -2762 ((-641 (-564)) (-564))) (-15 -3574 ((-564) (-564))) (-15 -4340 ((-564) (-564))) (-15 -2991 ((-564) (-564))) (-15 -3967 ((-407 (-564)) (-564))) (-15 -2388 ((-564) (-564) (-564))) (-15 -2512 ((-564) (-564) (-564))) (-15 -1990 ((-564) (-564))) (-15 -1793 ((-564) (-564))) (-15 -3429 ((-564) (-564))) (-15 -1946 ((-564) (-564) (-768)))) +((-2489 (((-2 (|:| |answer| |#4|) (|:| -3539 |#4|)) |#4| (-1 |#2| |#2|)) 57))) +(((-562 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2489 ((-2 (|:| |answer| |#4|) (|:| -3539 |#4|)) |#4| (-1 |#2| |#2|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -562)) +((-2489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3539 *3))) (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7))))) +(-10 -7 (-15 -2489 ((-2 (|:| |answer| |#4|) (|:| -3539 |#4|)) |#4| (-1 |#2| |#2|)))) +((-2489 (((-2 (|:| |answer| (-407 |#2|)) (|:| -3539 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 18))) +(((-563 |#1| |#2|) (-10 -7 (-15 -2489 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3539 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -563)) +((-2489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| (-407 *6)) (|:| -3539 (-407 *6)) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -2489 ((-2 (|:| |answer| (-407 |#2|)) (|:| -3539 (-407 |#2|)) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 30)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 93)) (-1948 (($ $) 94)) (-1832 (((-112) $) NIL)) (-1929 (($ $ $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) 51)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL)) (-2338 (($ $ $) 88)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL)) (-2239 (((-564) $) NIL)) (-1373 (($ $ $) 53)) (-3039 (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 76) (((-685 (-564)) (-685 $)) 72)) (-3951 (((-3 $ "failed") $) 90)) (-2646 (((-3 (-407 (-564)) "failed") $) NIL)) (-4072 (((-112) $) NIL)) (-2350 (((-407 (-564)) $) NIL)) (-2821 (($) 78) (($ $) 79)) (-1350 (($ $ $) 87)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-4167 (($ $ $ $) NIL)) (-1744 (($ $ $) 69)) (-3308 (((-112) $) NIL)) (-2742 (($ $ $) NIL)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-3840 (((-112) $) 34)) (-1801 (((-112) $) 82)) (-3907 (((-3 $ "failed") $) NIL)) (-2839 (((-112) $) 43)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2634 (($ $ $ $) 54)) (-2799 (($ $ $) 84)) (-2848 (($ $ $) 83)) (-1494 (($ $) NIL)) (-2395 (($ $) 49)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) 68)) (-1326 (($ $ $) NIL)) (-3258 (($) NIL T CONST)) (-4171 (($ $) 38)) (-3864 (((-1114) $) 42)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 125)) (-2577 (($ $ $) 91) (($ (-641 $)) NIL)) (-3676 (($ $) NIL)) (-4127 (((-418 $) $) 111)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL)) (-1321 (((-3 $ "failed") $ $) 109)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1497 (((-112) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 86)) (-4117 (($ $ (-768)) NIL) (($ $) NIL)) (-1901 (($ $) 40)) (-3896 (($ $) 36)) (-2235 (((-564) $) 48) (((-536) $) 63) (((-889 (-564)) $) NIL) (((-379) $) 57) (((-225) $) 60) (((-1152) $) 65)) (-3742 (((-859) $) 46) (($ (-564)) 47) (($ $) NIL) (($ (-564)) 47)) (-3270 (((-768)) NIL T CONST)) (-3248 (((-112) $ $) NIL)) (-3181 (($ $ $) NIL)) (-3237 (($) 35)) (-3360 (((-112) $ $) NIL)) (-3501 (($ $ $ $) 50)) (-2792 (($ $) 77)) (-4311 (($) 6 T CONST)) (-4321 (($) 31 T CONST)) (-2412 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-819) $) 28) (((-1264) (-819) $ (-112)) 29)) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 33)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 10)) (-1790 (($ $) 16) (($ $ $) 39)) (-1780 (($ $ $) 37)) (** (($ $ (-918)) NIL) (($ $ (-768)) 81)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 80) (($ $ $) 52))) +(((-564) (-13 (-545) (-612 (-1152)) (-825) (-10 -8 (-15 -2821 ($ $)) (-6 -4398) (-6 -4403) (-6 -4399) (-6 -4393)))) (T -564)) +((-2821 (*1 *1 *1) (-5 *1 (-564)))) +(-13 (-545) (-612 (-1152)) (-825) (-10 -8 (-15 -2821 ($ $)) (-6 -4398) (-6 -4403) (-6 -4399) (-6 -4393))) +((-3406 (((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058)) 119) (((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766)) 121)) (-3128 (((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170)) 196) (((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152)) 195) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058)) 200) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379)) 201) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379)) 202) (((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379))))) 203) (((-1032) (-316 (-379)) (-1088 (-840 (-379)))) 191) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379)) 190) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379)) 186) (((-1032) (-766)) 178) (((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058)) 185))) +(((-565) (-10 -7 (-15 -3128 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058))) (-15 -3128 ((-1032) (-766))) (-15 -3128 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379))) (-15 -3128 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379))) (-15 -3128 ((-1032) (-316 (-379)) (-1088 (-840 (-379))))) (-15 -3128 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))))) (-15 -3128 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379))) (-15 -3128 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379))) (-15 -3128 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058))) (-15 -3128 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152))) (-15 -3128 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170))))) (T -565)) +((-3128 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) (-5 *5 (-1170)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) (-5 *5 (-1152)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-766)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *1 (-565)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1032)) (-5 *1 (-565)))) (-3128 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565))))) +(-10 -7 (-15 -3128 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379) (-1058))) (-15 -3128 ((-1032) (-766))) (-15 -3128 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379) (-379))) (-15 -3128 ((-1032) (-316 (-379)) (-1088 (-840 (-379))) (-379))) (-15 -3128 ((-1032) (-316 (-379)) (-1088 (-840 (-379))))) (-15 -3128 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))))) (-15 -3128 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379))) (-15 -3128 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379))) (-15 -3128 ((-1032) (-316 (-379)) (-641 (-1088 (-840 (-379)))) (-379) (-379) (-1058))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032))) (-766) (-1058))) (-15 -3128 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1152))) (-15 -3128 ((-3 (-1032) "failed") (-316 (-379)) (-1086 (-840 (-379))) (-1170)))) +((-3344 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|)) 202)) (-3605 (((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|)) 102)) (-4362 (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|) 198)) (-4322 (((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170))) 207)) (-2564 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170)) 216 (|has| |#3| (-652 |#2|))))) +(((-566 |#1| |#2| |#3|) (-10 -7 (-15 -3605 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -4362 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -3344 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -4322 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -2564 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564))) (-13 (-430 |#1|) (-27) (-1194)) (-1094)) (T -566)) +((-2564 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) (-4 *4 (-13 (-430 *7) (-27) (-1194))) (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) (-4322 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-610 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-4 *2 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094)))) (-3344 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094)))) (-4362 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094)))) (-3605 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) +(-10 -7 (-15 -3605 ((-585 |#2|) |#2| (-610 |#2|) (-610 |#2|))) (-15 -4362 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-610 |#2|) (-610 |#2|) |#2|)) (-15 -3344 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-610 |#2|) (-610 |#2|) (-641 |#2|))) (-15 -4322 ((-3 |#2| "failed") |#2| |#2| |#2| (-610 |#2|) (-610 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1170)))) (IF (|has| |#3| (-652 |#2|)) (-15 -2564 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -4265 (-641 |#2|))) |#3| |#2| (-610 |#2|) (-610 |#2|) (-1170))) |%noBranch|)) +((-2293 (((-2 (|:| -4114 |#2|) (|:| |nconst| |#2|)) |#2| (-1170)) 63)) (-2998 (((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|)) 180 (-12 (|has| |#2| (-1133)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 159 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564)))))) (-3031 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)) 161 (-12 (|has| |#2| (-627)) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-883 (-564))))))) +(((-567 |#1| |#2|) (-10 -7 (-15 -2293 ((-2 (|:| -4114 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -3031 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -2998 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -2998 ((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-847) (-1035 (-564)) (-452) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -567)) +((-2998 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-840 *2)) (-4 *2 (-1133)) (-4 *2 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *1 (-567 *5 *2)))) (-2998 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-3031 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-2293 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) (-5 *2 (-2 (|:| -4114 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(-10 -7 (-15 -2293 ((-2 (|:| -4114 |#2|) (|:| |nconst| |#2|)) |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (PROGN (IF (|has| |#2| (-627)) (PROGN (-15 -3031 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) (-15 -2998 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) (IF (|has| |#2| (-1133)) (-15 -2998 ((-3 |#2| "failed") |#2| (-1170) (-840 |#2|) (-840 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-3878 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))) 41)) (-3128 (((-585 (-407 |#2|)) (-407 |#2|)) 28)) (-3739 (((-3 (-407 |#2|) "failed") (-407 |#2|)) 17)) (-2215 (((-3 (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|)) 48))) +(((-568 |#1| |#2|) (-10 -7 (-15 -3128 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -3739 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2215 ((-3 (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3878 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -568)) +((-3878 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-568 *5 *6)))) (-2215 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -2118 (-407 *5)) (|:| |coeff| (-407 *5)))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) (-3739 (*1 *2 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147) (-1035 (-564)))) (-5 *1 (-568 *3 *4)))) (-3128 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))) +(-10 -7 (-15 -3128 ((-585 (-407 |#2|)) (-407 |#2|))) (-15 -3739 ((-3 (-407 |#2|) "failed") (-407 |#2|))) (-15 -2215 ((-3 (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-407 |#2|))) (-15 -3878 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-641 (-407 |#2|))))) +((-2364 (((-3 (-564) "failed") |#1|) 14)) (-3215 (((-112) |#1|) 13)) (-2589 (((-564) |#1|) 9))) +(((-569 |#1|) (-10 -7 (-15 -2589 ((-564) |#1|)) (-15 -3215 ((-112) |#1|)) (-15 -2364 ((-3 (-564) "failed") |#1|))) (-1035 (-564))) (T -569)) +((-2364 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))) (-3215 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1035 (-564))))) (-2589 (*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2))))) +(-10 -7 (-15 -2589 ((-564) |#1|)) (-15 -3215 ((-112) |#1|)) (-15 -2364 ((-3 (-564) "failed") |#1|))) +((-4116 (((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|)))) 48)) (-2147 (((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170)) 28)) (-3863 (((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170)) 23)) (-2836 (((-3 (-2 (|:| -2118 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))) 35))) +(((-570 |#1|) (-10 -7 (-15 -2147 ((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3863 ((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170))) (-15 -4116 ((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|))))) (-15 -2836 ((-3 (-2 (|:| -2118 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))))) (-13 (-556) (-1035 (-564)) (-147))) (T -570)) +((-2836 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-2 (|:| -2118 (-407 (-949 *5))) (|:| |coeff| (-407 (-949 *5))))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5))))) (-4116 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-949 *6)))) (-5 *3 (-407 (-949 *6))) (-4 *6 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6)))) (-3863 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-1035 (-564)) (-147))) (-5 *1 (-570 *4)))) (-2147 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) (-5 *2 (-585 (-407 (-949 *5)))) (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5)))))) +(-10 -7 (-15 -2147 ((-585 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -3863 ((-3 (-407 (-949 |#1|)) "failed") (-407 (-949 |#1|)) (-1170))) (-15 -4116 ((-3 (-2 (|:| |mainpart| (-407 (-949 |#1|))) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 (-949 |#1|))) (|:| |logand| (-407 (-949 |#1|))))))) "failed") (-407 (-949 |#1|)) (-1170) (-641 (-407 (-949 |#1|))))) (-15 -2836 ((-3 (-2 (|:| -2118 (-407 (-949 |#1|))) (|:| |coeff| (-407 (-949 |#1|)))) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))))) +((-3732 (((-112) $ $) 73)) (-4173 (((-112) $) 47)) (-2741 ((|#1| $) 39)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) 77)) (-2451 (($ $) 137)) (-2319 (($ $) 117)) (-2850 ((|#1| $) 37)) (-3239 (((-3 $ "failed") $ $) NIL)) (-4137 (($ $) NIL)) (-2428 (($ $) 139)) (-2297 (($ $) 113)) (-2473 (($ $) 141)) (-2339 (($ $) 121)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) 92)) (-2239 (((-564) $) 94)) (-3951 (((-3 $ "failed") $) 76)) (-3702 (($ |#1| |#1|) 35)) (-3308 (((-112) $) 43)) (-1655 (($) 103)) (-3840 (((-112) $) 54)) (-2347 (($ $ (-564)) NIL)) (-2839 (((-112) $) 44)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2192 (($ $) 105)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-2085 (($ |#1| |#1|) 29) (($ |#1|) 34) (($ (-407 (-564))) 91)) (-4023 ((|#1| $) 36)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) 79) (($ (-641 $)) NIL)) (-1321 (((-3 $ "failed") $ $) 78)) (-4118 (($ $) 107)) (-2484 (($ $) 145)) (-2348 (($ $) 119)) (-2462 (($ $) 147)) (-2328 (($ $) 123)) (-2438 (($ $) 143)) (-2309 (($ $) 115)) (-4356 (((-112) $ |#1|) 41)) (-3742 (((-859) $) 99) (($ (-564)) 81) (($ $) NIL) (($ (-564)) 81)) (-3270 (((-768)) 101 T CONST)) (-2521 (($ $) 159)) (-2379 (($ $) 129)) (-3360 (((-112) $ $) NIL)) (-2495 (($ $) 157)) (-2358 (($ $) 125)) (-2548 (($ $) 155)) (-2404 (($ $) 135)) (-4065 (($ $) 153)) (-2415 (($ $) 133)) (-2534 (($ $) 151)) (-2391 (($ $) 131)) (-2507 (($ $) 149)) (-2367 (($ $) 127)) (-4311 (($) 30 T CONST)) (-4321 (($) 10 T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 48)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 46)) (-1790 (($ $) 52) (($ $ $) 53)) (-1780 (($ $ $) 51)) (** (($ $ (-918)) 69) (($ $ (-768)) NIL) (($ $ $) 109) (($ $ (-407 (-564))) 161)) (* (($ (-918) $) 64) (($ (-768) $) NIL) (($ (-564) $) 63) (($ $ $) 60))) +(((-571 |#1|) (-554 |#1|) (-13 (-404) (-1194))) (T -571)) +NIL +(-554 |#1|) +((-3561 (((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))) 27))) +(((-572) (-10 -7 (-15 -3561 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564)))))) (T -572)) +((-3561 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) (-5 *1 (-572))))) +(-10 -7 (-15 -3561 ((-3 (-641 (-1166 (-564))) "failed") (-641 (-1166 (-564))) (-1166 (-564))))) +((-2371 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170)) 19)) (-3168 (((-641 (-610 |#2|)) (-641 |#2|) (-1170)) 23)) (-3518 (((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|))) 11)) (-2970 ((|#2| |#2| (-1170)) 59 (|has| |#1| (-556)))) (-1662 ((|#2| |#2| (-1170)) 87 (-12 (|has| |#2| (-284)) (|has| |#1| (-452))))) (-3481 (((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170)) 25)) (-3588 (((-610 |#2|) (-641 (-610 |#2|))) 24)) (-3497 (((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170))) 115 (-12 (|has| |#2| (-284)) (|has| |#2| (-627)) (|has| |#2| (-1035 (-1170))) (|has| |#1| (-612 (-889 (-564)))) (|has| |#1| (-452)) (|has| |#1| (-883 (-564))))))) +(((-573 |#1| |#2|) (-10 -7 (-15 -2371 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -3588 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -3481 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -3518 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -3168 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2970 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -1662 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1035 (-1170))) (-15 -3497 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-847) (-430 |#1|)) (T -573)) +((-3497 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1170))) (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1035 *4)) (-4 *3 (-430 *7)) (-5 *4 (-1170)) (-4 *7 (-612 (-889 (-564)))) (-4 *7 (-452)) (-4 *7 (-883 (-564))) (-4 *7 (-847)) (-5 *2 (-585 *3)) (-5 *1 (-573 *7 *3)))) (-1662 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-847)) (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4)))) (-2970 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-847)) (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4)))) (-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6)))) (-3518 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-847)) (-5 *1 (-573 *3 *4)))) (-3481 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *1 (-573 *5 *6)))) (-3588 (*1 *2 *3) (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-847)) (-5 *2 (-610 *5)) (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4)))) (-2371 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) (-4 *4 (-847)) (-5 *1 (-573 *4 *5))))) +(-10 -7 (-15 -2371 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-1170))) (-15 -3588 ((-610 |#2|) (-641 (-610 |#2|)))) (-15 -3481 ((-610 |#2|) (-610 |#2|) (-641 (-610 |#2|)) (-1170))) (-15 -3518 ((-641 (-610 |#2|)) (-641 (-610 |#2|)) (-641 (-610 |#2|)))) (-15 -3168 ((-641 (-610 |#2|)) (-641 |#2|) (-1170))) (IF (|has| |#1| (-556)) (-15 -2970 (|#2| |#2| (-1170))) |%noBranch|) (IF (|has| |#1| (-452)) (IF (|has| |#2| (-284)) (PROGN (-15 -1662 (|#2| |#2| (-1170))) (IF (|has| |#1| (-612 (-889 (-564)))) (IF (|has| |#1| (-883 (-564))) (IF (|has| |#2| (-627)) (IF (|has| |#2| (-1035 (-1170))) (-15 -3497 ((-585 |#2|) |#2| (-1170) (-1 (-585 |#2|) |#2| (-1170)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1170)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) +((-2874 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|)) 200)) (-1415 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|))) 177)) (-3219 (((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|))) 174)) (-1959 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 165)) (-2162 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 187)) (-1317 (((-3 (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|)) 203)) (-1708 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|)) 206)) (-4224 (((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|)) 90)) (-3836 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 102)) (-2710 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|))) 181)) (-3892 (((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 169)) (-2882 (((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|)) 191)) (-2383 (((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|)) 211))) +(((-574 |#1| |#2|) (-10 -7 (-15 -2162 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2882 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2874 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -1708 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2383 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -1415 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -2710 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -1317 ((-3 (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3219 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -1959 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3892 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -4224 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3836 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -574)) +((-3836 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-574 *5 *3)))) (-4224 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-3892 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-621 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -2427 *4) (|:| |sol?| (-112))) (-564) *4)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5)))) (-1959 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4)))) (-3219 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-574 *6 *7)))) (-1317 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2118 (-407 *6)) (|:| |coeff| (-407 *6)))) (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6)))) (-2710 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -2427 *7) (|:| |sol?| (-112))) (-564) *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-1415 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2118 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) (-5 *3 (-407 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-574 *7 *8)))) (-2383 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2427 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2118 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-1708 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2118 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) (-2 (|:| -2118 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2874 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -2427 *6) (|:| |sol?| (-112))) (-564) *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7)))) (-2162 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2118 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(-10 -7 (-15 -2162 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2882 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -2874 ((-2 (|:| |answer| (-585 (-407 |#2|))) (|:| |a0| |#1|)) (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-641 |#1|) "failed") (-564) |#1| |#1|))) (-15 -1708 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-407 |#2|))) (-15 -2383 ((-3 (-2 (|:| |answer| (-407 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-407 |#2|))) (-15 -1415 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-641 (-407 |#2|)))) (-15 -2710 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|))))))) (|:| |a0| |#1|)) "failed") (-407 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|) (-641 (-407 |#2|)))) (-15 -1317 ((-3 (-2 (|:| -2118 (-407 |#2|)) (|:| |coeff| (-407 |#2|))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-407 |#2|))) (-15 -3219 ((-3 (-2 (|:| |mainpart| (-407 |#2|)) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| (-407 |#2|)) (|:| |logand| (-407 |#2|)))))) "failed") (-407 |#2|) (-1 |#2| |#2|) (-641 (-407 |#2|)))) (-15 -1959 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3892 ((-3 (-621 |#1| |#2|) "failed") (-621 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -2427 |#1|) (|:| |sol?| (-112))) (-564) |#1|))) (-15 -4224 ((-2 (|:| |ir| (-585 (-407 |#2|))) (|:| |specpart| (-407 |#2|)) (|:| |polypart| |#2|)) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3836 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) +((-3538 (((-3 |#2| "failed") |#2| (-1170) (-1170)) 10))) +(((-575 |#1| |#2|) (-10 -7 (-15 -3538 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-1133) (-29 |#1|))) (T -575)) +((-3538 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-575 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-1133) (-29 *4)))))) +(-10 -7 (-15 -3538 ((-3 |#2| "failed") |#2| (-1170) (-1170)))) +((-4075 (((-687 (-1217)) $ (-1217)) 26)) (-2047 (((-687 (-549)) $ (-549)) 25)) (-3674 (((-768) $ (-128)) 27)) (-1768 (((-687 (-129)) $ (-129)) 24)) (-2268 (((-687 (-1217)) $) 12)) (-3297 (((-687 (-1215)) $) 8)) (-4193 (((-687 (-1214)) $) 10)) (-3832 (((-687 (-549)) $) 13)) (-1567 (((-687 (-547)) $) 9)) (-2636 (((-687 (-546)) $) 11)) (-1694 (((-768) $ (-128)) 7)) (-3356 (((-687 (-129)) $) 14)) (-1322 (($ $) 6))) +(((-576) (-140)) (T -576)) +NIL +(-13 (-527) (-857)) +(((-173) . T) ((-527) . T) ((-857) . T)) +((-4075 (((-687 (-1217)) $ (-1217)) NIL)) (-2047 (((-687 (-549)) $ (-549)) NIL)) (-3674 (((-768) $ (-128)) NIL)) (-1768 (((-687 (-129)) $ (-129)) NIL)) (-2268 (((-687 (-1217)) $) NIL)) (-3297 (((-687 (-1215)) $) NIL)) (-4193 (((-687 (-1214)) $) NIL)) (-3832 (((-687 (-549)) $) NIL)) (-1567 (((-687 (-547)) $) NIL)) (-2636 (((-687 (-546)) $) NIL)) (-1694 (((-768) $ (-128)) NIL)) (-3356 (((-687 (-129)) $) NIL)) (-3342 (((-112) $) NIL)) (-1888 (($ (-388)) 14) (($ (-1152)) 16)) (-3742 (((-859) $) NIL)) (-1322 (($ $) NIL))) +(((-577) (-13 (-576) (-611 (-859)) (-10 -8 (-15 -1888 ($ (-388))) (-15 -1888 ($ (-1152))) (-15 -3342 ((-112) $))))) (T -577)) +((-1888 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577)))) (-1888 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577))))) +(-13 (-576) (-611 (-859)) (-10 -8 (-15 -1888 ($ (-388))) (-15 -1888 ($ (-1152))) (-15 -3342 ((-112) $)))) +((-3732 (((-112) $ $) NIL)) (-2170 (($) 7 T CONST)) (-2217 (((-1152) $) NIL)) (-3644 (($) 6 T CONST)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 14)) (-1611 (($) 8 T CONST)) (-1705 (((-112) $ $) 10))) +(((-578) (-13 (-1094) (-10 -8 (-15 -3644 ($) -2091) (-15 -2170 ($) -2091) (-15 -1611 ($) -2091)))) (T -578)) +((-3644 (*1 *1) (-5 *1 (-578))) (-2170 (*1 *1) (-5 *1 (-578))) (-1611 (*1 *1) (-5 *1 (-578)))) +(-13 (-1094) (-10 -8 (-15 -3644 ($) -2091) (-15 -2170 ($) -2091) (-15 -1611 ($) -2091))) +((-3732 (((-112) $ $) NIL)) (-2216 (((-687 $) (-491)) 21)) (-2217 (((-1152) $) NIL)) (-3376 (($ (-1152)) 14)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 36)) (-3090 (((-213 4 (-129)) $) 24)) (-1705 (((-112) $ $) 26))) +(((-579) (-13 (-1094) (-10 -8 (-15 -3376 ($ (-1152))) (-15 -3090 ((-213 4 (-129)) $)) (-15 -2216 ((-687 $) (-491)))))) (T -579)) +((-3376 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579)))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579)))) (-2216 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579))))) +(-13 (-1094) (-10 -8 (-15 -3376 ($ (-1152))) (-15 -3090 ((-213 4 (-129)) $)) (-15 -2216 ((-687 $) (-491))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-4137 (($ $ (-564)) 77)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3874 (($ (-1166 (-564)) (-564)) 83)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) 68)) (-2861 (($ $) 43)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-1619 (((-768) $) 16)) (-3840 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1983 (((-564)) 37)) (-3405 (((-564) $) 41)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3004 (($ $ (-564)) 24)) (-1321 (((-3 $ "failed") $ $) 73)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) 17)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 74)) (-3716 (((-1150 (-564)) $) 19)) (-2356 (($ $) 26)) (-3742 (((-859) $) 103) (($ (-564)) 63) (($ $) NIL)) (-3270 (((-768)) 15 T CONST)) (-3360 (((-112) $ $) NIL)) (-2305 (((-564) $ (-564)) 46)) (-4311 (($) 44 T CONST)) (-4321 (($) 21 T CONST)) (-1705 (((-112) $ $) 54)) (-1790 (($ $) 62) (($ $ $) 48)) (-1780 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 64) (($ $ $) 65))) +(((-580 |#1| |#2|) (-866 |#1|) (-564) (-112)) (T -580)) +NIL +(-866 |#1|) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 30)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-4374 (((-1182 (-918) (-768)) (-564)) 59)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 $ "failed") $) 98)) (-2239 (($ $) 97)) (-2340 (($ (-1259 $)) 96)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 56)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) 44)) (-2821 (($) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) 61)) (-1313 (((-112) $) NIL)) (-3176 (($ $) NIL) (($ $ (-768)) NIL)) (-4188 (((-112) $) NIL)) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3840 (((-112) $) NIL)) (-2680 (($) 49 (|has| $ (-368)))) (-1530 (((-112) $) NIL (|has| $ (-368)))) (-3328 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-3907 (((-3 $ "failed") $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 $) $ (-918)) NIL (|has| $ (-368))) (((-1166 $) $) 107)) (-1906 (((-918) $) 67)) (-2528 (((-1166 $) $) NIL (|has| $ (-368)))) (-2945 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-4375 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL T CONST)) (-1495 (($ (-918)) 60)) (-3259 (((-112) $) 90)) (-3864 (((-1114) $) NIL)) (-1693 (($) 28 (|has| $ (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 54)) (-4127 (((-418 $) $) NIL)) (-1506 (((-918)) 89) (((-830 (-918))) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-3 (-768) "failed") $ $) NIL) (((-768) $) NIL)) (-3603 (((-134)) NIL)) (-4117 (($ $ (-768)) NIL) (($ $) NIL)) (-2266 (((-918) $) 88) (((-830 (-918)) $) NIL)) (-3925 (((-1166 $)) 105)) (-1543 (($) 66)) (-4220 (($) 50 (|has| $ (-368)))) (-1785 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) 94)) (-2235 (((-564) $) 40)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) 42) (($ $) NIL) (($ (-407 (-564))) NIL)) (-4253 (((-3 $ "failed") $) NIL) (($ $) 108)) (-3270 (((-768)) 51 T CONST)) (-4265 (((-1259 $) (-918)) 100) (((-1259 $)) 99)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) 31 T CONST)) (-4321 (($) 27 T CONST)) (-2578 (($ $ (-768)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 34)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 84) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-581 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-918)) (T -581)) +NIL +(-13 (-349) (-329 $) (-612 (-564))) +((-2990 (((-1264) (-1152)) 10))) +(((-582) (-10 -7 (-15 -2990 ((-1264) (-1152))))) (T -582)) +((-2990 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582))))) +(-10 -7 (-15 -2990 ((-1264) (-1152)))) +((-3651 (((-585 |#2|) (-585 |#2|)) 41)) (-3512 (((-641 |#2|) (-585 |#2|)) 43)) (-4092 ((|#2| (-585 |#2|)) 49))) +(((-583 |#1| |#2|) (-10 -7 (-15 -3651 ((-585 |#2|) (-585 |#2|))) (-15 -3512 ((-641 |#2|) (-585 |#2|))) (-15 -4092 (|#2| (-585 |#2|)))) (-13 (-452) (-1035 (-564)) (-847) (-637 (-564))) (-13 (-29 |#1|) (-1194))) (T -583)) +((-4092 (*1 *2 *3) (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) (-5 *1 (-583 *4 *2)) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194))) (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *1 (-583 *3 *4))))) +(-10 -7 (-15 -3651 ((-585 |#2|) (-585 |#2|))) (-15 -3512 ((-641 |#2|) (-585 |#2|))) (-15 -4092 (|#2| (-585 |#2|)))) +((-2187 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|)) 30))) +(((-584 |#1| |#2|) (-10 -7 (-15 -2187 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2187 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2187 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-363) (-363)) (T -584)) +((-2187 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-584 *5 *6)))) (-2187 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) (-2187 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2118 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2118 *6) (|:| |coeff| *6))) (-5 *1 (-584 *5 *6)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6))))) +(-10 -7 (-15 -2187 ((-585 |#2|) (-1 |#2| |#1|) (-585 |#1|))) (-15 -2187 ((-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2118 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2187 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2187 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) 76)) (-2239 ((|#1| $) NIL)) (-2118 ((|#1| $) 30)) (-1462 (((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32)) (-3904 (($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28)) (-3539 (((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $) 31)) (-2217 (((-1152) $) NIL)) (-2787 (($ |#1| |#1|) 38) (($ |#1| (-1170)) 49 (|has| |#1| (-1035 (-1170))))) (-3864 (((-1114) $) NIL)) (-1931 (((-112) $) 35)) (-4117 ((|#1| $ (-1 |#1| |#1|)) 88) ((|#1| $ (-1170)) 89 (|has| |#1| (-897 (-1170))))) (-3742 (((-859) $) 112) (($ |#1|) 29)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) 17) (($ $ $) NIL)) (-1780 (($ $ $) 85)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 16) (($ (-407 (-564)) $) 41) (($ $ (-407 (-564))) NIL))) +(((-585 |#1|) (-13 (-714 (-407 (-564))) (-1035 |#1|) (-10 -8 (-15 -3904 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2118 (|#1| $)) (-15 -3539 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -1462 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1931 ((-112) $)) (-15 -2787 ($ |#1| |#1|)) (-15 -4117 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-897 (-1170))) (-15 -4117 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1035 (-1170))) (-15 -2787 ($ |#1| (-1170))) |%noBranch|))) (-363)) (T -585)) +((-3904 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2)) (|:| |logand| (-1166 *2))))) (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-363)) (-5 *1 (-585 *2)))) (-2118 (*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) (|:| |logand| (-1166 *3))))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-1462 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-1931 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363)))) (-2787 (*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-4117 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) (-4117 (*1 *2 *1 *3) (-12 (-4 *2 (-363)) (-4 *2 (-897 *3)) (-5 *1 (-585 *2)) (-5 *3 (-1170)))) (-2787 (*1 *1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1035 *3)) (-4 *2 (-363))))) +(-13 (-714 (-407 (-564))) (-1035 |#1|) (-10 -8 (-15 -3904 ($ |#1| (-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) (-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2118 (|#1| $)) (-15 -3539 ((-641 (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 |#1|)) (|:| |logand| (-1166 |#1|)))) $)) (-15 -1462 ((-641 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1931 ((-112) $)) (-15 -2787 ($ |#1| |#1|)) (-15 -4117 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-897 (-1170))) (-15 -4117 (|#1| $ (-1170))) |%noBranch|) (IF (|has| |#1| (-1035 (-1170))) (-15 -2787 ($ |#1| (-1170))) |%noBranch|))) +((-3562 (((-112) |#1|) 16)) (-1427 (((-3 |#1| "failed") |#1|) 14)) (-2160 (((-2 (|:| -3237 |#1|) (|:| -2515 (-768))) |#1|) 38) (((-3 |#1| "failed") |#1| (-768)) 18)) (-3521 (((-112) |#1| (-768)) 19)) (-3279 ((|#1| |#1|) 42)) (-3900 ((|#1| |#1| (-768)) 45))) +(((-586 |#1|) (-10 -7 (-15 -3521 ((-112) |#1| (-768))) (-15 -2160 ((-3 |#1| "failed") |#1| (-768))) (-15 -2160 ((-2 (|:| -3237 |#1|) (|:| -2515 (-768))) |#1|)) (-15 -3900 (|#1| |#1| (-768))) (-15 -3562 ((-112) |#1|)) (-15 -1427 ((-3 |#1| "failed") |#1|)) (-15 -3279 (|#1| |#1|))) (-545)) (T -586)) +((-3279 (*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-1427 (*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3562 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-3900 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-2160 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3237 *3) (|:| -2515 (-768)))) (-5 *1 (-586 *3)) (-4 *3 (-545)))) (-2160 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) (-3521 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -3521 ((-112) |#1| (-768))) (-15 -2160 ((-3 |#1| "failed") |#1| (-768))) (-15 -2160 ((-2 (|:| -3237 |#1|) (|:| -2515 (-768))) |#1|)) (-15 -3900 (|#1| |#1| (-768))) (-15 -3562 ((-112) |#1|)) (-15 -1427 ((-3 |#1| "failed") |#1|)) (-15 -3279 (|#1| |#1|))) +((-2129 (((-1166 |#1|) (-918)) 43))) +(((-587 |#1|) (-10 -7 (-15 -2129 ((-1166 |#1|) (-918)))) (-349)) (T -587)) +((-2129 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) (-4 *4 (-349))))) +(-10 -7 (-15 -2129 ((-1166 |#1|) (-918)))) +((-3651 (((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|)))) 27)) (-3128 (((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170)) 34 (|has| |#1| (-147)))) (-3512 (((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|)))) 19)) (-2670 (((-316 |#1|) (-407 (-949 |#1|)) (-1170)) 32 (|has| |#1| (-147)))) (-4092 (((-316 |#1|) (-585 (-407 (-949 |#1|)))) 21))) +(((-588 |#1|) (-10 -7 (-15 -3651 ((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|))))) (-15 -3512 ((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|))))) (-15 -4092 ((-316 |#1|) (-585 (-407 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3128 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -2670 ((-316 |#1|) (-407 (-949 |#1|)) (-1170)))) |%noBranch|)) (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (T -588)) +((-2670 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-316 *5)) (-5 *1 (-588 *5)))) (-3128 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) (-4092 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-949 *4)))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-316 *4)) (-5 *1 (-588 *4)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-585 (-407 (-949 *4)))) (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) (-3651 (*1 *2 *2) (-12 (-5 *2 (-585 (-407 (-949 *3)))) (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) (-5 *1 (-588 *3))))) +(-10 -7 (-15 -3651 ((-585 (-407 (-949 |#1|))) (-585 (-407 (-949 |#1|))))) (-15 -3512 ((-641 (-316 |#1|)) (-585 (-407 (-949 |#1|))))) (-15 -4092 ((-316 |#1|) (-585 (-407 (-949 |#1|))))) (IF (|has| |#1| (-147)) (PROGN (-15 -3128 ((-3 (-316 |#1|) (-641 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -2670 ((-316 |#1|) (-407 (-949 |#1|)) (-1170)))) |%noBranch|)) +((-2400 (((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564)))) 74) (((-641 (-685 (-564))) (-641 (-564))) 75) (((-685 (-564)) (-641 (-564)) (-902 (-564))) 68)) (-3985 (((-768) (-641 (-564))) 65))) +(((-589) (-10 -7 (-15 -3985 ((-768) (-641 (-564)))) (-15 -2400 ((-685 (-564)) (-641 (-564)) (-902 (-564)))) (-15 -2400 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2400 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564))))))) (T -589)) +((-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-902 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589)))) (-2400 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-564))) (-5 *4 (-902 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-589)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-768)) (-5 *1 (-589))))) +(-10 -7 (-15 -3985 ((-768) (-641 (-564)))) (-15 -2400 ((-685 (-564)) (-641 (-564)) (-902 (-564)))) (-15 -2400 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2400 ((-641 (-685 (-564))) (-641 (-564)) (-641 (-902 (-564)))))) +((-3649 (((-641 |#5|) |#5| (-112)) 99)) (-2097 (((-112) |#5| (-641 |#5|)) 34))) +(((-590 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3649 ((-641 |#5|) |#5| (-112))) (-15 -2097 ((-112) |#5| (-641 |#5|)))) (-13 (-307) (-147)) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -590)) +((-2097 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-590 *5 *6 *7 *8 *3)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-641 *3)) (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8))))) +(-10 -7 (-15 -3649 ((-641 |#5|) |#5| (-112))) (-15 -2097 ((-112) |#5| (-641 |#5|)))) +((-3732 (((-112) $ $) NIL)) (-3076 (((-1129) $) 11)) (-3065 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-591) (-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1129) $))))) (T -591)) +((-3065 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591))))) +(-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1129) $)))) +((-3732 (((-112) $ $) NIL (|has| (-144) (-1094)))) (-3315 (($ $) 38)) (-1853 (($ $) NIL)) (-4006 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1398 (((-112) $ $) 66)) (-1375 (((-112) $ $ (-564)) 60)) (-3651 (((-641 $) $ (-144)) 74) (((-641 $) $ (-141)) 75)) (-1445 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-847)))) (-2402 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-847))))) (-2777 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 (((-144) $ (-564) (-144)) 57 (|has| $ (-6 -4412))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2803 (($ $ (-144)) 79) (($ $ (-141)) 80)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1648 (($ $ (-1226 (-564)) $) 56)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2366 (($ (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2619 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4412)))) (-2540 (((-144) $ (-564)) NIL)) (-1419 (((-112) $ $) 93)) (-3305 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 63 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 61) (((-564) (-141) $ (-564)) 65)) (-3616 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-3619 (($ (-768) (-144)) 9)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 32 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| (-144) (-847)))) (-2164 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-847)))) (-1386 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-3774 (((-564) $) 47 (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| (-144) (-847)))) (-2070 (((-112) $ $ (-144)) 94)) (-1387 (((-768) $ $ (-144)) 91)) (-2606 (($ (-1 (-144) (-144)) $) 37 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1686 (($ $) 41)) (-3286 (($ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2812 (($ $ (-144)) 76) (($ $ (-141)) 77)) (-2217 (((-1152) $) 43 (|has| (-144) (-1094)))) (-2308 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) 27)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-564) $) 90) (((-1114) $) NIL (|has| (-144) (-1094)))) (-1966 (((-144) $) NIL (|has| (-564) (-847)))) (-3582 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3099 (($ $ (-144)) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2572 (((-641 (-144)) $) NIL)) (-4003 (((-112) $) 15)) (-3434 (($) 10)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) 67) (($ $ (-1226 (-564))) 25) (($ $ $) NIL)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3873 (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411))) (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-1999 (($ $ $ (-564)) 82 (|has| $ (-6 -4412)))) (-3896 (($ $) 20)) (-2235 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-3753 (($ (-641 (-144))) NIL)) (-1802 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) 19) (($ (-641 $)) 83)) (-3742 (($ (-144)) NIL) (((-859) $) 31 (|has| (-144) (-611 (-859))))) (-1417 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1705 (((-112) $ $) 17 (|has| (-144) (-1094)))) (-1741 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1723 (((-112) $ $) 18 (|has| (-144) (-847)))) (-2641 (((-768) $) 16 (|has| $ (-6 -4411))))) +(((-592 |#1|) (-13 (-1138) (-10 -8 (-15 -3864 ((-564) $)))) (-564)) (T -592)) +((-3864 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2)))) +(-13 (-1138) (-10 -8 (-15 -3864 ((-564) $)))) +((-2958 (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|)) 32))) +(((-593 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2958 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -2958 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|)) (T -593)) +((-2958 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-2958 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1088 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-790)) (-4 *4 (-847)) (-4 *7 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) (-5 *1 (-593 *6 *4 *7 *3))))) +(-10 -7 (-15 -2958 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2| (-1088 |#4|))) (-15 -2958 ((-2 (|:| |num| |#4|) (|:| |den| (-564))) |#4| |#2|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 71)) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2892 (($ $ (-564)) 57) (($ $ (-564) (-564)) 58)) (-3157 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 64)) (-2858 (($ $) 107)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1548 (((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564))) 240)) (-2751 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 36)) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1988 (((-112) $) NIL)) (-1619 (((-564) $) 62) (((-564) $ (-564)) 63)) (-3840 (((-112) $) NIL)) (-2472 (($ $ (-918)) 83)) (-3028 (($ (-1 |#1| (-564)) $) 80)) (-2005 (((-112) $) 26)) (-4245 (($ |#1| (-564)) 22) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) 75)) (-1919 (($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 13)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3128 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-2502 (((-3 $ "failed") $ $ (-112)) 106)) (-4351 (($ $ $) 114)) (-3864 (((-1114) $) NIL)) (-2370 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 15)) (-2361 (((-1023 (-840 (-564))) $) 14)) (-3004 (($ $ (-564)) 47)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2416 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4382 ((|#1| $ (-564)) 61) (($ $ $) NIL (|has| (-564) (-1106)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 77 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2266 (((-564) $) NIL)) (-2356 (($ $) 48)) (-3742 (((-859) $) NIL) (($ (-564)) 29) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 28 (|has| |#1| (-172)))) (-2856 ((|#1| $ (-564)) 60)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) 39 T CONST)) (-2212 ((|#1| $) NIL)) (-2229 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-3706 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3633 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2000 (($ $) 173 (|has| |#1| (-38 (-407 (-564)))))) (-1872 (($ $) 201 (|has| |#1| (-38 (-407 (-564)))))) (-4150 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-3816 (($ $ (-407 (-564))) 176 (|has| |#1| (-38 (-407 (-564)))))) (-4377 (($ $ |#1|) 156 (|has| |#1| (-38 (-407 (-564)))))) (-3729 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-3470 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-3520 (($ $) 203 (|has| |#1| (-38 (-407 (-564)))))) (-1330 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-1468 (($ $) 199 (|has| |#1| (-38 (-407 (-564)))))) (-2483 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-3865 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-3504 (($ $) 171 (|has| |#1| (-38 (-407 (-564)))))) (-1343 (($ $) 209 (|has| |#1| (-38 (-407 (-564)))))) (-2172 (($ $) 185 (|has| |#1| (-38 (-407 (-564)))))) (-3831 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-2565 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3345 (($ $) 213 (|has| |#1| (-38 (-407 (-564)))))) (-3767 (($ $) 189 (|has| |#1| (-38 (-407 (-564)))))) (-3727 (($ $) 215 (|has| |#1| (-38 (-407 (-564)))))) (-2105 (($ $) 191 (|has| |#1| (-38 (-407 (-564)))))) (-2964 (($ $) 211 (|has| |#1| (-38 (-407 (-564)))))) (-3598 (($ $) 187 (|has| |#1| (-38 (-407 (-564)))))) (-3460 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-3962 (($ $) 183 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2305 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4311 (($) 30 T CONST)) (-4321 (($) 40 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1705 (((-112) $ $) 73)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) 90) (($ $ $) 72)) (-1780 (($ $ $) 87)) (** (($ $ (-918)) NIL) (($ $ (-768)) 109)) (* (($ (-918) $) 97) (($ (-768) $) 95) (($ (-564) $) 92) (($ $ $) 103) (($ $ |#1|) NIL) (($ |#1| $) 121) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-594 |#1|) (-13 (-1237 |#1| (-564)) (-10 -8 (-15 -1919 ($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2361 ((-1023 (-840 (-564))) $)) (-15 -2370 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -2751 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2005 ((-112) $)) (-15 -3028 ($ (-1 |#1| (-564)) $)) (-15 -2502 ((-3 $ "failed") $ $ (-112))) (-15 -2858 ($ $)) (-15 -4351 ($ $ $)) (-15 -1548 ((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $)) (-15 -4377 ($ $ |#1|)) (-15 -3816 ($ $ (-407 (-564)))) (-15 -3470 ($ $)) (-15 -3729 ($ $)) (-15 -2000 ($ $)) (-15 -3504 ($ $)) (-15 -3706 ($ $)) (-15 -2483 ($ $)) (-15 -4150 ($ $)) (-15 -1330 ($ $)) (-15 -2565 ($ $)) (-15 -3962 ($ $)) (-15 -2172 ($ $)) (-15 -3598 ($ $)) (-15 -3767 ($ $)) (-15 -2105 ($ $)) (-15 -3633 ($ $)) (-15 -3865 ($ $)) (-15 -2229 ($ $)) (-15 -1468 ($ $)) (-15 -1872 ($ $)) (-15 -3520 ($ $)) (-15 -3831 ($ $)) (-15 -3460 ($ $)) (-15 -1343 ($ $)) (-15 -2964 ($ $)) (-15 -3345 ($ $)) (-15 -3727 ($ $))) |%noBranch|))) (-1046)) (T -594)) +((-2005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-1919 (*1 *1 *2 *3) (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1046)) (-5 *1 (-594 *4)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-2370 (*1 *2 *1) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) (-3028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) (-2502 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) (-2858 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))) (-4351 (*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046)))) (-1548 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) (-5 *4 (-1023 (-840 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) (-4 *6 (-1046)) (-5 *2 (-859)) (-5 *1 (-594 *6)))) (-3128 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4377 (*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3816 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1046)))) (-3470 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3729 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2000 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3504 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3706 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-4150 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1330 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2565 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3962 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2172 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3598 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3767 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2105 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3633 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3865 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2229 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1468 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1872 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3520 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3831 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3460 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-1343 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-2964 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3345 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) (-3727 (*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(-13 (-1237 |#1| (-564)) (-10 -8 (-15 -1919 ($ (-1023 (-840 (-564))) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2361 ((-1023 (-840 (-564))) $)) (-15 -2370 ((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $)) (-15 -2751 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))))) (-15 -2005 ((-112) $)) (-15 -3028 ($ (-1 |#1| (-564)) $)) (-15 -2502 ((-3 $ "failed") $ $ (-112))) (-15 -2858 ($ $)) (-15 -4351 ($ $ $)) (-15 -1548 ((-859) (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) (-1023 (-840 (-564))) (-1170) |#1| (-407 (-564)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $)) (-15 -4377 ($ $ |#1|)) (-15 -3816 ($ $ (-407 (-564)))) (-15 -3470 ($ $)) (-15 -3729 ($ $)) (-15 -2000 ($ $)) (-15 -3504 ($ $)) (-15 -3706 ($ $)) (-15 -2483 ($ $)) (-15 -4150 ($ $)) (-15 -1330 ($ $)) (-15 -2565 ($ $)) (-15 -3962 ($ $)) (-15 -2172 ($ $)) (-15 -3598 ($ $)) (-15 -3767 ($ $)) (-15 -2105 ($ $)) (-15 -3633 ($ $)) (-15 -3865 ($ $)) (-15 -2229 ($ $)) (-15 -1468 ($ $)) (-15 -1872 ($ $)) (-15 -3520 ($ $)) (-15 -3831 ($ $)) (-15 -3460 ($ $)) (-15 -1343 ($ $)) (-15 -2964 ($ $)) (-15 -3345 ($ $)) (-15 -3727 ($ $))) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2751 (($ (-1150 |#1|)) 9)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) 48)) (-1988 (((-112) $) 58)) (-1619 (((-768) $) 63) (((-768) $ (-768)) 62)) (-3840 (((-112) $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1321 (((-3 $ "failed") $ $) 50 (|has| |#1| (-556)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-1150 |#1|) $) 29)) (-3270 (((-768)) 57 T CONST)) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) 10 T CONST)) (-4321 (($) 14 T CONST)) (-1705 (((-112) $ $) 28)) (-1790 (($ $) 36) (($ $ $) 16)) (-1780 (($ $ $) 31)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 40) (($ $ $) 34) (($ |#1| $) 43) (($ $ |#1|) 44) (($ $ (-564)) 42))) +(((-595 |#1|) (-13 (-1046) (-10 -8 (-15 -3110 ((-1150 |#1|) $)) (-15 -2751 ($ (-1150 |#1|))) (-15 -1988 ((-112) $)) (-15 -1619 ((-768) $)) (-15 -1619 ((-768) $ (-768))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) (-1046)) (T -595)) +((-3110 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-595 *3)))) (-1988 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (-1619 (*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1046))))) +(-13 (-1046) (-10 -8 (-15 -3110 ((-1150 |#1|) $)) (-15 -2751 ($ (-1150 |#1|))) (-15 -1988 ((-112) $)) (-15 -1619 ((-768) $)) (-15 -1619 ((-768) $ (-768))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-564))) (IF (|has| |#1| (-556)) (-6 (-556)) |%noBranch|))) +((-2187 (((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)) 15))) +(((-596 |#1| |#2|) (-10 -7 (-15 -2187 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) (-1209) (-1209)) (T -596)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6))))) +(-10 -7 (-15 -2187 ((-599 |#2|) (-1 |#2| |#1|) (-599 |#1|)))) +((-2187 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)) 20) (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|)) 19) (((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|)) 18))) +(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -2187 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2187 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -2187 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -597)) +((-2187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-597 *6 *7 *8)))) (-2187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-599 *8)) (-5 *1 (-597 *6 *7 *8))))) +(-10 -7 (-15 -2187 ((-599 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-599 |#2|))) (-15 -2187 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-599 |#2|))) (-15 -2187 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-599 |#1|) (-1150 |#2|)))) +((-3797 ((|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))) 57)) (-1908 (((-169 |#2|) |#3|) 123)) (-2649 ((|#3| (-169 |#2|)) 46)) (-2149 ((|#2| |#3|) 21)) (-3549 ((|#3| |#2|) 35))) +(((-598 |#1| |#2| |#3|) (-10 -7 (-15 -2649 (|#3| (-169 |#2|))) (-15 -2149 (|#2| |#3|)) (-15 -3549 (|#3| |#2|)) (-15 -1908 ((-169 |#2|) |#3|)) (-15 -3797 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) (-13 (-556) (-847)) (-13 (-430 |#1|) (-999) (-1194)) (-13 (-430 (-169 |#1|)) (-999) (-1194))) (T -598)) +((-3797 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) (-4 *2 (-13 (-430 (-169 *5)) (-999) (-1194))) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-598 *5 *6 *2)) (-4 *6 (-13 (-430 *5) (-999) (-1194))))) (-1908 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-5 *2 (-169 *5)) (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))) (-3549 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-999) (-1194))))) (-2149 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-5 *1 (-598 *4 *2 *3)) (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194))))) (-2649 (*1 *2 *3) (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) (-4 *4 (-13 (-556) (-847))) (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) (-5 *1 (-598 *4 *5 *2))))) +(-10 -7 (-15 -2649 (|#3| (-169 |#2|))) (-15 -2149 (|#2| |#3|)) (-15 -3549 (|#3| |#2|)) (-15 -1908 ((-169 |#2|) |#3|)) (-15 -3797 (|#3| |#3| (-641 (-610 |#3|)) (-641 (-1170))))) +((-3548 (($ (-1 (-112) |#1|) $) 17)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-3472 (($ (-1 |#1| |#1|) |#1|) 9)) (-3525 (($ (-1 (-112) |#1|) $) 13)) (-3537 (($ (-1 (-112) |#1|) $) 15)) (-3753 (((-1150 |#1|) $) 18)) (-3742 (((-859) $) NIL))) +(((-599 |#1|) (-13 (-611 (-859)) (-10 -8 (-15 -2187 ($ (-1 |#1| |#1|) $)) (-15 -3525 ($ (-1 (-112) |#1|) $)) (-15 -3537 ($ (-1 (-112) |#1|) $)) (-15 -3548 ($ (-1 (-112) |#1|) $)) (-15 -3472 ($ (-1 |#1| |#1|) |#1|)) (-15 -3753 ((-1150 |#1|) $)))) (-1209)) (T -599)) +((-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3537 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3472 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) (-3753 (*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209))))) +(-13 (-611 (-859)) (-10 -8 (-15 -2187 ($ (-1 |#1| |#1|) $)) (-15 -3525 ($ (-1 (-112) |#1|) $)) (-15 -3537 ($ (-1 (-112) |#1|) $)) (-15 -3548 ($ (-1 (-112) |#1|) $)) (-15 -3472 ($ (-1 |#1| |#1|) |#1|)) (-15 -3753 ((-1150 |#1|) $)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1515 (($ (-768)) NIL (|has| |#1| (-23)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-3305 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-1653 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3619 (($ (-768) |#1|) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2265 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1500 (((-112) $ (-768)) NIL)) (-2395 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) NIL (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2952 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3987 (($ $ $) NIL (|has| |#1| (-1046)))) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-1802 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1790 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1780 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-600 |#1| |#2|) (-1257 |#1|) (-1209) (-564)) (T -600)) +NIL +(-1257 |#1|) +((-2645 (((-1264) $ |#2| |#2|) 36)) (-2029 ((|#2| $) 23)) (-3774 ((|#2| $) 21)) (-2606 (($ (-1 |#3| |#3|) $) 32)) (-2187 (($ (-1 |#3| |#3|) $) 30)) (-1966 ((|#3| $) 26)) (-3099 (($ $ |#3|) 33)) (-2772 (((-112) |#3| $) 17)) (-2572 (((-641 |#3|) $) 15)) (-4382 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL))) +(((-601 |#1| |#2| |#3|) (-10 -8 (-15 -2645 ((-1264) |#1| |#2| |#2|)) (-15 -3099 (|#1| |#1| |#3|)) (-15 -1966 (|#3| |#1|)) (-15 -2029 (|#2| |#1|)) (-15 -3774 (|#2| |#1|)) (-15 -2772 ((-112) |#3| |#1|)) (-15 -2572 ((-641 |#3|) |#1|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -2606 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2187 (|#1| (-1 |#3| |#3|) |#1|))) (-602 |#2| |#3|) (-1094) (-1209)) (T -601)) +NIL +(-10 -8 (-15 -2645 ((-1264) |#1| |#2| |#2|)) (-15 -3099 (|#1| |#1| |#3|)) (-15 -1966 (|#3| |#1|)) (-15 -2029 (|#2| |#1|)) (-15 -3774 (|#2| |#1|)) (-15 -2772 ((-112) |#3| |#1|)) (-15 -2572 ((-641 |#3|) |#1|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -2606 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2187 (|#1| (-1 |#3| |#3|) |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#2| (-1094)))) (-2645 (((-1264) $ |#1| |#1|) 40 (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4412)))) (-2818 (($) 7 T CONST)) (-2619 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) 51)) (-3616 (((-641 |#2|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-2029 ((|#1| $) 43 (|has| |#1| (-847)))) (-1386 (((-641 |#2|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#2| $) 27 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-3774 ((|#1| $) 44 (|has| |#1| (-847)))) (-2606 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#2| |#2|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#2| (-1094)))) (-2312 (((-641 |#1|) $) 46)) (-4062 (((-112) |#1| $) 47)) (-3864 (((-1114) $) 21 (|has| |#2| (-1094)))) (-1966 ((|#2| $) 42 (|has| |#1| (-847)))) (-3099 (($ $ |#2|) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#2|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#2|))) 26 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 25 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 23 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#2| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-3873 (((-768) (-1 (-112) |#2|) $) 31 (|has| $ (-6 -4411))) (((-768) |#2| $) 28 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#2| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#2|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#2| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-602 |#1| |#2|) (-140) (-1094) (-1209)) (T -602)) +((-2572 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *4)))) (-4062 (*1 *2 *3 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)))) (-2312 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-641 *3)))) (-2772 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3774 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-2029 (*1 *2 *1) (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) (-4 *2 (-847)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-847)) (-4 *2 (-1209)))) (-3099 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) (-2645 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) (-5 *2 (-1264))))) +(-13 (-489 |t#2|) (-288 |t#1| |t#2|) (-10 -8 (-15 -2572 ((-641 |t#2|) $)) (-15 -4062 ((-112) |t#1| $)) (-15 -2312 ((-641 |t#1|) $)) (IF (|has| |t#2| (-1094)) (IF (|has| $ (-6 -4411)) (-15 -2772 ((-112) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-847)) (PROGN (-15 -3774 (|t#1| $)) (-15 -2029 (|t#1| $)) (-15 -1966 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4412)) (PROGN (-15 -3099 ($ $ |t#2|)) (-15 -2645 ((-1264) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#2| (-1094)) ((-611 (-859)) -4030 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859)))) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-1094) |has| |#2| (-1094)) ((-1209) . T)) +((-3742 (((-859) $) 19) (($ (-129)) 13) (((-129) $) 14))) +(((-603) (-13 (-611 (-859)) (-490 (-129)))) (T -603)) +NIL +(-13 (-611 (-859)) (-490 (-129))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 14) (($ (-641 (-1208))) 13)) (-1688 (((-641 (-1208)) $) 10)) (-1705 (((-112) $ $) NIL))) +(((-604) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -3742 ($ (-641 (-1208)))) (-15 -1688 ((-641 (-1208)) $))))) (T -604)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))) (-1688 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))) +(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -3742 ($ (-641 (-1208)))) (-15 -1688 ((-641 (-1208)) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4176 (((-3 $ "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3147 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1821 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2818 (($) NIL T CONST)) (-3268 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2934 (((-3 $ "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3493 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3748 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1952 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3664 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3760 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2752 (($ $ (-918)) NIL)) (-4369 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2699 (((-1166 |#1|) $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3359 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1961 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-4293 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2340 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3951 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1544 (((-918)) NIL (|has| |#2| (-367 |#1|)))) (-1878 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2545 (($ $ (-918)) NIL)) (-3992 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2482 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3764 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1628 (((-3 $ "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4256 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3306 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1789 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3714 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1903 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3154 (($ $ (-918)) NIL)) (-3371 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2257 (((-1166 |#1|) $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3738 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2627 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2756 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2217 (((-1152) $) NIL)) (-2270 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4213 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3435 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3864 (((-1114) $) NIL)) (-4154 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4382 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-1785 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2235 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1551 (((-641 (-949 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-949 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3671 (($ $ $) NIL)) (-2330 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3742 (((-859) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-4265 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-3986 (((-641 (-1259 |#1|))) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3533 (($ $ $ $) NIL)) (-4352 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1918 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1879 (($ $ $) NIL)) (-4031 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4380 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1518 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4311 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) 24)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL))) +(((-605 |#1| |#2|) (-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -3742 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-741 |#1|)) (T -605)) +((-3742 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-741 *3))))) +(-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -3742 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-2956 (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) 39)) (-3608 (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL) (($) NIL)) (-2645 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-1152) |#1|) 49)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 |#1| "failed") (-1152) $) 52)) (-2818 (($) NIL T CONST)) (-3024 (($ $ (-1152)) 25)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094))))) (-2154 (((-3 |#1| "failed") (-1152) $) 53) (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (($ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL (|has| $ (-6 -4411)))) (-2366 (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (($ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094))))) (-1699 (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094))))) (-2984 (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) 38)) (-2619 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-1152)) NIL)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411))) (((-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-3140 (($ $) 54)) (-1702 (($ (-388)) 23) (($ (-388) (-1152)) 22)) (-4324 (((-388) $) 40)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-1152) $) NIL (|has| (-1152) (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411))) (((-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (((-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094))))) (-3774 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-1823 (((-641 (-1152)) $) 45)) (-2219 (((-112) (-1152) $) NIL)) (-2615 (((-1152) $) 41)) (-2828 (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL)) (-2312 (((-641 (-1152)) $) NIL)) (-4062 (((-112) (-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 ((|#1| $) NIL (|has| (-1152) (-847)))) (-3582 (((-3 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) "failed") (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (($ $ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (($ $ (-641 (-294 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 43)) (-4382 ((|#1| $ (-1152) |#1|) NIL) ((|#1| $ (-1152)) 48)) (-4085 (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL) (($) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (((-768) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (((-768) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL)) (-3742 (((-859) $) 21)) (-1322 (($ $) 26)) (-3745 (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20)) (-2641 (((-768) $) 47 (|has| $ (-6 -4411))))) +(((-606 |#1|) (-13 (-364 (-388) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4411) (-15 -3140 ($ $)))) (-1094)) (T -606)) +((-3140 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094))))) +(-13 (-364 (-388) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) (-1185 (-1152) |#1|) (-10 -8 (-6 -4411) (-15 -3140 ($ $)))) +((-2431 (((-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) $) 16)) (-1823 (((-641 |#2|) $) 20)) (-2219 (((-112) |#2| $) 12))) +(((-607 |#1| |#2| |#3|) (-10 -8 (-15 -1823 ((-641 |#2|) |#1|)) (-15 -2219 ((-112) |#2| |#1|)) (-15 -2431 ((-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|))) (-608 |#2| |#3|) (-1094) (-1094)) (T -607)) +NIL +(-10 -8 (-15 -1823 ((-641 |#2|) |#1|)) (-15 -2219 ((-112) |#2| |#1|)) (-15 -2431 ((-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|))) +((-3732 (((-112) $ $) 19 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 45 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 55 (|has| $ (-6 -4411)))) (-3638 (((-3 |#2| "failed") |#1| $) 61)) (-2818 (($) 7 T CONST)) (-1996 (($ $) 58 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 46 (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 62)) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 54 (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 56 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 53 (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 52 (|has| $ (-6 -4411)))) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-1823 (((-641 |#1|) $) 63)) (-2219 (((-112) |#1| $) 64)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 39)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 40)) (-3864 (((-1114) $) 21 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 51)) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 41)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) 26 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 25 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 24 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 23 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4085 (($) 49) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 48)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 31 (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 50)) (-3742 (((-859) $) 18 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 42)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-608 |#1| |#2|) (-140) (-1094) (-1094)) (T -608)) +((-2219 (*1 *2 *3 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-112)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-5 *2 (-641 *3)))) (-2154 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3638 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(-13 (-229 (-2 (|:| -1327 |t#1|) (|:| -2423 |t#2|))) (-10 -8 (-15 -2219 ((-112) |t#1| $)) (-15 -1823 ((-641 |t#1|) $)) (-15 -2154 ((-3 |t#2| "failed") |t#1| $)) (-15 -3638 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T) ((-102) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) ((-611 (-859)) -4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) ((-489 #0#) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) ((-1094) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) ((-1209) . T)) +((-3899 (((-610 |#2|) |#1|) 17)) (-3515 (((-3 |#1| "failed") (-610 |#2|)) 21))) +(((-609 |#1| |#2|) (-10 -7 (-15 -3899 ((-610 |#2|) |#1|)) (-15 -3515 ((-3 |#1| "failed") (-610 |#2|)))) (-847) (-847)) (T -609)) +((-3515 (*1 *2 *3) (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-847)) (-4 *2 (-847)) (-5 *1 (-609 *2 *4)))) (-3899 (*1 *2 *3) (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-847)) (-4 *4 (-847))))) +(-10 -7 (-15 -3899 ((-610 |#2|) |#1|)) (-15 -3515 ((-3 |#1| "failed") (-610 |#2|)))) +((-3732 (((-112) $ $) NIL)) (-3954 (((-3 (-1170) "failed") $) 46)) (-3631 (((-1264) $ (-768)) 26)) (-3305 (((-768) $) 25)) (-4058 (((-114) $) 12)) (-4324 (((-1170) $) 20)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-1697 (($ (-114) (-641 |#1|) (-768)) 36) (($ (-1170)) 37)) (-4211 (((-112) $ (-114)) 18) (((-112) $ (-1170)) 16)) (-3724 (((-768) $) 22)) (-3864 (((-1114) $) NIL)) (-2235 (((-889 (-564)) $) 90 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 97 (|has| |#1| (-612 (-889 (-379))))) (((-536) $) 83 (|has| |#1| (-612 (-536))))) (-3742 (((-859) $) 67)) (-2526 (((-641 |#1|) $) 24)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 50)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 52))) +(((-610 |#1|) (-13 (-132) (-881 |#1|) (-10 -8 (-15 -4324 ((-1170) $)) (-15 -4058 ((-114) $)) (-15 -2526 ((-641 |#1|) $)) (-15 -3724 ((-768) $)) (-15 -1697 ($ (-114) (-641 |#1|) (-768))) (-15 -1697 ($ (-1170))) (-15 -3954 ((-3 (-1170) "failed") $)) (-15 -4211 ((-112) $ (-114))) (-15 -4211 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-847)) (T -610)) +((-4324 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-2526 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-1697 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-847)) (-5 *1 (-610 *5)))) (-1697 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-3954 (*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) (-4211 (*1 *2 *1 *3) (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))) (-4211 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847))))) +(-13 (-132) (-881 |#1|) (-10 -8 (-15 -4324 ((-1170) $)) (-15 -4058 ((-114) $)) (-15 -2526 ((-641 |#1|) $)) (-15 -3724 ((-768) $)) (-15 -1697 ($ (-114) (-641 |#1|) (-768))) (-15 -1697 ($ (-1170))) (-15 -3954 ((-3 (-1170) "failed") $)) (-15 -4211 ((-112) $ (-114))) (-15 -4211 ((-112) $ (-1170))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) +((-3742 ((|#1| $) 6))) +(((-611 |#1|) (-140) (-1209)) (T -611)) +((-3742 (*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -3742 (|t#1| $)))) +((-2235 ((|#1| $) 6))) +(((-612 |#1|) (-140) (-1209)) (T -612)) +((-2235 (*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -2235 (|t#1| $)))) +((-1859 (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)) 15) (((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 16))) +(((-613 |#1| |#2|) (-10 -7 (-15 -1859 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -1859 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -613)) +((-1859 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6)))) (-1859 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) (-5 *3 (-407 *5))))) +(-10 -7 (-15 -1859 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|))) (-15 -1859 ((-3 (-1166 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 (-418 |#2|) |#2|)))) +((-3742 (($ |#1|) 6))) +(((-614 |#1|) (-140) (-1209)) (T -614)) +((-3742 (*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -3742 ($ |t#1|)))) +((-3732 (((-112) $ $) NIL)) (-3833 (($) 14 T CONST)) (-3826 (($) 15 T CONST)) (-4279 (($ $ $) 29)) (-4255 (($ $) 27)) (-2217 (((-1152) $) NIL)) (-3150 (($ $ $) 30)) (-3864 (((-1114) $) NIL)) (-2592 (($) 11 T CONST)) (-1456 (($ $ $) 31)) (-3742 (((-859) $) 35)) (-4300 (((-112) $ (|[\|\|]| -2592)) 24) (((-112) $ (|[\|\|]| -3833)) 26) (((-112) $ (|[\|\|]| -3826)) 21)) (-4267 (($ $ $) 28)) (-1705 (((-112) $ $) 18))) +(((-615) (-13 (-964) (-10 -8 (-15 -2592 ($) -2091) (-15 -3833 ($) -2091) (-15 -3826 ($) -2091) (-15 -4300 ((-112) $ (|[\|\|]| -2592))) (-15 -4300 ((-112) $ (|[\|\|]| -3833))) (-15 -4300 ((-112) $ (|[\|\|]| -3826)))))) (T -615)) +((-2592 (*1 *1) (-5 *1 (-615))) (-3833 (*1 *1) (-5 *1 (-615))) (-3826 (*1 *1) (-5 *1 (-615))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2592)) (-5 *2 (-112)) (-5 *1 (-615)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3833)) (-5 *2 (-112)) (-5 *1 (-615)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3826)) (-5 *2 (-112)) (-5 *1 (-615))))) +(-13 (-964) (-10 -8 (-15 -2592 ($) -2091) (-15 -3833 ($) -2091) (-15 -3826 ($) -2091) (-15 -4300 ((-112) $ (|[\|\|]| -2592))) (-15 -4300 ((-112) $ (|[\|\|]| -3833))) (-15 -4300 ((-112) $ (|[\|\|]| -3826))))) +((-2235 (($ |#1|) 6))) +(((-616 |#1|) (-140) (-1209)) (T -616)) +((-2235 (*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209))))) +(-13 (-10 -8 (-15 -2235 ($ |t#1|)))) +((-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10))) +(((-617 |#1| |#2|) (-10 -8 (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-618 |#2|) (-1046)) (T -617)) +NIL +(-10 -8 (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 36)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#1| $) 37))) +(((-618 |#1|) (-140) (-1046)) (T -618)) +((-3742 (*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1046))))) +(-13 (-1046) (-644 |t#1|) (-10 -8 (-15 -3742 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3265 (((-564) $) NIL (|has| |#1| (-845)))) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3308 (((-112) $) NIL (|has| |#1| (-845)))) (-3840 (((-112) $) NIL)) (-1625 ((|#1| $) 13)) (-2839 (((-112) $) NIL (|has| |#1| (-845)))) (-2799 (($ $ $) NIL (|has| |#1| (-845)))) (-2848 (($ $ $) NIL (|has| |#1| (-845)))) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1634 ((|#3| $) 15)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL)) (-3270 (((-768)) 20 T CONST)) (-2792 (($ $) NIL (|has| |#1| (-845)))) (-4311 (($) NIL T CONST)) (-4321 (($) 12 T CONST)) (-1751 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1799 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-619 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (-15 -1799 ($ $ |#3|)) (-15 -1799 ($ |#1| |#3|)) (-15 -1625 (|#1| $)) (-15 -1634 (|#3| $)))) (-38 |#2|) (-172) (|SubsetCategory| (-723) |#2|)) (T -619)) +((-1799 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-723) *4)))) (-1799 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-723) *4)))) (-1625 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-723) *3)))) (-1634 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4))))) +(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (-15 -1799 ($ $ |#3|)) (-15 -1799 ($ |#1| |#3|)) (-15 -1625 (|#1| $)) (-15 -1634 (|#3| $)))) +((-1486 ((|#2| |#2| (-1170) (-1170)) 16))) +(((-620 |#1| |#2|) (-10 -7 (-15 -1486 (|#2| |#2| (-1170) (-1170)))) (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-956) (-29 |#1|))) (T -620)) +((-1486 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-29 *4)))))) +(-10 -7 (-15 -1486 (|#2| |#2| (-1170) (-1170)))) +((-3732 (((-112) $ $) 64)) (-4173 (((-112) $) 58)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4120 ((|#1| $) 55)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3823 (((-2 (|:| -1958 $) (|:| -4278 (-407 |#2|))) (-407 |#2|)) 110 (|has| |#1| (-363)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 98) (((-3 |#2| "failed") $) 94)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) 27)) (-3951 (((-3 $ "failed") $) 88)) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1619 (((-564) $) 22)) (-3840 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) 40)) (-4245 (($ |#1| (-564)) 24)) (-1320 ((|#1| $) 57)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 115 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1321 (((-3 $ "failed") $ $) 92)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4061 (((-768) $) 114 (|has| |#1| (-363)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 113 (|has| |#1| (-363)))) (-4117 (($ $ (-1 |#2| |#2|)) 75) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2266 (((-564) $) 38)) (-2235 (((-407 |#2|) $) 47)) (-3742 (((-859) $) 69) (($ (-564)) 35) (($ $) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 34) (($ |#2|) 25)) (-2856 ((|#1| $ (-564)) 72)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) 32 T CONST)) (-3360 (((-112) $ $) NIL)) (-4311 (($) 9 T CONST)) (-4321 (($) 14 T CONST)) (-2124 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1705 (((-112) $ $) 21)) (-1790 (($ $) 51) (($ $ $) NIL)) (-1780 (($ $ $) 89)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 29) (($ $ $) 49))) +(((-621 |#1| |#2|) (-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1035 |#2|) (-10 -8 (-15 -2005 ((-112) $)) (-15 -2266 ((-564) $)) (-15 -1619 ((-564) $)) (-15 -1348 ($ $)) (-15 -1320 (|#1| $)) (-15 -4120 (|#1| $)) (-15 -2856 (|#1| $ (-564))) (-15 -4245 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -3823 ((-2 (|:| -1958 $) (|:| -4278 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) (-556) (-1235 |#1|)) (T -621)) +((-2005 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-2266 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-1619 (*1 *2 *1) (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) (-4 *4 (-1235 *3)))) (-1348 (*1 *1 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-1320 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-4120 (*1 *2 *1) (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) (-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-4245 (*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) (-4 *4 (-1235 *2)))) (-3823 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -1958 (-621 *4 *5)) (|:| -4278 (-407 *5)))) (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5))))) +(-13 (-231 |#2|) (-556) (-612 (-407 |#2|)) (-411 |#1|) (-1035 |#2|) (-10 -8 (-15 -2005 ((-112) $)) (-15 -2266 ((-564) $)) (-15 -1619 ((-564) $)) (-15 -1348 ($ $)) (-15 -1320 (|#1| $)) (-15 -4120 (|#1| $)) (-15 -2856 (|#1| $ (-564))) (-15 -4245 ($ |#1| (-564))) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-6 (-307)) (-15 -3823 ((-2 (|:| -1958 $) (|:| -4278 (-407 |#2|))) (-407 |#2|)))) |%noBranch|))) +((-1454 (((-641 |#6|) (-641 |#4|) (-112)) 53)) (-2394 ((|#6| |#6|) 47))) +(((-622 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2394 (|#6| |#6|)) (-15 -1454 ((-641 |#6|) (-641 |#4|) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|) (-1103 |#1| |#2| |#3| |#4|)) (T -622)) +((-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *10)) (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *10 (-1103 *5 *6 *7 *8)))) (-2394 (*1 *2 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6))))) +(-10 -7 (-15 -2394 (|#6| |#6|)) (-15 -1454 ((-641 |#6|) (-641 |#4|) (-112)))) +((-2707 (((-112) |#3| (-768) (-641 |#3|)) 32)) (-2776 (((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2267 (-641 (-2 (|:| |irr| |#4|) (|:| -2943 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)) 73))) +(((-623 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2707 ((-112) |#3| (-768) (-641 |#3|))) (-15 -2776 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2267 (-641 (-2 (|:| |irr| |#4|) (|:| -2943 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) (-847) (-790) (-307) (-946 |#3| |#2| |#1|)) (T -623)) +((-2776 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2267 (-641 (-2 (|:| |irr| *10) (|:| -2943 (-564))))))) (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-847)) (-4 *3 (-307)) (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-790)) (-5 *2 (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) (|:| |corrfact| (-641 (-1166 *3))))) (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3))))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-768)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-847)) (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) (-4 *8 (-946 *3 *7 *6))))) +(-10 -7 (-15 -2707 ((-112) |#3| (-768) (-641 |#3|))) (-15 -2776 ((-3 (-2 (|:| |polfac| (-641 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-641 (-1166 |#3|)))) "failed") |#3| (-641 (-1166 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2267 (-641 (-2 (|:| |irr| |#4|) (|:| -2943 (-564)))))) (-641 |#3|) (-641 |#1|) (-641 |#3|)))) +((-3732 (((-112) $ $) NIL)) (-3076 (((-1129) $) 11)) (-3065 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-624) (-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1129) $))))) (T -624)) +((-3065 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624))))) +(-13 (-1077) (-10 -8 (-15 -3065 ((-1129) $)) (-15 -3076 ((-1129) $)))) +((-3732 (((-112) $ $) NIL)) (-3491 (((-641 |#1|) $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-3275 (($ $) 77)) (-2192 (((-660 |#1| |#2|) $) 60)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 81)) (-4305 (((-641 (-294 |#2|)) $ $) 42)) (-3864 (((-1114) $) NIL)) (-4118 (($ (-660 |#1| |#2|)) 56)) (-2766 (($ $ $) NIL)) (-3671 (($ $ $) NIL)) (-3742 (((-859) $) 66) (((-1274 |#1| |#2|) $) NIL) (((-1279 |#1| |#2|) $) 74)) (-4321 (($) 61 T CONST)) (-3989 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) 41)) (-2393 (((-641 (-660 |#1| |#2|)) (-641 |#1|)) 73)) (-2546 (((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $) 46)) (-1705 (((-112) $ $) 62)) (-1799 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 52))) +(((-625 |#1| |#2| |#3|) (-13 (-473) (-10 -8 (-15 -4118 ($ (-660 |#1| |#2|))) (-15 -2192 ((-660 |#1| |#2|) $)) (-15 -2546 ((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $)) (-15 -3742 ((-1274 |#1| |#2|) $)) (-15 -3742 ((-1279 |#1| |#2|) $)) (-15 -3275 ($ $)) (-15 -3491 ((-641 |#1|) $)) (-15 -2393 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -3989 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -4305 ((-641 (-294 |#2|)) $ $)))) (-847) (-13 (-172) (-714 (-407 (-564)))) (-918)) (T -625)) +((-4118 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) (-14 *5 (-918)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-890 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-3275 (*1 *1 *1) (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-13 (-172) (-714 (-407 (-564))))) (-14 *4 (-918)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-660 *4 *5))) (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-714 (-407 (-564))))) (-14 *6 (-918)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) (-4305 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))) +(-13 (-473) (-10 -8 (-15 -4118 ($ (-660 |#1| |#2|))) (-15 -2192 ((-660 |#1| |#2|) $)) (-15 -2546 ((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $)) (-15 -3742 ((-1274 |#1| |#2|) $)) (-15 -3742 ((-1279 |#1| |#2|) $)) (-15 -3275 ($ $)) (-15 -3491 ((-641 |#1|) $)) (-15 -2393 ((-641 (-660 |#1| |#2|)) (-641 |#1|))) (-15 -3989 ((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $)) (-15 -4305 ((-641 (-294 |#2|)) $ $)))) +((-1454 (((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)) 102) (((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112)) 76)) (-2020 (((-112) (-641 (-777 |#1| (-861 |#2|)))) 26)) (-3713 (((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)) 101)) (-4035 (((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112)) 75)) (-4390 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|)))) 30)) (-2778 (((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|)))) 29))) +(((-626 |#1| |#2|) (-10 -7 (-15 -2020 ((-112) (-641 (-777 |#1| (-861 |#2|))))) (-15 -2778 ((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|))))) (-15 -4390 ((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))))) (-15 -4035 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -3713 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -1454 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -1454 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)))) (-452) (-641 (-1170))) (T -626)) +((-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) (-5 *1 (-626 *5 *6)))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-626 *5 *6)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) (-5 *1 (-626 *5 *6)))) (-4035 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-626 *5 *6)))) (-4390 (*1 *2 *2) (-12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-2778 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-641 (-777 *4 (-861 *5)))) (-4 *4 (-452)) (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) +(-10 -7 (-15 -2020 ((-112) (-641 (-777 |#1| (-861 |#2|))))) (-15 -2778 ((-3 (-641 (-777 |#1| (-861 |#2|))) "failed") (-641 (-777 |#1| (-861 |#2|))))) (-15 -4390 ((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))))) (-15 -4035 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -3713 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -1454 ((-641 (-1043 |#1| |#2|)) (-641 (-777 |#1| (-861 |#2|))) (-112))) (-15 -1454 ((-641 (-1140 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|)))) (-641 (-777 |#1| (-861 |#2|))) (-112)))) +((-2451 (($ $) 38)) (-2319 (($ $) 21)) (-2428 (($ $) 37)) (-2297 (($ $) 22)) (-2473 (($ $) 36)) (-2339 (($ $) 23)) (-1655 (($) 48)) (-2192 (($ $) 45)) (-3897 (($ $) 17)) (-2787 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6)) (-4118 (($ $) 46)) (-2263 (($ $) 15)) (-2287 (($ $) 16)) (-2484 (($ $) 35)) (-2348 (($ $) 24)) (-2462 (($ $) 34)) (-2328 (($ $) 25)) (-2438 (($ $) 33)) (-2309 (($ $) 26)) (-2521 (($ $) 44)) (-2379 (($ $) 32)) (-2495 (($ $) 43)) (-2358 (($ $) 31)) (-2548 (($ $) 42)) (-2404 (($ $) 30)) (-4065 (($ $) 41)) (-2415 (($ $) 29)) (-2534 (($ $) 40)) (-2391 (($ $) 28)) (-2507 (($ $) 39)) (-2367 (($ $) 27)) (-3372 (($ $) 19)) (-2050 (($ $) 20)) (-1841 (($ $) 18)) (** (($ $ $) 47))) +(((-627) (-140)) (T -627)) +((-2050 (*1 *1 *1) (-4 *1 (-627))) (-3372 (*1 *1 *1) (-4 *1 (-627))) (-1841 (*1 *1 *1) (-4 *1 (-627))) (-3897 (*1 *1 *1) (-4 *1 (-627))) (-2287 (*1 *1 *1) (-4 *1 (-627))) (-2263 (*1 *1 *1) (-4 *1 (-627)))) +(-13 (-956) (-1194) (-10 -8 (-15 -2050 ($ $)) (-15 -3372 ($ $)) (-15 -1841 ($ $)) (-15 -3897 ($ $)) (-15 -2287 ($ $)) (-15 -2263 ($ $)))) +(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-956) . T) ((-1194) . T) ((-1197) . T)) +((-4058 (((-114) (-114)) 90)) (-3897 ((|#2| |#2|) 28)) (-2787 ((|#2| |#2| (-1086 |#2|)) 86) ((|#2| |#2| (-1170)) 50)) (-2263 ((|#2| |#2|) 27)) (-2287 ((|#2| |#2|) 29)) (-2095 (((-112) (-114)) 33)) (-3372 ((|#2| |#2|) 24)) (-2050 ((|#2| |#2|) 26)) (-1841 ((|#2| |#2|) 25))) +(((-628 |#1| |#2|) (-10 -7 (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -2050 (|#2| |#2|)) (-15 -3372 (|#2| |#2|)) (-15 -1841 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-1170))) (-15 -2787 (|#2| |#2| (-1086 |#2|)))) (-13 (-847) (-556)) (-13 (-430 |#1|) (-999) (-1194))) (T -628)) +((-2787 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)))) (-2787 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))))) (-2287 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-2263 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3897 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-1841 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-3372 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) (-4 *2 (-13 (-430 *3) (-999) (-1194))))) (-4058 (*1 *2 *2) (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *4)) (-4 *4 (-13 (-430 *3) (-999) (-1194))))) (-2095 (*1 *2 *3) (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194)))))) +(-10 -7 (-15 -2095 ((-112) (-114))) (-15 -4058 ((-114) (-114))) (-15 -2050 (|#2| |#2|)) (-15 -3372 (|#2| |#2|)) (-15 -1841 (|#2| |#2|)) (-15 -3897 (|#2| |#2|)) (-15 -2263 (|#2| |#2|)) (-15 -2287 (|#2| |#2|)) (-15 -2787 (|#2| |#2| (-1170))) (-15 -2787 (|#2| |#2| (-1086 |#2|)))) +((-3005 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 67)) (-1437 (((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 93)) (-3183 (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|)) 95) (((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|)) 94)) (-3943 (((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|))) 138)) (-1402 (((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 108)) (-2537 (((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|))) 148)) (-4106 (((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|))) 72)) (-4313 (((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|))) 48)) (-3101 (((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 64)) (-2638 (((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|))) 116))) +(((-629 |#1| |#2|) (-10 -7 (-15 -3943 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -2537 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -1437 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3183 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -3183 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -4313 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -4106 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -2638 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -1402 ((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3101 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3005 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) (-641 (-1170)) (-452)) (T -629)) +((-3005 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5)))) (-3101 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-1402 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-861 *4)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5)))) (-2638 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6)))) (-4106 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) (-5 *1 (-629 *5 *6)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-629 *3 *4)))) (-3183 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-3183 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) (-4 *6 (-452)))) (-1437 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5)))) (-2537 (*1 *2 *3) (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5))))) (-3943 (*1 *2 *3) (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 (-2 (|:| |gblist| (-641 (-247 *4 *5))) (|:| |gvlist| (-641 (-564))))) (-5 *1 (-629 *4 *5))))) +(-10 -7 (-15 -3943 ((-2 (|:| |gblist| (-641 (-247 |#1| |#2|))) (|:| |gvlist| (-641 (-564)))) (-641 (-481 |#1| |#2|)))) (-15 -2537 ((-2 (|:| |glbase| (-641 (-247 |#1| |#2|))) (|:| |glval| (-641 (-564)))) (-641 (-247 |#1| |#2|)))) (-15 -1437 ((-641 (-247 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3183 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -3183 ((-481 |#1| |#2|) (-641 (-481 |#1| |#2|)) (-861 |#1|))) (-15 -4313 ((-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -4106 ((-1259 |#2|) (-481 |#1| |#2|) (-641 (-481 |#1| |#2|)))) (-15 -2638 ((-247 |#1| |#2|) (-641 |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -1402 ((-641 (-481 |#1| |#2|)) (-861 |#1|) (-641 (-481 |#1| |#2|)) (-641 (-481 |#1| |#2|)))) (-15 -3101 ((-247 |#1| |#2|) (-247 |#1| |#2|) (-641 (-247 |#1| |#2|)))) (-15 -3005 ((-481 |#1| |#2|) (-247 |#1| |#2|)))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) NIL)) (-2645 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 (((-52) $ (-1152) (-52)) 16) (((-52) $ (-1170) (-52)) 17)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 (-52) "failed") (-1152) $) NIL)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094))))) (-2154 (($ (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-3 (-52) "failed") (-1152) $) NIL)) (-2366 (($ (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $ (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094)))) (((-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $ (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-2619 (((-52) $ (-1152) (-52)) NIL (|has| $ (-6 -4412)))) (-2540 (((-52) $ (-1152)) NIL)) (-3616 (((-641 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-3140 (($ $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-1152) $) NIL (|has| (-1152) (-847)))) (-1386 (((-641 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-3774 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3653 (($ (-388)) 9)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094))))) (-1823 (((-641 (-1152)) $) NIL)) (-2219 (((-112) (-1152) $) NIL)) (-2828 (((-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) $) NIL)) (-2974 (($ (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) $) NIL)) (-2312 (((-641 (-1152)) $) NIL)) (-4062 (((-112) (-1152) $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094))))) (-1966 (((-52) $) NIL (|has| (-1152) (-847)))) (-3582 (((-3 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) "failed") (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL)) (-3099 (($ $ (-52)) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094)))) (($ $ (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-2572 (((-641 (-52)) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 (((-52) $ (-1152)) 14) (((-52) $ (-1152) (-52)) NIL) (((-52) $ (-1170)) 15)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 (-52))) (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-630) (-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -3653 ($ (-388))) (-15 -3140 ($ $)) (-15 -4382 ((-52) $ (-1170))) (-15 -3877 ((-52) $ (-1170) (-52)))))) (T -630)) +((-3653 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630)))) (-3140 (*1 *1 *1) (-5 *1 (-630))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630))))) +(-13 (-1185 (-1152) (-52)) (-10 -8 (-15 -3653 ($ (-388))) (-15 -3140 ($ $)) (-15 -4382 ((-52) $ (-1170))) (-15 -3877 ((-52) $ (-1170) (-52))))) +((-1799 (($ $ |#2|) 10))) +(((-631 |#1| |#2|) (-10 -8 (-15 -1799 (|#1| |#1| |#2|))) (-632 |#2|) (-172)) (T -631)) +NIL +(-10 -8 (-15 -1799 (|#1| |#1| |#2|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3753 (($ $ $) 29)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 28 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-632 |#1|) (-140) (-172)) (T -632)) +((-3753 (*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) (-1799 (*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) +(-13 (-714 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3753 ($ $ $)) (IF (|has| |t#1| (-363)) (-15 -1799 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4176 (((-3 $ "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3147 (((-1259 (-685 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-1259 (-685 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1821 (((-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2818 (($) NIL T CONST)) (-3268 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-2934 (((-3 $ "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3493 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3748 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1952 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3664 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3760 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-2752 (($ $ (-918)) NIL)) (-4369 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2699 (((-1166 |#1|) $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3359 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-1961 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-4293 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2340 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (($ (-1259 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3951 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1544 (((-918)) NIL (|has| |#2| (-367 |#1|)))) (-1878 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2545 (($ $ (-918)) NIL)) (-3992 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2482 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3764 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1628 (((-3 $ "failed")) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-4256 (((-685 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3306 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-1789 (((-685 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3714 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-1903 (((-1166 (-949 |#1|))) NIL (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-363))))) (-3154 (($ $ (-918)) NIL)) (-3371 ((|#1| $) NIL (|has| |#2| (-367 |#1|)))) (-2257 (((-1166 |#1|) $) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3738 ((|#1|) NIL (|has| |#2| (-417 |#1|))) ((|#1| (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2627 (((-1166 |#1|) $) NIL (|has| |#2| (-367 |#1|)))) (-2756 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-2217 (((-1152) $) NIL)) (-2270 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4213 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3435 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3864 (((-1114) $) NIL)) (-4154 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4382 ((|#1| $ (-564)) NIL (|has| |#2| (-417 |#1|)))) (-1785 (((-685 |#1|) (-1259 $)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|))) (((-685 |#1|) (-1259 $) (-1259 $)) NIL (|has| |#2| (-367 |#1|))) (((-1259 |#1|) $ (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-2235 (($ (-1259 |#1|)) NIL (|has| |#2| (-417 |#1|))) (((-1259 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1551 (((-641 (-949 |#1|))) NIL (|has| |#2| (-417 |#1|))) (((-641 (-949 |#1|)) (-1259 $)) NIL (|has| |#2| (-367 |#1|)))) (-3671 (($ $ $) NIL)) (-2330 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-3742 (((-859) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-4265 (((-1259 $)) NIL (|has| |#2| (-417 |#1|)))) (-3986 (((-641 (-1259 |#1|))) NIL (-4030 (-12 (|has| |#2| (-367 |#1|)) (|has| |#1| (-556))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-556)))))) (-3533 (($ $ $ $) NIL)) (-4352 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1918 (($ (-685 |#1|) $) NIL (|has| |#2| (-417 |#1|)))) (-1879 (($ $ $) NIL)) (-4031 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4380 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-1518 (((-112)) NIL (|has| |#2| (-367 |#1|)))) (-4311 (($) 19 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) 20)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-633 |#1| |#2|) (-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -3742 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) (-172) (-741 |#1|)) (T -633)) +((-3742 (*1 *1 *2) (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-741 *3))))) +(-13 (-741 |#1|) (-611 |#2|) (-10 -8 (-15 -3742 ($ |#2|)) (IF (|has| |#2| (-417 |#1|)) (-6 (-417 |#1|)) |%noBranch|) (IF (|has| |#2| (-367 |#1|)) (-6 (-367 |#1|)) |%noBranch|))) +((-1340 (((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)) 105) (((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|))) 130)) (-2843 (((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|))) 135))) +(((-634 |#1| |#2|) (-10 -7 (-15 -1340 ((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|)))) (-15 -2843 ((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|)))) (-15 -1340 ((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -634)) +((-1340 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-840 *3)) (-5 *1 (-634 *6 *3)))) (-2843 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-294 (-830 *3))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-830 *3)) (-5 *1 (-634 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))))) (-1340 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-840 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-3 (-840 *3) (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) "failed")) (-5 *1 (-634 *5 *3))))) +(-10 -7 (-15 -1340 ((-3 (-840 |#2|) (-2 (|:| |leftHandLimit| (-3 (-840 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-840 |#2|) "failed"))) "failed") |#2| (-294 (-840 |#2|)))) (-15 -2843 ((-3 (-830 |#2|) "failed") |#2| (-294 (-830 |#2|)))) (-15 -1340 ((-3 (-840 |#2|) "failed") |#2| (-294 |#2|) (-1152)))) +((-1340 (((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)) 85) (((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 20) (((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|)))) 35)) (-2843 (((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 23) (((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|)))) 43))) +(((-635 |#1|) (-10 -7 (-15 -1340 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|))))) (-15 -1340 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2843 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|))))) (-15 -2843 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -1340 ((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)))) (-452)) (T -635)) +((-1340 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-294 (-407 (-949 *6)))) (-5 *5 (-1152)) (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-840 *3)) (-5 *1 (-635 *6)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-452)) (-5 *2 (-830 *3)) (-5 *1 (-635 *5)))) (-2843 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-830 (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-830 (-407 (-949 *5)))) (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5))))) (-1340 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-452)) (-5 *2 (-3 (-840 *3) (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) "failed")) (-5 *1 (-635 *5)))) (-1340 (*1 *2 *3 *4) (-12 (-5 *4 (-294 (-840 (-949 *5)))) (-4 *5 (-452)) (-5 *2 (-3 (-840 (-407 (-949 *5))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 *5))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 *5))) "failed"))) "failed")) (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5)))))) +(-10 -7 (-15 -1340 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-840 (-949 |#1|))))) (-15 -1340 ((-3 (-840 (-407 (-949 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-840 (-407 (-949 |#1|))) "failed"))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2843 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-830 (-949 |#1|))))) (-15 -2843 ((-830 (-407 (-949 |#1|))) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -1340 ((-3 (-840 (-407 (-949 |#1|))) "failed") (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))) (-1152)))) +((-3022 (((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|) 64 (-4255 (|has| |#1| (-363)))) (((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|) 49 (|has| |#1| (-363)))) (-4079 (((-112) (-1259 |#2|)) 33)) (-2440 (((-3 (-1259 |#1|) "failed") (-1259 |#2|)) 40))) +(((-636 |#1| |#2|) (-10 -7 (-15 -4079 ((-112) (-1259 |#2|))) (-15 -2440 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -3022 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -3022 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) (-556) (-637 |#1|)) (T -636)) +((-3022 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4255 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) (-5 *1 (-636 *5 *4)))) (-3022 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) (-2440 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5)))) (-4079 (*1 *2 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) (-5 *2 (-112)) (-5 *1 (-636 *4 *5))))) +(-10 -7 (-15 -4079 ((-112) (-1259 |#2|))) (-15 -2440 ((-3 (-1259 |#1|) "failed") (-1259 |#2|))) (IF (|has| |#1| (-363)) (-15 -3022 ((-3 (-1259 |#1|) "failed") (-1259 |#2|) |#2|)) (-15 -3022 ((-3 (-1259 (-407 |#1|)) "failed") (-1259 |#2|) |#2|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3039 (((-685 |#1|) (-685 $)) 36) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 35)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-637 |#1|) (-140) (-1046)) (T -637)) +((-3039 (*1 *2 *3) (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1046)) (-5 *2 (-685 *4)))) (-3039 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -2069 (-685 *5)) (|:| |vec| (-1259 *5))))))) +(-13 (-1046) (-10 -8 (-15 -3039 ((-685 |t#1|) (-685 $))) (-15 -3039 ((-2 (|:| -2069 (-685 |t#1|)) (|:| |vec| (-1259 |t#1|))) (-685 $) (-1259 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-1387 ((|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|) 17) ((|#2| (-641 |#1|) (-641 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|)) 12))) +(((-638 |#1| |#2|) (-10 -7 (-15 -1387 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -1387 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -1387 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -1387 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -1387 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -1387 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) (-1094) (-1209)) (T -638)) +((-1387 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-1387 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) (-1387 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-1387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) (-1387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) (-1387 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6))))) +(-10 -7 (-15 -1387 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|))) (-15 -1387 (|#2| (-641 |#1|) (-641 |#2|) |#1|)) (-15 -1387 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) |#2|)) (-15 -1387 (|#2| (-641 |#1|) (-641 |#2|) |#1| |#2|)) (-15 -1387 ((-1 |#2| |#1|) (-641 |#1|) (-641 |#2|) (-1 |#2| |#1|))) (-15 -1387 (|#2| (-641 |#1|) (-641 |#2|) |#1| (-1 |#2| |#1|)))) +((-1525 (((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 16)) (-1699 ((|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|) 18)) (-2187 (((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)) 13))) +(((-639 |#1| |#2|) (-10 -7 (-15 -1525 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -1699 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -2187 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) (-1209) (-1209)) (T -639)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-639 *5 *6)))) (-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5))))) +(-10 -7 (-15 -1525 ((-641 |#2|) (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -1699 (|#2| (-1 |#2| |#1| |#2|) (-641 |#1|) |#2|)) (-15 -2187 ((-641 |#2|) (-1 |#2| |#1|) (-641 |#1|)))) +((-2187 (((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)) 21))) +(((-640 |#1| |#2| |#3|) (-10 -7 (-15 -2187 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) (-1209) (-1209) (-1209)) (T -640)) +((-2187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-641 *6)) (-5 *5 (-641 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-641 *8)) (-5 *1 (-640 *6 *7 *8))))) +(-10 -7 (-15 -2187 ((-641 |#3|) (-1 |#3| |#1| |#2|) (-641 |#1|) (-641 |#2|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) NIL)) (-2910 ((|#1| $) NIL)) (-3813 (($ $) NIL)) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) $) NIL (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) NIL)) (-2402 (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847)))) (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2777 (($ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-3417 (($ $ $) NIL (|has| $ (-6 -4412)))) (-1716 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-2094 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "rest" $) NIL (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-1907 (($ $ $) 36 (|has| |#1| (-1094)))) (-1896 (($ $ $) 40 (|has| |#1| (-1094)))) (-1887 (($ $ $) 43 (|has| |#1| (-1094)))) (-2068 (($ (-1 (-112) |#1|) $) NIL)) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2899 ((|#1| $) NIL)) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1977 (($ $) 22) (($ $ (-768)) NIL)) (-4181 (($ $) NIL (|has| |#1| (-1094)))) (-1996 (($ $) 35 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2154 (($ |#1| $) NIL (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) NIL)) (-2366 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-2378 (((-112) $) NIL)) (-3305 (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094))) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) NIL)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-4243 (((-112) $) 11)) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2276 (($) 9)) (-3619 (($ (-768) |#1|) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-1457 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-2164 (($ $ $) NIL (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 39 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1858 (($ |#1|) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2389 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2974 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2308 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) 19) (($ $ (-768)) NIL)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-2174 (((-112) $) NIL)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) 38)) (-3434 (($) 37)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 41) ((|#1| $ (-564) |#1|) NIL)) (-4209 (((-564) $ $) NIL)) (-3778 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-2004 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-3572 (((-112) $) NIL)) (-1459 (($ $) NIL)) (-3838 (($ $) NIL (|has| $ (-6 -4412)))) (-3108 (((-768) $) NIL)) (-2857 (($ $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) 52 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-2987 (($ |#1| $) 12)) (-1807 (($ $ $) NIL) (($ $ |#1|) NIL)) (-1802 (($ $ $) 34) (($ |#1| $) 42) (($ (-641 $)) NIL) (($ $ |#1|) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2562 (($ $ $) 13)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2412 (((-1152) $) 30 (|has| |#1| (-825))) (((-1152) $ (-112)) 31 (|has| |#1| (-825))) (((-1264) (-819) $) 32 (|has| |#1| (-825))) (((-1264) (-819) $ (-112)) 33 (|has| |#1| (-825)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-641 |#1|) (-13 (-662 |#1|) (-10 -8 (-15 -2276 ($)) (-15 -4243 ((-112) $)) (-15 -2987 ($ |#1| $)) (-15 -2562 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1907 ($ $ $)) (-15 -1896 ($ $ $)) (-15 -1887 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) (-1209)) (T -641)) +((-2276 (*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-2562 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) (-1907 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-1896 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)))) (-1887 (*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) +(-13 (-662 |#1|) (-10 -8 (-15 -2276 ($)) (-15 -4243 ((-112) $)) (-15 -2987 ($ |#1| $)) (-15 -2562 ($ $ $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -1907 ($ $ $)) (-15 -1896 ($ $ $)) (-15 -1887 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-825)) (-6 (-825)) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 11) (($ (-1175)) NIL) (((-1175) $) NIL) ((|#1| $) 8)) (-1705 (((-112) $ $) NIL))) +(((-642 |#1|) (-13 (-1077) (-611 |#1|)) (-1094)) (T -642)) +NIL +(-13 (-1077) (-611 |#1|)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1987 (($ |#1| |#1| $) 47)) (-2969 (((-112) $ (-768)) NIL)) (-2068 (($ (-1 (-112) |#1|) $) 62 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-4181 (($ $) 49)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2154 (($ |#1| $) 59 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 61 (|has| $ (-6 -4411)))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3616 (((-641 |#1|) $) 9 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 38)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2828 ((|#1| $) 51)) (-2974 (($ |#1| $) 29) (($ |#1| $ (-768)) 46)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1292 ((|#1| $) 54)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 23)) (-3434 (($) 28)) (-1682 (((-112) $) 57)) (-1370 (((-641 (-2 (|:| -2423 |#1|) (|:| -3873 (-768)))) $) 69)) (-4085 (($) 26) (($ (-641 |#1|)) 19)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) 66 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) 20)) (-2235 (((-536) $) 35 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-3742 (((-859) $) 14 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 24)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 71 (|has| |#1| (-1094)))) (-2641 (((-768) $) 17 (|has| $ (-6 -4411))))) +(((-643 |#1|) (-13 (-691 |#1|) (-10 -8 (-6 -4411) (-15 -1682 ((-112) $)) (-15 -1987 ($ |#1| |#1| $)))) (-1094)) (T -643)) +((-1682 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094)))) (-1987 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094))))) +(-13 (-691 |#1|) (-10 -8 (-6 -4411) (-15 -1682 ((-112) $)) (-15 -1987 ($ |#1| |#1| $)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23))) +(((-644 |#1|) (-140) (-1053)) (T -644)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1053))))) (-13 (-21) (-10 -8 (-15 * ($ |t#1| $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767) $) 17)) (-3914 (($ $ |#1|) 69)) (-3934 (($ $) 39)) (-4294 (($ $) 37)) (-2671 (((-3 |#1| "failed") $) 61)) (-2589 ((|#1| $) NIL)) (-1485 (($ |#1| |#2| $) 78) (($ $ $) 80)) (-2494 (((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563)) 56)) (-2535 ((|#1| $ (-563)) 35)) (-2545 ((|#2| $ (-563)) 34)) (-3876 (($ (-1 |#1| |#1|) $) 41)) (-3885 (($ (-1 |#2| |#2|) $) 47)) (-3924 (($) 11)) (-2759 (($ |#1| |#2|) 24)) (-3943 (($ (-640 (-2 (|:| |gen| |#1|) (|:| -3177 |#2|)))) 25)) (-2769 (((-640 (-2 (|:| |gen| |#1|) (|:| -3177 |#2|))) $) 14)) (-3905 (($ |#1| $) 71)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3896 (((-112) $ $) 76)) (-2062 (((-858) $) 21) (($ |#1|) 18)) (-2943 (((-112) $ $) 27))) -(((-644 |#1| |#2| |#3|) (-13 (-1093) (-1034 |#1|) (-10 -8 (-15 -2494 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563))) (-15 -2769 ((-640 (-2 (|:| |gen| |#1|) (|:| -3177 |#2|))) $)) (-15 -2759 ($ |#1| |#2|)) (-15 -3943 ($ (-640 (-2 (|:| |gen| |#1|) (|:| -3177 |#2|))))) (-15 -2545 (|#2| $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -4294 ($ $)) (-15 -3934 ($ $)) (-15 -2433 ((-767) $)) (-15 -3924 ($)) (-15 -3914 ($ $ |#1|)) (-15 -3905 ($ |#1| $)) (-15 -1485 ($ |#1| |#2| $)) (-15 -1485 ($ $ $)) (-15 -3896 ((-112) $ $)) (-15 -3885 ($ (-1 |#2| |#2|) $)) (-15 -3876 ($ (-1 |#1| |#1|) $)))) (-1093) (-23) |#2|) (T -644)) -((-2494 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-563)) (-5 *2 (-858)) (-5 *1 (-644 *5 *6 *7)) (-4 *5 (-1093)) (-4 *6 (-23)) (-14 *7 *6))) (-2769 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 *4)))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-2759 (*1 *1 *2 *3) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3943 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 *4)))) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-23)) (-5 *1 (-644 *4 *2 *5)) (-4 *4 (-1093)) (-14 *5 *2))) (-2535 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *2 (-1093)) (-5 *1 (-644 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4294 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3934 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-3924 (*1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3914 (*1 *1 *1 *2) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3905 (*1 *1 *2 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1485 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-1485 (*1 *1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) (-14 *4 *3))) (-3896 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4))) (-3885 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)))) (-3876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-644 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(-13 (-1093) (-1034 |#1|) (-10 -8 (-15 -2494 ((-858) $ (-1 (-858) (-858) (-858)) (-1 (-858) (-858) (-858)) (-563))) (-15 -2769 ((-640 (-2 (|:| |gen| |#1|) (|:| -3177 |#2|))) $)) (-15 -2759 ($ |#1| |#2|)) (-15 -3943 ($ (-640 (-2 (|:| |gen| |#1|) (|:| -3177 |#2|))))) (-15 -2545 (|#2| $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -4294 ($ $)) (-15 -3934 ($ $)) (-15 -2433 ((-767) $)) (-15 -3924 ($)) (-15 -3914 ($ $ |#1|)) (-15 -3905 ($ |#1| $)) (-15 -1485 ($ |#1| |#2| $)) (-15 -1485 ($ $ $)) (-15 -3896 ((-112) $ $)) (-15 -3885 ($ (-1 |#2| |#2|) $)) (-15 -3876 ($ (-1 |#1| |#1|) $)))) -((-3383 (((-563) $) 29)) (-2530 (($ |#2| $ (-563)) 25) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) 12)) (-3417 (((-112) (-563) $) 16)) (-1951 (($ $ |#2|) 22) (($ |#2| $) 23) (($ $ $) NIL) (($ (-640 $)) NIL))) -(((-645 |#1| |#2|) (-10 -8 (-15 -2530 (|#1| |#1| |#1| (-563))) (-15 -2530 (|#1| |#2| |#1| (-563))) (-15 -1951 (|#1| (-640 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -3383 ((-563) |#1|)) (-15 -3404 ((-640 (-563)) |#1|)) (-15 -3417 ((-112) (-563) |#1|))) (-646 |#2|) (-1208)) (T -645)) -NIL -(-10 -8 (-15 -2530 (|#1| |#1| |#1| (-563))) (-15 -2530 (|#1| |#2| |#1| (-563))) (-15 -1951 (|#1| (-640 |#1|))) (-15 -1951 (|#1| |#1| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -3383 ((-563) |#1|)) (-15 -3404 ((-640 (-563)) |#1|)) (-15 -3417 ((-112) (-563) |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-1920 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 51)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2552 (($ (-767) |#1|) 69)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 42 (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3357 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-4159 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-646 |#1|) (-140) (-1208)) (T -646)) -((-2552 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-1951 (*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-1951 (*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-1951 (*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2751 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-4159 (*1 *1 *1 *2) (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2530 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-646 *2)) (-4 *2 (-1208)))) (-2530 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) (-2189 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1224 (-563))) (|has| *1 (-6 -4409)) (-4 *1 (-646 *2)) (-4 *2 (-1208))))) -(-13 (-601 (-563) |t#1|) (-151 |t#1|) (-10 -8 (-15 -2552 ($ (-767) |t#1|)) (-15 -1951 ($ $ |t#1|)) (-15 -1951 ($ |t#1| $)) (-15 -1951 ($ $ $)) (-15 -1951 ($ (-640 $))) (-15 -2751 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3858 ($ $ (-1224 (-563)))) (-15 -4159 ($ $ (-563))) (-15 -4159 ($ $ (-1224 (-563)))) (-15 -2530 ($ |t#1| $ (-563))) (-15 -2530 ($ $ $ (-563))) (IF (|has| $ (-6 -4409)) (-15 -2189 (|t#1| $ (-1224 (-563)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-1558 (((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) "failed") |#3| |#2| (-1169)) 44))) -(((-647 |#1| |#2| |#3|) (-10 -7 (-15 -1558 ((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) "failed") |#3| |#2| (-1169))) (-15 -1558 ((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955)) (-651 |#2|)) (T -647)) -((-1558 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-647 *6 *2 *3)) (-4 *3 (-651 *2)))) (-1558 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-4 *4 (-13 (-29 *6) (-1193) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3288 (-640 *4)))) (-5 *1 (-647 *6 *4 *3)) (-4 *3 (-651 *4))))) -(-10 -7 (-15 -1558 ((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) "failed") |#3| |#2| (-1169))) (-15 -1558 ((-3 |#2| "failed") |#3| |#2| (-1169) |#2| (-640 |#2|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2780 (($ $) NIL (|has| |#1| (-363)))) (-2803 (($ $ $) NIL (|has| |#1| (-363)))) (-2813 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-4228 (($ $ $) NIL (|has| |#1| (-363)))) (-4240 (($ $ $) NIL (|has| |#1| (-363)))) (-4250 (($ $ $) NIL (|has| |#1| (-363)))) (-4210 (($ $ $) NIL (|has| |#1| (-363)))) (-4199 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-4219 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4344 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452)))) (-2712 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) NIL)) (-4325 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-4315 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-3187 (((-767) $) NIL)) (-4291 (($ $ $) NIL (|has| |#1| (-363)))) (-4302 (($ $ $) NIL (|has| |#1| (-363)))) (-4189 (($ $ $) NIL (|has| |#1| (-363)))) (-4270 (($ $ $) NIL (|has| |#1| (-363)))) (-4260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-4280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4335 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3858 ((|#1| $ |#1|) NIL)) (-2824 (($ $ $) NIL (|has| |#1| (-363)))) (-1962 (((-767) $) NIL)) (-3166 ((|#1| $) NIL (|has| |#1| (-452)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-767)) NIL)) (-3192 (((-767)) NIL T CONST)) (-2408 ((|#1| $ |#1| |#1|) NIL)) (-4069 (($ $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($) NIL)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-648 |#1|) (-651 |#1|) (-233)) (T -648)) -NIL -(-651 |#1|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2780 (($ $) NIL (|has| |#1| (-363)))) (-2803 (($ $ $) NIL (|has| |#1| (-363)))) (-2813 (($ $ (-767)) NIL (|has| |#1| (-363)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-4228 (($ $ $) NIL (|has| |#1| (-363)))) (-4240 (($ $ $) NIL (|has| |#1| (-363)))) (-4250 (($ $ $) NIL (|has| |#1| (-363)))) (-4210 (($ $ $) NIL (|has| |#1| (-363)))) (-4199 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-4219 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4344 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452)))) (-2712 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) NIL)) (-4325 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-4315 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-3187 (((-767) $) NIL)) (-4291 (($ $ $) NIL (|has| |#1| (-363)))) (-4302 (($ $ $) NIL (|has| |#1| (-363)))) (-4189 (($ $ $) NIL (|has| |#1| (-363)))) (-4270 (($ $ $) NIL (|has| |#1| (-363)))) (-4260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-4280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4335 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3858 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-2824 (($ $ $) NIL (|has| |#1| (-363)))) (-1962 (((-767) $) NIL)) (-3166 ((|#1| $) NIL (|has| |#1| (-452)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-767)) NIL)) (-3192 (((-767)) NIL T CONST)) (-2408 ((|#1| $ |#1| |#1|) NIL)) (-4069 (($ $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($) NIL)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-649 |#1| |#2|) (-13 (-651 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-643 |#1|) (-10 -8 (-15 -1361 ($ $))))) (T -649)) -NIL -(-13 (-651 |#1|) (-286 |#2| |#2|)) -((-2780 (($ $) 29)) (-4069 (($ $) 27)) (-4191 (($) 13))) -(((-650 |#1| |#2|) (-10 -8 (-15 -2780 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4191 (|#1|))) (-651 |#2|) (-1045)) (T -650)) -NIL -(-10 -8 (-15 -2780 (|#1| |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4191 (|#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2780 (($ $) 81 (|has| |#1| (-363)))) (-2803 (($ $ $) 83 (|has| |#1| (-363)))) (-2813 (($ $ (-767)) 82 (|has| |#1| (-363)))) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-4228 (($ $ $) 44 (|has| |#1| (-363)))) (-4240 (($ $ $) 45 (|has| |#1| (-363)))) (-4250 (($ $ $) 47 (|has| |#1| (-363)))) (-4210 (($ $ $) 42 (|has| |#1| (-363)))) (-4199 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 41 (|has| |#1| (-363)))) (-4219 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-4344 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 46 (|has| |#1| (-363)))) (-2671 (((-3 (-563) "failed") $) 74 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 71 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 68)) (-2589 (((-563) $) 73 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 70 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 69)) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-2227 (($ $) 54 (|has| |#1| (-452)))) (-2712 (((-112) $) 31)) (-2165 (($ |#1| (-767)) 61)) (-4325 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 56 (|has| |#1| (-555)))) (-4315 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 57 (|has| |#1| (-555)))) (-3187 (((-767) $) 65)) (-4291 (($ $ $) 51 (|has| |#1| (-363)))) (-4302 (($ $ $) 52 (|has| |#1| (-363)))) (-4189 (($ $ $) 40 (|has| |#1| (-363)))) (-4270 (($ $ $) 49 (|has| |#1| (-363)))) (-4260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 48 (|has| |#1| (-363)))) (-4280 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4335 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 53 (|has| |#1| (-363)))) (-3193 ((|#1| $) 64)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-555)))) (-3858 ((|#1| $ |#1|) 86)) (-2824 (($ $ $) 80 (|has| |#1| (-363)))) (-1962 (((-767) $) 66)) (-3166 ((|#1| $) 55 (|has| |#1| (-452)))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 72 (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 67)) (-3234 (((-640 |#1|) $) 60)) (-1304 ((|#1| $ (-767)) 62)) (-3192 (((-767)) 28 T CONST)) (-2408 ((|#1| $ |#1| |#1|) 59)) (-4069 (($ $) 84)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($) 85)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-651 |#1|) (-140) (-1045)) (T -651)) -((-4191 (*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) (-4069 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) (-2803 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2813 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-651 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) (-2780 (*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-2824 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(-13 (-848 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -4191 ($)) (-15 -4069 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2803 ($ $ $)) (-15 -2813 ($ $ (-767))) (-15 -2780 ($ $)) (-15 -2824 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-848 |#1|) . T)) -((-2789 (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))) 88 (|has| |#1| (-27)))) (-2055 (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))) 87 (|has| |#1| (-27))) (((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 19))) -(((-652 |#1| |#2|) (-10 -7 (-15 -2055 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2055 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)))) (-15 -2789 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -652)) -((-2789 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-648 (-407 *6)))) (-5 *1 (-652 *5 *6)) (-5 *3 (-648 (-407 *6)))))) -(-10 -7 (-15 -2055 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2055 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|)))) (-15 -2789 ((-640 (-648 (-407 |#2|))) (-648 (-407 |#2|))))) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2780 (($ $) NIL (|has| |#1| (-363)))) (-2803 (($ $ $) 28 (|has| |#1| (-363)))) (-2813 (($ $ (-767)) 31 (|has| |#1| (-363)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-4228 (($ $ $) NIL (|has| |#1| (-363)))) (-4240 (($ $ $) NIL (|has| |#1| (-363)))) (-4250 (($ $ $) NIL (|has| |#1| (-363)))) (-4210 (($ $ $) NIL (|has| |#1| (-363)))) (-4199 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-4219 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4344 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452)))) (-2712 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) NIL)) (-4325 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-4315 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-3187 (((-767) $) NIL)) (-4291 (($ $ $) NIL (|has| |#1| (-363)))) (-4302 (($ $ $) NIL (|has| |#1| (-363)))) (-4189 (($ $ $) NIL (|has| |#1| (-363)))) (-4270 (($ $ $) NIL (|has| |#1| (-363)))) (-4260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-4280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4335 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3858 ((|#1| $ |#1|) 24)) (-2824 (($ $ $) 33 (|has| |#1| (-363)))) (-1962 (((-767) $) NIL)) (-3166 ((|#1| $) NIL (|has| |#1| (-452)))) (-2062 (((-858) $) 20) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-767)) NIL)) (-3192 (((-767)) NIL T CONST)) (-2408 ((|#1| $ |#1| |#1|) 23)) (-4069 (($ $) NIL)) (-3790 (($) 21 T CONST)) (-3803 (($) 8 T CONST)) (-4191 (($) NIL)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-653 |#1| |#2|) (-651 |#1|) (-1045) (-1 |#1| |#1|)) (T -653)) -NIL -(-651 |#1|) -((-2803 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-2813 ((|#2| |#2| (-767) (-1 |#1| |#1|)) 48)) (-2824 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) -(((-654 |#1| |#2|) (-10 -7 (-15 -2803 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2813 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -2824 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-651 |#1|)) (T -654)) -((-2824 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) (-4 *2 (-651 *4)))) (-2813 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-654 *5 *2)) (-4 *2 (-651 *5)))) (-2803 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) (-4 *2 (-651 *4))))) -(-10 -7 (-15 -2803 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2813 (|#2| |#2| (-767) (-1 |#1| |#1|))) (-15 -2824 (|#2| |#2| |#2| (-1 |#1| |#1|)))) -((-3670 (($ $ $) 9))) -(((-655 |#1|) (-10 -8 (-15 -3670 (|#1| |#1| |#1|))) (-656)) (T -655)) -NIL -(-10 -8 (-15 -3670 (|#1| |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-1909 (($ $) 10)) (-3670 (($ $ $) 8)) (-2943 (((-112) $ $) 6)) (-3658 (($ $ $) 9))) -(((-656) (-140)) (T -656)) -((-1909 (*1 *1 *1) (-4 *1 (-656))) (-3658 (*1 *1 *1 *1) (-4 *1 (-656))) (-3670 (*1 *1 *1 *1) (-4 *1 (-656)))) -(-13 (-102) (-10 -8 (-15 -1909 ($ $)) (-15 -3658 ($ $ $)) (-15 -3670 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768) $) 17)) (-1746 (($ $ |#1|) 69)) (-2797 (($ $) 39)) (-1856 (($ $) 37)) (-2111 (((-3 |#1| "failed") $) 61)) (-2239 ((|#1| $) NIL)) (-3639 (($ |#1| |#2| $) 78) (($ $ $) 80)) (-1596 (((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564)) 56)) (-3950 ((|#1| $ (-564)) 35)) (-3584 ((|#2| $ (-564)) 34)) (-3354 (($ (-1 |#1| |#1|) $) 41)) (-2869 (($ (-1 |#2| |#2|) $) 47)) (-3138 (($) 11)) (-1377 (($ |#1| |#2|) 24)) (-1297 (($ (-641 (-2 (|:| |gen| |#1|) (|:| -4118 |#2|)))) 25)) (-2921 (((-641 (-2 (|:| |gen| |#1|) (|:| -4118 |#2|))) $) 14)) (-2026 (($ |#1| $) 71)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4346 (((-112) $ $) 76)) (-3742 (((-859) $) 21) (($ |#1|) 18)) (-1705 (((-112) $ $) 27))) +(((-645 |#1| |#2| |#3|) (-13 (-1094) (-1035 |#1|) (-10 -8 (-15 -1596 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564))) (-15 -2921 ((-641 (-2 (|:| |gen| |#1|) (|:| -4118 |#2|))) $)) (-15 -1377 ($ |#1| |#2|)) (-15 -1297 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -4118 |#2|))))) (-15 -3584 (|#2| $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -1856 ($ $)) (-15 -2797 ($ $)) (-15 -1938 ((-768) $)) (-15 -3138 ($)) (-15 -1746 ($ $ |#1|)) (-15 -2026 ($ |#1| $)) (-15 -3639 ($ |#1| |#2| $)) (-15 -3639 ($ $ $)) (-15 -4346 ((-112) $ $)) (-15 -2869 ($ (-1 |#2| |#2|) $)) (-15 -3354 ($ (-1 |#1| |#1|) $)))) (-1094) (-23) |#2|) (T -645)) +((-1596 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-564)) (-5 *2 (-859)) (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 *4)))) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-1377 (*1 *1 *2 *3) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1297 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 *4)))) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) (-4 *4 (-1094)) (-14 *5 *2))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1856 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2797 (*1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-3138 (*1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-1746 (*1 *1 *1 *2) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-2026 (*1 *1 *2 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3639 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-3639 (*1 *1 *1 *1) (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) (-14 *4 *3))) (-4346 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) (-2869 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)))) (-3354 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +(-13 (-1094) (-1035 |#1|) (-10 -8 (-15 -1596 ((-859) $ (-1 (-859) (-859) (-859)) (-1 (-859) (-859) (-859)) (-564))) (-15 -2921 ((-641 (-2 (|:| |gen| |#1|) (|:| -4118 |#2|))) $)) (-15 -1377 ($ |#1| |#2|)) (-15 -1297 ($ (-641 (-2 (|:| |gen| |#1|) (|:| -4118 |#2|))))) (-15 -3584 (|#2| $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -1856 ($ $)) (-15 -2797 ($ $)) (-15 -1938 ((-768) $)) (-15 -3138 ($)) (-15 -1746 ($ $ |#1|)) (-15 -2026 ($ |#1| $)) (-15 -3639 ($ |#1| |#2| $)) (-15 -3639 ($ $ $)) (-15 -4346 ((-112) $ $)) (-15 -2869 ($ (-1 |#2| |#2|) $)) (-15 -3354 ($ (-1 |#1| |#1|) $)))) +((-3774 (((-564) $) 29)) (-2308 (($ |#2| $ (-564)) 25) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) 12)) (-4062 (((-112) (-564) $) 16)) (-1802 (($ $ |#2|) 22) (($ |#2| $) 23) (($ $ $) NIL) (($ (-641 $)) NIL))) +(((-646 |#1| |#2|) (-10 -8 (-15 -2308 (|#1| |#1| |#1| (-564))) (-15 -2308 (|#1| |#2| |#1| (-564))) (-15 -1802 (|#1| (-641 |#1|))) (-15 -1802 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#2|)) (-15 -3774 ((-564) |#1|)) (-15 -2312 ((-641 (-564)) |#1|)) (-15 -4062 ((-112) (-564) |#1|))) (-647 |#2|) (-1209)) (T -646)) +NIL +(-10 -8 (-15 -2308 (|#1| |#1| |#1| (-564))) (-15 -2308 (|#1| |#2| |#1| (-564))) (-15 -1802 (|#1| (-641 |#1|))) (-15 -1802 (|#1| |#1| |#1|)) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#2|)) (-15 -3774 ((-564) |#1|)) (-15 -2312 ((-641 (-564)) |#1|)) (-15 -4062 ((-112) (-564) |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-1996 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 51)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-3619 (($ (-768) |#1|) 69)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 42 (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3099 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2004 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 70)) (-1802 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-647 |#1|) (-140) (-1209)) (T -647)) +((-3619 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-1802 (*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-1802 (*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-1802 (*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2187 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2004 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2004 (*1 *1 *1 *2) (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-2308 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209)))) (-2308 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4412)) (-4 *1 (-647 *2)) (-4 *2 (-1209))))) +(-13 (-602 (-564) |t#1|) (-151 |t#1|) (-10 -8 (-15 -3619 ($ (-768) |t#1|)) (-15 -1802 ($ $ |t#1|)) (-15 -1802 ($ |t#1| $)) (-15 -1802 ($ $ $)) (-15 -1802 ($ (-641 $))) (-15 -2187 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4382 ($ $ (-1226 (-564)))) (-15 -2004 ($ $ (-564))) (-15 -2004 ($ $ (-1226 (-564)))) (-15 -2308 ($ |t#1| $ (-564))) (-15 -2308 ($ $ $ (-564))) (IF (|has| $ (-6 -4412)) (-15 -3877 (|t#1| $ (-1226 (-564)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2443 (((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)) 174) (((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) "failed") |#3| |#2| (-1170)) 44))) +(((-648 |#1| |#2| |#3|) (-10 -7 (-15 -2443 ((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -2443 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956)) (-652 |#2|)) (T -648)) +((-2443 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) (-2443 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4265 (-641 *4)))) (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4))))) +(-10 -7 (-15 -2443 ((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) "failed") |#3| |#2| (-1170))) (-15 -2443 ((-3 |#2| "failed") |#3| |#2| (-1170) |#2| (-641 |#2|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2566 (($ $) NIL (|has| |#1| (-363)))) (-2909 (($ $ $) NIL (|has| |#1| (-363)))) (-1455 (($ $ (-768)) NIL (|has| |#1| (-363)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-4048 (($ $ $) NIL (|has| |#1| (-363)))) (-2527 (($ $ $) NIL (|has| |#1| (-363)))) (-2285 (($ $ $) NIL (|has| |#1| (-363)))) (-1617 (($ $ $) NIL (|has| |#1| (-363)))) (-2028 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1302 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3920 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452)))) (-3840 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) NIL)) (-3097 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-1570 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-3469 (((-768) $) NIL)) (-4199 (($ $ $) NIL (|has| |#1| (-363)))) (-2700 (($ $ $) NIL (|has| |#1| (-363)))) (-2406 (($ $ $) NIL (|has| |#1| (-363)))) (-2496 (($ $ $) NIL (|has| |#1| (-363)))) (-3969 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-4353 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2695 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) NIL)) (-4297 (($ $ $) NIL (|has| |#1| (-363)))) (-2266 (((-768) $) NIL)) (-4329 ((|#1| $) NIL (|has| |#1| (-452)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-768)) NIL)) (-3270 (((-768)) NIL T CONST)) (-1918 ((|#1| $ |#1| |#1|) NIL)) (-4298 (($ $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($) NIL)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-649 |#1|) (-652 |#1|) (-233)) (T -649)) +NIL +(-652 |#1|) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2566 (($ $) NIL (|has| |#1| (-363)))) (-2909 (($ $ $) NIL (|has| |#1| (-363)))) (-1455 (($ $ (-768)) NIL (|has| |#1| (-363)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-4048 (($ $ $) NIL (|has| |#1| (-363)))) (-2527 (($ $ $) NIL (|has| |#1| (-363)))) (-2285 (($ $ $) NIL (|has| |#1| (-363)))) (-1617 (($ $ $) NIL (|has| |#1| (-363)))) (-2028 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1302 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3920 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452)))) (-3840 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) NIL)) (-3097 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-1570 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-3469 (((-768) $) NIL)) (-4199 (($ $ $) NIL (|has| |#1| (-363)))) (-2700 (($ $ $) NIL (|has| |#1| (-363)))) (-2406 (($ $ $) NIL (|has| |#1| (-363)))) (-2496 (($ $ $) NIL (|has| |#1| (-363)))) (-3969 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-4353 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2695 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4297 (($ $ $) NIL (|has| |#1| (-363)))) (-2266 (((-768) $) NIL)) (-4329 ((|#1| $) NIL (|has| |#1| (-452)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-768)) NIL)) (-3270 (((-768)) NIL T CONST)) (-1918 ((|#1| $ |#1| |#1|) NIL)) (-4298 (($ $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($) NIL)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-650 |#1| |#2|) (-13 (-652 |#1|) (-286 |#2| |#2|)) (-233) (-13 (-644 |#1|) (-10 -8 (-15 -4117 ($ $))))) (T -650)) +NIL +(-13 (-652 |#1|) (-286 |#2| |#2|)) +((-2566 (($ $) 29)) (-4298 (($ $) 27)) (-2124 (($) 13))) +(((-651 |#1| |#2|) (-10 -8 (-15 -2566 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -2124 (|#1|))) (-652 |#2|) (-1046)) (T -651)) +NIL +(-10 -8 (-15 -2566 (|#1| |#1|)) (-15 -4298 (|#1| |#1|)) (-15 -2124 (|#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-2566 (($ $) 81 (|has| |#1| (-363)))) (-2909 (($ $ $) 83 (|has| |#1| (-363)))) (-1455 (($ $ (-768)) 82 (|has| |#1| (-363)))) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-4048 (($ $ $) 44 (|has| |#1| (-363)))) (-2527 (($ $ $) 45 (|has| |#1| (-363)))) (-2285 (($ $ $) 47 (|has| |#1| (-363)))) (-1617 (($ $ $) 42 (|has| |#1| (-363)))) (-2028 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 41 (|has| |#1| (-363)))) (-1302 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-3920 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 46 (|has| |#1| (-363)))) (-2111 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-2239 (((-564) $) 73 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 69)) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1989 (($ $) 54 (|has| |#1| (-452)))) (-3840 (((-112) $) 31)) (-4245 (($ |#1| (-768)) 61)) (-3097 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 56 (|has| |#1| (-556)))) (-1570 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 57 (|has| |#1| (-556)))) (-3469 (((-768) $) 65)) (-4199 (($ $ $) 51 (|has| |#1| (-363)))) (-2700 (($ $ $) 52 (|has| |#1| (-363)))) (-2406 (($ $ $) 40 (|has| |#1| (-363)))) (-2496 (($ $ $) 49 (|has| |#1| (-363)))) (-3969 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 48 (|has| |#1| (-363)))) (-4353 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-2695 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 53 (|has| |#1| (-363)))) (-1320 ((|#1| $) 64)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) 86)) (-4297 (($ $ $) 80 (|has| |#1| (-363)))) (-2266 (((-768) $) 66)) (-4329 ((|#1| $) 55 (|has| |#1| (-452)))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 67)) (-3110 (((-641 |#1|) $) 60)) (-2856 ((|#1| $ (-768)) 62)) (-3270 (((-768)) 28 T CONST)) (-1918 ((|#1| $ |#1| |#1|) 59)) (-4298 (($ $) 84)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($) 85)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-652 |#1|) (-140) (-1046)) (T -652)) +((-2124 (*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) (-4298 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) (-2909 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1455 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-652 *3)) (-4 *3 (-1046)) (-4 *3 (-363)))) (-2566 (*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-4297 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(-13 (-849 |t#1|) (-286 |t#1| |t#1|) (-10 -8 (-15 -2124 ($)) (-15 -4298 ($ $)) (IF (|has| |t#1| (-363)) (PROGN (-15 -2909 ($ $ $)) (-15 -1455 ($ $ (-768))) (-15 -2566 ($ $)) (-15 -4297 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-286 |#1| |#1|) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-849 |#1|) . T)) +((-2055 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 88 (|has| |#1| (-27)))) (-4127 (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))) 87 (|has| |#1| (-27))) (((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 19))) +(((-653 |#1| |#2|) (-10 -7 (-15 -4127 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4127 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -2055 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -653)) +((-2055 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6)))))) +(-10 -7 (-15 -4127 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4127 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|)))) (-15 -2055 ((-641 (-649 (-407 |#2|))) (-649 (-407 |#2|))))) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2566 (($ $) NIL (|has| |#1| (-363)))) (-2909 (($ $ $) 28 (|has| |#1| (-363)))) (-1455 (($ $ (-768)) 31 (|has| |#1| (-363)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-4048 (($ $ $) NIL (|has| |#1| (-363)))) (-2527 (($ $ $) NIL (|has| |#1| (-363)))) (-2285 (($ $ $) NIL (|has| |#1| (-363)))) (-1617 (($ $ $) NIL (|has| |#1| (-363)))) (-2028 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1302 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3920 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452)))) (-3840 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) NIL)) (-3097 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-1570 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-3469 (((-768) $) NIL)) (-4199 (($ $ $) NIL (|has| |#1| (-363)))) (-2700 (($ $ $) NIL (|has| |#1| (-363)))) (-2406 (($ $ $) NIL (|has| |#1| (-363)))) (-2496 (($ $ $) NIL (|has| |#1| (-363)))) (-3969 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-4353 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2695 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-4382 ((|#1| $ |#1|) 24)) (-4297 (($ $ $) 33 (|has| |#1| (-363)))) (-2266 (((-768) $) NIL)) (-4329 ((|#1| $) NIL (|has| |#1| (-452)))) (-3742 (((-859) $) 20) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-768)) NIL)) (-3270 (((-768)) NIL T CONST)) (-1918 ((|#1| $ |#1| |#1|) 23)) (-4298 (($ $) NIL)) (-4311 (($) 21 T CONST)) (-4321 (($) 8 T CONST)) (-2124 (($) NIL)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-654 |#1| |#2|) (-652 |#1|) (-1046) (-1 |#1| |#1|)) (T -654)) +NIL +(-652 |#1|) +((-2909 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 70)) (-1455 ((|#2| |#2| (-768) (-1 |#1| |#1|)) 48)) (-4297 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 72))) +(((-655 |#1| |#2|) (-10 -7 (-15 -2909 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1455 (|#2| |#2| (-768) (-1 |#1| |#1|))) (-15 -4297 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -655)) +((-4297 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4)))) (-1455 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5)))) (-2909 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) (-4 *2 (-652 *4))))) +(-10 -7 (-15 -2909 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1455 (|#2| |#2| (-768) (-1 |#1| |#1|))) (-15 -4297 (|#2| |#2| |#2| (-1 |#1| |#1|)))) +((-4042 (($ $ $) 9))) +(((-656 |#1|) (-10 -8 (-15 -4042 (|#1| |#1| |#1|))) (-657)) (T -656)) +NIL +(-10 -8 (-15 -4042 (|#1| |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-1680 (($ $) 10)) (-4042 (($ $ $) 8)) (-1705 (((-112) $ $) 6)) (-4029 (($ $ $) 9))) +(((-657) (-140)) (T -657)) +((-1680 (*1 *1 *1) (-4 *1 (-657))) (-4029 (*1 *1 *1 *1) (-4 *1 (-657))) (-4042 (*1 *1 *1 *1) (-4 *1 (-657)))) +(-13 (-102) (-10 -8 (-15 -1680 ($ $)) (-15 -4029 ($ $ $)) (-15 -4042 ($ $ $)))) (((-102) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 15)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2626 ((|#1| $) 21)) (-3489 (($ $ $) NIL (|has| |#1| (-787)))) (-4105 (($ $ $) NIL (|has| |#1| (-787)))) (-1938 (((-1151) $) 46)) (-3249 (((-1113) $) NIL)) (-2636 ((|#3| $) 22)) (-2062 (((-858) $) 41)) (-3790 (($) 10 T CONST)) (-2998 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2943 (((-112) $ $) 20)) (-2988 (((-112) $ $) NIL (|has| |#1| (-787)))) (-2966 (((-112) $ $) 24 (|has| |#1| (-787)))) (-3050 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-3039 (($ $) 17) (($ $ $) NIL)) (-3027 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) -(((-657 |#1| |#2| |#3|) (-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -3050 ($ $ |#3|)) (-15 -3050 ($ |#1| |#3|)) (-15 -2626 (|#1| $)) (-15 -2636 (|#3| $)))) (-713 |#2|) (-172) (|SubsetCategory| (-722) |#2|)) (T -657)) -((-3050 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4)) (-4 *2 (|SubsetCategory| (-722) *4)))) (-3050 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-657 *2 *4 *3)) (-4 *2 (-713 *4)) (-4 *3 (|SubsetCategory| (-722) *4)))) (-2626 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-657 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-722) *3)))) (-2636 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4))))) -(-13 (-713 |#2|) (-10 -8 (IF (|has| |#1| (-787)) (-6 (-787)) |%noBranch|) (-15 -3050 ($ $ |#3|)) (-15 -3050 ($ |#1| |#3|)) (-15 -2626 (|#1| $)) (-15 -2636 (|#3| $)))) -((-2834 (((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|)) 33))) -(((-658 |#1|) (-10 -7 (-15 -2834 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|)))) (-905)) (T -658)) -((-2834 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *4))) (-5 *3 (-1165 *4)) (-4 *4 (-905)) (-5 *1 (-658 *4))))) -(-10 -7 (-15 -2834 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1347 (((-640 |#1|) $) 84)) (-1950 (($ $ (-767)) 94)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-1885 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 50)) (-2671 (((-3 (-667 |#1|) "failed") $) NIL)) (-2589 (((-667 |#1|) $) NIL)) (-3213 (($ $) 93)) (-1528 (((-767) $) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-1576 (($ (-667 |#1|) |#2|) 70)) (-1857 (($ $) 89)) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-1899 (((-1281 |#1| |#2|) (-1281 |#1| |#2|) $) 49)) (-2325 (((-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3183 (((-667 |#1|) $) NIL)) (-3193 ((|#2| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1497 (($ $ |#1| $) 32) (($ $ (-640 |#1|) (-640 $)) 34)) (-1962 (((-767) $) 91)) (-2074 (($ $ $) 20) (($ (-667 |#1|) (-667 |#1|)) 79) (($ (-667 |#1|) $) 77) (($ $ (-667 |#1|)) 78)) (-2062 (((-858) $) NIL) (($ |#1|) 76) (((-1272 |#1| |#2|) $) 60) (((-1281 |#1| |#2|) $) 43) (($ (-667 |#1|)) 27)) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ (-667 |#1|)) NIL)) (-2765 ((|#2| (-1281 |#1| |#2|) $) 45)) (-3790 (($) 23 T CONST)) (-4025 (((-640 (-2 (|:| |k| (-667 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1939 (((-3 $ "failed") (-1272 |#1| |#2|)) 62)) (-2171 (($ (-667 |#1|)) 14)) (-2943 (((-112) $ $) 46)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $) 68) (($ $ $) NIL)) (-3027 (($ $ $) 31)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-667 |#1|)) NIL))) -(((-659 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-667 |#1|)) (-10 -8 (-15 -1939 ((-3 $ "failed") (-1272 |#1| |#2|))) (-15 -2074 ($ (-667 |#1|) (-667 |#1|))) (-15 -2074 ($ (-667 |#1|) $)) (-15 -2074 ($ $ (-667 |#1|))))) (-846) (-172)) (T -659)) -((-1939 (*1 *1 *2) (|partial| -12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-659 *3 *4)))) (-2074 (*1 *1 *2 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))) (-2074 (*1 *1 *2 *1) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172)))) (-2074 (*1 *1 *1 *2) (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) (-4 *4 (-172))))) -(-13 (-374 |#1| |#2|) (-382 |#2| (-667 |#1|)) (-10 -8 (-15 -1939 ((-3 $ "failed") (-1272 |#1| |#2|))) (-15 -2074 ($ (-667 |#1|) (-667 |#1|))) (-15 -2074 ($ (-667 |#1|) $)) (-15 -2074 ($ $ (-667 |#1|))))) -((-2162 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 60)) (-2146 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-1736 (($ (-1 (-112) |#2|) $) 28)) (-3934 (($ $) 66)) (-2273 (($ $) 77)) (-2841 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 42)) (-2532 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 61) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 63)) (-2256 (((-563) |#2| $ (-563)) 74) (((-563) |#2| $) NIL) (((-563) (-1 (-112) |#2|) $) 55)) (-2552 (($ (-767) |#2|) 64)) (-2346 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-2383 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2751 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 65)) (-2335 (($ |#2|) 15)) (-1956 (($ $ $ (-563)) 41) (($ |#2| $ (-563)) 39)) (-1828 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 52)) (-1751 (($ $ (-1224 (-563))) 50) (($ $ (-563)) 43)) (-2155 (($ $ $ (-563)) 73)) (-2208 (($ $) 71)) (-2966 (((-112) $ $) 79))) -(((-660 |#1| |#2|) (-10 -8 (-15 -2335 (|#1| |#2|)) (-15 -1751 (|#1| |#1| (-563))) (-15 -1751 (|#1| |#1| (-1224 (-563)))) (-15 -2841 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1956 (|#1| |#2| |#1| (-563))) (-15 -1956 (|#1| |#1| |#1| (-563))) (-15 -2346 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1736 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2841 (|#1| |#2| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2346 (|#1| |#1| |#1|)) (-15 -2383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2162 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2256 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -2256 ((-563) |#2| |#1|)) (-15 -2256 ((-563) |#2| |#1| (-563))) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2162 ((-112) |#1|)) (-15 -2155 (|#1| |#1| |#1| (-563))) (-15 -3934 (|#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2552 (|#1| (-767) |#2|)) (-15 -2751 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2208 (|#1| |#1|))) (-661 |#2|) (-1208)) (T -660)) -NIL -(-10 -8 (-15 -2335 (|#1| |#2|)) (-15 -1751 (|#1| |#1| (-563))) (-15 -1751 (|#1| |#1| (-1224 (-563)))) (-15 -2841 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -1956 (|#1| |#2| |#1| (-563))) (-15 -1956 (|#1| |#1| |#1| (-563))) (-15 -2346 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1736 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2841 (|#1| |#2| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2346 (|#1| |#1| |#1|)) (-15 -2383 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2162 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -2256 ((-563) (-1 (-112) |#2|) |#1|)) (-15 -2256 ((-563) |#2| |#1|)) (-15 -2256 ((-563) |#2| |#1| (-563))) (-15 -2383 (|#1| |#1| |#1|)) (-15 -2162 ((-112) |#1|)) (-15 -2155 (|#1| |#1| |#1| (-563))) (-15 -3934 (|#1| |#1|)) (-15 -2146 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2146 (|#1| |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2532 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1828 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -2552 (|#1| (-767) |#2|)) (-15 -2751 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2208 (|#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3556 ((|#1| $) 48)) (-3931 ((|#1| $) 65)) (-1588 (($ $) 67)) (-1435 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) 52 (|has| $ (-6 -4409)))) (-2162 (((-112) $) 142 (|has| |#1| (-846))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2146 (($ $) 146 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4409)))) (-4257 (($ $) 141 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-3740 (((-112) $ (-767)) 8)) (-3472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-3032 (($ $ $) 56 (|has| $ (-6 -4409)))) (-3021 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-3043 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-1736 (($ (-1 (-112) |#1|) $) 129)) (-1907 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4408)))) (-3919 ((|#1| $) 66)) (-3684 (($) 7 T CONST)) (-3934 (($ $) 144 (|has| $ (-6 -4409)))) (-4294 (($ $) 134)) (-1897 (($ $) 73) (($ $ (-767)) 71)) (-2273 (($ $) 131 (|has| |#1| (-1093)))) (-1920 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ |#1| $) 130 (|has| |#1| (-1093))) (($ (-1 (-112) |#1|) $) 125)) (-1417 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4408))) (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4150 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 87)) (-3089 (((-112) $) 83)) (-2256 (((-563) |#1| $ (-563)) 139 (|has| |#1| (-1093))) (((-563) |#1| $) 138 (|has| |#1| (-1093))) (((-563) (-1 (-112) |#1|) $) 137)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 50)) (-3494 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2552 (($ (-767) |#1|) 108)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 95 (|has| (-563) (-846)))) (-3489 (($ $ $) 147 (|has| |#1| (-846)))) (-2346 (($ $ $) 132 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-2383 (($ $ $) 140 (|has| |#1| (-846))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 94 (|has| (-563) (-846)))) (-4105 (($ $ $) 148 (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2335 (($ |#1|) 122)) (-3604 (((-112) $ (-767)) 10)) (-3884 (((-640 |#1|) $) 45)) (-2484 (((-112) $) 49)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1442 ((|#1| $) 70) (($ $ (-767)) 68)) (-1956 (($ $ $ (-563)) 127) (($ |#1| $ (-563)) 126)) (-2530 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-3404 (((-640 (-563)) $) 92)) (-3417 (((-112) (-563) $) 91)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 76) (($ $ (-767)) 74)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3357 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-3101 (((-112) $) 84)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 90)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-3514 (((-563) $ $) 44)) (-1751 (($ $ (-1224 (-563))) 124) (($ $ (-563)) 123)) (-4159 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-2181 (((-112) $) 46)) (-3074 (($ $) 62)) (-3055 (($ $) 59 (|has| $ (-6 -4409)))) (-3083 (((-767) $) 63)) (-3095 (($ $) 64)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2155 (($ $ $ (-563)) 143 (|has| $ (-6 -4409)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 107)) (-3065 (($ $ $) 61) (($ $ |#1|) 60)) (-1951 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 51)) (-3504 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) 150 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 151 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-2988 (((-112) $ $) 149 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 152 (|has| |#1| (-846)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-661 |#1|) (-140) (-1208)) (T -661)) -((-2335 (*1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1208))))) -(-13 (-1142 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -2335 ($ |t#1|)))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1006 |#1|) . T) ((-1093) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1142 |#1|) . T) ((-1208) . T) ((-1245 |#1|) . T)) -((-1558 (((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|))) 22) (((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)) 14)) (-3406 (((-767) (-684 |#1|) (-1257 |#1|)) 30)) (-3433 (((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|)) 24)) (-2844 (((-112) (-684 |#1|) (-1257 |#1|)) 27))) -(((-662 |#1|) (-10 -7 (-15 -1558 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|))) (-15 -1558 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|))) (-15 -1558 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|)))) (-15 -1558 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|)))) (-15 -3433 ((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|))) (-15 -2844 ((-112) (-684 |#1|) (-1257 |#1|))) (-15 -3406 ((-767) (-684 |#1|) (-1257 |#1|)))) (-363)) (T -662)) -((-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-662 *5)))) (-2844 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-662 *5)))) (-3433 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1257 *4)) (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *1 (-662 *4)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -3288 (-640 (-1257 *5)))))) (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -3288 (-640 (-1257 *5)))))) (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -3288 (-640 (-1257 *5))))) (-5 *1 (-662 *5)) (-5 *4 (-1257 *5)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *5) "failed")) (|:| -3288 (-640 (-1257 *5))))) (-5 *1 (-662 *5)) (-5 *4 (-1257 *5))))) -(-10 -7 (-15 -1558 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|))) (-15 -1558 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-640 (-640 |#1|)) (-1257 |#1|))) (-15 -1558 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|))))) (-684 |#1|) (-640 (-1257 |#1|)))) (-15 -1558 ((-640 (-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|))))) (-640 (-640 |#1|)) (-640 (-1257 |#1|)))) (-15 -3433 ((-3 (-1257 |#1|) "failed") (-684 |#1|) (-1257 |#1|))) (-15 -2844 ((-112) (-684 |#1|) (-1257 |#1|))) (-15 -3406 ((-767) (-684 |#1|) (-1257 |#1|)))) -((-1558 (((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|)))) |#4| (-640 |#3|)) 65) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|))) |#4| |#3|) 59)) (-3406 (((-767) |#4| |#3|) 18)) (-3433 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2844 (((-112) |#4| |#3|) 14))) -(((-663 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1558 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|))) |#4| |#3|)) (-15 -1558 ((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|)))) |#4| (-640 |#3|))) (-15 -3433 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2844 ((-112) |#4| |#3|)) (-15 -3406 ((-767) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4409))) (-13 (-373 |#1|) (-10 -7 (-6 -4409))) (-682 |#1| |#2| |#3|)) (T -663)) -((-3406 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-767)) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-2844 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-112)) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-3433 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4409)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))) (-5 *1 (-663 *4 *5 *2 *3)) (-4 *3 (-682 *4 *5 *2)))) (-1558 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-640 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3288 (-640 *7))))) (-5 *1 (-663 *5 *6 *7 *3)) (-5 *4 (-640 *7)) (-4 *3 (-682 *5 *6 *7)))) (-1558 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4))))) -(-10 -7 (-15 -1558 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|))) |#4| |#3|)) (-15 -1558 ((-640 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|)))) |#4| (-640 |#3|))) (-15 -3433 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2844 ((-112) |#4| |#3|)) (-15 -3406 ((-767) |#4| |#3|))) -((-2854 (((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -3288 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|)) 54))) -(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2854 ((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -3288 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|)))) (-555) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -664)) -((-2854 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *7)) (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 (-407 *8)) "failed")) (|:| -3288 (-640 (-1257 (-407 *8)))))) (-5 *1 (-664 *5 *6 *7 *8))))) -(-10 -7 (-15 -2854 ((-2 (|:| |particular| (-3 (-1257 (-407 |#4|)) "failed")) (|:| -3288 (-640 (-1257 (-407 |#4|))))) (-640 |#4|) (-640 |#3|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2570 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-3282 ((|#2| $) NIL)) (-3148 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1807 (((-1257 (-684 |#2|))) NIL) (((-1257 (-684 |#2|)) (-1257 $)) NIL)) (-3172 (((-112) $) NIL)) (-2138 (((-1257 $)) 44)) (-3740 (((-112) $ (-767)) NIL)) (-1444 (($ |#2|) NIL)) (-3684 (($) NIL T CONST)) (-3063 (($ $) NIL (|has| |#2| (-307)))) (-3082 (((-240 |#1| |#2|) $ (-563)) NIL)) (-3422 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL (|has| |#2| (-555)))) (-3040 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-1460 (((-684 |#2|)) NIL) (((-684 |#2|) (-1257 $)) NIL)) (-2117 ((|#2| $) NIL)) (-1440 (((-684 |#2|) $) NIL) (((-684 |#2|) $ (-1257 $)) NIL)) (-2661 (((-3 $ "failed") $) NIL (|has| |#2| (-555)))) (-3351 (((-1165 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-2690 (($ $ (-917)) NIL)) (-2097 ((|#2| $) NIL)) (-3061 (((-1165 |#2|) $) NIL (|has| |#2| (-555)))) (-1483 ((|#2|) NIL) ((|#2| (-1257 $)) NIL)) (-3248 (((-1165 |#2|) $) NIL)) (-3190 (((-112)) NIL)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-1505 (($ (-1257 |#2|)) NIL) (($ (-1257 |#2|) (-1257 $)) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3406 (((-767) $) NIL (|has| |#2| (-555))) (((-917)) 45)) (-4085 ((|#2| $ (-563) (-563)) NIL)) (-3159 (((-112)) NIL)) (-1670 (($ $ (-917)) NIL)) (-4236 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2712 (((-112) $) NIL)) (-3054 (((-767) $) NIL (|has| |#2| (-555)))) (-3042 (((-640 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-555)))) (-3955 (((-767) $) NIL)) (-3115 (((-112)) NIL)) (-3965 (((-767) $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-1390 ((|#2| $) NIL (|has| |#2| (-6 (-4410 "*"))))) (-3127 (((-563) $) NIL)) (-3105 (((-563) $) NIL)) (-1572 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3117 (((-563) $) NIL)) (-3094 (((-563) $) NIL)) (-3840 (($ (-640 (-640 |#2|))) NIL)) (-4139 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1791 (((-640 (-640 |#2|)) $) NIL)) (-3092 (((-112)) NIL)) (-3135 (((-112)) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-3430 (((-3 (-2 (|:| |particular| $) (|:| -3288 (-640 $))) "failed")) NIL (|has| |#2| (-555)))) (-3052 (((-3 $ "failed")) NIL (|has| |#2| (-555)))) (-1471 (((-684 |#2|)) NIL) (((-684 |#2|) (-1257 $)) NIL)) (-2127 ((|#2| $) NIL)) (-1450 (((-684 |#2|) $) NIL) (((-684 |#2|) $ (-1257 $)) NIL)) (-2673 (((-3 $ "failed") $) NIL (|has| |#2| (-555)))) (-3399 (((-1165 (-948 |#2|))) NIL (|has| |#2| (-363)))) (-2681 (($ $ (-917)) NIL)) (-2108 ((|#2| $) NIL)) (-3071 (((-1165 |#2|) $) NIL (|has| |#2| (-555)))) (-1493 ((|#2|) NIL) ((|#2| (-1257 $)) NIL)) (-3260 (((-1165 |#2|) $) NIL)) (-3200 (((-112)) NIL)) (-1938 (((-1151) $) NIL)) (-3103 (((-112)) NIL)) (-3125 (((-112)) NIL)) (-3146 (((-112)) NIL)) (-1755 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-3249 (((-1113) $) NIL)) (-3180 (((-112)) NIL)) (-3448 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-3837 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ (-563) (-563) |#2|) NIL) ((|#2| $ (-563) (-563)) 30) ((|#2| $ (-563)) NIL)) (-1361 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1408 ((|#2| $) NIL)) (-1431 (($ (-640 |#2|)) NIL)) (-3162 (((-112) $) NIL)) (-1419 (((-240 |#1| |#2|) $) NIL)) (-1400 ((|#2| $) NIL (|has| |#2| (-6 (-4410 "*"))))) (-3261 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2208 (($ $) NIL)) (-1818 (((-684 |#2|) (-1257 $)) NIL) (((-1257 |#2|) $) NIL) (((-684 |#2|) (-1257 $) (-1257 $)) NIL) (((-1257 |#2|) $ (-1257 $)) 33)) (-2802 (($ (-1257 |#2|)) NIL) (((-1257 |#2|) $) NIL)) (-1355 (((-640 (-948 |#2|))) NIL) (((-640 (-948 |#2|)) (-1257 $)) NIL)) (-2879 (($ $ $) NIL)) (-3239 (((-112)) NIL)) (-3073 (((-240 |#1| |#2|) $ (-563)) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (((-684 |#2|) $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) 43)) (-3080 (((-640 (-1257 |#2|))) NIL (|has| |#2| (-555)))) (-2888 (($ $ $ $) NIL)) (-3221 (((-112)) NIL)) (-2408 (($ (-684 |#2|) $) NIL)) (-3848 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3137 (((-112) $) NIL)) (-2870 (($ $ $) NIL)) (-3231 (((-112)) NIL)) (-3210 (((-112)) NIL)) (-3169 (((-112)) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-665 |#1| |#2|) (-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-417 |#2|)) (-917) (-172)) (T -665)) -NIL -(-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-417 |#2|)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1984 (((-640 (-1128)) $) 10)) (-2062 (((-858) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-666) (-13 (-1076) (-10 -8 (-15 -1984 ((-640 (-1128)) $))))) (T -666)) -((-1984 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-666))))) -(-13 (-1076) (-10 -8 (-15 -1984 ((-640 (-1128)) $)))) -((-2049 (((-112) $ $) NIL)) (-1347 (((-640 |#1|) $) NIL)) (-2665 (($ $) 66)) (-4016 (((-112) $) NIL)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2882 (((-3 $ "failed") (-815 |#1|)) 27)) (-2901 (((-112) (-815 |#1|)) 17)) (-2891 (($ (-815 |#1|)) 28)) (-2587 (((-112) $ $) 35)) (-3322 (((-917) $) 42)) (-2654 (($ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2055 (((-640 $) (-815 |#1|)) 19)) (-2062 (((-858) $) 50) (($ |#1|) 39) (((-815 |#1|) $) 46) (((-672 |#1|) $) 51)) (-2873 (((-59 (-640 $)) (-640 |#1|) (-917)) 71)) (-2864 (((-640 $) (-640 |#1|) (-917)) 75)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 67)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 45))) -(((-667 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 -4016 ((-112) $)) (-15 -2654 ($ $)) (-15 -2665 ($ $)) (-15 -3322 ((-917) $)) (-15 -2587 ((-112) $ $)) (-15 -2062 ((-815 |#1|) $)) (-15 -2062 ((-672 |#1|) $)) (-15 -2055 ((-640 $) (-815 |#1|))) (-15 -2901 ((-112) (-815 |#1|))) (-15 -2891 ($ (-815 |#1|))) (-15 -2882 ((-3 $ "failed") (-815 |#1|))) (-15 -1347 ((-640 |#1|) $)) (-15 -2873 ((-59 (-640 $)) (-640 |#1|) (-917))) (-15 -2864 ((-640 $) (-640 |#1|) (-917))))) (-846)) (T -667)) -((-4016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2654 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) (-2665 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2587 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2055 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-667 *4))) (-5 *1 (-667 *4)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) (-5 *1 (-667 *4)))) (-2891 (*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))) (-2882 (*1 *1 *2) (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) (-2873 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-59 (-640 (-667 *5)))) (-5 *1 (-667 *5)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) (-5 *2 (-640 (-667 *5))) (-5 *1 (-667 *5))))) -(-13 (-846) (-1034 |#1|) (-10 -8 (-15 -4016 ((-112) $)) (-15 -2654 ($ $)) (-15 -2665 ($ $)) (-15 -3322 ((-917) $)) (-15 -2587 ((-112) $ $)) (-15 -2062 ((-815 |#1|) $)) (-15 -2062 ((-672 |#1|) $)) (-15 -2055 ((-640 $) (-815 |#1|))) (-15 -2901 ((-112) (-815 |#1|))) (-15 -2891 ($ (-815 |#1|))) (-15 -2882 ((-3 $ "failed") (-815 |#1|))) (-15 -1347 ((-640 |#1|) $)) (-15 -2873 ((-59 (-640 $)) (-640 |#1|) (-917))) (-15 -2864 ((-640 $) (-640 |#1|) (-917))))) -((-3556 ((|#2| $) 103)) (-1588 (($ $) 124)) (-3740 (((-112) $ (-767)) 35)) (-1897 (($ $) 112) (($ $ (-767)) 115)) (-3089 (((-112) $) 125)) (-3524 (((-640 $) $) 99)) (-3494 (((-112) $ $) 95)) (-3633 (((-112) $ (-767)) 33)) (-3371 (((-563) $) 69)) (-3383 (((-563) $) 68)) (-3604 (((-112) $ (-767)) 31)) (-2484 (((-112) $) 101)) (-1442 ((|#2| $) 116) (($ $ (-767)) 120)) (-2530 (($ $ $ (-563)) 86) (($ |#2| $ (-563)) 85)) (-3404 (((-640 (-563)) $) 67)) (-3417 (((-112) (-563) $) 61)) (-1884 ((|#2| $) NIL) (($ $ (-767)) 111)) (-2884 (($ $ (-563)) 127)) (-3101 (((-112) $) 126)) (-3837 (((-112) (-1 (-112) |#2|) $) 44)) (-3427 (((-640 |#2|) $) 48)) (-3858 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1224 (-563))) 82) ((|#2| $ (-563)) 59) ((|#2| $ (-563) |#2|) 60)) (-3514 (((-563) $ $) 94)) (-4159 (($ $ (-1224 (-563))) 81) (($ $ (-563)) 75)) (-2181 (((-112) $) 90)) (-3074 (($ $) 108)) (-3083 (((-767) $) 107)) (-3095 (($ $) 106)) (-2074 (($ (-640 |#2|)) 55)) (-2686 (($ $) 128)) (-2432 (((-640 $) $) 93)) (-3504 (((-112) $ $) 92)) (-3848 (((-112) (-1 (-112) |#2|) $) 43)) (-2943 (((-112) $ $) 20)) (-1708 (((-767) $) 41))) -(((-668 |#1| |#2|) (-10 -8 (-15 -2686 (|#1| |#1|)) (-15 -2884 (|#1| |#1| (-563))) (-15 -3089 ((-112) |#1|)) (-15 -3101 ((-112) |#1|)) (-15 -3858 (|#2| |#1| (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563))) (-15 -3427 ((-640 |#2|) |#1|)) (-15 -3417 ((-112) (-563) |#1|)) (-15 -3404 ((-640 (-563)) |#1|)) (-15 -3383 ((-563) |#1|)) (-15 -3371 ((-563) |#1|)) (-15 -2074 (|#1| (-640 |#2|))) (-15 -3858 (|#1| |#1| (-1224 (-563)))) (-15 -4159 (|#1| |#1| (-563))) (-15 -4159 (|#1| |#1| (-1224 (-563)))) (-15 -2530 (|#1| |#2| |#1| (-563))) (-15 -2530 (|#1| |#1| |#1| (-563))) (-15 -3074 (|#1| |#1|)) (-15 -3083 ((-767) |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-767))) (-15 -3858 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -1897 (|#1| |#1| (-767))) (-15 -3858 (|#1| |#1| "rest")) (-15 -1897 (|#1| |#1|)) (-15 -1884 (|#1| |#1| (-767))) (-15 -3858 (|#2| |#1| "first")) (-15 -1884 (|#2| |#1|)) (-15 -3494 ((-112) |#1| |#1|)) (-15 -3504 ((-112) |#1| |#1|)) (-15 -3514 ((-563) |#1| |#1|)) (-15 -2181 ((-112) |#1|)) (-15 -3858 (|#2| |#1| "value")) (-15 -3556 (|#2| |#1|)) (-15 -2484 ((-112) |#1|)) (-15 -3524 ((-640 |#1|) |#1|)) (-15 -2432 ((-640 |#1|) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1708 ((-767) |#1|)) (-15 -3740 ((-112) |#1| (-767))) (-15 -3633 ((-112) |#1| (-767))) (-15 -3604 ((-112) |#1| (-767)))) (-669 |#2|) (-1208)) (T -668)) -NIL -(-10 -8 (-15 -2686 (|#1| |#1|)) (-15 -2884 (|#1| |#1| (-563))) (-15 -3089 ((-112) |#1|)) (-15 -3101 ((-112) |#1|)) (-15 -3858 (|#2| |#1| (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563))) (-15 -3427 ((-640 |#2|) |#1|)) (-15 -3417 ((-112) (-563) |#1|)) (-15 -3404 ((-640 (-563)) |#1|)) (-15 -3383 ((-563) |#1|)) (-15 -3371 ((-563) |#1|)) (-15 -2074 (|#1| (-640 |#2|))) (-15 -3858 (|#1| |#1| (-1224 (-563)))) (-15 -4159 (|#1| |#1| (-563))) (-15 -4159 (|#1| |#1| (-1224 (-563)))) (-15 -2530 (|#1| |#2| |#1| (-563))) (-15 -2530 (|#1| |#1| |#1| (-563))) (-15 -3074 (|#1| |#1|)) (-15 -3083 ((-767) |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-767))) (-15 -3858 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -1897 (|#1| |#1| (-767))) (-15 -3858 (|#1| |#1| "rest")) (-15 -1897 (|#1| |#1|)) (-15 -1884 (|#1| |#1| (-767))) (-15 -3858 (|#2| |#1| "first")) (-15 -1884 (|#2| |#1|)) (-15 -3494 ((-112) |#1| |#1|)) (-15 -3504 ((-112) |#1| |#1|)) (-15 -3514 ((-563) |#1| |#1|)) (-15 -2181 ((-112) |#1|)) (-15 -3858 (|#2| |#1| "value")) (-15 -3556 (|#2| |#1|)) (-15 -2484 ((-112) |#1|)) (-15 -3524 ((-640 |#1|) |#1|)) (-15 -2432 ((-640 |#1|) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -3837 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1708 ((-767) |#1|)) (-15 -3740 ((-112) |#1| (-767))) (-15 -3633 ((-112) |#1| (-767))) (-15 -3604 ((-112) |#1| (-767)))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3556 ((|#1| $) 48)) (-3931 ((|#1| $) 65)) (-1588 (($ $) 67)) (-1435 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) 52 (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) 8)) (-3472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-3032 (($ $ $) 56 (|has| $ (-6 -4409)))) (-3021 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-3043 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) 102)) (-3919 ((|#1| $) 66)) (-3684 (($) 7 T CONST)) (-2922 (($ $) 124)) (-1897 (($ $) 73) (($ $ (-767)) 71)) (-1920 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 103)) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4150 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 87)) (-3089 (((-112) $) 83)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-2912 (((-767) $) 123)) (-3524 (((-640 $) $) 50)) (-3494 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2552 (($ (-767) |#1|) 108)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 95 (|has| (-563) (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 94 (|has| (-563) (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3604 (((-112) $ (-767)) 10)) (-3884 (((-640 |#1|) $) 45)) (-2484 (((-112) $) 49)) (-2945 (($ $) 126)) (-2954 (((-112) $) 127)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1442 ((|#1| $) 70) (($ $ (-767)) 68)) (-2530 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-3404 (((-640 (-563)) $) 92)) (-3417 (((-112) (-563) $) 91)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-2932 ((|#1| $) 125)) (-1884 ((|#1| $) 76) (($ $ (-767)) 74)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3357 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-2884 (($ $ (-563)) 122)) (-3101 (((-112) $) 84)) (-2968 (((-112) $) 128)) (-2979 (((-112) $) 129)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 90)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-3514 (((-563) $ $) 44)) (-4159 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-2181 (((-112) $) 46)) (-3074 (($ $) 62)) (-3055 (($ $) 59 (|has| $ (-6 -4409)))) (-3083 (((-767) $) 63)) (-3095 (($ $) 64)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 107)) (-3065 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-1951 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-2686 (($ $) 121)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 51)) (-3504 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-669 |#1|) (-140) (-1208)) (T -669)) -((-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-1907 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-2979 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-2968 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-2954 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-2945 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-2922 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) (-2912 (*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) (-2686 (*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))) -(-13 (-1142 |t#1|) (-10 -8 (-15 -1417 ($ (-1 (-112) |t#1|) $)) (-15 -1907 ($ (-1 (-112) |t#1|) $)) (-15 -2979 ((-112) $)) (-15 -2968 ((-112) $)) (-15 -2954 ((-112) $)) (-15 -2945 ($ $)) (-15 -2932 (|t#1| $)) (-15 -2922 ($ $)) (-15 -2912 ((-767) $)) (-15 -2884 ($ $ (-563))) (-15 -2686 ($ $)))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1142 |#1|) . T) ((-1208) . T) ((-1245 |#1|) . T)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3030 (($ (-767) (-767) (-767)) 55 (|has| |#1| (-1045)))) (-3740 (((-112) $ (-767)) NIL)) (-3009 ((|#1| $ (-767) (-767) (-767) |#1|) 49)) (-3684 (($) NIL T CONST)) (-1485 (($ $ $) 60 (|has| |#1| (-1045)))) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2990 (((-1257 (-767)) $) 12)) (-3000 (($ (-1169) $ $) 37)) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3019 (($ (-767)) 57 (|has| |#1| (-1045)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-767) (-767) (-767)) 46)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2074 (($ (-640 (-640 (-640 |#1|)))) 70)) (-2062 (($ (-954 (-954 (-954 |#1|)))) 23) (((-954 (-954 (-954 |#1|))) $) 19) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-670 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -3030 ($ (-767) (-767) (-767))) (-15 -3019 ($ (-767))) (-15 -1485 ($ $ $))) |%noBranch|) (-15 -2074 ($ (-640 (-640 (-640 |#1|))))) (-15 -3858 (|#1| $ (-767) (-767) (-767))) (-15 -3009 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -2062 ($ (-954 (-954 (-954 |#1|))))) (-15 -2062 ((-954 (-954 (-954 |#1|))) $)) (-15 -3000 ($ (-1169) $ $)) (-15 -2990 ((-1257 (-767)) $)))) (-1093)) (T -670)) -((-3030 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1093)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) (-4 *3 (-1093)))) (-1485 (*1 *1 *1 *1) (-12 (-5 *1 (-670 *2)) (-4 *2 (-1045)) (-4 *2 (-1093)))) (-2074 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-640 *3)))) (-4 *3 (-1093)) (-5 *1 (-670 *3)))) (-3858 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))) (-3009 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1093)) (-5 *1 (-670 *3)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-670 *3)) (-4 *3 (-1093)))) (-3000 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-670 *3)) (-4 *3 (-1093)))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-1257 (-767))) (-5 *1 (-670 *3)) (-4 *3 (-1093))))) -(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1045)) (PROGN (-15 -3030 ($ (-767) (-767) (-767))) (-15 -3019 ($ (-767))) (-15 -1485 ($ $ $))) |%noBranch|) (-15 -2074 ($ (-640 (-640 (-640 |#1|))))) (-15 -3858 (|#1| $ (-767) (-767) (-767))) (-15 -3009 (|#1| $ (-767) (-767) (-767) |#1|)) (-15 -2062 ($ (-954 (-954 (-954 |#1|))))) (-15 -2062 ((-954 (-954 (-954 |#1|))) $)) (-15 -3000 ($ (-1169) $ $)) (-15 -2990 ((-1257 (-767)) $)))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-2651 (((-483) $) 10)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 21) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-1128) $) 12)) (-2943 (((-112) $ $) NIL))) -(((-671) (-13 (-1076) (-10 -8 (-15 -2651 ((-483) $)) (-15 -3373 ((-1128) $))))) (T -671)) -((-2651 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-671)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-671))))) -(-13 (-1076) (-10 -8 (-15 -2651 ((-483) $)) (-15 -3373 ((-1128) $)))) -((-2049 (((-112) $ $) NIL)) (-1347 (((-640 |#1|) $) 15)) (-2665 (($ $) 19)) (-4016 (((-112) $) 20)) (-2671 (((-3 |#1| "failed") $) 23)) (-2589 ((|#1| $) 21)) (-1897 (($ $) 37)) (-1857 (($ $) 25)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2587 (((-112) $ $) 45)) (-3322 (((-917) $) 40)) (-2654 (($ $) 18)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 ((|#1| $) 36)) (-2062 (((-858) $) 32) (($ |#1|) 24) (((-815 |#1|) $) 28)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 13)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 44)) (* (($ $ $) 35))) -(((-672 |#1|) (-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2062 ((-815 |#1|) $)) (-15 -1884 (|#1| $)) (-15 -2654 ($ $)) (-15 -3322 ((-917) $)) (-15 -2587 ((-112) $ $)) (-15 -1857 ($ $)) (-15 -1897 ($ $)) (-15 -4016 ((-112) $)) (-15 -2665 ($ $)) (-15 -1347 ((-640 |#1|) $)))) (-846)) (T -672)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-1884 (*1 *2 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-2654 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-2587 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-1857 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-1897 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) (-2665 (*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846))))) -(-13 (-846) (-1034 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2062 ((-815 |#1|) $)) (-15 -1884 (|#1| $)) (-15 -2654 ($ $)) (-15 -3322 ((-917) $)) (-15 -2587 ((-112) $ $)) (-15 -1857 ($ $)) (-15 -1897 ($ $)) (-15 -4016 ((-112) $)) (-15 -2665 ($ $)) (-15 -1347 ((-640 |#1|) $)))) -((-3072 ((|#1| (-1 |#1| (-767) |#1|) (-767) |#1|) 14)) (-3098 ((|#1| (-1 |#1| |#1|) (-767) |#1|) 12))) -(((-673 |#1|) (-10 -7 (-15 -3098 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -3072 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) (-1093)) (T -673)) -((-3072 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1093)) (-5 *1 (-673 *2)))) (-3098 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1093)) (-5 *1 (-673 *2))))) -(-10 -7 (-15 -3098 (|#1| (-1 |#1| |#1|) (-767) |#1|)) (-15 -3072 (|#1| (-1 |#1| (-767) |#1|) (-767) |#1|))) -((-2397 ((|#2| |#1| |#2|) 9)) (-2384 ((|#1| |#1| |#2|) 8))) -(((-674 |#1| |#2|) (-10 -7 (-15 -2384 (|#1| |#1| |#2|)) (-15 -2397 (|#2| |#1| |#2|))) (-1093) (-1093)) (T -674)) -((-2397 (*1 *2 *3 *2) (-12 (-5 *1 (-674 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-2384 (*1 *2 *2 *3) (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) -(-10 -7 (-15 -2384 (|#1| |#1| |#2|)) (-15 -2397 (|#2| |#1| |#2|))) -((-2293 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) -(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -2293 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1093) (-1093) (-1093)) (T -675)) -((-2293 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)) (-5 *1 (-675 *5 *6 *2))))) -(-10 -7 (-15 -2293 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2089 (((-1207) $) 21)) (-2032 (((-640 (-1207)) $) 19)) (-3041 (($ (-640 (-1207)) (-1207)) 14)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 30) (($ (-1174)) NIL) (((-1174) $) NIL) (((-1207) $) 22) (($ (-1111)) 10)) (-2943 (((-112) $ $) NIL))) -(((-676) (-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -2062 ($ (-1111))) (-15 -3041 ($ (-640 (-1207)) (-1207))) (-15 -2032 ((-640 (-1207)) $)) (-15 -2089 ((-1207) $))))) (T -676)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1111)) (-5 *1 (-676)))) (-3041 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1207))) (-5 *3 (-1207)) (-5 *1 (-676)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-676)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-676))))) -(-13 (-1076) (-610 (-1207)) (-10 -8 (-15 -2062 ($ (-1111))) (-15 -3041 ($ (-640 (-1207)) (-1207))) (-15 -2032 ((-640 (-1207)) $)) (-15 -2089 ((-1207) $)))) -((-3072 (((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)) 29)) (-3053 (((-1 |#1|) |#1|) 8)) (-2519 ((|#1| |#1|) 23)) (-3062 (((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-2062 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-767)) 26))) -(((-677 |#1|) (-10 -7 (-15 -3053 ((-1 |#1|) |#1|)) (-15 -2062 ((-1 |#1|) |#1|)) (-15 -3062 (|#1| (-1 |#1| |#1|))) (-15 -3062 ((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563))) (-15 -2519 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -3072 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) (-1093)) (T -677)) -((-3072 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1093)) (-5 *1 (-677 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1093)) (-5 *1 (-677 *4)))) (-2519 (*1 *2 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1093)))) (-3062 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-640 *5) (-640 *5))) (-5 *4 (-563)) (-5 *2 (-640 *5)) (-5 *1 (-677 *5)) (-4 *5 (-1093)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-677 *2)) (-4 *2 (-1093)))) (-2062 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093)))) (-3053 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093))))) -(-10 -7 (-15 -3053 ((-1 |#1|) |#1|)) (-15 -2062 ((-1 |#1|) |#1|)) (-15 -3062 (|#1| (-1 |#1| |#1|))) (-15 -3062 ((-640 |#1|) (-1 (-640 |#1|) (-640 |#1|)) (-563))) (-15 -2519 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-767))) (-15 -3072 ((-1 |#1| (-767) |#1|) (-1 |#1| (-767) |#1|)))) -((-3104 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-3093 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2495 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3081 (((-1 |#2| |#1|) |#2|) 11))) -(((-678 |#1| |#2|) (-10 -7 (-15 -3081 ((-1 |#2| |#1|) |#2|)) (-15 -3093 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2495 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3104 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1093) (-1093)) (T -678)) -((-3104 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5)) (-4 *4 (-1093)))) (-3093 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-5 *2 (-1 *5)) (-5 *1 (-678 *4 *5)))) (-3081 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-678 *4 *3)) (-4 *4 (-1093)) (-4 *3 (-1093))))) -(-10 -7 (-15 -3081 ((-1 |#2| |#1|) |#2|)) (-15 -3093 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2495 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3104 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) -((-3161 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-3116 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-3126 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3136 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3147 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) -(((-679 |#1| |#2| |#3|) (-10 -7 (-15 -3116 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3126 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3136 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3147 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3161 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1093) (-1093) (-1093)) (T -679)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-1 *7 *5)) (-5 *1 (-679 *5 *6 *7)))) (-3161 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-679 *4 *5 *6)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *4 (-1093)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *5 (-1093)))) (-3126 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *4 *5 *6)))) (-3116 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1093)) (-4 *4 (-1093)) (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *5 *4 *6))))) -(-10 -7 (-15 -3116 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3126 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3136 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3147 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -3161 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) -((-2532 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2751 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) -(((-680 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2751 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2751 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2532 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1045) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|) (-1045) (-373 |#5|) (-373 |#5|) (-682 |#5| |#6| |#7|)) (T -680)) -((-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-682 *5 *6 *7)) (-4 *10 (-682 *2 *8 *9)))) (-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))) -(-10 -7 (-15 -2751 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2751 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2532 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) -((-1696 (($ (-767) (-767)) 43)) (-3211 (($ $ $) 71)) (-2899 (($ |#3|) 66) (($ $) 67)) (-3148 (((-112) $) 38)) (-3201 (($ $ (-563) (-563)) 81)) (-3191 (($ $ (-563) (-563)) 82)) (-3181 (($ $ (-563) (-563) (-563) (-563)) 87)) (-3232 (($ $) 69)) (-3172 (((-112) $) 15)) (-3171 (($ $ (-563) (-563) $) 88)) (-2189 ((|#2| $ (-563) (-563) |#2|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) 86)) (-1444 (($ (-767) |#2|) 53)) (-3840 (($ (-640 (-640 |#2|))) 51)) (-1791 (((-640 (-640 |#2|)) $) 78)) (-3222 (($ $ $) 70)) (-3448 (((-3 $ "failed") $ |#2|) 120)) (-3858 ((|#2| $ (-563) (-563)) NIL) ((|#2| $ (-563) (-563) |#2|) NIL) (($ $ (-640 (-563)) (-640 (-563))) 85)) (-1431 (($ (-640 |#2|)) 54) (($ (-640 $)) 56)) (-3162 (((-112) $) 28)) (-2062 (($ |#4|) 61) (((-858) $) NIL)) (-3137 (((-112) $) 40)) (-3050 (($ $ |#2|) 122)) (-3039 (($ $ $) 92) (($ $) 95)) (-3027 (($ $ $) 90)) (** (($ $ (-767)) 109) (($ $ (-563)) 127)) (* (($ $ $) 101) (($ |#2| $) 97) (($ $ |#2|) 98) (($ (-563) $) 100) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) -(((-681 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2062 ((-858) |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -3050 (|#1| |#1| |#2|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| (-563) (-563) |#1|)) (-15 -3181 (|#1| |#1| (-563) (-563) (-563) (-563))) (-15 -3191 (|#1| |#1| (-563) (-563))) (-15 -3201 (|#1| |#1| (-563) (-563))) (-15 -2189 (|#1| |#1| (-640 (-563)) (-640 (-563)) |#1|)) (-15 -3858 (|#1| |#1| (-640 (-563)) (-640 (-563)))) (-15 -1791 ((-640 (-640 |#2|)) |#1|)) (-15 -3211 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -2899 (|#1| |#3|)) (-15 -2062 (|#1| |#4|)) (-15 -1431 (|#1| (-640 |#1|))) (-15 -1431 (|#1| (-640 |#2|))) (-15 -1444 (|#1| (-767) |#2|)) (-15 -3840 (|#1| (-640 (-640 |#2|)))) (-15 -1696 (|#1| (-767) (-767))) (-15 -3137 ((-112) |#1|)) (-15 -3148 ((-112) |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3172 ((-112) |#1|)) (-15 -2189 (|#2| |#1| (-563) (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563) (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563) (-563)))) (-682 |#2| |#3| |#4|) (-1045) (-373 |#2|) (-373 |#2|)) (T -681)) -NIL -(-10 -8 (-15 -2062 ((-858) |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -3050 (|#1| |#1| |#2|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-767))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| (-563) (-563) |#1|)) (-15 -3181 (|#1| |#1| (-563) (-563) (-563) (-563))) (-15 -3191 (|#1| |#1| (-563) (-563))) (-15 -3201 (|#1| |#1| (-563) (-563))) (-15 -2189 (|#1| |#1| (-640 (-563)) (-640 (-563)) |#1|)) (-15 -3858 (|#1| |#1| (-640 (-563)) (-640 (-563)))) (-15 -1791 ((-640 (-640 |#2|)) |#1|)) (-15 -3211 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1|)) (-15 -2899 (|#1| |#1|)) (-15 -2899 (|#1| |#3|)) (-15 -2062 (|#1| |#4|)) (-15 -1431 (|#1| (-640 |#1|))) (-15 -1431 (|#1| (-640 |#2|))) (-15 -1444 (|#1| (-767) |#2|)) (-15 -3840 (|#1| (-640 (-640 |#2|)))) (-15 -1696 (|#1| (-767) (-767))) (-15 -3137 ((-112) |#1|)) (-15 -3148 ((-112) |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3172 ((-112) |#1|)) (-15 -2189 (|#2| |#1| (-563) (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563) (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563) (-563)))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-1696 (($ (-767) (-767)) 97)) (-3211 (($ $ $) 87)) (-2899 (($ |#2|) 91) (($ $) 90)) (-3148 (((-112) $) 99)) (-3201 (($ $ (-563) (-563)) 83)) (-3191 (($ $ (-563) (-563)) 82)) (-3181 (($ $ (-563) (-563) (-563) (-563)) 81)) (-3232 (($ $) 89)) (-3172 (((-112) $) 101)) (-3740 (((-112) $ (-767)) 8)) (-3171 (($ $ (-563) (-563) $) 80)) (-2189 ((|#1| $ (-563) (-563) |#1|) 44) (($ $ (-640 (-563)) (-640 (-563)) $) 84)) (-4121 (($ $ (-563) |#2|) 42)) (-4110 (($ $ (-563) |#3|) 41)) (-1444 (($ (-767) |#1|) 95)) (-3684 (($) 7 T CONST)) (-3063 (($ $) 67 (|has| |#1| (-307)))) (-3082 ((|#2| $ (-563)) 46)) (-3406 (((-767) $) 66 (|has| |#1| (-555)))) (-4150 ((|#1| $ (-563) (-563) |#1|) 43)) (-4085 ((|#1| $ (-563) (-563)) 48)) (-4236 (((-640 |#1|) $) 30)) (-3054 (((-767) $) 65 (|has| |#1| (-555)))) (-3042 (((-640 |#3|) $) 64 (|has| |#1| (-555)))) (-3955 (((-767) $) 51)) (-2552 (($ (-767) (-767) |#1|) 57)) (-3965 (((-767) $) 50)) (-3633 (((-112) $ (-767)) 9)) (-1390 ((|#1| $) 62 (|has| |#1| (-6 (-4410 "*"))))) (-3127 (((-563) $) 55)) (-3105 (((-563) $) 53)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3117 (((-563) $) 54)) (-3094 (((-563) $) 52)) (-3840 (($ (-640 (-640 |#1|))) 96)) (-4139 (($ (-1 |#1| |#1|) $) 34)) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-1791 (((-640 (-640 |#1|)) $) 86)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1755 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-3222 (($ $ $) 88)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3357 (($ $ |#1|) 56)) (-3448 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-555)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) (-563)) 49) ((|#1| $ (-563) (-563) |#1|) 47) (($ $ (-640 (-563)) (-640 (-563))) 85)) (-1431 (($ (-640 |#1|)) 94) (($ (-640 $)) 93)) (-3162 (((-112) $) 100)) (-1400 ((|#1| $) 63 (|has| |#1| (-6 (-4410 "*"))))) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-3073 ((|#3| $ (-563)) 45)) (-2062 (($ |#3|) 92) (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-3137 (((-112) $) 98)) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-3050 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-3039 (($ $ $) 78) (($ $) 77)) (-3027 (($ $ $) 79)) (** (($ $ (-767)) 70) (($ $ (-563)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-563) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-682 |#1| |#2| |#3|) (-140) (-1045) (-373 |t#1|) (-373 |t#1|)) (T -682)) -((-3172 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1696 (*1 *1 *2 *2) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1444 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2062 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-2899 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-2899 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3232 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3222 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3211 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-640 (-640 *3))))) (-3858 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2189 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3201 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3191 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3181 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3171 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3027 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3039 (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3039 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-682 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-682 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-555)))) (-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-640 *5)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) (-1755 (*1 *1 *1) (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4409) (-6 -4408) (-15 -3172 ((-112) $)) (-15 -3162 ((-112) $)) (-15 -3148 ((-112) $)) (-15 -3137 ((-112) $)) (-15 -1696 ($ (-767) (-767))) (-15 -3840 ($ (-640 (-640 |t#1|)))) (-15 -1444 ($ (-767) |t#1|)) (-15 -1431 ($ (-640 |t#1|))) (-15 -1431 ($ (-640 $))) (-15 -2062 ($ |t#3|)) (-15 -2899 ($ |t#2|)) (-15 -2899 ($ $)) (-15 -3232 ($ $)) (-15 -3222 ($ $ $)) (-15 -3211 ($ $ $)) (-15 -1791 ((-640 (-640 |t#1|)) $)) (-15 -3858 ($ $ (-640 (-563)) (-640 (-563)))) (-15 -2189 ($ $ (-640 (-563)) (-640 (-563)) $)) (-15 -3201 ($ $ (-563) (-563))) (-15 -3191 ($ $ (-563) (-563))) (-15 -3181 ($ $ (-563) (-563) (-563) (-563))) (-15 -3171 ($ $ (-563) (-563) $)) (-15 -3027 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -3039 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-563) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-767))) (IF (|has| |t#1| (-555)) (-15 -3448 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -3050 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -3063 ($ $)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -3406 ((-767) $)) (-15 -3054 ((-767) $)) (-15 -3042 ((-640 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4410 "*"))) (PROGN (-15 -1400 (|t#1| $)) (-15 -1390 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -1755 ((-3 $ "failed") $)) (-15 ** ($ $ (-563)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-57 |#1| |#2| |#3|) . T) ((-1208) . T)) -((-3063 ((|#4| |#4|) 96 (|has| |#1| (-307)))) (-3406 (((-767) |#4|) 125 (|has| |#1| (-555)))) (-3054 (((-767) |#4|) 100 (|has| |#1| (-555)))) (-3042 (((-640 |#3|) |#4|) 107 (|has| |#1| (-555)))) (-2436 (((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|) 139 (|has| |#1| (-307)))) (-1390 ((|#1| |#4|) 56)) (-3283 (((-3 |#4| "failed") |#4|) 88 (|has| |#1| (-555)))) (-1755 (((-3 |#4| "failed") |#4|) 104 (|has| |#1| (-363)))) (-3271 ((|#4| |#4|) 92 (|has| |#1| (-555)))) (-3250 ((|#4| |#4| |#1| (-563) (-563)) 64)) (-3240 ((|#4| |#4| (-563) (-563)) 59)) (-3262 ((|#4| |#4| |#1| (-563) (-563)) 69)) (-1400 ((|#1| |#4|) 102)) (-4069 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 93 (|has| |#1| (-555))))) -(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1400 (|#1| |#4|)) (-15 -1390 (|#1| |#4|)) (-15 -3240 (|#4| |#4| (-563) (-563))) (-15 -3250 (|#4| |#4| |#1| (-563) (-563))) (-15 -3262 (|#4| |#4| |#1| (-563) (-563))) (IF (|has| |#1| (-555)) (PROGN (-15 -3406 ((-767) |#4|)) (-15 -3054 ((-767) |#4|)) (-15 -3042 ((-640 |#3|) |#4|)) (-15 -3271 (|#4| |#4|)) (-15 -3283 ((-3 |#4| "failed") |#4|)) (-15 -4069 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3063 (|#4| |#4|)) (-15 -2436 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1755 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -683)) -((-1755 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-2436 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-683 *3 *4 *5 *6)) (-4 *6 (-682 *3 *4 *5)))) (-3063 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-4069 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-3283 (*1 *2 *2) (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3271 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-3042 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-3054 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-3406 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-3262 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-682 *3 *5 *6)))) (-3250 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) (-4 *2 (-682 *3 *5 *6)))) (-3240 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-563)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-683 *4 *5 *6 *2)) (-4 *2 (-682 *4 *5 *6)))) (-1390 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) (-1400 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5))))) -(-10 -7 (-15 -1400 (|#1| |#4|)) (-15 -1390 (|#1| |#4|)) (-15 -3240 (|#4| |#4| (-563) (-563))) (-15 -3250 (|#4| |#4| |#1| (-563) (-563))) (-15 -3262 (|#4| |#4| |#1| (-563) (-563))) (IF (|has| |#1| (-555)) (PROGN (-15 -3406 ((-767) |#4|)) (-15 -3054 ((-767) |#4|)) (-15 -3042 ((-640 |#3|) |#4|)) (-15 -3271 (|#4| |#4|)) (-15 -3283 ((-3 |#4| "failed") |#4|)) (-15 -4069 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -3063 (|#4| |#4|)) (-15 -2436 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1755 ((-3 |#4| "failed") |#4|)) |%noBranch|)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1696 (($ (-767) (-767)) 63)) (-3211 (($ $ $) NIL)) (-2899 (($ (-1257 |#1|)) NIL) (($ $) NIL)) (-3148 (((-112) $) NIL)) (-3201 (($ $ (-563) (-563)) 21)) (-3191 (($ $ (-563) (-563)) NIL)) (-3181 (($ $ (-563) (-563) (-563) (-563)) NIL)) (-3232 (($ $) NIL)) (-3172 (((-112) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-3171 (($ $ (-563) (-563) $) NIL)) (-2189 ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563)) $) NIL)) (-4121 (($ $ (-563) (-1257 |#1|)) NIL)) (-4110 (($ $ (-563) (-1257 |#1|)) NIL)) (-1444 (($ (-767) |#1|) 36)) (-3684 (($) NIL T CONST)) (-3063 (($ $) 45 (|has| |#1| (-307)))) (-3082 (((-1257 |#1|) $ (-563)) NIL)) (-3406 (((-767) $) 47 (|has| |#1| (-555)))) (-4150 ((|#1| $ (-563) (-563) |#1|) 68)) (-4085 ((|#1| $ (-563) (-563)) NIL)) (-4236 (((-640 |#1|) $) NIL)) (-3054 (((-767) $) 49 (|has| |#1| (-555)))) (-3042 (((-640 (-1257 |#1|)) $) 52 (|has| |#1| (-555)))) (-3955 (((-767) $) 31)) (-2552 (($ (-767) (-767) |#1|) 27)) (-3965 (((-767) $) 32)) (-3633 (((-112) $ (-767)) NIL)) (-1390 ((|#1| $) 43 (|has| |#1| (-6 (-4410 "*"))))) (-3127 (((-563) $) 10)) (-3105 (((-563) $) 11)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3117 (((-563) $) 14)) (-3094 (((-563) $) 64)) (-3840 (($ (-640 (-640 |#1|))) NIL)) (-4139 (($ (-1 |#1| |#1|) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-1791 (((-640 (-640 |#1|)) $) 75)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1755 (((-3 $ "failed") $) 59 (|has| |#1| (-363)))) (-3222 (($ $ $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3357 (($ $ |#1|) NIL)) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) (-563)) NIL) ((|#1| $ (-563) (-563) |#1|) NIL) (($ $ (-640 (-563)) (-640 (-563))) NIL)) (-1431 (($ (-640 |#1|)) NIL) (($ (-640 $)) NIL) (($ (-1257 |#1|)) 69)) (-3162 (((-112) $) NIL)) (-1400 ((|#1| $) 41 (|has| |#1| (-6 (-4410 "*"))))) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2802 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-3073 (((-1257 |#1|) $ (-563)) NIL)) (-2062 (($ (-1257 |#1|)) NIL) (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3137 (((-112) $) NIL)) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $ $) NIL) (($ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) 37) (($ $ (-563)) 61 (|has| |#1| (-363)))) (* (($ $ $) 23) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-563) $) NIL) (((-1257 |#1|) $ (-1257 |#1|)) NIL) (((-1257 |#1|) (-1257 |#1|) $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-684 |#1|) (-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 -1431 ($ (-1257 |#1|))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1755 ((-3 $ "failed") $)) |%noBranch|))) (-1045)) (T -684)) -((-1755 (*1 *1 *1) (|partial| -12 (-5 *1 (-684 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-684 *3))))) -(-13 (-682 |#1| (-1257 |#1|) (-1257 |#1|)) (-10 -8 (-15 -1431 ($ (-1257 |#1|))) (IF (|has| |#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1755 ((-3 $ "failed") $)) |%noBranch|))) -((-2163 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 37)) (-3334 (((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|) 34)) (-2172 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767)) 43)) (-3303 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 27)) (-3311 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|)) 31) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 29)) (-3323 (((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|)) 33)) (-3293 (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 25)) (** (((-684 |#1|) (-684 |#1|) (-767)) 46))) -(((-685 |#1|) (-10 -7 (-15 -3293 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3303 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3311 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3311 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3323 ((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|))) (-15 -3334 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2163 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2172 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767))) (-15 ** ((-684 |#1|) (-684 |#1|) (-767)))) (-1045)) (T -685)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))) (-2172 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-685 *4)))) (-2163 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-3334 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-3323 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-3311 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-3311 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-3303 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) (-3293 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) -(-10 -7 (-15 -3293 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3303 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3311 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3311 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3323 ((-684 |#1|) (-684 |#1|) |#1| (-684 |#1|))) (-15 -3334 ((-684 |#1|) (-684 |#1|) (-684 |#1|) |#1|)) (-15 -2163 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -2172 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-684 |#1|) (-767))) (-15 ** ((-684 |#1|) (-684 |#1|) (-767)))) -((-2671 (((-3 |#1| "failed") $) 17)) (-2589 ((|#1| $) NIL)) (-2925 (($) 7 T CONST)) (-2183 (($ |#1|) 8)) (-2062 (($ |#1|) 15) (((-858) $) 22)) (-3778 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -2925)) 11)) (-2238 ((|#1| $) 14))) -(((-686 |#1|) (-13 (-1252) (-1034 |#1|) (-610 (-858)) (-10 -8 (-15 -2183 ($ |#1|)) (-15 -3778 ((-112) $ (|[\|\|]| |#1|))) (-15 -3778 ((-112) $ (|[\|\|]| -2925))) (-15 -2238 (|#1| $)) (-15 -2925 ($) -2495))) (-610 (-858))) (T -686)) -((-2183 (*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-610 (-858))) (-5 *2 (-112)) (-5 *1 (-686 *4)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2925)) (-5 *2 (-112)) (-5 *1 (-686 *4)) (-4 *4 (-610 (-858))))) (-2238 (*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))) (-2925 (*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858)))))) -(-13 (-1252) (-1034 |#1|) (-610 (-858)) (-10 -8 (-15 -2183 ($ |#1|)) (-15 -3778 ((-112) $ (|[\|\|]| |#1|))) (-15 -3778 ((-112) $ (|[\|\|]| -2925))) (-15 -2238 (|#1| $)) (-15 -2925 ($) -2495))) -((-2210 ((|#2| |#2| |#4|) 33)) (-2240 (((-684 |#2|) |#3| |#4|) 39)) (-2219 (((-684 |#2|) |#2| |#4|) 38)) (-2191 (((-1257 |#2|) |#2| |#4|) 16)) (-2199 ((|#2| |#3| |#4|) 32)) (-2250 (((-684 |#2|) |#3| |#4| (-767) (-767)) 50)) (-2229 (((-684 |#2|) |#2| |#4| (-767)) 49))) -(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2191 ((-1257 |#2|) |#2| |#4|)) (-15 -2199 (|#2| |#3| |#4|)) (-15 -2210 (|#2| |#2| |#4|)) (-15 -2219 ((-684 |#2|) |#2| |#4|)) (-15 -2229 ((-684 |#2|) |#2| |#4| (-767))) (-15 -2240 ((-684 |#2|) |#3| |#4|)) (-15 -2250 ((-684 |#2|) |#3| |#4| (-767) (-767)))) (-1093) (-896 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4408)))) (T -687)) -((-2250 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *7 (-896 *6)) (-5 *2 (-684 *7)) (-5 *1 (-687 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4408)))))) (-2240 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *6 (-896 *5)) (-5 *2 (-684 *6)) (-5 *1 (-687 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))) (-2229 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *3 (-896 *6)) (-5 *2 (-684 *3)) (-5 *1 (-687 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4408)))))) (-2219 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-684 *3)) (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))) (-2210 (*1 *2 *2 *3) (-12 (-4 *4 (-1093)) (-4 *2 (-896 *4)) (-5 *1 (-687 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4408)))))) (-2199 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *2 (-896 *5)) (-5 *1 (-687 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408)))))) (-2191 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-1257 *3)) (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408))))))) -(-10 -7 (-15 -2191 ((-1257 |#2|) |#2| |#4|)) (-15 -2199 (|#2| |#3| |#4|)) (-15 -2210 (|#2| |#2| |#4|)) (-15 -2219 ((-684 |#2|) |#2| |#4|)) (-15 -2229 ((-684 |#2|) |#2| |#4| (-767))) (-15 -2240 ((-684 |#2|) |#3| |#4|)) (-15 -2250 ((-684 |#2|) |#3| |#4| (-767) (-767)))) -((-3812 (((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)) 20)) (-3787 ((|#1| (-684 |#2|)) 9)) (-3800 (((-684 |#1|) (-684 |#2|)) 18))) -(((-688 |#1| |#2|) (-10 -7 (-15 -3787 (|#1| (-684 |#2|))) (-15 -3800 ((-684 |#1|) (-684 |#2|))) (-15 -3812 ((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)))) (-555) (-988 |#1|)) (T -688)) -((-3812 (*1 *2 *3) (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |num| (-684 *4)) (|:| |den| *4))) (-5 *1 (-688 *4 *5)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) (-5 *2 (-684 *4)) (-5 *1 (-688 *4 *5)))) (-3787 (*1 *2 *3) (-12 (-5 *3 (-684 *4)) (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-688 *2 *4))))) -(-10 -7 (-15 -3787 (|#1| (-684 |#2|))) (-15 -3800 ((-684 |#1|) (-684 |#2|))) (-15 -3812 ((-2 (|:| |num| (-684 |#1|)) (|:| |den| |#1|)) (-684 |#2|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-2660 (((-684 (-694))) NIL) (((-684 (-694)) (-1257 $)) NIL)) (-3282 (((-694) $) NIL)) (-3419 (($ $) NIL (|has| (-694) (-1193)))) (-3285 (($ $) NIL (|has| (-694) (-1193)))) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-694) (-349)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-2924 (($ $) NIL (-2811 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-2102 (((-418 $) $) NIL (-2811 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-2067 (($ $) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193))))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-4332 (((-112) $ $) NIL (|has| (-694) (-307)))) (-2433 (((-767)) NIL (|has| (-694) (-368)))) (-3395 (($ $) NIL (|has| (-694) (-1193)))) (-3264 (($ $) NIL (|has| (-694) (-1193)))) (-2242 (($ $) NIL (|has| (-694) (-1193)))) (-3305 (($ $) NIL (|has| (-694) (-1193)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-694) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-694) (-1034 (-407 (-563)))))) (-2589 (((-563) $) NIL) (((-694) $) NIL) (((-407 (-563)) $) NIL (|has| (-694) (-1034 (-407 (-563)))))) (-1505 (($ (-1257 (-694))) NIL) (($ (-1257 (-694)) (-1257 $)) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-694) (-349)))) (-3495 (($ $ $) NIL (|has| (-694) (-307)))) (-2649 (((-684 (-694)) $) NIL) (((-684 (-694)) $ (-1257 $)) NIL)) (-3853 (((-684 (-694)) (-684 $)) NIL) (((-2 (|:| -4277 (-684 (-694))) (|:| |vec| (-1257 (-694)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-694) (-636 (-563)))) (((-684 (-563)) (-684 $)) NIL (|has| (-694) (-636 (-563))))) (-2532 (((-3 $ "failed") (-407 (-1165 (-694)))) NIL (|has| (-694) (-363))) (($ (-1165 (-694))) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2079 (((-694) $) 29)) (-3459 (((-3 (-407 (-563)) "failed") $) NIL (|has| (-694) (-545)))) (-3447 (((-112) $) NIL (|has| (-694) (-545)))) (-3437 (((-407 (-563)) $) NIL (|has| (-694) (-545)))) (-3406 (((-917)) NIL)) (-4301 (($) NIL (|has| (-694) (-368)))) (-3473 (($ $ $) NIL (|has| (-694) (-307)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| (-694) (-307)))) (-2135 (($) NIL (|has| (-694) (-349)))) (-2812 (((-112) $) NIL (|has| (-694) (-349)))) (-2506 (($ $) NIL (|has| (-694) (-349))) (($ $ (-767)) NIL (|has| (-694) (-349)))) (-3675 (((-112) $) NIL (-2811 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-3307 (((-2 (|:| |r| (-694)) (|:| |phi| (-694))) $) NIL (-12 (|has| (-694) (-1054)) (|has| (-694) (-1193))))) (-2656 (($) NIL (|has| (-694) (-1193)))) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-694) (-882 (-379)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-694) (-882 (-563))))) (-2903 (((-829 (-917)) $) NIL (|has| (-694) (-349))) (((-917) $) NIL (|has| (-694) (-349)))) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193))))) (-3251 (((-694) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| (-694) (-349)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-694) (-307)))) (-2134 (((-1165 (-694)) $) NIL (|has| (-694) (-363)))) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2751 (($ (-1 (-694) (-694)) $) NIL)) (-3267 (((-917) $) NIL (|has| (-694) (-368)))) (-2497 (($ $) NIL (|has| (-694) (-1193)))) (-2521 (((-1165 (-694)) $) NIL)) (-1607 (($ (-640 $)) NIL (|has| (-694) (-307))) (($ $ $) NIL (|has| (-694) (-307)))) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| (-694) (-363)))) (-2956 (($) NIL (|has| (-694) (-349)) CONST)) (-3491 (($ (-917)) NIL (|has| (-694) (-368)))) (-3315 (($) NIL)) (-2090 (((-694) $) 31)) (-3249 (((-1113) $) NIL)) (-1738 (($) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-694) (-307)))) (-1647 (($ (-640 $)) NIL (|has| (-694) (-307))) (($ $ $) NIL (|has| (-694) (-307)))) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| (-694) (-349)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-694) (-307)) (|has| (-694) (-905))))) (-2055 (((-418 $) $) NIL (-2811 (-12 (|has| (-694) (-307)) (|has| (-694) (-905))) (|has| (-694) (-363))))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-694) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| (-694) (-307)))) (-3448 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-694)) NIL (|has| (-694) (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-694) (-307)))) (-3177 (($ $) NIL (|has| (-694) (-1193)))) (-1497 (($ $ (-1169) (-694)) NIL (|has| (-694) (-514 (-1169) (-694)))) (($ $ (-640 (-1169)) (-640 (-694))) NIL (|has| (-694) (-514 (-1169) (-694)))) (($ $ (-640 (-294 (-694)))) NIL (|has| (-694) (-309 (-694)))) (($ $ (-294 (-694))) NIL (|has| (-694) (-309 (-694)))) (($ $ (-694) (-694)) NIL (|has| (-694) (-309 (-694)))) (($ $ (-640 (-694)) (-640 (-694))) NIL (|has| (-694) (-309 (-694))))) (-4322 (((-767) $) NIL (|has| (-694) (-307)))) (-3858 (($ $ (-694)) NIL (|has| (-694) (-286 (-694) (-694))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| (-694) (-307)))) (-3974 (((-694)) NIL) (((-694) (-1257 $)) NIL)) (-2515 (((-3 (-767) "failed") $ $) NIL (|has| (-694) (-349))) (((-767) $) NIL (|has| (-694) (-349)))) (-1361 (($ $ (-1 (-694) (-694))) NIL) (($ $ (-1 (-694) (-694)) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-767)) NIL (|has| (-694) (-233))) (($ $) NIL (|has| (-694) (-233)))) (-2701 (((-684 (-694)) (-1257 $) (-1 (-694) (-694))) NIL (|has| (-694) (-363)))) (-2713 (((-1165 (-694))) NIL)) (-2252 (($ $) NIL (|has| (-694) (-1193)))) (-3313 (($ $) NIL (|has| (-694) (-1193)))) (-2750 (($) NIL (|has| (-694) (-349)))) (-2231 (($ $) NIL (|has| (-694) (-1193)))) (-3295 (($ $) NIL (|has| (-694) (-1193)))) (-3408 (($ $) NIL (|has| (-694) (-1193)))) (-3273 (($ $) NIL (|has| (-694) (-1193)))) (-1818 (((-684 (-694)) (-1257 $)) NIL) (((-1257 (-694)) $) NIL) (((-684 (-694)) (-1257 $) (-1257 $)) NIL) (((-1257 (-694)) $ (-1257 $)) NIL)) (-2802 (((-536) $) NIL (|has| (-694) (-611 (-536)))) (((-169 (-225)) $) NIL (|has| (-694) (-1018))) (((-169 (-379)) $) NIL (|has| (-694) (-1018))) (((-888 (-379)) $) NIL (|has| (-694) (-611 (-888 (-379))))) (((-888 (-563)) $) NIL (|has| (-694) (-611 (-888 (-563))))) (($ (-1165 (-694))) NIL) (((-1165 (-694)) $) NIL) (($ (-1257 (-694))) NIL) (((-1257 (-694)) $) NIL)) (-1382 (($ $) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-2811 (-12 (|has| (-694) (-307)) (|has| $ (-145)) (|has| (-694) (-905))) (|has| (-694) (-349))))) (-1786 (($ (-694) (-694)) 12)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-563)) NIL) (($ (-694)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-563))) 19) (($ (-169 (-694))) 28) (($ (-169 (-696))) 25) (((-169 (-379)) $) 33) (($ (-407 (-563))) NIL (-2811 (|has| (-694) (-1034 (-407 (-563)))) (|has| (-694) (-363))))) (-4376 (($ $) NIL (|has| (-694) (-349))) (((-3 $ "failed") $) NIL (-2811 (-12 (|has| (-694) (-307)) (|has| $ (-145)) (|has| (-694) (-905))) (|has| (-694) (-145))))) (-3015 (((-1165 (-694)) $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $)) NIL)) (-2285 (($ $) NIL (|has| (-694) (-1193)))) (-3347 (($ $) NIL (|has| (-694) (-1193)))) (-2543 (((-112) $ $) NIL)) (-2264 (($ $) NIL (|has| (-694) (-1193)))) (-3325 (($ $) NIL (|has| (-694) (-1193)))) (-2306 (($ $) NIL (|has| (-694) (-1193)))) (-3374 (($ $) NIL (|has| (-694) (-1193)))) (-3458 (((-694) $) NIL (|has| (-694) (-1193)))) (-4205 (($ $) NIL (|has| (-694) (-1193)))) (-3386 (($ $) NIL (|has| (-694) (-1193)))) (-2296 (($ $) NIL (|has| (-694) (-1193)))) (-3361 (($ $) NIL (|has| (-694) (-1193)))) (-2275 (($ $) NIL (|has| (-694) (-1193)))) (-3336 (($ $) NIL (|has| (-694) (-1193)))) (-3841 (($ $) NIL (|has| (-694) (-1054)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-1 (-694) (-694))) NIL) (($ $ (-1 (-694) (-694)) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-1169)) NIL (|has| (-694) (-896 (-1169)))) (($ $ (-767)) NIL (|has| (-694) (-233))) (($ $) NIL (|has| (-694) (-233)))) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL (|has| (-694) (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| (-694) (-1193))) (($ $ (-407 (-563))) NIL (-12 (|has| (-694) (-998)) (|has| (-694) (-1193)))) (($ $ (-563)) NIL (|has| (-694) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ (-694) $) NIL) (($ $ (-694)) NIL) (($ (-407 (-563)) $) NIL (|has| (-694) (-363))) (($ $ (-407 (-563))) NIL (|has| (-694) (-363))))) -(((-689) (-13 (-387) (-166 (-694)) (-10 -8 (-15 -2062 ($ (-169 (-379)))) (-15 -2062 ($ (-169 (-563)))) (-15 -2062 ($ (-169 (-694)))) (-15 -2062 ($ (-169 (-696)))) (-15 -2062 ((-169 (-379)) $))))) (T -689)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-169 (-563))) (-5 *1 (-689)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-169 (-694))) (-5 *1 (-689)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-169 (-696))) (-5 *1 (-689)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689))))) -(-13 (-387) (-166 (-694)) (-10 -8 (-15 -2062 ($ (-169 (-379)))) (-15 -2062 ($ (-169 (-563)))) (-15 -2062 ($ (-169 (-694)))) (-15 -2062 ($ (-169 (-696)))) (-15 -2062 ((-169 (-379)) $)))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-1736 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-2273 (($ $) 62)) (-1920 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1417 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-2262 (((-640 (-2 (|:| -3704 |#1|) (|:| -3261 (-767)))) $) 61)) (-3139 (($) 49) (($ (-640 |#1|)) 48)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 50)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-690 |#1|) (-140) (-1093)) (T -690)) -((-1956 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-690 *2)) (-4 *2 (-1093)))) (-2273 (*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1093)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-690 *3)) (-4 *3 (-1093)) (-5 *2 (-640 (-2 (|:| -3704 *3) (|:| -3261 (-767)))))))) -(-13 (-235 |t#1|) (-10 -8 (-15 -1956 ($ |t#1| $ (-767))) (-15 -2273 ($ $)) (-15 -2262 ((-640 (-2 (|:| -3704 |t#1|) (|:| -3261 (-767)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2304 (((-640 |#1|) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))) (-563)) 65)) (-2283 ((|#1| |#1| (-563)) 61)) (-1647 ((|#1| |#1| |#1| (-563)) 45)) (-2055 (((-640 |#1|) |#1| (-563)) 48)) (-2315 ((|#1| |#1| (-563) |#1| (-563)) 39)) (-2294 (((-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))) |#1| (-563)) 60))) -(((-691 |#1|) (-10 -7 (-15 -1647 (|#1| |#1| |#1| (-563))) (-15 -2283 (|#1| |#1| (-563))) (-15 -2055 ((-640 |#1|) |#1| (-563))) (-15 -2294 ((-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))) |#1| (-563))) (-15 -2304 ((-640 |#1|) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))) (-563))) (-15 -2315 (|#1| |#1| (-563) |#1| (-563)))) (-1233 (-563))) (T -691)) -((-2315 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))) (-2304 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| -2055 *5) (|:| -1962 (-563))))) (-5 *4 (-563)) (-4 *5 (-1233 *4)) (-5 *2 (-640 *5)) (-5 *1 (-691 *5)))) (-2294 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-640 (-2 (|:| -2055 *3) (|:| -1962 *4)))) (-5 *1 (-691 *3)) (-4 *3 (-1233 *4)))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-640 *3)) (-5 *1 (-691 *3)) (-4 *3 (-1233 *4)))) (-2283 (*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))) (-1647 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3))))) -(-10 -7 (-15 -1647 (|#1| |#1| |#1| (-563))) (-15 -2283 (|#1| |#1| (-563))) (-15 -2055 ((-640 |#1|) |#1| (-563))) (-15 -2294 ((-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))) |#1| (-563))) (-15 -2304 ((-640 |#1|) (-640 (-2 (|:| -2055 |#1|) (|:| -1962 (-563)))) (-563))) (-15 -2315 (|#1| |#1| (-563) |#1| (-563)))) -((-2362 (((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-2326 (((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 56) (((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 58) (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 60)) (-2352 (((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263))) NIL)) (-2338 (((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263))) 61))) -(((-692) (-10 -7 (-15 -2326 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2326 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2326 ((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2338 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2352 ((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2362 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -692)) -((-2362 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-692)))) (-2352 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-2338 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-2326 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *1 (-692)))) (-2326 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) (-2326 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692))))) -(-10 -7 (-15 -2326 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2326 ((-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2326 ((-1126 (-225)) (-1126 (-225)) (-1 (-939 (-225)) (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2338 ((-1126 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1087 (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2352 ((-1126 (-225)) (-316 (-563)) (-316 (-563)) (-316 (-563)) (-1 (-225) (-225)) (-1087 (-225)) (-640 (-263)))) (-15 -2362 ((-1 (-939 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) -((-2055 (((-418 (-1165 |#4|)) (-1165 |#4|)) 89) (((-418 |#4|) |#4|) 269))) -(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 ((-418 |#4|) |#4|)) (-15 -2055 ((-418 (-1165 |#4|)) (-1165 |#4|)))) (-846) (-789) (-349) (-945 |#3| |#2| |#1|)) (T -693)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) -(-10 -7 (-15 -2055 ((-418 |#4|) |#4|)) (-15 -2055 ((-418 (-1165 |#4|)) (-1165 |#4|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 99)) (-3223 (((-563) $) 34)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-2893 (($ $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2067 (($ $) NIL)) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL)) (-3684 (($) NIL T CONST)) (-3202 (($ $) NIL)) (-2671 (((-3 (-563) "failed") $) 88) (((-3 (-407 (-563)) "failed") $) 28) (((-3 (-379) "failed") $) 85)) (-2589 (((-563) $) 90) (((-407 (-563)) $) 82) (((-379) $) 83)) (-3495 (($ $ $) 111)) (-3230 (((-3 $ "failed") $) 102)) (-3473 (($ $ $) 110)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2961 (((-917)) 92) (((-917) (-917)) 91)) (-2720 (((-112) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL)) (-2903 (((-563) $) NIL)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL)) (-3251 (($ $) NIL)) (-2731 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2373 (((-563) (-563)) 96) (((-563)) 97)) (-3489 (($ $ $) NIL) (($) NIL (-12 (-3730 (|has| $ (-6 -4391))) (-3730 (|has| $ (-6 -4399)))))) (-2386 (((-563) (-563)) 94) (((-563)) 95)) (-4105 (($ $ $) NIL) (($) NIL (-12 (-3730 (|has| $ (-6 -4391))) (-3730 (|has| $ (-6 -4399)))))) (-4385 (((-563) $) 17)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 106)) (-2537 (((-917) (-563)) NIL (|has| $ (-6 -4399)))) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL)) (-3233 (($ $) NIL)) (-2469 (($ (-563) (-563)) NIL) (($ (-563) (-563) (-917)) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) 107)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2631 (((-563) $) 24)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 109)) (-1658 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-2526 (((-917) (-563)) NIL (|has| $ (-6 -4399)))) (-2802 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) NIL)) (-2062 (((-858) $) 67) (($ (-563)) 78) (($ $) NIL) (($ (-407 (-563))) 81) (($ (-563)) 78) (($ (-407 (-563))) 81) (($ (-379)) 75) (((-379) $) 65) (($ (-696)) 70)) (-3192 (((-767)) 121 T CONST)) (-2025 (($ (-563) (-563) (-917)) 58)) (-3241 (($ $) NIL)) (-2547 (((-917)) NIL) (((-917) (-917)) NIL (|has| $ (-6 -4399)))) (-1433 (((-917)) 45) (((-917) (-917)) 93)) (-2543 (((-112) $ $) NIL)) (-3841 (($ $) NIL)) (-3790 (($) 37 T CONST)) (-3803 (($) 18 T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 98)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 120)) (-3050 (($ $ $) 80)) (-3039 (($ $) 117) (($ $ $) 118)) (-3027 (($ $ $) 116)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) 105)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 112) (($ $ $) 103) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) -(((-694) (-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-563))) (-147) (-10 -8 (-15 -2961 ((-917) (-917))) (-15 -2961 ((-917))) (-15 -1433 ((-917) (-917))) (-15 -2386 ((-563) (-563))) (-15 -2386 ((-563))) (-15 -2373 ((-563) (-563))) (-15 -2373 ((-563))) (-15 -2062 ((-379) $)) (-15 -2062 ($ (-696))) (-15 -4385 ((-563) $)) (-15 -2631 ((-563) $)) (-15 -2025 ($ (-563) (-563) (-917)))))) (T -694)) -((-2631 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-2961 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-2961 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-1433 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-2386 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-2373 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-694)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-694)))) (-2025 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-5 *1 (-694))))) -(-13 (-404) (-387) (-363) (-1034 (-379)) (-1034 (-407 (-563))) (-147) (-10 -8 (-15 -2961 ((-917) (-917))) (-15 -2961 ((-917))) (-15 -1433 ((-917) (-917))) (-15 -2386 ((-563) (-563))) (-15 -2386 ((-563))) (-15 -2373 ((-563) (-563))) (-15 -2373 ((-563))) (-15 -2062 ((-379) $)) (-15 -2062 ($ (-696))) (-15 -4385 ((-563) $)) (-15 -2631 ((-563) $)) (-15 -2025 ($ (-563) (-563) (-917))))) -((-2424 (((-684 |#1|) (-684 |#1|) |#1| |#1|) 87)) (-3063 (((-684 |#1|) (-684 |#1|) |#1|) 67)) (-2412 (((-684 |#1|) (-684 |#1|) |#1|) 88)) (-2400 (((-684 |#1|) (-684 |#1|)) 68)) (-2436 (((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|) 86))) -(((-695 |#1|) (-10 -7 (-15 -2400 ((-684 |#1|) (-684 |#1|))) (-15 -3063 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2412 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2424 ((-684 |#1|) (-684 |#1|) |#1| |#1|)) (-15 -2436 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|))) (-307)) (T -695)) -((-2436 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-695 *3)) (-4 *3 (-307)))) (-2424 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-2412 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-3063 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) (-2400 (*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))) -(-10 -7 (-15 -2400 ((-684 |#1|) (-684 |#1|))) (-15 -3063 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2412 ((-684 |#1|) (-684 |#1|) |#1|)) (-15 -2424 ((-684 |#1|) (-684 |#1|) |#1| |#1|)) (-15 -2436 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-2379 (($ $ $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2356 (($ $ $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL)) (-1318 (($ $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) 31)) (-2589 (((-563) $) 29)) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3459 (((-3 (-407 (-563)) "failed") $) NIL)) (-3447 (((-112) $) NIL)) (-3437 (((-407 (-563)) $) NIL)) (-4301 (($ $) NIL) (($) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2331 (($ $ $ $) NIL)) (-2392 (($ $ $) NIL)) (-2720 (((-112) $) NIL)) (-3243 (($ $ $) NIL)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-2712 (((-112) $) NIL)) (-4107 (((-112) $) NIL)) (-3113 (((-3 $ "failed") $) NIL)) (-2731 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2344 (($ $ $ $) NIL)) (-3489 (($ $ $) NIL)) (-2447 (((-917) (-917)) 10) (((-917)) 9)) (-4105 (($ $ $) NIL)) (-2450 (($ $) NIL)) (-3322 (($ $) NIL)) (-1607 (($ (-640 $)) NIL) (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-2321 (($ $ $) NIL)) (-2956 (($) NIL T CONST)) (-2051 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ (-640 $)) NIL) (($ $ $) NIL)) (-1979 (($ $) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4118 (((-112) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL) (($ $ (-767)) NIL)) (-3394 (($ $) NIL)) (-2208 (($ $) NIL)) (-2802 (((-225) $) NIL) (((-379) $) NIL) (((-888 (-563)) $) NIL) (((-536) $) NIL) (((-563) $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) 28) (($ $) NIL) (($ (-563)) 28) (((-316 $) (-316 (-563))) 18)) (-3192 (((-767)) NIL T CONST)) (-2404 (((-112) $ $) NIL)) (-2991 (($ $ $) NIL)) (-1433 (($) NIL)) (-2543 (((-112) $ $) NIL)) (-2367 (($ $ $ $) NIL)) (-3841 (($ $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $) NIL) (($ $ (-767)) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL))) -(((-696) (-13 (-387) (-545) (-10 -8 (-15 -2447 ((-917) (-917))) (-15 -2447 ((-917))) (-15 -2062 ((-316 $) (-316 (-563))))))) (T -696)) -((-2447 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))) (-2447 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-316 (-563))) (-5 *2 (-316 (-696))) (-5 *1 (-696))))) -(-13 (-387) (-545) (-10 -8 (-15 -2447 ((-917) (-917))) (-15 -2447 ((-917))) (-15 -2062 ((-316 $) (-316 (-563)))))) -((-2487 (((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)) 19)) (-2458 (((-1 |#4| |#2| |#3|) (-1169)) 12))) -(((-697 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2458 ((-1 |#4| |#2| |#3|) (-1169))) (-15 -2487 ((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)))) (-611 (-536)) (-1208) (-1208) (-1208)) (T -697)) -((-2487 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *3 *5 *6 *7)) (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *7 (-1208)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *4 *5 *6 *7)) (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) (-4 *7 (-1208))))) -(-10 -7 (-15 -2458 ((-1 |#4| |#2| |#3|) (-1169))) (-15 -2487 ((-1 |#4| |#2| |#3|) |#1| (-1169) (-1169)))) -((-2049 (((-112) $ $) NIL)) (-1492 (((-1262) $ (-767)) 14)) (-2256 (((-767) $) 12)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 18) (($ |#1|) 24) ((|#1| $) 15)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 28)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 27))) -(((-698 |#1|) (-13 (-132) (-490 |#1|)) (-1093)) (T -698)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 15)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1625 ((|#1| $) 21)) (-2799 (($ $ $) NIL (|has| |#1| (-788)))) (-2848 (($ $ $) NIL (|has| |#1| (-788)))) (-2217 (((-1152) $) 46)) (-3864 (((-1114) $) NIL)) (-1634 ((|#3| $) 22)) (-3742 (((-859) $) 41)) (-4311 (($) 10 T CONST)) (-1751 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1705 (((-112) $ $) 20)) (-1741 (((-112) $ $) NIL (|has| |#1| (-788)))) (-1723 (((-112) $ $) 24 (|has| |#1| (-788)))) (-1799 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-1790 (($ $) 17) (($ $ $) NIL)) (-1780 (($ $ $) 27)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL))) +(((-658 |#1| |#2| |#3|) (-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) (-15 -1799 ($ $ |#3|)) (-15 -1799 ($ |#1| |#3|)) (-15 -1625 (|#1| $)) (-15 -1634 (|#3| $)))) (-714 |#2|) (-172) (|SubsetCategory| (-723) |#2|)) (T -658)) +((-1799 (*1 *1 *1 *2) (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)) (-4 *2 (|SubsetCategory| (-723) *4)))) (-1799 (*1 *1 *2 *3) (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-714 *4)) (-4 *3 (|SubsetCategory| (-723) *4)))) (-1625 (*1 *2 *1) (-12 (-4 *3 (-172)) (-4 *2 (-714 *3)) (-5 *1 (-658 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-723) *3)))) (-1634 (*1 *2 *1) (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4))))) +(-13 (-714 |#2|) (-10 -8 (IF (|has| |#1| (-788)) (-6 (-788)) |%noBranch|) (-15 -1799 ($ $ |#3|)) (-15 -1799 ($ |#1| |#3|)) (-15 -1625 (|#1| $)) (-15 -1634 (|#3| $)))) +((-2702 (((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)) 33))) +(((-659 |#1|) (-10 -7 (-15 -2702 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) (-906)) (T -659)) +((-2702 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) (-4 *4 (-906)) (-5 *1 (-659 *4))))) +(-10 -7 (-15 -2702 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3491 (((-641 |#1|) $) 84)) (-2525 (($ $ (-768)) 94)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2691 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 50)) (-2111 (((-3 (-668 |#1|) "failed") $) NIL)) (-2239 (((-668 |#1|) $) NIL)) (-1348 (($ $) 93)) (-2918 (((-768) $) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-2414 (($ (-668 |#1|) |#2|) 70)) (-3275 (($ $) 89)) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-2481 (((-1283 |#1| |#2|) (-1283 |#1| |#2|) $) 49)) (-1754 (((-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1309 (((-668 |#1|) $) NIL)) (-1320 ((|#2| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2416 (($ $ |#1| $) 32) (($ $ (-641 |#1|) (-641 $)) 34)) (-2266 (((-768) $) 91)) (-3753 (($ $ $) 20) (($ (-668 |#1|) (-668 |#1|)) 79) (($ (-668 |#1|) $) 77) (($ $ (-668 |#1|)) 78)) (-3742 (((-859) $) NIL) (($ |#1|) 76) (((-1274 |#1| |#2|) $) 60) (((-1283 |#1| |#2|) $) 43) (($ (-668 |#1|)) 27)) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ (-668 |#1|)) NIL)) (-1762 ((|#2| (-1283 |#1| |#2|) $) 45)) (-4311 (($) 23 T CONST)) (-2546 (((-641 (-2 (|:| |k| (-668 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2313 (((-3 $ "failed") (-1274 |#1| |#2|)) 62)) (-4082 (($ (-668 |#1|)) 14)) (-1705 (((-112) $ $) 46)) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $) 68) (($ $ $) NIL)) (-1780 (($ $ $) 31)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 30) (($ $ |#2|) NIL) (($ |#2| (-668 |#1|)) NIL))) +(((-660 |#1| |#2|) (-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -2313 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -3753 ($ (-668 |#1|) (-668 |#1|))) (-15 -3753 ($ (-668 |#1|) $)) (-15 -3753 ($ $ (-668 |#1|))))) (-847) (-172)) (T -660)) +((-2313 (*1 *1 *2) (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *1 (-660 *3 *4)))) (-3753 (*1 *1 *2 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-3753 (*1 *1 *2 *1) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172)))) (-3753 (*1 *1 *1 *2) (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) (-4 *4 (-172))))) +(-13 (-374 |#1| |#2|) (-382 |#2| (-668 |#1|)) (-10 -8 (-15 -2313 ((-3 $ "failed") (-1274 |#1| |#2|))) (-15 -3753 ($ (-668 |#1|) (-668 |#1|))) (-15 -3753 ($ (-668 |#1|) $)) (-15 -3753 ($ $ (-668 |#1|))))) +((-1445 (((-112) $) NIL) (((-112) (-1 (-112) |#2| |#2|) $) 60)) (-2402 (($ $) NIL) (($ (-1 (-112) |#2| |#2|) $) 12)) (-2068 (($ (-1 (-112) |#2|) $) 28)) (-2797 (($ $) 66)) (-4181 (($ $) 77)) (-2154 (($ |#2| $) NIL) (($ (-1 (-112) |#2|) $) 42)) (-1699 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 61) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 63)) (-3305 (((-564) |#2| $ (-564)) 74) (((-564) |#2| $) NIL) (((-564) (-1 (-112) |#2|) $) 55)) (-3619 (($ (-768) |#2|) 64)) (-1457 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 30)) (-2164 (($ $ $) NIL) (($ (-1 (-112) |#2| |#2|) $ $) 24)) (-2187 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 65)) (-1858 (($ |#2|) 15)) (-2974 (($ $ $ (-564)) 41) (($ |#2| $ (-564)) 39)) (-3582 (((-3 |#2| "failed") (-1 (-112) |#2|) $) 52)) (-3778 (($ $ (-1226 (-564))) 50) (($ $ (-564)) 43)) (-1999 (($ $ $ (-564)) 73)) (-3896 (($ $) 71)) (-1723 (((-112) $ $) 79))) +(((-661 |#1| |#2|) (-10 -8 (-15 -1858 (|#1| |#2|)) (-15 -3778 (|#1| |#1| (-564))) (-15 -3778 (|#1| |#1| (-1226 (-564)))) (-15 -2154 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2974 (|#1| |#2| |#1| (-564))) (-15 -2974 (|#1| |#1| |#1| (-564))) (-15 -1457 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2154 (|#1| |#2| |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1445 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3305 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3305 ((-564) |#2| |#1|)) (-15 -3305 ((-564) |#2| |#1| (-564))) (-15 -2164 (|#1| |#1| |#1|)) (-15 -1445 ((-112) |#1|)) (-15 -1999 (|#1| |#1| |#1| (-564))) (-15 -2797 (|#1| |#1|)) (-15 -2402 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3582 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3619 (|#1| (-768) |#2|)) (-15 -2187 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3896 (|#1| |#1|))) (-662 |#2|) (-1209)) (T -661)) +NIL +(-10 -8 (-15 -1858 (|#1| |#2|)) (-15 -3778 (|#1| |#1| (-564))) (-15 -3778 (|#1| |#1| (-1226 (-564)))) (-15 -2154 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2974 (|#1| |#2| |#1| (-564))) (-15 -2974 (|#1| |#1| |#1| (-564))) (-15 -1457 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -2068 (|#1| (-1 (-112) |#2|) |#1|)) (-15 -2154 (|#1| |#2| |#1|)) (-15 -4181 (|#1| |#1|)) (-15 -1457 (|#1| |#1| |#1|)) (-15 -2164 (|#1| (-1 (-112) |#2| |#2|) |#1| |#1|)) (-15 -1445 ((-112) (-1 (-112) |#2| |#2|) |#1|)) (-15 -3305 ((-564) (-1 (-112) |#2|) |#1|)) (-15 -3305 ((-564) |#2| |#1|)) (-15 -3305 ((-564) |#2| |#1| (-564))) (-15 -2164 (|#1| |#1| |#1|)) (-15 -1445 ((-112) |#1|)) (-15 -1999 (|#1| |#1| |#1| (-564))) (-15 -2797 (|#1| |#1|)) (-15 -2402 (|#1| (-1 (-112) |#2| |#2|) |#1|)) (-15 -2402 (|#1| |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1699 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3582 ((-3 |#2| "failed") (-1 (-112) |#2|) |#1|)) (-15 -3619 (|#1| (-768) |#2|)) (-15 -2187 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3896 (|#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3426 ((|#1| $) 48)) (-2910 ((|#1| $) 65)) (-3813 (($ $) 67)) (-2645 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) 52 (|has| $ (-6 -4412)))) (-1445 (((-112) $) 142 (|has| |#1| (-847))) (((-112) (-1 (-112) |#1| |#1|) $) 136)) (-2402 (($ $) 146 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412)))) (($ (-1 (-112) |#1| |#1|) $) 145 (|has| $ (-6 -4412)))) (-2777 (($ $) 141 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $) 135)) (-2969 (((-112) $ (-768)) 8)) (-3976 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-3417 (($ $ $) 56 (|has| $ (-6 -4412)))) (-1716 ((|#1| $ |#1|) 54 (|has| $ (-6 -4412)))) (-2094 ((|#1| $ |#1|) 58 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4412))) (($ $ "rest" $) 55 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2068 (($ (-1 (-112) |#1|) $) 129)) (-3548 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4411)))) (-2899 ((|#1| $) 66)) (-2818 (($) 7 T CONST)) (-2797 (($ $) 144 (|has| $ (-6 -4412)))) (-1856 (($ $) 134)) (-1977 (($ $) 73) (($ $ (-768)) 71)) (-4181 (($ $) 131 (|has| |#1| (-1094)))) (-1996 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ |#1| $) 130 (|has| |#1| (-1094))) (($ (-1 (-112) |#1|) $) 125)) (-2366 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4411))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2619 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 87)) (-2378 (((-112) $) 83)) (-3305 (((-564) |#1| $ (-564)) 139 (|has| |#1| (-1094))) (((-564) |#1| $) 138 (|has| |#1| (-1094))) (((-564) (-1 (-112) |#1|) $) 137)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 50)) (-1940 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3619 (($ (-768) |#1|) 108)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 95 (|has| (-564) (-847)))) (-2799 (($ $ $) 147 (|has| |#1| (-847)))) (-1457 (($ $ $) 132 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 128)) (-2164 (($ $ $) 140 (|has| |#1| (-847))) (($ (-1 (-112) |#1| |#1|) $ $) 133)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 94 (|has| (-564) (-847)))) (-2848 (($ $ $) 148 (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1858 (($ |#1|) 122)) (-1500 (((-112) $ (-768)) 10)) (-2333 (((-641 |#1|) $) 45)) (-1881 (((-112) $) 49)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2389 ((|#1| $) 70) (($ $ (-768)) 68)) (-2974 (($ $ $ (-564)) 127) (($ |#1| $ (-564)) 126)) (-2308 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-2312 (((-641 (-564)) $) 92)) (-4062 (((-112) (-564) $) 91)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 76) (($ $ (-768)) 74)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3099 (($ $ |#1|) 96 (|has| $ (-6 -4412)))) (-2174 (((-112) $) 84)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 90)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-4209 (((-564) $ $) 44)) (-3778 (($ $ (-1226 (-564))) 124) (($ $ (-564)) 123)) (-2004 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-3572 (((-112) $) 46)) (-1459 (($ $) 62)) (-3838 (($ $) 59 (|has| $ (-6 -4412)))) (-3108 (((-768) $) 63)) (-2857 (($ $) 64)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1999 (($ $ $ (-564)) 143 (|has| $ (-6 -4412)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 107)) (-1807 (($ $ $) 61) (($ $ |#1|) 60)) (-1802 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 51)) (-1584 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) 150 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 151 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1741 (((-112) $ $) 149 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 152 (|has| |#1| (-847)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-662 |#1|) (-140) (-1209)) (T -662)) +((-1858 (*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209))))) +(-13 (-1143 |t#1|) (-373 |t#1|) (-282 |t#1|) (-10 -8 (-15 -1858 ($ |t#1|)))) +(((-34) . T) ((-102) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-282 |#1|) . T) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1007 |#1|) . T) ((-1094) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T)) +((-2443 (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|))) 22) (((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 14)) (-1544 (((-768) (-685 |#1|) (-1259 |#1|)) 30)) (-2034 (((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|)) 24)) (-2332 (((-112) (-685 |#1|) (-1259 |#1|)) 27))) +(((-663 |#1|) (-10 -7 (-15 -2443 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -2443 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -2443 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -2443 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -2034 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2332 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -1544 ((-768) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -663)) +((-1544 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-768)) (-5 *1 (-663 *5)))) (-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-5 *2 (-112)) (-5 *1 (-663 *5)))) (-2034 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *1 (-663 *4)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -4265 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -4265 (-641 (-1259 *5)))))) (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -4265 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *5) "failed")) (|:| -4265 (-641 (-1259 *5))))) (-5 *1 (-663 *5)) (-5 *4 (-1259 *5))))) +(-10 -7 (-15 -2443 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|))) (-15 -2443 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-641 (-641 |#1|)) (-1259 |#1|))) (-15 -2443 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|))))) (-685 |#1|) (-641 (-1259 |#1|)))) (-15 -2443 ((-641 (-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|))))) (-641 (-641 |#1|)) (-641 (-1259 |#1|)))) (-15 -2034 ((-3 (-1259 |#1|) "failed") (-685 |#1|) (-1259 |#1|))) (-15 -2332 ((-112) (-685 |#1|) (-1259 |#1|))) (-15 -1544 ((-768) (-685 |#1|) (-1259 |#1|)))) +((-2443 (((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|)))) |#4| (-641 |#3|)) 65) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|))) |#4| |#3|) 59)) (-1544 (((-768) |#4| |#3|) 18)) (-2034 (((-3 |#3| "failed") |#4| |#3|) 21)) (-2332 (((-112) |#4| |#3|) 14))) +(((-664 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2443 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|))) |#4| |#3|)) (-15 -2443 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -2034 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2332 ((-112) |#4| |#3|)) (-15 -1544 ((-768) |#4| |#3|))) (-363) (-13 (-373 |#1|) (-10 -7 (-6 -4412))) (-13 (-373 |#1|) (-10 -7 (-6 -4412))) (-683 |#1| |#2| |#3|)) (T -664)) +((-1544 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-768)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-2332 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-112)) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-2034 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4412)))) (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))) (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-641 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4265 (-641 *7))))) (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) (-4 *3 (-683 *5 *6 *7)))) (-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) +(-10 -7 (-15 -2443 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|))) |#4| |#3|)) (-15 -2443 ((-641 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|)))) |#4| (-641 |#3|))) (-15 -2034 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2332 ((-112) |#4| |#3|)) (-15 -1544 ((-768) |#4| |#3|))) +((-4018 (((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -4265 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)) 54))) +(((-665 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4018 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -4265 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) (-556) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -665)) +((-4018 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) (|:| -4265 (-641 (-1259 (-407 *8)))))) (-5 *1 (-665 *5 *6 *7 *8))))) +(-10 -7 (-15 -4018 ((-2 (|:| |particular| (-3 (-1259 (-407 |#4|)) "failed")) (|:| -4265 (-641 (-1259 (-407 |#4|))))) (-641 |#4|) (-641 |#3|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4176 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3809 ((|#2| $) NIL)) (-2335 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3147 (((-1259 (-685 |#2|))) NIL) (((-1259 (-685 |#2|)) (-1259 $)) NIL)) (-1695 (((-112) $) NIL)) (-1821 (((-1259 $)) 44)) (-2969 (((-112) $ (-768)) NIL)) (-2294 (($ |#2|) NIL)) (-2818 (($) NIL T CONST)) (-2903 (($ $) NIL (|has| |#2| (-307)))) (-4236 (((-240 |#1| |#2|) $ (-564)) NIL)) (-3268 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-2934 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-3493 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-3748 ((|#2| $) NIL)) (-1952 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-3664 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-3760 (((-1166 (-949 |#2|))) NIL (|has| |#2| (-363)))) (-2752 (($ $ (-918)) NIL)) (-4369 ((|#2| $) NIL)) (-2699 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-3359 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-1961 (((-1166 |#2|) $) NIL)) (-4293 (((-112)) NIL)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-2340 (($ (-1259 |#2|)) NIL) (($ (-1259 |#2|) (-1259 $)) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1544 (((-768) $) NIL (|has| |#2| (-556))) (((-918)) 45)) (-2540 ((|#2| $ (-564) (-564)) NIL)) (-1878 (((-112)) NIL)) (-2545 (($ $ (-918)) NIL)) (-3616 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3840 (((-112) $) NIL)) (-3735 (((-768) $) NIL (|has| |#2| (-556)))) (-1973 (((-641 (-240 |#1| |#2|)) $) NIL (|has| |#2| (-556)))) (-2659 (((-768) $) NIL)) (-3992 (((-112)) NIL)) (-2671 (((-768) $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-3786 ((|#2| $) NIL (|has| |#2| (-6 (-4413 "*"))))) (-1305 (((-564) $) NIL)) (-1392 (((-564) $) NIL)) (-1386 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-4212 (((-564) $) NIL)) (-2739 (((-564) $) NIL)) (-1915 (($ (-641 (-641 |#2|))) NIL)) (-2606 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3299 (((-641 (-641 |#2|)) $) NIL)) (-2482 (((-112)) NIL)) (-3764 (((-112)) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2906 (((-3 (-2 (|:| |particular| $) (|:| -4265 (-641 $))) "failed")) NIL (|has| |#2| (-556)))) (-1628 (((-3 $ "failed")) NIL (|has| |#2| (-556)))) (-4256 (((-685 |#2|)) NIL) (((-685 |#2|) (-1259 $)) NIL)) (-3306 ((|#2| $) NIL)) (-1789 (((-685 |#2|) $) NIL) (((-685 |#2|) $ (-1259 $)) NIL)) (-3714 (((-3 $ "failed") $) NIL (|has| |#2| (-556)))) (-1903 (((-1166 (-949 |#2|))) NIL (|has| |#2| (-363)))) (-3154 (($ $ (-918)) NIL)) (-3371 ((|#2| $) NIL)) (-2257 (((-1166 |#2|) $) NIL (|has| |#2| (-556)))) (-3738 ((|#2|) NIL) ((|#2| (-1259 $)) NIL)) (-2627 (((-1166 |#2|) $) NIL)) (-2756 (((-112)) NIL)) (-2217 (((-1152) $) NIL)) (-2270 (((-112)) NIL)) (-4213 (((-112)) NIL)) (-3435 (((-112)) NIL)) (-4110 (((-3 $ "failed") $) NIL (|has| |#2| (-363)))) (-3864 (((-1114) $) NIL)) (-4154 (((-112)) NIL)) (-1321 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-3736 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) 30) ((|#2| $ (-564)) NIL)) (-4117 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2865 ((|#2| $) NIL)) (-3545 (($ (-641 |#2|)) NIL)) (-2041 (((-112) $) NIL)) (-1696 (((-240 |#1| |#2|) $) NIL)) (-3337 ((|#2| $) NIL (|has| |#2| (-6 (-4413 "*"))))) (-3873 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3896 (($ $) NIL)) (-1785 (((-685 |#2|) (-1259 $)) NIL) (((-1259 |#2|) $) NIL) (((-685 |#2|) (-1259 $) (-1259 $)) NIL) (((-1259 |#2|) $ (-1259 $)) 33)) (-2235 (($ (-1259 |#2|)) NIL) (((-1259 |#2|) $) NIL)) (-1551 (((-641 (-949 |#2|))) NIL) (((-641 (-949 |#2|)) (-1259 $)) NIL)) (-3671 (($ $ $) NIL)) (-2330 (((-112)) NIL)) (-1346 (((-240 |#1| |#2|) $ (-564)) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) NIL)) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) 43)) (-3986 (((-641 (-1259 |#2|))) NIL (|has| |#2| (-556)))) (-3533 (($ $ $ $) NIL)) (-4352 (((-112)) NIL)) (-1918 (($ (-685 |#2|) $) NIL)) (-1417 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-3938 (((-112) $) NIL)) (-1879 (($ $ $) NIL)) (-4031 (((-112)) NIL)) (-4380 (((-112)) NIL)) (-1518 (((-112)) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) NIL) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-666 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|)) (-918) (-172)) (T -666)) +NIL +(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-417 |#2|)) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2845 (((-641 (-1129)) $) 10)) (-3742 (((-859) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-667) (-13 (-1077) (-10 -8 (-15 -2845 ((-641 (-1129)) $))))) (T -667)) +((-2845 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667))))) +(-13 (-1077) (-10 -8 (-15 -2845 ((-641 (-1129)) $)))) +((-3732 (((-112) $ $) NIL)) (-3491 (((-641 |#1|) $) NIL)) (-2427 (($ $) 66)) (-3042 (((-112) $) NIL)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-4001 (((-3 $ "failed") (-816 |#1|)) 27)) (-1394 (((-112) (-816 |#1|)) 17)) (-2632 (($ (-816 |#1|)) 28)) (-4291 (((-112) $ $) 35)) (-2395 (((-918) $) 42)) (-2413 (($ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4127 (((-641 $) (-816 |#1|)) 19)) (-3742 (((-859) $) 50) (($ |#1|) 39) (((-816 |#1|) $) 46) (((-673 |#1|) $) 51)) (-2209 (((-59 (-641 $)) (-641 |#1|) (-918)) 71)) (-2325 (((-641 $) (-641 |#1|) (-918)) 75)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 67)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 45))) +(((-668 |#1|) (-13 (-847) (-1035 |#1|) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2413 ($ $)) (-15 -2427 ($ $)) (-15 -2395 ((-918) $)) (-15 -4291 ((-112) $ $)) (-15 -3742 ((-816 |#1|) $)) (-15 -3742 ((-673 |#1|) $)) (-15 -4127 ((-641 $) (-816 |#1|))) (-15 -1394 ((-112) (-816 |#1|))) (-15 -2632 ($ (-816 |#1|))) (-15 -4001 ((-3 $ "failed") (-816 |#1|))) (-15 -3491 ((-641 |#1|) $)) (-15 -2209 ((-59 (-641 $)) (-641 |#1|) (-918))) (-15 -2325 ((-641 $) (-641 |#1|) (-918))))) (-847)) (T -668)) +((-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-2413 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) (-2427 (*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-4291 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-4127 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-668 *4))) (-5 *1 (-668 *4)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-112)) (-5 *1 (-668 *4)))) (-2632 (*1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))) (-4001 (*1 *1 *2) (|partial| -12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) (-2209 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5))))) +(-13 (-847) (-1035 |#1|) (-10 -8 (-15 -3042 ((-112) $)) (-15 -2413 ($ $)) (-15 -2427 ($ $)) (-15 -2395 ((-918) $)) (-15 -4291 ((-112) $ $)) (-15 -3742 ((-816 |#1|) $)) (-15 -3742 ((-673 |#1|) $)) (-15 -4127 ((-641 $) (-816 |#1|))) (-15 -1394 ((-112) (-816 |#1|))) (-15 -2632 ($ (-816 |#1|))) (-15 -4001 ((-3 $ "failed") (-816 |#1|))) (-15 -3491 ((-641 |#1|) $)) (-15 -2209 ((-59 (-641 $)) (-641 |#1|) (-918))) (-15 -2325 ((-641 $) (-641 |#1|) (-918))))) +((-3426 ((|#2| $) 103)) (-3813 (($ $) 124)) (-2969 (((-112) $ (-768)) 35)) (-1977 (($ $) 112) (($ $ (-768)) 115)) (-2378 (((-112) $) 125)) (-2488 (((-641 $) $) 99)) (-1940 (((-112) $ $) 95)) (-2275 (((-112) $ (-768)) 33)) (-2029 (((-564) $) 69)) (-3774 (((-564) $) 68)) (-1500 (((-112) $ (-768)) 31)) (-1881 (((-112) $) 101)) (-2389 ((|#2| $) 116) (($ $ (-768)) 120)) (-2308 (($ $ $ (-564)) 86) (($ |#2| $ (-564)) 85)) (-2312 (((-641 (-564)) $) 67)) (-4062 (((-112) (-564) $) 61)) (-1966 ((|#2| $) NIL) (($ $ (-768)) 111)) (-3004 (($ $ (-564)) 127)) (-2174 (((-112) $) 126)) (-3736 (((-112) (-1 (-112) |#2|) $) 44)) (-2572 (((-641 |#2|) $) 48)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") 110) (($ $ "rest") 114) ((|#2| $ "last") 123) (($ $ (-1226 (-564))) 82) ((|#2| $ (-564)) 59) ((|#2| $ (-564) |#2|) 60)) (-4209 (((-564) $ $) 94)) (-2004 (($ $ (-1226 (-564))) 81) (($ $ (-564)) 75)) (-3572 (((-112) $) 90)) (-1459 (($ $) 108)) (-3108 (((-768) $) 107)) (-2857 (($ $) 106)) (-3753 (($ (-641 |#2|)) 55)) (-2356 (($ $) 128)) (-3167 (((-641 $) $) 93)) (-1584 (((-112) $ $) 92)) (-1417 (((-112) (-1 (-112) |#2|) $) 43)) (-1705 (((-112) $ $) 20)) (-2641 (((-768) $) 41))) +(((-669 |#1| |#2|) (-10 -8 (-15 -2356 (|#1| |#1|)) (-15 -3004 (|#1| |#1| (-564))) (-15 -2378 ((-112) |#1|)) (-15 -2174 ((-112) |#1|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -2572 ((-641 |#2|) |#1|)) (-15 -4062 ((-112) (-564) |#1|)) (-15 -2312 ((-641 (-564)) |#1|)) (-15 -3774 ((-564) |#1|)) (-15 -2029 ((-564) |#1|)) (-15 -3753 (|#1| (-641 |#2|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2004 (|#1| |#1| (-564))) (-15 -2004 (|#1| |#1| (-1226 (-564)))) (-15 -2308 (|#1| |#2| |#1| (-564))) (-15 -2308 (|#1| |#1| |#1| (-564))) (-15 -1459 (|#1| |#1|)) (-15 -3108 ((-768) |#1|)) (-15 -2857 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2389 (|#2| |#1|)) (-15 -1977 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -1977 (|#1| |#1|)) (-15 -1966 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -1966 (|#2| |#1|)) (-15 -1940 ((-112) |#1| |#1|)) (-15 -1584 ((-112) |#1| |#1|)) (-15 -4209 ((-564) |#1| |#1|)) (-15 -3572 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3426 (|#2| |#1|)) (-15 -1881 ((-112) |#1|)) (-15 -2488 ((-641 |#1|) |#1|)) (-15 -3167 ((-641 |#1|) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2641 ((-768) |#1|)) (-15 -2969 ((-112) |#1| (-768))) (-15 -2275 ((-112) |#1| (-768))) (-15 -1500 ((-112) |#1| (-768)))) (-670 |#2|) (-1209)) (T -669)) +NIL +(-10 -8 (-15 -2356 (|#1| |#1|)) (-15 -3004 (|#1| |#1| (-564))) (-15 -2378 ((-112) |#1|)) (-15 -2174 ((-112) |#1|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -2572 ((-641 |#2|) |#1|)) (-15 -4062 ((-112) (-564) |#1|)) (-15 -2312 ((-641 (-564)) |#1|)) (-15 -3774 ((-564) |#1|)) (-15 -2029 ((-564) |#1|)) (-15 -3753 (|#1| (-641 |#2|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -2004 (|#1| |#1| (-564))) (-15 -2004 (|#1| |#1| (-1226 (-564)))) (-15 -2308 (|#1| |#2| |#1| (-564))) (-15 -2308 (|#1| |#1| |#1| (-564))) (-15 -1459 (|#1| |#1|)) (-15 -3108 ((-768) |#1|)) (-15 -2857 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2389 (|#2| |#1|)) (-15 -1977 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -1977 (|#1| |#1|)) (-15 -1966 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -1966 (|#2| |#1|)) (-15 -1940 ((-112) |#1| |#1|)) (-15 -1584 ((-112) |#1| |#1|)) (-15 -4209 ((-564) |#1| |#1|)) (-15 -3572 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3426 (|#2| |#1|)) (-15 -1881 ((-112) |#1|)) (-15 -2488 ((-641 |#1|) |#1|)) (-15 -3167 ((-641 |#1|) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -3736 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#2|) |#1|)) (-15 -2641 ((-768) |#1|)) (-15 -2969 ((-112) |#1| (-768))) (-15 -2275 ((-112) |#1| (-768))) (-15 -1500 ((-112) |#1| (-768)))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3426 ((|#1| $) 48)) (-2910 ((|#1| $) 65)) (-3813 (($ $) 67)) (-2645 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) 52 (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) 8)) (-3976 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-3417 (($ $ $) 56 (|has| $ (-6 -4412)))) (-1716 ((|#1| $ |#1|) 54 (|has| $ (-6 -4412)))) (-2094 ((|#1| $ |#1|) 58 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4412))) (($ $ "rest" $) 55 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) 102)) (-2899 ((|#1| $) 66)) (-2818 (($) 7 T CONST)) (-2531 (($ $) 124)) (-1977 (($ $) 73) (($ $ (-768)) 71)) (-1996 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 103)) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2619 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 87)) (-2378 (((-112) $) 83)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-4205 (((-768) $) 123)) (-2488 (((-641 $) $) 50)) (-1940 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3619 (($ (-768) |#1|) 108)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 95 (|has| (-564) (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 94 (|has| (-564) (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1500 (((-112) $ (-768)) 10)) (-2333 (((-641 |#1|) $) 45)) (-1881 (((-112) $) 49)) (-3551 (($ $) 126)) (-2042 (((-112) $) 127)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2389 ((|#1| $) 70) (($ $ (-768)) 68)) (-2308 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-2312 (((-641 (-564)) $) 92)) (-4062 (((-112) (-564) $) 91)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3756 ((|#1| $) 125)) (-1966 ((|#1| $) 76) (($ $ (-768)) 74)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3099 (($ $ |#1|) 96 (|has| $ (-6 -4412)))) (-3004 (($ $ (-564)) 122)) (-2174 (((-112) $) 84)) (-3781 (((-112) $) 128)) (-3523 (((-112) $) 129)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 90)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-4209 (((-564) $ $) 44)) (-2004 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-3572 (((-112) $) 46)) (-1459 (($ $) 62)) (-3838 (($ $) 59 (|has| $ (-6 -4412)))) (-3108 (((-768) $) 63)) (-2857 (($ $) 64)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 107)) (-1807 (($ $ $) 61 (|has| $ (-6 -4412))) (($ $ |#1|) 60 (|has| $ (-6 -4412)))) (-1802 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-2356 (($ $) 121)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 51)) (-1584 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-670 |#1|) (-140) (-1209)) (T -670)) +((-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-3548 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2042 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3551 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-3756 (*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-2531 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-3004 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) +(-13 (-1143 |t#1|) (-10 -8 (-15 -2366 ($ (-1 (-112) |t#1|) $)) (-15 -3548 ($ (-1 (-112) |t#1|) $)) (-15 -3523 ((-112) $)) (-15 -3781 ((-112) $)) (-15 -2042 ((-112) $)) (-15 -3551 ($ $)) (-15 -3756 (|t#1| $)) (-15 -2531 ($ $)) (-15 -4205 ((-768) $)) (-15 -3004 ($ $ (-564))) (-15 -2356 ($ $)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1143 |#1|) . T) ((-1209) . T) ((-1247 |#1|) . T)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3149 (($ (-768) (-768) (-768)) 55 (|has| |#1| (-1046)))) (-2969 (((-112) $ (-768)) NIL)) (-2750 ((|#1| $ (-768) (-768) (-768) |#1|) 49)) (-2818 (($) NIL T CONST)) (-3639 (($ $ $) 60 (|has| |#1| (-1046)))) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3041 (((-1259 (-768)) $) 12)) (-2986 (($ (-1170) $ $) 37)) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-1464 (($ (-768)) 57 (|has| |#1| (-1046)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-768) (-768) (-768)) 46)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-3753 (($ (-641 (-641 (-641 |#1|)))) 70)) (-3742 (($ (-955 (-955 (-955 |#1|)))) 23) (((-955 (-955 (-955 |#1|))) $) 19) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-671 |#1|) (-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1046)) (PROGN (-15 -3149 ($ (-768) (-768) (-768))) (-15 -1464 ($ (-768))) (-15 -3639 ($ $ $))) |%noBranch|) (-15 -3753 ($ (-641 (-641 (-641 |#1|))))) (-15 -4382 (|#1| $ (-768) (-768) (-768))) (-15 -2750 (|#1| $ (-768) (-768) (-768) |#1|)) (-15 -3742 ($ (-955 (-955 (-955 |#1|))))) (-15 -3742 ((-955 (-955 (-955 |#1|))) $)) (-15 -2986 ($ (-1170) $ $)) (-15 -3041 ((-1259 (-768)) $)))) (-1094)) (T -671)) +((-3149 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) (-4 *3 (-1094)))) (-1464 (*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) (-4 *3 (-1094)))) (-3639 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2)) (-4 *2 (-1046)) (-4 *2 (-1094)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-4382 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-2750 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-4 *3 (-1094)) (-5 *1 (-671 *3)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-2986 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-1259 (-768))) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) +(-13 (-489 |#1|) (-10 -8 (IF (|has| |#1| (-1046)) (PROGN (-15 -3149 ($ (-768) (-768) (-768))) (-15 -1464 ($ (-768))) (-15 -3639 ($ $ $))) |%noBranch|) (-15 -3753 ($ (-641 (-641 (-641 |#1|))))) (-15 -4382 (|#1| $ (-768) (-768) (-768))) (-15 -2750 (|#1| $ (-768) (-768) (-768) |#1|)) (-15 -3742 ($ (-955 (-955 (-955 |#1|))))) (-15 -3742 ((-955 (-955 (-955 |#1|))) $)) (-15 -2986 ($ (-1170) $ $)) (-15 -3041 ((-1259 (-768)) $)))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-4024 (((-483) $) 10)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 21) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-1129) $) 12)) (-1705 (((-112) $ $) NIL))) +(((-672) (-13 (-1077) (-10 -8 (-15 -4024 ((-483) $)) (-15 -4337 ((-1129) $))))) (T -672)) +((-4024 (*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672))))) +(-13 (-1077) (-10 -8 (-15 -4024 ((-483) $)) (-15 -4337 ((-1129) $)))) +((-3732 (((-112) $ $) NIL)) (-3491 (((-641 |#1|) $) 15)) (-2427 (($ $) 19)) (-3042 (((-112) $) 20)) (-2111 (((-3 |#1| "failed") $) 23)) (-2239 ((|#1| $) 21)) (-1977 (($ $) 37)) (-3275 (($ $) 25)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-4291 (((-112) $ $) 45)) (-2395 (((-918) $) 40)) (-2413 (($ $) 18)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 ((|#1| $) 36)) (-3742 (((-859) $) 32) (($ |#1|) 24) (((-816 |#1|) $) 28)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 13)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 44)) (* (($ $ $) 35))) +(((-673 |#1|) (-13 (-847) (-1035 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3742 ((-816 |#1|) $)) (-15 -1966 (|#1| $)) (-15 -2413 ($ $)) (-15 -2395 ((-918) $)) (-15 -4291 ((-112) $ $)) (-15 -3275 ($ $)) (-15 -1977 ($ $)) (-15 -3042 ((-112) $)) (-15 -2427 ($ $)) (-15 -3491 ((-641 |#1|) $)))) (-847)) (T -673)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-1966 (*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-2413 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-4291 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-3275 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) (-2427 (*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847))))) +(-13 (-847) (-1035 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3742 ((-816 |#1|) $)) (-15 -1966 (|#1| $)) (-15 -2413 ($ $)) (-15 -2395 ((-918) $)) (-15 -4291 ((-112) $ $)) (-15 -3275 ($ $)) (-15 -1977 ($ $)) (-15 -3042 ((-112) $)) (-15 -2427 ($ $)) (-15 -3491 ((-641 |#1|) $)))) +((-4323 ((|#1| (-1 |#1| (-768) |#1|) (-768) |#1|) 14)) (-4044 ((|#1| (-1 |#1| |#1|) (-768) |#1|) 12))) +(((-674 |#1|) (-10 -7 (-15 -4044 (|#1| (-1 |#1| |#1|) (-768) |#1|)) (-15 -4323 (|#1| (-1 |#1| (-768) |#1|) (-768) |#1|))) (-1094)) (T -674)) +((-4323 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-768) *2)) (-5 *4 (-768)) (-4 *2 (-1094)) (-5 *1 (-674 *2)))) (-4044 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-768)) (-4 *2 (-1094)) (-5 *1 (-674 *2))))) +(-10 -7 (-15 -4044 (|#1| (-1 |#1| |#1|) (-768) |#1|)) (-15 -4323 (|#1| (-1 |#1| (-768) |#1|) (-768) |#1|))) +((-1349 ((|#2| |#1| |#2|) 9)) (-1336 ((|#1| |#1| |#2|) 8))) +(((-675 |#1| |#2|) (-10 -7 (-15 -1336 (|#1| |#1| |#2|)) (-15 -1349 (|#2| |#1| |#2|))) (-1094) (-1094)) (T -675)) +((-1349 (*1 *2 *3 *2) (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-1336 (*1 *2 *2 *3) (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(-10 -7 (-15 -1336 (|#1| |#1| |#2|)) (-15 -1349 (|#2| |#1| |#2|))) +((-2399 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11))) +(((-676 |#1| |#2| |#3|) (-10 -7 (-15 -2399 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1094) (-1094) (-1094)) (T -676)) +((-2399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2))))) +(-10 -7 (-15 -2399 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) +((-3732 (((-112) $ $) NIL)) (-3107 (((-1208) $) 21)) (-3052 (((-641 (-1208)) $) 19)) (-1857 (($ (-641 (-1208)) (-1208)) 14)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 30) (($ (-1175)) NIL) (((-1175) $) NIL) (((-1208) $) 22) (($ (-1112)) 10)) (-1705 (((-112) $ $) NIL))) +(((-677) (-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -3742 ($ (-1112))) (-15 -1857 ($ (-641 (-1208)) (-1208))) (-15 -3052 ((-641 (-1208)) $)) (-15 -3107 ((-1208) $))))) (T -677)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677)))) (-1857 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677))))) +(-13 (-1077) (-611 (-1208)) (-10 -8 (-15 -3742 ($ (-1112))) (-15 -1857 ($ (-641 (-1208)) (-1208))) (-15 -3052 ((-641 (-1208)) $)) (-15 -3107 ((-1208) $)))) +((-4323 (((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)) 29)) (-1728 (((-1 |#1|) |#1|) 8)) (-3585 ((|#1| |#1|) 23)) (-2806 (((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564)) 22) ((|#1| (-1 |#1| |#1|)) 11)) (-3742 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-768)) 26))) +(((-678 |#1|) (-10 -7 (-15 -1728 ((-1 |#1|) |#1|)) (-15 -3742 ((-1 |#1|) |#1|)) (-15 -2806 (|#1| (-1 |#1| |#1|))) (-15 -2806 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -3585 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-768))) (-15 -4323 ((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)))) (-1094)) (T -678)) +((-4323 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-768) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *4 (-1094)) (-5 *1 (-678 *4)))) (-3585 (*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) (-3742 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))) (-1728 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))) +(-10 -7 (-15 -1728 ((-1 |#1|) |#1|)) (-15 -3742 ((-1 |#1|) |#1|)) (-15 -2806 (|#1| (-1 |#1| |#1|))) (-15 -2806 ((-641 |#1|) (-1 (-641 |#1|) (-641 |#1|)) (-564))) (-15 -3585 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-768))) (-15 -4323 ((-1 |#1| (-768) |#1|) (-1 |#1| (-768) |#1|)))) +((-4378 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2617 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2091 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-4114 (((-1 |#2| |#1|) |#2|) 11))) +(((-679 |#1| |#2|) (-10 -7 (-15 -4114 ((-1 |#2| |#1|) |#2|)) (-15 -2617 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2091 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4378 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1094) (-1094)) (T -679)) +((-4378 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5)) (-4 *4 (-1094)))) (-2617 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5)))) (-4114 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) (-4 *3 (-1094))))) +(-10 -7 (-15 -4114 ((-1 |#2| |#1|) |#2|)) (-15 -2617 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2091 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -4378 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) +((-1955 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-4102 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-4310 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3846 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-3550 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21))) +(((-680 |#1| |#2| |#3|) (-10 -7 (-15 -4102 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4310 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3846 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3550 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1955 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1094) (-1094) (-1094)) (T -680)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) (-5 *1 (-680 *5 *6 *7)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094)))) (-4310 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6)))) (-4102 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6))))) +(-10 -7 (-15 -4102 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -4310 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3846 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3550 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1955 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) +((-1699 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-2187 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31))) +(((-681 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2187 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2187 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1699 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1046) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|) (-1046) (-373 |#5|) (-373 |#5|) (-683 |#5| |#6| |#7|)) (T -681)) +((-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1046)) (-4 *2 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) (-2187 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8))))) +(-10 -7 (-15 -2187 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2187 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1699 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) +((-1515 (($ (-768) (-768)) 43)) (-2345 (($ $ $) 71)) (-2284 (($ |#3|) 66) (($ $) 67)) (-2335 (((-112) $) 38)) (-2888 (($ $ (-564) (-564)) 81)) (-3158 (($ $ (-564) (-564)) 82)) (-3003 (($ $ (-564) (-564) (-564) (-564)) 87)) (-4142 (($ $) 69)) (-1695 (((-112) $) 15)) (-1621 (($ $ (-564) (-564) $) 88)) (-3877 ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) 86)) (-2294 (($ (-768) |#2|) 53)) (-1915 (($ (-641 (-641 |#2|))) 51)) (-3299 (((-641 (-641 |#2|)) $) 78)) (-1388 (($ $ $) 70)) (-1321 (((-3 $ "failed") $ |#2|) 120)) (-4382 ((|#2| $ (-564) (-564)) NIL) ((|#2| $ (-564) (-564) |#2|) NIL) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-3545 (($ (-641 |#2|)) 54) (($ (-641 $)) 56)) (-2041 (((-112) $) 28)) (-3742 (($ |#4|) 61) (((-859) $) NIL)) (-3938 (((-112) $) 40)) (-1799 (($ $ |#2|) 122)) (-1790 (($ $ $) 92) (($ $) 95)) (-1780 (($ $ $) 90)) (** (($ $ (-768)) 109) (($ $ (-564)) 127)) (* (($ $ $) 101) (($ |#2| $) 97) (($ $ |#2|) 98) (($ (-564) $) 100) ((|#4| $ |#4|) 113) ((|#3| |#3| $) 117))) +(((-682 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3742 ((-859) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1799 (|#1| |#1| |#2|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -1621 (|#1| |#1| (-564) (-564) |#1|)) (-15 -3003 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -3158 (|#1| |#1| (-564) (-564))) (-15 -2888 (|#1| |#1| (-564) (-564))) (-15 -3877 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4382 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3299 ((-641 (-641 |#2|)) |#1|)) (-15 -2345 (|#1| |#1| |#1|)) (-15 -1388 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -2284 (|#1| |#1|)) (-15 -2284 (|#1| |#3|)) (-15 -3742 (|#1| |#4|)) (-15 -3545 (|#1| (-641 |#1|))) (-15 -3545 (|#1| (-641 |#2|))) (-15 -2294 (|#1| (-768) |#2|)) (-15 -1915 (|#1| (-641 (-641 |#2|)))) (-15 -1515 (|#1| (-768) (-768))) (-15 -3938 ((-112) |#1|)) (-15 -2335 ((-112) |#1|)) (-15 -2041 ((-112) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 -3877 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564)))) (-683 |#2| |#3| |#4|) (-1046) (-373 |#2|) (-373 |#2|)) (T -682)) +NIL +(-10 -8 (-15 -3742 ((-859) |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -1799 (|#1| |#1| |#2|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-768))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -1621 (|#1| |#1| (-564) (-564) |#1|)) (-15 -3003 (|#1| |#1| (-564) (-564) (-564) (-564))) (-15 -3158 (|#1| |#1| (-564) (-564))) (-15 -2888 (|#1| |#1| (-564) (-564))) (-15 -3877 (|#1| |#1| (-641 (-564)) (-641 (-564)) |#1|)) (-15 -4382 (|#1| |#1| (-641 (-564)) (-641 (-564)))) (-15 -3299 ((-641 (-641 |#2|)) |#1|)) (-15 -2345 (|#1| |#1| |#1|)) (-15 -1388 (|#1| |#1| |#1|)) (-15 -4142 (|#1| |#1|)) (-15 -2284 (|#1| |#1|)) (-15 -2284 (|#1| |#3|)) (-15 -3742 (|#1| |#4|)) (-15 -3545 (|#1| (-641 |#1|))) (-15 -3545 (|#1| (-641 |#2|))) (-15 -2294 (|#1| (-768) |#2|)) (-15 -1915 (|#1| (-641 (-641 |#2|)))) (-15 -1515 (|#1| (-768) (-768))) (-15 -3938 ((-112) |#1|)) (-15 -2335 ((-112) |#1|)) (-15 -2041 ((-112) |#1|)) (-15 -1695 ((-112) |#1|)) (-15 -3877 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) (-564)))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1515 (($ (-768) (-768)) 97)) (-2345 (($ $ $) 87)) (-2284 (($ |#2|) 91) (($ $) 90)) (-2335 (((-112) $) 99)) (-2888 (($ $ (-564) (-564)) 83)) (-3158 (($ $ (-564) (-564)) 82)) (-3003 (($ $ (-564) (-564) (-564) (-564)) 81)) (-4142 (($ $) 89)) (-1695 (((-112) $) 101)) (-2969 (((-112) $ (-768)) 8)) (-1621 (($ $ (-564) (-564) $) 80)) (-3877 ((|#1| $ (-564) (-564) |#1|) 44) (($ $ (-641 (-564)) (-641 (-564)) $) 84)) (-1673 (($ $ (-564) |#2|) 42)) (-1947 (($ $ (-564) |#3|) 41)) (-2294 (($ (-768) |#1|) 95)) (-2818 (($) 7 T CONST)) (-2903 (($ $) 67 (|has| |#1| (-307)))) (-4236 ((|#2| $ (-564)) 46)) (-1544 (((-768) $) 66 (|has| |#1| (-556)))) (-2619 ((|#1| $ (-564) (-564) |#1|) 43)) (-2540 ((|#1| $ (-564) (-564)) 48)) (-3616 (((-641 |#1|) $) 30)) (-3735 (((-768) $) 65 (|has| |#1| (-556)))) (-1973 (((-641 |#3|) $) 64 (|has| |#1| (-556)))) (-2659 (((-768) $) 51)) (-3619 (($ (-768) (-768) |#1|) 57)) (-2671 (((-768) $) 50)) (-2275 (((-112) $ (-768)) 9)) (-3786 ((|#1| $) 62 (|has| |#1| (-6 (-4413 "*"))))) (-1305 (((-564) $) 55)) (-1392 (((-564) $) 53)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-4212 (((-564) $) 54)) (-2739 (((-564) $) 52)) (-1915 (($ (-641 (-641 |#1|))) 96)) (-2606 (($ (-1 |#1| |#1|) $) 34)) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3299 (((-641 (-641 |#1|)) $) 86)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-4110 (((-3 $ "failed") $) 61 (|has| |#1| (-363)))) (-1388 (($ $ $) 88)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3099 (($ $ |#1|) 56)) (-1321 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-556)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) (-564)) 49) ((|#1| $ (-564) (-564) |#1|) 47) (($ $ (-641 (-564)) (-641 (-564))) 85)) (-3545 (($ (-641 |#1|)) 94) (($ (-641 $)) 93)) (-2041 (((-112) $) 100)) (-3337 ((|#1| $) 63 (|has| |#1| (-6 (-4413 "*"))))) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-1346 ((|#3| $ (-564)) 45)) (-3742 (($ |#3|) 92) (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-3938 (((-112) $) 98)) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1799 (($ $ |#1|) 68 (|has| |#1| (-363)))) (-1790 (($ $ $) 78) (($ $) 77)) (-1780 (($ $ $) 79)) (** (($ $ (-768)) 70) (($ $ (-564)) 60 (|has| |#1| (-363)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-564) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-683 |#1| |#2| |#3|) (-140) (-1046) (-373 |t#1|) (-373 |t#1|)) (T -683)) +((-1695 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-2335 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-112)))) (-1515 (*1 *1 *2 *2) (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1915 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2294 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3742 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (-2284 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (-2284 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-4142 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1388 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-2345 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) (-4382 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3877 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-2888 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3158 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-3003 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1621 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1780 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1790 (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (-1790 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *2 (-373 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1046)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) (-1321 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) (-1799 (*1 *1 *1 *2) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (-2903 (*1 *1 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-307)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) (-4110 (*1 *1 *1) (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4412) (-6 -4411) (-15 -1695 ((-112) $)) (-15 -2041 ((-112) $)) (-15 -2335 ((-112) $)) (-15 -3938 ((-112) $)) (-15 -1515 ($ (-768) (-768))) (-15 -1915 ($ (-641 (-641 |t#1|)))) (-15 -2294 ($ (-768) |t#1|)) (-15 -3545 ($ (-641 |t#1|))) (-15 -3545 ($ (-641 $))) (-15 -3742 ($ |t#3|)) (-15 -2284 ($ |t#2|)) (-15 -2284 ($ $)) (-15 -4142 ($ $)) (-15 -1388 ($ $ $)) (-15 -2345 ($ $ $)) (-15 -3299 ((-641 (-641 |t#1|)) $)) (-15 -4382 ($ $ (-641 (-564)) (-641 (-564)))) (-15 -3877 ($ $ (-641 (-564)) (-641 (-564)) $)) (-15 -2888 ($ $ (-564) (-564))) (-15 -3158 ($ $ (-564) (-564))) (-15 -3003 ($ $ (-564) (-564) (-564) (-564))) (-15 -1621 ($ $ (-564) (-564) $)) (-15 -1780 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -1790 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-564) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-768))) (IF (|has| |t#1| (-556)) (-15 -1321 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -1799 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-307)) (-15 -2903 ($ $)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1544 ((-768) $)) (-15 -3735 ((-768) $)) (-15 -1973 ((-641 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4413 "*"))) (PROGN (-15 -3337 (|t#1| $)) (-15 -3786 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -4110 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-57 |#1| |#2| |#3|) . T) ((-1209) . T)) +((-2903 ((|#4| |#4|) 96 (|has| |#1| (-307)))) (-1544 (((-768) |#4|) 125 (|has| |#1| (-556)))) (-3735 (((-768) |#4|) 100 (|has| |#1| (-556)))) (-1973 (((-641 |#3|) |#4|) 107 (|has| |#1| (-556)))) (-1764 (((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|) 139 (|has| |#1| (-307)))) (-3786 ((|#1| |#4|) 56)) (-3885 (((-3 |#4| "failed") |#4|) 88 (|has| |#1| (-556)))) (-4110 (((-3 |#4| "failed") |#4|) 104 (|has| |#1| (-363)))) (-2264 ((|#4| |#4|) 92 (|has| |#1| (-556)))) (-2044 ((|#4| |#4| |#1| (-564) (-564)) 64)) (-2439 ((|#4| |#4| (-564) (-564)) 59)) (-2727 ((|#4| |#4| |#1| (-564) (-564)) 69)) (-3337 ((|#1| |#4|) 102)) (-4298 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 93 (|has| |#1| (-556))))) +(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3337 (|#1| |#4|)) (-15 -3786 (|#1| |#4|)) (-15 -2439 (|#4| |#4| (-564) (-564))) (-15 -2044 (|#4| |#4| |#1| (-564) (-564))) (-15 -2727 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -1544 ((-768) |#4|)) (-15 -3735 ((-768) |#4|)) (-15 -1973 ((-641 |#3|) |#4|)) (-15 -2264 (|#4| |#4|)) (-15 -3885 ((-3 |#4| "failed") |#4|)) (-15 -4298 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -2903 (|#4| |#4|)) (-15 -1764 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4110 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-172) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -684)) +((-4110 (*1 *2 *2) (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1764 (*1 *2 *3 *3) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) (-2903 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-4298 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3885 (*1 *2 *2) (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-1973 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3735 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1544 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-2727 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-2044 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) (-4 *2 (-683 *3 *5 *6)))) (-2439 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) (-4 *2 (-683 *4 *5 *6)))) (-3786 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) (-3337 (*1 *2 *3) (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5))))) +(-10 -7 (-15 -3337 (|#1| |#4|)) (-15 -3786 (|#1| |#4|)) (-15 -2439 (|#4| |#4| (-564) (-564))) (-15 -2044 (|#4| |#4| |#1| (-564) (-564))) (-15 -2727 (|#4| |#4| |#1| (-564) (-564))) (IF (|has| |#1| (-556)) (PROGN (-15 -1544 ((-768) |#4|)) (-15 -3735 ((-768) |#4|)) (-15 -1973 ((-641 |#3|) |#4|)) (-15 -2264 (|#4| |#4|)) (-15 -3885 ((-3 |#4| "failed") |#4|)) (-15 -4298 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-307)) (PROGN (-15 -2903 (|#4| |#4|)) (-15 -1764 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4110 ((-3 |#4| "failed") |#4|)) |%noBranch|)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1515 (($ (-768) (-768)) 63)) (-2345 (($ $ $) NIL)) (-2284 (($ (-1259 |#1|)) NIL) (($ $) NIL)) (-2335 (((-112) $) NIL)) (-2888 (($ $ (-564) (-564)) 21)) (-3158 (($ $ (-564) (-564)) NIL)) (-3003 (($ $ (-564) (-564) (-564) (-564)) NIL)) (-4142 (($ $) NIL)) (-1695 (((-112) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-1621 (($ $ (-564) (-564) $) NIL)) (-3877 ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564)) $) NIL)) (-1673 (($ $ (-564) (-1259 |#1|)) NIL)) (-1947 (($ $ (-564) (-1259 |#1|)) NIL)) (-2294 (($ (-768) |#1|) 36)) (-2818 (($) NIL T CONST)) (-2903 (($ $) 45 (|has| |#1| (-307)))) (-4236 (((-1259 |#1|) $ (-564)) NIL)) (-1544 (((-768) $) 47 (|has| |#1| (-556)))) (-2619 ((|#1| $ (-564) (-564) |#1|) 68)) (-2540 ((|#1| $ (-564) (-564)) NIL)) (-3616 (((-641 |#1|) $) NIL)) (-3735 (((-768) $) 49 (|has| |#1| (-556)))) (-1973 (((-641 (-1259 |#1|)) $) 52 (|has| |#1| (-556)))) (-2659 (((-768) $) 31)) (-3619 (($ (-768) (-768) |#1|) 27)) (-2671 (((-768) $) 32)) (-2275 (((-112) $ (-768)) NIL)) (-3786 ((|#1| $) 43 (|has| |#1| (-6 (-4413 "*"))))) (-1305 (((-564) $) 10)) (-1392 (((-564) $) 11)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-4212 (((-564) $) 14)) (-2739 (((-564) $) 64)) (-1915 (($ (-641 (-641 |#1|))) NIL)) (-2606 (($ (-1 |#1| |#1|) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3299 (((-641 (-641 |#1|)) $) 75)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-4110 (((-3 $ "failed") $) 59 (|has| |#1| (-363)))) (-1388 (($ $ $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3099 (($ $ |#1|) NIL)) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) (-564)) NIL) ((|#1| $ (-564) (-564) |#1|) NIL) (($ $ (-641 (-564)) (-641 (-564))) NIL)) (-3545 (($ (-641 |#1|)) NIL) (($ (-641 $)) NIL) (($ (-1259 |#1|)) 69)) (-2041 (((-112) $) NIL)) (-3337 ((|#1| $) 41 (|has| |#1| (-6 (-4413 "*"))))) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-2235 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-1346 (((-1259 |#1|) $ (-564)) NIL)) (-3742 (($ (-1259 |#1|)) NIL) (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3938 (((-112) $) NIL)) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $ $) NIL) (($ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) 37) (($ $ (-564)) 61 (|has| |#1| (-363)))) (* (($ $ $) 23) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-564) $) NIL) (((-1259 |#1|) $ (-1259 |#1|)) NIL) (((-1259 |#1|) (-1259 |#1|) $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-685 |#1|) (-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -3545 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4110 ((-3 $ "failed") $)) |%noBranch|))) (-1046)) (T -685)) +((-4110 (*1 *1 *1) (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1046)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-685 *3))))) +(-13 (-683 |#1| (-1259 |#1|) (-1259 |#1|)) (-10 -8 (-15 -3545 ($ (-1259 |#1|))) (IF (|has| |#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -4110 ((-3 $ "failed") $)) |%noBranch|))) +((-1541 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 37)) (-2682 (((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|) 34)) (-4178 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768)) 43)) (-1954 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 27)) (-1492 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|)) 31) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 29)) (-3036 (((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|)) 33)) (-3558 (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 25)) (** (((-685 |#1|) (-685 |#1|) (-768)) 46))) +(((-686 |#1|) (-10 -7 (-15 -3558 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1954 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1492 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1492 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3036 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -2682 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1541 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4178 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768))) (-15 ** ((-685 |#1|) (-685 |#1|) (-768)))) (-1046)) (T -686)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-686 *4)))) (-4178 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-686 *4)))) (-1541 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-2682 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-3036 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1492 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1492 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-1954 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) (-3558 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) +(-10 -7 (-15 -3558 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1954 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1492 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1492 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -3036 ((-685 |#1|) (-685 |#1|) |#1| (-685 |#1|))) (-15 -2682 ((-685 |#1|) (-685 |#1|) (-685 |#1|) |#1|)) (-15 -1541 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -4178 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-685 |#1|) (-768))) (-15 ** ((-685 |#1|) (-685 |#1|) (-768)))) +((-2111 (((-3 |#1| "failed") $) 17)) (-2239 ((|#1| $) NIL)) (-1522 (($) 7 T CONST)) (-2455 (($ |#1|) 8)) (-3742 (($ |#1|) 15) (((-859) $) 22)) (-4300 (((-112) $ (|[\|\|]| |#1|)) 13) (((-112) $ (|[\|\|]| -1522)) 11)) (-3927 ((|#1| $) 14))) +(((-687 |#1|) (-13 (-1254) (-1035 |#1|) (-611 (-859)) (-10 -8 (-15 -2455 ($ |#1|)) (-15 -4300 ((-112) $ (|[\|\|]| |#1|))) (-15 -4300 ((-112) $ (|[\|\|]| -1522))) (-15 -3927 (|#1| $)) (-15 -1522 ($) -2091))) (-611 (-859))) (T -687)) +((-2455 (*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-859))) (-5 *2 (-112)) (-5 *1 (-687 *4)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1522)) (-5 *2 (-112)) (-5 *1 (-687 *4)) (-4 *4 (-611 (-859))))) (-3927 (*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) (-1522 (*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859)))))) +(-13 (-1254) (-1035 |#1|) (-611 (-859)) (-10 -8 (-15 -2455 ($ |#1|)) (-15 -4300 ((-112) $ (|[\|\|]| |#1|))) (-15 -4300 ((-112) $ (|[\|\|]| -1522))) (-15 -3927 (|#1| $)) (-15 -1522 ($) -2091))) +((-2953 ((|#2| |#2| |#4|) 33)) (-3981 (((-685 |#2|) |#3| |#4|) 39)) (-2409 (((-685 |#2|) |#2| |#4|) 38)) (-1875 (((-1259 |#2|) |#2| |#4|) 16)) (-1505 ((|#2| |#3| |#4|) 32)) (-2607 (((-685 |#2|) |#3| |#4| (-768) (-768)) 50)) (-2191 (((-685 |#2|) |#2| |#4| (-768)) 49))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1875 ((-1259 |#2|) |#2| |#4|)) (-15 -1505 (|#2| |#3| |#4|)) (-15 -2953 (|#2| |#2| |#4|)) (-15 -2409 ((-685 |#2|) |#2| |#4|)) (-15 -2191 ((-685 |#2|) |#2| |#4| (-768))) (-15 -3981 ((-685 |#2|) |#3| |#4|)) (-15 -2607 ((-685 |#2|) |#3| |#4| (-768) (-768)))) (-1094) (-897 |#1|) (-373 |#2|) (-13 (-373 |#1|) (-10 -7 (-6 -4411)))) (T -688)) +((-2607 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *7 (-897 *6)) (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4411)))))) (-3981 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-897 *5)) (-5 *2 (-685 *6)) (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))) (-2191 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *3 (-897 *6)) (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4411)))))) (-2409 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-685 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))) (-2953 (*1 *2 *2 *3) (-12 (-4 *4 (-1094)) (-4 *2 (-897 *4)) (-5 *1 (-688 *4 *2 *5 *3)) (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4411)))))) (-1505 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *2 (-897 *5)) (-5 *1 (-688 *5 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411)))))) (-1875 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-1259 *3)) (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411))))))) +(-10 -7 (-15 -1875 ((-1259 |#2|) |#2| |#4|)) (-15 -1505 (|#2| |#3| |#4|)) (-15 -2953 (|#2| |#2| |#4|)) (-15 -2409 ((-685 |#2|) |#2| |#4|)) (-15 -2191 ((-685 |#2|) |#2| |#4| (-768))) (-15 -3981 ((-685 |#2|) |#3| |#4|)) (-15 -2607 ((-685 |#2|) |#3| |#4| (-768) (-768)))) +((-1540 (((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)) 20)) (-3350 ((|#1| (-685 |#2|)) 9)) (-1909 (((-685 |#1|) (-685 |#2|)) 18))) +(((-689 |#1| |#2|) (-10 -7 (-15 -3350 (|#1| (-685 |#2|))) (-15 -1909 ((-685 |#1|) (-685 |#2|))) (-15 -1540 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) (-556) (-989 |#1|)) (T -689)) +((-1540 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) (-5 *1 (-689 *4 *5)))) (-1909 (*1 *2 *3) (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-685 *4)) (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-689 *2 *4))))) +(-10 -7 (-15 -3350 (|#1| (-685 |#2|))) (-15 -1909 ((-685 |#1|) (-685 |#2|))) (-15 -1540 ((-2 (|:| |num| (-685 |#1|)) (|:| |den| |#1|)) (-685 |#2|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3580 (((-685 (-695))) NIL) (((-685 (-695)) (-1259 $)) NIL)) (-3809 (((-695) $) NIL)) (-2451 (($ $) NIL (|has| (-695) (-1194)))) (-2319 (($ $) NIL (|has| (-695) (-1194)))) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-695) (-349)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-2249 (($ $) NIL (-4030 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-3048 (((-418 $) $) NIL (-4030 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-4137 (($ $) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194))))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-2377 (((-112) $ $) NIL (|has| (-695) (-307)))) (-1938 (((-768)) NIL (|has| (-695) (-368)))) (-2428 (($ $) NIL (|has| (-695) (-1194)))) (-2297 (($ $) NIL (|has| (-695) (-1194)))) (-2473 (($ $) NIL (|has| (-695) (-1194)))) (-2339 (($ $) NIL (|has| (-695) (-1194)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-695) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-1035 (-407 (-564)))))) (-2239 (((-564) $) NIL) (((-695) $) NIL) (((-407 (-564)) $) NIL (|has| (-695) (-1035 (-407 (-564)))))) (-2340 (($ (-1259 (-695))) NIL) (($ (-1259 (-695)) (-1259 $)) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-695) (-349)))) (-1373 (($ $ $) NIL (|has| (-695) (-307)))) (-3807 (((-685 (-695)) $) NIL) (((-685 (-695)) $ (-1259 $)) NIL)) (-3039 (((-685 (-695)) (-685 $)) NIL) (((-2 (|:| -2069 (-685 (-695))) (|:| |vec| (-1259 (-695)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-695) (-637 (-564)))) (((-685 (-564)) (-685 $)) NIL (|has| (-695) (-637 (-564))))) (-1699 (((-3 $ "failed") (-407 (-1166 (-695)))) NIL (|has| (-695) (-363))) (($ (-1166 (-695))) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 (((-695) $) 29)) (-2646 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-695) (-545)))) (-4072 (((-112) $) NIL (|has| (-695) (-545)))) (-2350 (((-407 (-564)) $) NIL (|has| (-695) (-545)))) (-1544 (((-918)) NIL)) (-2821 (($) NIL (|has| (-695) (-368)))) (-1350 (($ $ $) NIL (|has| (-695) (-307)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| (-695) (-307)))) (-2757 (($) NIL (|has| (-695) (-349)))) (-1313 (((-112) $) NIL (|has| (-695) (-349)))) (-3176 (($ $) NIL (|has| (-695) (-349))) (($ $ (-768)) NIL (|has| (-695) (-349)))) (-4188 (((-112) $) NIL (-4030 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-2207 (((-2 (|:| |r| (-695)) (|:| |phi| (-695))) $) NIL (-12 (|has| (-695) (-1055)) (|has| (-695) (-1194))))) (-1655 (($) NIL (|has| (-695) (-1194)))) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-695) (-883 (-379)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-695) (-883 (-564))))) (-1619 (((-830 (-918)) $) NIL (|has| (-695) (-349))) (((-918) $) NIL (|has| (-695) (-349)))) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194))))) (-3328 (((-695) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| (-695) (-349)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-2653 (((-1166 (-695)) $) NIL (|has| (-695) (-363)))) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2187 (($ (-1 (-695) (-695)) $) NIL)) (-1906 (((-918) $) NIL (|has| (-695) (-368)))) (-2192 (($ $) NIL (|has| (-695) (-1194)))) (-1687 (((-1166 (-695)) $) NIL)) (-2529 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| (-695) (-363)))) (-3258 (($) NIL (|has| (-695) (-349)) CONST)) (-1495 (($ (-918)) NIL (|has| (-695) (-368)))) (-1798 (($) NIL)) (-4161 (((-695) $) 31)) (-3864 (((-1114) $) NIL)) (-1693 (($) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-695) (-307)))) (-2577 (($ (-641 $)) NIL (|has| (-695) (-307))) (($ $ $) NIL (|has| (-695) (-307)))) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| (-695) (-349)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-695) (-307)) (|has| (-695) (-906))))) (-4127 (((-418 $) $) NIL (-4030 (-12 (|has| (-695) (-307)) (|has| (-695) (-906))) (|has| (-695) (-363))))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-695) (-307))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| (-695) (-307)))) (-1321 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-695)) NIL (|has| (-695) (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-695) (-307)))) (-4118 (($ $) NIL (|has| (-695) (-1194)))) (-2416 (($ $ (-1170) (-695)) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-1170)) (-641 (-695))) NIL (|has| (-695) (-514 (-1170) (-695)))) (($ $ (-641 (-294 (-695)))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-294 (-695))) NIL (|has| (-695) (-309 (-695)))) (($ $ (-695) (-695)) NIL (|has| (-695) (-309 (-695)))) (($ $ (-641 (-695)) (-641 (-695))) NIL (|has| (-695) (-309 (-695))))) (-4061 (((-768) $) NIL (|has| (-695) (-307)))) (-4382 (($ $ (-695)) NIL (|has| (-695) (-286 (-695) (-695))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| (-695) (-307)))) (-4284 (((-695)) NIL) (((-695) (-1259 $)) NIL)) (-2819 (((-3 (-768) "failed") $ $) NIL (|has| (-695) (-349))) (((-768) $) NIL (|has| (-695) (-349)))) (-4117 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-768)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-2277 (((-685 (-695)) (-1259 $) (-1 (-695) (-695))) NIL (|has| (-695) (-363)))) (-3925 (((-1166 (-695))) NIL)) (-2484 (($ $) NIL (|has| (-695) (-1194)))) (-2348 (($ $) NIL (|has| (-695) (-1194)))) (-1543 (($) NIL (|has| (-695) (-349)))) (-2462 (($ $) NIL (|has| (-695) (-1194)))) (-2328 (($ $) NIL (|has| (-695) (-1194)))) (-2438 (($ $) NIL (|has| (-695) (-1194)))) (-2309 (($ $) NIL (|has| (-695) (-1194)))) (-1785 (((-685 (-695)) (-1259 $)) NIL) (((-1259 (-695)) $) NIL) (((-685 (-695)) (-1259 $) (-1259 $)) NIL) (((-1259 (-695)) $ (-1259 $)) NIL)) (-2235 (((-536) $) NIL (|has| (-695) (-612 (-536)))) (((-169 (-225)) $) NIL (|has| (-695) (-1019))) (((-169 (-379)) $) NIL (|has| (-695) (-1019))) (((-889 (-379)) $) NIL (|has| (-695) (-612 (-889 (-379))))) (((-889 (-564)) $) NIL (|has| (-695) (-612 (-889 (-564))))) (($ (-1166 (-695))) NIL) (((-1166 (-695)) $) NIL) (($ (-1259 (-695))) NIL) (((-1259 (-695)) $) NIL)) (-2766 (($ $) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-4030 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-906))) (|has| (-695) (-349))))) (-2315 (($ (-695) (-695)) 12)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-564)) NIL) (($ (-695)) NIL) (($ (-169 (-379))) 13) (($ (-169 (-564))) 19) (($ (-169 (-695))) 28) (($ (-169 (-697))) 25) (((-169 (-379)) $) 33) (($ (-407 (-564))) NIL (-4030 (|has| (-695) (-1035 (-407 (-564)))) (|has| (-695) (-363))))) (-4253 (($ $) NIL (|has| (-695) (-349))) (((-3 $ "failed") $) NIL (-4030 (-12 (|has| (-695) (-307)) (|has| $ (-145)) (|has| (-695) (-906))) (|has| (-695) (-145))))) (-2230 (((-1166 (-695)) $) NIL)) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $)) NIL)) (-2521 (($ $) NIL (|has| (-695) (-1194)))) (-2379 (($ $) NIL (|has| (-695) (-1194)))) (-3360 (((-112) $ $) NIL)) (-2495 (($ $) NIL (|has| (-695) (-1194)))) (-2358 (($ $) NIL (|has| (-695) (-1194)))) (-2548 (($ $) NIL (|has| (-695) (-1194)))) (-2404 (($ $) NIL (|has| (-695) (-1194)))) (-2526 (((-695) $) NIL (|has| (-695) (-1194)))) (-4065 (($ $) NIL (|has| (-695) (-1194)))) (-2415 (($ $) NIL (|has| (-695) (-1194)))) (-2534 (($ $) NIL (|has| (-695) (-1194)))) (-2391 (($ $) NIL (|has| (-695) (-1194)))) (-2507 (($ $) NIL (|has| (-695) (-1194)))) (-2367 (($ $) NIL (|has| (-695) (-1194)))) (-2792 (($ $) NIL (|has| (-695) (-1055)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-1 (-695) (-695))) NIL) (($ $ (-1 (-695) (-695)) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-1170)) NIL (|has| (-695) (-897 (-1170)))) (($ $ (-768)) NIL (|has| (-695) (-233))) (($ $) NIL (|has| (-695) (-233)))) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL (|has| (-695) (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ $) NIL (|has| (-695) (-1194))) (($ $ (-407 (-564))) NIL (-12 (|has| (-695) (-999)) (|has| (-695) (-1194)))) (($ $ (-564)) NIL (|has| (-695) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ (-695) $) NIL) (($ $ (-695)) NIL) (($ (-407 (-564)) $) NIL (|has| (-695) (-363))) (($ $ (-407 (-564))) NIL (|has| (-695) (-363))))) +(((-690) (-13 (-387) (-166 (-695)) (-10 -8 (-15 -3742 ($ (-169 (-379)))) (-15 -3742 ($ (-169 (-564)))) (-15 -3742 ($ (-169 (-695)))) (-15 -3742 ($ (-169 (-697)))) (-15 -3742 ((-169 (-379)) $))))) (T -690)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690))))) +(-13 (-387) (-166 (-695)) (-10 -8 (-15 -3742 ($ (-169 (-379)))) (-15 -3742 ($ (-169 (-564)))) (-15 -3742 ($ (-169 (-695)))) (-15 -3742 ($ (-169 (-697)))) (-15 -3742 ((-169 (-379)) $)))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-2068 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-4181 (($ $) 62)) (-1996 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2366 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-1370 (((-641 (-2 (|:| -2423 |#1|) (|:| -3873 (-768)))) $) 61)) (-4085 (($) 49) (($ (-641 |#1|)) 48)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 50)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-691 |#1|) (-140) (-1094)) (T -691)) +((-2974 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-4181 (*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094)))) (-1370 (*1 *2 *1) (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) (-5 *2 (-641 (-2 (|:| -2423 *3) (|:| -3873 (-768)))))))) +(-13 (-235 |t#1|) (-10 -8 (-15 -2974 ($ |t#1| $ (-768))) (-15 -4181 ($ $)) (-15 -1370 ((-641 (-2 (|:| -2423 |t#1|) (|:| -3873 (-768)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3529 (((-641 |#1|) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))) (-564)) 65)) (-2056 ((|#1| |#1| (-564)) 61)) (-2577 ((|#1| |#1| |#1| (-564)) 45)) (-4127 (((-641 |#1|) |#1| (-564)) 48)) (-2027 ((|#1| |#1| (-564) |#1| (-564)) 39)) (-3723 (((-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))) |#1| (-564)) 60))) +(((-692 |#1|) (-10 -7 (-15 -2577 (|#1| |#1| |#1| (-564))) (-15 -2056 (|#1| |#1| (-564))) (-15 -4127 ((-641 |#1|) |#1| (-564))) (-15 -3723 ((-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))) |#1| (-564))) (-15 -3529 ((-641 |#1|) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))) (-564))) (-15 -2027 (|#1| |#1| (-564) |#1| (-564)))) (-1235 (-564))) (T -692)) +((-2027 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-3529 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| -4127 *5) (|:| -2266 (-564))))) (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) (-5 *1 (-692 *5)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -4127 *3) (|:| -2266 *4)))) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) (-4 *3 (-1235 *4)))) (-2056 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) (-2577 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) +(-10 -7 (-15 -2577 (|#1| |#1| |#1| (-564))) (-15 -2056 (|#1| |#1| (-564))) (-15 -4127 ((-641 |#1|) |#1| (-564))) (-15 -3723 ((-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))) |#1| (-564))) (-15 -3529 ((-641 |#1|) (-641 (-2 (|:| -4127 |#1|) (|:| -2266 (-564)))) (-564))) (-15 -2027 (|#1| |#1| (-564) |#1| (-564)))) +((-3073 (((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))) 17)) (-3750 (((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 56) (((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 58) (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 60)) (-1678 (((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263))) NIL)) (-3498 (((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263))) 61))) +(((-693) (-10 -7 (-15 -3750 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3750 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3750 ((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3498 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -1678 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3073 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225)))))) (T -693)) +((-3073 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1 (-225) (-225) (-225) (-225))) (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *1 (-693)))) (-1678 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-3498 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-3750 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693)))) (-3750 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) (-3750 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693))))) +(-10 -7 (-15 -3750 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3750 ((-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3750 ((-1127 (-225)) (-1127 (-225)) (-1 (-940 (-225)) (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3498 ((-1127 (-225)) (-1 (-225) (-225) (-225)) (-3 (-1 (-225) (-225) (-225) (-225)) "undefined") (-1088 (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -1678 ((-1127 (-225)) (-316 (-564)) (-316 (-564)) (-316 (-564)) (-1 (-225) (-225)) (-1088 (-225)) (-641 (-263)))) (-15 -3073 ((-1 (-940 (-225)) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225)) (-1 (-225) (-225) (-225) (-225))))) +((-4127 (((-418 (-1166 |#4|)) (-1166 |#4|)) 89) (((-418 |#4|) |#4|) 269))) +(((-694 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4127 ((-418 |#4|) |#4|)) (-15 -4127 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-847) (-790) (-349) (-946 |#3| |#2| |#1|)) (T -694)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))) +(-10 -7 (-15 -4127 ((-418 |#4|) |#4|)) (-15 -4127 ((-418 (-1166 |#4|)) (-1166 |#4|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 99)) (-1473 (((-564) $) 34)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-2892 (($ $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-4137 (($ $) NIL)) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL)) (-2818 (($) NIL T CONST)) (-3000 (($ $) NIL)) (-2111 (((-3 (-564) "failed") $) 88) (((-3 (-407 (-564)) "failed") $) 28) (((-3 (-379) "failed") $) 85)) (-2239 (((-564) $) 90) (((-407 (-564)) $) 82) (((-379) $) 83)) (-1373 (($ $ $) 111)) (-3951 (((-3 $ "failed") $) 102)) (-1350 (($ $ $) 110)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-2101 (((-918)) 92) (((-918) (-918)) 91)) (-3308 (((-112) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL)) (-1619 (((-564) $) NIL)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL)) (-3328 (($ $) NIL)) (-2839 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2683 (((-564) (-564)) 96) (((-564)) 97)) (-2799 (($ $ $) NIL) (($) NIL (-12 (-4255 (|has| $ (-6 -4394))) (-4255 (|has| $ (-6 -4402)))))) (-4283 (((-564) (-564)) 94) (((-564)) 95)) (-2848 (($ $ $) NIL) (($) NIL (-12 (-4255 (|has| $ (-6 -4394))) (-4255 (|has| $ (-6 -4402)))))) (-2250 (((-564) $) 17)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 106)) (-4129 (((-918) (-564)) NIL (|has| $ (-6 -4402)))) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL)) (-3014 (($ $) NIL)) (-2140 (($ (-564) (-564)) NIL) (($ (-564) (-564) (-918)) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) 107)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2515 (((-564) $) 24)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 109)) (-3716 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-1315 (((-918) (-564)) NIL (|has| $ (-6 -4402)))) (-2235 (((-379) $) NIL) (((-225) $) NIL) (((-889 (-379)) $) NIL)) (-3742 (((-859) $) 67) (($ (-564)) 78) (($ $) NIL) (($ (-407 (-564))) 81) (($ (-564)) 78) (($ (-407 (-564))) 81) (($ (-379)) 75) (((-379) $) 65) (($ (-697)) 70)) (-3270 (((-768)) 121 T CONST)) (-3928 (($ (-564) (-564) (-918)) 58)) (-2551 (($ $) NIL)) (-2504 (((-918)) NIL) (((-918) (-918)) NIL (|has| $ (-6 -4402)))) (-3237 (((-918)) 45) (((-918) (-918)) 93)) (-3360 (((-112) $ $) NIL)) (-2792 (($ $) NIL)) (-4311 (($) 37 T CONST)) (-4321 (($) 18 T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 98)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 120)) (-1799 (($ $ $) 80)) (-1790 (($ $) 117) (($ $ $) 118)) (-1780 (($ $ $) 116)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 105)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 112) (($ $ $) 103) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-695) (-13 (-404) (-387) (-363) (-1035 (-379)) (-1035 (-407 (-564))) (-147) (-10 -8 (-15 -2101 ((-918) (-918))) (-15 -2101 ((-918))) (-15 -3237 ((-918) (-918))) (-15 -4283 ((-564) (-564))) (-15 -4283 ((-564))) (-15 -2683 ((-564) (-564))) (-15 -2683 ((-564))) (-15 -3742 ((-379) $)) (-15 -3742 ($ (-697))) (-15 -2250 ((-564) $)) (-15 -2515 ((-564) $)) (-15 -3928 ($ (-564) (-564) (-918)))))) (T -695)) +((-2515 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2250 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2101 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-3237 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) (-4283 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-4283 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2683 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-2683 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695)))) (-3928 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-5 *1 (-695))))) +(-13 (-404) (-387) (-363) (-1035 (-379)) (-1035 (-407 (-564))) (-147) (-10 -8 (-15 -2101 ((-918) (-918))) (-15 -2101 ((-918))) (-15 -3237 ((-918) (-918))) (-15 -4283 ((-564) (-564))) (-15 -4283 ((-564))) (-15 -2683 ((-564) (-564))) (-15 -2683 ((-564))) (-15 -3742 ((-379) $)) (-15 -3742 ($ (-697))) (-15 -2250 ((-564) $)) (-15 -2515 ((-564) $)) (-15 -3928 ($ (-564) (-564) (-918))))) +((-2941 (((-685 |#1|) (-685 |#1|) |#1| |#1|) 87)) (-2903 (((-685 |#1|) (-685 |#1|) |#1|) 67)) (-2476 (((-685 |#1|) (-685 |#1|) |#1|) 88)) (-4131 (((-685 |#1|) (-685 |#1|)) 68)) (-1764 (((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|) 86))) +(((-696 |#1|) (-10 -7 (-15 -4131 ((-685 |#1|) (-685 |#1|))) (-15 -2903 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2476 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2941 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -1764 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|))) (-307)) (T -696)) +((-1764 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-696 *3)) (-4 *3 (-307)))) (-2941 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-2476 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-2903 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) (-4131 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) +(-10 -7 (-15 -4131 ((-685 |#1|) (-685 |#1|))) (-15 -2903 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2476 ((-685 |#1|) (-685 |#1|) |#1|)) (-15 -2941 ((-685 |#1|) (-685 |#1|) |#1| |#1|)) (-15 -1764 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-1929 (($ $ $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL)) (-2338 (($ $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) 31)) (-2239 (((-564) $) 29)) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2646 (((-3 (-407 (-564)) "failed") $) NIL)) (-4072 (((-112) $) NIL)) (-2350 (((-407 (-564)) $) NIL)) (-2821 (($ $) NIL) (($) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-4167 (($ $ $ $) NIL)) (-1744 (($ $ $) NIL)) (-3308 (((-112) $) NIL)) (-2742 (($ $ $) NIL)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-3840 (((-112) $) NIL)) (-1801 (((-112) $) NIL)) (-3907 (((-3 $ "failed") $) NIL)) (-2839 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2634 (($ $ $ $) NIL)) (-2799 (($ $ $) NIL)) (-1622 (((-918) (-918)) 10) (((-918)) 9)) (-2848 (($ $ $) NIL)) (-1494 (($ $) NIL)) (-2395 (($ $) NIL)) (-2529 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-1326 (($ $ $) NIL)) (-3258 (($) NIL T CONST)) (-4171 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ (-641 $)) NIL) (($ $ $) NIL)) (-3676 (($ $) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1497 (((-112) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL) (($ $ (-768)) NIL)) (-1901 (($ $) NIL)) (-3896 (($ $) NIL)) (-2235 (((-225) $) NIL) (((-379) $) NIL) (((-889 (-564)) $) NIL) (((-536) $) NIL) (((-564) $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) 28) (($ $) NIL) (($ (-564)) 28) (((-316 $) (-316 (-564))) 18)) (-3270 (((-768)) NIL T CONST)) (-3248 (((-112) $ $) NIL)) (-3181 (($ $ $) NIL)) (-3237 (($) NIL)) (-3360 (((-112) $ $) NIL)) (-3501 (($ $ $ $) NIL)) (-2792 (($ $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $) NIL) (($ $ (-768)) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) +(((-697) (-13 (-387) (-545) (-10 -8 (-15 -1622 ((-918) (-918))) (-15 -1622 ((-918))) (-15 -3742 ((-316 $) (-316 (-564))))))) (T -697)) +((-1622 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) (-1622 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697))))) +(-13 (-387) (-545) (-10 -8 (-15 -1622 ((-918) (-918))) (-15 -1622 ((-918))) (-15 -3742 ((-316 $) (-316 (-564)))))) +((-2043 (((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)) 19)) (-3271 (((-1 |#4| |#2| |#3|) (-1170)) 12))) +(((-698 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3271 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -2043 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) (-612 (-536)) (-1209) (-1209) (-1209)) (T -698)) +((-2043 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209)))) (-3271 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *7 (-1209))))) +(-10 -7 (-15 -3271 ((-1 |#4| |#2| |#3|) (-1170))) (-15 -2043 ((-1 |#4| |#2| |#3|) |#1| (-1170) (-1170)))) +((-3732 (((-112) $ $) NIL)) (-3631 (((-1264) $ (-768)) 14)) (-3305 (((-768) $) 12)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 18) (($ |#1|) 24) ((|#1| $) 15)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 28)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 27))) +(((-699 |#1|) (-13 (-132) (-490 |#1|)) (-1094)) (T -699)) NIL (-13 (-132) (-490 |#1|)) -((-2467 (((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)) 36) (((-1 (-225) (-225)) |#1| (-1169)) 41))) -(((-699 |#1|) (-10 -7 (-15 -2467 ((-1 (-225) (-225)) |#1| (-1169))) (-15 -2467 ((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)))) (-611 (-536))) (T -699)) -((-2467 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-611 (-536))))) (-2467 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) (-4 *3 (-611 (-536)))))) -(-10 -7 (-15 -2467 ((-1 (-225) (-225)) |#1| (-1169))) (-15 -2467 ((-1 (-225) (-225) (-225)) |#1| (-1169) (-1169)))) -((-2729 (((-1169) |#1| (-1169) (-640 (-1169))) 10) (((-1169) |#1| (-1169) (-1169) (-1169)) 13) (((-1169) |#1| (-1169) (-1169)) 12) (((-1169) |#1| (-1169)) 11))) -(((-700 |#1|) (-10 -7 (-15 -2729 ((-1169) |#1| (-1169))) (-15 -2729 ((-1169) |#1| (-1169) (-1169))) (-15 -2729 ((-1169) |#1| (-1169) (-1169) (-1169))) (-15 -2729 ((-1169) |#1| (-1169) (-640 (-1169))))) (-611 (-536))) (T -700)) -((-2729 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-2729 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-2729 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) (-2729 (*1 *2 *3 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536)))))) -(-10 -7 (-15 -2729 ((-1169) |#1| (-1169))) (-15 -2729 ((-1169) |#1| (-1169) (-1169))) (-15 -2729 ((-1169) |#1| (-1169) (-1169) (-1169))) (-15 -2729 ((-1169) |#1| (-1169) (-640 (-1169))))) -((-3378 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) -(((-701 |#1| |#2|) (-10 -7 (-15 -3378 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1208) (-1208)) (T -701)) -((-3378 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-701 *3 *4)) (-4 *3 (-1208)) (-4 *4 (-1208))))) -(-10 -7 (-15 -3378 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) -((-2477 (((-1 |#3| |#2|) (-1169)) 11)) (-2487 (((-1 |#3| |#2|) |#1| (-1169)) 21))) -(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-1 |#3| |#2|) (-1169))) (-15 -2487 ((-1 |#3| |#2|) |#1| (-1169)))) (-611 (-536)) (-1208) (-1208)) (T -702)) -((-2487 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208))))) -(-10 -7 (-15 -2477 ((-1 |#3| |#2|) (-1169))) (-15 -2487 ((-1 |#3| |#2|) |#1| (-1169)))) -((-2516 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|) 94)) (-2507 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|) 112)) (-2498 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|) 47))) -(((-703 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2498 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|)) (-15 -2507 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|)) (-15 -2516 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -703)) -((-2516 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-640 (-1165 *13))) (-5 *3 (-1165 *13)) (-5 *4 (-640 *12)) (-5 *5 (-640 *10)) (-5 *6 (-640 *13)) (-5 *7 (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| *13))))) (-5 *8 (-640 (-767))) (-5 *9 (-1257 (-640 (-1165 *10)))) (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12)) (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13)))) (-2507 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-640 *11)) (-5 *5 (-640 (-1165 *9))) (-5 *6 (-640 *9)) (-5 *7 (-640 *12)) (-5 *8 (-640 (-767))) (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11)) (-4 *10 (-789)) (-5 *2 (-640 (-1165 *12))) (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1165 *12)))) (-2498 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-640 (-1165 *11))) (-5 *3 (-1165 *11)) (-5 *4 (-640 *10)) (-5 *5 (-640 *8)) (-5 *6 (-640 (-767))) (-5 *7 (-1257 (-640 (-1165 *8)))) (-4 *10 (-846)) (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789)) (-5 *1 (-703 *9 *10 *8 *11))))) -(-10 -7 (-15 -2498 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 |#3|) (-640 (-767)) (-640 (-1165 |#4|)) (-1257 (-640 (-1165 |#3|))) |#3|)) (-15 -2507 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#3|)) (-640 |#3|) (-640 |#4|) (-640 (-767)) |#3|)) (-15 -2516 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-640 |#2|) (-640 (-1165 |#4|)) (-640 |#3|) (-640 |#4|) (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| |#4|)))) (-640 (-767)) (-1257 (-640 (-1165 |#3|))) |#3|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3213 (($ $) 42)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-2165 (($ |#1| (-767)) 40)) (-3187 (((-767) $) 44)) (-3193 ((|#1| $) 43)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1962 (((-767) $) 45)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-1304 ((|#1| $ (-767)) 41)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) -(((-704 |#1|) (-140) (-1045)) (T -704)) -((-1962 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-3213 (*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) (-2165 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045))))) -(-13 (-1045) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -1962 ((-767) $)) (-15 -3187 ((-767) $)) (-15 -3193 (|t#1| $)) (-15 -3213 ($ $)) (-15 -1304 (|t#1| $ (-767))) (-15 -2165 ($ |t#1| (-767))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2751 ((|#6| (-1 |#4| |#1|) |#3|) 23))) -(((-705 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2751 (|#6| (-1 |#4| |#1|) |#3|))) (-555) (-1233 |#1|) (-1233 (-407 |#2|)) (-555) (-1233 |#4|) (-1233 (-407 |#5|))) (T -705)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-555)) (-4 *7 (-555)) (-4 *6 (-1233 *5)) (-4 *2 (-1233 (-407 *8))) (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1233 (-407 *6))) (-4 *8 (-1233 *7))))) -(-10 -7 (-15 -2751 (|#6| (-1 |#4| |#1|) |#3|))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2527 (((-1151) (-858)) 39)) (-3051 (((-1262) (-1151)) 32)) (-2548 (((-1151) (-858)) 28)) (-2538 (((-1151) (-858)) 29)) (-2062 (((-858) $) NIL) (((-1151) (-858)) 27)) (-2943 (((-112) $ $) NIL))) -(((-706) (-13 (-1093) (-10 -7 (-15 -2062 ((-1151) (-858))) (-15 -2548 ((-1151) (-858))) (-15 -2538 ((-1151) (-858))) (-15 -2527 ((-1151) (-858))) (-15 -3051 ((-1262) (-1151)))))) (T -706)) -((-2062 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-2548 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-2527 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) (-3051 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-706))))) -(-13 (-1093) (-10 -7 (-15 -2062 ((-1151) (-858))) (-15 -2548 ((-1151) (-858))) (-15 -2538 ((-1151) (-858))) (-15 -2527 ((-1151) (-858))) (-15 -3051 ((-1262) (-1151))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-3495 (($ $ $) NIL)) (-2532 (($ |#1| |#2|) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2712 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1646 ((|#2| $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2641 (((-3 $ "failed") $ $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) ((|#1| $) NIL)) (-3192 (((-767)) NIL T CONST)) (-2543 (((-112) $ $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) -(((-707 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -1646 (|#2| $)) (-15 -2062 (|#1| $)) (-15 -2532 ($ |#1| |#2|)) (-15 -2641 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -707)) -((-1646 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2062 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2532 (*1 *1 *2 *3) (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2641 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-363) (-10 -8 (-15 -1646 (|#2| $)) (-15 -2062 (|#1| $)) (-15 -2532 ($ |#1| |#2|)) (-15 -2641 ((-3 $ "failed") $ $)))) -((-2049 (((-112) $ $) 91)) (-2741 (((-112) $) 36)) (-2875 (((-1257 |#1|) $ (-767)) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-2856 (($ (-1165 |#1|)) NIL)) (-2021 (((-1165 $) $ (-1075)) NIL) (((-1165 |#1|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3952 (($ $ $) NIL (|has| |#1| (-555)))) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2433 (((-767)) 55 (|has| |#1| (-368)))) (-4004 (($ $ (-767)) NIL)) (-3993 (($ $ (-767)) NIL)) (-2620 ((|#2| |#2|) 51)) (-3916 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2589 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL)) (-3962 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) 39)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-2532 (($ |#2|) 49)) (-3230 (((-3 $ "failed") $) 100)) (-4301 (($) 60 (|has| |#1| (-368)))) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3985 (($ $ $) NIL)) (-3936 (($ $ $) NIL (|has| |#1| (-555)))) (-3926 (((-2 (|:| -2765 |#1|) (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2227 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-2581 (((-954 $)) 93)) (-3302 (($ $ |#1| (-767) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2903 (((-767) $ $) NIL (|has| |#1| (-555)))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2175 (($ (-1165 |#1|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-2947 (($ $ (-767)) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) 87) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-1075)) NIL) (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1646 ((|#2|) 52)) (-3187 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-767) (-767)) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-1165 |#1|) $) NIL)) (-2845 (((-3 (-1075) "failed") $) NIL)) (-3267 (((-917) $) NIL (|has| |#1| (-368)))) (-2521 ((|#2| $) 48)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) 34)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1938 (((-1151) $) NIL)) (-4014 (((-2 (|:| -2896 $) (|:| -1488 $)) $ (-767)) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-1075)) (|:| -2631 (-767))) "failed") $) NIL)) (-3204 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2956 (($) NIL (|has| |#1| (-1144)) CONST)) (-3491 (($ (-917)) NIL (|has| |#1| (-368)))) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2560 (($ $) 92 (|has| |#1| (-349)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-905)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-2846 (((-3 $ "failed") $ (-767)) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 101 (|has| |#1| (-363)))) (-3974 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1361 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1962 (((-767) $) 37) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2571 (((-954 $)) 41)) (-3945 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-2062 (((-858) $) 70) (($ (-563)) NIL) (($ |#1|) 67) (($ (-1075)) NIL) (($ |#2|) 77) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-767)) 72) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) 25 T CONST)) (-2611 (((-1257 |#1|) $) 85)) (-2602 (($ (-1257 |#1|)) 59)) (-3803 (($) 8 T CONST)) (-4191 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2592 (((-1257 |#1|) $) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) 78)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) 81) (($ $ $) NIL)) (-3027 (($ $ $) 38)) (** (($ $ (-917)) NIL) (($ $ (-767)) 95)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 66) (($ $ $) 84) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 64) (($ $ |#1|) NIL))) -(((-708 |#1| |#2|) (-13 (-1233 |#1|) (-613 |#2|) (-10 -8 (-15 -2620 (|#2| |#2|)) (-15 -1646 (|#2|)) (-15 -2532 ($ |#2|)) (-15 -2521 (|#2| $)) (-15 -2611 ((-1257 |#1|) $)) (-15 -2602 ($ (-1257 |#1|))) (-15 -2592 ((-1257 |#1|) $)) (-15 -2581 ((-954 $))) (-15 -2571 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -2560 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1045) (-1233 |#1|)) (T -708)) -((-2620 (*1 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))) (-1646 (*1 *2) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-2532 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))) (-2521 (*1 *2 *1) (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) (-2611 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-2602 (*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-2592 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-2581 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-2571 (*1 *2) (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) (-4 *4 (-1233 *3)))) (-2560 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) (-4 *3 (-1233 *2))))) -(-13 (-1233 |#1|) (-613 |#2|) (-10 -8 (-15 -2620 (|#2| |#2|)) (-15 -1646 (|#2|)) (-15 -2532 ($ |#2|)) (-15 -2521 (|#2| $)) (-15 -2611 ((-1257 |#1|) $)) (-15 -2602 ($ (-1257 |#1|))) (-15 -2592 ((-1257 |#1|) $)) (-15 -2581 ((-954 $))) (-15 -2571 ((-954 $))) (IF (|has| |#1| (-349)) (-15 -2560 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 ((|#1| $) 13)) (-3249 (((-1113) $) NIL)) (-2631 ((|#2| $) 12)) (-2074 (($ |#1| |#2|) 16)) (-2062 (((-858) $) NIL) (($ (-2 (|:| -3491 |#1|) (|:| -2631 |#2|))) 15) (((-2 (|:| -3491 |#1|) (|:| -2631 |#2|)) $) 14)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 11))) -(((-709 |#1| |#2| |#3|) (-13 (-846) (-490 (-2 (|:| -3491 |#1|) (|:| -2631 |#2|))) (-10 -8 (-15 -2631 (|#2| $)) (-15 -3491 (|#1| $)) (-15 -2074 ($ |#1| |#2|)))) (-846) (-1093) (-1 (-112) (-2 (|:| -3491 |#1|) (|:| -2631 |#2|)) (-2 (|:| -3491 |#1|) (|:| -2631 |#2|)))) (T -709)) -((-2631 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) (-14 *4 (-1 (-112) (-2 (|:| -3491 *3) (|:| -2631 *2)) (-2 (|:| -3491 *3) (|:| -2631 *2)))))) (-3491 (*1 *2 *1) (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1093)) (-14 *4 (-1 (-112) (-2 (|:| -3491 *2) (|:| -2631 *3)) (-2 (|:| -3491 *2) (|:| -2631 *3)))))) (-2074 (*1 *1 *2 *3) (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1093)) (-14 *4 (-1 (-112) (-2 (|:| -3491 *2) (|:| -2631 *3)) (-2 (|:| -3491 *2) (|:| -2631 *3))))))) -(-13 (-846) (-490 (-2 (|:| -3491 |#1|) (|:| -2631 |#2|))) (-10 -8 (-15 -2631 (|#2| $)) (-15 -3491 (|#1| $)) (-15 -2074 ($ |#1| |#2|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 66)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2589 ((|#1| $) NIL) (((-114) $) 39)) (-3230 (((-3 $ "failed") $) 106)) (-2180 ((|#2| (-114) |#2|) 92)) (-2712 (((-112) $) NIL)) (-2169 (($ |#1| (-361 (-114))) 14)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-4032 (($ $ (-1 |#2| |#2|)) 65)) (-4044 (($ $ (-1 |#2| |#2|)) 44)) (-3858 ((|#2| $ |#2|) 33)) (-4057 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-2062 (((-858) $) 73) (($ (-563)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) 37 T CONST)) (-4069 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-3790 (($) 21 T CONST)) (-3803 (($) 9 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) 48) (($ $ $) NIL)) (-3027 (($ $ $) 83)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-563)) NIL) (($ $ (-563)) 64)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) -(((-710 |#1| |#2|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4069 ($ $)) (-15 -4069 ($ $ $)) (-15 -4057 (|#1| |#1|))) |%noBranch|) (-15 -4044 ($ $ (-1 |#2| |#2|))) (-15 -4032 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2180 (|#2| (-114) |#2|)) (-15 -2169 ($ |#1| (-361 (-114)))))) (-1045) (-643 |#1|)) (T -710)) -((-4069 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-4069 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-4057 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) (-4 *3 (-643 *2)))) (-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *5)) (-4 *5 (-643 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) (-4 *4 (-643 *3)))) (-2180 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) (-4 *2 (-643 *4)))) (-2169 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) (-4 *4 (-643 *2))))) -(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4069 ($ $)) (-15 -4069 ($ $ $)) (-15 -4057 (|#1| |#1|))) |%noBranch|) (-15 -4044 ($ $ (-1 |#2| |#2|))) (-15 -4032 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2180 (|#2| (-114) |#2|)) (-15 -2169 ($ |#1| (-361 (-114)))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 33)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2532 (($ |#1| |#2|) 25)) (-3230 (((-3 $ "failed") $) 51)) (-2712 (((-112) $) 35)) (-1646 ((|#2| $) 12)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 52)) (-3249 (((-1113) $) NIL)) (-2641 (((-3 $ "failed") $ $) 50)) (-2062 (((-858) $) 24) (($ (-563)) 19) ((|#1| $) 13)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 16 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 41)) (-3039 (($ $) 46) (($ $ $) 40)) (-3027 (($ $ $) 43)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 21) (($ $ $) 20))) -(((-711 |#1| |#2| |#3| |#4| |#5|) (-13 (-1045) (-10 -8 (-15 -1646 (|#2| $)) (-15 -2062 (|#1| $)) (-15 -2532 ($ |#1| |#2|)) (-15 -2641 ((-3 $ "failed") $ $)) (-15 -3230 ((-3 $ "failed") $)) (-15 -3149 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -711)) -((-3230 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1646 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2062 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2532 (*1 *1 *2 *3) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2641 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3149 (*1 *1 *1) (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(-13 (-1045) (-10 -8 (-15 -1646 (|#2| $)) (-15 -2062 (|#1| $)) (-15 -2532 ($ |#1| |#2|)) (-15 -2641 ((-3 $ "failed") $ $)) (-15 -3230 ((-3 $ "failed") $)) (-15 -3149 ($ $)))) -((* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) -(((-712 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-713 |#2|) (-172)) (T -712)) -NIL -(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-713 |#1|) (-140) (-172)) (T -713)) +((-2889 (((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)) 36) (((-1 (-225) (-225)) |#1| (-1170)) 41))) +(((-700 |#1|) (-10 -7 (-15 -2889 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -2889 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) (-612 (-536))) (T -700)) +((-2889 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536))))) (-2889 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-700 *3)) (-4 *3 (-612 (-536)))))) +(-10 -7 (-15 -2889 ((-1 (-225) (-225)) |#1| (-1170))) (-15 -2889 ((-1 (-225) (-225) (-225)) |#1| (-1170) (-1170)))) +((-2390 (((-1170) |#1| (-1170) (-641 (-1170))) 10) (((-1170) |#1| (-1170) (-1170) (-1170)) 13) (((-1170) |#1| (-1170) (-1170)) 12) (((-1170) |#1| (-1170)) 11))) +(((-701 |#1|) (-10 -7 (-15 -2390 ((-1170) |#1| (-1170))) (-15 -2390 ((-1170) |#1| (-1170) (-1170))) (-15 -2390 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -2390 ((-1170) |#1| (-1170) (-641 (-1170))))) (-612 (-536))) (T -701)) +((-2390 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2390 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2390 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) (-2390 (*1 *2 *3 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536)))))) +(-10 -7 (-15 -2390 ((-1170) |#1| (-1170))) (-15 -2390 ((-1170) |#1| (-1170) (-1170))) (-15 -2390 ((-1170) |#1| (-1170) (-1170) (-1170))) (-15 -2390 ((-1170) |#1| (-1170) (-641 (-1170))))) +((-3615 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9))) +(((-702 |#1| |#2|) (-10 -7 (-15 -3615 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1209) (-1209)) (T -702)) +((-3615 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-702 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209))))) +(-10 -7 (-15 -3615 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) +((-3667 (((-1 |#3| |#2|) (-1170)) 11)) (-2043 (((-1 |#3| |#2|) |#1| (-1170)) 21))) +(((-703 |#1| |#2| |#3|) (-10 -7 (-15 -3667 ((-1 |#3| |#2|) (-1170))) (-15 -2043 ((-1 |#3| |#2|) |#1| (-1170)))) (-612 (-536)) (-1209) (-1209)) (T -703)) +((-2043 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *3 *5 *6)) (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6)) (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))))) +(-10 -7 (-15 -3667 ((-1 |#3| |#2|) (-1170))) (-15 -2043 ((-1 |#3| |#2|) |#1| (-1170)))) +((-2914 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|) 94)) (-3284 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|) 112)) (-1760 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|) 47))) +(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1760 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -3284 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|)) (-15 -2914 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -704)) +((-2914 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) (-5 *7 (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| *13))))) (-5 *8 (-641 (-768))) (-5 *9 (-1259 (-641 (-1166 *10)))) (-4 *12 (-847)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12)) (-4 *11 (-790)) (-5 *1 (-704 *11 *12 *10 *13)))) (-3284 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-768))) (-4 *11 (-847)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11)) (-4 *10 (-790)) (-5 *2 (-641 (-1166 *12))) (-5 *1 (-704 *10 *11 *9 *12)) (-5 *3 (-1166 *12)))) (-1760 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-768))) (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-847)) (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-790)) (-5 *1 (-704 *9 *10 *8 *11))))) +(-10 -7 (-15 -1760 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 |#3|) (-641 (-768)) (-641 (-1166 |#4|)) (-1259 (-641 (-1166 |#3|))) |#3|)) (-15 -3284 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#3|)) (-641 |#3|) (-641 |#4|) (-641 (-768)) |#3|)) (-15 -2914 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-641 |#2|) (-641 (-1166 |#4|)) (-641 |#3|) (-641 |#4|) (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| |#4|)))) (-641 (-768)) (-1259 (-641 (-1166 |#3|))) |#3|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-1348 (($ $) 42)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-4245 (($ |#1| (-768)) 40)) (-3469 (((-768) $) 44)) (-1320 ((|#1| $) 43)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-2266 (((-768) $) 45)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 39 (|has| |#1| (-172)))) (-2856 ((|#1| $ (-768)) 41)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 47) (($ |#1| $) 46))) +(((-705 |#1|) (-140) (-1046)) (T -705)) +((-2266 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-1348 (*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))) (-4245 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046))))) +(-13 (-1046) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -2266 ((-768) $)) (-15 -3469 ((-768) $)) (-15 -1320 (|t#1| $)) (-15 -1348 ($ $)) (-15 -2856 (|t#1| $ (-768))) (-15 -4245 ($ |t#1| (-768))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2187 ((|#6| (-1 |#4| |#1|) |#3|) 23))) +(((-706 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2187 (|#6| (-1 |#4| |#1|) |#3|))) (-556) (-1235 |#1|) (-1235 (-407 |#2|)) (-556) (-1235 |#4|) (-1235 (-407 |#5|))) (T -706)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8))) (-5 *1 (-706 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) (-4 *8 (-1235 *7))))) +(-10 -7 (-15 -2187 (|#6| (-1 |#4| |#1|) |#3|))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1460 (((-1152) (-859)) 39)) (-3589 (((-1264) (-1152)) 32)) (-2637 (((-1152) (-859)) 28)) (-4248 (((-1152) (-859)) 29)) (-3742 (((-859) $) NIL) (((-1152) (-859)) 27)) (-1705 (((-112) $ $) NIL))) +(((-707) (-13 (-1094) (-10 -7 (-15 -3742 ((-1152) (-859))) (-15 -2637 ((-1152) (-859))) (-15 -4248 ((-1152) (-859))) (-15 -1460 ((-1152) (-859))) (-15 -3589 ((-1264) (-1152)))))) (T -707)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-2637 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-1460 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) (-3589 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-707))))) +(-13 (-1094) (-10 -7 (-15 -3742 ((-1152) (-859))) (-15 -2637 ((-1152) (-859))) (-15 -4248 ((-1152) (-859))) (-15 -1460 ((-1152) (-859))) (-15 -3589 ((-1264) (-1152))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-1373 (($ $ $) NIL)) (-1699 (($ |#1| |#2|) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3840 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1983 ((|#2| $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2279 (((-3 $ "failed") $ $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) ((|#1| $) NIL)) (-3270 (((-768)) NIL T CONST)) (-3360 (((-112) $ $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-708 |#1| |#2| |#3| |#4| |#5|) (-13 (-363) (-10 -8 (-15 -1983 (|#2| $)) (-15 -3742 (|#1| $)) (-15 -1699 ($ |#1| |#2|)) (-15 -2279 ((-3 $ "failed") $ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -708)) +((-1983 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-708 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3742 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2279 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-363) (-10 -8 (-15 -1983 (|#2| $)) (-15 -3742 (|#1| $)) (-15 -1699 ($ |#1| |#2|)) (-15 -2279 ((-3 $ "failed") $ $)))) +((-3732 (((-112) $ $) 91)) (-4173 (((-112) $) 36)) (-1312 (((-1259 |#1|) $ (-768)) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-4218 (($ (-1166 |#1|)) NIL)) (-4097 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-4107 (($ $ $) NIL (|has| |#1| (-556)))) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1938 (((-768)) 55 (|has| |#1| (-368)))) (-4359 (($ $ (-768)) NIL)) (-2477 (($ $ (-768)) NIL)) (-4017 ((|#2| |#2|) 51)) (-3823 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2239 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL)) (-2448 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) NIL (|has| |#1| (-172)))) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) 39)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-1699 (($ |#2|) 49)) (-3951 (((-3 $ "failed") $) 100)) (-2821 (($) 60 (|has| |#1| (-368)))) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-4132 (($ $ $) NIL)) (-2995 (($ $ $) NIL (|has| |#1| (-556)))) (-3370 (((-2 (|:| -1762 |#1|) (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1989 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-2943 (((-955 $)) 93)) (-1866 (($ $ |#1| (-768) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1619 (((-768) $ $) NIL (|has| |#1| (-556)))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4257 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2472 (($ $ (-768)) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) 87) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-1076)) NIL) (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-1983 ((|#2|) 52)) (-3469 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-768) (-768)) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2574 (((-1166 |#1|) $) NIL)) (-1306 (((-3 (-1076) "failed") $) NIL)) (-1906 (((-918) $) NIL (|has| |#1| (-368)))) (-1687 ((|#2| $) 48)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) 34)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2217 (((-1152) $) NIL)) (-4115 (((-2 (|:| -1935 $) (|:| -1363 $)) $ (-768)) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-1076)) (|:| -2515 (-768))) "failed") $) NIL)) (-3128 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3258 (($) NIL (|has| |#1| (-1145)) CONST)) (-1495 (($ (-918)) NIL (|has| |#1| (-368)))) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1379 (($ $) 92 (|has| |#1| (-349)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-906)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 99 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-1430 (((-3 $ "failed") $ (-768)) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 101 (|has| |#1| (-363)))) (-4284 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4117 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2266 (((-768) $) 37) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3058 (((-955 $)) 41)) (-1526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-3742 (((-859) $) 70) (($ (-564)) NIL) (($ |#1|) 67) (($ (-1076)) NIL) (($ |#2|) 77) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-768)) 72) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) 25 T CONST)) (-2283 (((-1259 |#1|) $) 85)) (-3195 (($ (-1259 |#1|)) 59)) (-4321 (($) 8 T CONST)) (-2124 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1647 (((-1259 |#1|) $) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) 78)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) 81) (($ $ $) NIL)) (-1780 (($ $ $) 38)) (** (($ $ (-918)) NIL) (($ $ (-768)) 95)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 66) (($ $ $) 84) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 64) (($ $ |#1|) NIL))) +(((-709 |#1| |#2|) (-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -4017 (|#2| |#2|)) (-15 -1983 (|#2|)) (-15 -1699 ($ |#2|)) (-15 -1687 (|#2| $)) (-15 -2283 ((-1259 |#1|) $)) (-15 -3195 ($ (-1259 |#1|))) (-15 -1647 ((-1259 |#1|) $)) (-15 -2943 ((-955 $))) (-15 -3058 ((-955 $))) (IF (|has| |#1| (-349)) (-15 -1379 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) (-1046) (-1235 |#1|)) (T -709)) +((-4017 (*1 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) (-1983 (*1 *2) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) (-1699 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) (-1687 (*1 *2 *1) (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) (-2283 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-3195 (*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-1647 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-2943 (*1 *2) (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-3058 (*1 *2) (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) (-4 *4 (-1235 *3)))) (-1379 (*1 *1 *1) (-12 (-4 *2 (-349)) (-4 *2 (-1046)) (-5 *1 (-709 *2 *3)) (-4 *3 (-1235 *2))))) +(-13 (-1235 |#1|) (-614 |#2|) (-10 -8 (-15 -4017 (|#2| |#2|)) (-15 -1983 (|#2|)) (-15 -1699 ($ |#2|)) (-15 -1687 (|#2| $)) (-15 -2283 ((-1259 |#1|) $)) (-15 -3195 ($ (-1259 |#1|))) (-15 -1647 ((-1259 |#1|) $)) (-15 -2943 ((-955 $))) (-15 -3058 ((-955 $))) (IF (|has| |#1| (-349)) (-15 -1379 ($ $)) |%noBranch|) (IF (|has| |#1| (-368)) (-6 (-368)) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 ((|#1| $) 13)) (-3864 (((-1114) $) NIL)) (-2515 ((|#2| $) 12)) (-3753 (($ |#1| |#2|) 16)) (-3742 (((-859) $) NIL) (($ (-2 (|:| -1495 |#1|) (|:| -2515 |#2|))) 15) (((-2 (|:| -1495 |#1|) (|:| -2515 |#2|)) $) 14)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 11))) +(((-710 |#1| |#2| |#3|) (-13 (-847) (-490 (-2 (|:| -1495 |#1|) (|:| -2515 |#2|))) (-10 -8 (-15 -2515 (|#2| $)) (-15 -1495 (|#1| $)) (-15 -3753 ($ |#1| |#2|)))) (-847) (-1094) (-1 (-112) (-2 (|:| -1495 |#1|) (|:| -2515 |#2|)) (-2 (|:| -1495 |#1|) (|:| -2515 |#2|)))) (T -710)) +((-2515 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-710 *3 *2 *4)) (-4 *3 (-847)) (-14 *4 (-1 (-112) (-2 (|:| -1495 *3) (|:| -2515 *2)) (-2 (|:| -1495 *3) (|:| -2515 *2)))))) (-1495 (*1 *2 *1) (-12 (-4 *2 (-847)) (-5 *1 (-710 *2 *3 *4)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -1495 *2) (|:| -2515 *3)) (-2 (|:| -1495 *2) (|:| -2515 *3)))))) (-3753 (*1 *1 *2 *3) (-12 (-5 *1 (-710 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-1094)) (-14 *4 (-1 (-112) (-2 (|:| -1495 *2) (|:| -2515 *3)) (-2 (|:| -1495 *2) (|:| -2515 *3))))))) +(-13 (-847) (-490 (-2 (|:| -1495 |#1|) (|:| -2515 |#2|))) (-10 -8 (-15 -2515 (|#2| $)) (-15 -1495 (|#1| $)) (-15 -3753 ($ |#1| |#2|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 66)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) 105) (((-3 (-114) "failed") $) 111)) (-2239 ((|#1| $) NIL) (((-114) $) 39)) (-3951 (((-3 $ "failed") $) 106)) (-3458 ((|#2| (-114) |#2|) 92)) (-3840 (((-112) $) NIL)) (-3895 (($ |#1| (-361 (-114))) 14)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1639 (($ $ (-1 |#2| |#2|)) 65)) (-3563 (($ $ (-1 |#2| |#2|)) 44)) (-4382 ((|#2| $ |#2|) 33)) (-4331 ((|#1| |#1|) 121 (|has| |#1| (-172)))) (-3742 (((-859) $) 73) (($ (-564)) 18) (($ |#1|) 17) (($ (-114)) 23)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) 37 T CONST)) (-4298 (($ $) 115 (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-172)))) (-4311 (($) 21 T CONST)) (-4321 (($) 9 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) 48) (($ $ $) NIL)) (-1780 (($ $ $) 83)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) 64)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 114) (($ $ $) 53) (($ |#1| $) 112 (|has| |#1| (-172))) (($ $ |#1|) 113 (|has| |#1| (-172))))) +(((-711 |#1| |#2|) (-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4298 ($ $)) (-15 -4298 ($ $ $)) (-15 -4331 (|#1| |#1|))) |%noBranch|) (-15 -3563 ($ $ (-1 |#2| |#2|))) (-15 -1639 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3458 (|#2| (-114) |#2|)) (-15 -3895 ($ |#1| (-361 (-114)))))) (-1046) (-644 |#1|)) (T -711)) +((-4298 (*1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-4298 (*1 *1 *1 *1) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-4331 (*1 *2 *2) (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) (-4 *3 (-644 *2)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)))) (-1639 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *5)) (-4 *5 (-644 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)) (-4 *4 (-644 *3)))) (-3458 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *2)) (-4 *2 (-644 *4)))) (-3895 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1046)) (-5 *1 (-711 *2 *4)) (-4 *4 (-644 *2))))) +(-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4298 ($ $)) (-15 -4298 ($ $ $)) (-15 -4331 (|#1| |#1|))) |%noBranch|) (-15 -3563 ($ $ (-1 |#2| |#2|))) (-15 -1639 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3458 (|#2| (-114) |#2|)) (-15 -3895 ($ |#1| (-361 (-114)))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 33)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1699 (($ |#1| |#2|) 25)) (-3951 (((-3 $ "failed") $) 51)) (-3840 (((-112) $) 35)) (-1983 ((|#2| $) 12)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 52)) (-3864 (((-1114) $) NIL)) (-2279 (((-3 $ "failed") $ $) 50)) (-3742 (((-859) $) 24) (($ (-564)) 19) ((|#1| $) 13)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 16 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 41)) (-1790 (($ $) 46) (($ $ $) 40)) (-1780 (($ $ $) 43)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 21) (($ $ $) 20))) +(((-712 |#1| |#2| |#3| |#4| |#5|) (-13 (-1046) (-10 -8 (-15 -1983 (|#2| $)) (-15 -3742 (|#1| $)) (-15 -1699 ($ |#1| |#2|)) (-15 -2279 ((-3 $ "failed") $ $)) (-15 -3951 ((-3 $ "failed") $)) (-15 -4373 ($ $)))) (-172) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -712)) +((-3951 (*1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1983 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3742 (*1 *2 *1) (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1699 (*1 *1 *2 *3) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2279 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4373 (*1 *1 *1) (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(-13 (-1046) (-10 -8 (-15 -1983 (|#2| $)) (-15 -3742 (|#1| $)) (-15 -1699 ($ |#1| |#2|)) (-15 -2279 ((-3 $ "failed") $ $)) (-15 -3951 ((-3 $ "failed") $)) (-15 -4373 ($ $)))) +((* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9))) +(((-713 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-714 |#2|) (-172)) (T -713)) +NIL +(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-714 |#1|) (-140) (-172)) (T -714)) NIL (-13 (-111 |t#1| |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-1318 (($ |#1|) 17) (($ $ |#1|) 20)) (-2243 (($ |#1|) 18) (($ $ |#1|) 21)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2712 (((-112) $) NIL)) (-2650 (($ |#1| |#1| |#1| |#1|) 8)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 16)) (-3249 (((-1113) $) NIL)) (-1497 ((|#1| $ |#1|) 24) (((-829 |#1|) $ (-829 |#1|)) 32)) (-1382 (($ $ $) NIL)) (-2879 (($ $ $) NIL)) (-2062 (((-858) $) 39)) (-3803 (($) 9 T CONST)) (-2943 (((-112) $ $) 48)) (-3050 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 14))) -(((-714 |#1|) (-13 (-473) (-10 -8 (-15 -2650 ($ |#1| |#1| |#1| |#1|)) (-15 -1318 ($ |#1|)) (-15 -2243 ($ |#1|)) (-15 -3230 ($)) (-15 -1318 ($ $ |#1|)) (-15 -2243 ($ $ |#1|)) (-15 -3230 ($ $)) (-15 -1497 (|#1| $ |#1|)) (-15 -1497 ((-829 |#1|) $ (-829 |#1|))))) (-363)) (T -714)) -((-2650 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-1318 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2243 (*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3230 (*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-1318 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-2243 (*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-3230 (*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-1497 (*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) (-1497 (*1 *2 *1 *2) (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3))))) -(-13 (-473) (-10 -8 (-15 -2650 ($ |#1| |#1| |#1| |#1|)) (-15 -1318 ($ |#1|)) (-15 -2243 ($ |#1|)) (-15 -3230 ($)) (-15 -1318 ($ $ |#1|)) (-15 -2243 ($ $ |#1|)) (-15 -3230 ($ $)) (-15 -1497 (|#1| $ |#1|)) (-15 -1497 ((-829 |#1|) $ (-829 |#1|))))) -((-2690 (($ $ (-917)) 21)) (-2681 (($ $ (-917)) 22)) (** (($ $ (-917)) 10))) -(((-715 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -2681 (|#1| |#1| (-917))) (-15 -2690 (|#1| |#1| (-917)))) (-716)) (T -715)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-917))) (-15 -2681 (|#1| |#1| (-917))) (-15 -2690 (|#1| |#1| (-917)))) -((-2049 (((-112) $ $) 7)) (-2690 (($ $ (-917)) 15)) (-2681 (($ $ (-917)) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 16))) -(((-716) (-140)) (T -716)) -((* (*1 *1 *1 *1) (-4 *1 (-716))) (-2690 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (-2681 (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917))))) -(-13 (-1093) (-10 -8 (-15 * ($ $ $)) (-15 -2690 ($ $ (-917))) (-15 -2681 ($ $ (-917))) (-15 ** ($ $ (-917))))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2690 (($ $ (-917)) NIL) (($ $ (-767)) 21)) (-2712 (((-112) $) 10)) (-2681 (($ $ (-917)) NIL) (($ $ (-767)) 22)) (** (($ $ (-917)) NIL) (($ $ (-767)) 16))) -(((-717 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -2681 (|#1| |#1| (-767))) (-15 -2690 (|#1| |#1| (-767))) (-15 -2712 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -2681 (|#1| |#1| (-917))) (-15 -2690 (|#1| |#1| (-917)))) (-718)) (T -717)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-767))) (-15 -2681 (|#1| |#1| (-767))) (-15 -2690 (|#1| |#1| (-767))) (-15 -2712 ((-112) |#1|)) (-15 ** (|#1| |#1| (-917))) (-15 -2681 (|#1| |#1| (-917))) (-15 -2690 (|#1| |#1| (-917)))) -((-2049 (((-112) $ $) 7)) (-2661 (((-3 $ "failed") $) 17)) (-2690 (($ $ (-917)) 15) (($ $ (-767)) 22)) (-3230 (((-3 $ "failed") $) 19)) (-2712 (((-112) $) 23)) (-2673 (((-3 $ "failed") $) 18)) (-2681 (($ $ (-917)) 14) (($ $ (-767)) 21)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3803 (($) 24 T CONST)) (-2943 (((-112) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-767)) 20)) (* (($ $ $) 16))) -(((-718) (-140)) (T -718)) -((-3803 (*1 *1) (-4 *1 (-718))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) (-2690 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-2681 (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) (-3230 (*1 *1 *1) (|partial| -4 *1 (-718))) (-2673 (*1 *1 *1) (|partial| -4 *1 (-718))) (-2661 (*1 *1 *1) (|partial| -4 *1 (-718)))) -(-13 (-716) (-10 -8 (-15 (-3803) ($) -2495) (-15 -2712 ((-112) $)) (-15 -2690 ($ $ (-767))) (-15 -2681 ($ $ (-767))) (-15 ** ($ $ (-767))) (-15 -3230 ((-3 $ "failed") $)) (-15 -2673 ((-3 $ "failed") $)) (-15 -2661 ((-3 $ "failed") $)))) -(((-102) . T) ((-610 (-858)) . T) ((-716) . T) ((-1093) . T)) -((-2433 (((-767)) 42)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2589 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 23)) (-2532 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-3230 (((-3 $ "failed") $) 73)) (-4301 (($) 47)) (-3251 ((|#2| $) 21)) (-1738 (($) 18)) (-1361 (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-2701 (((-684 |#2|) (-1257 $) (-1 |#2| |#2|)) 68)) (-2802 (((-1257 |#2|) $) NIL) (($ (-1257 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3015 ((|#3| $) 39)) (-3288 (((-1257 $)) 36))) -(((-719 |#1| |#2| |#3|) (-10 -8 (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4301 (|#1|)) (-15 -2433 ((-767))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2701 ((-684 |#2|) (-1257 |#1|) (-1 |#2| |#2|))) (-15 -2532 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2802 (|#1| |#3|)) (-15 -2532 (|#1| |#3|)) (-15 -1738 (|#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2802 (|#3| |#1|)) (-15 -2802 (|#1| (-1257 |#2|))) (-15 -2802 ((-1257 |#2|) |#1|)) (-15 -3288 ((-1257 |#1|))) (-15 -3015 (|#3| |#1|)) (-15 -3251 (|#2| |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|))) (-720 |#2| |#3|) (-172) (-1233 |#2|)) (T -719)) -((-2433 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-767)) (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5))))) -(-10 -8 (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -4301 (|#1|)) (-15 -2433 ((-767))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -2701 ((-684 |#2|) (-1257 |#1|) (-1 |#2| |#2|))) (-15 -2532 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2802 (|#1| |#3|)) (-15 -2532 (|#1| |#3|)) (-15 -1738 (|#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2802 (|#3| |#1|)) (-15 -2802 (|#1| (-1257 |#2|))) (-15 -2802 ((-1257 |#2|) |#1|)) (-15 -3288 ((-1257 |#1|))) (-15 -3015 (|#3| |#1|)) (-15 -3251 (|#2| |#1|)) (-15 -3230 ((-3 |#1| "failed") |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-2554 (($ $) 94 (|has| |#1| (-363)))) (-2533 (((-112) $) 96 (|has| |#1| (-363)))) (-2660 (((-684 |#1|) (-1257 $)) 47) (((-684 |#1|)) 62)) (-3282 ((|#1| $) 53)) (-2758 (((-1181 (-917) (-767)) (-563)) 146 (|has| |#1| (-349)))) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 113 (|has| |#1| (-363)))) (-2102 (((-418 $) $) 114 (|has| |#1| (-363)))) (-4332 (((-112) $ $) 104 (|has| |#1| (-363)))) (-2433 (((-767)) 87 (|has| |#1| (-368)))) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 169 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 167 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 164)) (-2589 (((-563) $) 168 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 166 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 165)) (-1505 (($ (-1257 |#1|) (-1257 $)) 49) (($ (-1257 |#1|)) 65)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-3495 (($ $ $) 108 (|has| |#1| (-363)))) (-2649 (((-684 |#1|) $ (-1257 $)) 54) (((-684 |#1|) $) 60)) (-3853 (((-684 (-563)) (-684 $)) 163 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 162 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 161) (((-684 |#1|) (-684 $)) 160)) (-2532 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-3230 (((-3 $ "failed") $) 33)) (-3406 (((-917)) 55)) (-4301 (($) 90 (|has| |#1| (-368)))) (-3473 (($ $ $) 107 (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 102 (|has| |#1| (-363)))) (-2135 (($) 148 (|has| |#1| (-349)))) (-2812 (((-112) $) 149 (|has| |#1| (-349)))) (-2506 (($ $ (-767)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-3675 (((-112) $) 115 (|has| |#1| (-363)))) (-2903 (((-917) $) 151 (|has| |#1| (-349))) (((-829 (-917)) $) 137 (|has| |#1| (-349)))) (-2712 (((-112) $) 31)) (-3251 ((|#1| $) 52)) (-3113 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 111 (|has| |#1| (-363)))) (-2134 ((|#2| $) 45 (|has| |#1| (-363)))) (-3267 (((-917) $) 89 (|has| |#1| (-368)))) (-2521 ((|#2| $) 155)) (-1607 (($ (-640 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-1938 (((-1151) $) 9)) (-3149 (($ $) 116 (|has| |#1| (-363)))) (-2956 (($) 142 (|has| |#1| (-349)) CONST)) (-3491 (($ (-917)) 88 (|has| |#1| (-368)))) (-3249 (((-1113) $) 10)) (-1738 (($) 159)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 101 (|has| |#1| (-363)))) (-1647 (($ (-640 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) 145 (|has| |#1| (-349)))) (-2055 (((-418 $) $) 112 (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 109 (|has| |#1| (-363)))) (-3448 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 103 (|has| |#1| (-363)))) (-4322 (((-767) $) 105 (|has| |#1| (-363)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 106 (|has| |#1| (-363)))) (-3974 ((|#1| (-1257 $)) 48) ((|#1|) 61)) (-2515 (((-767) $) 150 (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) 138 (|has| |#1| (-349)))) (-1361 (($ $) 136 (-2811 (-3743 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 134 (-2811 (-3743 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) 132 (-3743 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169))) 131 (-3743 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1169) (-767)) 130 (-3743 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-767))) 129 (-3743 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-2701 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-2713 ((|#2|) 158)) (-2750 (($) 147 (|has| |#1| (-349)))) (-1818 (((-1257 |#1|) $ (-1257 $)) 51) (((-684 |#1|) (-1257 $) (-1257 $)) 50) (((-1257 |#1|) $) 67) (((-684 |#1|) (-1257 $)) 66)) (-2802 (((-1257 |#1|) $) 64) (($ (-1257 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 144 (|has| |#1| (-349)))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-563))) 86 (-2811 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-4376 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-3015 ((|#2| $) 46)) (-3192 (((-767)) 28 T CONST)) (-3288 (((-1257 $)) 68)) (-2543 (((-112) $ $) 95 (|has| |#1| (-363)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $) 135 (-2811 (-3743 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) 133 (-2811 (-3743 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) 128 (-3743 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169))) 127 (-3743 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1169) (-767)) 126 (-3743 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-767))) 125 (-3743 (|has| |#1| (-896 (-1169))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-767)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 120 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 117 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-563)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-563))) 118 (|has| |#1| (-363))))) -(((-720 |#1| |#2|) (-140) (-172) (-1233 |t#1|)) (T -720)) -((-1738 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1233 *2)))) (-2713 (*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-2532 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) (-2802 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) (-2532 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-1257 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1233 *5)) (-5 *2 (-684 *5))))) -(-13 (-409 |t#1| |t#2|) (-172) (-611 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1738 ($)) (-15 -2713 (|t#2|)) (-15 -2532 ($ |t#2|)) (-15 -2802 ($ |t#2|)) (-15 -2521 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -2532 ((-3 $ "failed") (-407 |t#2|))) (-15 -2701 ((-684 |t#1|) (-1257 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) . T) ((-611 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -2811 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -2811 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-555) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 #0#) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-713 |#1|) . T) ((-713 $) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169)))) ((-916) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) -2811 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-349)) ((-1212) -2811 (|has| |#1| (-349)) (|has| |#1| (-363)))) -((-3684 (($) 11)) (-3230 (((-3 $ "failed") $) 14)) (-2712 (((-112) $) 10)) (** (($ $ (-917)) NIL) (($ $ (-767)) 20))) -(((-721 |#1|) (-10 -8 (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -2712 ((-112) |#1|)) (-15 -3684 (|#1|)) (-15 ** (|#1| |#1| (-917)))) (-722)) (T -721)) -NIL -(-10 -8 (-15 -3230 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-767))) (-15 -2712 ((-112) |#1|)) (-15 -3684 (|#1|)) (-15 ** (|#1| |#1| (-917)))) -((-2049 (((-112) $ $) 7)) (-3684 (($) 18 T CONST)) (-3230 (((-3 $ "failed") $) 15)) (-2712 (((-112) $) 17)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3803 (($) 19 T CONST)) (-2943 (((-112) $ $) 6)) (** (($ $ (-917)) 13) (($ $ (-767)) 16)) (* (($ $ $) 14))) -(((-722) (-140)) (T -722)) -((-3803 (*1 *1) (-4 *1 (-722))) (-3684 (*1 *1) (-4 *1 (-722))) (-2712 (*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) (-3230 (*1 *1 *1) (|partial| -4 *1 (-722)))) -(-13 (-1105) (-10 -8 (-15 (-3803) ($) -2495) (-15 -3684 ($) -2495) (-15 -2712 ((-112) $)) (-15 ** ($ $ (-767))) (-15 -3230 ((-3 $ "failed") $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1105) . T) ((-1093) . T)) -((-2719 (((-2 (|:| -3385 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-2919 (((-2 (|:| -3385 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2730 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-3038 (((-2 (|:| |poly| |#2|) (|:| -3385 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48))) -(((-723 |#1| |#2|) (-10 -7 (-15 -2919 ((-2 (|:| -3385 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2719 ((-2 (|:| -3385 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2730 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3038 ((-2 (|:| |poly| |#2|) (|:| -3385 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1233 |#1|)) (T -723)) -((-3038 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3385 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) (-2730 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-723 *5 *2)) (-4 *5 (-363)))) (-2719 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3385 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-723 *5 *3)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3385 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3))))) -(-10 -7 (-15 -2919 ((-2 (|:| -3385 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2719 ((-2 (|:| -3385 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2730 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -3038 ((-2 (|:| |poly| |#2|) (|:| -3385 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) -((-2157 ((|#7| (-640 |#5|) |#6|) NIL)) (-2751 ((|#7| (-1 |#5| |#4|) |#6|) 27))) -(((-724 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2751 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2157 (|#7| (-640 |#5|) |#6|))) (-846) (-789) (-789) (-1045) (-1045) (-945 |#4| |#2| |#1|) (-945 |#5| |#3| |#1|)) (T -724)) -((-2157 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5)) (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) (-4 *4 (-945 *8 *6 *5))))) -(-10 -7 (-15 -2751 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2157 (|#7| (-640 |#5|) |#6|))) -((-2751 ((|#7| (-1 |#2| |#1|) |#6|) 28))) -(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2751 (|#7| (-1 |#2| |#1|) |#6|))) (-846) (-846) (-789) (-789) (-1045) (-945 |#5| |#3| |#1|) (-945 |#5| |#4| |#2|)) (T -725)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) (-4 *4 (-945 *9 *7 *5))))) -(-10 -7 (-15 -2751 (|#7| (-1 |#2| |#1|) |#6|))) -((-2055 (((-418 |#4|) |#4|) 42))) -(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169))))) (-307) (-945 (-948 |#3|) |#1| |#2|)) (T -726)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3)) (-4 *3 (-945 (-948 *6) *4 *5))))) -(-10 -7 (-15 -2055 ((-418 |#4|) |#4|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-860 |#1|)) $) NIL)) (-2021 (((-1165 $) $ (-860 |#1|)) NIL) (((-1165 |#2|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-2554 (($ $) NIL (|has| |#2| (-555)))) (-2533 (((-112) $) NIL (|has| |#2| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-860 |#1|))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2924 (($ $) NIL (|has| |#2| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#2| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-860 |#1|) "failed") $) NIL)) (-2589 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-860 |#1|) $) NIL)) (-3962 (($ $ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#2| (-905)))) (-3302 (($ $ |#2| (-531 (-860 |#1|)) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-860 |#1|) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-2175 (($ (-1165 |#2|) (-860 |#1|)) NIL) (($ (-1165 $) (-860 |#1|)) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#2| (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-860 |#1|)) NIL)) (-3187 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-3489 (($ $ $) NIL (|has| |#2| (-846)))) (-4105 (($ $ $) NIL (|has| |#2| (-846)))) (-3310 (($ (-1 (-531 (-860 |#1|)) (-531 (-860 |#1|))) $) NIL)) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-2845 (((-3 (-860 |#1|) "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#2| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1938 (((-1151) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-860 |#1|)) (|:| -2631 (-767))) "failed") $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#2| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#2| (-905)))) (-3448 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-860 |#1|) |#2|) NIL) (($ $ (-640 (-860 |#1|)) (-640 |#2|)) NIL) (($ $ (-860 |#1|) $) NIL) (($ $ (-640 (-860 |#1|)) (-640 $)) NIL)) (-3974 (($ $ (-860 |#1|)) NIL (|has| |#2| (-172)))) (-1361 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-1962 (((-531 (-860 |#1|)) $) NIL) (((-767) $ (-860 |#1|)) NIL) (((-640 (-767)) $ (-640 (-860 |#1|))) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-860 |#1|) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-860 |#1|) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3166 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-860 |#1|)) NIL (|has| |#2| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-860 |#1|)) NIL) (($ $) NIL (|has| |#2| (-555))) (($ (-407 (-563))) NIL (-2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563))))))) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ (-531 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#2| (-555)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-860 |#1|)) NIL) (($ $ (-640 (-860 |#1|))) NIL) (($ $ (-860 |#1|) (-767)) NIL) (($ $ (-640 (-860 |#1|)) (-640 (-767))) NIL)) (-2998 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-727 |#1| |#2|) (-945 |#2| (-531 (-860 |#1|)) (-860 |#1|)) (-640 (-1169)) (-1045)) (T -727)) -NIL -(-945 |#2| (-531 (-860 |#1|)) (-860 |#1|)) -((-2740 (((-2 (|:| -3367 (-948 |#3|)) (|:| -2502 (-948 |#3|))) |#4|) 14)) (-4279 ((|#4| |#4| |#2|) 33)) (-1519 ((|#4| (-407 (-948 |#3|)) |#2|) 64)) (-1507 ((|#4| (-1165 (-948 |#3|)) |#2|) 80)) (-1494 ((|#4| (-1165 |#4|) |#2|) 51)) (-4269 ((|#4| |#4| |#2|) 54)) (-2055 (((-418 |#4|) |#4|) 40))) -(((-728 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2740 ((-2 (|:| -3367 (-948 |#3|)) (|:| -2502 (-948 |#3|))) |#4|)) (-15 -4269 (|#4| |#4| |#2|)) (-15 -1494 (|#4| (-1165 |#4|) |#2|)) (-15 -4279 (|#4| |#4| |#2|)) (-15 -1507 (|#4| (-1165 (-948 |#3|)) |#2|)) (-15 -1519 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -2055 ((-418 |#4|) |#4|))) (-789) (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)))) (-555) (-945 (-407 (-948 |#3|)) |#1| |#2|)) (T -728)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *6 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))) (-1519 (*1 *2 *3 *4) (-12 (-4 *6 (-555)) (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))))) (-1507 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 (-948 *6))) (-4 *6 (-555)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))))) (-4279 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *5 (-555)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-1494 (*1 *2 *3 *4) (-12 (-5 *3 (-1165 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) (-4 *4 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *6 (-555)))) (-4269 (*1 *2 *2 *3) (-12 (-4 *4 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *5 (-555)) (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) (-2740 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *6 (-555)) (-5 *2 (-2 (|:| -3367 (-948 *6)) (|:| -2502 (-948 *6)))) (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5))))) -(-10 -7 (-15 -2740 ((-2 (|:| -3367 (-948 |#3|)) (|:| -2502 (-948 |#3|))) |#4|)) (-15 -4269 (|#4| |#4| |#2|)) (-15 -1494 (|#4| (-1165 |#4|) |#2|)) (-15 -4279 (|#4| |#4| |#2|)) (-15 -1507 (|#4| (-1165 (-948 |#3|)) |#2|)) (-15 -1519 (|#4| (-407 (-948 |#3|)) |#2|)) (-15 -2055 ((-418 |#4|) |#4|))) -((-2055 (((-418 |#4|) |#4|) 54))) -(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 ((-418 |#4|) |#4|))) (-789) (-846) (-13 (-307) (-147)) (-945 (-407 |#3|) |#1| |#2|)) (T -729)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-945 (-407 *6) *4 *5))))) -(-10 -7 (-15 -2055 ((-418 |#4|) |#4|))) -((-2751 (((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)) 18))) -(((-730 |#1| |#2| |#3|) (-10 -7 (-15 -2751 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) (-1045) (-1045) (-722)) (T -730)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) (-5 *1 (-730 *5 *6 *7))))) -(-10 -7 (-15 -2751 ((-731 |#2| |#3|) (-1 |#2| |#1|) (-731 |#1| |#3|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 39)) (-2914 (((-640 (-2 (|:| -2765 |#1|) (|:| -1576 |#2|))) $) 40)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2433 (((-767)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2589 ((|#2| $) NIL) ((|#1| $) NIL)) (-3213 (($ $) 104 (|has| |#2| (-846)))) (-3230 (((-3 $ "failed") $) 87)) (-4301 (($) 51 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) 72)) (-3197 (((-640 $) $) 55)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| |#2|) 17)) (-2751 (($ (-1 |#1| |#1|) $) 70)) (-3267 (((-917) $) 46 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3183 ((|#2| $) 103 (|has| |#2| (-846)))) (-3193 ((|#1| $) 102 (|has| |#2| (-846)))) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) 38 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 101) (($ (-563)) 61) (($ |#2|) 58) (($ |#1|) 59) (($ (-640 (-2 (|:| -2765 |#1|) (|:| -1576 |#2|)))) 11)) (-3234 (((-640 |#1|) $) 57)) (-1304 ((|#1| $ |#2|) 115)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3790 (($) 12 T CONST)) (-3803 (($) 47 T CONST)) (-2943 (((-112) $ $) 107)) (-3039 (($ $) 63) (($ $ $) NIL)) (-3027 (($ $ $) 36)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 68) (($ $ $) 118) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-731 |#1| |#2|) (-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -2165 ($ |#1| |#2|)) (-15 -1304 (|#1| $ |#2|)) (-15 -2062 ($ (-640 (-2 (|:| -2765 |#1|) (|:| -1576 |#2|))))) (-15 -2914 ((-640 (-2 (|:| -2765 |#1|) (|:| -1576 |#2|))) $)) (-15 -2751 ($ (-1 |#1| |#1|) $)) (-15 -1871 ((-112) $)) (-15 -3234 ((-640 |#1|) $)) (-15 -3197 ((-640 $) $)) (-15 -1528 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -3183 (|#2| $)) (-15 -3193 (|#1| $)) (-15 -3213 ($ $))) |%noBranch|))) (-1045) (-722)) (T -731)) -((-2165 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) (-1304 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -2765 *3) (|:| -1576 *4)))) (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) (-2914 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -2765 *3) (|:| -1576 *4)))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) (-4 *4 (-722)))) (-1871 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3234 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3197 (*1 *2 *1) (-12 (-5 *2 (-640 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) (-3183 (*1 *2 *1) (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1045)))) (-3193 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *3 (-722)))) (-3213 (*1 *1 *1) (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) (-4 *3 (-722))))) -(-13 (-1045) (-1034 |#2|) (-1034 |#1|) (-10 -8 (-15 -2165 ($ |#1| |#2|)) (-15 -1304 (|#1| $ |#2|)) (-15 -2062 ($ (-640 (-2 (|:| -2765 |#1|) (|:| -1576 |#2|))))) (-15 -2914 ((-640 (-2 (|:| -2765 |#1|) (|:| -1576 |#2|))) $)) (-15 -2751 ($ (-1 |#1| |#1|) $)) (-15 -1871 ((-112) $)) (-15 -3234 ((-640 |#1|) $)) (-15 -3197 ((-640 $) $)) (-15 -1528 ((-767) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-846)) (PROGN (-15 -3183 (|#2| $)) (-15 -3193 (|#1| $)) (-15 -3213 ($ $))) |%noBranch|))) -((-2049 (((-112) $ $) 19)) (-3738 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1883 (($ $ $) 72)) (-1870 (((-112) $ $) 73)) (-3740 (((-112) $ (-767)) 8)) (-3158 (($ (-640 |#1|)) 68) (($) 67)) (-1736 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-2273 (($ $) 62)) (-1920 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1417 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-1925 (((-112) $ $) 64)) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22)) (-1913 (($ $ $) 69)) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3249 (((-1113) $) 21)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-2262 (((-640 (-2 (|:| -3704 |#1|) (|:| -3261 (-767)))) $) 61)) (-1896 (($ $ |#1|) 71) (($ $ $) 70)) (-3139 (($) 49) (($ (-640 |#1|)) 48)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 50)) (-2062 (((-858) $) 18)) (-2121 (($ (-640 |#1|)) 66) (($) 65)) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20)) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-732 |#1|) (-140) (-1093)) (T -732)) -NIL -(-13 (-690 |t#1|) (-1091 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-690 |#1|) . T) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T)) -((-2049 (((-112) $ $) NIL)) (-3738 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-1883 (($ $ $) 99)) (-1870 (((-112) $ $) 105)) (-3740 (((-112) $ (-767)) NIL)) (-3158 (($ (-640 |#1|)) 26) (($) 17)) (-1736 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-2273 (($ $) 85)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2841 (($ |#1| $) 71 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 78 (|has| $ (-6 -4408))) (($ |#1| $ (-563)) 76) (($ (-1 (-112) |#1|) $ (-563)) 79)) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (($ |#1| $ (-563)) 81) (($ (-1 (-112) |#1|) $ (-563)) 82)) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4236 (((-640 |#1|) $) 32 (|has| $ (-6 -4408)))) (-1925 (((-112) $ $) 104)) (-1541 (($) 15) (($ |#1|) 28) (($ (-640 |#1|)) 23)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) 38)) (-1949 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 89)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1913 (($ $ $) 97)) (-3835 ((|#1| $) 63)) (-1956 (($ |#1| $) 64) (($ |#1| $ (-767)) 86)) (-3249 (((-1113) $) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3847 ((|#1| $) 62)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 57)) (-2749 (($) 14)) (-2262 (((-640 (-2 (|:| -3704 |#1|) (|:| -3261 (-767)))) $) 56)) (-1896 (($ $ |#1|) NIL) (($ $ $) 98)) (-3139 (($) 16) (($ (-640 |#1|)) 25)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) 69 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) 80)) (-2802 (((-536) $) 36 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 22)) (-2062 (((-858) $) 50)) (-2121 (($ (-640 |#1|)) 27) (($) 18)) (-4034 (($ (-640 |#1|)) 24)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 103)) (-1708 (((-767) $) 68 (|has| $ (-6 -4408))))) -(((-733 |#1|) (-13 (-732 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -1541 ($)) (-15 -1541 ($ |#1|)) (-15 -1541 ($ (-640 |#1|))) (-15 -1572 ((-640 |#1|) $)) (-15 -1417 ($ |#1| $ (-563))) (-15 -1417 ($ (-1 (-112) |#1|) $ (-563))) (-15 -2841 ($ |#1| $ (-563))) (-15 -2841 ($ (-1 (-112) |#1|) $ (-563))))) (-1093)) (T -733)) -((-1541 (*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-1541 (*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-733 *3)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1093)))) (-1417 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-1417 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) (-5 *1 (-733 *4)))) (-2841 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) (-2841 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) (-5 *1 (-733 *4))))) -(-13 (-732 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -1541 ($)) (-15 -1541 ($ |#1|)) (-15 -1541 ($ (-640 |#1|))) (-15 -1572 ((-640 |#1|) $)) (-15 -1417 ($ |#1| $ (-563))) (-15 -1417 ($ (-1 (-112) |#1|) $ (-563))) (-15 -2841 ($ |#1| $ (-563))) (-15 -2841 ($ (-1 (-112) |#1|) $ (-563))))) -((-3346 (((-1262) (-1151)) 8))) -(((-734) (-10 -7 (-15 -3346 ((-1262) (-1151))))) (T -734)) -((-3346 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-734))))) -(-10 -7 (-15 -3346 ((-1262) (-1151)))) -((-1551 (((-640 |#1|) (-640 |#1|) (-640 |#1|)) 15))) -(((-735 |#1|) (-10 -7 (-15 -1551 ((-640 |#1|) (-640 |#1|) (-640 |#1|)))) (-846)) (T -735)) -((-1551 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3))))) -(-10 -7 (-15 -1551 ((-640 |#1|) (-640 |#1|) (-640 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 |#2|) $) 139)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 132 (|has| |#1| (-555)))) (-2554 (($ $) 131 (|has| |#1| (-555)))) (-2533 (((-112) $) 129 (|has| |#1| (-555)))) (-3419 (($ $) 88 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 71 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) 19)) (-2067 (($ $) 70 (|has| |#1| (-38 (-407 (-563)))))) (-3395 (($ $) 87 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 72 (|has| |#1| (-38 (-407 (-563)))))) (-2242 (($ $) 86 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 73 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) 17 T CONST)) (-3213 (($ $) 123)) (-3230 (((-3 $ "failed") $) 33)) (-3894 (((-948 |#1|) $ (-767)) 101) (((-948 |#1|) $ (-767) (-767)) 100)) (-2697 (((-112) $) 140)) (-2656 (($) 98 (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-767) $ |#2|) 103) (((-767) $ |#2| (-767)) 102)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 69 (|has| |#1| (-38 (-407 (-563)))))) (-1871 (((-112) $) 121)) (-2165 (($ $ (-640 |#2|) (-640 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-767)) 105) (($ $ (-640 |#2|) (-640 (-767))) 104)) (-2751 (($ (-1 |#1| |#1|) $) 120)) (-2497 (($ $) 95 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) 118)) (-3193 ((|#1| $) 117)) (-1938 (((-1151) $) 9)) (-3204 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) 10)) (-2884 (($ $ (-767)) 106)) (-3448 (((-3 $ "failed") $ $) 133 (|has| |#1| (-555)))) (-3177 (($ $) 96 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (($ $ |#2| $) 114) (($ $ (-640 |#2|) (-640 $)) 113) (($ $ (-640 (-294 $))) 112) (($ $ (-294 $)) 111) (($ $ $ $) 110) (($ $ (-640 $) (-640 $)) 109)) (-1361 (($ $ |#2|) 42) (($ $ (-640 |#2|)) 41) (($ $ |#2| (-767)) 40) (($ $ (-640 |#2|) (-640 (-767))) 39)) (-1962 (((-531 |#2|) $) 119)) (-2252 (($ $) 85 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 74 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 84 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 75 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 83 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 76 (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 141)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-555))) (($ (-407 (-563))) 126 (|has| |#1| (-38 (-407 (-563)))))) (-1304 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-767)) 108) (($ $ (-640 |#2|) (-640 (-767))) 107)) (-4376 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-2285 (($ $) 94 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 82 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) 130 (|has| |#1| (-555)))) (-2264 (($ $) 93 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 81 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 92 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 80 (|has| |#1| (-38 (-407 (-563)))))) (-4205 (($ $) 91 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 79 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 90 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 78 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 89 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 77 (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ |#2|) 38) (($ $ (-640 |#2|)) 37) (($ $ |#2| (-767)) 36) (($ $ (-640 |#2|) (-640 (-767))) 35)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 68 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 128 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 127 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 116) (($ $ |#1|) 115))) -(((-736 |#1| |#2|) (-140) (-1045) (-846)) (T -736)) -((-1304 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-1304 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-846)))) (-2165 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) (-4 *2 (-846)))) (-2165 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-2903 (*1 *2 *1 *3) (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *2 (-767)))) (-2903 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)))) (-3894 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-3894 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) (-4 *5 (-846)) (-5 *2 (-948 *4)))) (-3204 (*1 *1 *1 *2) (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) (-4 *3 (-38 (-407 (-563))))))) -(-13 (-896 |t#2|) (-969 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -1304 ($ $ |t#2| (-767))) (-15 -1304 ($ $ (-640 |t#2|) (-640 (-767)))) (-15 -2884 ($ $ (-767))) (-15 -2165 ($ $ |t#2| (-767))) (-15 -2165 ($ $ (-640 |t#2|) (-640 (-767)))) (-15 -2903 ((-767) $ |t#2|)) (-15 -2903 ((-767) $ |t#2| (-767))) (-15 -3894 ((-948 |t#1|) $ (-767))) (-15 -3894 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $ |t#2|)) (-6 (-998)) (-6 (-1193))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-290) |has| |#1| (-555)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-555) |has| |#1| (-555)) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 |#2|) . T) ((-969 |#1| #0# |#2|) . T) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563))))) -((-2055 (((-418 (-1165 |#4|)) (-1165 |#4|)) 30) (((-418 |#4|) |#4|) 26))) -(((-737 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 ((-418 |#4|) |#4|)) (-15 -2055 ((-418 (-1165 |#4|)) (-1165 |#4|)))) (-846) (-789) (-13 (-307) (-147)) (-945 |#3| |#2| |#1|)) (T -737)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) -(-10 -7 (-15 -2055 ((-418 |#4|) |#4|)) (-15 -2055 ((-418 (-1165 |#4|)) (-1165 |#4|)))) -((-1585 (((-418 |#4|) |#4| |#2|) 142)) (-1562 (((-418 |#4|) |#4|) NIL)) (-2102 (((-418 (-1165 |#4|)) (-1165 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-1609 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2055 (-1165 |#4|)) (|:| -2631 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|))) 81)) (-1659 (((-1165 |#3|) (-1165 |#3|) (-563)) 167)) (-1645 (((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767)) 75)) (-2521 (((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|)) 79)) (-1622 (((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|))) 27)) (-1597 (((-2 (|:| -3206 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563)) 72)) (-1573 (((-563) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563))))) 163)) (-1635 ((|#4| (-563) (-418 |#4|)) 73)) (-3599 (((-112) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563)))) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563))))) NIL))) -(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2102 ((-418 |#4|) |#4|)) (-15 -2102 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -1562 ((-418 |#4|) |#4|)) (-15 -1573 ((-563) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563)))))) (-15 -1585 ((-418 |#4|) |#4| |#2|)) (-15 -1597 ((-2 (|:| -3206 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563))) (-15 -1609 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2055 (-1165 |#4|)) (|:| -2631 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -1622 ((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -1635 (|#4| (-563) (-418 |#4|))) (-15 -3599 ((-112) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563)))) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563)))))) (-15 -2521 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|))) (-15 -1645 ((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767))) (-15 -1659 ((-1165 |#3|) (-1165 |#3|) (-563)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -738)) -((-1659 (*1 *2 *2 *3) (-12 (-5 *2 (-1165 *6)) (-5 *3 (-563)) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-1645 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-4 *7 (-846)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) (-5 *2 (-640 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767)))) (-2521 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1165 *11)) (-5 *6 (-640 *10)) (-5 *7 (-640 (-767))) (-5 *8 (-640 *11)) (-4 *10 (-846)) (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10)) (-5 *2 (-640 (-1165 *5))) (-5 *1 (-738 *9 *10 *11 *5)) (-5 *3 (-1165 *5)))) (-3599 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-2 (|:| -2055 (-1165 *6)) (|:| -2631 (-563))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6)) (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-307)))) (-1622 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-5 *2 (-2 (|:| |upol| (-1165 *8)) (|:| |Lval| (-640 *8)) (|:| |Lfact| (-640 (-2 (|:| -2055 (-1165 *8)) (|:| -2631 (-563))))) (|:| |ctpol| *8))) (-5 *1 (-738 *6 *7 *8 *9)))) (-1609 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-640 (-2 (|:| -2055 (-1165 *9)) (|:| -2631 (-563))))))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)))) (-1597 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-563)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-5 *2 (-2 (|:| -3206 (-1165 *9)) (|:| |polval| (-1165 *8)))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)) (-5 *4 (-1165 *8)))) (-1585 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2055 (-1165 *6)) (|:| -2631 (-563))))) (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-1562 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))) (-2102 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-2102 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5))))) -(-10 -7 (-15 -2102 ((-418 |#4|) |#4|)) (-15 -2102 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -1562 ((-418 |#4|) |#4|)) (-15 -1573 ((-563) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563)))))) (-15 -1585 ((-418 |#4|) |#4| |#2|)) (-15 -1597 ((-2 (|:| -3206 (-1165 |#4|)) (|:| |polval| (-1165 |#3|))) (-1165 |#4|) (-1165 |#3|) (-563))) (-15 -1609 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-640 (-2 (|:| -2055 (-1165 |#4|)) (|:| -2631 (-563)))))) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -1622 ((-2 (|:| |upol| (-1165 |#3|)) (|:| |Lval| (-640 |#3|)) (|:| |Lfact| (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563))))) (|:| |ctpol| |#3|)) (-1165 |#4|) (-640 |#2|) (-640 (-640 |#3|)))) (-15 -1635 (|#4| (-563) (-418 |#4|))) (-15 -3599 ((-112) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563)))) (-640 (-2 (|:| -2055 (-1165 |#3|)) (|:| -2631 (-563)))))) (-15 -2521 ((-3 (-640 (-1165 |#4|)) "failed") (-1165 |#4|) (-1165 |#3|) (-1165 |#3|) |#4| (-640 |#2|) (-640 (-767)) (-640 |#3|))) (-15 -1645 ((-640 (-767)) (-1165 |#4|) (-640 |#2|) (-767))) (-15 -1659 ((-1165 |#3|) (-1165 |#3|) (-563)))) -((-1670 (($ $ (-917)) 17))) -(((-739 |#1| |#2|) (-10 -8 (-15 -1670 (|#1| |#1| (-917)))) (-740 |#2|) (-172)) (T -739)) -NIL -(-10 -8 (-15 -1670 (|#1| |#1| (-917)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-2690 (($ $ (-917)) 28)) (-1670 (($ $ (-917)) 33)) (-2681 (($ $ (-917)) 29)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2879 (($ $ $) 25)) (-2062 (((-858) $) 11)) (-2888 (($ $ $ $) 26)) (-2870 (($ $ $) 24)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) -(((-740 |#1|) (-140) (-172)) (T -740)) -((-1670 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172))))) -(-13 (-757) (-713 |t#1|) (-10 -8 (-15 -1670 ($ $ (-917))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-716) . T) ((-757) . T) ((-1051 |#1|) . T) ((-1093) . T)) -((-1693 (((-1031) (-684 (-225)) (-563) (-112) (-563)) 25)) (-1682 (((-1031) (-684 (-225)) (-563) (-112) (-563)) 24))) -(((-741) (-10 -7 (-15 -1682 ((-1031) (-684 (-225)) (-563) (-112) (-563))) (-15 -1693 ((-1031) (-684 (-225)) (-563) (-112) (-563))))) (T -741)) -((-1693 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741)))) (-1682 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-741))))) -(-10 -7 (-15 -1682 ((-1031) (-684 (-225)) (-563) (-112) (-563))) (-15 -1693 ((-1031) (-684 (-225)) (-563) (-112) (-563)))) -((-1731 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-1717 (((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-1705 (((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) 32))) -(((-742) (-10 -7 (-15 -1705 ((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1717 ((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -1731 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -742)) -((-1731 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-1717 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) (-5 *1 (-742)))) (-1705 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) (-5 *2 (-1031)) (-5 *1 (-742))))) -(-10 -7 (-15 -1705 ((-1031) (-225) (-225) (-225) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1717 ((-1031) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -1731 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))))) -((-1881 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 34)) (-1869 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 33)) (-1855 (((-1031) (-563) (-684 (-225)) (-563)) 32)) (-1842 (((-1031) (-563) (-684 (-225)) (-563)) 31)) (-1831 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 30)) (-1817 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-1806 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-1795 (((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563)) 27)) (-1783 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 24)) (-1770 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 23)) (-1759 (((-1031) (-563) (-684 (-225)) (-563)) 22)) (-1746 (((-1031) (-563) (-684 (-225)) (-563)) 21))) -(((-743) (-10 -7 (-15 -1746 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1759 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1770 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1783 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1795 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1806 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1817 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1831 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1842 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1855 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1869 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -1881 ((-1031) (-563) (-563) (-684 (-225)) (-563))))) (T -743)) -((-1881 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1869 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1855 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1842 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1831 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1817 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1806 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1795 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1783 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1770 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1759 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743)))) (-1746 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-743))))) -(-10 -7 (-15 -1746 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1759 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1770 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1783 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1795 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1806 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1817 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1831 ((-1031) (-563) (-563) (-1151) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1842 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1855 ((-1031) (-563) (-684 (-225)) (-563))) (-15 -1869 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -1881 ((-1031) (-563) (-563) (-684 (-225)) (-563)))) -((-2030 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-2019 (((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563)) 51)) (-2007 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1996 (((-1031) (-225) (-225) (-563) (-563) (-563) (-563)) 46)) (-1983 (((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-1971 (((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-1960 (((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-1948 (((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-1937 (((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) 38)) (-1924 (((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) 37)) (-1912 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) 33)) (-1894 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) 32))) -(((-744) (-10 -7 (-15 -1894 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1912 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1924 ((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1937 ((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1948 ((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1960 ((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1971 ((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1983 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1996 ((-1031) (-225) (-225) (-563) (-563) (-563) (-563))) (-15 -2007 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -2019 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563))) (-15 -2030 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -744)) -((-2030 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2019 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-2007 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1996 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1983 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1971 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1960 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1948 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1937 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1924 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1912 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) (-5 *2 (-1031)) (-5 *1 (-744)))) (-1894 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) (-5 *2 (-1031)) (-5 *1 (-744))))) -(-10 -7 (-15 -1894 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1912 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1924 ((-1031) (-225) (-225) (-563) (-684 (-225)) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1937 ((-1031) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036))))) (-15 -1948 ((-1031) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1960 ((-1031) (-225) (-225) (-225) (-225) (-563) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1971 ((-1031) (-225) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1983 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1996 ((-1031) (-225) (-225) (-563) (-563) (-563) (-563))) (-15 -2007 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -2019 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-563))) (-15 -2030 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-225) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))))) -((-2119 (((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-2109 (((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-2099 (((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-2087 (((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-2077 (((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-2065 (((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-2053 (((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-2042 (((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38))) -(((-745) (-10 -7 (-15 -2042 ((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2053 ((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2065 ((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2077 ((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2087 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2099 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -2109 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -2109 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2119 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -745)) -((-2119 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2109 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2109 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2099 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2087 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2077 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2065 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2053 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745)))) (-2042 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) -(-10 -7 (-15 -2042 ((-1031) (-225) (-563) (-563) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2053 ((-1031) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2065 ((-1031) (-225) (-563) (-563) (-225) (-1151) (-225) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2077 ((-1031) (-225) (-563) (-563) (-1151) (-563) (-225) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2087 ((-1031) (-684 (-225)) (-684 (-225)) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -2099 ((-1031) (-225) (-225) (-563) (-225) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -2109 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -2109 ((-1031) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -2119 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))))) -((-2147 (((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563)) 45)) (-2139 (((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-2129 (((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 23))) -(((-746) (-10 -7 (-15 -2129 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2139 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2147 ((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563))))) (T -746)) -((-2147 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-670 (-225))) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746)))) (-2139 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031)) (-5 *1 (-746)))) (-2129 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-746))))) -(-10 -7 (-15 -2129 ((-1031) (-563) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -2139 ((-1031) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-1151) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2147 ((-1031) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-670 (-225)) (-563)))) -((-4095 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563)) 35)) (-4082 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563)) 34)) (-4073 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563)) 33)) (-4061 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-4049 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-4037 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563)) 27)) (-4026 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563)) 24)) (-4017 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563)) 23)) (-4008 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 22)) (-3996 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 21))) -(((-747) (-10 -7 (-15 -3996 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -4008 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4017 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -4026 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -4037 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563))) (-15 -4049 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4061 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4073 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563))) (-15 -4082 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563))) (-15 -4095 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563))))) (T -747)) -((-4095 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4082 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4073 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4061 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4049 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4037 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4026 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4017 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-4008 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747)))) (-3996 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-747))))) -(-10 -7 (-15 -3996 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -4008 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4017 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -4026 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -4037 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-225) (-563))) (-15 -4049 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4061 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4073 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-684 (-225)) (-225) (-225) (-563))) (-15 -4082 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-225) (-225) (-563))) (-15 -4095 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-684 (-225)) (-225) (-225) (-563)))) -((-4285 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 45)) (-4275 (((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563)) 44)) (-4265 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)) 43)) (-4254 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 42)) (-4244 (((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563)) 41)) (-4231 (((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563)) 40)) (-4223 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563)) 39)) (-4214 (((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563))) 38)) (-4202 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563)) 35)) (-4194 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563)) 34)) (-4184 (((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563)) 33)) (-4174 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 32)) (-4165 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563)) 31)) (-4153 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563)) 30)) (-4141 (((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563)) 29)) (-4128 (((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563)) 28)) (-4117 (((-1031) (-563) (-684 (-225)) (-225) (-563)) 24)) (-4106 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 21))) -(((-748) (-10 -7 (-15 -4106 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4117 ((-1031) (-563) (-684 (-225)) (-225) (-563))) (-15 -4128 ((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563))) (-15 -4141 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -4153 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563))) (-15 -4165 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563))) (-15 -4174 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4184 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563))) (-15 -4194 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563))) (-15 -4202 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4214 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)))) (-15 -4223 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563))) (-15 -4231 ((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -4244 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4254 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4265 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -4275 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4285 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))))) (T -748)) -((-4285 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4275 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4265 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4254 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4244 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4231 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4223 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4214 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4202 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4194 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4184 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4174 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4165 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4153 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4141 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4128 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4117 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) (-5 *2 (-1031)) (-5 *1 (-748)))) (-4106 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-748))))) -(-10 -7 (-15 -4106 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4117 ((-1031) (-563) (-684 (-225)) (-225) (-563))) (-15 -4128 ((-1031) (-563) (-563) (-563) (-225) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-563)) (-563) (-563) (-563))) (-15 -4141 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -4153 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563) (-563) (-563))) (-15 -4165 ((-1031) (-563) (-225) (-225) (-684 (-225)) (-563) (-563) (-225) (-563))) (-15 -4174 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4184 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563))) (-15 -4194 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563))) (-15 -4202 ((-1031) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4214 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)))) (-15 -4223 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563) (-563) (-563) (-225) (-684 (-225)) (-563))) (-15 -4231 ((-1031) (-1151) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -4244 ((-1031) (-1151) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4254 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4265 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563))) (-15 -4275 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-563))) (-15 -4285 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563) (-684 (-225)) (-684 (-225)) (-563) (-563) (-563)))) -((-4368 (((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563)) 63)) (-4356 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-4348 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-4339 (((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563)) 51)) (-4329 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-4320 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-4309 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-4297 (((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38))) -(((-749) (-10 -7 (-15 -4297 ((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4309 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -4320 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -4329 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4339 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563))) (-15 -4348 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -4356 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4368 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563))))) (T -749)) -((-4368 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4356 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-684 (-563))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4348 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-684 (-225))) (-5 *6 (-112)) (-5 *7 (-684 (-563))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4339 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4329 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4320 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4309 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1031)) (-5 *1 (-749)))) (-4297 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) -(-10 -7 (-15 -4297 ((-1031) (-563) (-225) (-225) (-563) (-225) (-112) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4309 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -4320 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -4329 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -4339 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-563) (-563) (-684 (-225)) (-563))) (-15 -4348 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-225) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-112) (-112) (-112) (-563) (-563) (-684 (-225)) (-684 (-563)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -4356 ((-1031) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-563) (-112) (-225) (-563) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-563) (-563) (-563) (-563) (-563) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-563) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -4368 ((-1031) (-563) (-563) (-563) (-225) (-684 (-225)) (-563) (-684 (-225)) (-563)))) -((-1368 (((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)) 47)) (-1357 (((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563)) 46)) (-1345 (((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563)) 45)) (-1336 (((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 40)) (-1326 (((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563)) 39)) (-1316 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-563)) 36)) (-1307 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563)) 35)) (-1298 (((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563)) 34)) (-4387 (((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563)) 33)) (-4377 (((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563)) 32))) -(((-750) (-10 -7 (-15 -4377 ((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563))) (-15 -4387 ((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563))) (-15 -1298 ((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563))) (-15 -1307 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563))) (-15 -1316 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -1326 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563))) (-15 -1336 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1345 ((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -1357 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -1368 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563))))) (T -750)) -((-1368 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1357 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1345 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1336 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1326 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1316 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1307 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-1298 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-640 (-112))) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *7 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-4387 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-684 (-563))) (-5 *5 (-112)) (-5 *7 (-684 (-225))) (-5 *3 (-563)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750)))) (-4377 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-640 (-112))) (-5 *7 (-684 (-225))) (-5 *8 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1031)) (-5 *1 (-750))))) -(-10 -7 (-15 -4377 ((-1031) (-563) (-563) (-563) (-563) (-225) (-112) (-112) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-563))) (-15 -4387 ((-1031) (-563) (-563) (-563) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-684 (-563)) (-112) (-225) (-112) (-684 (-563)) (-684 (-225)) (-563))) (-15 -1298 ((-1031) (-563) (-563) (-563) (-563) (-640 (-112)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-225) (-225) (-563))) (-15 -1307 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563))) (-15 -1316 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -1326 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)) (-563))) (-15 -1336 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1345 ((-1031) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -1357 ((-1031) (-1151) (-1151) (-563) (-563) (-684 (-169 (-225))) (-563) (-684 (-169 (-225))) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -1368 ((-1031) (-1151) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)))) -((-3441 (((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)) 80)) (-3432 (((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563)) 69)) (-3424 (((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-3412 (((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563)) 37)) (-3401 (((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563)) 33)) (-1473 (((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563)) 30)) (-1462 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 29)) (-1452 (((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 28)) (-1443 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 27)) (-1430 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563)) 26)) (-1418 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 25)) (-1407 (((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 24)) (-1399 (((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563)) 23)) (-1389 (((-1031) (-684 (-225)) (-563) (-563) (-563) (-563)) 22)) (-1377 (((-1031) (-563) (-563) (-684 (-225)) (-563)) 21))) -(((-751) (-10 -7 (-15 -1377 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -1389 ((-1031) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -1399 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1407 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1418 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -1430 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -1443 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1452 ((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1462 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1473 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -3401 ((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563))) (-15 -3412 ((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3424 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -3424 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -3432 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3441 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563))))) (T -751)) -((-3441 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3432 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3424 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3424 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3412 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-3401 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1473 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1462 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1452 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1443 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1430 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1418 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1407 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1399 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1389 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-751)))) (-1377 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-751))))) -(-10 -7 (-15 -1377 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -1389 ((-1031) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -1399 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1407 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1418 ((-1031) (-563) (-563) (-684 (-225)) (-563))) (-15 -1430 ((-1031) (-563) (-563) (-563) (-563) (-684 (-225)) (-563))) (-15 -1443 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1452 ((-1031) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1462 ((-1031) (-563) (-563) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -1473 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563) (-563))) (-15 -3401 ((-1031) (-563) (-563) (-225) (-225) (-563) (-563) (-684 (-225)) (-563))) (-15 -3412 ((-1031) (-563) (-563) (-563) (-225) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3424 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -3424 ((-1031) (-563) (-563) (-225) (-563) (-563) (-563) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -3432 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3441 ((-1031) (-563) (-563) (-563) (-563) (-563) (-112) (-563) (-112) (-563) (-684 (-169 (-225))) (-684 (-169 (-225))) (-563)))) -((-3559 (((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-3549 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563)) 60)) (-3539 (((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3529 (((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563)) 37)) (-3519 (((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563)) 36)) (-3508 (((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563)) 33)) (-3500 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225))) 32)) (-3487 (((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563)) 28)) (-3478 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563)) 27)) (-3466 (((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563)) 26)) (-3455 (((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563)) 22))) -(((-752) (-10 -7 (-15 -3455 ((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -3466 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -3478 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -3487 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563))) (-15 -3500 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)))) (-15 -3508 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3519 ((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3529 ((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -3539 ((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3549 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -3559 ((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -752)) -((-3559 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3549 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3539 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3529 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3519 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3508 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3500 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3487 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3478 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3466 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-752)))) (-3455 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) (-5 *1 (-752))))) -(-10 -7 (-15 -3455 ((-1031) (-563) (-684 (-169 (-225))) (-563) (-563) (-563) (-563) (-684 (-169 (-225))) (-563))) (-15 -3466 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -3478 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-563))) (-15 -3487 ((-1031) (-684 (-225)) (-563) (-684 (-225)) (-563) (-563) (-563))) (-15 -3500 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-563)) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)))) (-15 -3508 ((-1031) (-563) (-563) (-684 (-225)) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3519 ((-1031) (-563) (-563) (-563) (-225) (-563) (-684 (-225)) (-684 (-225)) (-563))) (-15 -3529 ((-1031) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-563)) (-684 (-225)) (-684 (-563)) (-684 (-563)) (-684 (-225)) (-684 (-225)) (-684 (-563)) (-563))) (-15 -3539 ((-1031) (-563) (-684 (-225)) (-112) (-225) (-563) (-563) (-563) (-563) (-225) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3549 ((-1031) (-563) (-684 (-225)) (-563) (-684 (-225)) (-684 (-563)) (-563) (-684 (-225)) (-563) (-563) (-563) (-563))) (-15 -3559 ((-1031) (-563) (-563) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-684 (-225)) (-563) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))))) -((-3598 (((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225))) 29)) (-3587 (((-1031) (-1151) (-563) (-563) (-684 (-225))) 28)) (-3577 (((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225))) 27)) (-3568 (((-1031) (-563) (-563) (-563) (-684 (-225))) 21))) -(((-753) (-10 -7 (-15 -3568 ((-1031) (-563) (-563) (-563) (-684 (-225)))) (-15 -3577 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225)))) (-15 -3587 ((-1031) (-1151) (-563) (-563) (-684 (-225)))) (-15 -3598 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225)))))) (T -753)) -((-3598 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-3587 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753)))) (-3577 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-753)))) (-3568 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) (-5 *1 (-753))))) -(-10 -7 (-15 -3568 ((-1031) (-563) (-563) (-563) (-684 (-225)))) (-15 -3577 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-684 (-563)) (-563) (-684 (-225)))) (-15 -3587 ((-1031) (-1151) (-563) (-563) (-684 (-225)))) (-15 -3598 ((-1031) (-1151) (-563) (-563) (-684 (-225)) (-563) (-563) (-684 (-225))))) -((-2809 (((-1031) (-225) (-225) (-225) (-225) (-563)) 62)) (-2797 (((-1031) (-225) (-225) (-225) (-563)) 61)) (-3979 (((-1031) (-225) (-225) (-225) (-563)) 60)) (-3967 (((-1031) (-225) (-225) (-563)) 59)) (-3957 (((-1031) (-225) (-563)) 58)) (-3949 (((-1031) (-225) (-563)) 57)) (-3940 (((-1031) (-225) (-563)) 56)) (-3930 (((-1031) (-225) (-563)) 55)) (-3918 (((-1031) (-225) (-563)) 54)) (-3911 (((-1031) (-225) (-563)) 53)) (-3902 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 52)) (-3891 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 51)) (-3882 (((-1031) (-225) (-563)) 50)) (-3870 (((-1031) (-225) (-563)) 49)) (-3861 (((-1031) (-225) (-563)) 48)) (-3850 (((-1031) (-225) (-563)) 47)) (-3838 (((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563)) 46)) (-3828 (((-1031) (-1151) (-169 (-225)) (-1151) (-563)) 45)) (-3817 (((-1031) (-1151) (-169 (-225)) (-1151) (-563)) 44)) (-3805 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 43)) (-3793 (((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563)) 42)) (-3781 (((-1031) (-225) (-563)) 39)) (-3769 (((-1031) (-225) (-563)) 38)) (-3758 (((-1031) (-225) (-563)) 37)) (-3746 (((-1031) (-225) (-563)) 36)) (-3733 (((-1031) (-225) (-563)) 35)) (-3723 (((-1031) (-225) (-563)) 34)) (-3711 (((-1031) (-225) (-563)) 33)) (-3699 (((-1031) (-225) (-563)) 32)) (-3688 (((-1031) (-225) (-563)) 31)) (-3679 (((-1031) (-225) (-563)) 30)) (-3668 (((-1031) (-225) (-225) (-225) (-563)) 29)) (-3656 (((-1031) (-225) (-563)) 28)) (-3646 (((-1031) (-225) (-563)) 27)) (-3637 (((-1031) (-225) (-563)) 26)) (-3628 (((-1031) (-225) (-563)) 25)) (-3618 (((-1031) (-225) (-563)) 24)) (-3608 (((-1031) (-169 (-225)) (-563)) 21))) -(((-754) (-10 -7 (-15 -3608 ((-1031) (-169 (-225)) (-563))) (-15 -3618 ((-1031) (-225) (-563))) (-15 -3628 ((-1031) (-225) (-563))) (-15 -3637 ((-1031) (-225) (-563))) (-15 -3646 ((-1031) (-225) (-563))) (-15 -3656 ((-1031) (-225) (-563))) (-15 -3668 ((-1031) (-225) (-225) (-225) (-563))) (-15 -3679 ((-1031) (-225) (-563))) (-15 -3688 ((-1031) (-225) (-563))) (-15 -3699 ((-1031) (-225) (-563))) (-15 -3711 ((-1031) (-225) (-563))) (-15 -3723 ((-1031) (-225) (-563))) (-15 -3733 ((-1031) (-225) (-563))) (-15 -3746 ((-1031) (-225) (-563))) (-15 -3758 ((-1031) (-225) (-563))) (-15 -3769 ((-1031) (-225) (-563))) (-15 -3781 ((-1031) (-225) (-563))) (-15 -3793 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3805 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3817 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -3828 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -3838 ((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3850 ((-1031) (-225) (-563))) (-15 -3861 ((-1031) (-225) (-563))) (-15 -3870 ((-1031) (-225) (-563))) (-15 -3882 ((-1031) (-225) (-563))) (-15 -3891 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3902 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3911 ((-1031) (-225) (-563))) (-15 -3918 ((-1031) (-225) (-563))) (-15 -3930 ((-1031) (-225) (-563))) (-15 -3940 ((-1031) (-225) (-563))) (-15 -3949 ((-1031) (-225) (-563))) (-15 -3957 ((-1031) (-225) (-563))) (-15 -3967 ((-1031) (-225) (-225) (-563))) (-15 -3979 ((-1031) (-225) (-225) (-225) (-563))) (-15 -2797 ((-1031) (-225) (-225) (-225) (-563))) (-15 -2809 ((-1031) (-225) (-225) (-225) (-225) (-563))))) (T -754)) -((-2809 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-2797 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3979 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3967 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3902 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3891 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3870 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3861 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3838 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-563)) (-5 *5 (-169 (-225))) (-5 *6 (-1151)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3828 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3817 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3805 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3793 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3733 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3723 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3711 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3688 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3679 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3668 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3656 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3646 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3637 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3628 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3618 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754)))) (-3608 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(-10 -7 (-15 -3608 ((-1031) (-169 (-225)) (-563))) (-15 -3618 ((-1031) (-225) (-563))) (-15 -3628 ((-1031) (-225) (-563))) (-15 -3637 ((-1031) (-225) (-563))) (-15 -3646 ((-1031) (-225) (-563))) (-15 -3656 ((-1031) (-225) (-563))) (-15 -3668 ((-1031) (-225) (-225) (-225) (-563))) (-15 -3679 ((-1031) (-225) (-563))) (-15 -3688 ((-1031) (-225) (-563))) (-15 -3699 ((-1031) (-225) (-563))) (-15 -3711 ((-1031) (-225) (-563))) (-15 -3723 ((-1031) (-225) (-563))) (-15 -3733 ((-1031) (-225) (-563))) (-15 -3746 ((-1031) (-225) (-563))) (-15 -3758 ((-1031) (-225) (-563))) (-15 -3769 ((-1031) (-225) (-563))) (-15 -3781 ((-1031) (-225) (-563))) (-15 -3793 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3805 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3817 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -3828 ((-1031) (-1151) (-169 (-225)) (-1151) (-563))) (-15 -3838 ((-1031) (-563) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3850 ((-1031) (-225) (-563))) (-15 -3861 ((-1031) (-225) (-563))) (-15 -3870 ((-1031) (-225) (-563))) (-15 -3882 ((-1031) (-225) (-563))) (-15 -3891 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3902 ((-1031) (-225) (-169 (-225)) (-563) (-1151) (-563))) (-15 -3911 ((-1031) (-225) (-563))) (-15 -3918 ((-1031) (-225) (-563))) (-15 -3930 ((-1031) (-225) (-563))) (-15 -3940 ((-1031) (-225) (-563))) (-15 -3949 ((-1031) (-225) (-563))) (-15 -3957 ((-1031) (-225) (-563))) (-15 -3967 ((-1031) (-225) (-225) (-563))) (-15 -3979 ((-1031) (-225) (-225) (-225) (-563))) (-15 -2797 ((-1031) (-225) (-225) (-225) (-563))) (-15 -2809 ((-1031) (-225) (-225) (-225) (-225) (-563)))) -((-2860 (((-1262)) 21)) (-2829 (((-1151)) 32)) (-2819 (((-1151)) 31)) (-2851 (((-1097) (-1169) (-684 (-563))) 46) (((-1097) (-1169) (-684 (-225))) 42)) (-3602 (((-112)) 19)) (-2840 (((-1151) (-1151)) 35))) -(((-755) (-10 -7 (-15 -2819 ((-1151))) (-15 -2829 ((-1151))) (-15 -2840 ((-1151) (-1151))) (-15 -2851 ((-1097) (-1169) (-684 (-225)))) (-15 -2851 ((-1097) (-1169) (-684 (-563)))) (-15 -3602 ((-112))) (-15 -2860 ((-1262))))) (T -755)) -((-2860 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-755)))) (-3602 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-563))) (-5 *2 (-1097)) (-5 *1 (-755)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-225))) (-5 *2 (-1097)) (-5 *1 (-755)))) (-2840 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))) (-2829 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755)))) (-2819 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755))))) -(-10 -7 (-15 -2819 ((-1151))) (-15 -2829 ((-1151))) (-15 -2840 ((-1151) (-1151))) (-15 -2851 ((-1097) (-1169) (-684 (-225)))) (-15 -2851 ((-1097) (-1169) (-684 (-563)))) (-15 -3602 ((-112))) (-15 -2860 ((-1262)))) -((-2879 (($ $ $) 10)) (-2888 (($ $ $ $) 9)) (-2870 (($ $ $) 12))) -(((-756 |#1|) (-10 -8 (-15 -2870 (|#1| |#1| |#1|)) (-15 -2879 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1| |#1|))) (-757)) (T -756)) -NIL -(-10 -8 (-15 -2870 (|#1| |#1| |#1|)) (-15 -2879 (|#1| |#1| |#1|)) (-15 -2888 (|#1| |#1| |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-2690 (($ $ (-917)) 28)) (-2681 (($ $ (-917)) 29)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2879 (($ $ $) 25)) (-2062 (((-858) $) 11)) (-2888 (($ $ $ $) 26)) (-2870 (($ $ $) 24)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 30)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27))) -(((-757) (-140)) (T -757)) -((-2888 (*1 *1 *1 *1 *1) (-4 *1 (-757))) (-2879 (*1 *1 *1 *1) (-4 *1 (-757))) (-2870 (*1 *1 *1 *1) (-4 *1 (-757)))) -(-13 (-21) (-716) (-10 -8 (-15 -2888 ($ $ $ $)) (-15 -2879 ($ $ $)) (-15 -2870 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-716) . T) ((-1093) . T)) -((-2062 (((-858) $) NIL) (($ (-563)) 10))) -(((-758 |#1|) (-10 -8 (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-759)) (T -758)) -NIL -(-10 -8 (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-2661 (((-3 $ "failed") $) 40)) (-2690 (($ $ (-917)) 28) (($ $ (-767)) 35)) (-3230 (((-3 $ "failed") $) 38)) (-2712 (((-112) $) 34)) (-2673 (((-3 $ "failed") $) 39)) (-2681 (($ $ (-917)) 29) (($ $ (-767)) 36)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2879 (($ $ $) 25)) (-2062 (((-858) $) 11) (($ (-563)) 31)) (-3192 (((-767)) 32 T CONST)) (-2888 (($ $ $ $) 26)) (-2870 (($ $ $) 24)) (-3790 (($) 18 T CONST)) (-3803 (($) 33 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 30) (($ $ (-767)) 37)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 27))) -(((-759) (-140)) (T -759)) -((-3192 (*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-759))))) -(-13 (-757) (-718) (-10 -8 (-15 -3192 ((-767)) -2495) (-15 -2062 ($ (-563))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-716) . T) ((-718) . T) ((-757) . T) ((-1093) . T)) -((-2907 (((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|) 33)) (-2898 (((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|) 23)) (-3015 (((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169)) 20) (((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563))))) 19))) -(((-760 |#1|) (-10 -7 (-15 -3015 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))))) (-15 -3015 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169))) (-15 -2898 ((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|)) (-15 -2907 ((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|))) (-13 (-363) (-844))) (T -760)) -((-2907 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 *4))))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-2898 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-169 *4))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844))))) (-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *4 (-1169)) (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *5)) (-4 *5 (-13 (-363) (-844))))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) -(-10 -7 (-15 -3015 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))))) (-15 -3015 ((-948 (-169 (-407 (-563)))) (-684 (-169 (-407 (-563)))) (-1169))) (-15 -2898 ((-640 (-169 |#1|)) (-684 (-169 (-407 (-563)))) |#1|)) (-15 -2907 ((-640 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 (-169 |#1|)))))) (-684 (-169 (-407 (-563)))) |#1|))) -((-1669 (((-174 (-563)) |#1|) 27))) -(((-761 |#1|) (-10 -7 (-15 -1669 ((-174 (-563)) |#1|))) (-404)) (T -761)) -((-1669 (*1 *2 *3) (-12 (-5 *2 (-174 (-563))) (-5 *1 (-761 *3)) (-4 *3 (-404))))) -(-10 -7 (-15 -1669 ((-174 (-563)) |#1|))) -((-4291 ((|#1| |#1| |#1|) 28)) (-4302 ((|#1| |#1| |#1|) 27)) (-4189 ((|#1| |#1| |#1|) 38)) (-4270 ((|#1| |#1| |#1|) 34)) (-4280 (((-3 |#1| "failed") |#1| |#1|) 31)) (-4335 (((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|) 26))) -(((-762 |#1| |#2|) (-10 -7 (-15 -4335 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -4291 (|#1| |#1| |#1|)) (-15 -4280 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4270 (|#1| |#1| |#1|)) (-15 -4189 (|#1| |#1| |#1|))) (-704 |#2|) (-363)) (T -762)) -((-4189 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-4270 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-4280 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-4291 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-4302 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) (-4335 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4))))) -(-10 -7 (-15 -4335 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -4291 (|#1| |#1| |#1|)) (-15 -4280 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4270 (|#1| |#1| |#1|)) (-15 -4189 (|#1| |#1| |#1|))) -((-1293 (((-686 (-1215)) $ (-1215)) 26)) (-1303 (((-686 (-548)) $ (-548)) 25)) (-4382 (((-767) $ (-128)) 27)) (-1312 (((-686 (-129)) $ (-129)) 24)) (-3165 (((-686 (-1215)) $) 12)) (-3121 (((-686 (-1214)) $) 8)) (-3140 (((-686 (-1213)) $) 10)) (-3175 (((-686 (-548)) $) 13)) (-3131 (((-686 (-547)) $) 9)) (-3153 (((-686 (-546)) $) 11)) (-3109 (((-767) $ (-128)) 7)) (-3186 (((-686 (-129)) $) 14)) (-2918 (((-112) $) 31)) (-2929 (((-686 $) |#1| (-950)) 32)) (-3018 (($ $) 6))) -(((-763 |#1|) (-140) (-1093)) (T -763)) -((-2929 (*1 *2 *3 *4) (-12 (-5 *4 (-950)) (-4 *3 (-1093)) (-5 *2 (-686 *1)) (-4 *1 (-763 *3)))) (-2918 (*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) -(-13 (-575) (-10 -8 (-15 -2929 ((-686 $) |t#1| (-950))) (-15 -2918 ((-112) $)))) -(((-173) . T) ((-527) . T) ((-575) . T) ((-856) . T)) -((-1672 (((-2 (|:| -3288 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563)) 71)) (-1661 (((-2 (|:| -3288 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563))))) 69)) (-3974 (((-563)) 85))) -(((-764 |#1| |#2|) (-10 -7 (-15 -3974 ((-563))) (-15 -1661 ((-2 (|:| -3288 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))))) (-15 -1672 ((-2 (|:| -3288 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563)))) (-1233 (-563)) (-409 (-563) |#1|)) (T -764)) -((-1672 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-1233 *3)) (-5 *2 (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4)))) (-1661 (*1 *2) (-12 (-4 *3 (-1233 (-563))) (-5 *2 (-2 (|:| -3288 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563))))) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-563) *3)))) (-3974 (*1 *2) (-12 (-4 *3 (-1233 *2)) (-5 *2 (-563)) (-5 *1 (-764 *3 *4)) (-4 *4 (-409 *2 *3))))) -(-10 -7 (-15 -3974 ((-563))) (-15 -1661 ((-2 (|:| -3288 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))))) (-15 -1672 ((-2 (|:| -3288 (-684 (-563))) (|:| |basisDen| (-563)) (|:| |basisInv| (-684 (-563)))) (-563)))) -((-2049 (((-112) $ $) NIL)) (-2589 (((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 20) (($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-2943 (((-112) $ $) NIL))) -(((-765) (-13 (-1093) (-10 -8 (-15 -2062 ($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2062 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2062 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2589 ((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -765)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-765)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-765))))) -(-13 (-1093) (-10 -8 (-15 -2062 ($ (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2062 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2062 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2589 ((-3 (|:| |nia| (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) -((-2493 (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))) 18) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169))) 17)) (-1558 (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))) 20) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169))) 19))) -(((-766 |#1|) (-10 -7 (-15 -2493 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -2493 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))))) (-555)) (T -766)) -((-1558 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5))))) -(-10 -7 (-15 -2493 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -2493 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-948 |#1|))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3367 (($ $ $) 12)) (-1482 (((-3 $ "failed") $ $) 16)) (-1318 (($ $ (-563)) 13)) (-3684 (($) NIL T CONST)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($ $) NIL)) (-3473 (($ $ $) NIL)) (-2712 (((-112) $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1647 (($ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2062 (((-858) $) NIL)) (-3790 (($) 6 T CONST)) (-3803 (($) NIL T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ $ $) NIL))) -(((-767) (-13 (-789) (-722) (-10 -8 (-15 -3473 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -1647 ($ $ $)) (-15 -2588 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -3448 ((-3 $ "failed") $ $)) (-15 -1318 ($ $ (-563))) (-15 -4301 ($ $)) (-6 (-4410 "*"))))) (T -767)) -((-3473 (*1 *1 *1 *1) (-5 *1 (-767))) (-3495 (*1 *1 *1 *1) (-5 *1 (-767))) (-1647 (*1 *1 *1 *1) (-5 *1 (-767))) (-2588 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2896 (-767)) (|:| -1488 (-767)))) (-5 *1 (-767)))) (-3448 (*1 *1 *1 *1) (|partial| -5 *1 (-767))) (-1318 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-767)))) (-4301 (*1 *1 *1) (-5 *1 (-767)))) -(-13 (-789) (-722) (-10 -8 (-15 -3473 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -1647 ($ $ $)) (-15 -2588 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -3448 ((-3 $ "failed") $ $)) (-15 -1318 ($ $ (-563))) (-15 -4301 ($ $)) (-6 (-4410 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-2338 (($ |#1|) 17) (($ $ |#1|) 20)) (-4231 (($ |#1|) 18) (($ $ |#1|) 21)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3840 (((-112) $) NIL)) (-3915 (($ |#1| |#1| |#1| |#1|) 8)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 16)) (-3864 (((-1114) $) NIL)) (-2416 ((|#1| $ |#1|) 24) (((-830 |#1|) $ (-830 |#1|)) 32)) (-2766 (($ $ $) NIL)) (-3671 (($ $ $) NIL)) (-3742 (((-859) $) 39)) (-4321 (($) 9 T CONST)) (-1705 (((-112) $ $) 48)) (-1799 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 14))) +(((-715 |#1|) (-13 (-473) (-10 -8 (-15 -3915 ($ |#1| |#1| |#1| |#1|)) (-15 -2338 ($ |#1|)) (-15 -4231 ($ |#1|)) (-15 -3951 ($)) (-15 -2338 ($ $ |#1|)) (-15 -4231 ($ $ |#1|)) (-15 -3951 ($ $)) (-15 -2416 (|#1| $ |#1|)) (-15 -2416 ((-830 |#1|) $ (-830 |#1|))))) (-363)) (T -715)) +((-3915 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2338 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-4231 (*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3951 (*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2338 (*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-3951 (*1 *1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2416 (*1 *2 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) (-2416 (*1 *2 *1 *2) (-12 (-5 *2 (-830 *3)) (-4 *3 (-363)) (-5 *1 (-715 *3))))) +(-13 (-473) (-10 -8 (-15 -3915 ($ |#1| |#1| |#1| |#1|)) (-15 -2338 ($ |#1|)) (-15 -4231 ($ |#1|)) (-15 -3951 ($)) (-15 -2338 ($ $ |#1|)) (-15 -4231 ($ $ |#1|)) (-15 -3951 ($ $)) (-15 -2416 (|#1| $ |#1|)) (-15 -2416 ((-830 |#1|) $ (-830 |#1|))))) +((-2752 (($ $ (-918)) 21)) (-3154 (($ $ (-918)) 22)) (** (($ $ (-918)) 10))) +(((-716 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-918))) (-15 -3154 (|#1| |#1| (-918))) (-15 -2752 (|#1| |#1| (-918)))) (-717)) (T -716)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-918))) (-15 -3154 (|#1| |#1| (-918))) (-15 -2752 (|#1| |#1| (-918)))) +((-3732 (((-112) $ $) 7)) (-2752 (($ $ (-918)) 15)) (-3154 (($ $ (-918)) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6)) (** (($ $ (-918)) 13)) (* (($ $ $) 16))) +(((-717) (-140)) (T -717)) +((* (*1 *1 *1 *1) (-4 *1 (-717))) (-2752 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918))))) +(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 -2752 ($ $ (-918))) (-15 -3154 ($ $ (-918))) (-15 ** ($ $ (-918))))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-2752 (($ $ (-918)) NIL) (($ $ (-768)) 21)) (-3840 (((-112) $) 10)) (-3154 (($ $ (-918)) NIL) (($ $ (-768)) 22)) (** (($ $ (-918)) NIL) (($ $ (-768)) 16))) +(((-718 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-768))) (-15 -3154 (|#1| |#1| (-768))) (-15 -2752 (|#1| |#1| (-768))) (-15 -3840 ((-112) |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 -3154 (|#1| |#1| (-918))) (-15 -2752 (|#1| |#1| (-918)))) (-719)) (T -718)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-768))) (-15 -3154 (|#1| |#1| (-768))) (-15 -2752 (|#1| |#1| (-768))) (-15 -3840 ((-112) |#1|)) (-15 ** (|#1| |#1| (-918))) (-15 -3154 (|#1| |#1| (-918))) (-15 -2752 (|#1| |#1| (-918)))) +((-3732 (((-112) $ $) 7)) (-3664 (((-3 $ "failed") $) 17)) (-2752 (($ $ (-918)) 15) (($ $ (-768)) 22)) (-3951 (((-3 $ "failed") $) 19)) (-3840 (((-112) $) 23)) (-3714 (((-3 $ "failed") $) 18)) (-3154 (($ $ (-918)) 14) (($ $ (-768)) 21)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4321 (($) 24 T CONST)) (-1705 (((-112) $ $) 6)) (** (($ $ (-918)) 13) (($ $ (-768)) 20)) (* (($ $ $) 16))) +(((-719) (-140)) (T -719)) +((-4321 (*1 *1) (-4 *1 (-719))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-719)) (-5 *2 (-112)))) (-2752 (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (-3154 (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) (-3951 (*1 *1 *1) (|partial| -4 *1 (-719))) (-3714 (*1 *1 *1) (|partial| -4 *1 (-719))) (-3664 (*1 *1 *1) (|partial| -4 *1 (-719)))) +(-13 (-717) (-10 -8 (-15 (-4321) ($) -2091) (-15 -3840 ((-112) $)) (-15 -2752 ($ $ (-768))) (-15 -3154 ($ $ (-768))) (-15 ** ($ $ (-768))) (-15 -3951 ((-3 $ "failed") $)) (-15 -3714 ((-3 $ "failed") $)) (-15 -3664 ((-3 $ "failed") $)))) +(((-102) . T) ((-611 (-859)) . T) ((-717) . T) ((-1094) . T)) +((-1938 (((-768)) 42)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 26)) (-2239 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 23)) (-1699 (($ |#3|) NIL) (((-3 $ "failed") (-407 |#3|)) 53)) (-3951 (((-3 $ "failed") $) 73)) (-2821 (($) 47)) (-3328 ((|#2| $) 21)) (-1693 (($) 18)) (-4117 (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 61) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-2277 (((-685 |#2|) (-1259 $) (-1 |#2| |#2|)) 68)) (-2235 (((-1259 |#2|) $) NIL) (($ (-1259 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-2230 ((|#3| $) 39)) (-4265 (((-1259 $)) 36))) +(((-720 |#1| |#2| |#3|) (-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2821 (|#1|)) (-15 -1938 ((-768))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2277 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -1699 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2235 (|#1| |#3|)) (-15 -1699 (|#1| |#3|)) (-15 -1693 (|#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2235 (|#3| |#1|)) (-15 -2235 (|#1| (-1259 |#2|))) (-15 -2235 ((-1259 |#2|) |#1|)) (-15 -4265 ((-1259 |#1|))) (-15 -2230 (|#3| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|))) (-721 |#2| |#3|) (-172) (-1235 |#2|)) (T -720)) +((-1938 (*1 *2) (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-768)) (-5 *1 (-720 *3 *4 *5)) (-4 *3 (-721 *4 *5))))) +(-10 -8 (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -2821 (|#1|)) (-15 -1938 ((-768))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -2277 ((-685 |#2|) (-1259 |#1|) (-1 |#2| |#2|))) (-15 -1699 ((-3 |#1| "failed") (-407 |#3|))) (-15 -2235 (|#1| |#3|)) (-15 -1699 (|#1| |#3|)) (-15 -1693 (|#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2235 (|#3| |#1|)) (-15 -2235 (|#1| (-1259 |#2|))) (-15 -2235 ((-1259 |#2|) |#1|)) (-15 -4265 ((-1259 |#1|))) (-15 -2230 (|#3| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -3951 ((-3 |#1| "failed") |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 93 (|has| |#1| (-363)))) (-1948 (($ $) 94 (|has| |#1| (-363)))) (-1832 (((-112) $) 96 (|has| |#1| (-363)))) (-3580 (((-685 |#1|) (-1259 $)) 47) (((-685 |#1|)) 62)) (-3809 ((|#1| $) 53)) (-4374 (((-1182 (-918) (-768)) (-564)) 146 (|has| |#1| (-349)))) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 113 (|has| |#1| (-363)))) (-3048 (((-418 $) $) 114 (|has| |#1| (-363)))) (-2377 (((-112) $ $) 104 (|has| |#1| (-363)))) (-1938 (((-768)) 87 (|has| |#1| (-368)))) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 169 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 167 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 164)) (-2239 (((-564) $) 168 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 166 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 165)) (-2340 (($ (-1259 |#1|) (-1259 $)) 49) (($ (-1259 |#1|)) 65)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) 152 (|has| |#1| (-349)))) (-1373 (($ $ $) 108 (|has| |#1| (-363)))) (-3807 (((-685 |#1|) $ (-1259 $)) 54) (((-685 |#1|) $) 60)) (-3039 (((-685 (-564)) (-685 $)) 163 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 162 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 161) (((-685 |#1|) (-685 $)) 160)) (-1699 (($ |#2|) 157) (((-3 $ "failed") (-407 |#2|)) 154 (|has| |#1| (-363)))) (-3951 (((-3 $ "failed") $) 33)) (-1544 (((-918)) 55)) (-2821 (($) 90 (|has| |#1| (-368)))) (-1350 (($ $ $) 107 (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 102 (|has| |#1| (-363)))) (-2757 (($) 148 (|has| |#1| (-349)))) (-1313 (((-112) $) 149 (|has| |#1| (-349)))) (-3176 (($ $ (-768)) 140 (|has| |#1| (-349))) (($ $) 139 (|has| |#1| (-349)))) (-4188 (((-112) $) 115 (|has| |#1| (-363)))) (-1619 (((-918) $) 151 (|has| |#1| (-349))) (((-830 (-918)) $) 137 (|has| |#1| (-349)))) (-3840 (((-112) $) 31)) (-3328 ((|#1| $) 52)) (-3907 (((-3 $ "failed") $) 141 (|has| |#1| (-349)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 111 (|has| |#1| (-363)))) (-2653 ((|#2| $) 45 (|has| |#1| (-363)))) (-1906 (((-918) $) 89 (|has| |#1| (-368)))) (-1687 ((|#2| $) 155)) (-2529 (($ (-641 $)) 100 (|has| |#1| (-363))) (($ $ $) 99 (|has| |#1| (-363)))) (-2217 (((-1152) $) 9)) (-4373 (($ $) 116 (|has| |#1| (-363)))) (-3258 (($) 142 (|has| |#1| (-349)) CONST)) (-1495 (($ (-918)) 88 (|has| |#1| (-368)))) (-3864 (((-1114) $) 10)) (-1693 (($) 159)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 101 (|has| |#1| (-363)))) (-2577 (($ (-641 $)) 98 (|has| |#1| (-363))) (($ $ $) 97 (|has| |#1| (-363)))) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) 145 (|has| |#1| (-349)))) (-4127 (((-418 $) $) 112 (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 110 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 109 (|has| |#1| (-363)))) (-1321 (((-3 $ "failed") $ $) 92 (|has| |#1| (-363)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 103 (|has| |#1| (-363)))) (-4061 (((-768) $) 105 (|has| |#1| (-363)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 106 (|has| |#1| (-363)))) (-4284 ((|#1| (-1259 $)) 48) ((|#1|) 61)) (-2819 (((-768) $) 150 (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) 138 (|has| |#1| (-349)))) (-4117 (($ $) 136 (-4030 (-4267 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) 134 (-4030 (-4267 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 132 (-4267 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 131 (-4267 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-768)) 130 (-4267 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-768))) 129 (-4267 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-768)) 122 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-363)))) (-2277 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) 153 (|has| |#1| (-363)))) (-3925 ((|#2|) 158)) (-1543 (($) 147 (|has| |#1| (-349)))) (-1785 (((-1259 |#1|) $ (-1259 $)) 51) (((-685 |#1|) (-1259 $) (-1259 $)) 50) (((-1259 |#1|) $) 67) (((-685 |#1|) (-1259 $)) 66)) (-2235 (((-1259 |#1|) $) 64) (($ (-1259 |#1|)) 63) ((|#2| $) 170) (($ |#2|) 156)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 144 (|has| |#1| (-349)))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ $) 91 (|has| |#1| (-363))) (($ (-407 (-564))) 86 (-4030 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4253 (($ $) 143 (|has| |#1| (-349))) (((-3 $ "failed") $) 44 (|has| |#1| (-145)))) (-2230 ((|#2| $) 46)) (-3270 (((-768)) 28 T CONST)) (-4265 (((-1259 $)) 68)) (-3360 (((-112) $ $) 95 (|has| |#1| (-363)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $) 135 (-4030 (-4267 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) 133 (-4030 (-4267 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) 128 (-4267 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170))) 127 (-4267 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1170) (-768)) 126 (-4267 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-768))) 125 (-4267 (|has| |#1| (-897 (-1170))) (|has| |#1| (-363)))) (($ $ (-1 |#1| |#1|) (-768)) 124 (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) 123 (|has| |#1| (-363)))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 120 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 117 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ (-407 (-564)) $) 119 (|has| |#1| (-363))) (($ $ (-407 (-564))) 118 (|has| |#1| (-363))))) +(((-721 |#1| |#2|) (-140) (-172) (-1235 |t#1|)) (T -721)) +((-1693 (*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-721 *2 *3)) (-4 *3 (-1235 *2)))) (-3925 (*1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1699 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) (-2235 (*1 *1 *2) (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) (-1687 (*1 *2 *1) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) (-1699 (*1 *1 *2) (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) (-4 *3 (-172)) (-4 *1 (-721 *3 *4)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-4 *1 (-721 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) (-5 *2 (-685 *5))))) +(-13 (-409 |t#1| |t#2|) (-172) (-612 |t#2|) (-411 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1693 ($)) (-15 -3925 (|t#2|)) (-15 -1699 ($ |t#2|)) (-15 -2235 ($ |t#2|)) (-15 -1687 (|t#2| $)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-363)) (-6 (-231 |t#1|)) (-15 -1699 ((-3 $ "failed") (-407 |t#2|))) (-15 -2277 ((-685 |t#1|) (-1259 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-38 |#1|) . T) ((-38 $) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-102) . T) ((-111 #0# #0#) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4030 (|has| |#1| (-349)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-349)) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) . T) ((-612 |#2|) . T) ((-231 |#1|) |has| |#1| (-363)) ((-233) -4030 (|has| |#1| (-349)) (-12 (|has| |#1| (-233)) (|has| |#1| (-363)))) ((-243) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-290) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-307) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-363) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-402) |has| |#1| (-349)) ((-368) -4030 (|has| |#1| (-368)) (|has| |#1| (-349))) ((-349) |has| |#1| (-349)) ((-370 |#1| |#2|) . T) ((-409 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-556) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 #0#) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-714 |#1|) . T) ((-714 $) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170)))) ((-917) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) -4030 (|has| |#1| (-349)) (|has| |#1| (-363))) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-349)) ((-1213) -4030 (|has| |#1| (-349)) (|has| |#1| (-363)))) +((-2818 (($) 11)) (-3951 (((-3 $ "failed") $) 14)) (-3840 (((-112) $) 10)) (** (($ $ (-918)) NIL) (($ $ (-768)) 20))) +(((-722 |#1|) (-10 -8 (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 -3840 ((-112) |#1|)) (-15 -2818 (|#1|)) (-15 ** (|#1| |#1| (-918)))) (-723)) (T -722)) +NIL +(-10 -8 (-15 -3951 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-768))) (-15 -3840 ((-112) |#1|)) (-15 -2818 (|#1|)) (-15 ** (|#1| |#1| (-918)))) +((-3732 (((-112) $ $) 7)) (-2818 (($) 18 T CONST)) (-3951 (((-3 $ "failed") $) 15)) (-3840 (((-112) $) 17)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4321 (($) 19 T CONST)) (-1705 (((-112) $ $) 6)) (** (($ $ (-918)) 13) (($ $ (-768)) 16)) (* (($ $ $) 14))) +(((-723) (-140)) (T -723)) +((-4321 (*1 *1) (-4 *1 (-723))) (-2818 (*1 *1) (-4 *1 (-723))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-768)))) (-3951 (*1 *1 *1) (|partial| -4 *1 (-723)))) +(-13 (-1106) (-10 -8 (-15 (-4321) ($) -2091) (-15 -2818 ($) -2091) (-15 -3840 ((-112) $)) (-15 ** ($ $ (-768))) (-15 -3951 ((-3 $ "failed") $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1106) . T) ((-1094) . T)) +((-3211 (((-2 (|:| -3087 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|)) 39)) (-3651 (((-2 (|:| -3087 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-2732 ((|#2| (-407 |#2|) (-1 |#2| |#2|)) 13)) (-2795 (((-2 (|:| |poly| |#2|) (|:| -3087 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)) 48))) +(((-724 |#1| |#2|) (-10 -7 (-15 -3651 ((-2 (|:| -3087 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3211 ((-2 (|:| -3087 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2732 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -2795 ((-2 (|:| |poly| |#2|) (|:| -3087 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) (-363) (-1235 |#1|)) (T -724)) +((-2795 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3087 (-407 *6)) (|:| |special| (-407 *6)))) (-5 *1 (-724 *5 *6)) (-5 *3 (-407 *6)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-724 *5 *2)) (-4 *5 (-363)))) (-3211 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3087 (-418 *3)) (|:| |special| (-418 *3)))) (-5 *1 (-724 *5 *3)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -3087 *3) (|:| |special| *3))) (-5 *1 (-724 *5 *3))))) +(-10 -7 (-15 -3651 ((-2 (|:| -3087 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3211 ((-2 (|:| -3087 (-418 |#2|)) (|:| |special| (-418 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2732 (|#2| (-407 |#2|) (-1 |#2| |#2|))) (-15 -2795 ((-2 (|:| |poly| |#2|) (|:| -3087 (-407 |#2|)) (|:| |special| (-407 |#2|))) (-407 |#2|) (-1 |#2| |#2|)))) +((-3185 ((|#7| (-641 |#5|) |#6|) NIL)) (-2187 ((|#7| (-1 |#5| |#4|) |#6|) 27))) +(((-725 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2187 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3185 (|#7| (-641 |#5|) |#6|))) (-847) (-790) (-790) (-1046) (-1046) (-946 |#4| |#2| |#1|) (-946 |#5| |#3| |#1|)) (T -725)) +((-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *9)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *8 (-1046)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) (-4 *4 (-946 *8 *6 *5)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1046)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-4 *2 (-946 *9 *7 *5)) (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) (-4 *4 (-946 *8 *6 *5))))) +(-10 -7 (-15 -2187 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3185 (|#7| (-641 |#5|) |#6|))) +((-2187 ((|#7| (-1 |#2| |#1|) |#6|) 28))) +(((-726 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2187 (|#7| (-1 |#2| |#1|) |#6|))) (-847) (-847) (-790) (-790) (-1046) (-946 |#5| |#3| |#1|) (-946 |#5| |#4| |#2|)) (T -726)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-4 *7 (-790)) (-4 *9 (-1046)) (-4 *2 (-946 *9 *8 *6)) (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-790)) (-4 *4 (-946 *9 *7 *5))))) +(-10 -7 (-15 -2187 (|#7| (-1 |#2| |#1|) |#6|))) +((-4127 (((-418 |#4|) |#4|) 42))) +(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4127 ((-418 |#4|) |#4|))) (-790) (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170))))) (-307) (-946 (-949 |#3|) |#1| |#2|)) (T -727)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170)))))) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-727 *4 *5 *6 *3)) (-4 *3 (-946 (-949 *6) *4 *5))))) +(-10 -7 (-15 -4127 ((-418 |#4|) |#4|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-861 |#1|)) $) NIL)) (-4097 (((-1166 $) $ (-861 |#1|)) NIL) (((-1166 |#2|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1948 (($ $) NIL (|has| |#2| (-556)))) (-1832 (((-112) $) NIL (|has| |#2| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-861 |#1|))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2249 (($ $) NIL (|has| |#2| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-861 |#1|) "failed") $) NIL)) (-2239 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-861 |#1|) $) NIL)) (-2448 (($ $ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-906)))) (-1866 (($ $ |#2| (-531 (-861 |#1|)) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-861 |#1|) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-4257 (($ (-1166 |#2|) (-861 |#1|)) NIL) (($ (-1166 $) (-861 |#1|)) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#2| (-531 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-861 |#1|)) NIL)) (-3469 (((-531 (-861 |#1|)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2799 (($ $ $) NIL (|has| |#2| (-847)))) (-2848 (($ $ $) NIL (|has| |#2| (-847)))) (-1396 (($ (-1 (-531 (-861 |#1|)) (-531 (-861 |#1|))) $) NIL)) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-1306 (((-3 (-861 |#1|) "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#2| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2217 (((-1152) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-861 |#1|)) (|:| -2515 (-768))) "failed") $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#2| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#2| (-906)))) (-1321 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-861 |#1|) |#2|) NIL) (($ $ (-641 (-861 |#1|)) (-641 |#2|)) NIL) (($ $ (-861 |#1|) $) NIL) (($ $ (-641 (-861 |#1|)) (-641 $)) NIL)) (-4284 (($ $ (-861 |#1|)) NIL (|has| |#2| (-172)))) (-4117 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-2266 (((-531 (-861 |#1|)) $) NIL) (((-768) $ (-861 |#1|)) NIL) (((-641 (-768)) $ (-641 (-861 |#1|))) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-861 |#1|) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-861 |#1|) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4329 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-861 |#1|)) NIL (|has| |#2| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-861 |#1|)) NIL) (($ $) NIL (|has| |#2| (-556))) (($ (-407 (-564))) NIL (-4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564))))))) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ (-531 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-861 |#1|)) NIL) (($ $ (-641 (-861 |#1|))) NIL) (($ $ (-861 |#1|) (-768)) NIL) (($ $ (-641 (-861 |#1|)) (-641 (-768))) NIL)) (-1751 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-728 |#1| |#2|) (-946 |#2| (-531 (-861 |#1|)) (-861 |#1|)) (-641 (-1170)) (-1046)) (T -728)) +NIL +(-946 |#2| (-531 (-861 |#1|)) (-861 |#1|)) +((-3817 (((-2 (|:| -2850 (-949 |#3|)) (|:| -4023 (-949 |#3|))) |#4|) 14)) (-2278 ((|#4| |#4| |#2|) 33)) (-3411 ((|#4| (-407 (-949 |#3|)) |#2|) 64)) (-2523 ((|#4| (-1166 (-949 |#3|)) |#2|) 80)) (-3841 ((|#4| (-1166 |#4|) |#2|) 51)) (-3686 ((|#4| |#4| |#2|) 54)) (-4127 (((-418 |#4|) |#4|) 40))) +(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3817 ((-2 (|:| -2850 (-949 |#3|)) (|:| -4023 (-949 |#3|))) |#4|)) (-15 -3686 (|#4| |#4| |#2|)) (-15 -3841 (|#4| (-1166 |#4|) |#2|)) (-15 -2278 (|#4| |#4| |#2|)) (-15 -2523 (|#4| (-1166 (-949 |#3|)) |#2|)) (-15 -3411 (|#4| (-407 (-949 |#3|)) |#2|)) (-15 -4127 ((-418 |#4|) |#4|))) (-790) (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)))) (-556) (-946 (-407 (-949 |#3|)) |#1| |#2|)) (T -729)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))) (-3411 (*1 *2 *3 *4) (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-5 *3 (-407 (-949 *6))) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))))) (-2523 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 (-949 *6))) (-4 *6 (-556)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))))) (-2278 (*1 *2 *2 *3) (-12 (-4 *4 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-1166 *2)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) (-4 *4 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *6 (-556)))) (-3686 (*1 *2 *2 *3) (-12 (-4 *4 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *5 (-556)) (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) (-3817 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *6 (-556)) (-5 *2 (-2 (|:| -2850 (-949 *6)) (|:| -4023 (-949 *6)))) (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5))))) +(-10 -7 (-15 -3817 ((-2 (|:| -2850 (-949 |#3|)) (|:| -4023 (-949 |#3|))) |#4|)) (-15 -3686 (|#4| |#4| |#2|)) (-15 -3841 (|#4| (-1166 |#4|) |#2|)) (-15 -2278 (|#4| |#4| |#2|)) (-15 -2523 (|#4| (-1166 (-949 |#3|)) |#2|)) (-15 -3411 (|#4| (-407 (-949 |#3|)) |#2|)) (-15 -4127 ((-418 |#4|) |#4|))) +((-4127 (((-418 |#4|) |#4|) 54))) +(((-730 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4127 ((-418 |#4|) |#4|))) (-790) (-847) (-13 (-307) (-147)) (-946 (-407 |#3|) |#1| |#2|)) (T -730)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) (-4 *3 (-946 (-407 *6) *4 *5))))) +(-10 -7 (-15 -4127 ((-418 |#4|) |#4|))) +((-2187 (((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)) 18))) +(((-731 |#1| |#2| |#3|) (-10 -7 (-15 -2187 ((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)))) (-1046) (-1046) (-723)) (T -731)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5 *7)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *7 (-723)) (-5 *2 (-732 *6 *7)) (-5 *1 (-731 *5 *6 *7))))) +(-10 -7 (-15 -2187 ((-732 |#2| |#3|) (-1 |#2| |#1|) (-732 |#1| |#3|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 39)) (-3157 (((-641 (-2 (|:| -1762 |#1|) (|:| -2414 |#2|))) $) 40)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1938 (((-768)) 22 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) 78) (((-3 |#1| "failed") $) 81)) (-2239 ((|#2| $) NIL) ((|#1| $) NIL)) (-1348 (($ $) 104 (|has| |#2| (-847)))) (-3951 (((-3 $ "failed") $) 87)) (-2821 (($) 51 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) 72)) (-3707 (((-641 $) $) 55)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| |#2|) 17)) (-2187 (($ (-1 |#1| |#1|) $) 70)) (-1906 (((-918) $) 46 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-1309 ((|#2| $) 103 (|has| |#2| (-847)))) (-1320 ((|#1| $) 102 (|has| |#2| (-847)))) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) 38 (-12 (|has| |#2| (-368)) (|has| |#1| (-368))))) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 101) (($ (-564)) 61) (($ |#2|) 58) (($ |#1|) 59) (($ (-641 (-2 (|:| -1762 |#1|) (|:| -2414 |#2|)))) 11)) (-3110 (((-641 |#1|) $) 57)) (-2856 ((|#1| $ |#2|) 115)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-4311 (($) 12 T CONST)) (-4321 (($) 47 T CONST)) (-1705 (((-112) $ $) 107)) (-1790 (($ $) 63) (($ $ $) NIL)) (-1780 (($ $ $) 36)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 68) (($ $ $) 118) (($ |#1| $) 65 (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-732 |#1| |#2|) (-13 (-1046) (-1035 |#2|) (-1035 |#1|) (-10 -8 (-15 -4245 ($ |#1| |#2|)) (-15 -2856 (|#1| $ |#2|)) (-15 -3742 ($ (-641 (-2 (|:| -1762 |#1|) (|:| -2414 |#2|))))) (-15 -3157 ((-641 (-2 (|:| -1762 |#1|) (|:| -2414 |#2|))) $)) (-15 -2187 ($ (-1 |#1| |#1|) $)) (-15 -2005 ((-112) $)) (-15 -3110 ((-641 |#1|) $)) (-15 -3707 ((-641 $) $)) (-15 -2918 ((-768) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-847)) (PROGN (-15 -1309 (|#2| $)) (-15 -1320 (|#1| $)) (-15 -1348 ($ $))) |%noBranch|))) (-1046) (-723)) (T -732)) +((-4245 (*1 *1 *2 *3) (-12 (-5 *1 (-732 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-723)))) (-2856 (*1 *2 *1 *3) (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-723)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1762 *3) (|:| -2414 *4)))) (-4 *3 (-1046)) (-4 *4 (-723)) (-5 *1 (-732 *3 *4)))) (-3157 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1762 *3) (|:| -2414 *4)))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-732 *3 *4)) (-4 *4 (-723)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-3110 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-3707 (*1 *2 *1) (-12 (-5 *2 (-641 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-2918 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) (-1309 (*1 *2 *1) (-12 (-4 *2 (-723)) (-4 *2 (-847)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1046)))) (-1320 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *3 (-723)))) (-1348 (*1 *1 *1) (-12 (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1046)) (-4 *3 (-723))))) +(-13 (-1046) (-1035 |#2|) (-1035 |#1|) (-10 -8 (-15 -4245 ($ |#1| |#2|)) (-15 -2856 (|#1| $ |#2|)) (-15 -3742 ($ (-641 (-2 (|:| -1762 |#1|) (|:| -2414 |#2|))))) (-15 -3157 ((-641 (-2 (|:| -1762 |#1|) (|:| -2414 |#2|))) $)) (-15 -2187 ($ (-1 |#1| |#1|) $)) (-15 -2005 ((-112) $)) (-15 -3110 ((-641 |#1|) $)) (-15 -3707 ((-641 $) $)) (-15 -2918 ((-768) $)) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-847)) (PROGN (-15 -1309 (|#2| $)) (-15 -1320 (|#1| $)) (-15 -1348 ($ $))) |%noBranch|))) +((-3732 (((-112) $ $) 19)) (-3518 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2570 (($ $ $) 72)) (-1905 (((-112) $ $) 73)) (-2969 (((-112) $ (-768)) 8)) (-3688 (($ (-641 |#1|)) 68) (($) 67)) (-2068 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-4181 (($ $) 62)) (-1996 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2366 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-3296 (((-112) $ $) 64)) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22)) (-1353 (($ $ $) 69)) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3864 (((-1114) $) 21)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-1370 (((-641 (-2 (|:| -2423 |#1|) (|:| -3873 (-768)))) $) 61)) (-2365 (($ $ |#1|) 71) (($ $ $) 70)) (-4085 (($) 49) (($ (-641 |#1|)) 48)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 50)) (-3742 (((-859) $) 18)) (-4194 (($ (-641 |#1|)) 66) (($) 65)) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20)) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-733 |#1|) (-140) (-1094)) (T -733)) +NIL +(-13 (-691 |t#1|) (-1092 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) +((-3732 (((-112) $ $) NIL)) (-3518 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 95)) (-2570 (($ $ $) 99)) (-1905 (((-112) $ $) 105)) (-2969 (((-112) $ (-768)) NIL)) (-3688 (($ (-641 |#1|)) 26) (($) 17)) (-2068 (($ (-1 (-112) |#1|) $) 83 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-4181 (($ $) 85)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2154 (($ |#1| $) 71 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 78 (|has| $ (-6 -4411))) (($ |#1| $ (-564)) 76) (($ (-1 (-112) |#1|) $ (-564)) 79)) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (($ |#1| $ (-564)) 81) (($ (-1 (-112) |#1|) $ (-564)) 82)) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-3616 (((-641 |#1|) $) 32 (|has| $ (-6 -4411)))) (-3296 (((-112) $ $) 104)) (-1519 (($) 15) (($ |#1|) 28) (($ (-641 |#1|)) 23)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) 38)) (-2431 (((-112) |#1| $) 66 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 89)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-1353 (($ $ $) 97)) (-2828 ((|#1| $) 63)) (-2974 (($ |#1| $) 64) (($ |#1| $ (-768)) 86)) (-3864 (((-1114) $) NIL)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1292 ((|#1| $) 62)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 57)) (-3434 (($) 14)) (-1370 (((-641 (-2 (|:| -2423 |#1|) (|:| -3873 (-768)))) $) 56)) (-2365 (($ $ |#1|) NIL) (($ $ $) 98)) (-4085 (($) 16) (($ (-641 |#1|)) 25)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) 69 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) 80)) (-2235 (((-536) $) 36 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 22)) (-3742 (((-859) $) 50)) (-4194 (($ (-641 |#1|)) 27) (($) 18)) (-3745 (($ (-641 |#1|)) 24)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 103)) (-2641 (((-768) $) 68 (|has| $ (-6 -4411))))) +(((-734 |#1|) (-13 (-733 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -1519 ($)) (-15 -1519 ($ |#1|)) (-15 -1519 ($ (-641 |#1|))) (-15 -1386 ((-641 |#1|) $)) (-15 -2366 ($ |#1| $ (-564))) (-15 -2366 ($ (-1 (-112) |#1|) $ (-564))) (-15 -2154 ($ |#1| $ (-564))) (-15 -2154 ($ (-1 (-112) |#1|) $ (-564))))) (-1094)) (T -734)) +((-1519 (*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-1519 (*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-1519 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-734 *3)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-734 *3)) (-4 *3 (-1094)))) (-2366 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-2366 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-734 *4)))) (-2154 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) (-2154 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) (-5 *1 (-734 *4))))) +(-13 (-733 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -1519 ($)) (-15 -1519 ($ |#1|)) (-15 -1519 ($ (-641 |#1|))) (-15 -1386 ((-641 |#1|) $)) (-15 -2366 ($ |#1| $ (-564))) (-15 -2366 ($ (-1 (-112) |#1|) $ (-564))) (-15 -2154 ($ |#1| $ (-564))) (-15 -2154 ($ (-1 (-112) |#1|) $ (-564))))) +((-3056 (((-1264) (-1152)) 8))) +(((-735) (-10 -7 (-15 -3056 ((-1264) (-1152))))) (T -735)) +((-3056 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-735))))) +(-10 -7 (-15 -3056 ((-1264) (-1152)))) +((-3102 (((-641 |#1|) (-641 |#1|) (-641 |#1|)) 15))) +(((-736 |#1|) (-10 -7 (-15 -3102 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) (-847)) (T -736)) +((-3102 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-736 *3))))) +(-10 -7 (-15 -3102 ((-641 |#1|) (-641 |#1|) (-641 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 |#2|) $) 139)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 132 (|has| |#1| (-556)))) (-1948 (($ $) 131 (|has| |#1| (-556)))) (-1832 (((-112) $) 129 (|has| |#1| (-556)))) (-2451 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 71 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) 19)) (-4137 (($ $) 70 (|has| |#1| (-38 (-407 (-564)))))) (-2428 (($ $) 87 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 72 (|has| |#1| (-38 (-407 (-564)))))) (-2473 (($ $) 86 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 73 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) 17 T CONST)) (-1348 (($ $) 123)) (-3951 (((-3 $ "failed") $) 33)) (-3217 (((-949 |#1|) $ (-768)) 101) (((-949 |#1|) $ (-768) (-768)) 100)) (-1988 (((-112) $) 140)) (-1655 (($) 98 (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-768) $ |#2|) 103) (((-768) $ |#2| (-768)) 102)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 69 (|has| |#1| (-38 (-407 (-564)))))) (-2005 (((-112) $) 121)) (-4245 (($ $ (-641 |#2|) (-641 (-531 |#2|))) 138) (($ $ |#2| (-531 |#2|)) 137) (($ |#1| (-531 |#2|)) 122) (($ $ |#2| (-768)) 105) (($ $ (-641 |#2|) (-641 (-768))) 104)) (-2187 (($ (-1 |#1| |#1|) $) 120)) (-2192 (($ $) 95 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) 118)) (-1320 ((|#1| $) 117)) (-2217 (((-1152) $) 9)) (-3128 (($ $ |#2|) 99 (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) 10)) (-3004 (($ $ (-768)) 106)) (-1321 (((-3 $ "failed") $ $) 133 (|has| |#1| (-556)))) (-4118 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (($ $ |#2| $) 114) (($ $ (-641 |#2|) (-641 $)) 113) (($ $ (-641 (-294 $))) 112) (($ $ (-294 $)) 111) (($ $ $ $) 110) (($ $ (-641 $) (-641 $)) 109)) (-4117 (($ $ |#2|) 42) (($ $ (-641 |#2|)) 41) (($ $ |#2| (-768)) 40) (($ $ (-641 |#2|) (-641 (-768))) 39)) (-2266 (((-531 |#2|) $) 119)) (-2484 (($ $) 85 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 74 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 84 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 75 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 83 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 76 (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 141)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 136 (|has| |#1| (-172))) (($ $) 134 (|has| |#1| (-556))) (($ (-407 (-564))) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2856 ((|#1| $ (-531 |#2|)) 124) (($ $ |#2| (-768)) 108) (($ $ (-641 |#2|) (-641 (-768))) 107)) (-4253 (((-3 $ "failed") $) 135 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-2521 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) 130 (|has| |#1| (-556)))) (-2495 (($ $) 93 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 80 (|has| |#1| (-38 (-407 (-564)))))) (-4065 (($ $) 91 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 79 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 78 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 89 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 77 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ |#2|) 38) (($ $ (-641 |#2|)) 37) (($ $ |#2| (-768)) 36) (($ $ (-641 |#2|) (-641 (-768))) 35)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 125 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ $) 97 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 68 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 128 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 127 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 116) (($ $ |#1|) 115))) +(((-737 |#1| |#2|) (-140) (-1046) (-847)) (T -737)) +((-2856 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) (-4 *2 (-847)))) (-2856 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-3004 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-737 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-847)))) (-4245 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) (-4 *2 (-847)))) (-4245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-1619 (*1 *2 *1 *3) (-12 (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *2 (-768)))) (-1619 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-768)) (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)))) (-3217 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)) (-5 *2 (-949 *4)))) (-3217 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) (-4 *5 (-847)) (-5 *2 (-949 *4)))) (-3128 (*1 *1 *1 *2) (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)) (-4 *3 (-38 (-407 (-564))))))) +(-13 (-897 |t#2|) (-970 |t#1| (-531 |t#2|) |t#2|) (-514 |t#2| $) (-309 $) (-10 -8 (-15 -2856 ($ $ |t#2| (-768))) (-15 -2856 ($ $ (-641 |t#2|) (-641 (-768)))) (-15 -3004 ($ $ (-768))) (-15 -4245 ($ $ |t#2| (-768))) (-15 -4245 ($ $ (-641 |t#2|) (-641 (-768)))) (-15 -1619 ((-768) $ |t#2|)) (-15 -1619 ((-768) $ |t#2| (-768))) (-15 -3217 ((-949 |t#1|) $ (-768))) (-15 -3217 ((-949 |t#1|) $ (-768) (-768))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $ |t#2|)) (-6 (-999)) (-6 (-1194))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-531 |#2|)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-290) |has| |#1| (-556)) ((-309 $) . T) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 |#2| $) . T) ((-514 $ $) . T) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 |#2|) . T) ((-970 |#1| #0# |#2|) . T) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564))))) +((-4127 (((-418 (-1166 |#4|)) (-1166 |#4|)) 30) (((-418 |#4|) |#4|) 26))) +(((-738 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4127 ((-418 |#4|) |#4|)) (-15 -4127 ((-418 (-1166 |#4|)) (-1166 |#4|)))) (-847) (-790) (-13 (-307) (-147)) (-946 |#3| |#2| |#1|)) (T -738)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))) +(-10 -7 (-15 -4127 ((-418 |#4|) |#4|)) (-15 -4127 ((-418 (-1166 |#4|)) (-1166 |#4|)))) +((-3117 (((-418 |#4|) |#4| |#2|) 142)) (-2862 (((-418 |#4|) |#4|) NIL)) (-3048 (((-418 (-1166 |#4|)) (-1166 |#4|)) 127) (((-418 |#4|) |#4|) 52)) (-3972 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4127 (-1166 |#4|)) (|:| -2515 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 81)) (-3827 (((-1166 |#3|) (-1166 |#3|) (-564)) 167)) (-1894 (((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768)) 75)) (-1687 (((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|)) 79)) (-2973 (((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|))) 27)) (-1965 (((-2 (|:| -4268 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564)) 72)) (-3358 (((-564) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564))))) 163)) (-3506 ((|#4| (-564) (-418 |#4|)) 73)) (-2210 (((-112) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564)))) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564))))) NIL))) +(((-739 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3048 ((-418 |#4|) |#4|)) (-15 -3048 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -2862 ((-418 |#4|) |#4|)) (-15 -3358 ((-564) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564)))))) (-15 -3117 ((-418 |#4|) |#4| |#2|)) (-15 -1965 ((-2 (|:| -4268 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -3972 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4127 (-1166 |#4|)) (|:| -2515 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2973 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -3506 (|#4| (-564) (-418 |#4|))) (-15 -2210 ((-112) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564)))) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564)))))) (-15 -1687 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|))) (-15 -1894 ((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768))) (-15 -3827 ((-1166 |#3|) (-1166 |#3|) (-564)))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -739)) +((-3827 (*1 *2 *2 *3) (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-1894 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-847)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-4 *8 (-307)) (-5 *2 (-641 (-768))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *5 (-768)))) (-1687 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) (-5 *7 (-641 (-768))) (-5 *8 (-641 *11)) (-4 *10 (-847)) (-4 *11 (-307)) (-4 *9 (-790)) (-4 *5 (-946 *11 *9 *10)) (-5 *2 (-641 (-1166 *5))) (-5 *1 (-739 *9 *10 *11 *5)) (-5 *3 (-1166 *5)))) (-2210 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-2 (|:| -4127 (-1166 *6)) (|:| -2515 (-564))))) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-3506 (*1 *2 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-946 *7 *5 *6)) (-5 *1 (-739 *5 *6 *7 *2)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-307)))) (-2973 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-5 *2 (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) (|:| |Lfact| (-641 (-2 (|:| -4127 (-1166 *8)) (|:| -2515 (-564))))) (|:| |ctpol| *8))) (-5 *1 (-739 *6 *7 *8 *9)))) (-3972 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *6 (-790)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-641 (-2 (|:| -4127 (-1166 *9)) (|:| -2515 (-564))))))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)))) (-1965 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-564)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-5 *2 (-2 (|:| -4268 (-1166 *9)) (|:| |polval| (-1166 *8)))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8)))) (-3117 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) (-3358 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -4127 (-1166 *6)) (|:| -2515 (-564))))) (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2862 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5))))) +(-10 -7 (-15 -3048 ((-418 |#4|) |#4|)) (-15 -3048 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -2862 ((-418 |#4|) |#4|)) (-15 -3358 ((-564) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564)))))) (-15 -3117 ((-418 |#4|) |#4| |#2|)) (-15 -1965 ((-2 (|:| -4268 (-1166 |#4|)) (|:| |polval| (-1166 |#3|))) (-1166 |#4|) (-1166 |#3|) (-564))) (-15 -3972 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-641 (-2 (|:| -4127 (-1166 |#4|)) (|:| -2515 (-564)))))) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -2973 ((-2 (|:| |upol| (-1166 |#3|)) (|:| |Lval| (-641 |#3|)) (|:| |Lfact| (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564))))) (|:| |ctpol| |#3|)) (-1166 |#4|) (-641 |#2|) (-641 (-641 |#3|)))) (-15 -3506 (|#4| (-564) (-418 |#4|))) (-15 -2210 ((-112) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564)))) (-641 (-2 (|:| -4127 (-1166 |#3|)) (|:| -2515 (-564)))))) (-15 -1687 ((-3 (-641 (-1166 |#4|)) "failed") (-1166 |#4|) (-1166 |#3|) (-1166 |#3|) |#4| (-641 |#2|) (-641 (-768)) (-641 |#3|))) (-15 -1894 ((-641 (-768)) (-1166 |#4|) (-641 |#2|) (-768))) (-15 -3827 ((-1166 |#3|) (-1166 |#3|) (-564)))) +((-2545 (($ $ (-918)) 17))) +(((-740 |#1| |#2|) (-10 -8 (-15 -2545 (|#1| |#1| (-918)))) (-741 |#2|) (-172)) (T -740)) +NIL +(-10 -8 (-15 -2545 (|#1| |#1| (-918)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2752 (($ $ (-918)) 28)) (-2545 (($ $ (-918)) 33)) (-3154 (($ $ (-918)) 29)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3671 (($ $ $) 25)) (-3742 (((-859) $) 11)) (-3533 (($ $ $ $) 26)) (-1879 (($ $ $) 24)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34))) +(((-741 |#1|) (-140) (-172)) (T -741)) +((-2545 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-741 *3)) (-4 *3 (-172))))) +(-13 (-758) (-714 |t#1|) (-10 -8 (-15 -2545 ($ $ (-918))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-717) . T) ((-758) . T) ((-1052 |#1|) . T) ((-1094) . T)) +((-3125 (((-1032) (-685 (-225)) (-564) (-112) (-564)) 25)) (-1434 (((-1032) (-685 (-225)) (-564) (-112) (-564)) 24))) +(((-742) (-10 -7 (-15 -1434 ((-1032) (-685 (-225)) (-564) (-112) (-564))) (-15 -3125 ((-1032) (-685 (-225)) (-564) (-112) (-564))))) (T -742)) +((-3125 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-742)))) (-1434 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-742))))) +(-10 -7 (-15 -1434 ((-1032) (-685 (-225)) (-564) (-112) (-564))) (-15 -3125 ((-1032) (-685 (-225)) (-564) (-112) (-564)))) +((-1769 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) 43)) (-3164 (((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) 39)) (-1588 (((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) 32))) +(((-743) (-10 -7 (-15 -1588 ((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -3164 ((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -1769 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN))))))) (T -743)) +((-1769 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1032)) (-5 *1 (-743)))) (-3164 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1032)) (-5 *1 (-743)))) (-1588 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) (-5 *2 (-1032)) (-5 *1 (-743))))) +(-10 -7 (-15 -1588 ((-1032) (-225) (-225) (-225) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -3164 ((-1032) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN))))) (-15 -1769 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))))) +((-1759 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 34)) (-3006 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 33)) (-4308 (((-1032) (-564) (-685 (-225)) (-564)) 32)) (-4365 (((-1032) (-564) (-685 (-225)) (-564)) 31)) (-2560 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 30)) (-2879 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-3044 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-1298 (((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-1440 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-3660 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-3224 (((-1032) (-564) (-685 (-225)) (-564)) 22)) (-1564 (((-1032) (-564) (-685 (-225)) (-564)) 21))) +(((-744) (-10 -7 (-15 -1564 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3224 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3660 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1440 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1298 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3044 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2879 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2560 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4365 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -4308 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3006 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -1759 ((-1032) (-564) (-564) (-685 (-225)) (-564))))) (T -744)) +((-1759 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3006 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-4308 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-4365 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2560 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-2879 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3044 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1298 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1440 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3660 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-3224 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744)))) (-1564 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-744))))) +(-10 -7 (-15 -1564 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3224 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3660 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1440 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1298 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3044 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2879 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2560 ((-1032) (-564) (-564) (-1152) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -4365 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -4308 ((-1032) (-564) (-685 (-225)) (-564))) (-15 -3006 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -1759 ((-1032) (-564) (-564) (-685 (-225)) (-564)))) +((-3118 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 52)) (-1627 (((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564)) 51)) (-3309 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) 50)) (-1604 (((-1032) (-225) (-225) (-564) (-564) (-564) (-564)) 46)) (-2728 (((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 45)) (-3995 (((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 44)) (-2083 (((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 43)) (-4027 (((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) 42)) (-2082 (((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) 38)) (-3161 (((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) 37)) (-4306 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) 33)) (-3450 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) 32))) +(((-745) (-10 -7 (-15 -3450 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -4306 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -3161 ((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -2082 ((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -4027 ((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2083 ((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3995 ((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2728 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1604 ((-1032) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -3309 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1627 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -3118 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))))) (T -745)) +((-3118 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1627 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3309 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-1604 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2728 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3995 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2083 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-4027 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-2082 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3161 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-745)))) (-4306 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) (-5 *2 (-1032)) (-5 *1 (-745)))) (-3450 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) (-5 *2 (-1032)) (-5 *1 (-745))))) +(-10 -7 (-15 -3450 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -4306 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -3161 ((-1032) (-225) (-225) (-564) (-685 (-225)) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -2082 ((-1032) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510))))) (-15 -4027 ((-1032) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2083 ((-1032) (-225) (-225) (-225) (-225) (-564) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -3995 ((-1032) (-225) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -2728 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G))))) (-15 -1604 ((-1032) (-225) (-225) (-564) (-564) (-564) (-564))) (-15 -3309 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN))))) (-15 -1627 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-564))) (-15 -3118 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-225) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))))) +((-3942 (((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) 76)) (-3500 (((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388)) 69) (((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) 68)) (-1397 (((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) 57)) (-2520 (((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 50)) (-4184 (((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 49)) (-3982 (((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 45)) (-4317 (((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) 42)) (-2822 (((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) 38))) +(((-746) (-10 -7 (-15 -2822 ((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -4317 ((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3982 ((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -4184 ((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2520 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -1397 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3500 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3500 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -3942 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP))))))) (T -746)) +((-3942 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3500 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *8 (-388)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3500 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) (-5 *2 (-1032)) (-5 *1 (-746)))) (-1397 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2520 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1032)) (-5 *1 (-746)))) (-4184 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-3982 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-4317 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746)))) (-2822 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) +(-10 -7 (-15 -2822 ((-1032) (-225) (-564) (-564) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -4317 ((-1032) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -3982 ((-1032) (-225) (-564) (-564) (-225) (-1152) (-225) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -4184 ((-1032) (-225) (-564) (-564) (-1152) (-564) (-225) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT))))) (-15 -2520 ((-1032) (-685 (-225)) (-685 (-225)) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN))))) (-15 -1397 ((-1032) (-225) (-225) (-564) (-225) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG))))) (-15 -3500 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))))) (-15 -3500 ((-1032) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL))) (-388) (-388))) (-15 -3942 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))))) +((-2506 (((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)) 45)) (-1882 (((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) 41)) (-3543 (((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 23))) +(((-747) (-10 -7 (-15 -3543 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1882 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2506 ((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564))))) (T -747)) +((-2506 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-747)))) (-1882 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1032)) (-5 *1 (-747)))) (-3543 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-747))))) +(-10 -7 (-15 -3543 ((-1032) (-564) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1882 ((-1032) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-1152) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF))) (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY))))) (-15 -2506 ((-1032) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-671 (-225)) (-564)))) +((-3312 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)) 35)) (-3050 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564)) 34)) (-3536 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564)) 33)) (-1676 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-2825 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-4096 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564)) 27)) (-2152 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 24)) (-3143 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564)) 23)) (-1608 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 22)) (-2838 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 21))) +(((-748) (-10 -7 (-15 -2838 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -1608 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3143 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2152 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -4096 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2825 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1676 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3536 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -3050 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -3312 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564))))) (T -748)) +((-3312 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3050 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3536 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-1676 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2825 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-4096 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2152 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-3143 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-1608 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748)))) (-2838 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-748))))) +(-10 -7 (-15 -2838 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -1608 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3143 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2152 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -4096 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-225) (-564))) (-15 -2825 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1676 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3536 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-685 (-225)) (-225) (-225) (-564))) (-15 -3050 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-225) (-225) (-564))) (-15 -3312 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-685 (-225)) (-225) (-225) (-564)))) +((-1733 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 45)) (-1842 (((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564)) 44)) (-3232 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)) 43)) (-1581 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 42)) (-2946 (((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564)) 41)) (-3091 (((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 40)) (-1698 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564)) 39)) (-1981 (((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564))) 38)) (-2256 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564)) 35)) (-2827 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564)) 34)) (-3186 (((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564)) 33)) (-1631 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 32)) (-3093 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564)) 31)) (-2567 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564)) 30)) (-2609 (((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 29)) (-4143 (((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564)) 28)) (-1401 (((-1032) (-564) (-685 (-225)) (-225) (-564)) 24)) (-2896 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 21))) +(((-749) (-10 -7 (-15 -2896 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1401 ((-1032) (-564) (-685 (-225)) (-225) (-564))) (-15 -4143 ((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -2609 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2567 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -3093 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -1631 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3186 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -2827 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -2256 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1981 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -1698 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -3091 ((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -2946 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1581 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3232 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -1842 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1733 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))))) (T -749)) +((-1733 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1842 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3232 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1581 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2946 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3091 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1698 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1981 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2256 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2827 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3186 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1631 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749)))) (-3093 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2567 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2609 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-4143 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-1401 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) (-5 *2 (-1032)) (-5 *1 (-749)))) (-2896 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-749))))) +(-10 -7 (-15 -2896 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1401 ((-1032) (-564) (-685 (-225)) (-225) (-564))) (-15 -4143 ((-1032) (-564) (-564) (-564) (-225) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-564)) (-564) (-564) (-564))) (-15 -2609 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2567 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564) (-564) (-564))) (-15 -3093 ((-1032) (-564) (-225) (-225) (-685 (-225)) (-564) (-564) (-225) (-564))) (-15 -1631 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3186 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564))) (-15 -2827 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564))) (-15 -2256 ((-1032) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1981 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)))) (-15 -1698 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564) (-564) (-564) (-225) (-685 (-225)) (-564))) (-15 -3091 ((-1032) (-1152) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -2946 ((-1032) (-1152) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1581 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3232 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564))) (-15 -1842 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1733 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564) (-685 (-225)) (-685 (-225)) (-564) (-564) (-564)))) +((-1531 (((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)) 63)) (-2780 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 62)) (-3131 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) 58)) (-1490 (((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564)) 51)) (-3517 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) 50)) (-3858 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) 46)) (-2122 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) 42)) (-3468 (((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) 38))) +(((-750) (-10 -7 (-15 -3468 ((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2122 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -3858 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -3517 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -1490 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -3131 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -2780 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1531 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564))))) (T -750)) +((-1531 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-2780 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3131 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-1490 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3517 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3858 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-2122 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1032)) (-5 *1 (-750)))) (-3468 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750))))) +(-10 -7 (-15 -3468 ((-1032) (-564) (-225) (-225) (-564) (-225) (-112) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -2122 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1))))) (-15 -3858 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2))))) (-15 -3517 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1))))) (-15 -1490 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-564) (-564) (-685 (-225)) (-564))) (-15 -3131 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-225) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-112) (-112) (-112) (-564) (-564) (-685 (-225)) (-685 (-564)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS))))) (-15 -2780 ((-1032) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-564) (-112) (-225) (-564) (-225) (-225) (-112) (-225) (-225) (-225) (-225) (-112) (-564) (-564) (-564) (-564) (-564) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-564) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN))))) (-15 -1531 ((-1032) (-564) (-564) (-564) (-225) (-685 (-225)) (-564) (-685 (-225)) (-564)))) +((-2103 (((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 47)) (-1332 (((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564)) 46)) (-3348 (((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 45)) (-1372 (((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 40)) (-3747 (((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564)) 39)) (-4055 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-564)) 36)) (-2354 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564)) 35)) (-2715 (((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564)) 34)) (-2820 (((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564)) 33)) (-3114 (((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564)) 32))) +(((-751) (-10 -7 (-15 -3114 ((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -2820 ((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -2715 ((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -2354 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -4055 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -3747 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -1372 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3348 ((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1332 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -2103 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -751)) +((-2103 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-1332 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3348 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-1372 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3747 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-4055 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2354 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2715 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-2820 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-751)))) (-3114 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) (-5 *2 (-1032)) (-5 *1 (-751))))) +(-10 -7 (-15 -3114 ((-1032) (-564) (-564) (-564) (-564) (-225) (-112) (-112) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-564))) (-15 -2820 ((-1032) (-564) (-564) (-564) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-685 (-564)) (-112) (-225) (-112) (-685 (-564)) (-685 (-225)) (-564))) (-15 -2715 ((-1032) (-564) (-564) (-564) (-564) (-641 (-112)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-225) (-225) (-564))) (-15 -2354 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564))) (-15 -4055 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -3747 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)) (-564))) (-15 -1372 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3348 ((-1032) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1332 ((-1032) (-1152) (-1152) (-564) (-564) (-685 (-169 (-225))) (-564) (-685 (-169 (-225))) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -2103 ((-1032) (-1152) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)))) +((-1652 (((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)) 80)) (-1932 (((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 69)) (-3541 (((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388)) 56) (((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) 55)) (-1729 (((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564)) 37)) (-2074 (((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564)) 33)) (-1385 (((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564)) 30)) (-3697 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 29)) (-3881 (((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 28)) (-2196 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 27)) (-3404 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564)) 26)) (-1574 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 25)) (-2725 (((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 24)) (-3191 (((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564)) 23)) (-3680 (((-1032) (-685 (-225)) (-564) (-564) (-564) (-564)) 22)) (-2002 (((-1032) (-564) (-564) (-685 (-225)) (-564)) 21))) +(((-752) (-10 -7 (-15 -2002 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -3680 ((-1032) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3191 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2725 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1574 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -3404 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2196 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3881 ((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3697 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1385 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2074 ((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -1729 ((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3541 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -3541 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1932 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1652 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564))))) (T -752)) +((-1652 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1932 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3541 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3541 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1729 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2074 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1385 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3697 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3881 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2196 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3404 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-1574 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2725 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3191 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752)))) (-3680 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-752)))) (-2002 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752))))) +(-10 -7 (-15 -2002 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -3680 ((-1032) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3191 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -2725 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1574 ((-1032) (-564) (-564) (-685 (-225)) (-564))) (-15 -3404 ((-1032) (-564) (-564) (-564) (-564) (-685 (-225)) (-564))) (-15 -2196 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3881 ((-1032) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3697 ((-1032) (-564) (-564) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1385 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564) (-564))) (-15 -2074 ((-1032) (-564) (-564) (-225) (-225) (-564) (-564) (-685 (-225)) (-564))) (-15 -1729 ((-1032) (-564) (-564) (-564) (-225) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3541 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))))) (-15 -3541 ((-1032) (-564) (-564) (-225) (-564) (-564) (-564) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE))) (-388))) (-15 -1932 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -1652 ((-1032) (-564) (-564) (-564) (-564) (-564) (-112) (-564) (-112) (-564) (-685 (-169 (-225))) (-685 (-169 (-225))) (-564)))) +((-3708 (((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) 64)) (-3324 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564)) 60)) (-4334 (((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) 59)) (-3669 (((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564)) 37)) (-3416 (((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564)) 36)) (-3788 (((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564)) 33)) (-4296 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225))) 32)) (-2694 (((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564)) 28)) (-3180 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 27)) (-1689 (((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564)) 26)) (-3508 (((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564)) 22))) +(((-753) (-10 -7 (-15 -3508 ((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1689 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3180 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2694 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -4296 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -3788 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3416 ((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3669 ((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -4334 ((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3324 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3708 ((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD))))))) (T -753)) +((-3708 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3324 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-4334 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3669 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3416 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3788 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-4296 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-2694 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3180 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-1689 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-753)))) (-3508 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) (-5 *1 (-753))))) +(-10 -7 (-15 -3508 ((-1032) (-564) (-685 (-169 (-225))) (-564) (-564) (-564) (-564) (-685 (-169 (-225))) (-564))) (-15 -1689 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -3180 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-564))) (-15 -2694 ((-1032) (-685 (-225)) (-564) (-685 (-225)) (-564) (-564) (-564))) (-15 -4296 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-564)) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)))) (-15 -3788 ((-1032) (-564) (-564) (-685 (-225)) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3416 ((-1032) (-564) (-564) (-564) (-225) (-564) (-685 (-225)) (-685 (-225)) (-564))) (-15 -3669 ((-1032) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-564)) (-685 (-225)) (-685 (-564)) (-685 (-564)) (-685 (-225)) (-685 (-225)) (-685 (-564)) (-564))) (-15 -4334 ((-1032) (-564) (-685 (-225)) (-112) (-225) (-564) (-564) (-564) (-564) (-225) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE))))) (-15 -3324 ((-1032) (-564) (-685 (-225)) (-564) (-685 (-225)) (-685 (-564)) (-564) (-685 (-225)) (-564) (-564) (-564) (-564))) (-15 -3708 ((-1032) (-564) (-564) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-685 (-225)) (-564) (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))))) +((-2130 (((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))) 29)) (-2461 (((-1032) (-1152) (-564) (-564) (-685 (-225))) 28)) (-1796 (((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225))) 27)) (-3377 (((-1032) (-564) (-564) (-564) (-685 (-225))) 21))) +(((-754) (-10 -7 (-15 -3377 ((-1032) (-564) (-564) (-564) (-685 (-225)))) (-15 -1796 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -2461 ((-1032) (-1152) (-564) (-564) (-685 (-225)))) (-15 -2130 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225)))))) (T -754)) +((-2130 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))) (-2461 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754)))) (-1796 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-754)))) (-3377 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-754))))) +(-10 -7 (-15 -3377 ((-1032) (-564) (-564) (-564) (-685 (-225)))) (-15 -1796 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-685 (-564)) (-564) (-685 (-225)))) (-15 -2461 ((-1032) (-1152) (-564) (-564) (-685 (-225)))) (-15 -2130 ((-1032) (-1152) (-564) (-564) (-685 (-225)) (-564) (-564) (-685 (-225))))) +((-2280 (((-1032) (-225) (-225) (-225) (-225) (-564)) 62)) (-1414 (((-1032) (-225) (-225) (-225) (-564)) 61)) (-1664 (((-1032) (-225) (-225) (-225) (-564)) 60)) (-1782 (((-1032) (-225) (-225) (-564)) 59)) (-3281 (((-1032) (-225) (-564)) 58)) (-3805 (((-1032) (-225) (-564)) 57)) (-2145 (((-1032) (-225) (-564)) 56)) (-2478 (((-1032) (-225) (-564)) 55)) (-3993 (((-1032) (-225) (-564)) 54)) (-1466 (((-1032) (-225) (-564)) 53)) (-2948 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 52)) (-2064 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 51)) (-2677 (((-1032) (-225) (-564)) 50)) (-2931 (((-1032) (-225) (-564)) 49)) (-1399 (((-1032) (-225) (-564)) 48)) (-3037 (((-1032) (-225) (-564)) 47)) (-2563 (((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564)) 46)) (-3495 (((-1032) (-1152) (-169 (-225)) (-1152) (-564)) 45)) (-3853 (((-1032) (-1152) (-169 (-225)) (-1152) (-564)) 44)) (-2127 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 43)) (-2530 (((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564)) 42)) (-4026 (((-1032) (-225) (-564)) 39)) (-2584 (((-1032) (-225) (-564)) 38)) (-4013 (((-1032) (-225) (-564)) 37)) (-2193 (((-1032) (-225) (-564)) 36)) (-3596 (((-1032) (-225) (-564)) 35)) (-3775 (((-1032) (-225) (-564)) 34)) (-2037 (((-1032) (-225) (-564)) 33)) (-3948 (((-1032) (-225) (-564)) 32)) (-2110 (((-1032) (-225) (-564)) 31)) (-3457 (((-1032) (-225) (-564)) 30)) (-1724 (((-1032) (-225) (-225) (-225) (-564)) 29)) (-2897 (((-1032) (-225) (-564)) 28)) (-3109 (((-1032) (-225) (-564)) 27)) (-1559 (((-1032) (-225) (-564)) 26)) (-3017 (((-1032) (-225) (-564)) 25)) (-3395 (((-1032) (-225) (-564)) 24)) (-3752 (((-1032) (-169 (-225)) (-564)) 21))) +(((-755) (-10 -7 (-15 -3752 ((-1032) (-169 (-225)) (-564))) (-15 -3395 ((-1032) (-225) (-564))) (-15 -3017 ((-1032) (-225) (-564))) (-15 -1559 ((-1032) (-225) (-564))) (-15 -3109 ((-1032) (-225) (-564))) (-15 -2897 ((-1032) (-225) (-564))) (-15 -1724 ((-1032) (-225) (-225) (-225) (-564))) (-15 -3457 ((-1032) (-225) (-564))) (-15 -2110 ((-1032) (-225) (-564))) (-15 -3948 ((-1032) (-225) (-564))) (-15 -2037 ((-1032) (-225) (-564))) (-15 -3775 ((-1032) (-225) (-564))) (-15 -3596 ((-1032) (-225) (-564))) (-15 -2193 ((-1032) (-225) (-564))) (-15 -4013 ((-1032) (-225) (-564))) (-15 -2584 ((-1032) (-225) (-564))) (-15 -4026 ((-1032) (-225) (-564))) (-15 -2530 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2127 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3853 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -3495 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2563 ((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3037 ((-1032) (-225) (-564))) (-15 -1399 ((-1032) (-225) (-564))) (-15 -2931 ((-1032) (-225) (-564))) (-15 -2677 ((-1032) (-225) (-564))) (-15 -2064 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2948 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -1466 ((-1032) (-225) (-564))) (-15 -3993 ((-1032) (-225) (-564))) (-15 -2478 ((-1032) (-225) (-564))) (-15 -2145 ((-1032) (-225) (-564))) (-15 -3805 ((-1032) (-225) (-564))) (-15 -3281 ((-1032) (-225) (-564))) (-15 -1782 ((-1032) (-225) (-225) (-564))) (-15 -1664 ((-1032) (-225) (-225) (-225) (-564))) (-15 -1414 ((-1032) (-225) (-225) (-225) (-564))) (-15 -2280 ((-1032) (-225) (-225) (-225) (-225) (-564))))) (T -755)) +((-2280 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1414 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1664 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1782 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3281 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3805 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3993 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1466 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2948 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2064 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2677 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2931 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2563 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3495 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3853 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2127 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2530 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4026 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2584 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2193 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3596 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3775 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2037 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3948 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2110 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3457 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1724 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3109 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-1559 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3017 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3395 (*1 *2 *3 *4) (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755)))) (-3752 (*1 *2 *3 *4) (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(-10 -7 (-15 -3752 ((-1032) (-169 (-225)) (-564))) (-15 -3395 ((-1032) (-225) (-564))) (-15 -3017 ((-1032) (-225) (-564))) (-15 -1559 ((-1032) (-225) (-564))) (-15 -3109 ((-1032) (-225) (-564))) (-15 -2897 ((-1032) (-225) (-564))) (-15 -1724 ((-1032) (-225) (-225) (-225) (-564))) (-15 -3457 ((-1032) (-225) (-564))) (-15 -2110 ((-1032) (-225) (-564))) (-15 -3948 ((-1032) (-225) (-564))) (-15 -2037 ((-1032) (-225) (-564))) (-15 -3775 ((-1032) (-225) (-564))) (-15 -3596 ((-1032) (-225) (-564))) (-15 -2193 ((-1032) (-225) (-564))) (-15 -4013 ((-1032) (-225) (-564))) (-15 -2584 ((-1032) (-225) (-564))) (-15 -4026 ((-1032) (-225) (-564))) (-15 -2530 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2127 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3853 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -3495 ((-1032) (-1152) (-169 (-225)) (-1152) (-564))) (-15 -2563 ((-1032) (-564) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -3037 ((-1032) (-225) (-564))) (-15 -1399 ((-1032) (-225) (-564))) (-15 -2931 ((-1032) (-225) (-564))) (-15 -2677 ((-1032) (-225) (-564))) (-15 -2064 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -2948 ((-1032) (-225) (-169 (-225)) (-564) (-1152) (-564))) (-15 -1466 ((-1032) (-225) (-564))) (-15 -3993 ((-1032) (-225) (-564))) (-15 -2478 ((-1032) (-225) (-564))) (-15 -2145 ((-1032) (-225) (-564))) (-15 -3805 ((-1032) (-225) (-564))) (-15 -3281 ((-1032) (-225) (-564))) (-15 -1782 ((-1032) (-225) (-225) (-564))) (-15 -1664 ((-1032) (-225) (-225) (-225) (-564))) (-15 -1414 ((-1032) (-225) (-225) (-225) (-564))) (-15 -2280 ((-1032) (-225) (-225) (-225) (-225) (-564)))) +((-3402 (((-1264)) 21)) (-3581 (((-1152)) 32)) (-3916 (((-1152)) 31)) (-1826 (((-1098) (-1170) (-685 (-564))) 46) (((-1098) (-1170) (-685 (-225))) 42)) (-3336 (((-112)) 19)) (-2067 (((-1152) (-1152)) 35))) +(((-756) (-10 -7 (-15 -3916 ((-1152))) (-15 -3581 ((-1152))) (-15 -2067 ((-1152) (-1152))) (-15 -1826 ((-1098) (-1170) (-685 (-225)))) (-15 -1826 ((-1098) (-1170) (-685 (-564)))) (-15 -3336 ((-112))) (-15 -3402 ((-1264))))) (T -756)) +((-3402 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-756)))) (-3336 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-756)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) (-5 *1 (-756)))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) (-5 *1 (-756)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))) (-3581 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756)))) (-3916 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756))))) +(-10 -7 (-15 -3916 ((-1152))) (-15 -3581 ((-1152))) (-15 -2067 ((-1152) (-1152))) (-15 -1826 ((-1098) (-1170) (-685 (-225)))) (-15 -1826 ((-1098) (-1170) (-685 (-564)))) (-15 -3336 ((-112))) (-15 -3402 ((-1264)))) +((-3671 (($ $ $) 10)) (-3533 (($ $ $ $) 9)) (-1879 (($ $ $) 12))) +(((-757 |#1|) (-10 -8 (-15 -1879 (|#1| |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#1| |#1| |#1|))) (-758)) (T -757)) +NIL +(-10 -8 (-15 -1879 (|#1| |#1| |#1|)) (-15 -3671 (|#1| |#1| |#1|)) (-15 -3533 (|#1| |#1| |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2752 (($ $ (-918)) 28)) (-3154 (($ $ (-918)) 29)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3671 (($ $ $) 25)) (-3742 (((-859) $) 11)) (-3533 (($ $ $ $) 26)) (-1879 (($ $ $) 24)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 30)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27))) +(((-758) (-140)) (T -758)) +((-3533 (*1 *1 *1 *1 *1) (-4 *1 (-758))) (-3671 (*1 *1 *1 *1) (-4 *1 (-758))) (-1879 (*1 *1 *1 *1) (-4 *1 (-758)))) +(-13 (-21) (-717) (-10 -8 (-15 -3533 ($ $ $ $)) (-15 -3671 ($ $ $)) (-15 -1879 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-717) . T) ((-1094) . T)) +((-3742 (((-859) $) NIL) (($ (-564)) 10))) +(((-759 |#1|) (-10 -8 (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-760)) (T -759)) +NIL +(-10 -8 (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3664 (((-3 $ "failed") $) 40)) (-2752 (($ $ (-918)) 28) (($ $ (-768)) 35)) (-3951 (((-3 $ "failed") $) 38)) (-3840 (((-112) $) 34)) (-3714 (((-3 $ "failed") $) 39)) (-3154 (($ $ (-918)) 29) (($ $ (-768)) 36)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3671 (($ $ $) 25)) (-3742 (((-859) $) 11) (($ (-564)) 31)) (-3270 (((-768)) 32 T CONST)) (-3533 (($ $ $ $) 26)) (-1879 (($ $ $) 24)) (-4311 (($) 18 T CONST)) (-4321 (($) 33 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 30) (($ $ (-768)) 37)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 27))) +(((-760) (-140)) (T -760)) +((-3270 (*1 *2) (-12 (-4 *1 (-760)) (-5 *2 (-768)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-760))))) +(-13 (-758) (-719) (-10 -8 (-15 -3270 ((-768)) -2091) (-15 -3742 ($ (-564))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-717) . T) ((-719) . T) ((-758) . T) ((-1094) . T)) +((-3909 (((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|) 33)) (-2169 (((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|) 23)) (-2230 (((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170)) 20) (((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564))))) 19))) +(((-761 |#1|) (-10 -7 (-15 -2230 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -2230 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -2169 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -3909 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) (-13 (-363) (-845))) (T -761)) +((-3909 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 *4))))))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))) (-2169 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845))))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *5)) (-4 *5 (-13 (-363) (-845))))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845)))))) +(-10 -7 (-15 -2230 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))))) (-15 -2230 ((-949 (-169 (-407 (-564)))) (-685 (-169 (-407 (-564)))) (-1170))) (-15 -2169 ((-641 (-169 |#1|)) (-685 (-169 (-407 (-564)))) |#1|)) (-15 -3909 ((-641 (-2 (|:| |outval| (-169 |#1|)) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 (-169 |#1|)))))) (-685 (-169 (-407 (-564)))) |#1|))) +((-2426 (((-174 (-564)) |#1|) 27))) +(((-762 |#1|) (-10 -7 (-15 -2426 ((-174 (-564)) |#1|))) (-404)) (T -762)) +((-2426 (*1 *2 *3) (-12 (-5 *2 (-174 (-564))) (-5 *1 (-762 *3)) (-4 *3 (-404))))) +(-10 -7 (-15 -2426 ((-174 (-564)) |#1|))) +((-4199 ((|#1| |#1| |#1|) 28)) (-2700 ((|#1| |#1| |#1|) 27)) (-2406 ((|#1| |#1| |#1|) 38)) (-2496 ((|#1| |#1| |#1|) 34)) (-4353 (((-3 |#1| "failed") |#1| |#1|) 31)) (-2695 (((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|) 26))) +(((-763 |#1| |#2|) (-10 -7 (-15 -2695 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4353 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2496 (|#1| |#1| |#1|)) (-15 -2406 (|#1| |#1| |#1|))) (-705 |#2|) (-363)) (T -763)) +((-2406 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-2496 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-4353 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-4199 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-2700 (*1 *2 *2 *2) (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) (-2695 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-763 *3 *4)) (-4 *3 (-705 *4))))) +(-10 -7 (-15 -2695 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -4353 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2496 (|#1| |#1| |#1|)) (-15 -2406 (|#1| |#1| |#1|))) +((-4075 (((-687 (-1217)) $ (-1217)) 26)) (-2047 (((-687 (-549)) $ (-549)) 25)) (-3674 (((-768) $ (-128)) 27)) (-1768 (((-687 (-129)) $ (-129)) 24)) (-2268 (((-687 (-1217)) $) 12)) (-3297 (((-687 (-1215)) $) 8)) (-4193 (((-687 (-1214)) $) 10)) (-3832 (((-687 (-549)) $) 13)) (-1567 (((-687 (-547)) $) 9)) (-2636 (((-687 (-546)) $) 11)) (-1694 (((-768) $ (-128)) 7)) (-3356 (((-687 (-129)) $) 14)) (-3575 (((-112) $) 31)) (-1534 (((-687 $) |#1| (-951)) 32)) (-1322 (($ $) 6))) +(((-764 |#1|) (-140) (-1094)) (T -764)) +((-1534 (*1 *2 *3 *4) (-12 (-5 *4 (-951)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) (-4 *1 (-764 *3)))) (-3575 (*1 *2 *1) (-12 (-4 *1 (-764 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(-13 (-576) (-10 -8 (-15 -1534 ((-687 $) |t#1| (-951))) (-15 -3575 ((-112) $)))) +(((-173) . T) ((-527) . T) ((-576) . T) ((-857) . T)) +((-2791 (((-2 (|:| -4265 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)) 71)) (-4054 (((-2 (|:| -4265 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) 69)) (-4284 (((-564)) 85))) +(((-765 |#1| |#2|) (-10 -7 (-15 -4284 ((-564))) (-15 -4054 ((-2 (|:| -4265 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -2791 ((-2 (|:| -4265 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) (-1235 (-564)) (-409 (-564) |#1|)) (T -765)) +((-2791 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) (-5 *2 (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-765 *4 *5)) (-4 *5 (-409 *3 *4)))) (-4054 (*1 *2) (-12 (-4 *3 (-1235 (-564))) (-5 *2 (-2 (|:| -4265 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564))))) (-5 *1 (-765 *3 *4)) (-4 *4 (-409 (-564) *3)))) (-4284 (*1 *2) (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-765 *3 *4)) (-4 *4 (-409 *2 *3))))) +(-10 -7 (-15 -4284 ((-564))) (-15 -4054 ((-2 (|:| -4265 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))))) (-15 -2791 ((-2 (|:| -4265 (-685 (-564))) (|:| |basisDen| (-564)) (|:| |basisInv| (-685 (-564)))) (-564)))) +((-3732 (((-112) $ $) NIL)) (-2239 (((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $) 21)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 20) (($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) 18)) (-1705 (((-112) $ $) NIL))) +(((-766) (-13 (-1094) (-10 -8 (-15 -3742 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3742 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3742 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2239 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $))))) (T -766)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-766)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-766)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-766)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-5 *1 (-766))))) +(-13 (-1094) (-10 -8 (-15 -3742 ($ (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3742 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3742 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (-15 -2239 ((-3 (|:| |nia| (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| |mdnia| (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) $)))) +((-1487 (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))) 18) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170))) 17)) (-2443 (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))) 20) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170))) 19))) +(((-767 |#1|) (-10 -7 (-15 -1487 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -1487 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))))) (-556)) (T -767)) +((-2443 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5))))) +(-10 -7 (-15 -1487 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -1487 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-949 |#1|))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2850 (($ $ $) 12)) (-3239 (((-3 $ "failed") $ $) 16)) (-2338 (($ $ (-564)) 13)) (-2818 (($) NIL T CONST)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($ $) NIL)) (-1350 (($ $ $) NIL)) (-3840 (((-112) $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2577 (($ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3742 (((-859) $) NIL)) (-4311 (($) 6 T CONST)) (-4321 (($) NIL T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ $ $) NIL))) +(((-768) (-13 (-790) (-723) (-10 -8 (-15 -1350 ($ $ $)) (-15 -1373 ($ $ $)) (-15 -2577 ($ $ $)) (-15 -1318 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -1321 ((-3 $ "failed") $ $)) (-15 -2338 ($ $ (-564))) (-15 -2821 ($ $)) (-6 (-4413 "*"))))) (T -768)) +((-1350 (*1 *1 *1 *1) (-5 *1 (-768))) (-1373 (*1 *1 *1 *1) (-5 *1 (-768))) (-2577 (*1 *1 *1 *1) (-5 *1 (-768))) (-1318 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1935 (-768)) (|:| -1363 (-768)))) (-5 *1 (-768)))) (-1321 (*1 *1 *1 *1) (|partial| -5 *1 (-768))) (-2338 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-768)))) (-2821 (*1 *1 *1) (-5 *1 (-768)))) +(-13 (-790) (-723) (-10 -8 (-15 -1350 ($ $ $)) (-15 -1373 ($ $ $)) (-15 -2577 ($ $ $)) (-15 -1318 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -1321 ((-3 $ "failed") $ $)) (-15 -2338 ($ $ (-564))) (-15 -2821 ($ $)) (-6 (-4413 "*")))) ((|Integer|) (COND ((< |#1| 0) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1558 (((-3 |#2| "failed") |#2| |#2| (-114) (-1169)) 37))) -(((-768 |#1| |#2|) (-10 -7 (-15 -1558 ((-3 |#2| "failed") |#2| |#2| (-114) (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -768)) -((-1558 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1193) (-955)))))) -(-10 -7 (-15 -1558 ((-3 |#2| "failed") |#2| |#2| (-114) (-1169)))) -((-2062 (((-770) |#1|) 8))) -(((-769 |#1|) (-10 -7 (-15 -2062 ((-770) |#1|))) (-1208)) (T -769)) -((-2062 (*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1208))))) -(-10 -7 (-15 -2062 ((-770) |#1|))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 7)) (-2943 (((-112) $ $) 9))) -(((-770) (-1093)) (T -770)) -NIL -(-1093) -((-3251 ((|#2| |#4|) 35))) -(((-771 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3251 (|#2| |#4|))) (-452) (-1233 |#1|) (-720 |#1| |#2|) (-1233 |#3|)) (T -771)) -((-3251 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1233 *5))))) -(-10 -7 (-15 -3251 (|#2| |#4|))) -((-3230 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-2964 (((-1262) (-1151) (-1151) |#4| |#5|) 33)) (-2939 ((|#4| |#4| |#5|) 73)) (-2951 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|) 78)) (-2975 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|) 16))) -(((-772 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3230 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2939 (|#4| |#4| |#5|)) (-15 -2951 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -2964 ((-1262) (-1151) (-1151) |#4| |#5|)) (-15 -2975 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -772)) -((-2975 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2964 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1151)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1262)) (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4)))) (-2951 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-2939 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) (-4 *3 (-1065 *4 *5 *6 *2)))) (-3230 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(-10 -7 (-15 -3230 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2939 (|#4| |#4| |#5|)) (-15 -2951 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -2964 ((-1262) (-1151) (-1151) |#4| |#5|)) (-15 -2975 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|))) -((-2671 (((-3 (-1165 (-1165 |#1|)) "failed") |#4|) 53)) (-2986 (((-640 |#4|) |#4|) 24)) (-1772 ((|#4| |#4|) 19))) -(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2986 ((-640 |#4|) |#4|)) (-15 -2671 ((-3 (-1165 (-1165 |#1|)) "failed") |#4|)) (-15 -1772 (|#4| |#4|))) (-349) (-329 |#1|) (-1233 |#2|) (-1233 |#3|) (-917)) (T -773)) -((-1772 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1233 *4)) (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1233 *5)) (-14 *6 (-917)))) (-2671 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6)) (-14 *7 (-917)))) (-2986 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) (-5 *2 (-640 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6)) (-14 *7 (-917))))) -(-10 -7 (-15 -2986 ((-640 |#4|) |#4|)) (-15 -2671 ((-3 (-1165 (-1165 |#1|)) "failed") |#4|)) (-15 -1772 (|#4| |#4|))) -((-2996 (((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|)) 74)) (-3006 (((-640 (-767)) |#1|) 20))) -(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2996 ((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|))) (-15 -3006 ((-640 (-767)) |#1|))) (-1233 |#4|) (-789) (-846) (-307) (-945 |#4| |#2| |#3|)) (T -774)) -((-3006 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-640 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) (-4 *3 (-1233 *6)) (-4 *7 (-945 *6 *4 *5)))) (-2996 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1233 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) (-4 *10 (-945 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-640 (-1165 *10))) (|:| |dterm| (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| *10))))) (|:| |nfacts| (-640 *6)) (|:| |nlead| (-640 *10)))) (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1165 *10)) (-5 *4 (-640 *6)) (-5 *5 (-640 *10))))) -(-10 -7 (-15 -2996 ((-2 (|:| |deter| (-640 (-1165 |#5|))) (|:| |dterm| (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-640 |#1|)) (|:| |nlead| (-640 |#5|))) (-1165 |#5|) (-640 |#1|) (-640 |#5|))) (-15 -3006 ((-640 (-767)) |#1|))) -((-3037 (((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|) 31)) (-3025 (((-640 |#1|) (-684 (-407 (-563))) |#1|) 21)) (-3015 (((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169)) 18) (((-948 (-407 (-563))) (-684 (-407 (-563)))) 17))) -(((-775 |#1|) (-10 -7 (-15 -3015 ((-948 (-407 (-563))) (-684 (-407 (-563))))) (-15 -3015 ((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169))) (-15 -3025 ((-640 |#1|) (-684 (-407 (-563))) |#1|)) (-15 -3037 ((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|))) (-13 (-363) (-844))) (T -775)) -((-3037 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 (-2 (|:| |outval| *4) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 *4)))))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-3025 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) (-3015 (*1 *2 *3 *4) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *4 (-1169)) (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *5)) (-4 *5 (-13 (-363) (-844))))) (-3015 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))) -(-10 -7 (-15 -3015 ((-948 (-407 (-563))) (-684 (-407 (-563))))) (-15 -3015 ((-948 (-407 (-563))) (-684 (-407 (-563))) (-1169))) (-15 -3025 ((-640 |#1|) (-684 (-407 (-563))) |#1|)) (-15 -3037 ((-640 (-2 (|:| |outval| |#1|) (|:| |outmult| (-563)) (|:| |outvect| (-640 (-684 |#1|))))) (-684 (-407 (-563))) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 36)) (-2185 (((-640 |#2|) $) NIL)) (-2021 (((-1165 $) $ |#2|) NIL) (((-1165 |#1|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 |#2|)) NIL)) (-1588 (($ $) 30)) (-2539 (((-112) $ $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3952 (($ $ $) 108 (|has| |#1| (-555)))) (-2363 (((-640 $) $ $) 121 (|has| |#1| (-555)))) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (((-3 $ "failed") (-948 (-563))) NIL (-2811 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (((-3 $ "failed") (-948 |#1|)) NIL (-2811 (-12 (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-38 (-407 (-563))))) (-3730 (|has| |#1| (-38 (-563))))) (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-38 (-407 (-563))))) (-3730 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-988 (-563))))))) (((-3 (-1118 |#1| |#2|) "failed") $) 21)) (-2589 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#2| $) NIL) (($ (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (($ (-948 (-563))) NIL (-2811 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (($ (-948 |#1|)) NIL (-2811 (-12 (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-38 (-407 (-563))))) (-3730 (|has| |#1| (-38 (-563))))) (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-38 (-407 (-563))))) (-3730 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-988 (-563))))))) (((-1118 |#1| |#2|) $) NIL)) (-3962 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-555)))) (-3213 (($ $) NIL) (($ $ |#2|) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-1480 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2603 (((-112) $) NIL)) (-3926 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 79)) (-2316 (($ $) 134 (|has| |#1| (-452)))) (-2227 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-2437 (($ $) NIL (|has| |#1| (-555)))) (-2448 (($ $) NIL (|has| |#1| (-555)))) (-2528 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-2517 (($ $ $) 77) (($ $ $ |#2|) NIL)) (-3302 (($ $ |#1| (-531 |#2|) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-2712 (((-112) $) 56)) (-1528 (((-767) $) NIL)) (-1491 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-2327 (($ $ $ $ $) 105 (|has| |#1| (-555)))) (-2674 ((|#2| $) 22)) (-2175 (($ (-1165 |#1|) |#2|) NIL) (($ (-1165 $) |#2|) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 38) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2468 (($ $ $) 62)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ |#2|) NIL)) (-2612 (((-112) $) NIL)) (-3187 (((-531 |#2|) $) NIL) (((-767) $ |#2|) NIL) (((-640 (-767)) $ (-640 |#2|)) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2662 (((-767) $) 23)) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2845 (((-3 |#2| "failed") $) NIL)) (-2284 (($ $) NIL (|has| |#1| (-452)))) (-2295 (($ $) NIL (|has| |#1| (-452)))) (-2561 (((-640 $) $) NIL)) (-2593 (($ $) 39)) (-2305 (($ $) NIL (|has| |#1| (-452)))) (-2572 (((-640 $) $) 43)) (-2582 (($ $) 41)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL) (($ $ |#2|) 48)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3381 (-767))) $ $) 94)) (-2478 (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $) 76) (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $ |#2|) NIL)) (-2488 (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -1488 $)) $ $) NIL) (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -1488 $)) $ $ |#2|) NIL)) (-2508 (($ $ $) 81) (($ $ $ |#2|) NIL)) (-2499 (($ $ $) 84) (($ $ $ |#2|) NIL)) (-1938 (((-1151) $) NIL)) (-1508 (($ $ $) 123 (|has| |#1| (-555)))) (-2632 (((-640 $) $) 32)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-767))) "failed") $) NIL)) (-1447 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-1395 (($ $ $) NIL)) (-2956 (($ $) 24)) (-3449 (((-112) $ $) NIL)) (-1458 (((-112) $ $) NIL) (((-112) $ (-640 $)) NIL)) (-1405 (($ $ $) NIL)) (-2651 (($ $) 26)) (-3249 (((-1113) $) NIL)) (-2374 (((-2 (|:| -1647 $) (|:| |coef2| $)) $ $) 114 (|has| |#1| (-555)))) (-2387 (((-2 (|:| -1647 $) (|:| |coef1| $)) $ $) 111 (|has| |#1| (-555)))) (-3160 (((-112) $) 55)) (-3170 ((|#1| $) 57)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-1647 ((|#1| |#1| $) 131 (|has| |#1| (-452))) (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2401 (((-2 (|:| -1647 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 117 (|has| |#1| (-555)))) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-555)))) (-2413 (($ $ |#1|) 127 (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-2425 (($ $ |#1|) 126 (|has| |#1| (-555))) (($ $ $) NIL (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-640 |#2|) (-640 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-640 |#2|) (-640 $)) NIL)) (-3974 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1361 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1962 (((-531 |#2|) $) NIL) (((-767) $ |#2|) 45) (((-640 (-767)) $ (-640 |#2|)) NIL)) (-2642 (($ $) NIL)) (-2621 (($ $) 35)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536))))) (($ (-948 (-407 (-563)))) NIL (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169))))) (($ (-948 (-563))) NIL (-2811 (-12 (|has| |#1| (-38 (-563))) (|has| |#2| (-611 (-1169))) (-3730 (|has| |#1| (-38 (-407 (-563)))))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#2| (-611 (-1169)))))) (($ (-948 |#1|)) NIL (|has| |#2| (-611 (-1169)))) (((-1151) $) NIL (-12 (|has| |#1| (-1034 (-563))) (|has| |#2| (-611 (-1169))))) (((-948 |#1|) $) NIL (|has| |#2| (-611 (-1169))))) (-3166 ((|#1| $) 130 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-948 |#1|) $) NIL (|has| |#2| (-611 (-1169)))) (((-1118 |#1| |#2|) $) 18) (($ (-1118 |#1| |#2|)) 19) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) 47) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) 13 T CONST)) (-2549 (((-3 (-112) "failed") $ $) NIL)) (-3803 (($) 37 T CONST)) (-2339 (($ $ $ $ (-767)) 103 (|has| |#1| (-555)))) (-2353 (($ $ $ (-767)) 102 (|has| |#1| (-555)))) (-4191 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) 73)) (-3027 (($ $ $) 83)) (** (($ $ (-917)) NIL) (($ $ (-767)) 69)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 61) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 60) (($ $ |#1|) NIL))) -(((-776 |#1| |#2|) (-13 (-1059 |#1| (-531 |#2|) |#2|) (-610 (-1118 |#1| |#2|)) (-1034 (-1118 |#1| |#2|))) (-1045) (-846)) (T -776)) -NIL -(-13 (-1059 |#1| (-531 |#2|) |#2|) (-610 (-1118 |#1| |#2|)) (-1034 (-1118 |#1| |#2|))) -((-2751 (((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)) 13))) -(((-777 |#1| |#2|) (-10 -7 (-15 -2751 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)))) (-1045) (-1045)) (T -777)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6))))) -(-10 -7 (-15 -2751 ((-778 |#2|) (-1 |#2| |#1|) (-778 |#1|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 12)) (-2875 (((-1257 |#1|) $ (-767)) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-2856 (($ (-1165 |#1|)) NIL)) (-2021 (((-1165 $) $ (-1075)) NIL) (((-1165 |#1|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3078 (((-640 $) $ $) 54 (|has| |#1| (-555)))) (-3952 (($ $ $) 50 (|has| |#1| (-555)))) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4004 (($ $ (-767)) NIL)) (-3993 (($ $ (-767)) NIL)) (-3916 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL) (((-3 (-1165 |#1|) "failed") $) 10)) (-2589 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL) (((-1165 |#1|) $) NIL)) (-3962 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3985 (($ $ $) NIL)) (-3936 (($ $ $) 87 (|has| |#1| (-555)))) (-3926 (((-2 (|:| -2765 |#1|) (|:| -2896 $) (|:| -1488 $)) $ $) 86 (|has| |#1| (-555)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2227 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-3302 (($ $ |#1| (-767) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2903 (((-767) $ $) NIL (|has| |#1| (-555)))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2175 (($ (-1165 |#1|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-2947 (($ $ (-767)) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2468 (($ $ $) 27)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-1075)) NIL) (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-3187 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-767) (-767)) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-1165 |#1|) $) NIL)) (-2845 (((-3 (-1075) "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2459 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3381 (-767))) $ $) 37)) (-3100 (($ $ $) 41)) (-3088 (($ $ $) 47)) (-2478 (((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $) 46)) (-1938 (((-1151) $) NIL)) (-1508 (($ $ $) 56 (|has| |#1| (-555)))) (-4014 (((-2 (|:| -2896 $) (|:| -1488 $)) $ (-767)) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-1075)) (|:| -2631 (-767))) "failed") $) NIL)) (-3204 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2956 (($) NIL (|has| |#1| (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-2374 (((-2 (|:| -1647 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-555)))) (-2387 (((-2 (|:| -1647 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-555)))) (-3047 (((-2 (|:| -3962 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-555)))) (-3059 (((-2 (|:| -3962 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-555)))) (-3160 (((-112) $) 13)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3775 (($ $ (-767) |#1| $) 26)) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-905)))) (-2401 (((-2 (|:| -1647 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-555)))) (-3069 (((-2 (|:| -3962 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-555)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-2846 (((-3 $ "failed") $ (-767)) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-3974 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-1361 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1962 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-3945 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1075)) NIL) (((-1165 |#1|) $) 7) (($ (-1165 |#1|)) 8) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) 28 T CONST)) (-3803 (($) 32 T CONST)) (-4191 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) 40) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) -(((-778 |#1|) (-13 (-1233 |#1|) (-610 (-1165 |#1|)) (-1034 (-1165 |#1|)) (-10 -8 (-15 -3775 ($ $ (-767) |#1| $)) (-15 -2468 ($ $ $)) (-15 -2459 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3381 (-767))) $ $)) (-15 -3100 ($ $ $)) (-15 -2478 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -3088 ($ $ $)) (IF (|has| |#1| (-555)) (PROGN (-15 -3078 ((-640 $) $ $)) (-15 -1508 ($ $ $)) (-15 -2401 ((-2 (|:| -1647 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2387 ((-2 (|:| -1647 $) (|:| |coef1| $)) $ $)) (-15 -2374 ((-2 (|:| -1647 $) (|:| |coef2| $)) $ $)) (-15 -3069 ((-2 (|:| -3962 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3059 ((-2 (|:| -3962 |#1|) (|:| |coef1| $)) $ $)) (-15 -3047 ((-2 (|:| -3962 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1045)) (T -778)) -((-3775 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-2468 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-2459 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -3381 (-767)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-3100 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-2478 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2765 *3) (|:| |gap| (-767)) (|:| -2896 (-778 *3)) (|:| -1488 (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) (-3088 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) (-3078 (*1 *2 *1 *1) (-12 (-5 *2 (-640 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-1508 (*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-555)) (-4 *2 (-1045)))) (-2401 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1647 (-778 *3)) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-2387 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1647 (-778 *3)) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-2374 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1647 (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-3069 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3962 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-3059 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3962 *3) (|:| |coef1| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) (-3047 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3962 *3) (|:| |coef2| (-778 *3)))) (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) -(-13 (-1233 |#1|) (-610 (-1165 |#1|)) (-1034 (-1165 |#1|)) (-10 -8 (-15 -3775 ($ $ (-767) |#1| $)) (-15 -2468 ($ $ $)) (-15 -2459 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3381 (-767))) $ $)) (-15 -3100 ($ $ $)) (-15 -2478 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -3088 ($ $ $)) (IF (|has| |#1| (-555)) (PROGN (-15 -3078 ((-640 $) $ $)) (-15 -1508 ($ $ $)) (-15 -2401 ((-2 (|:| -1647 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2387 ((-2 (|:| -1647 $) (|:| |coef1| $)) $ $)) (-15 -2374 ((-2 (|:| -1647 $) (|:| |coef2| $)) $ $)) (-15 -3069 ((-2 (|:| -3962 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3059 ((-2 (|:| -3962 |#1|) (|:| |coef1| $)) $ $)) (-15 -3047 ((-2 (|:| -3962 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) -((-3123 ((|#1| (-767) |#1|) 33 (|has| |#1| (-38 (-407 (-563)))))) (-2995 ((|#1| (-767) |#1|) 23)) (-3112 ((|#1| (-767) |#1|) 35 (|has| |#1| (-38 (-407 (-563))))))) -(((-779 |#1|) (-10 -7 (-15 -2995 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3112 (|#1| (-767) |#1|)) (-15 -3123 (|#1| (-767) |#1|))) |%noBranch|)) (-172)) (T -779)) -((-3123 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-3112 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-2995 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -2995 (|#1| (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3112 (|#1| (-767) |#1|)) (-15 -3123 (|#1| (-767) |#1|))) |%noBranch|)) -((-2049 (((-112) $ $) 7)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) 85)) (-1353 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2185 (((-640 |#3|) $) 33)) (-1556 (((-112) $) 26)) (-1456 (((-112) $) 17 (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) 101) (((-112) $) 97)) (-1413 ((|#4| |#4| $) 92)) (-2924 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| $) 126)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) 27)) (-3740 (((-112) $ (-767)) 44)) (-1907 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-3684 (($) 45 T CONST)) (-1512 (((-112) $) 22 (|has| |#1| (-555)))) (-1534 (((-112) $ $) 24 (|has| |#1| (-555)))) (-1523 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1545 (((-112) $) 25 (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1466 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) 36)) (-2589 (($ (-640 |#4|)) 35)) (-1897 (((-3 $ "failed") $) 82)) (-1384 ((|#4| |#4| $) 89)) (-1920 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1365 ((|#4| |#4| $) 87)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) 105)) (-1586 (((-112) |#4| $) 136)) (-1563 (((-112) |#4| $) 133)) (-1598 (((-112) |#4| $) 137) (((-112) $) 134)) (-4236 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) 104) (((-112) $) 103)) (-2674 ((|#3| $) 34)) (-3633 (((-112) $ (-767)) 43)) (-1572 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 47)) (-1616 (((-640 |#3|) $) 32)) (-1602 (((-112) |#3| $) 31)) (-3604 (((-112) $ (-767)) 42)) (-1938 (((-1151) $) 9)) (-1520 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-1508 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-1529 (((-640 $) |#4| $) 129)) (-1552 (((-3 (-112) (-640 $)) |#4| $) 132)) (-1542 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1913 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-3079 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-1514 (((-640 |#4|) $) 107)) (-1447 (((-112) |#4| $) 99) (((-112) $) 95)) (-1395 ((|#4| |#4| $) 90)) (-3449 (((-112) $ $) 110)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) 100) (((-112) $) 96)) (-1405 ((|#4| |#4| $) 91)) (-3249 (((-1113) $) 10)) (-1884 (((-3 |#4| "failed") $) 84)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1323 (((-3 $ "failed") $ |#4|) 78)) (-2884 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-3837 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) 38)) (-2820 (((-112) $) 41)) (-2749 (($) 40)) (-1962 (((-767) $) 106)) (-3261 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-2208 (($ $) 39)) (-2802 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 60)) (-1566 (($ $ |#3|) 28)) (-1591 (($ $ |#3|) 30)) (-1373 (($ $) 88)) (-1579 (($ $ |#3|) 29)) (-2062 (((-858) $) 11) (((-640 |#4|) $) 37)) (-1313 (((-767) $) 76 (|has| |#3| (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-1496 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-3848 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) 81)) (-1574 (((-112) |#4| $) 135)) (-1833 (((-112) |#3| $) 80)) (-2943 (((-112) $ $) 6)) (-1708 (((-767) $) 46 (|has| $ (-6 -4408))))) -(((-780 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -780)) -NIL -(-13 (-1065 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T)) -((-3133 (((-3 (-379) "failed") (-316 |#1|) (-917)) 62 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-379) "failed") (-407 (-948 |#1|)) (-917)) 41 (|has| |#1| (-555))) (((-3 (-379) "failed") (-407 (-948 |#1|))) 40 (|has| |#1| (-555))) (((-3 (-379) "failed") (-948 |#1|) (-917)) 31 (|has| |#1| (-1045))) (((-3 (-379) "failed") (-948 |#1|)) 30 (|has| |#1| (-1045)))) (-2336 (((-379) (-316 |#1|) (-917)) 99 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-379) (-407 (-948 |#1|)) (-917)) 91 (|has| |#1| (-555))) (((-379) (-407 (-948 |#1|))) 90 (|has| |#1| (-555))) (((-379) (-948 |#1|) (-917)) 86 (|has| |#1| (-1045))) (((-379) (-948 |#1|)) 85 (|has| |#1| (-1045))) (((-379) |#1| (-917)) 76) (((-379) |#1|) 22)) (-3142 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)) 71 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-917)) 63 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917)) 46 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|)))) 45 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917)) 39 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-407 (-948 |#1|))) 38 (|has| |#1| (-555))) (((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)) 28 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 |#1|)) 26 (|has| |#1| (-1045))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-948 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-1985 (((-169 (-379)) (-316 (-169 |#1|)) (-917)) 102 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|) (-917)) 100 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-555)) (|has| |#1| (-846)))) (((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917)) 93 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 (-169 |#1|)))) 92 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 |#1|)) (-917)) 89 (|has| |#1| (-555))) (((-169 (-379)) (-407 (-948 |#1|))) 88 (|has| |#1| (-555))) (((-169 (-379)) (-948 |#1|) (-917)) 84 (|has| |#1| (-1045))) (((-169 (-379)) (-948 |#1|)) 83 (|has| |#1| (-1045))) (((-169 (-379)) (-948 (-169 |#1|)) (-917)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-948 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-917)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-917)) 27) (((-169 (-379)) |#1|) 25))) -(((-781 |#1|) (-10 -7 (-15 -2336 ((-379) |#1|)) (-15 -2336 ((-379) |#1| (-917))) (-15 -1985 ((-169 (-379)) |#1|)) (-15 -1985 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -1985 ((-169 (-379)) (-169 |#1|))) (-15 -1985 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -1985 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -1985 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2336 ((-379) (-948 |#1|))) (-15 -2336 ((-379) (-948 |#1|) (-917))) (-15 -1985 ((-169 (-379)) (-948 |#1|))) (-15 -1985 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -2336 ((-379) (-407 (-948 |#1|)))) (-15 -2336 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -1985 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -1985 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -1985 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -1985 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -2336 ((-379) (-316 |#1|))) (-15 -2336 ((-379) (-316 |#1|) (-917))) (-15 -1985 ((-169 (-379)) (-316 |#1|))) (-15 -1985 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -1985 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -1985 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3142 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3133 ((-3 (-379) "failed") (-948 |#1|))) (-15 -3133 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3133 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -3133 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3133 ((-3 (-379) "failed") (-316 |#1|))) (-15 -3133 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|)) (-611 (-379))) (T -781)) -((-3142 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3142 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3142 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3142 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3133 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3133 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-3142 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3142 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3142 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3142 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3133 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3133 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-3142 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3142 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-3133 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-3133 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-3142 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-3142 (*1 *2 *3) (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) (-1985 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379))))) (-1985 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379))))) (-2336 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2)))) (-2336 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2))))) -(-10 -7 (-15 -2336 ((-379) |#1|)) (-15 -2336 ((-379) |#1| (-917))) (-15 -1985 ((-169 (-379)) |#1|)) (-15 -1985 ((-169 (-379)) |#1| (-917))) (IF (|has| |#1| (-172)) (PROGN (-15 -1985 ((-169 (-379)) (-169 |#1|))) (-15 -1985 ((-169 (-379)) (-169 |#1|) (-917))) (-15 -1985 ((-169 (-379)) (-948 (-169 |#1|)))) (-15 -1985 ((-169 (-379)) (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -2336 ((-379) (-948 |#1|))) (-15 -2336 ((-379) (-948 |#1|) (-917))) (-15 -1985 ((-169 (-379)) (-948 |#1|))) (-15 -1985 ((-169 (-379)) (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -2336 ((-379) (-407 (-948 |#1|)))) (-15 -2336 ((-379) (-407 (-948 |#1|)) (-917))) (-15 -1985 ((-169 (-379)) (-407 (-948 |#1|)))) (-15 -1985 ((-169 (-379)) (-407 (-948 |#1|)) (-917))) (-15 -1985 ((-169 (-379)) (-407 (-948 (-169 |#1|))))) (-15 -1985 ((-169 (-379)) (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -2336 ((-379) (-316 |#1|))) (-15 -2336 ((-379) (-316 |#1|) (-917))) (-15 -1985 ((-169 (-379)) (-316 |#1|))) (-15 -1985 ((-169 (-379)) (-316 |#1|) (-917))) (-15 -1985 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -1985 ((-169 (-379)) (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3142 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-948 (-169 |#1|)) (-917)))) |%noBranch|) (IF (|has| |#1| (-1045)) (PROGN (-15 -3133 ((-3 (-379) "failed") (-948 |#1|))) (-15 -3133 ((-3 (-379) "failed") (-948 |#1|) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-948 |#1|))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-948 |#1|) (-917)))) |%noBranch|) (IF (|has| |#1| (-555)) (PROGN (-15 -3133 ((-3 (-379) "failed") (-407 (-948 |#1|)))) (-15 -3133 ((-3 (-379) "failed") (-407 (-948 |#1|)) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-407 (-948 |#1|)) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-407 (-948 (-169 |#1|))) (-917))) (IF (|has| |#1| (-846)) (PROGN (-15 -3133 ((-3 (-379) "failed") (-316 |#1|))) (-15 -3133 ((-3 (-379) "failed") (-316 |#1|) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-917))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -3142 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-917)))) |%noBranch|)) |%noBranch|)) -((-3188 (((-917) (-1151)) 90)) (-3208 (((-3 (-379) "failed") (-1151)) 35)) (-3198 (((-379) (-1151)) 33)) (-3167 (((-917) (-1151)) 62)) (-3178 (((-1151) (-917)) 76)) (-3155 (((-1151) (-917)) 61))) -(((-782) (-10 -7 (-15 -3155 ((-1151) (-917))) (-15 -3167 ((-917) (-1151))) (-15 -3178 ((-1151) (-917))) (-15 -3188 ((-917) (-1151))) (-15 -3198 ((-379) (-1151))) (-15 -3208 ((-3 (-379) "failed") (-1151))))) (T -782)) -((-3208 (*1 *2 *3) (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782)))) (-3188 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782))))) -(-10 -7 (-15 -3155 ((-1151) (-917))) (-15 -3167 ((-917) (-1151))) (-15 -3178 ((-1151) (-917))) (-15 -3188 ((-917) (-1151))) (-15 -3198 ((-379) (-1151))) (-15 -3208 ((-3 (-379) "failed") (-1151)))) -((-2049 (((-112) $ $) 7)) (-3217 (((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 15) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031)) 13)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6))) -(((-783) (-140)) (T -783)) -((-4072 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031)))))) (-3217 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-4072 (*1 *2 *3 *4) (-12 (-4 *1 (-783)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031)))))) (-3217 (*1 *2 *3 *2) (-12 (-4 *1 (-783)) (-5 *2 (-1031)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(-13 (-1093) (-10 -7 (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3217 ((-1031) (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) (|:| |extra| (-1031))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3217 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1031))))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-3246 (((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379))) 54) (((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 51)) (-3257 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 60)) (-3237 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 49)) (-3229 (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379))) 62) (((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))) 61))) -(((-784) (-10 -7 (-15 -3229 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3229 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3237 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3246 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3246 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3257 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))))) (T -784)) -((-3257 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3246 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-563)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379)))) (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3246 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-563)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379)))) (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3237 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3229 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784)))) (-3229 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) (-5 *1 (-784))))) -(-10 -7 (-15 -3229 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3229 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3237 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3246 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)))) (-15 -3246 ((-1262) (-1257 (-379)) (-563) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379))) (-379) (-1257 (-379)) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)) (-1257 (-379)))) (-15 -3257 ((-1262) (-1257 (-379)) (-563) (-379) (-379) (-563) (-1 (-1262) (-1257 (-379)) (-1257 (-379)) (-379))))) -((-3353 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 65)) (-3318 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 42)) (-3341 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 64)) (-3308 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 40)) (-3330 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 63)) (-3300 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)) 26)) (-3290 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 43)) (-3279 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 41)) (-3269 (((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563)) 39))) -(((-785) (-10 -7 (-15 -3269 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3279 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3290 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3300 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3308 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3318 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3330 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3341 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3353 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))))) (T -785)) -((-3353 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3341 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3330 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3318 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3308 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3300 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3290 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3279 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563)))) (-3269 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) (|:| |success| (-112)))) (-5 *1 (-785)) (-5 *5 (-563))))) -(-10 -7 (-15 -3269 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3279 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3290 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563) (-563))) (-15 -3300 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3308 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3318 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3330 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3341 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563))) (-15 -3353 ((-2 (|:| -3556 (-379)) (|:| -3452 (-379)) (|:| |totalpts| (-563)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-563) (-563)))) -((-3515 (((-1203 |#1|) |#1| (-225) (-563)) 68))) -(((-786 |#1|) (-10 -7 (-15 -3515 ((-1203 |#1|) |#1| (-225) (-563)))) (-970)) (T -786)) -((-3515 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-563)) (-5 *2 (-1203 *3)) (-5 *1 (-786 *3)) (-4 *3 (-970))))) -(-10 -7 (-15 -3515 ((-1203 |#1|) |#1| (-225) (-563)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 24)) (-1482 (((-3 $ "failed") $ $) 26)) (-3684 (($) 23 T CONST)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 22 T CONST)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (-3039 (($ $ $) 28) (($ $) 27)) (-3027 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25) (($ (-563) $) 29))) -(((-787) (-140)) (T -787)) -NIL -(-13 (-791) (-21)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 24)) (-3684 (($) 23 T CONST)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 22 T CONST)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (-3027 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) +((-2443 (((-3 |#2| "failed") |#2| |#2| (-114) (-1170)) 37))) +(((-769 |#1| |#2|) (-10 -7 (-15 -2443 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -769)) +((-2443 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-769 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-956)))))) +(-10 -7 (-15 -2443 ((-3 |#2| "failed") |#2| |#2| (-114) (-1170)))) +((-3742 (((-771) |#1|) 8))) +(((-770 |#1|) (-10 -7 (-15 -3742 ((-771) |#1|))) (-1209)) (T -770)) +((-3742 (*1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-770 *3)) (-4 *3 (-1209))))) +(-10 -7 (-15 -3742 ((-771) |#1|))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 7)) (-1705 (((-112) $ $) 9))) +(((-771) (-1094)) (T -771)) +NIL +(-1094) +((-3328 ((|#2| |#4|) 35))) +(((-772 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3328 (|#2| |#4|))) (-452) (-1235 |#1|) (-721 |#1| |#2|) (-1235 |#3|)) (T -772)) +((-3328 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-721 *4 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-772 *4 *2 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -3328 (|#2| |#4|))) +((-3951 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57)) (-1576 (((-1264) (-1152) (-1152) |#4| |#5|) 33)) (-3196 ((|#4| |#4| |#5|) 73)) (-2928 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|) 78)) (-3162 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|) 16))) +(((-773 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3951 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3196 (|#4| |#4| |#5|)) (-15 -2928 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -1576 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -3162 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -773)) +((-3162 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1576 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *4 (-1060 *6 *7 *8)) (-5 *2 (-1264)) (-5 *1 (-773 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4)))) (-2928 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3196 (*1 *2 *2 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *2 (-1060 *4 *5 *6)) (-5 *1 (-773 *4 *5 *6 *2 *3)) (-4 *3 (-1066 *4 *5 *6 *2)))) (-3951 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(-10 -7 (-15 -3951 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -3196 (|#4| |#4| |#5|)) (-15 -2928 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -1576 ((-1264) (-1152) (-1152) |#4| |#5|)) (-15 -3162 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|))) +((-2111 (((-3 (-1166 (-1166 |#1|)) "failed") |#4|) 53)) (-2863 (((-641 |#4|) |#4|) 24)) (-2578 ((|#4| |#4|) 19))) +(((-774 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2863 ((-641 |#4|) |#4|)) (-15 -2111 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -2578 (|#4| |#4|))) (-349) (-329 |#1|) (-1235 |#2|) (-1235 |#3|) (-918)) (T -774)) +((-2578 (*1 *2 *2) (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) (-5 *1 (-774 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-918)))) (-2111 (*1 *2 *3) (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-918)))) (-2863 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) (-5 *2 (-641 *3)) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) (-14 *7 (-918))))) +(-10 -7 (-15 -2863 ((-641 |#4|) |#4|)) (-15 -2111 ((-3 (-1166 (-1166 |#1|)) "failed") |#4|)) (-15 -2578 (|#4| |#4|))) +((-2786 (((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|)) 74)) (-2355 (((-641 (-768)) |#1|) 20))) +(((-775 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2786 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -2355 ((-641 (-768)) |#1|))) (-1235 |#4|) (-790) (-847) (-307) (-946 |#4| |#2| |#3|)) (T -775)) +((-2355 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-641 (-768))) (-5 *1 (-775 *3 *4 *5 *6 *7)) (-4 *3 (-1235 *6)) (-4 *7 (-946 *6 *4 *5)))) (-2786 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1235 *9)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-307)) (-4 *10 (-946 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-641 (-1166 *10))) (|:| |dterm| (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| *10))))) (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) (-5 *1 (-775 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) (-5 *5 (-641 *10))))) +(-10 -7 (-15 -2786 ((-2 (|:| |deter| (-641 (-1166 |#5|))) (|:| |dterm| (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-641 |#1|)) (|:| |nlead| (-641 |#5|))) (-1166 |#5|) (-641 |#1|) (-641 |#5|))) (-15 -2355 ((-641 (-768)) |#1|))) +((-2655 (((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|) 31)) (-4047 (((-641 |#1|) (-685 (-407 (-564))) |#1|) 21)) (-2230 (((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170)) 18) (((-949 (-407 (-564))) (-685 (-407 (-564)))) 17))) +(((-776 |#1|) (-10 -7 (-15 -2230 ((-949 (-407 (-564))) (-685 (-407 (-564))))) (-15 -2230 ((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -4047 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -2655 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) (-13 (-363) (-845))) (T -776)) +((-2655 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 (-2 (|:| |outval| *4) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 *4)))))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) (-4047 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *5)) (-4 *5 (-13 (-363) (-845))))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845)))))) +(-10 -7 (-15 -2230 ((-949 (-407 (-564))) (-685 (-407 (-564))))) (-15 -2230 ((-949 (-407 (-564))) (-685 (-407 (-564))) (-1170))) (-15 -4047 ((-641 |#1|) (-685 (-407 (-564))) |#1|)) (-15 -2655 ((-641 (-2 (|:| |outval| |#1|) (|:| |outmult| (-564)) (|:| |outvect| (-641 (-685 |#1|))))) (-685 (-407 (-564))) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 36)) (-4269 (((-641 |#2|) $) NIL)) (-4097 (((-1166 $) $ |#2|) NIL) (((-1166 |#1|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 |#2|)) NIL)) (-3813 (($ $) 30)) (-3121 (((-112) $ $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-4107 (($ $ $) 108 (|has| |#1| (-556)))) (-3193 (((-641 $) $ $) 121 (|has| |#1| (-556)))) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (((-3 $ "failed") (-949 (-564))) NIL (-4030 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (((-3 $ "failed") (-949 |#1|)) NIL (-4030 (-12 (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-38 (-407 (-564))))) (-4255 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-38 (-407 (-564))))) (-4255 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-989 (-564))))))) (((-3 (-1119 |#1| |#2|) "failed") $) 21)) (-2239 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#2| $) NIL) (($ (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-949 (-564))) NIL (-4030 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-949 |#1|)) NIL (-4030 (-12 (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-38 (-407 (-564))))) (-4255 (|has| |#1| (-38 (-564))))) (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-38 (-407 (-564))))) (-4255 (|has| |#1| (-545)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-989 (-564))))))) (((-1119 |#1| |#2|) $) NIL)) (-2448 (($ $ $ |#2|) NIL (|has| |#1| (-172))) (($ $ $) 119 (|has| |#1| (-556)))) (-1348 (($ $) NIL) (($ $ |#2|) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3116 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3280 (((-112) $) NIL)) (-3370 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 79)) (-2121 (($ $) 134 (|has| |#1| (-452)))) (-1989 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-3082 (($ $) NIL (|has| |#1| (-556)))) (-3610 (($ $) NIL (|has| |#1| (-556)))) (-1571 (($ $ $) 74) (($ $ $ |#2|) NIL)) (-3027 (($ $ $) 77) (($ $ $ |#2|) NIL)) (-1866 (($ $ |#1| (-531 |#2|) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-3840 (((-112) $) 56)) (-2918 (((-768) $) NIL)) (-1641 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-3866 (($ $ $ $ $) 105 (|has| |#1| (-556)))) (-3782 ((|#2| $) 22)) (-4257 (($ (-1166 |#1|) |#2|) NIL) (($ (-1166 $) |#2|) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-768)) 38) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1805 (($ $ $) 62)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ |#2|) NIL)) (-4348 (((-112) $) NIL)) (-3469 (((-531 |#2|) $) NIL) (((-768) $ |#2|) NIL) (((-641 (-768)) $ (-641 |#2|)) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2467 (((-768) $) 23)) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1306 (((-3 |#2| "failed") $) NIL)) (-2134 (($ $) NIL (|has| |#1| (-452)))) (-3837 (($ $) NIL (|has| |#1| (-452)))) (-1498 (((-641 $) $) NIL)) (-1758 (($ $) 39)) (-3641 (($ $) NIL (|has| |#1| (-452)))) (-3187 (((-641 $) $) 43)) (-1874 (($ $) 41)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL) (($ $ |#2|) 48)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3391 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1703 (-768))) $ $) 94)) (-2471 (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $) 76) (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $ |#2|) NIL)) (-2139 (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1363 $)) $ $) NIL) (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1363 $)) $ $ |#2|) NIL)) (-3407 (($ $ $) 81) (($ $ $ |#2|) NIL)) (-3761 (($ $ $) 84) (($ $ $ |#2|) NIL)) (-2217 (((-1152) $) NIL)) (-2643 (($ $ $) 123 (|has| |#1| (-556)))) (-2651 (((-641 $) $) 32)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| |#2|) (|:| -2515 (-768))) "failed") $) NIL)) (-1591 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-4266 (($ $ $) NIL)) (-3258 (($ $) 24)) (-4179 (((-112) $ $) NIL)) (-3244 (((-112) $ $) NIL) (((-112) $ (-641 $)) NIL)) (-2601 (($ $ $) NIL)) (-4024 (($ $) 26)) (-3864 (((-1114) $) NIL)) (-2801 (((-2 (|:| -2577 $) (|:| |coef2| $)) $ $) 114 (|has| |#1| (-556)))) (-4376 (((-2 (|:| -2577 $) (|:| |coef1| $)) $ $) 111 (|has| |#1| (-556)))) (-4383 (((-112) $) 55)) (-1296 ((|#1| $) 57)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2577 ((|#1| |#1| $) 131 (|has| |#1| (-452))) (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-906)))) (-4221 (((-2 (|:| -2577 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 117 (|has| |#1| (-556)))) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 96 (|has| |#1| (-556)))) (-2581 (($ $ |#1|) 127 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2554 (($ $ |#1|) 126 (|has| |#1| (-556))) (($ $ $) NIL (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-641 |#2|) (-641 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-641 |#2|) (-641 $)) NIL)) (-4284 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4117 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2266 (((-531 |#2|) $) NIL) (((-768) $ |#2|) 45) (((-641 (-768)) $ (-641 |#2|)) NIL)) (-4391 (($ $) NIL)) (-4139 (($ $) 35)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536))))) (($ (-949 (-407 (-564)))) NIL (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170))))) (($ (-949 (-564))) NIL (-4030 (-12 (|has| |#1| (-38 (-564))) (|has| |#2| (-612 (-1170))) (-4255 (|has| |#1| (-38 (-407 (-564)))))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#2| (-612 (-1170)))))) (($ (-949 |#1|)) NIL (|has| |#2| (-612 (-1170)))) (((-1152) $) NIL (-12 (|has| |#1| (-1035 (-564))) (|has| |#2| (-612 (-1170))))) (((-949 |#1|) $) NIL (|has| |#2| (-612 (-1170))))) (-4329 ((|#1| $) 130 (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-949 |#1|) $) NIL (|has| |#2| (-612 (-1170)))) (((-1119 |#1| |#2|) $) 18) (($ (-1119 |#1| |#2|)) 19) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-768)) 47) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) 13 T CONST)) (-2779 (((-3 (-112) "failed") $ $) NIL)) (-4321 (($) 37 T CONST)) (-3614 (($ $ $ $ (-768)) 103 (|has| |#1| (-556)))) (-3666 (($ $ $ (-768)) 102 (|has| |#1| (-556)))) (-2124 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) 73)) (-1780 (($ $ $) 83)) (** (($ $ (-918)) NIL) (($ $ (-768)) 69)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 61) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 60) (($ $ |#1|) NIL))) +(((-777 |#1| |#2|) (-13 (-1060 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1035 (-1119 |#1| |#2|))) (-1046) (-847)) (T -777)) +NIL +(-13 (-1060 |#1| (-531 |#2|) |#2|) (-611 (-1119 |#1| |#2|)) (-1035 (-1119 |#1| |#2|))) +((-2187 (((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)) 13))) +(((-778 |#1| |#2|) (-10 -7 (-15 -2187 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)))) (-1046) (-1046)) (T -778)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6))))) +(-10 -7 (-15 -2187 ((-779 |#2|) (-1 |#2| |#1|) (-779 |#1|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 12)) (-1312 (((-1259 |#1|) $ (-768)) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-4218 (($ (-1166 |#1|)) NIL)) (-4097 (((-1166 $) $ (-1076)) NIL) (((-1166 |#1|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3783 (((-641 $) $ $) 54 (|has| |#1| (-556)))) (-4107 (($ $ $) 50 (|has| |#1| (-556)))) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4359 (($ $ (-768)) NIL)) (-2477 (($ $ (-768)) NIL)) (-3823 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL) (((-3 (-1166 |#1|) "failed") $) 10)) (-2239 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL) (((-1166 |#1|) $) NIL)) (-2448 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 58 (|has| |#1| (-172)))) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-4132 (($ $ $) NIL)) (-2995 (($ $ $) 87 (|has| |#1| (-556)))) (-3370 (((-2 (|:| -1762 |#1|) (|:| -1935 $) (|:| -1363 $)) $ $) 86 (|has| |#1| (-556)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1989 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-1866 (($ $ |#1| (-768) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1619 (((-768) $ $) NIL (|has| |#1| (-556)))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4257 (($ (-1166 |#1|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2472 (($ $ (-768)) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-1805 (($ $ $) 27)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-1076)) NIL) (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3469 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-768) (-768)) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2574 (((-1166 |#1|) $) NIL)) (-1306 (((-3 (-1076) "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3391 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1703 (-768))) $ $) 37)) (-2051 (($ $ $) 41)) (-3576 (($ $ $) 47)) (-2471 (((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $) 46)) (-2217 (((-1152) $) NIL)) (-2643 (($ $ $) 56 (|has| |#1| (-556)))) (-4115 (((-2 (|:| -1935 $) (|:| -1363 $)) $ (-768)) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-1076)) (|:| -2515 (-768))) "failed") $) NIL)) (-3128 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3258 (($) NIL (|has| |#1| (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-2801 (((-2 (|:| -2577 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-556)))) (-4376 (((-2 (|:| -2577 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-556)))) (-1428 (((-2 (|:| -2448 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-556)))) (-2511 (((-2 (|:| -2448 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-556)))) (-4383 (((-112) $) 13)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-3637 (($ $ (-768) |#1| $) 26)) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-906)))) (-4221 (((-2 (|:| -2577 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-556)))) (-2093 (((-2 (|:| -2448 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-556)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-1430 (((-3 $ "failed") $ (-768)) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4284 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) NIL (|has| |#1| (-172)))) (-4117 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2266 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1076)) NIL) (((-1166 |#1|) $) 7) (($ (-1166 |#1|)) 8) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) 28 T CONST)) (-4321 (($) 32 T CONST)) (-2124 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) 40) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 31) (($ $ |#1|) NIL))) +(((-779 |#1|) (-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1035 (-1166 |#1|)) (-10 -8 (-15 -3637 ($ $ (-768) |#1| $)) (-15 -1805 ($ $ $)) (-15 -3391 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1703 (-768))) $ $)) (-15 -2051 ($ $ $)) (-15 -2471 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -3576 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -3783 ((-641 $) $ $)) (-15 -2643 ($ $ $)) (-15 -4221 ((-2 (|:| -2577 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4376 ((-2 (|:| -2577 $) (|:| |coef1| $)) $ $)) (-15 -2801 ((-2 (|:| -2577 $) (|:| |coef2| $)) $ $)) (-15 -2093 ((-2 (|:| -2448 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2511 ((-2 (|:| -2448 |#1|) (|:| |coef1| $)) $ $)) (-15 -1428 ((-2 (|:| -2448 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1046)) (T -779)) +((-3637 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-1805 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-3391 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-779 *3)) (|:| |polden| *3) (|:| -1703 (-768)))) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-2051 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-2471 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1762 *3) (|:| |gap| (-768)) (|:| -1935 (-779 *3)) (|:| -1363 (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) (-3576 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) (-3783 (*1 *2 *1 *1) (-12 (-5 *2 (-641 (-779 *3))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2643 (*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-556)) (-4 *2 (-1046)))) (-4221 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2577 (-779 *3)) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-4376 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2577 (-779 *3)) (|:| |coef1| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2801 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2577 (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2093 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2448 *3) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-2511 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2448 *3) (|:| |coef1| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) (-1428 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2448 *3) (|:| |coef2| (-779 *3)))) (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) +(-13 (-1235 |#1|) (-611 (-1166 |#1|)) (-1035 (-1166 |#1|)) (-10 -8 (-15 -3637 ($ $ (-768) |#1| $)) (-15 -1805 ($ $ $)) (-15 -3391 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -1703 (-768))) $ $)) (-15 -2051 ($ $ $)) (-15 -2471 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -3576 ($ $ $)) (IF (|has| |#1| (-556)) (PROGN (-15 -3783 ((-641 $) $ $)) (-15 -2643 ($ $ $)) (-15 -4221 ((-2 (|:| -2577 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4376 ((-2 (|:| -2577 $) (|:| |coef1| $)) $ $)) (-15 -2801 ((-2 (|:| -2577 $) (|:| |coef2| $)) $ $)) (-15 -2093 ((-2 (|:| -2448 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2511 ((-2 (|:| -2448 |#1|) (|:| |coef1| $)) $ $)) (-15 -1428 ((-2 (|:| -2448 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) +((-3546 ((|#1| (-768) |#1|) 33 (|has| |#1| (-38 (-407 (-564)))))) (-2681 ((|#1| (-768) |#1|) 23)) (-3799 ((|#1| (-768) |#1|) 35 (|has| |#1| (-38 (-407 (-564))))))) +(((-780 |#1|) (-10 -7 (-15 -2681 (|#1| (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3799 (|#1| (-768) |#1|)) (-15 -3546 (|#1| (-768) |#1|))) |%noBranch|)) (-172)) (T -780)) +((-3546 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-3799 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-2681 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -2681 (|#1| (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3799 (|#1| (-768) |#1|)) (-15 -3546 (|#1| (-768) |#1|))) |%noBranch|)) +((-3732 (((-112) $ $) 7)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) 85)) (-1454 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4269 (((-641 |#3|) $) 33)) (-3547 (((-112) $) 26)) (-4281 (((-112) $) 17 (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) 101) (((-112) $) 97)) (-2244 ((|#4| |#4| $) 92)) (-2249 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| $) 126)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) 27)) (-2969 (((-112) $ (-768)) 44)) (-3548 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-2818 (($) 45 T CONST)) (-4076 (((-112) $) 22 (|has| |#1| (-556)))) (-2072 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2494 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3791 (((-112) $) 25 (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2868 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) 36)) (-2239 (($ (-641 |#4|)) 35)) (-1977 (((-3 $ "failed") $) 82)) (-4263 ((|#4| |#4| $) 89)) (-1996 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2920 ((|#4| |#4| $) 87)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) 105)) (-3254 (((-112) |#4| $) 136)) (-2954 (((-112) |#4| $) 133)) (-2078 (((-112) |#4| $) 137) (((-112) $) 134)) (-3616 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) 104) (((-112) $) 103)) (-3782 ((|#3| $) 34)) (-2275 (((-112) $ (-768)) 43)) (-1386 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 47)) (-3483 (((-641 |#3|) $) 32)) (-1410 (((-112) |#3| $) 31)) (-1500 (((-112) $ (-768)) 42)) (-2217 (((-1152) $) 9)) (-3530 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2643 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| |#4| $) 127)) (-2389 (((-3 |#4| "failed") $) 83)) (-2999 (((-641 $) |#4| $) 129)) (-3213 (((-3 (-112) (-641 $)) |#4| $) 132)) (-1614 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1353 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-3901 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4258 (((-641 |#4|) $) 107)) (-1591 (((-112) |#4| $) 99) (((-112) $) 95)) (-4266 ((|#4| |#4| $) 90)) (-4179 (((-112) $ $) 110)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) 100) (((-112) $) 96)) (-2601 ((|#4| |#4| $) 91)) (-3864 (((-1114) $) 10)) (-1966 (((-3 |#4| "failed") $) 84)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3465 (((-3 $ "failed") $ |#4|) 78)) (-3004 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-3736 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) 38)) (-4003 (((-112) $) 41)) (-3434 (($) 40)) (-2266 (((-768) $) 106)) (-3873 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-3896 (($ $) 39)) (-2235 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 60)) (-2031 (($ $ |#3|) 28)) (-2401 (($ $ |#3|) 30)) (-2158 (($ $) 88)) (-2624 (($ $ |#3|) 29)) (-3742 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1849 (((-768) $) 76 (|has| |#3| (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4020 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-1417 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) 81)) (-3485 (((-112) |#4| $) 135)) (-2755 (((-112) |#3| $) 80)) (-1705 (((-112) $ $) 6)) (-2641 (((-768) $) 46 (|has| $ (-6 -4411))))) +(((-781 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -781)) +NIL +(-13 (-1066 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) +((-1711 (((-3 (-379) "failed") (-316 |#1|) (-918)) 62 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-379) "failed") (-316 |#1|)) 54 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-379) "failed") (-407 (-949 |#1|)) (-918)) 41 (|has| |#1| (-556))) (((-3 (-379) "failed") (-407 (-949 |#1|))) 40 (|has| |#1| (-556))) (((-3 (-379) "failed") (-949 |#1|) (-918)) 31 (|has| |#1| (-1046))) (((-3 (-379) "failed") (-949 |#1|)) 30 (|has| |#1| (-1046)))) (-3557 (((-379) (-316 |#1|) (-918)) 99 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-379) (-316 |#1|)) 94 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-379) (-407 (-949 |#1|)) (-918)) 91 (|has| |#1| (-556))) (((-379) (-407 (-949 |#1|))) 90 (|has| |#1| (-556))) (((-379) (-949 |#1|) (-918)) 86 (|has| |#1| (-1046))) (((-379) (-949 |#1|)) 85 (|has| |#1| (-1046))) (((-379) |#1| (-918)) 76) (((-379) |#1|) 22)) (-3130 (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)) 71 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 (-169 |#1|))) 70 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 |#1|) (-918)) 63 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-316 |#1|)) 61 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918)) 46 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|)))) 45 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918)) 39 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-407 (-949 |#1|))) 38 (|has| |#1| (-556))) (((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)) 28 (|has| |#1| (-1046))) (((-3 (-169 (-379)) "failed") (-949 |#1|)) 26 (|has| |#1| (-1046))) (((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)) 18 (|has| |#1| (-172))) (((-3 (-169 (-379)) "failed") (-949 (-169 |#1|))) 15 (|has| |#1| (-172)))) (-4063 (((-169 (-379)) (-316 (-169 |#1|)) (-918)) 102 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 (-169 |#1|))) 101 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 |#1|) (-918)) 100 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-316 |#1|)) 98 (-12 (|has| |#1| (-556)) (|has| |#1| (-847)))) (((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918)) 93 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 (-169 |#1|)))) 92 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 |#1|)) (-918)) 89 (|has| |#1| (-556))) (((-169 (-379)) (-407 (-949 |#1|))) 88 (|has| |#1| (-556))) (((-169 (-379)) (-949 |#1|) (-918)) 84 (|has| |#1| (-1046))) (((-169 (-379)) (-949 |#1|)) 83 (|has| |#1| (-1046))) (((-169 (-379)) (-949 (-169 |#1|)) (-918)) 78 (|has| |#1| (-172))) (((-169 (-379)) (-949 (-169 |#1|))) 77 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|) (-918)) 80 (|has| |#1| (-172))) (((-169 (-379)) (-169 |#1|)) 79 (|has| |#1| (-172))) (((-169 (-379)) |#1| (-918)) 27) (((-169 (-379)) |#1|) 25))) +(((-782 |#1|) (-10 -7 (-15 -3557 ((-379) |#1|)) (-15 -3557 ((-379) |#1| (-918))) (-15 -4063 ((-169 (-379)) |#1|)) (-15 -4063 ((-169 (-379)) |#1| (-918))) (IF (|has| |#1| (-172)) (PROGN (-15 -4063 ((-169 (-379)) (-169 |#1|))) (-15 -4063 ((-169 (-379)) (-169 |#1|) (-918))) (-15 -4063 ((-169 (-379)) (-949 (-169 |#1|)))) (-15 -4063 ((-169 (-379)) (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -3557 ((-379) (-949 |#1|))) (-15 -3557 ((-379) (-949 |#1|) (-918))) (-15 -4063 ((-169 (-379)) (-949 |#1|))) (-15 -4063 ((-169 (-379)) (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3557 ((-379) (-407 (-949 |#1|)))) (-15 -3557 ((-379) (-407 (-949 |#1|)) (-918))) (-15 -4063 ((-169 (-379)) (-407 (-949 |#1|)))) (-15 -4063 ((-169 (-379)) (-407 (-949 |#1|)) (-918))) (-15 -4063 ((-169 (-379)) (-407 (-949 (-169 |#1|))))) (-15 -4063 ((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -3557 ((-379) (-316 |#1|))) (-15 -3557 ((-379) (-316 |#1|) (-918))) (-15 -4063 ((-169 (-379)) (-316 |#1|))) (-15 -4063 ((-169 (-379)) (-316 |#1|) (-918))) (-15 -4063 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -4063 ((-169 (-379)) (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3130 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -1711 ((-3 (-379) "failed") (-949 |#1|))) (-15 -1711 ((-3 (-379) "failed") (-949 |#1|) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-949 |#1|))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -1711 ((-3 (-379) "failed") (-407 (-949 |#1|)))) (-15 -1711 ((-3 (-379) "failed") (-407 (-949 |#1|)) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -1711 ((-3 (-379) "failed") (-316 |#1|))) (-15 -1711 ((-3 (-379) "failed") (-316 |#1|) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|)) (-612 (-379))) (T -782)) +((-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3130 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3130 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-1711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-1711 (*1 *2 *3) (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3130 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3130 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-1711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-1711 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3130 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-1711 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-1711 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-3130 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-3130 (*1 *2 *3) (|partial| -12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-3557 (*1 *2 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) (-3557 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-169 *5)) (-5 *4 (-918)) (-4 *5 (-172)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) (-4063 (*1 *2 *3) (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) (-4063 (*1 *2 *3) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) (-3557 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2)))) (-3557 (*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2))))) +(-10 -7 (-15 -3557 ((-379) |#1|)) (-15 -3557 ((-379) |#1| (-918))) (-15 -4063 ((-169 (-379)) |#1|)) (-15 -4063 ((-169 (-379)) |#1| (-918))) (IF (|has| |#1| (-172)) (PROGN (-15 -4063 ((-169 (-379)) (-169 |#1|))) (-15 -4063 ((-169 (-379)) (-169 |#1|) (-918))) (-15 -4063 ((-169 (-379)) (-949 (-169 |#1|)))) (-15 -4063 ((-169 (-379)) (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -3557 ((-379) (-949 |#1|))) (-15 -3557 ((-379) (-949 |#1|) (-918))) (-15 -4063 ((-169 (-379)) (-949 |#1|))) (-15 -4063 ((-169 (-379)) (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -3557 ((-379) (-407 (-949 |#1|)))) (-15 -3557 ((-379) (-407 (-949 |#1|)) (-918))) (-15 -4063 ((-169 (-379)) (-407 (-949 |#1|)))) (-15 -4063 ((-169 (-379)) (-407 (-949 |#1|)) (-918))) (-15 -4063 ((-169 (-379)) (-407 (-949 (-169 |#1|))))) (-15 -4063 ((-169 (-379)) (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -3557 ((-379) (-316 |#1|))) (-15 -3557 ((-379) (-316 |#1|) (-918))) (-15 -4063 ((-169 (-379)) (-316 |#1|))) (-15 -4063 ((-169 (-379)) (-316 |#1|) (-918))) (-15 -4063 ((-169 (-379)) (-316 (-169 |#1|)))) (-15 -4063 ((-169 (-379)) (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-15 -3130 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-949 (-169 |#1|)) (-918)))) |%noBranch|) (IF (|has| |#1| (-1046)) (PROGN (-15 -1711 ((-3 (-379) "failed") (-949 |#1|))) (-15 -1711 ((-3 (-379) "failed") (-949 |#1|) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-949 |#1|))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-949 |#1|) (-918)))) |%noBranch|) (IF (|has| |#1| (-556)) (PROGN (-15 -1711 ((-3 (-379) "failed") (-407 (-949 |#1|)))) (-15 -1711 ((-3 (-379) "failed") (-407 (-949 |#1|)) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-407 (-949 |#1|)) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-407 (-949 (-169 |#1|))) (-918))) (IF (|has| |#1| (-847)) (PROGN (-15 -1711 ((-3 (-379) "failed") (-316 |#1|))) (-15 -1711 ((-3 (-379) "failed") (-316 |#1|) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-316 |#1|))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-316 |#1|) (-918))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)))) (-15 -3130 ((-3 (-169 (-379)) "failed") (-316 (-169 |#1|)) (-918)))) |%noBranch|)) |%noBranch|)) +((-3570 (((-918) (-1152)) 90)) (-1408 (((-3 (-379) "failed") (-1152)) 35)) (-2533 (((-379) (-1152)) 33)) (-1311 (((-918) (-1152)) 62)) (-3990 (((-1152) (-918)) 76)) (-2833 (((-1152) (-918)) 61))) +(((-783) (-10 -7 (-15 -2833 ((-1152) (-918))) (-15 -1311 ((-918) (-1152))) (-15 -3990 ((-1152) (-918))) (-15 -3570 ((-918) (-1152))) (-15 -2533 ((-379) (-1152))) (-15 -1408 ((-3 (-379) "failed") (-1152))))) (T -783)) +((-1408 (*1 *2 *3) (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))) (-3990 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783))))) +(-10 -7 (-15 -2833 ((-1152) (-918))) (-15 -1311 ((-918) (-1152))) (-15 -3990 ((-1152) (-918))) (-15 -3570 ((-918) (-1152))) (-15 -2533 ((-379) (-1152))) (-15 -1408 ((-3 (-379) "failed") (-1152)))) +((-3732 (((-112) $ $) 7)) (-3383 (((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 15) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032)) 13)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 16) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6))) +(((-784) (-140)) (T -784)) +((-3406 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032)))))) (-3383 (*1 *2 *3 *2) (-12 (-4 *1 (-784)) (-5 *2 (-1032)) (-5 *3 (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) (-3406 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032)))))) (-3383 (*1 *2 *3 *2) (-12 (-4 *1 (-784)) (-5 *2 (-1032)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(-13 (-1094) (-10 -7 (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3383 ((-1032) (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) (|:| |extra| (-1032))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3383 ((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) (-1032))))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-1829 (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 54) (((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 51)) (-2518 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 60)) (-3443 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 49)) (-3861 (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379))) 62) (((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))) 61))) +(((-785) (-10 -7 (-15 -3861 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -3861 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3443 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1829 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1829 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -2518 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))))) (T -785)) +((-2518 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1829 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-1829 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-564)) (-5 *6 (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379)))) (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-3443 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-3861 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785)))) (-3861 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) (-5 *1 (-785))))) +(-10 -7 (-15 -3861 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -3861 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -3443 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1829 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)))) (-15 -1829 ((-1264) (-1259 (-379)) (-564) (-379) (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379))) (-379) (-1259 (-379)) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)) (-1259 (-379)))) (-15 -2518 ((-1264) (-1259 (-379)) (-564) (-379) (-379) (-564) (-1 (-1264) (-1259 (-379)) (-1259 (-379)) (-379))))) +((-3991 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 65)) (-3988 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 42)) (-2200 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 64)) (-2303 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 40)) (-2317 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 63)) (-2872 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)) 26)) (-3236 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 43)) (-1735 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 41)) (-2089 (((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564)) 39))) +(((-786) (-10 -7 (-15 -2089 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1735 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3236 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2872 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2303 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3988 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2317 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2200 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3991 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))))) (T -786)) +((-3991 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2200 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2317 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3988 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2303 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2872 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-3236 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-1735 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564)))) (-2089 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) (-5 *1 (-786)) (-5 *5 (-564))))) +(-10 -7 (-15 -2089 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -1735 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -3236 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564) (-564))) (-15 -2872 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2303 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3988 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2317 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -2200 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564))) (-15 -3991 ((-2 (|:| -3426 (-379)) (|:| -1912 (-379)) (|:| |totalpts| (-564)) (|:| |success| (-112))) (-1 (-379) (-379)) (-379) (-379) (-379) (-379) (-564) (-564)))) +((-3046 (((-1204 |#1|) |#1| (-225) (-564)) 68))) +(((-787 |#1|) (-10 -7 (-15 -3046 ((-1204 |#1|) |#1| (-225) (-564)))) (-971)) (T -787)) +((-3046 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) (-5 *1 (-787 *3)) (-4 *3 (-971))))) +(-10 -7 (-15 -3046 ((-1204 |#1|) |#1| (-225) (-564)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 24)) (-3239 (((-3 $ "failed") $ $) 26)) (-2818 (($) 23 T CONST)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 22 T CONST)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1790 (($ $ $) 28) (($ $) 27)) (-1780 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25) (($ (-564) $) 29))) (((-788) (-140)) (T -788)) NIL -(-13 (-790) (-23)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-790) . T) ((-846) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 24)) (-3367 (($ $ $) 27)) (-1482 (((-3 $ "failed") $ $) 26)) (-3684 (($) 23 T CONST)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 22 T CONST)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (-3027 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) +(-13 (-792) (-21)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 24)) (-2818 (($) 23 T CONST)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 22 T CONST)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1780 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25))) (((-789) (-140)) (T -789)) -((-3367 (*1 *1 *1 *1) (-4 *1 (-789)))) -(-13 (-791) (-10 -8 (-15 -3367 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 7)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (-3027 (($ $ $) 20)) (* (($ (-917) $) 21))) -(((-790) (-140)) (T -790)) NIL -(-13 (-846) (-25)) -(((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 24)) (-1482 (((-3 $ "failed") $ $) 26)) (-3684 (($) 23 T CONST)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 22 T CONST)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (-3027 (($ $ $) 20)) (* (($ (-917) $) 21) (($ (-767) $) 25))) +(-13 (-791) (-23)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-791) . T) ((-847) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 24)) (-2850 (($ $ $) 27)) (-3239 (((-3 $ "failed") $ $) 26)) (-2818 (($) 23 T CONST)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 22 T CONST)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1780 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25))) +(((-790) (-140)) (T -790)) +((-2850 (*1 *1 *1 *1) (-4 *1 (-790)))) +(-13 (-792) (-10 -8 (-15 -2850 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 7)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1780 (($ $ $) 20)) (* (($ (-918) $) 21))) (((-791) (-140)) (T -791)) NIL -(-13 (-788) (-131)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-788) . T) ((-790) . T) ((-846) . T) ((-1093) . T)) -((-2741 (((-112) $) 42)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2589 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 43)) (-3459 (((-3 (-407 (-563)) "failed") $) 79)) (-3447 (((-112) $) 73)) (-3437 (((-407 (-563)) $) 77)) (-3251 ((|#2| $) 26)) (-2751 (($ (-1 |#2| |#2|) $) 23)) (-3149 (($ $) 60)) (-2802 (((-536) $) 68)) (-1382 (($ $) 21)) (-2062 (((-858) $) 55) (($ (-563)) 40) (($ |#2|) 38) (($ (-407 (-563))) NIL)) (-3192 (((-767)) 10)) (-3841 ((|#2| $) 72)) (-2943 (((-112) $ $) 30)) (-2966 (((-112) $ $) 70)) (-3039 (($ $) 32) (($ $ $) NIL)) (-3027 (($ $ $) 31)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) -(((-792 |#1| |#2|) (-10 -8 (-15 -2966 ((-112) |#1| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -3149 (|#1| |#1|)) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3251 (|#2| |#1|)) (-15 -1382 (|#1| |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) (-793 |#2|) (-172)) (T -792)) -((-3192 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4)) (-4 *3 (-793 *4))))) -(-10 -8 (-15 -2966 ((-112) |#1| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -3149 (|#1| |#1|)) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3251 (|#2| |#1|)) (-15 -1382 (|#1| |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-2433 (((-767)) 52 (|has| |#1| (-368)))) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 94 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 91 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 88)) (-2589 (((-563) $) 93 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 90 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 89)) (-3230 (((-3 $ "failed") $) 33)) (-2079 ((|#1| $) 78)) (-3459 (((-3 (-407 (-563)) "failed") $) 65 (|has| |#1| (-545)))) (-3447 (((-112) $) 67 (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) 66 (|has| |#1| (-545)))) (-4301 (($) 55 (|has| |#1| (-368)))) (-2712 (((-112) $) 31)) (-2226 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3251 ((|#1| $) 70)) (-3489 (($ $ $) 61 (|has| |#1| (-846)))) (-4105 (($ $ $) 60 (|has| |#1| (-846)))) (-2751 (($ (-1 |#1| |#1|) $) 80)) (-3267 (((-917) $) 54 (|has| |#1| (-368)))) (-1938 (((-1151) $) 9)) (-3149 (($ $) 64 (|has| |#1| (-363)))) (-3491 (($ (-917)) 53 (|has| |#1| (-368)))) (-2196 ((|#1| $) 75)) (-2206 ((|#1| $) 76)) (-2216 ((|#1| $) 77)) (-1351 ((|#1| $) 71)) (-1363 ((|#1| $) 72)) (-1371 ((|#1| $) 73)) (-3380 ((|#1| $) 74)) (-3249 (((-1113) $) 10)) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 82 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 81 (|has| |#1| (-514 (-1169) |#1|)))) (-3858 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-2802 (((-536) $) 62 (|has| |#1| (-611 (-536))))) (-1382 (($ $) 79)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 92 (|has| |#1| (-1034 (-407 (-563)))))) (-4376 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3841 ((|#1| $) 68 (|has| |#1| (-1054)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2998 (((-112) $ $) 58 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 57 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 59 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 56 (|has| |#1| (-846)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) -(((-793 |#1|) (-140) (-172)) (T -793)) -((-1382 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2216 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2196 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-2226 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-3459 (*1 *2 *1) (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-3149 (*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -1382 ($ $)) (-15 -2079 (|t#1| $)) (-15 -2216 (|t#1| $)) (-15 -2206 (|t#1| $)) (-15 -2196 (|t#1| $)) (-15 -3380 (|t#1| $)) (-15 -1371 (|t#1| $)) (-15 -1363 (|t#1| $)) (-15 -1351 (|t#1| $)) (-15 -3251 (|t#1| $)) (-15 -2226 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3841 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -3149 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2751 ((|#3| (-1 |#4| |#2|) |#1|) 20))) -(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#3| (-1 |#4| |#2|) |#1|))) (-793 |#2|) (-172) (-793 |#4|) (-172)) (T -794)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5))))) -(-10 -7 (-15 -2751 (|#3| (-1 |#4| |#2|) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2433 (((-767)) NIL (|has| |#1| (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-995 |#1|) "failed") $) 35) (((-3 (-563) "failed") $) NIL (-2811 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563))))) (((-3 (-407 (-563)) "failed") $) NIL (-2811 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-2589 ((|#1| $) NIL) (((-995 |#1|) $) 33) (((-563) $) NIL (-2811 (|has| (-995 |#1|) (-1034 (-563))) (|has| |#1| (-1034 (-563))))) (((-407 (-563)) $) NIL (-2811 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3230 (((-3 $ "failed") $) NIL)) (-2079 ((|#1| $) 16)) (-3459 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-3447 (((-112) $) NIL (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-4301 (($) NIL (|has| |#1| (-368)))) (-2712 (((-112) $) NIL)) (-2226 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-995 |#1|) (-995 |#1|)) 29)) (-3251 ((|#1| $) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3267 (((-917) $) NIL (|has| |#1| (-368)))) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-3491 (($ (-917)) NIL (|has| |#1| (-368)))) (-2196 ((|#1| $) 22)) (-2206 ((|#1| $) 20)) (-2216 ((|#1| $) 18)) (-1351 ((|#1| $) 26)) (-1363 ((|#1| $) 25)) (-1371 ((|#1| $) 24)) (-3380 ((|#1| $) 23)) (-3249 (((-1113) $) NIL)) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-3858 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1382 (($ $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-995 |#1|)) 30) (($ (-407 (-563))) NIL (-2811 (|has| (-995 |#1|) (-1034 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3841 ((|#1| $) NIL (|has| |#1| (-1054)))) (-3790 (($) 8 T CONST)) (-3803 (($) 12 T CONST)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-795 |#1|) (-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -2226 ($ (-995 |#1|) (-995 |#1|))))) (-172)) (T -795)) -((-2226 (*1 *1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3))))) -(-13 (-793 |#1|) (-411 (-995 |#1|)) (-10 -8 (-15 -2226 ($ (-995 |#1|) (-995 |#1|))))) -((-2049 (((-112) $ $) 7)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2236 (((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-2943 (((-112) $ $) 6))) -(((-796) (-140)) (T -796)) -((-4072 (*1 *2 *3 *4) (-12 (-4 *1 (-796)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)))))) (-2236 (*1 *2 *3) (-12 (-4 *1 (-796)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1031))))) -(-13 (-1093) (-10 -7 (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2236 ((-1031) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2247 (((-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#3| |#2| (-1169)) 19))) -(((-797 |#1| |#2| |#3|) (-10 -7 (-15 -2247 ((-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#3| |#2| (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955)) (-651 |#2|)) (T -797)) -((-2247 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-4 *4 (-13 (-29 *6) (-1193) (-955))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3288 (-640 *4)))) (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-651 *4))))) -(-10 -7 (-15 -2247 ((-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#3| |#2| (-1169)))) -((-1558 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169)) 18) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169)) 24) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169)) 26) (((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169)) 37) (((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169)) 35))) -(((-798 |#1| |#2|) (-10 -7 (-15 -1558 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169))) (-15 -1558 ((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169))) (-15 -1558 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169))) (-15 -1558 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169))) (-15 -1558 ((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169))) (-15 -1558 ((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169))) (-15 -1558 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -1558 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -798)) -((-1558 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-798 *6 *2)))) (-1558 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-640 *2)) (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-5 *1 (-798 *6 *2)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))))) (-1558 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1169)) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3288 (-640 *3))) *3 "failed")) (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1193) (-955))))) (-1558 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3288 (-640 *7))) *7 "failed")) (-5 *1 (-798 *6 *7)))) (-1558 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -3288 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)))) (-1558 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -3288 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)))) (-1558 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-684 *6)) (-5 *4 (-1169)) (-4 *6 (-13 (-29 *5) (-1193) (-955))) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-1257 *6))) (-5 *1 (-798 *5 *6)))) (-1558 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-684 *7)) (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-2 (|:| |particular| (-1257 *7)) (|:| -3288 (-640 (-1257 *7))))) (-5 *1 (-798 *6 *7)) (-5 *4 (-1257 *7))))) -(-10 -7 (-15 -1558 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-684 |#2|) (-1257 |#2|) (-1169))) (-15 -1558 ((-3 (-640 (-1257 |#2|)) "failed") (-684 |#2|) (-1169))) (-15 -1558 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-640 (-294 |#2|)) (-640 (-114)) (-1169))) (-15 -1558 ((-3 (-2 (|:| |particular| (-1257 |#2|)) (|:| -3288 (-640 (-1257 |#2|)))) "failed") (-640 |#2|) (-640 (-114)) (-1169))) (-15 -1558 ((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1169))) (-15 -1558 ((-3 (-2 (|:| |particular| |#2|) (|:| -3288 (-640 |#2|))) |#2| "failed") |#2| (-114) (-1169))) (-15 -1558 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-640 |#2|))) (-15 -1558 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-640 |#2|)))) -((-2259 (($) 9)) (-2290 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-2706 (((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-1956 (($ (-2 (|:| -3320 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-2280 (($ (-640 (-2 (|:| -3320 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-2269 (((-1262)) 12))) -(((-799) (-10 -8 (-15 -2259 ($)) (-15 -2269 ((-1262))) (-15 -2706 ((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2280 ($ (-640 (-2 (|:| -3320 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -1956 ($ (-2 (|:| -3320 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -2290 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -799)) -((-2290 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-799)))) (-1956 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3320 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-799)))) (-2280 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -3320 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-799)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-799)))) (-2269 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-799)))) (-2259 (*1 *1) (-5 *1 (-799)))) -(-10 -8 (-15 -2259 ($)) (-15 -2269 ((-1262))) (-15 -2706 ((-640 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -2280 ($ (-640 (-2 (|:| -3320 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -1956 ($ (-2 (|:| -3320 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -3704 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -2290 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) -((-3258 ((|#2| |#2| (-1169)) 17)) (-2301 ((|#2| |#2| (-1169)) 56)) (-2312 (((-1 |#2| |#2|) (-1169)) 11))) -(((-800 |#1| |#2|) (-10 -7 (-15 -3258 (|#2| |#2| (-1169))) (-15 -2301 (|#2| |#2| (-1169))) (-15 -2312 ((-1 |#2| |#2|) (-1169)))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147)) (-13 (-29 |#1|) (-1193) (-955))) (T -800)) -((-2312 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) (-4 *5 (-13 (-29 *4) (-1193) (-955))))) (-2301 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955))))) (-3258 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955)))))) -(-10 -7 (-15 -3258 (|#2| |#2| (-1169))) (-15 -2301 (|#2| |#2| (-1169))) (-15 -2312 ((-1 |#2| |#2|) (-1169)))) -((-1558 (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379)) 131) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379)) 132) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379)) 134) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379)) 136) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379)) 137) (((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379))) 139) (((-1031) (-804) (-1057)) 123) (((-1031) (-804)) 124)) (-4072 (((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057)) 83) (((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804)) 85))) -(((-801) (-10 -7 (-15 -1558 ((-1031) (-804))) (-15 -1558 ((-1031) (-804) (-1057))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057))))) (T -801)) -((-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-801)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-801)))) (-1558 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1558 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1558 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1558 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1558 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1558 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801))))) -(-10 -7 (-15 -1558 ((-1031) (-804))) (-15 -1558 ((-1031) (-804) (-1057))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-379))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-379))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-640 (-379)) (-379))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379))) (-15 -1558 ((-1031) (-1257 (-316 (-379))) (-379) (-379) (-640 (-379)) (-316 (-379)) (-640 (-379)) (-379) (-379))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-804) (-1057)))) -((-2323 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3288 (-640 |#4|))) (-648 |#4|) |#4|) 35))) -(((-802 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2323 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3288 (-640 |#4|))) (-648 |#4|) |#4|))) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -802)) -((-2323 (*1 *2 *3 *4) (-12 (-5 *3 (-648 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) (-5 *1 (-802 *5 *6 *7 *4))))) -(-10 -7 (-15 -2323 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3288 (-640 |#4|))) (-648 |#4|) |#4|))) -((-3812 (((-2 (|:| -3087 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|))) 53)) (-2345 (((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#4| |#2|) 62) (((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#4|) 61) (((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#3| |#2|) 20) (((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#3|) 21)) (-2357 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-2332 ((|#2| |#3| (-640 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109))) -(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2332 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2332 (|#2| |#3| (-640 (-407 |#2|)))) (-15 -2345 ((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#3|)) (-15 -2345 ((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#3| |#2|)) (-15 -2357 (|#2| |#3| |#1|)) (-15 -2345 ((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#4|)) (-15 -2345 ((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#4| |#2|)) (-15 -2357 (|#2| |#4| |#1|)) (-15 -3812 ((-2 (|:| -3087 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-407 (-563)))) (-1233 |#1|) (-651 |#2|) (-651 (-407 |#2|))) (T -803)) -((-3812 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-2 (|:| -3087 *7) (|:| |rh| (-640 (-407 *6))))) (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-640 (-407 *6))) (-4 *7 (-651 *6)) (-4 *3 (-651 (-407 *6))))) (-2357 (*1 *2 *3 *4) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-651 *2)) (-4 *3 (-651 (-407 *2))))) (-2345 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3219 *4) (|:| -2320 *4)))) (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-651 *4)) (-4 *3 (-651 (-407 *4))))) (-2345 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3219 *5) (|:| -2320 *5)))) (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 (-407 *5))))) (-2357 (*1 *2 *3 *4) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-407 *2))))) (-2345 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3219 *4) (|:| -2320 *4)))) (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-651 *4)) (-4 *6 (-651 (-407 *4))))) (-2345 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3219 *5) (|:| -2320 *5)))) (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-407 *5))))) (-2332 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-407 *2))) (-4 *2 (-1233 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *6 (-651 (-407 *2))))) (-2332 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1233 *5)) (-5 *1 (-803 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *6 (-651 *4))))) -(-10 -7 (-15 -2332 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -2332 (|#2| |#3| (-640 (-407 |#2|)))) (-15 -2345 ((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#3|)) (-15 -2345 ((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#3| |#2|)) (-15 -2357 (|#2| |#3| |#1|)) (-15 -2345 ((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#4|)) (-15 -2345 ((-640 (-2 (|:| -3219 |#2|) (|:| -2320 |#2|))) |#4| |#2|)) (-15 -2357 (|#2| |#4| |#1|)) (-15 -3812 ((-2 (|:| -3087 |#3|) (|:| |rh| (-640 (-407 |#2|)))) |#4| (-640 (-407 |#2|))))) -((-2049 (((-112) $ $) NIL)) (-2589 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-2943 (((-112) $ $) NIL))) -(((-804) (-13 (-1093) (-10 -8 (-15 -2062 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2589 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -804)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-804))))) -(-13 (-1093) (-10 -8 (-15 -2062 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2589 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) -((-2454 (((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -3087 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|)) 157)) (-2464 (((-640 (-2 (|:| |poly| |#2|) (|:| -3087 |#3|))) |#3| (-1 (-640 |#1|) |#2|)) 56)) (-2382 (((-640 (-2 (|:| |deg| (-767)) (|:| -3087 |#2|))) |#3|) 126)) (-2370 ((|#2| |#3|) 45)) (-2395 (((-640 (-2 (|:| -2495 |#1|) (|:| -3087 |#3|))) |#3| (-1 (-640 |#1|) |#2|)) 104)) (-2405 ((|#3| |#3| (-407 |#2|)) 75) ((|#3| |#3| |#2|) 101))) -(((-805 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2370 (|#2| |#3|)) (-15 -2382 ((-640 (-2 (|:| |deg| (-767)) (|:| -3087 |#2|))) |#3|)) (-15 -2395 ((-640 (-2 (|:| -2495 |#1|) (|:| -3087 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -2464 ((-640 (-2 (|:| |poly| |#2|) (|:| -3087 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -2454 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -3087 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2405 (|#3| |#3| |#2|)) (-15 -2405 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-407 (-563)))) (-1233 |#1|) (-651 |#2|) (-651 (-407 |#2|))) (T -805)) -((-2405 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-651 *5)) (-4 *6 (-651 *3)))) (-2405 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-1233 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-651 *3)) (-4 *5 (-651 (-407 *3))))) (-2454 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-640 *7) *7 (-1165 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |frac| (-407 *7)) (|:| -3087 *3)))) (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-651 *7)) (-4 *8 (-651 (-407 *7))))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -3087 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-407 *6))))) (-2395 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -2495 *5) (|:| -3087 *3)))) (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) (-4 *7 (-651 (-407 *6))))) (-2382 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -3087 *5)))) (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-651 (-407 *5))))) (-2370 (*1 *2 *3) (-12 (-4 *2 (-1233 *4)) (-5 *1 (-805 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) (-4 *5 (-651 (-407 *2)))))) -(-10 -7 (-15 -2370 (|#2| |#3|)) (-15 -2382 ((-640 (-2 (|:| |deg| (-767)) (|:| -3087 |#2|))) |#3|)) (-15 -2395 ((-640 (-2 (|:| -2495 |#1|) (|:| -3087 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -2464 ((-640 (-2 (|:| |poly| |#2|) (|:| -3087 |#3|))) |#3| (-1 (-640 |#1|) |#2|))) (-15 -2454 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -3087 |#3|))) |#3| (-1 (-640 |#2|) |#2| (-1165 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2405 (|#3| |#3| |#2|)) (-15 -2405 (|#3| |#3| (-407 |#2|)))) -((-2420 (((-2 (|:| -3288 (-640 (-407 |#2|))) (|:| -4277 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|))) 151) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3288 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|)) 150) (((-2 (|:| -3288 (-640 (-407 |#2|))) (|:| -4277 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|))) 145) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3288 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|)) 143)) (-2430 ((|#2| (-649 |#2| (-407 |#2|))) 93) ((|#2| (-648 (-407 |#2|))) 96))) -(((-806 |#1| |#2|) (-10 -7 (-15 -2420 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3288 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|))) (-15 -2420 ((-2 (|:| -3288 (-640 (-407 |#2|))) (|:| -4277 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -2420 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3288 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2420 ((-2 (|:| -3288 (-640 (-407 |#2|))) (|:| -4277 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -2430 (|#2| (-648 (-407 |#2|)))) (-15 -2430 (|#2| (-649 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -806)) -((-2430 (*1 *2 *3) (-12 (-5 *3 (-649 *2 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))) (-2430 (*1 *2 *3) (-12 (-5 *3 (-648 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| -3288 (-640 (-407 *6))) (|:| -4277 (-684 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) (-5 *1 (-806 *5 *6)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| -3288 (-640 (-407 *6))) (|:| -4277 (-684 *5)))) (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) (-5 *1 (-806 *5 *6))))) -(-10 -7 (-15 -2420 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3288 (-640 (-407 |#2|)))) (-648 (-407 |#2|)) (-407 |#2|))) (-15 -2420 ((-2 (|:| -3288 (-640 (-407 |#2|))) (|:| -4277 (-684 |#1|))) (-648 (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -2420 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -3288 (-640 (-407 |#2|)))) (-649 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2420 ((-2 (|:| -3288 (-640 (-407 |#2|))) (|:| -4277 (-684 |#1|))) (-649 |#2| (-407 |#2|)) (-640 (-407 |#2|)))) (-15 -2430 (|#2| (-648 (-407 |#2|)))) (-15 -2430 (|#2| (-649 |#2| (-407 |#2|))))) -((-2443 (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|) 52))) -(((-807 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2443 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|))) (-363) (-651 |#1|) (-1233 |#1|) (-720 |#1| |#3|) (-651 |#4|)) (T -807)) -((-2443 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1233 *5)) (-4 *4 (-720 *5 *7)) (-5 *2 (-2 (|:| -4277 (-684 *6)) (|:| |vec| (-1257 *5)))) (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4))))) -(-10 -7 (-15 -2443 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) |#5| |#4|))) -((-2454 (((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -3087 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-2474 (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 170 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|))) 167 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-648 (-407 |#2|))) 169 (|has| |#1| (-27))) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 39) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 37)) (-2464 (((-640 (-2 (|:| |poly| |#2|) (|:| -3087 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|)) 99))) -(((-808 |#1| |#2|) (-10 -7 (-15 -2474 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -2474 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2474 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -2474 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2454 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -3087 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2464 ((-640 (-2 (|:| |poly| |#2|) (|:| -3087 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2474 ((-640 (-407 |#2|)) (-648 (-407 |#2|)))) (-15 -2474 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2474 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)))) (-15 -2474 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))) (-1233 |#1|)) (T -808)) -((-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-649 *5 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-648 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) (-2464 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -3087 (-649 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6))))) (-2454 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-5 *2 (-640 (-2 (|:| |frac| (-407 *6)) (|:| -3087 (-649 *6 (-407 *6)))))) (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6))))) (-2474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 *7 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) (-2474 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-648 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) (-2474 (*1 *2 *3 *4) (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6))))) -(-10 -7 (-15 -2474 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -2474 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2474 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (-15 -2474 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2454 ((-640 (-2 (|:| |frac| (-407 |#2|)) (|:| -3087 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2464 ((-640 (-2 (|:| |poly| |#2|) (|:| -3087 (-649 |#2| (-407 |#2|))))) (-649 |#2| (-407 |#2|)) (-1 (-640 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2474 ((-640 (-407 |#2|)) (-648 (-407 |#2|)))) (-15 -2474 ((-640 (-407 |#2|)) (-648 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2474 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)))) (-15 -2474 ((-640 (-407 |#2|)) (-649 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) -((-2483 (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|)) 109) (((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -3087 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|)) 15)) (-2493 (((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3288 (-640 |#1|))) |#2| |#1|)) 115)) (-1558 (((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -3288 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3288 (-640 |#1|))) "failed") |#2| |#1|)) 52))) -(((-809 |#1| |#2|) (-10 -7 (-15 -2483 ((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -3087 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|))) (-15 -2483 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|))) (-15 -1558 ((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -3288 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3288 (-640 |#1|))) "failed") |#2| |#1|))) (-15 -2493 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3288 (-640 |#1|))) |#2| |#1|)))) (-363) (-651 |#1|)) (T -809)) -((-2493 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3288 (-640 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1257 *6) "failed")) (|:| -3288 (-640 (-1257 *6))))) (-5 *1 (-809 *6 *7)) (-5 *4 (-1257 *6)))) (-1558 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3288 (-640 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-651 *6)) (-5 *2 (-2 (|:| |particular| (-1257 *6)) (|:| -3288 (-684 *6)))) (-5 *1 (-809 *6 *7)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *6)))) (-2483 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-651 *5)) (-5 *2 (-2 (|:| -4277 (-684 *6)) (|:| |vec| (-1257 *5)))) (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *5)))) (-2483 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-684 *5)) (|:| |eqs| (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5)) (|:| -3087 *6) (|:| |rh| *5)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *6 (-651 *5))))) -(-10 -7 (-15 -2483 ((-2 (|:| A (-684 |#1|)) (|:| |eqs| (-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)) (|:| -3087 |#2|) (|:| |rh| |#1|))))) (-684 |#1|) (-1257 |#1|))) (-15 -2483 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#1|))) (-684 |#2|) (-1257 |#1|))) (-15 -1558 ((-3 (-2 (|:| |particular| (-1257 |#1|)) (|:| -3288 (-684 |#1|))) "failed") (-684 |#1|) (-1257 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3288 (-640 |#1|))) "failed") |#2| |#1|))) (-15 -2493 ((-2 (|:| |particular| (-3 (-1257 |#1|) "failed")) (|:| -3288 (-640 (-1257 |#1|)))) (-684 |#2|) (-1257 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3288 (-640 |#1|))) |#2| |#1|)))) -((-2504 (((-684 |#1|) (-640 |#1|) (-767)) 14) (((-684 |#1|) (-640 |#1|)) 15)) (-2513 (((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|)) 39)) (-3433 (((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|)) 46))) -(((-810 |#1| |#2|) (-10 -7 (-15 -2504 ((-684 |#1|) (-640 |#1|))) (-15 -2504 ((-684 |#1|) (-640 |#1|) (-767))) (-15 -2513 ((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|))) (-15 -3433 ((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|)))) (-363) (-651 |#1|)) (T -810)) -((-3433 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-640 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-810 *2 *3)) (-4 *3 (-651 *2)))) (-2513 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-1257 *4)) (-5 *1 (-810 *4 *3)) (-4 *3 (-651 *4)))) (-2504 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-684 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-651 *5)))) (-2504 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)) (-5 *1 (-810 *4 *5)) (-4 *5 (-651 *4))))) -(-10 -7 (-15 -2504 ((-684 |#1|) (-640 |#1|))) (-15 -2504 ((-684 |#1|) (-640 |#1|) (-767))) (-15 -2513 ((-3 (-1257 |#1|) "failed") |#2| |#1| (-640 |#1|))) (-15 -3433 ((-3 |#1| "failed") |#2| |#1| (-640 |#1|) (-1 |#1| |#1|)))) -((-2049 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-2741 (((-112) $) NIL (|has| |#2| (-131)))) (-3525 (($ (-917)) NIL (|has| |#2| (-1045)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3367 (($ $ $) NIL (|has| |#2| (-789)))) (-1482 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-3740 (((-112) $ (-767)) NIL)) (-2433 (((-767)) NIL (|has| |#2| (-368)))) (-2107 (((-563) $) NIL (|has| |#2| (-844)))) (-2189 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1093)))) (-2589 (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) ((|#2| $) NIL (|has| |#2| (-1093)))) (-3853 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#2| (-1045)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#2| (-1045))) (((-684 |#2|) (-684 $)) NIL (|has| |#2| (-1045)))) (-3230 (((-3 $ "failed") $) NIL (|has| |#2| (-722)))) (-4301 (($) NIL (|has| |#2| (-368)))) (-4150 ((|#2| $ (-563) |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ (-563)) NIL)) (-2720 (((-112) $) NIL (|has| |#2| (-844)))) (-4236 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2712 (((-112) $) NIL (|has| |#2| (-722)))) (-2731 (((-112) $) NIL (|has| |#2| (-844)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-1572 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-4139 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-3267 (((-917) $) NIL (|has| |#2| (-368)))) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#2| (-1093)))) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3491 (($ (-917)) NIL (|has| |#2| (-368)))) (-3249 (((-1113) $) NIL (|has| |#2| (-1093)))) (-1884 ((|#2| $) NIL (|has| (-563) (-846)))) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ (-563) |#2|) NIL) ((|#2| $ (-563)) NIL)) (-3396 ((|#2| $ $) NIL (|has| |#2| (-1045)))) (-2101 (($ (-1257 |#2|)) NIL)) (-1575 (((-134)) NIL (|has| |#2| (-363)))) (-1361 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-3261 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-1257 |#2|) $) NIL) (($ (-563)) NIL (-2811 (-12 (|has| |#2| (-1034 (-563))) (|has| |#2| (-1093))) (|has| |#2| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#2| (-1034 (-407 (-563)))) (|has| |#2| (-1093)))) (($ |#2|) NIL (|has| |#2| (-1093))) (((-858) $) NIL (|has| |#2| (-610 (-858))))) (-3192 (((-767)) NIL (|has| |#2| (-1045)) CONST)) (-3848 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3841 (($ $) NIL (|has| |#2| (-844)))) (-3790 (($) NIL (|has| |#2| (-131)) CONST)) (-3803 (($) NIL (|has| |#2| (-722)) CONST)) (-4191 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#2| (-896 (-1169))) (|has| |#2| (-1045)))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#2| (-1045))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1045)))) (-2998 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2977 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2943 (((-112) $ $) NIL (|has| |#2| (-1093)))) (-2988 (((-112) $ $) NIL (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-2966 (((-112) $ $) 11 (-2811 (|has| |#2| (-789)) (|has| |#2| (-844))))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $ $) NIL (|has| |#2| (-1045))) (($ $) NIL (|has| |#2| (-1045)))) (-3027 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-767)) NIL (|has| |#2| (-722))) (($ $ (-917)) NIL (|has| |#2| (-722)))) (* (($ (-563) $) NIL (|has| |#2| (-1045))) (($ $ $) NIL (|has| |#2| (-722))) (($ $ |#2|) NIL (|has| |#2| (-722))) (($ |#2| $) NIL (|has| |#2| (-722))) (($ (-767) $) NIL (|has| |#2| (-131))) (($ (-917) $) NIL (|has| |#2| (-25)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-811 |#1| |#2| |#3|) (-238 |#1| |#2|) (-767) (-789) (-1 (-112) (-1257 |#2|) (-1257 |#2|))) (T -811)) +(-13 (-847) (-25)) +(((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 24)) (-3239 (((-3 $ "failed") $ $) 26)) (-2818 (($) 23 T CONST)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 22 T CONST)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1780 (($ $ $) 20)) (* (($ (-918) $) 21) (($ (-768) $) 25))) +(((-792) (-140)) (T -792)) +NIL +(-13 (-789) (-131)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-789) . T) ((-791) . T) ((-847) . T) ((-1094) . T)) +((-4173 (((-112) $) 42)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2239 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 43)) (-2646 (((-3 (-407 (-564)) "failed") $) 79)) (-4072 (((-112) $) 73)) (-2350 (((-407 (-564)) $) 77)) (-3328 ((|#2| $) 26)) (-2187 (($ (-1 |#2| |#2|) $) 23)) (-4373 (($ $) 60)) (-2235 (((-536) $) 68)) (-2766 (($ $) 21)) (-3742 (((-859) $) 55) (($ (-564)) 40) (($ |#2|) 38) (($ (-407 (-564))) NIL)) (-3270 (((-768)) 10)) (-2792 ((|#2| $) 72)) (-1705 (((-112) $ $) 30)) (-1723 (((-112) $ $) 70)) (-1790 (($ $) 32) (($ $ $) NIL)) (-1780 (($ $ $) 31)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 36) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 33))) +(((-793 |#1| |#2|) (-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -4373 (|#1| |#1|)) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2792 (|#2| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -2766 (|#1| |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -4173 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) (-794 |#2|) (-172)) (T -793)) +((-3270 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-793 *3 *4)) (-4 *3 (-794 *4))))) +(-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -4373 (|#1| |#1|)) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2792 (|#2| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -2766 (|#1| |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -4173 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-1938 (((-768)) 52 (|has| |#1| (-368)))) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 94 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 91 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 88)) (-2239 (((-564) $) 93 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 90 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 89)) (-3951 (((-3 $ "failed") $) 33)) (-4151 ((|#1| $) 78)) (-2646 (((-3 (-407 (-564)) "failed") $) 65 (|has| |#1| (-545)))) (-4072 (((-112) $) 67 (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) 66 (|has| |#1| (-545)))) (-2821 (($) 55 (|has| |#1| (-368)))) (-3840 (((-112) $) 31)) (-1868 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 69)) (-3328 ((|#1| $) 70)) (-2799 (($ $ $) 61 (|has| |#1| (-847)))) (-2848 (($ $ $) 60 (|has| |#1| (-847)))) (-2187 (($ (-1 |#1| |#1|) $) 80)) (-1906 (((-918) $) 54 (|has| |#1| (-368)))) (-2217 (((-1152) $) 9)) (-4373 (($ $) 64 (|has| |#1| (-363)))) (-1495 (($ (-918)) 53 (|has| |#1| (-368)))) (-2314 ((|#1| $) 75)) (-3890 ((|#1| $) 76)) (-3409 ((|#1| $) 77)) (-4078 ((|#1| $) 71)) (-2499 ((|#1| $) 72)) (-2040 ((|#1| $) 73)) (-1590 ((|#1| $) 74)) (-3864 (((-1114) $) 10)) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) 86 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 85 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 84 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 83 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 82 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 81 (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) 87 (|has| |#1| (-286 |#1| |#1|)))) (-2235 (((-536) $) 62 (|has| |#1| (-612 (-536))))) (-2766 (($ $) 79)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 92 (|has| |#1| (-1035 (-407 (-564)))))) (-4253 (((-3 $ "failed") $) 63 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-2792 ((|#1| $) 68 (|has| |#1| (-1055)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1751 (((-112) $ $) 58 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 57 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 59 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 56 (|has| |#1| (-847)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39))) +(((-794 |#1|) (-140) (-172)) (T -794)) +((-2766 (*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2314 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1590 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-1868 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2646 (*1 *2 *1) (|partial| -12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-4373 (*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) +(-13 (-38 |t#1|) (-411 |t#1|) (-338 |t#1|) (-10 -8 (-15 -2766 ($ $)) (-15 -4151 (|t#1| $)) (-15 -3409 (|t#1| $)) (-15 -3890 (|t#1| $)) (-15 -2314 (|t#1| $)) (-15 -1590 (|t#1| $)) (-15 -2040 (|t#1| $)) (-15 -2499 (|t#1| $)) (-15 -4078 (|t#1| $)) (-15 -3328 (|t#1| $)) (-15 -1868 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-368)) (-6 (-368)) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2792 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-363)) (-15 -4373 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-368) |has| |#1| (-368)) ((-338 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2187 ((|#3| (-1 |#4| |#2|) |#1|) 20))) +(((-795 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#3| (-1 |#4| |#2|) |#1|))) (-794 |#2|) (-172) (-794 |#4|) (-172)) (T -795)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-794 *6)) (-5 *1 (-795 *4 *5 *2 *6)) (-4 *4 (-794 *5))))) +(-10 -7 (-15 -2187 (|#3| (-1 |#4| |#2|) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1938 (((-768)) NIL (|has| |#1| (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-996 |#1|) "failed") $) 35) (((-3 (-564) "failed") $) NIL (-4030 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL (-4030 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-2239 ((|#1| $) NIL) (((-996 |#1|) $) 33) (((-564) $) NIL (-4030 (|has| (-996 |#1|) (-1035 (-564))) (|has| |#1| (-1035 (-564))))) (((-407 (-564)) $) NIL (-4030 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-3951 (((-3 $ "failed") $) NIL)) (-4151 ((|#1| $) 16)) (-2646 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-4072 (((-112) $) NIL (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2821 (($) NIL (|has| |#1| (-368)))) (-3840 (((-112) $) NIL)) (-1868 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-996 |#1|) (-996 |#1|)) 29)) (-3328 ((|#1| $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1906 (((-918) $) NIL (|has| |#1| (-368)))) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-1495 (($ (-918)) NIL (|has| |#1| (-368)))) (-2314 ((|#1| $) 22)) (-3890 ((|#1| $) 20)) (-3409 ((|#1| $) 18)) (-4078 ((|#1| $) 26)) (-2499 ((|#1| $) 25)) (-2040 ((|#1| $) 24)) (-1590 ((|#1| $) 23)) (-3864 (((-1114) $) NIL)) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2766 (($ $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-996 |#1|)) 30) (($ (-407 (-564))) NIL (-4030 (|has| (-996 |#1|) (-1035 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2792 ((|#1| $) NIL (|has| |#1| (-1055)))) (-4311 (($) 8 T CONST)) (-4321 (($) 12 T CONST)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-796 |#1|) (-13 (-794 |#1|) (-411 (-996 |#1|)) (-10 -8 (-15 -1868 ($ (-996 |#1|) (-996 |#1|))))) (-172)) (T -796)) +((-1868 (*1 *1 *2 *2) (-12 (-5 *2 (-996 *3)) (-4 *3 (-172)) (-5 *1 (-796 *3))))) +(-13 (-794 |#1|) (-411 (-996 |#1|)) (-10 -8 (-15 -1868 ($ (-996 |#1|) (-996 |#1|))))) +((-3732 (((-112) $ $) 7)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-3662 (((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 13)) (-1705 (((-112) $ $) 6))) +(((-797) (-140)) (T -797)) +((-3406 (*1 *2 *3 *4) (-12 (-4 *1 (-797)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)))))) (-3662 (*1 *2 *3) (-12 (-4 *1 (-797)) (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-1032))))) +(-13 (-1094) (-10 -7 (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -3662 ((-1032) (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3496 (((-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#3| |#2| (-1170)) 19))) +(((-798 |#1| |#2| |#3|) (-10 -7 (-15 -3496 ((-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#3| |#2| (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956)) (-652 |#2|)) (T -798)) +((-3496 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-4 *4 (-13 (-29 *6) (-1194) (-956))) (-5 *2 (-2 (|:| |particular| *4) (|:| -4265 (-641 *4)))) (-5 *1 (-798 *6 *4 *3)) (-4 *3 (-652 *4))))) +(-10 -7 (-15 -3496 ((-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#3| |#2| (-1170)))) +((-2443 (((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)) 28) (((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170)) 18) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170)) 24) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170)) 26) (((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170)) 37) (((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170)) 35))) +(((-799 |#1| |#2|) (-10 -7 (-15 -2443 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -2443 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -2443 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -2443 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -2443 ((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -2443 ((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -2443 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -2443 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -799)) +((-2443 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-799 *6 *2)))) (-2443 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-5 *1 (-799 *6 *2)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))))) (-2443 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -4265 (-641 *3))) *3 "failed")) (-5 *1 (-799 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-956))))) (-2443 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -4265 (-641 *7))) *7 "failed")) (-5 *1 (-799 *6 *7)))) (-2443 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -4265 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)))) (-2443 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -4265 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)))) (-2443 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) (-4 *6 (-13 (-29 *5) (-1194) (-956))) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-1259 *6))) (-5 *1 (-799 *5 *6)))) (-2443 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-2 (|:| |particular| (-1259 *7)) (|:| -4265 (-641 (-1259 *7))))) (-5 *1 (-799 *6 *7)) (-5 *4 (-1259 *7))))) +(-10 -7 (-15 -2443 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-685 |#2|) (-1259 |#2|) (-1170))) (-15 -2443 ((-3 (-641 (-1259 |#2|)) "failed") (-685 |#2|) (-1170))) (-15 -2443 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-641 (-294 |#2|)) (-641 (-114)) (-1170))) (-15 -2443 ((-3 (-2 (|:| |particular| (-1259 |#2|)) (|:| -4265 (-641 (-1259 |#2|)))) "failed") (-641 |#2|) (-641 (-114)) (-1170))) (-15 -2443 ((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#2| "failed") (-294 |#2|) (-114) (-1170))) (-15 -2443 ((-3 (-2 (|:| |particular| |#2|) (|:| -4265 (-641 |#2|))) |#2| "failed") |#2| (-114) (-1170))) (-15 -2443 ((-3 |#2| "failed") (-294 |#2|) (-114) (-294 |#2|) (-641 |#2|))) (-15 -2443 ((-3 |#2| "failed") |#2| (-114) (-294 |#2|) (-641 |#2|)))) +((-2143 (($) 9)) (-1512 (((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 31)) (-1823 (((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $) 28)) (-2974 (($ (-2 (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) 25)) (-1830 (($ (-641 (-2 (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) 23)) (-3880 (((-1264)) 12))) +(((-800) (-10 -8 (-15 -2143 ($)) (-15 -3880 ((-1264))) (-15 -1823 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1830 ($ (-641 (-2 (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2974 ($ (-2 (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1512 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))))) (T -800)) +((-1512 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))) (-5 *1 (-800)))) (-2974 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))) (-5 *1 (-800)))) (-1830 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-5 *1 (-800)))) (-1823 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-5 *1 (-800)))) (-3880 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-800)))) (-2143 (*1 *1) (-5 *1 (-800)))) +(-10 -8 (-15 -2143 ($)) (-15 -3880 ((-1264))) (-15 -1823 ((-641 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) $)) (-15 -1830 ($ (-641 (-2 (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379)))))))) (-15 -2974 ($ (-2 (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) (-15 -1512 ((-3 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))) "failed") (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) +((-1822 ((|#2| |#2| (-1170)) 17)) (-3169 ((|#2| |#2| (-1170)) 56)) (-2919 (((-1 |#2| |#2|) (-1170)) 11))) +(((-801 |#1| |#2|) (-10 -7 (-15 -1822 (|#2| |#2| (-1170))) (-15 -3169 (|#2| |#2| (-1170))) (-15 -2919 ((-1 |#2| |#2|) (-1170)))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147)) (-13 (-29 |#1|) (-1194) (-956))) (T -801)) +((-2919 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-1 *5 *5)) (-5 *1 (-801 *4 *5)) (-4 *5 (-13 (-29 *4) (-1194) (-956))))) (-3169 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))) (-1822 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956)))))) +(-10 -7 (-15 -1822 (|#2| |#2| (-1170))) (-15 -3169 (|#2| |#2| (-1170))) (-15 -2919 ((-1 |#2| |#2|) (-1170)))) +((-2443 (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379)) 131) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379)) 132) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379)) 134) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379)) 136) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379)) 137) (((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379))) 139) (((-1032) (-805) (-1058)) 123) (((-1032) (-805)) 124)) (-3406 (((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058)) 83) (((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805)) 85))) +(((-802) (-10 -7 (-15 -2443 ((-1032) (-805))) (-15 -2443 ((-1032) (-805) (-1058))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058))))) (T -802)) +((-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-802)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-802)))) (-2443 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2443 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2443 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2443 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2443 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2443 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-802)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1032)) (-5 *1 (-802))))) +(-10 -7 (-15 -2443 ((-1032) (-805))) (-15 -2443 ((-1032) (-805) (-1058))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-379))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-379))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-641 (-379)) (-379))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379))) (-15 -2443 ((-1032) (-1259 (-316 (-379))) (-379) (-379) (-641 (-379)) (-316 (-379)) (-641 (-379)) (-379) (-379))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-805) (-1058)))) +((-1565 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4265 (-641 |#4|))) (-649 |#4|) |#4|) 35))) +(((-803 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1565 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4265 (-641 |#4|))) (-649 |#4|) |#4|))) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|)) (T -803)) +((-1565 (*1 *2 *3 *4) (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) (-5 *1 (-803 *5 *6 *7 *4))))) +(-10 -7 (-15 -1565 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -4265 (-641 |#4|))) (-649 |#4|) |#4|))) +((-1540 (((-2 (|:| -4032 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))) 53)) (-1357 (((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#4| |#2|) 62) (((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#4|) 61) (((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#3| |#2|) 20) (((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#3|) 21)) (-3966 ((|#2| |#4| |#1|) 63) ((|#2| |#3| |#1|) 28)) (-4286 ((|#2| |#3| (-641 (-407 |#2|))) 113) (((-3 |#2| "failed") |#3| (-407 |#2|)) 109))) +(((-804 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4286 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -4286 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -1357 ((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#3|)) (-15 -1357 ((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#3| |#2|)) (-15 -3966 (|#2| |#3| |#1|)) (-15 -1357 ((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#4|)) (-15 -1357 ((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#4| |#2|)) (-15 -3966 (|#2| |#4| |#1|)) (-15 -1540 ((-2 (|:| -4032 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -804)) +((-1540 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-2 (|:| -4032 *7) (|:| |rh| (-641 (-407 *6))))) (-5 *1 (-804 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) (-3966 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *5 *3)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-652 *2)) (-4 *3 (-652 (-407 *2))))) (-1357 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2212 *4) (|:| -2372 *4)))) (-5 *1 (-804 *5 *4 *6 *3)) (-4 *6 (-652 *4)) (-4 *3 (-652 (-407 *4))))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2212 *5) (|:| -2372 *5)))) (-5 *1 (-804 *4 *5 *6 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 (-407 *5))))) (-3966 (*1 *2 *3 *4) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2))))) (-1357 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2212 *4) (|:| -2372 *4)))) (-5 *1 (-804 *5 *4 *3 *6)) (-4 *3 (-652 *4)) (-4 *6 (-652 (-407 *4))))) (-1357 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2212 *5) (|:| -2372 *5)))) (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-4286 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) (-5 *1 (-804 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 (-407 *2))))) (-4286 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) (-5 *1 (-804 *5 *2 *3 *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *6 (-652 *4))))) +(-10 -7 (-15 -4286 ((-3 |#2| "failed") |#3| (-407 |#2|))) (-15 -4286 (|#2| |#3| (-641 (-407 |#2|)))) (-15 -1357 ((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#3|)) (-15 -1357 ((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#3| |#2|)) (-15 -3966 (|#2| |#3| |#1|)) (-15 -1357 ((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#4|)) (-15 -1357 ((-641 (-2 (|:| -2212 |#2|) (|:| -2372 |#2|))) |#4| |#2|)) (-15 -3966 (|#2| |#4| |#1|)) (-15 -1540 ((-2 (|:| -4032 |#3|) (|:| |rh| (-641 (-407 |#2|)))) |#4| (-641 (-407 |#2|))))) +((-3732 (((-112) $ $) NIL)) (-2239 (((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $) 13)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 15) (($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) 12)) (-1705 (((-112) $ $) NIL))) +(((-805) (-13 (-1094) (-10 -8 (-15 -3742 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2239 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $))))) (T -805)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-805)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *1 (-805))))) +(-13 (-1094) (-10 -8 (-15 -3742 ($ (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))))) (-15 -2239 ((-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225))) $)))) +((-4099 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4032 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|)) 157)) (-2608 (((-641 (-2 (|:| |poly| |#2|) (|:| -4032 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 56)) (-2088 (((-641 (-2 (|:| |deg| (-768)) (|:| -4032 |#2|))) |#3|) 126)) (-2376 ((|#2| |#3|) 45)) (-3798 (((-641 (-2 (|:| -2091 |#1|) (|:| -4032 |#3|))) |#3| (-1 (-641 |#1|) |#2|)) 104)) (-3319 ((|#3| |#3| (-407 |#2|)) 75) ((|#3| |#3| |#2|) 101))) +(((-806 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2376 (|#2| |#3|)) (-15 -2088 ((-641 (-2 (|:| |deg| (-768)) (|:| -4032 |#2|))) |#3|)) (-15 -3798 ((-641 (-2 (|:| -2091 |#1|) (|:| -4032 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -2608 ((-641 (-2 (|:| |poly| |#2|) (|:| -4032 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -4099 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4032 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3319 (|#3| |#3| |#2|)) (-15 -3319 (|#3| |#3| (-407 |#2|)))) (-13 (-363) (-147) (-1035 (-407 (-564)))) (-1235 |#1|) (-652 |#2|) (-652 (-407 |#2|))) (T -806)) +((-3319 (*1 *2 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *1 (-806 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3)))) (-3319 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-1235 *4)) (-5 *1 (-806 *4 *3 *2 *5)) (-4 *2 (-652 *3)) (-4 *5 (-652 (-407 *3))))) (-4099 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -4032 *3)))) (-5 *1 (-806 *6 *7 *3 *8)) (-4 *3 (-652 *7)) (-4 *8 (-652 (-407 *7))))) (-2608 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4032 *3)))) (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-3798 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2091 *5) (|:| -4032 *3)))) (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) (-4 *7 (-652 (-407 *6))))) (-2088 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -4032 *5)))) (-5 *1 (-806 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-652 (-407 *5))))) (-2376 (*1 *2 *3) (-12 (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2 *3 *5)) (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) (-4 *5 (-652 (-407 *2)))))) +(-10 -7 (-15 -2376 (|#2| |#3|)) (-15 -2088 ((-641 (-2 (|:| |deg| (-768)) (|:| -4032 |#2|))) |#3|)) (-15 -3798 ((-641 (-2 (|:| -2091 |#1|) (|:| -4032 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -2608 ((-641 (-2 (|:| |poly| |#2|) (|:| -4032 |#3|))) |#3| (-1 (-641 |#1|) |#2|))) (-15 -4099 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4032 |#3|))) |#3| (-1 (-641 |#2|) |#2| (-1166 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -3319 (|#3| |#3| |#2|)) (-15 -3319 (|#3| |#3| (-407 |#2|)))) +((-2604 (((-2 (|:| -4265 (-641 (-407 |#2|))) (|:| -2069 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|))) 151) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4265 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|)) 150) (((-2 (|:| -4265 (-641 (-407 |#2|))) (|:| -2069 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|))) 145) (((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4265 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|)) 143)) (-1461 ((|#2| (-650 |#2| (-407 |#2|))) 93) ((|#2| (-649 (-407 |#2|))) 96))) +(((-807 |#1| |#2|) (-10 -7 (-15 -2604 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4265 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -2604 ((-2 (|:| -4265 (-641 (-407 |#2|))) (|:| -2069 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -2604 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4265 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2604 ((-2 (|:| -4265 (-641 (-407 |#2|))) (|:| -2069 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -1461 (|#2| (-649 (-407 |#2|)))) (-15 -1461 (|#2| (-650 |#2| (-407 |#2|))))) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -807)) +((-1461 (*1 *2 *3) (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) (-1461 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) (-2604 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| -4265 (-641 (-407 *6))) (|:| -2069 (-685 *5)))) (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-2604 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) (-5 *1 (-807 *5 *6)))) (-2604 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| -4265 (-641 (-407 *6))) (|:| -2069 (-685 *5)))) (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) (-2604 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) (-5 *1 (-807 *5 *6))))) +(-10 -7 (-15 -2604 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4265 (-641 (-407 |#2|)))) (-649 (-407 |#2|)) (-407 |#2|))) (-15 -2604 ((-2 (|:| -4265 (-641 (-407 |#2|))) (|:| -2069 (-685 |#1|))) (-649 (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -2604 ((-2 (|:| |particular| (-3 (-407 |#2|) "failed")) (|:| -4265 (-641 (-407 |#2|)))) (-650 |#2| (-407 |#2|)) (-407 |#2|))) (-15 -2604 ((-2 (|:| -4265 (-641 (-407 |#2|))) (|:| -2069 (-685 |#1|))) (-650 |#2| (-407 |#2|)) (-641 (-407 |#2|)))) (-15 -1461 (|#2| (-649 (-407 |#2|)))) (-15 -1461 (|#2| (-650 |#2| (-407 |#2|))))) +((-4316 (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|) 52))) +(((-808 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4316 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) (-363) (-652 |#1|) (-1235 |#1|) (-721 |#1| |#3|) (-652 |#4|)) (T -808)) +((-4316 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-721 *5 *7)) (-5 *2 (-2 (|:| -2069 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-808 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4))))) +(-10 -7 (-15 -4316 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) |#5| |#4|))) +((-4099 (((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4032 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 47)) (-2151 (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 170 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|))) 167 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|)) 171 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-649 (-407 |#2|))) 169 (|has| |#1| (-27))) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 38) (((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 39) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|)) 36) (((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 37)) (-2608 (((-641 (-2 (|:| |poly| |#2|) (|:| -4032 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|)) 99))) +(((-809 |#1| |#2|) (-10 -7 (-15 -2151 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -2151 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2151 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -2151 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4099 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4032 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2608 ((-641 (-2 (|:| |poly| |#2|) (|:| -4032 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2151 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -2151 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2151 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -2151 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))) (-1235 |#1|)) (T -809)) +((-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4032 (-650 *6 (-407 *6)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-4099 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 (-641 (-2 (|:| |frac| (-407 *6)) (|:| -4032 (-650 *6 (-407 *6)))))) (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6))))) (-2151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) (-2151 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) (-5 *5 (-1 (-418 *7) *7)) (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) (-2151 (*1 *2 *3 *4) (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))) +(-10 -7 (-15 -2151 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -2151 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -2151 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (-15 -2151 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|) (-1 (-418 |#2|) |#2|))) (-15 -4099 ((-641 (-2 (|:| |frac| (-407 |#2|)) (|:| -4032 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2608 ((-641 (-2 (|:| |poly| |#2|) (|:| -4032 (-650 |#2| (-407 |#2|))))) (-650 |#2| (-407 |#2|)) (-1 (-641 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2151 ((-641 (-407 |#2|)) (-649 (-407 |#2|)))) (-15 -2151 ((-641 (-407 |#2|)) (-649 (-407 |#2|)) (-1 (-418 |#2|) |#2|))) (-15 -2151 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)))) (-15 -2151 ((-641 (-407 |#2|)) (-650 |#2| (-407 |#2|)) (-1 (-418 |#2|) |#2|)))) |%noBranch|)) +((-2980 (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|)) 109) (((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4032 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|)) 15)) (-1487 (((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4265 (-641 |#1|))) |#2| |#1|)) 115)) (-2443 (((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -4265 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4265 (-641 |#1|))) "failed") |#2| |#1|)) 52))) +(((-810 |#1| |#2|) (-10 -7 (-15 -2980 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4032 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -2980 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -2443 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -4265 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4265 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -1487 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4265 (-641 |#1|))) |#2| |#1|)))) (-363) (-652 |#1|)) (T -810)) +((-1487 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4265 (-641 *6))) *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1259 *6) "failed")) (|:| -4265 (-641 (-1259 *6))))) (-5 *1 (-810 *6 *7)) (-5 *4 (-1259 *6)))) (-2443 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -4265 (-641 *6))) "failed") *7 *6)) (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -4265 (-685 *6)))) (-5 *1 (-810 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) (-2980 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-4 *6 (-652 *5)) (-5 *2 (-2 (|:| -2069 (-685 *6)) (|:| |vec| (-1259 *5)))) (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5)))) (-2980 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| A (-685 *5)) (|:| |eqs| (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -4032 *6) (|:| |rh| *5)))))) (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *6 (-652 *5))))) +(-10 -7 (-15 -2980 ((-2 (|:| A (-685 |#1|)) (|:| |eqs| (-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)) (|:| -4032 |#2|) (|:| |rh| |#1|))))) (-685 |#1|) (-1259 |#1|))) (-15 -2980 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#1|))) (-685 |#2|) (-1259 |#1|))) (-15 -2443 ((-3 (-2 (|:| |particular| (-1259 |#1|)) (|:| -4265 (-685 |#1|))) "failed") (-685 |#1|) (-1259 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -4265 (-641 |#1|))) "failed") |#2| |#1|))) (-15 -1487 ((-2 (|:| |particular| (-3 (-1259 |#1|) "failed")) (|:| -4265 (-641 (-1259 |#1|)))) (-685 |#2|) (-1259 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -4265 (-641 |#1|))) |#2| |#1|)))) +((-4222 (((-685 |#1|) (-641 |#1|) (-768)) 14) (((-685 |#1|) (-641 |#1|)) 15)) (-2623 (((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|)) 39)) (-2034 (((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)) 46))) +(((-811 |#1| |#2|) (-10 -7 (-15 -4222 ((-685 |#1|) (-641 |#1|))) (-15 -4222 ((-685 |#1|) (-641 |#1|) (-768))) (-15 -2623 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -2034 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) (-363) (-652 |#1|)) (T -811)) +((-2034 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) (-5 *1 (-811 *2 *3)) (-4 *3 (-652 *2)))) (-2623 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) (-5 *1 (-811 *4 *3)) (-4 *3 (-652 *4)))) (-4222 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-363)) (-5 *2 (-685 *5)) (-5 *1 (-811 *5 *6)) (-4 *6 (-652 *5)))) (-4222 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) (-5 *1 (-811 *4 *5)) (-4 *5 (-652 *4))))) +(-10 -7 (-15 -4222 ((-685 |#1|) (-641 |#1|))) (-15 -4222 ((-685 |#1|) (-641 |#1|) (-768))) (-15 -2623 ((-3 (-1259 |#1|) "failed") |#2| |#1| (-641 |#1|))) (-15 -2034 ((-3 |#1| "failed") |#2| |#1| (-641 |#1|) (-1 |#1| |#1|)))) +((-3732 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-4173 (((-112) $) NIL (|has| |#2| (-131)))) (-2595 (($ (-918)) NIL (|has| |#2| (-1046)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-2850 (($ $ $) NIL (|has| |#2| (-790)))) (-3239 (((-3 $ "failed") $ $) NIL (|has| |#2| (-131)))) (-2969 (((-112) $ (-768)) NIL)) (-1938 (((-768)) NIL (|has| |#2| (-368)))) (-3265 (((-564) $) NIL (|has| |#2| (-845)))) (-3877 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1094)))) (-2239 (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) ((|#2| $) NIL (|has| |#2| (-1094)))) (-3039 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#2| (-1046)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#2| (-1046))) (((-685 |#2|) (-685 $)) NIL (|has| |#2| (-1046)))) (-3951 (((-3 $ "failed") $) NIL (|has| |#2| (-723)))) (-2821 (($) NIL (|has| |#2| (-368)))) (-2619 ((|#2| $ (-564) |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ (-564)) NIL)) (-3308 (((-112) $) NIL (|has| |#2| (-845)))) (-3616 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3840 (((-112) $) NIL (|has| |#2| (-723)))) (-2839 (((-112) $) NIL (|has| |#2| (-845)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1386 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-2606 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-1906 (((-918) $) NIL (|has| |#2| (-368)))) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#2| (-1094)))) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-1495 (($ (-918)) NIL (|has| |#2| (-368)))) (-3864 (((-1114) $) NIL (|has| |#2| (-1094)))) (-1966 ((|#2| $) NIL (|has| (-564) (-847)))) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ (-564) |#2|) NIL) ((|#2| $ (-564)) NIL)) (-2952 ((|#2| $ $) NIL (|has| |#2| (-1046)))) (-4169 (($ (-1259 |#2|)) NIL)) (-3603 (((-134)) NIL (|has| |#2| (-363)))) (-4117 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-3873 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-1259 |#2|) $) NIL) (($ (-564)) NIL (-4030 (-12 (|has| |#2| (-1035 (-564))) (|has| |#2| (-1094))) (|has| |#2| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#2| (-1035 (-407 (-564)))) (|has| |#2| (-1094)))) (($ |#2|) NIL (|has| |#2| (-1094))) (((-859) $) NIL (|has| |#2| (-611 (-859))))) (-3270 (((-768)) NIL (|has| |#2| (-1046)) CONST)) (-1417 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2792 (($ $) NIL (|has| |#2| (-845)))) (-4311 (($) NIL (|has| |#2| (-131)) CONST)) (-4321 (($) NIL (|has| |#2| (-723)) CONST)) (-2124 (($ $) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#2| (-233)) (|has| |#2| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#2| (-897 (-1170))) (|has| |#2| (-1046)))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#2| (-1046))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1046)))) (-1751 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1731 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1705 (((-112) $ $) NIL (|has| |#2| (-1094)))) (-1741 (((-112) $ $) NIL (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1723 (((-112) $ $) 11 (-4030 (|has| |#2| (-790)) (|has| |#2| (-845))))) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $ $) NIL (|has| |#2| (-1046))) (($ $) NIL (|has| |#2| (-1046)))) (-1780 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-768)) NIL (|has| |#2| (-723))) (($ $ (-918)) NIL (|has| |#2| (-723)))) (* (($ (-564) $) NIL (|has| |#2| (-1046))) (($ $ $) NIL (|has| |#2| (-723))) (($ $ |#2|) NIL (|has| |#2| (-723))) (($ |#2| $) NIL (|has| |#2| (-723))) (($ (-768) $) NIL (|has| |#2| (-131))) (($ (-918) $) NIL (|has| |#2| (-25)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-812 |#1| |#2| |#3|) (-238 |#1| |#2|) (-768) (-790) (-1 (-112) (-1259 |#2|) (-1259 |#2|))) (T -812)) NIL (-238 |#1| |#2|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2092 (((-640 (-767)) $) NIL) (((-640 (-767)) $ (-1169)) NIL)) (-2417 (((-767) $) NIL) (((-767) $ (-1169)) NIL)) (-2185 (((-640 (-814 (-1169))) $) NIL)) (-2021 (((-1165 $) $ (-814 (-1169))) NIL) (((-1165 |#1|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-814 (-1169)))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2069 (($ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-814 (-1169)) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL) (((-3 (-1118 |#1| (-1169)) "failed") $) NIL)) (-2589 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-814 (-1169)) $) NIL) (((-1169) $) NIL) (((-1118 |#1| (-1169)) $) NIL)) (-3962 (($ $ $ (-814 (-1169))) NIL (|has| |#1| (-172)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1169))) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-3302 (($ $ |#1| (-531 (-814 (-1169))) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-814 (-1169)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-814 (-1169)) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2903 (((-767) $ (-1169)) NIL) (((-767) $) NIL)) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-2175 (($ (-1165 |#1|) (-814 (-1169))) NIL) (($ (-1165 $) (-814 (-1169))) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-531 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-814 (-1169))) NIL)) (-3187 (((-531 (-814 (-1169))) $) NIL) (((-767) $ (-814 (-1169))) NIL) (((-640 (-767)) $ (-640 (-814 (-1169)))) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-531 (-814 (-1169))) (-531 (-814 (-1169)))) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2428 (((-1 $ (-767)) (-1169)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-2845 (((-3 (-814 (-1169)) "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-4103 (((-814 (-1169)) $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1938 (((-1151) $) NIL)) (-2081 (((-112) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-814 (-1169))) (|:| -2631 (-767))) "failed") $) NIL)) (-1478 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-814 (-1169)) |#1|) NIL) (($ $ (-640 (-814 (-1169))) (-640 |#1|)) NIL) (($ $ (-814 (-1169)) $) NIL) (($ $ (-640 (-814 (-1169))) (-640 $)) NIL) (($ $ (-1169) $) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 $)) NIL (|has| |#1| (-233))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-3974 (($ $ (-814 (-1169))) NIL (|has| |#1| (-172)))) (-1361 (($ $ (-814 (-1169))) NIL) (($ $ (-640 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2103 (((-640 (-1169)) $) NIL)) (-1962 (((-531 (-814 (-1169))) $) NIL) (((-767) $ (-814 (-1169))) NIL) (((-640 (-767)) $ (-640 (-814 (-1169)))) NIL) (((-767) $ (-1169)) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-814 (-1169)) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-814 (-1169))) NIL (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-814 (-1169))) NIL) (($ (-1169)) NIL) (($ (-1118 |#1| (-1169))) NIL) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-531 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-814 (-1169))) NIL) (($ $ (-640 (-814 (-1169)))) NIL) (($ $ (-814 (-1169)) (-767)) NIL) (($ $ (-640 (-814 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-812 |#1|) (-13 (-253 |#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) (-1034 (-1118 |#1| (-1169)))) (-1045)) (T -812)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2878 (((-641 (-768)) $) NIL) (((-641 (-768)) $ (-1170)) NIL)) (-3564 (((-768) $) NIL) (((-768) $ (-1170)) NIL)) (-4269 (((-641 (-815 (-1170))) $) NIL)) (-4097 (((-1166 $) $ (-815 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-815 (-1170)))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2992 (($ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-815 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-2239 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-815 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-2448 (($ $ $ (-815 (-1170))) NIL (|has| |#1| (-172)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452))) (($ $ (-815 (-1170))) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-1866 (($ $ |#1| (-531 (-815 (-1170))) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-815 (-1170)) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-815 (-1170)) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1619 (((-768) $ (-1170)) NIL) (((-768) $) NIL)) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-4257 (($ (-1166 |#1|) (-815 (-1170))) NIL) (($ (-1166 $) (-815 (-1170))) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-531 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-815 (-1170))) NIL)) (-3469 (((-531 (-815 (-1170))) $) NIL) (((-768) $ (-815 (-1170))) NIL) (((-641 (-768)) $ (-641 (-815 (-1170)))) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-531 (-815 (-1170))) (-531 (-815 (-1170)))) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-4303 (((-1 $ (-768)) (-1170)) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-1306 (((-3 (-815 (-1170)) "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2550 (((-815 (-1170)) $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2217 (((-1152) $) NIL)) (-3257 (((-112) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-815 (-1170))) (|:| -2515 (-768))) "failed") $) NIL)) (-4345 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-815 (-1170)) |#1|) NIL) (($ $ (-641 (-815 (-1170))) (-641 |#1|)) NIL) (($ $ (-815 (-1170)) $) NIL) (($ $ (-641 (-815 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-4284 (($ $ (-815 (-1170))) NIL (|has| |#1| (-172)))) (-4117 (($ $ (-815 (-1170))) NIL) (($ $ (-641 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2331 (((-641 (-1170)) $) NIL)) (-2266 (((-531 (-815 (-1170))) $) NIL) (((-768) $ (-815 (-1170))) NIL) (((-641 (-768)) $ (-641 (-815 (-1170)))) NIL) (((-768) $ (-1170)) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-815 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-815 (-1170))) NIL (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-815 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-531 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-815 (-1170))) NIL) (($ $ (-641 (-815 (-1170)))) NIL) (($ $ (-815 (-1170)) (-768)) NIL) (($ $ (-641 (-815 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-813 |#1|) (-13 (-253 |#1| (-1170) (-815 (-1170)) (-531 (-815 (-1170)))) (-1035 (-1119 |#1| (-1170)))) (-1046)) (T -813)) NIL -(-13 (-253 |#1| (-1169) (-814 (-1169)) (-531 (-814 (-1169)))) (-1034 (-1118 |#1| (-1169)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-2554 (($ $) NIL (|has| |#2| (-363)))) (-2533 (((-112) $) NIL (|has| |#2| (-363)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| |#2| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#2| (-363)))) (-4332 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3684 (($) NIL T CONST)) (-3495 (($ $ $) NIL (|has| |#2| (-363)))) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL (|has| |#2| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#2| (-363)))) (-3675 (((-112) $) NIL (|has| |#2| (-363)))) (-2712 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-1607 (($ (-640 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 20 (|has| |#2| (-363)))) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-2055 (((-418 $) $) NIL (|has| |#2| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#2| (-363)))) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-4322 (((-767) $) NIL (|has| |#2| (-363)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#2| (-363)))) (-1361 (($ $ (-767)) NIL) (($ $) 13)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-563))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-3192 (((-767)) NIL T CONST)) (-2543 (((-112) $ $) NIL (|has| |#2| (-363)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) 15 (|has| |#2| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL) (($ $ (-563)) 18 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-563)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-563))) NIL (|has| |#2| (-363))))) -(((-813 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1093) (-896 |#1|) |#1|) (T -813)) +(-13 (-253 |#1| (-1170) (-815 (-1170)) (-531 (-815 (-1170)))) (-1035 (-1119 |#1| (-1170)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-363)))) (-1948 (($ $) NIL (|has| |#2| (-363)))) (-1832 (((-112) $) NIL (|has| |#2| (-363)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| |#2| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#2| (-363)))) (-2377 (((-112) $ $) NIL (|has| |#2| (-363)))) (-2818 (($) NIL T CONST)) (-1373 (($ $ $) NIL (|has| |#2| (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL (|has| |#2| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-4188 (((-112) $) NIL (|has| |#2| (-363)))) (-3840 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2529 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 20 (|has| |#2| (-363)))) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#2| (-363))) (($ $ $) NIL (|has| |#2| (-363)))) (-4127 (((-418 $) $) NIL (|has| |#2| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-363)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-4061 (((-768) $) NIL (|has| |#2| (-363)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#2| (-363)))) (-4117 (($ $ (-768)) NIL) (($ $) 13)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-407 (-564))) NIL (|has| |#2| (-363))) (($ $) NIL (|has| |#2| (-363)))) (-3270 (((-768)) NIL T CONST)) (-3360 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) 15 (|has| |#2| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL) (($ $ (-564)) 18 (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-407 (-564)) $) NIL (|has| |#2| (-363))) (($ $ (-407 (-564))) NIL (|has| |#2| (-363))))) +(((-814 |#1| |#2| |#3|) (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) (-1094) (-897 |#1|) |#1|) (T -814)) NIL (-13 (-111 $ $) (-233) (-490 |#2|) (-10 -7 (IF (|has| |#2| (-363)) (-6 (-363)) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-2417 (((-767) $) NIL)) (-4040 ((|#1| $) 10)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-2903 (((-767) $) 11)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2428 (($ |#1| (-767)) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1361 (($ $) NIL) (($ $ (-767)) NIL)) (-2062 (((-858) $) NIL) (($ |#1|) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-814 |#1|) (-266 |#1|) (-846)) (T -814)) +((-3732 (((-112) $ $) NIL)) (-3564 (((-768) $) NIL)) (-3851 ((|#1| $) 10)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-1619 (((-768) $) 11)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-4303 (($ |#1| (-768)) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4117 (($ $) NIL) (($ $ (-768)) NIL)) (-3742 (((-859) $) NIL) (($ |#1|) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-815 |#1|) (-266 |#1|) (-847)) (T -815)) NIL (-266 |#1|) -((-2049 (((-112) $ $) NIL)) (-1347 (((-640 |#1|) $) 38)) (-2433 (((-767) $) NIL)) (-3684 (($) NIL T CONST)) (-1885 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-1897 (($ $) 42)) (-3230 (((-3 $ "failed") $) NIL)) (-2556 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2712 (((-112) $) NIL)) (-2535 ((|#1| $ (-563)) NIL)) (-2545 (((-767) $ (-563)) NIL)) (-1857 (($ $) 51)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1899 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-2587 (((-112) $ $) 49)) (-3322 (((-767) $) 34)) (-1938 (((-1151) $) NIL)) (-2567 (($ $ $) NIL)) (-2578 (($ $ $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 ((|#1| $) 41)) (-2524 (((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-767)))) $) NIL)) (-3461 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2062 (((-858) $) NIL) (($ |#1|) NIL)) (-3803 (($) 20 T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 50)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ |#1| (-767)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-815 |#1|) (-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -1884 (|#1| $)) (-15 -1897 ($ $)) (-15 -1857 ($ $)) (-15 -2587 ((-112) $ $)) (-15 -2578 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -1885 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ |#1|)) (-15 -1885 ((-3 $ "failed") $ |#1|)) (-15 -3461 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2556 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2433 ((-767) $)) (-15 -2545 ((-767) $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -2524 ((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-767)))) $)) (-15 -3322 ((-767) $)) (-15 -1347 ((-640 |#1|) $)))) (-846)) (T -815)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1884 (*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1897 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1857 (*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2587 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2578 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2567 (*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1899 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1885 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1899 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-1885 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-3461 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2556 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2433 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-2545 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846)))) (-2535 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) (-2524 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 (-767))))) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846))))) -(-13 (-842) (-1034 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-767))) (-15 -1884 (|#1| $)) (-15 -1897 ($ $)) (-15 -1857 ($ $)) (-15 -2587 ((-112) $ $)) (-15 -2578 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -1899 ((-3 $ "failed") $ $)) (-15 -1885 ((-3 $ "failed") $ $)) (-15 -1899 ((-3 $ "failed") $ |#1|)) (-15 -1885 ((-3 $ "failed") $ |#1|)) (-15 -3461 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2556 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2433 ((-767) $)) (-15 -2545 ((-767) $ (-563))) (-15 -2535 (|#1| $ (-563))) (-15 -2524 ((-640 (-2 (|:| |gen| |#1|) (|:| -3177 (-767)))) $)) (-15 -3322 ((-767) $)) (-15 -1347 ((-640 |#1|) $)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-2107 (((-563) $) 54)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2720 (((-112) $) 52)) (-2712 (((-112) $) 31)) (-2731 (((-112) $) 53)) (-3489 (($ $ $) 51)) (-4105 (($ $ $) 50)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ $) 43)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3841 (($ $) 55)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2998 (((-112) $ $) 48)) (-2977 (((-112) $ $) 47)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 49)) (-2966 (((-112) $ $) 46)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-816) (-140)) (T -816)) -NIL -(-13 (-555) (-844)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2598 (($ (-1113)) 7)) (-2638 (((-112) $ (-1151) (-1113)) 15)) (-2628 (((-818) $) 12)) (-2617 (((-818) $) 11)) (-2608 (((-1262) $) 9)) (-2647 (((-112) $ (-1113)) 16))) -(((-817) (-10 -8 (-15 -2598 ($ (-1113))) (-15 -2608 ((-1262) $)) (-15 -2617 ((-818) $)) (-15 -2628 ((-818) $)) (-15 -2638 ((-112) $ (-1151) (-1113))) (-15 -2647 ((-112) $ (-1113))))) (T -817)) -((-2647 (*1 *2 *1 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-817)))) (-2638 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-817)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-2617 (*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817)))) (-2608 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-817)))) (-2598 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-817))))) -(-10 -8 (-15 -2598 ($ (-1113))) (-15 -2608 ((-1262) $)) (-15 -2617 ((-818) $)) (-15 -2628 ((-818) $)) (-15 -2638 ((-112) $ (-1151) (-1113))) (-15 -2647 ((-112) $ (-1113)))) -((-2687 (((-1262) $ (-819)) 12)) (-1617 (((-1262) $ (-1169)) 32)) (-1641 (((-1262) $ (-1151) (-1151)) 34)) (-1629 (((-1262) $ (-1151)) 33)) (-2756 (((-1262) $) 19)) (-1592 (((-1262) $ (-563)) 28)) (-1603 (((-1262) $ (-225)) 30)) (-2748 (((-1262) $) 18)) (-1580 (((-1262) $) 26)) (-1567 (((-1262) $) 25)) (-1546 (((-1262) $) 23)) (-1557 (((-1262) $) 24)) (-1535 (((-1262) $) 22)) (-2777 (((-1262) $) 21)) (-2766 (((-1262) $) 20)) (-2726 (((-1262) $) 16)) (-2737 (((-1262) $) 17)) (-2716 (((-1262) $) 15)) (-2709 (((-1262) $) 14)) (-2698 (((-1262) $) 13)) (-2669 (($ (-1151) (-819)) 9)) (-2658 (($ (-1151) (-1151) (-819)) 8)) (-1848 (((-1169) $) 51)) (-1889 (((-1169) $) 55)) (-1875 (((-2 (|:| |cd| (-1151)) (|:| -3359 (-1151))) $) 54)) (-1861 (((-1151) $) 52)) (-1727 (((-1262) $) 41)) (-1824 (((-563) $) 49)) (-1837 (((-225) $) 50)) (-1713 (((-1262) $) 40)) (-1812 (((-1262) $) 48)) (-1801 (((-1262) $) 47)) (-1778 (((-1262) $) 45)) (-1790 (((-1262) $) 46)) (-1765 (((-1262) $) 44)) (-1754 (((-1262) $) 43)) (-1741 (((-1262) $) 42)) (-1689 (((-1262) $) 38)) (-1701 (((-1262) $) 39)) (-1676 (((-1262) $) 37)) (-1665 (((-1262) $) 36)) (-1653 (((-1262) $) 35)) (-2679 (((-1262) $) 11))) -(((-818) (-10 -8 (-15 -2658 ($ (-1151) (-1151) (-819))) (-15 -2669 ($ (-1151) (-819))) (-15 -2679 ((-1262) $)) (-15 -2687 ((-1262) $ (-819))) (-15 -2698 ((-1262) $)) (-15 -2709 ((-1262) $)) (-15 -2716 ((-1262) $)) (-15 -2726 ((-1262) $)) (-15 -2737 ((-1262) $)) (-15 -2748 ((-1262) $)) (-15 -2756 ((-1262) $)) (-15 -2766 ((-1262) $)) (-15 -2777 ((-1262) $)) (-15 -1535 ((-1262) $)) (-15 -1546 ((-1262) $)) (-15 -1557 ((-1262) $)) (-15 -1567 ((-1262) $)) (-15 -1580 ((-1262) $)) (-15 -1592 ((-1262) $ (-563))) (-15 -1603 ((-1262) $ (-225))) (-15 -1617 ((-1262) $ (-1169))) (-15 -1629 ((-1262) $ (-1151))) (-15 -1641 ((-1262) $ (-1151) (-1151))) (-15 -1653 ((-1262) $)) (-15 -1665 ((-1262) $)) (-15 -1676 ((-1262) $)) (-15 -1689 ((-1262) $)) (-15 -1701 ((-1262) $)) (-15 -1713 ((-1262) $)) (-15 -1727 ((-1262) $)) (-15 -1741 ((-1262) $)) (-15 -1754 ((-1262) $)) (-15 -1765 ((-1262) $)) (-15 -1778 ((-1262) $)) (-15 -1790 ((-1262) $)) (-15 -1801 ((-1262) $)) (-15 -1812 ((-1262) $)) (-15 -1824 ((-563) $)) (-15 -1837 ((-225) $)) (-15 -1848 ((-1169) $)) (-15 -1861 ((-1151) $)) (-15 -1875 ((-2 (|:| |cd| (-1151)) (|:| -3359 (-1151))) $)) (-15 -1889 ((-1169) $)))) (T -818)) -((-1889 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818)))) (-1875 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1151)) (|:| -3359 (-1151)))) (-5 *1 (-818)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-818)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818)))) (-1837 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-818)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1765 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1754 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1741 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1713 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1701 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1689 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1676 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1665 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1641 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-1629 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-1617 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-1603 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-1592 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-1580 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1557 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1546 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2777 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2766 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2756 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2748 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2737 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2726 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2716 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2687 (*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1262)) (-5 *1 (-818)))) (-2679 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818)))) (-2658 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818))))) -(-10 -8 (-15 -2658 ($ (-1151) (-1151) (-819))) (-15 -2669 ($ (-1151) (-819))) (-15 -2679 ((-1262) $)) (-15 -2687 ((-1262) $ (-819))) (-15 -2698 ((-1262) $)) (-15 -2709 ((-1262) $)) (-15 -2716 ((-1262) $)) (-15 -2726 ((-1262) $)) (-15 -2737 ((-1262) $)) (-15 -2748 ((-1262) $)) (-15 -2756 ((-1262) $)) (-15 -2766 ((-1262) $)) (-15 -2777 ((-1262) $)) (-15 -1535 ((-1262) $)) (-15 -1546 ((-1262) $)) (-15 -1557 ((-1262) $)) (-15 -1567 ((-1262) $)) (-15 -1580 ((-1262) $)) (-15 -1592 ((-1262) $ (-563))) (-15 -1603 ((-1262) $ (-225))) (-15 -1617 ((-1262) $ (-1169))) (-15 -1629 ((-1262) $ (-1151))) (-15 -1641 ((-1262) $ (-1151) (-1151))) (-15 -1653 ((-1262) $)) (-15 -1665 ((-1262) $)) (-15 -1676 ((-1262) $)) (-15 -1689 ((-1262) $)) (-15 -1701 ((-1262) $)) (-15 -1713 ((-1262) $)) (-15 -1727 ((-1262) $)) (-15 -1741 ((-1262) $)) (-15 -1754 ((-1262) $)) (-15 -1765 ((-1262) $)) (-15 -1778 ((-1262) $)) (-15 -1790 ((-1262) $)) (-15 -1801 ((-1262) $)) (-15 -1812 ((-1262) $)) (-15 -1824 ((-563) $)) (-15 -1837 ((-225) $)) (-15 -1848 ((-1169) $)) (-15 -1861 ((-1151) $)) (-15 -1875 ((-2 (|:| |cd| (-1151)) (|:| -3359 (-1151))) $)) (-15 -1889 ((-1169) $))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 13)) (-1931 (($) 16)) (-1943 (($) 14)) (-1918 (($) 17)) (-1904 (($) 15)) (-2943 (((-112) $ $) 9))) -(((-819) (-13 (-1093) (-10 -8 (-15 -1943 ($)) (-15 -1931 ($)) (-15 -1918 ($)) (-15 -1904 ($))))) (T -819)) -((-1943 (*1 *1) (-5 *1 (-819))) (-1931 (*1 *1) (-5 *1 (-819))) (-1918 (*1 *1) (-5 *1 (-819))) (-1904 (*1 *1) (-5 *1 (-819)))) -(-13 (-1093) (-10 -8 (-15 -1943 ($)) (-15 -1931 ($)) (-15 -1918 ($)) (-15 -1904 ($)))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 23) (($ (-1169)) 19)) (-2002 (((-112) $) 10)) (-2014 (((-112) $) 9)) (-1991 (((-112) $) 11)) (-2026 (((-112) $) 8)) (-2943 (((-112) $ $) 21))) -(((-820) (-13 (-1093) (-10 -8 (-15 -2062 ($ (-1169))) (-15 -2026 ((-112) $)) (-15 -2014 ((-112) $)) (-15 -2002 ((-112) $)) (-15 -1991 ((-112) $))))) (T -820)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-820)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2014 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-2002 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820)))) (-1991 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(-13 (-1093) (-10 -8 (-15 -2062 ($ (-1169))) (-15 -2026 ((-112) $)) (-15 -2014 ((-112) $)) (-15 -2002 ((-112) $)) (-15 -1991 ((-112) $)))) -((-2049 (((-112) $ $) NIL)) (-1955 (($ (-820) (-640 (-1169))) 32)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1977 (((-820) $) 33)) (-1966 (((-640 (-1169)) $) 34)) (-2062 (((-858) $) 31)) (-2943 (((-112) $ $) NIL))) -(((-821) (-13 (-1093) (-10 -8 (-15 -1977 ((-820) $)) (-15 -1966 ((-640 (-1169)) $)) (-15 -1955 ($ (-820) (-640 (-1169))))))) (T -821)) -((-1977 (*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-821)))) (-1955 (*1 *1 *2 *3) (-12 (-5 *2 (-820)) (-5 *3 (-640 (-1169))) (-5 *1 (-821))))) -(-13 (-1093) (-10 -8 (-15 -1977 ((-820) $)) (-15 -1966 ((-640 (-1169)) $)) (-15 -1955 ($ (-820) (-640 (-1169)))))) -((-2038 (((-1262) (-818) (-316 |#1|) (-112)) 24) (((-1262) (-818) (-316 |#1|)) 90) (((-1151) (-316 |#1|) (-112)) 89) (((-1151) (-316 |#1|)) 88))) -(((-822 |#1|) (-10 -7 (-15 -2038 ((-1151) (-316 |#1|))) (-15 -2038 ((-1151) (-316 |#1|) (-112))) (-15 -2038 ((-1262) (-818) (-316 |#1|))) (-15 -2038 ((-1262) (-818) (-316 |#1|) (-112)))) (-13 (-824) (-846) (-1045))) (T -822)) -((-2038 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-822 *6)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) (-5 *1 (-822 *5)))) (-2038 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151)) (-5 *1 (-822 *5)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151)) (-5 *1 (-822 *4))))) -(-10 -7 (-15 -2038 ((-1151) (-316 |#1|))) (-15 -2038 ((-1151) (-316 |#1|) (-112))) (-15 -2038 ((-1262) (-818) (-316 |#1|))) (-15 -2038 ((-1262) (-818) (-316 |#1|) (-112)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2047 ((|#1| $) 10)) (-3673 (($ |#1|) 9)) (-2712 (((-112) $) NIL)) (-2165 (($ |#2| (-767)) NIL)) (-3187 (((-767) $) NIL)) (-3193 ((|#2| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1361 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1962 (((-767) $) NIL)) (-2062 (((-858) $) 17) (($ (-563)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-1304 ((|#2| $ (-767)) NIL)) (-3192 (((-767)) NIL T CONST)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-823 |#1| |#2|) (-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3673 ($ |#1|)) (-15 -2047 (|#1| $)))) (-704 |#2|) (-1045)) (T -823)) -((-3673 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3)))) (-2047 (*1 *2 *1) (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045))))) -(-13 (-704 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3673 ($ |#1|)) (-15 -2047 (|#1| $)))) -((-2038 (((-1262) (-818) $ (-112)) 9) (((-1262) (-818) $) 8) (((-1151) $ (-112)) 7) (((-1151) $) 6))) -(((-824) (-140)) (T -824)) -((-2038 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1262)))) (-2038 (*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1262)))) (-2038 (*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1151)))) (-2038 (*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1151))))) -(-13 (-10 -8 (-15 -2038 ((-1151) $)) (-15 -2038 ((-1151) $ (-112))) (-15 -2038 ((-1262) (-818) $)) (-15 -2038 ((-1262) (-818) $ (-112))))) -((-2136 (((-312) (-1151) (-1151)) 12)) (-2124 (((-112) (-1151) (-1151)) 33)) (-2115 (((-112) (-1151)) 32)) (-2085 (((-52) (-1151)) 25)) (-2072 (((-52) (-1151)) 23)) (-2060 (((-52) (-818)) 17)) (-2106 (((-640 (-1151)) (-1151)) 28)) (-2095 (((-640 (-1151))) 27))) -(((-825) (-10 -7 (-15 -2060 ((-52) (-818))) (-15 -2072 ((-52) (-1151))) (-15 -2085 ((-52) (-1151))) (-15 -2095 ((-640 (-1151)))) (-15 -2106 ((-640 (-1151)) (-1151))) (-15 -2115 ((-112) (-1151))) (-15 -2124 ((-112) (-1151) (-1151))) (-15 -2136 ((-312) (-1151) (-1151))))) (T -825)) -((-2136 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-825)))) (-2124 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825)))) (-2106 (*1 *2 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)) (-5 *3 (-1151)))) (-2095 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)))) (-2085 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825)))) (-2072 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825)))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825))))) -(-10 -7 (-15 -2060 ((-52) (-818))) (-15 -2072 ((-52) (-1151))) (-15 -2085 ((-52) (-1151))) (-15 -2095 ((-640 (-1151)))) (-15 -2106 ((-640 (-1151)) (-1151))) (-15 -2115 ((-112) (-1151))) (-15 -2124 ((-112) (-1151) (-1151))) (-15 -2136 ((-312) (-1151) (-1151)))) -((-2049 (((-112) $ $) 19)) (-3738 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1883 (($ $ $) 72)) (-1870 (((-112) $ $) 73)) (-3740 (((-112) $ (-767)) 8)) (-3158 (($ (-640 |#1|)) 68) (($) 67)) (-1736 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-2273 (($ $) 62)) (-1920 (($ $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ |#1| $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4408)))) (-1417 (($ |#1| $) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4408)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-1925 (((-112) $ $) 64)) (-3633 (((-112) $ (-767)) 9)) (-3489 ((|#1| $) 78)) (-2346 (($ $ $) 81)) (-2383 (($ $ $) 80)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4105 ((|#1| $) 79)) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22)) (-1913 (($ $ $) 69)) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40) (($ |#1| $ (-767)) 63)) (-3249 (((-1113) $) 21)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-2262 (((-640 (-2 (|:| -3704 |#1|) (|:| -3261 (-767)))) $) 61)) (-1896 (($ $ |#1|) 71) (($ $ $) 70)) (-3139 (($) 49) (($ (-640 |#1|)) 48)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 50)) (-2062 (((-858) $) 18)) (-2121 (($ (-640 |#1|)) 66) (($) 65)) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20)) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-826 |#1|) (-140) (-846)) (T -826)) -((-3489 (*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846))))) -(-13 (-732 |t#1|) (-964 |t#1|) (-10 -8 (-15 -3489 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-690 |#1|) . T) ((-732 |#1|) . T) ((-964 |#1|) . T) ((-1091 |#1|) . T) ((-1093) . T) ((-1208) . T)) -((-2160 (((-1262) (-1113) (-1113)) 48)) (-2153 (((-1262) (-817) (-52)) 45)) (-2144 (((-52) (-817)) 16))) -(((-827) (-10 -7 (-15 -2144 ((-52) (-817))) (-15 -2153 ((-1262) (-817) (-52))) (-15 -2160 ((-1262) (-1113) (-1113))))) (T -827)) -((-2160 (*1 *2 *3 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-1262)) (-5 *1 (-827)))) (-2153 (*1 *2 *3 *4) (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1262)) (-5 *1 (-827)))) (-2144 (*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827))))) -(-10 -7 (-15 -2144 ((-52) (-817))) (-15 -2153 ((-1262) (-817) (-52))) (-15 -2160 ((-1262) (-1113) (-1113)))) -((-2751 (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)) 12) (((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|)) 13))) -(((-828 |#1| |#2|) (-10 -7 (-15 -2751 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2751 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)))) (-1093) (-1093)) (T -828)) -((-2751 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-828 *5 *6)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6))))) -(-10 -7 (-15 -2751 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|))) (-15 -2751 ((-829 |#2|) (-1 |#2| |#1|) (-829 |#1|) (-829 |#2|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL (|has| |#1| (-21)))) (-1482 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2107 (((-563) $) NIL (|has| |#1| (-844)))) (-3684 (($) NIL (|has| |#1| (-21)) CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 15)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 9)) (-3230 (((-3 $ "failed") $) 42 (|has| |#1| (-844)))) (-3459 (((-3 (-407 (-563)) "failed") $) 52 (|has| |#1| (-545)))) (-3447 (((-112) $) 46 (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) 49 (|has| |#1| (-545)))) (-2720 (((-112) $) NIL (|has| |#1| (-844)))) (-2712 (((-112) $) NIL (|has| |#1| (-844)))) (-2731 (((-112) $) NIL (|has| |#1| (-844)))) (-3489 (($ $ $) NIL (|has| |#1| (-844)))) (-4105 (($ $ $) NIL (|has| |#1| (-844)))) (-1938 (((-1151) $) NIL)) (-2667 (($) 13)) (-4136 (((-112) $) 12)) (-3249 (((-1113) $) NIL)) (-4148 (((-112) $) 11)) (-2062 (((-858) $) 18) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 8) (($ (-563)) NIL (-2811 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))))) (-3192 (((-767)) 36 (|has| |#1| (-844)) CONST)) (-3841 (($ $) NIL (|has| |#1| (-844)))) (-3790 (($) 23 (|has| |#1| (-21)) CONST)) (-3803 (($) 33 (|has| |#1| (-844)) CONST)) (-2998 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2943 (((-112) $ $) 21)) (-2988 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2966 (((-112) $ $) 45 (|has| |#1| (-844)))) (-3039 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-3027 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 39 (|has| |#1| (-844))) (($ (-563) $) 27 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21))))) -(((-829 |#1|) (-13 (-1093) (-411 |#1|) (-10 -8 (-15 -2667 ($)) (-15 -4148 ((-112) $)) (-15 -4136 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) (-1093)) (T -829)) -((-2667 (*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1093)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-3459 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093))))) -(-13 (-1093) (-411 |#1|) (-10 -8 (-15 -2667 ($)) (-15 -4148 ((-112) $)) (-15 -4136 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) -((-2062 (((-858) $) 11))) -(((-830 |#1| |#2|) (-10 -8 (-15 -2062 ((-858) |#1|))) (-831 |#2|) (-1093)) (T -830)) -NIL -(-10 -8 (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-3359 ((|#1| $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-4079 (((-55) $) 13)) (-2943 (((-112) $ $) 6))) -(((-831 |#1|) (-140) (-1093)) (T -831)) -((-3359 (*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1093)))) (-4079 (*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1093)) (-5 *2 (-55))))) -(-13 (-1093) (-10 -8 (-15 -3359 (|t#1| $)) (-15 -4079 ((-55) $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2589 ((|#1| $) NIL) (((-114) $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2180 ((|#1| (-114) |#1|) NIL)) (-2712 (((-112) $) NIL)) (-2169 (($ |#1| (-361 (-114))) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-4032 (($ $ (-1 |#1| |#1|)) NIL)) (-4044 (($ $ (-1 |#1| |#1|)) NIL)) (-3858 ((|#1| $ |#1|) NIL)) (-4057 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-4069 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ (-114) (-563)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-832 |#1|) (-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4069 ($ $)) (-15 -4069 ($ $ $)) (-15 -4057 (|#1| |#1|))) |%noBranch|) (-15 -4044 ($ $ (-1 |#1| |#1|))) (-15 -4032 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2180 (|#1| (-114) |#1|)) (-15 -2169 ($ |#1| (-361 (-114)))))) (-1045)) (T -832)) -((-4069 (*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-4069 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-4057 (*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) (-4044 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (-4032 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-5 *1 (-832 *4)) (-4 *4 (-1045)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-832 *3)) (-4 *3 (-1045)))) (-2180 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045)))) (-2169 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) -(-13 (-1045) (-1034 |#1|) (-1034 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4069 ($ $)) (-15 -4069 ($ $ $)) (-15 -4057 (|#1| |#1|))) |%noBranch|) (-15 -4044 ($ $ (-1 |#1| |#1|))) (-15 -4032 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-563))) (-15 ** ($ $ (-563))) (-15 -2180 (|#1| (-114) |#1|)) (-15 -2169 ($ |#1| (-361 (-114)))))) -((-4090 (((-214 (-502)) (-1151)) 9))) -(((-833) (-10 -7 (-15 -4090 ((-214 (-502)) (-1151))))) (T -833)) -((-4090 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-214 (-502))) (-5 *1 (-833))))) -(-10 -7 (-15 -4090 ((-214 (-502)) (-1151)))) -((-2049 (((-112) $ $) NIL)) (-1380 (((-1111) $) 10)) (-3359 (((-506) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2074 (($ (-506) (-1111)) 8)) (-2062 (((-858) $) 27)) (-4079 (((-55) $) 20)) (-2943 (((-112) $ $) 12))) -(((-834) (-13 (-831 (-506)) (-10 -8 (-15 -1380 ((-1111) $)) (-15 -2074 ($ (-506) (-1111)))))) (T -834)) -((-1380 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-834)))) (-2074 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-834))))) -(-13 (-831 (-506)) (-10 -8 (-15 -1380 ((-1111) $)) (-15 -2074 ($ (-506) (-1111))))) -((-2049 (((-112) $ $) 7)) (-4101 (((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 14) (((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 13)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 16) (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 15)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6))) -(((-835) (-140)) (T -835)) -((-4072 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)))))) (-4072 (*1 *2 *3 *4) (-12 (-4 *1 (-835)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)))))) (-4101 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) (-5 *2 (-1031)))) (-4101 (*1 *2 *3) (-12 (-4 *1 (-835)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *2 (-1031))))) -(-13 (-1093) (-10 -7 (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) (-15 -4101 ((-1031) (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) (-15 -4101 ((-1031) (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-1359 (((-1031) (-640 (-316 (-379))) (-640 (-379))) 169) (((-1031) (-316 (-379)) (-640 (-379))) 167) (((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379)))) 165) (((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379)))) 163) (((-1031) (-837)) 128) (((-1031) (-837) (-1057)) 127)) (-4072 (((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057)) 88) (((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837)) 90)) (-4114 (((-1031) (-640 (-316 (-379))) (-640 (-379))) 170) (((-1031) (-837)) 153))) -(((-836) (-10 -7 (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057))) (-15 -1359 ((-1031) (-837) (-1057))) (-15 -1359 ((-1031) (-837))) (-15 -4114 ((-1031) (-837))) (-15 -1359 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379))))) (-15 -1359 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379))))) (-15 -1359 ((-1031) (-316 (-379)) (-640 (-379)))) (-15 -1359 ((-1031) (-640 (-316 (-379))) (-640 (-379)))) (-15 -4114 ((-1031) (-640 (-316 (-379))) (-640 (-379)))))) (T -836)) -((-4114 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1359 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1359 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379)))) (-5 *6 (-640 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031)) (-5 *1 (-836)))) (-4114 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1359 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) (-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-836)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-836))))) -(-10 -7 (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-837) (-1057))) (-15 -1359 ((-1031) (-837) (-1057))) (-15 -1359 ((-1031) (-837))) (-15 -4114 ((-1031) (-837))) (-15 -1359 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-316 (-379))) (-640 (-839 (-379))))) (-15 -1359 ((-1031) (-316 (-379)) (-640 (-379)) (-640 (-839 (-379))) (-640 (-839 (-379))))) (-15 -1359 ((-1031) (-316 (-379)) (-640 (-379)))) (-15 -1359 ((-1031) (-640 (-316 (-379))) (-640 (-379)))) (-15 -4114 ((-1031) (-640 (-316 (-379))) (-640 (-379))))) -((-2049 (((-112) $ $) NIL)) (-2589 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) $) 21)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) 14) (($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))))) 18)) (-2943 (((-112) $ $) NIL))) -(((-837) (-13 (-1093) (-10 -8 (-15 -2062 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -2062 ($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) (-15 -2062 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))))) (-15 -2589 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) $))))) (T -837)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (-5 *1 (-837)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) (-5 *1 (-837)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))))) (-5 *1 (-837)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))))) (-5 *1 (-837))))) -(-13 (-1093) (-10 -8 (-15 -2062 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225))))))) (-15 -2062 ($ (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) (-15 -2062 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))))) (-15 -2589 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) (|:| |ub| (-640 (-839 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225)))))) $)))) -((-2751 (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)) 13) (((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|)) 14))) -(((-838 |#1| |#2|) (-10 -7 (-15 -2751 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -2751 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)))) (-1093) (-1093)) (T -838)) -((-2751 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-838 *5 *6)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6))))) -(-10 -7 (-15 -2751 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|))) (-15 -2751 ((-839 |#2|) (-1 |#2| |#1|) (-839 |#1|) (-839 |#2|) (-839 |#2|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL (|has| |#1| (-21)))) (-4125 (((-1113) $) 31)) (-1482 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-2107 (((-563) $) NIL (|has| |#1| (-844)))) (-3684 (($) NIL (|has| |#1| (-21)) CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 18)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 9)) (-3230 (((-3 $ "failed") $) 55 (|has| |#1| (-844)))) (-3459 (((-3 (-407 (-563)) "failed") $) 62 (|has| |#1| (-545)))) (-3447 (((-112) $) 57 (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) 60 (|has| |#1| (-545)))) (-2720 (((-112) $) NIL (|has| |#1| (-844)))) (-1725 (($) 14)) (-2712 (((-112) $) NIL (|has| |#1| (-844)))) (-2731 (((-112) $) NIL (|has| |#1| (-844)))) (-1739 (($) 16)) (-3489 (($ $ $) NIL (|has| |#1| (-844)))) (-4105 (($ $ $) NIL (|has| |#1| (-844)))) (-1938 (((-1151) $) NIL)) (-4136 (((-112) $) 12)) (-3249 (((-1113) $) NIL)) (-4148 (((-112) $) 11)) (-2062 (((-858) $) 24) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 8) (($ (-563)) NIL (-2811 (|has| |#1| (-844)) (|has| |#1| (-1034 (-563)))))) (-3192 (((-767)) 49 (|has| |#1| (-844)) CONST)) (-3841 (($ $) NIL (|has| |#1| (-844)))) (-3790 (($) 36 (|has| |#1| (-21)) CONST)) (-3803 (($) 46 (|has| |#1| (-844)) CONST)) (-2998 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2943 (((-112) $ $) 34)) (-2988 (((-112) $ $) NIL (|has| |#1| (-844)))) (-2966 (((-112) $ $) 56 (|has| |#1| (-844)))) (-3039 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-3027 (($ $ $) 44 (|has| |#1| (-21)))) (** (($ $ (-917)) NIL (|has| |#1| (-844))) (($ $ (-767)) NIL (|has| |#1| (-844)))) (* (($ $ $) 52 (|has| |#1| (-844))) (($ (-563) $) 40 (|has| |#1| (-21))) (($ (-767) $) NIL (|has| |#1| (-21))) (($ (-917) $) NIL (|has| |#1| (-21))))) -(((-839 |#1|) (-13 (-1093) (-411 |#1|) (-10 -8 (-15 -1725 ($)) (-15 -1739 ($)) (-15 -4148 ((-112) $)) (-15 -4136 ((-112) $)) (-15 -4125 ((-1113) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) (-1093)) (T -839)) -((-1725 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093)))) (-1739 (*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093)))) (-4148 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-4136 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-4125 (*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-839 *3)) (-4 *3 (-1093)))) (-3447 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-3437 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) (-3459 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093))))) -(-13 (-1093) (-411 |#1|) (-10 -8 (-15 -1725 ($)) (-15 -1739 ($)) (-15 -4148 ((-112) $)) (-15 -4136 ((-112) $)) (-15 -4125 ((-1113) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-844)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) -((-2049 (((-112) $ $) 7)) (-2433 (((-767)) 22)) (-4301 (($) 25)) (-3489 (($ $ $) 13) (($) 21 T CONST)) (-4105 (($ $ $) 14) (($) 20 T CONST)) (-3267 (((-917) $) 24)) (-1938 (((-1151) $) 9)) (-3491 (($ (-917)) 23)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18))) -(((-840) (-140)) (T -840)) -((-3489 (*1 *1) (-4 *1 (-840))) (-4105 (*1 *1) (-4 *1 (-840)))) -(-13 (-846) (-368) (-10 -8 (-15 -3489 ($) -2495) (-15 -4105 ($) -2495))) -(((-102) . T) ((-610 (-858)) . T) ((-368) . T) ((-846) . T) ((-1093) . T)) -((-4170 (((-112) (-1257 |#2|) (-1257 |#2|)) 23)) (-4179 (((-112) (-1257 |#2|) (-1257 |#2|)) 24)) (-4161 (((-112) (-1257 |#2|) (-1257 |#2|)) 20))) -(((-841 |#1| |#2|) (-10 -7 (-15 -4161 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -4170 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -4179 ((-112) (-1257 |#2|) (-1257 |#2|)))) (-767) (-788)) (T -841)) -((-4179 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-4170 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767)))) (-4161 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) -(-10 -7 (-15 -4161 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -4170 ((-112) (-1257 |#2|) (-1257 |#2|))) (-15 -4179 ((-112) (-1257 |#2|) (-1257 |#2|)))) -((-2049 (((-112) $ $) 7)) (-3684 (($) 23 T CONST)) (-3230 (((-3 $ "failed") $) 26)) (-2712 (((-112) $) 24)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3803 (($) 22 T CONST)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (** (($ $ (-917)) 21) (($ $ (-767)) 25)) (* (($ $ $) 20))) -(((-842) (-140)) (T -842)) -NIL -(-13 (-853) (-722)) -(((-102) . T) ((-610 (-858)) . T) ((-722) . T) ((-853) . T) ((-846) . T) ((-1105) . T) ((-1093) . T)) -((-2107 (((-563) $) 20)) (-2720 (((-112) $) 10)) (-2731 (((-112) $) 11)) (-3841 (($ $) 22))) -(((-843 |#1|) (-10 -8 (-15 -3841 (|#1| |#1|)) (-15 -2107 ((-563) |#1|)) (-15 -2731 ((-112) |#1|)) (-15 -2720 ((-112) |#1|))) (-844)) (T -843)) -NIL -(-10 -8 (-15 -3841 (|#1| |#1|)) (-15 -2107 ((-563) |#1|)) (-15 -2731 ((-112) |#1|)) (-15 -2720 ((-112) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 24)) (-1482 (((-3 $ "failed") $ $) 26)) (-2107 (((-563) $) 34)) (-3684 (($) 23 T CONST)) (-3230 (((-3 $ "failed") $) 39)) (-2720 (((-112) $) 36)) (-2712 (((-112) $) 41)) (-2731 (((-112) $) 35)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 43)) (-3192 (((-767)) 44 T CONST)) (-3841 (($ $) 33)) (-3790 (($) 22 T CONST)) (-3803 (($) 42 T CONST)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (-3039 (($ $ $) 28) (($ $) 27)) (-3027 (($ $ $) 20)) (** (($ $ (-767)) 40) (($ $ (-917)) 37)) (* (($ (-917) $) 21) (($ (-767) $) 25) (($ (-563) $) 29) (($ $ $) 38))) -(((-844) (-140)) (T -844)) -((-2720 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-563)))) (-3841 (*1 *1 *1) (-4 *1 (-844)))) -(-13 (-787) (-1045) (-722) (-10 -8 (-15 -2720 ((-112) $)) (-15 -2731 ((-112) $)) (-15 -2107 ((-563) $)) (-15 -3841 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-846) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-3489 (($ $ $) 10)) (-4105 (($ $ $) 9)) (-2998 (((-112) $ $) 12)) (-2977 (((-112) $ $) 11)) (-2988 (((-112) $ $) 13))) -(((-845 |#1|) (-10 -8 (-15 -3489 (|#1| |#1| |#1|)) (-15 -4105 (|#1| |#1| |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2998 ((-112) |#1| |#1|)) (-15 -2977 ((-112) |#1| |#1|))) (-846)) (T -845)) -NIL -(-10 -8 (-15 -3489 (|#1| |#1| |#1|)) (-15 -4105 (|#1| |#1| |#1|)) (-15 -2988 ((-112) |#1| |#1|)) (-15 -2998 ((-112) |#1| |#1|)) (-15 -2977 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18))) -(((-846) (-140)) (T -846)) -((-2966 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2977 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2998 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-2988 (*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) (-4105 (*1 *1 *1 *1) (-4 *1 (-846))) (-3489 (*1 *1 *1 *1) (-4 *1 (-846)))) -(-13 (-1093) (-10 -8 (-15 -2966 ((-112) $ $)) (-15 -2977 ((-112) $ $)) (-15 -2998 ((-112) $ $)) (-15 -2988 ((-112) $ $)) (-15 -4105 ($ $ $)) (-15 -3489 ($ $ $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-4228 (($ $ $) 49)) (-4240 (($ $ $) 48)) (-4250 (($ $ $) 46)) (-4210 (($ $ $) 55)) (-4199 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 50)) (-4219 (((-3 $ "failed") $ $) 53)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-2227 (($ $) 39)) (-4291 (($ $ $) 43)) (-4302 (($ $ $) 42)) (-4189 (($ $ $) 51)) (-4270 (($ $ $) 57)) (-4260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 45)) (-4280 (((-3 $ "failed") $ $) 52)) (-3448 (((-3 $ "failed") $ |#2|) 32)) (-3166 ((|#2| $) 36)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#2|) 13)) (-3234 (((-640 |#2|) $) 21)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) -(((-847 |#1| |#2|) (-10 -8 (-15 -4189 (|#1| |#1| |#1|)) (-15 -4199 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1738 |#1|)) |#1| |#1|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -4219 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4228 (|#1| |#1| |#1|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4250 (|#1| |#1| |#1|)) (-15 -4260 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1738 |#1|)) |#1| |#1|)) (-15 -4270 (|#1| |#1| |#1|)) (-15 -4280 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4291 (|#1| |#1| |#1|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -3166 (|#2| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3234 ((-640 |#2|) |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2062 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -2062 ((-858) |#1|))) (-848 |#2|) (-1045)) (T -847)) -NIL -(-10 -8 (-15 -4189 (|#1| |#1| |#1|)) (-15 -4199 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1738 |#1|)) |#1| |#1|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -4219 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4228 (|#1| |#1| |#1|)) (-15 -4240 (|#1| |#1| |#1|)) (-15 -4250 (|#1| |#1| |#1|)) (-15 -4260 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1738 |#1|)) |#1| |#1|)) (-15 -4270 (|#1| |#1| |#1|)) (-15 -4280 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4291 (|#1| |#1| |#1|)) (-15 -4302 (|#1| |#1| |#1|)) (-15 -2227 (|#1| |#1|)) (-15 -3166 (|#2| |#1|)) (-15 -3448 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3234 ((-640 |#2|) |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2062 (|#1| (-563))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-4228 (($ $ $) 44 (|has| |#1| (-363)))) (-4240 (($ $ $) 45 (|has| |#1| (-363)))) (-4250 (($ $ $) 47 (|has| |#1| (-363)))) (-4210 (($ $ $) 42 (|has| |#1| (-363)))) (-4199 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 41 (|has| |#1| (-363)))) (-4219 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-4344 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 46 (|has| |#1| (-363)))) (-2671 (((-3 (-563) "failed") $) 74 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 71 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 68)) (-2589 (((-563) $) 73 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 70 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 69)) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-2227 (($ $) 54 (|has| |#1| (-452)))) (-2712 (((-112) $) 31)) (-2165 (($ |#1| (-767)) 61)) (-4325 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 56 (|has| |#1| (-555)))) (-4315 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 57 (|has| |#1| (-555)))) (-3187 (((-767) $) 65)) (-4291 (($ $ $) 51 (|has| |#1| (-363)))) (-4302 (($ $ $) 52 (|has| |#1| (-363)))) (-4189 (($ $ $) 40 (|has| |#1| (-363)))) (-4270 (($ $ $) 49 (|has| |#1| (-363)))) (-4260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 48 (|has| |#1| (-363)))) (-4280 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-4335 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 53 (|has| |#1| (-363)))) (-3193 ((|#1| $) 64)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-555)))) (-1962 (((-767) $) 66)) (-3166 ((|#1| $) 55 (|has| |#1| (-452)))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 72 (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) 67)) (-3234 (((-640 |#1|) $) 60)) (-1304 ((|#1| $ (-767)) 62)) (-3192 (((-767)) 28 T CONST)) (-2408 ((|#1| $ |#1| |#1|) 59)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) -(((-848 |#1|) (-140) (-1045)) (T -848)) -((-1962 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3187 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3193 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3213 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-2165 (*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-640 *3)))) (-2408 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-4315 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-848 *3)))) (-4325 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-848 *3)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-2227 (*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) (-4335 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-848 *3)))) (-4302 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4291 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4280 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4270 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4260 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1738 *1))) (-4 *1 (-848 *3)))) (-4250 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4344 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-848 *3)))) (-4240 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4228 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4219 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4210 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-4199 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1738 *1))) (-4 *1 (-848 *3)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(-13 (-1045) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -1962 ((-767) $)) (-15 -3187 ((-767) $)) (-15 -3193 (|t#1| $)) (-15 -3213 ($ $)) (-15 -1304 (|t#1| $ (-767))) (-15 -2165 ($ |t#1| (-767))) (-15 -3234 ((-640 |t#1|) $)) (-15 -2408 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -3448 ((-3 $ "failed") $ |t#1|)) (-15 -4315 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -4325 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -3166 (|t#1| $)) (-15 -2227 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -4335 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -4302 ($ $ $)) (-15 -4291 ($ $ $)) (-15 -4280 ((-3 $ "failed") $ $)) (-15 -4270 ($ $ $)) (-15 -4260 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $)) (-15 -4250 ($ $ $)) (-15 -4344 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -4240 ($ $ $)) (-15 -4228 ($ $ $)) (-15 -4219 ((-3 $ "failed") $ $)) (-15 -4210 ($ $ $)) (-15 -4199 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $)) (-15 -4189 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-411 |#1|) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1034 #0#) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-1530 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-4344 (((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-4325 (((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-555)))) (-4315 (((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-555)))) (-4335 (((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-2408 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) -(((-849 |#1| |#2|) (-10 -7 (-15 -1530 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2408 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-555)) (PROGN (-15 -4315 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4325 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4335 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4344 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1045) (-848 |#1|)) (T -849)) -((-4344 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-4335 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-4325 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-4315 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-849 *5 *3)) (-4 *3 (-848 *5)))) (-2408 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2)))) (-1530 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5))))) -(-10 -7 (-15 -1530 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2408 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-555)) (PROGN (-15 -4315 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4325 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4335 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4344 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-4228 (($ $ $) NIL (|has| |#1| (-363)))) (-4240 (($ $ $) NIL (|has| |#1| (-363)))) (-4250 (($ $ $) NIL (|has| |#1| (-363)))) (-4210 (($ $ $) NIL (|has| |#1| (-363)))) (-4199 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-4219 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4344 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 34 (|has| |#1| (-363)))) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452)))) (-2494 (((-858) $ (-858)) NIL)) (-2712 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) NIL)) (-4325 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 30 (|has| |#1| (-555)))) (-4315 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 28 (|has| |#1| (-555)))) (-3187 (((-767) $) NIL)) (-4291 (($ $ $) NIL (|has| |#1| (-363)))) (-4302 (($ $ $) NIL (|has| |#1| (-363)))) (-4189 (($ $ $) NIL (|has| |#1| (-363)))) (-4270 (($ $ $) NIL (|has| |#1| (-363)))) (-4260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-4280 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-4335 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 32 (|has| |#1| (-363)))) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-1962 (((-767) $) NIL)) (-3166 ((|#1| $) NIL (|has| |#1| (-452)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-1034 (-407 (-563))))) (($ |#1|) NIL)) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-767)) NIL)) (-3192 (((-767)) NIL T CONST)) (-2408 ((|#1| $ |#1| |#1|) 15)) (-3790 (($) NIL T CONST)) (-3803 (($) 23 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) 19) (($ $ (-767)) 24)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) -(((-850 |#1| |#2| |#3|) (-13 (-848 |#1|) (-10 -8 (-15 -2494 ((-858) $ (-858))))) (-1045) (-99 |#1|) (-1 |#1| |#1|)) (T -850)) -((-2494 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -(-13 (-848 |#1|) (-10 -8 (-15 -2494 ((-858) $ (-858))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-4228 (($ $ $) NIL (|has| |#2| (-363)))) (-4240 (($ $ $) NIL (|has| |#2| (-363)))) (-4250 (($ $ $) NIL (|has| |#2| (-363)))) (-4210 (($ $ $) NIL (|has| |#2| (-363)))) (-4199 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#2| (-363)))) (-4219 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-4344 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#2| (-363)))) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#2| (-452)))) (-2712 (((-112) $) NIL)) (-2165 (($ |#2| (-767)) 17)) (-4325 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#2| (-555)))) (-4315 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#2| (-555)))) (-3187 (((-767) $) NIL)) (-4291 (($ $ $) NIL (|has| |#2| (-363)))) (-4302 (($ $ $) NIL (|has| |#2| (-363)))) (-4189 (($ $ $) NIL (|has| |#2| (-363)))) (-4270 (($ $ $) NIL (|has| |#2| (-363)))) (-4260 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#2| (-363)))) (-4280 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-4335 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#2| (-363)))) (-3193 ((|#2| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3448 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-1962 (((-767) $) NIL)) (-3166 ((|#2| $) NIL (|has| |#2| (-452)))) (-2062 (((-858) $) 24) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (($ (-1253 |#1|)) 19)) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ (-767)) NIL)) (-3192 (((-767)) NIL T CONST)) (-2408 ((|#2| $ |#2| |#2|) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) 13 T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) -(((-851 |#1| |#2| |#3| |#4|) (-13 (-848 |#2|) (-613 (-1253 |#1|))) (-1169) (-1045) (-99 |#2|) (-1 |#2| |#2|)) (T -851)) -NIL -(-13 (-848 |#2|) (-613 (-1253 |#1|))) -((-4373 ((|#1| (-767) |#1|) 48 (|has| |#1| (-38 (-407 (-563)))))) (-4363 ((|#1| (-767) (-767) |#1|) 39) ((|#1| (-767) |#1|) 27)) (-4353 ((|#1| (-767) |#1|) 43)) (-2985 ((|#1| (-767) |#1|) 41)) (-2974 ((|#1| (-767) |#1|) 40))) -(((-852 |#1|) (-10 -7 (-15 -2974 (|#1| (-767) |#1|)) (-15 -2985 (|#1| (-767) |#1|)) (-15 -4353 (|#1| (-767) |#1|)) (-15 -4363 (|#1| (-767) |#1|)) (-15 -4363 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -4373 (|#1| (-767) |#1|)) |%noBranch|)) (-172)) (T -852)) -((-4373 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-172)))) (-4363 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-4363 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-4353 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-2985 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) (-2974 (*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) -(-10 -7 (-15 -2974 (|#1| (-767) |#1|)) (-15 -2985 (|#1| (-767) |#1|)) (-15 -4353 (|#1| (-767) |#1|)) (-15 -4363 (|#1| (-767) |#1|)) (-15 -4363 (|#1| (-767) (-767) |#1|)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -4373 (|#1| (-767) |#1|)) |%noBranch|)) -((-2049 (((-112) $ $) 7)) (-3489 (($ $ $) 13)) (-4105 (($ $ $) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2998 (((-112) $ $) 16)) (-2977 (((-112) $ $) 17)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 15)) (-2966 (((-112) $ $) 18)) (** (($ $ (-917)) 21)) (* (($ $ $) 20))) -(((-853) (-140)) (T -853)) -NIL -(-13 (-846) (-1105)) -(((-102) . T) ((-610 (-858)) . T) ((-846) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-3556 (((-563) $) 14)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 20) (($ (-563)) 13)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 9)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 11))) -(((-854) (-13 (-846) (-10 -8 (-15 -2062 ($ (-563))) (-15 -3556 ((-563) $))))) (T -854)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-854)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-854))))) -(-13 (-846) (-10 -8 (-15 -2062 ($ (-563))) (-15 -3556 ((-563) $)))) -((-1293 (((-686 (-1215)) $ (-1215)) 15)) (-1303 (((-686 (-548)) $ (-548)) 12)) (-4382 (((-767) $ (-128)) 30))) -(((-855 |#1|) (-10 -8 (-15 -4382 ((-767) |#1| (-128))) (-15 -1293 ((-686 (-1215)) |#1| (-1215))) (-15 -1303 ((-686 (-548)) |#1| (-548)))) (-856)) (T -855)) -NIL -(-10 -8 (-15 -4382 ((-767) |#1| (-128))) (-15 -1293 ((-686 (-1215)) |#1| (-1215))) (-15 -1303 ((-686 (-548)) |#1| (-548)))) -((-1293 (((-686 (-1215)) $ (-1215)) 8)) (-1303 (((-686 (-548)) $ (-548)) 9)) (-4382 (((-767) $ (-128)) 7)) (-1312 (((-686 (-129)) $ (-129)) 10)) (-3018 (($ $) 6))) -(((-856) (-140)) (T -856)) -((-1312 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-129))) (-5 *3 (-129)))) (-1303 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-548))) (-5 *3 (-548)))) (-1293 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *2 (-686 (-1215))) (-5 *3 (-1215)))) (-4382 (*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767))))) -(-13 (-173) (-10 -8 (-15 -1312 ((-686 (-129)) $ (-129))) (-15 -1303 ((-686 (-548)) $ (-548))) (-15 -1293 ((-686 (-1215)) $ (-1215))) (-15 -4382 ((-767) $ (-128))))) +((-3732 (((-112) $ $) NIL)) (-3491 (((-641 |#1|) $) 38)) (-1938 (((-768) $) NIL)) (-2818 (($) NIL T CONST)) (-2691 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 28)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-1977 (($ $) 42)) (-3951 (((-3 $ "failed") $) NIL)) (-2156 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3840 (((-112) $) NIL)) (-3950 ((|#1| $ (-564)) NIL)) (-3584 (((-768) $ (-564)) NIL)) (-3275 (($ $) 51)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2481 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 25)) (-4291 (((-112) $ $) 49)) (-2395 (((-768) $) 34)) (-2217 (((-1152) $) NIL)) (-3953 (($ $ $) NIL)) (-2552 (($ $ $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 ((|#1| $) 41)) (-2267 (((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-768)))) $) NIL)) (-1337 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-3742 (((-859) $) NIL) (($ |#1|) NIL)) (-4321 (($) 20 T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 50)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ |#1| (-768)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-816 |#1|) (-13 (-843) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -1966 (|#1| $)) (-15 -1977 ($ $)) (-15 -3275 ($ $)) (-15 -4291 ((-112) $ $)) (-15 -2552 ($ $ $)) (-15 -3953 ($ $ $)) (-15 -2481 ((-3 $ "failed") $ $)) (-15 -2691 ((-3 $ "failed") $ $)) (-15 -2481 ((-3 $ "failed") $ |#1|)) (-15 -2691 ((-3 $ "failed") $ |#1|)) (-15 -1337 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2156 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1938 ((-768) $)) (-15 -3584 ((-768) $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -2267 ((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-768)))) $)) (-15 -2395 ((-768) $)) (-15 -3491 ((-641 |#1|) $)))) (-847)) (T -816)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-1966 (*1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3275 (*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-4291 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-2552 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-3953 (*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2481 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2691 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2481 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2691 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-1337 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |rm| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-2156 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |mm| (-816 *3)) (|:| |rm| (-816 *3)))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-1938 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3584 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-816 *4)) (-4 *4 (-847)))) (-3950 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 (-768))))) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-816 *3)) (-4 *3 (-847))))) +(-13 (-843) (-1035 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-768))) (-15 -1966 (|#1| $)) (-15 -1977 ($ $)) (-15 -3275 ($ $)) (-15 -4291 ((-112) $ $)) (-15 -2552 ($ $ $)) (-15 -3953 ($ $ $)) (-15 -2481 ((-3 $ "failed") $ $)) (-15 -2691 ((-3 $ "failed") $ $)) (-15 -2481 ((-3 $ "failed") $ |#1|)) (-15 -2691 ((-3 $ "failed") $ |#1|)) (-15 -1337 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2156 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -1938 ((-768) $)) (-15 -3584 ((-768) $ (-564))) (-15 -3950 (|#1| $ (-564))) (-15 -2267 ((-641 (-2 (|:| |gen| |#1|) (|:| -4118 (-768)))) $)) (-15 -2395 ((-768) $)) (-15 -3491 ((-641 |#1|) $)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-3265 (((-564) $) 54)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3308 (((-112) $) 52)) (-3840 (((-112) $) 31)) (-2839 (((-112) $) 53)) (-2799 (($ $ $) 51)) (-2848 (($ $ $) 50)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ $) 43)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-2792 (($ $) 55)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1751 (((-112) $ $) 48)) (-1731 (((-112) $ $) 47)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 49)) (-1723 (((-112) $ $) 46)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-817) (-140)) (T -817)) +NIL +(-13 (-556) (-845)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-4138 (($ (-1114)) 7)) (-1991 (((-112) $ (-1152) (-1114)) 15)) (-3475 (((-819) $) 12)) (-1788 (((-819) $) 11)) (-2046 (((-1264) $) 9)) (-1727 (((-112) $ (-1114)) 16))) +(((-818) (-10 -8 (-15 -4138 ($ (-1114))) (-15 -2046 ((-1264) $)) (-15 -1788 ((-819) $)) (-15 -3475 ((-819) $)) (-15 -1991 ((-112) $ (-1152) (-1114))) (-15 -1727 ((-112) $ (-1114))))) (T -818)) +((-1727 (*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))) (-1991 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-818)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-1788 (*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818)))) (-2046 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818)))) (-4138 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-818))))) +(-10 -8 (-15 -4138 ($ (-1114))) (-15 -2046 ((-1264) $)) (-15 -1788 ((-819) $)) (-15 -3475 ((-819) $)) (-15 -1991 ((-112) $ (-1152) (-1114))) (-15 -1727 ((-112) $ (-1114)))) +((-2434 (((-1264) $ (-820)) 12)) (-3612 (((-1264) $ (-1170)) 32)) (-2744 (((-1264) $ (-1152) (-1152)) 34)) (-1470 (((-1264) $ (-1152)) 33)) (-4175 (((-1264) $) 19)) (-2516 (((-1264) $ (-564)) 28)) (-1529 (((-1264) $ (-225)) 30)) (-3478 (((-1264) $) 18)) (-2734 (((-1264) $) 26)) (-2116 (((-1264) $) 25)) (-3876 (((-1264) $) 23)) (-3647 (((-1264) $) 24)) (-2157 (((-1264) $) 22)) (-3568 (((-1264) $) 21)) (-3882 (((-1264) $) 20)) (-2454 (((-1264) $) 16)) (-2782 (((-1264) $) 17)) (-4164 (((-1264) $) 15)) (-1715 (((-1264) $) 14)) (-2059 (((-1264) $) 13)) (-3018 (($ (-1152) (-820)) 9)) (-3322 (($ (-1152) (-1152) (-820)) 8)) (-3741 (((-1170) $) 51)) (-2997 (((-1170) $) 55)) (-2363 (((-2 (|:| |cd| (-1152)) (|:| -4324 (-1152))) $) 54)) (-3693 (((-1152) $) 52)) (-2559 (((-1264) $) 41)) (-3362 (((-564) $) 49)) (-1950 (((-225) $) 50)) (-4039 (((-1264) $) 40)) (-2368 (((-1264) $) 48)) (-3796 (((-1264) $) 47)) (-2539 (((-1264) $) 45)) (-3179 (((-1264) $) 46)) (-4339 (((-1264) $) 44)) (-4034 (((-1264) $) 43)) (-4274 (((-1264) $) 42)) (-3946 (((-1264) $) 38)) (-4357 (((-1264) $) 39)) (-2018 (((-1264) $) 37)) (-3292 (((-1264) $) 36)) (-1395 (((-1264) $) 35)) (-2968 (((-1264) $) 11))) +(((-819) (-10 -8 (-15 -3322 ($ (-1152) (-1152) (-820))) (-15 -3018 ($ (-1152) (-820))) (-15 -2968 ((-1264) $)) (-15 -2434 ((-1264) $ (-820))) (-15 -2059 ((-1264) $)) (-15 -1715 ((-1264) $)) (-15 -4164 ((-1264) $)) (-15 -2454 ((-1264) $)) (-15 -2782 ((-1264) $)) (-15 -3478 ((-1264) $)) (-15 -4175 ((-1264) $)) (-15 -3882 ((-1264) $)) (-15 -3568 ((-1264) $)) (-15 -2157 ((-1264) $)) (-15 -3876 ((-1264) $)) (-15 -3647 ((-1264) $)) (-15 -2116 ((-1264) $)) (-15 -2734 ((-1264) $)) (-15 -2516 ((-1264) $ (-564))) (-15 -1529 ((-1264) $ (-225))) (-15 -3612 ((-1264) $ (-1170))) (-15 -1470 ((-1264) $ (-1152))) (-15 -2744 ((-1264) $ (-1152) (-1152))) (-15 -1395 ((-1264) $)) (-15 -3292 ((-1264) $)) (-15 -2018 ((-1264) $)) (-15 -3946 ((-1264) $)) (-15 -4357 ((-1264) $)) (-15 -4039 ((-1264) $)) (-15 -2559 ((-1264) $)) (-15 -4274 ((-1264) $)) (-15 -4034 ((-1264) $)) (-15 -4339 ((-1264) $)) (-15 -2539 ((-1264) $)) (-15 -3179 ((-1264) $)) (-15 -3796 ((-1264) $)) (-15 -2368 ((-1264) $)) (-15 -3362 ((-564) $)) (-15 -1950 ((-225) $)) (-15 -3741 ((-1170) $)) (-15 -3693 ((-1152) $)) (-15 -2363 ((-2 (|:| |cd| (-1152)) (|:| -4324 (-1152))) $)) (-15 -2997 ((-1170) $)))) (T -819)) +((-2997 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -4324 (-1152)))) (-5 *1 (-819)))) (-3693 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-819)))) (-3741 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819)))) (-1950 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-819)))) (-2368 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3796 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2539 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4339 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4274 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2559 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4039 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4357 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2018 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1395 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2744 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-1470 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-3612 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-1529 (*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-2516 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-2734 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3647 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3876 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2157 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3568 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3882 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4175 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2454 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-2434 (*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1264)) (-5 *1 (-819)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819)))) (-3018 (*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819)))) (-3322 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819))))) +(-10 -8 (-15 -3322 ($ (-1152) (-1152) (-820))) (-15 -3018 ($ (-1152) (-820))) (-15 -2968 ((-1264) $)) (-15 -2434 ((-1264) $ (-820))) (-15 -2059 ((-1264) $)) (-15 -1715 ((-1264) $)) (-15 -4164 ((-1264) $)) (-15 -2454 ((-1264) $)) (-15 -2782 ((-1264) $)) (-15 -3478 ((-1264) $)) (-15 -4175 ((-1264) $)) (-15 -3882 ((-1264) $)) (-15 -3568 ((-1264) $)) (-15 -2157 ((-1264) $)) (-15 -3876 ((-1264) $)) (-15 -3647 ((-1264) $)) (-15 -2116 ((-1264) $)) (-15 -2734 ((-1264) $)) (-15 -2516 ((-1264) $ (-564))) (-15 -1529 ((-1264) $ (-225))) (-15 -3612 ((-1264) $ (-1170))) (-15 -1470 ((-1264) $ (-1152))) (-15 -2744 ((-1264) $ (-1152) (-1152))) (-15 -1395 ((-1264) $)) (-15 -3292 ((-1264) $)) (-15 -2018 ((-1264) $)) (-15 -3946 ((-1264) $)) (-15 -4357 ((-1264) $)) (-15 -4039 ((-1264) $)) (-15 -2559 ((-1264) $)) (-15 -4274 ((-1264) $)) (-15 -4034 ((-1264) $)) (-15 -4339 ((-1264) $)) (-15 -2539 ((-1264) $)) (-15 -3179 ((-1264) $)) (-15 -3796 ((-1264) $)) (-15 -2368 ((-1264) $)) (-15 -3362 ((-564) $)) (-15 -1950 ((-225) $)) (-15 -3741 ((-1170) $)) (-15 -3693 ((-1152) $)) (-15 -2363 ((-2 (|:| |cd| (-1152)) (|:| -4324 (-1152))) $)) (-15 -2997 ((-1170) $))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 13)) (-2667 (($) 16)) (-1638 (($) 14)) (-3821 (($) 17)) (-1930 (($) 15)) (-1705 (((-112) $ $) 9))) +(((-820) (-13 (-1094) (-10 -8 (-15 -1638 ($)) (-15 -2667 ($)) (-15 -3821 ($)) (-15 -1930 ($))))) (T -820)) +((-1638 (*1 *1) (-5 *1 (-820))) (-2667 (*1 *1) (-5 *1 (-820))) (-3821 (*1 *1) (-5 *1 (-820))) (-1930 (*1 *1) (-5 *1 (-820)))) +(-13 (-1094) (-10 -8 (-15 -1638 ($)) (-15 -2667 ($)) (-15 -3821 ($)) (-15 -1930 ($)))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 23) (($ (-1170)) 19)) (-4112 (((-112) $) 10)) (-1293 (((-112) $) 9)) (-2166 (((-112) $) 11)) (-3994 (((-112) $) 8)) (-1705 (((-112) $ $) 21))) +(((-821) (-13 (-1094) (-10 -8 (-15 -3742 ($ (-1170))) (-15 -3994 ((-112) $)) (-15 -1293 ((-112) $)) (-15 -4112 ((-112) $)) (-15 -2166 ((-112) $))))) (T -821)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-821)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-4112 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) +(-13 (-1094) (-10 -8 (-15 -3742 ($ (-1170))) (-15 -3994 ((-112) $)) (-15 -1293 ((-112) $)) (-15 -4112 ((-112) $)) (-15 -2166 ((-112) $)))) +((-3732 (((-112) $ $) NIL)) (-2891 (($ (-821) (-641 (-1170))) 32)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3452 (((-821) $) 33)) (-1569 (((-641 (-1170)) $) 34)) (-3742 (((-859) $) 31)) (-1705 (((-112) $ $) NIL))) +(((-822) (-13 (-1094) (-10 -8 (-15 -3452 ((-821) $)) (-15 -1569 ((-641 (-1170)) $)) (-15 -2891 ($ (-821) (-641 (-1170))))))) (T -822)) +((-3452 (*1 *2 *1) (-12 (-5 *2 (-821)) (-5 *1 (-822)))) (-1569 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-822)))) (-2891 (*1 *1 *2 *3) (-12 (-5 *2 (-821)) (-5 *3 (-641 (-1170))) (-5 *1 (-822))))) +(-13 (-1094) (-10 -8 (-15 -3452 ((-821) $)) (-15 -1569 ((-641 (-1170)) $)) (-15 -2891 ($ (-821) (-641 (-1170)))))) +((-2412 (((-1264) (-819) (-316 |#1|) (-112)) 24) (((-1264) (-819) (-316 |#1|)) 90) (((-1152) (-316 |#1|) (-112)) 89) (((-1152) (-316 |#1|)) 88))) +(((-823 |#1|) (-10 -7 (-15 -2412 ((-1152) (-316 |#1|))) (-15 -2412 ((-1152) (-316 |#1|) (-112))) (-15 -2412 ((-1264) (-819) (-316 |#1|))) (-15 -2412 ((-1264) (-819) (-316 |#1|) (-112)))) (-13 (-825) (-847) (-1046))) (T -823)) +((-2412 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-819)) (-5 *4 (-316 *6)) (-5 *5 (-112)) (-4 *6 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) (-5 *1 (-823 *6)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-819)) (-5 *4 (-316 *5)) (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) (-5 *1 (-823 *5)))) (-2412 (*1 *2 *3 *4) (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) (-5 *1 (-823 *5)))) (-2412 (*1 *2 *3) (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) (-5 *1 (-823 *4))))) +(-10 -7 (-15 -2412 ((-1152) (-316 |#1|))) (-15 -2412 ((-1152) (-316 |#1|) (-112))) (-15 -2412 ((-1264) (-819) (-316 |#1|))) (-15 -2412 ((-1264) (-819) (-316 |#1|) (-112)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2032 ((|#1| $) 10)) (-3440 (($ |#1|) 9)) (-3840 (((-112) $) NIL)) (-4245 (($ |#2| (-768)) NIL)) (-3469 (((-768) $) NIL)) (-1320 ((|#2| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4117 (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-2266 (((-768) $) NIL)) (-3742 (((-859) $) 17) (($ (-564)) NIL) (($ |#2|) NIL (|has| |#2| (-172)))) (-2856 ((|#2| $ (-768)) NIL)) (-3270 (((-768)) NIL T CONST)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $) NIL (|has| |#1| (-233)))) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-824 |#1| |#2|) (-13 (-705 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3440 ($ |#1|)) (-15 -2032 (|#1| $)))) (-705 |#2|) (-1046)) (T -824)) +((-3440 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-824 *2 *3)) (-4 *2 (-705 *3)))) (-2032 (*1 *2 *1) (-12 (-4 *2 (-705 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1046))))) +(-13 (-705 |#2|) (-10 -8 (IF (|has| |#1| (-233)) (-6 (-233)) |%noBranch|) (-15 -3440 ($ |#1|)) (-15 -2032 (|#1| $)))) +((-2412 (((-1264) (-819) $ (-112)) 9) (((-1264) (-819) $) 8) (((-1152) $ (-112)) 7) (((-1152) $) 6))) +(((-825) (-140)) (T -825)) +((-2412 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1264)))) (-2412 (*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *2 (-1264)))) (-2412 (*1 *2 *1 *3) (-12 (-4 *1 (-825)) (-5 *3 (-112)) (-5 *2 (-1152)))) (-2412 (*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-1152))))) +(-13 (-10 -8 (-15 -2412 ((-1152) $)) (-15 -2412 ((-1152) $ (-112))) (-15 -2412 ((-1264) (-819) $)) (-15 -2412 ((-1264) (-819) $ (-112))))) +((-2859 (((-312) (-1152) (-1152)) 12)) (-3098 (((-112) (-1152) (-1152)) 33)) (-1663 (((-112) (-1152)) 32)) (-3630 (((-52) (-1152)) 25)) (-3295 (((-52) (-1152)) 23)) (-3663 (((-52) (-819)) 17)) (-3139 (((-641 (-1152)) (-1152)) 28)) (-4160 (((-641 (-1152))) 27))) +(((-826) (-10 -7 (-15 -3663 ((-52) (-819))) (-15 -3295 ((-52) (-1152))) (-15 -3630 ((-52) (-1152))) (-15 -4160 ((-641 (-1152)))) (-15 -3139 ((-641 (-1152)) (-1152))) (-15 -1663 ((-112) (-1152))) (-15 -3098 ((-112) (-1152) (-1152))) (-15 -2859 ((-312) (-1152) (-1152))))) (T -826)) +((-2859 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-826)))) (-3098 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826)))) (-3139 (*1 *2 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)) (-5 *3 (-1152)))) (-4160 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)))) (-3630 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826)))) (-3663 (*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-826))))) +(-10 -7 (-15 -3663 ((-52) (-819))) (-15 -3295 ((-52) (-1152))) (-15 -3630 ((-52) (-1152))) (-15 -4160 ((-641 (-1152)))) (-15 -3139 ((-641 (-1152)) (-1152))) (-15 -1663 ((-112) (-1152))) (-15 -3098 ((-112) (-1152) (-1152))) (-15 -2859 ((-312) (-1152) (-1152)))) +((-3732 (((-112) $ $) 19)) (-3518 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-2570 (($ $ $) 72)) (-1905 (((-112) $ $) 73)) (-2969 (((-112) $ (-768)) 8)) (-3688 (($ (-641 |#1|)) 68) (($) 67)) (-2068 (($ (-1 (-112) |#1|) $) 45 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-4181 (($ $) 62)) (-1996 (($ $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ |#1| $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) 46 (|has| $ (-6 -4411)))) (-2366 (($ |#1| $) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 54 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4411)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-3296 (((-112) $ $) 64)) (-2275 (((-112) $ (-768)) 9)) (-2799 ((|#1| $) 78)) (-1457 (($ $ $) 81)) (-2164 (($ $ $) 80)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2848 ((|#1| $) 79)) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22)) (-1353 (($ $ $) 69)) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40) (($ |#1| $ (-768)) 63)) (-3864 (((-1114) $) 21)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 51)) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-1370 (((-641 (-2 (|:| -2423 |#1|) (|:| -3873 (-768)))) $) 61)) (-2365 (($ $ |#1|) 71) (($ $ $) 70)) (-4085 (($) 49) (($ (-641 |#1|)) 48)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 50)) (-3742 (((-859) $) 18)) (-4194 (($ (-641 |#1|)) 66) (($) 65)) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20)) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-827 |#1|) (-140) (-847)) (T -827)) +((-2799 (*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-847))))) +(-13 (-733 |t#1|) (-965 |t#1|) (-10 -8 (-15 -2799 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-235 |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-691 |#1|) . T) ((-733 |#1|) . T) ((-965 |#1|) . T) ((-1092 |#1|) . T) ((-1094) . T) ((-1209) . T)) +((-2349 (((-1264) (-1114) (-1114)) 48)) (-1835 (((-1264) (-818) (-52)) 45)) (-3552 (((-52) (-818)) 16))) +(((-828) (-10 -7 (-15 -3552 ((-52) (-818))) (-15 -1835 ((-1264) (-818) (-52))) (-15 -2349 ((-1264) (-1114) (-1114))))) (T -828)) +((-2349 (*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-828)))) (-1835 (*1 *2 *3 *4) (-12 (-5 *3 (-818)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-828)))) (-3552 (*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-828))))) +(-10 -7 (-15 -3552 ((-52) (-818))) (-15 -1835 ((-1264) (-818) (-52))) (-15 -2349 ((-1264) (-1114) (-1114)))) +((-2187 (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)) 12) (((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|)) 13))) +(((-829 |#1| |#2|) (-10 -7 (-15 -2187 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|))) (-15 -2187 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)))) (-1094) (-1094)) (T -829)) +((-2187 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-829 *5 *6)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6))))) +(-10 -7 (-15 -2187 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|))) (-15 -2187 ((-830 |#2|) (-1 |#2| |#1|) (-830 |#1|) (-830 |#2|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-21)))) (-3239 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3265 (((-564) $) NIL (|has| |#1| (-845)))) (-2818 (($) NIL (|has| |#1| (-21)) CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 15)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 9)) (-3951 (((-3 $ "failed") $) 42 (|has| |#1| (-845)))) (-2646 (((-3 (-407 (-564)) "failed") $) 52 (|has| |#1| (-545)))) (-4072 (((-112) $) 46 (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) 49 (|has| |#1| (-545)))) (-3308 (((-112) $) NIL (|has| |#1| (-845)))) (-3840 (((-112) $) NIL (|has| |#1| (-845)))) (-2839 (((-112) $) NIL (|has| |#1| (-845)))) (-2799 (($ $ $) NIL (|has| |#1| (-845)))) (-2848 (($ $ $) NIL (|has| |#1| (-845)))) (-2217 (((-1152) $) NIL)) (-1666 (($) 13)) (-3544 (((-112) $) 12)) (-3864 (((-1114) $) NIL)) (-1926 (((-112) $) 11)) (-3742 (((-859) $) 18) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-4030 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))))) (-3270 (((-768)) 36 (|has| |#1| (-845)) CONST)) (-2792 (($ $) NIL (|has| |#1| (-845)))) (-4311 (($) 23 (|has| |#1| (-21)) CONST)) (-4321 (($) 33 (|has| |#1| (-845)) CONST)) (-1751 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1705 (((-112) $ $) 21)) (-1741 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1723 (((-112) $ $) 45 (|has| |#1| (-845)))) (-1790 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 29 (|has| |#1| (-21)))) (-1780 (($ $ $) 31 (|has| |#1| (-21)))) (** (($ $ (-918)) NIL (|has| |#1| (-845))) (($ $ (-768)) NIL (|has| |#1| (-845)))) (* (($ $ $) 39 (|has| |#1| (-845))) (($ (-564) $) 27 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-21))))) +(((-830 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1666 ($)) (-15 -1926 ((-112) $)) (-15 -3544 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -830)) +((-1666 (*1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1094)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2646 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))) +(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1666 ($)) (-15 -1926 ((-112) $)) (-15 -3544 ((-112) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) +((-3742 (((-859) $) 11))) +(((-831 |#1| |#2|) (-10 -8 (-15 -3742 ((-859) |#1|))) (-832 |#2|) (-1094)) (T -831)) +NIL +(-10 -8 (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4324 ((|#1| $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-2873 (((-55) $) 13)) (-1705 (((-112) $ $) 6))) +(((-832 |#1|) (-140) (-1094)) (T -832)) +((-4324 (*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1094)))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55))))) +(-13 (-1094) (-10 -8 (-15 -4324 (|t#1| $)) (-15 -2873 ((-55) $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-114) "failed") $) NIL)) (-2239 ((|#1| $) NIL) (((-114) $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3458 ((|#1| (-114) |#1|) NIL)) (-3840 (((-112) $) NIL)) (-3895 (($ |#1| (-361 (-114))) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1639 (($ $ (-1 |#1| |#1|)) NIL)) (-3563 (($ $ (-1 |#1| |#1|)) NIL)) (-4382 ((|#1| $ |#1|) NIL)) (-4331 ((|#1| |#1|) NIL (|has| |#1| (-172)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-114)) NIL)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-4298 (($ $) NIL (|has| |#1| (-172))) (($ $ $) NIL (|has| |#1| (-172)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ (-114) (-564)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-833 |#1|) (-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4298 ($ $)) (-15 -4298 ($ $ $)) (-15 -4331 (|#1| |#1|))) |%noBranch|) (-15 -3563 ($ $ (-1 |#1| |#1|))) (-15 -1639 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3458 (|#1| (-114) |#1|)) (-15 -3895 ($ |#1| (-361 (-114)))))) (-1046)) (T -833)) +((-4298 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-4298 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-4331 (*1 *2 *2) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))) (-1639 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-833 *4)) (-4 *4 (-1046)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-833 *3)) (-4 *3 (-1046)))) (-3458 (*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-833 *2)) (-4 *2 (-1046)))) (-3895 (*1 *1 *2 *3) (-12 (-5 *3 (-361 (-114))) (-5 *1 (-833 *2)) (-4 *2 (-1046))))) +(-13 (-1046) (-1035 |#1|) (-1035 (-114)) (-286 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |#1| (-172)) (PROGN (-6 (-38 |#1|)) (-15 -4298 ($ $)) (-15 -4298 ($ $ $)) (-15 -4331 (|#1| |#1|))) |%noBranch|) (-15 -3563 ($ $ (-1 |#1| |#1|))) (-15 -1639 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-114) (-564))) (-15 ** ($ $ (-564))) (-15 -3458 (|#1| (-114) |#1|)) (-15 -3895 ($ |#1| (-361 (-114)))))) +((-4159 (((-214 (-502)) (-1152)) 9))) +(((-834) (-10 -7 (-15 -4159 ((-214 (-502)) (-1152))))) (T -834)) +((-4159 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-834))))) +(-10 -7 (-15 -4159 ((-214 (-502)) (-1152)))) +((-3732 (((-112) $ $) NIL)) (-4287 (((-1112) $) 10)) (-4324 (((-506) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3753 (($ (-506) (-1112)) 8)) (-3742 (((-859) $) 27)) (-2873 (((-55) $) 20)) (-1705 (((-112) $ $) 12))) +(((-835) (-13 (-832 (-506)) (-10 -8 (-15 -4287 ((-1112) $)) (-15 -3753 ($ (-506) (-1112)))))) (T -835)) +((-4287 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-835)))) (-3753 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-835))))) +(-13 (-832 (-506)) (-10 -8 (-15 -4287 ((-1112) $)) (-15 -3753 ($ (-506) (-1112))))) +((-3732 (((-112) $ $) 7)) (-2600 (((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 14) (((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 13)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 16) (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 15)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6))) +(((-836) (-140)) (T -836)) +((-3406 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)))))) (-3406 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)))))) (-2600 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) (-5 *2 (-1032)))) (-2600 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *2 (-1032))))) +(-13 (-1094) (-10 -7 (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) (-15 -2600 ((-1032) (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) (-15 -2600 ((-1032) (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-2446 (((-1032) (-641 (-316 (-379))) (-641 (-379))) 169) (((-1032) (-316 (-379)) (-641 (-379))) 167) (((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379)))) 165) (((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379)))) 163) (((-1032) (-838)) 128) (((-1032) (-838) (-1058)) 127)) (-3406 (((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058)) 88) (((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838)) 90)) (-2261 (((-1032) (-641 (-316 (-379))) (-641 (-379))) 170) (((-1032) (-838)) 153))) +(((-837) (-10 -7 (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058))) (-15 -2446 ((-1032) (-838) (-1058))) (-15 -2446 ((-1032) (-838))) (-15 -2261 ((-1032) (-838))) (-15 -2446 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379))))) (-15 -2446 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379))))) (-15 -2446 ((-1032) (-316 (-379)) (-641 (-379)))) (-15 -2446 ((-1032) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2261 ((-1032) (-641 (-316 (-379))) (-641 (-379)))))) (T -837)) +((-2261 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2446 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2446 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2261 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2446 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-2446 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-837)))) (-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-837)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-837))))) +(-10 -7 (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-838) (-1058))) (-15 -2446 ((-1032) (-838) (-1058))) (-15 -2446 ((-1032) (-838))) (-15 -2261 ((-1032) (-838))) (-15 -2446 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-316 (-379))) (-641 (-840 (-379))))) (-15 -2446 ((-1032) (-316 (-379)) (-641 (-379)) (-641 (-840 (-379))) (-641 (-840 (-379))))) (-15 -2446 ((-1032) (-316 (-379)) (-641 (-379)))) (-15 -2446 ((-1032) (-641 (-316 (-379))) (-641 (-379)))) (-15 -2261 ((-1032) (-641 (-316 (-379))) (-641 (-379))))) +((-3732 (((-112) $ $) NIL)) (-2239 (((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) $) 21)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 20) (($ (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) 14) (($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))))) 18)) (-1705 (((-112) $ $) NIL))) +(((-838) (-13 (-1094) (-10 -8 (-15 -3742 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3742 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) (-15 -3742 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))))) (-15 -2239 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) $))))) (T -838)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (-5 *1 (-838)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) (-5 *1 (-838)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))))) (-5 *1 (-838)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))))) (-5 *1 (-838))))) +(-13 (-1094) (-10 -8 (-15 -3742 ($ (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225))))))) (-15 -3742 ($ (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) (-15 -3742 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))))) (-15 -2239 ((-3 (|:| |noa| (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) (|:| |ub| (-641 (-840 (-225)))))) (|:| |lsa| (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225)))))) $)))) +((-2187 (((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)) 13) (((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|)) 14))) +(((-839 |#1| |#2|) (-10 -7 (-15 -2187 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|))) (-15 -2187 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)))) (-1094) (-1094)) (T -839)) +((-2187 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-840 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-839 *5 *6)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-840 *6)) (-5 *1 (-839 *5 *6))))) +(-10 -7 (-15 -2187 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|))) (-15 -2187 ((-840 |#2|) (-1 |#2| |#1|) (-840 |#1|) (-840 |#2|) (-840 |#2|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL (|has| |#1| (-21)))) (-3893 (((-1114) $) 31)) (-3239 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3265 (((-564) $) NIL (|has| |#1| (-845)))) (-2818 (($) NIL (|has| |#1| (-21)) CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 18)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 9)) (-3951 (((-3 $ "failed") $) 55 (|has| |#1| (-845)))) (-2646 (((-3 (-407 (-564)) "failed") $) 62 (|has| |#1| (-545)))) (-4072 (((-112) $) 57 (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) 60 (|has| |#1| (-545)))) (-3308 (((-112) $) NIL (|has| |#1| (-845)))) (-1557 (($) 14)) (-3840 (((-112) $) NIL (|has| |#1| (-845)))) (-2839 (((-112) $) NIL (|has| |#1| (-845)))) (-1568 (($) 16)) (-2799 (($ $ $) NIL (|has| |#1| (-845)))) (-2848 (($ $ $) NIL (|has| |#1| (-845)))) (-2217 (((-1152) $) NIL)) (-3544 (((-112) $) 12)) (-3864 (((-1114) $) NIL)) (-1926 (((-112) $) 11)) (-3742 (((-859) $) 24) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 8) (($ (-564)) NIL (-4030 (|has| |#1| (-845)) (|has| |#1| (-1035 (-564)))))) (-3270 (((-768)) 49 (|has| |#1| (-845)) CONST)) (-2792 (($ $) NIL (|has| |#1| (-845)))) (-4311 (($) 36 (|has| |#1| (-21)) CONST)) (-4321 (($) 46 (|has| |#1| (-845)) CONST)) (-1751 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1705 (((-112) $ $) 34)) (-1741 (((-112) $ $) NIL (|has| |#1| (-845)))) (-1723 (((-112) $ $) 56 (|has| |#1| (-845)))) (-1790 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-1780 (($ $ $) 44 (|has| |#1| (-21)))) (** (($ $ (-918)) NIL (|has| |#1| (-845))) (($ $ (-768)) NIL (|has| |#1| (-845)))) (* (($ $ $) 52 (|has| |#1| (-845))) (($ (-564) $) 40 (|has| |#1| (-21))) (($ (-768) $) NIL (|has| |#1| (-21))) (($ (-918) $) NIL (|has| |#1| (-21))))) +(((-840 |#1|) (-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1557 ($)) (-15 -1568 ($)) (-15 -1926 ((-112) $)) (-15 -3544 ((-112) $)) (-15 -3893 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) (-1094)) (T -840)) +((-1557 (*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))) (-1568 (*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094)))) (-1926 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-3893 (*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-840 *3)) (-4 *3 (-1094)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) (-2646 (*1 *2 *1) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094))))) +(-13 (-1094) (-411 |#1|) (-10 -8 (-15 -1557 ($)) (-15 -1568 ($)) (-15 -1926 ((-112) $)) (-15 -3544 ((-112) $)) (-15 -3893 ((-1114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-845)) |%noBranch|) (IF (|has| |#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) +((-3732 (((-112) $ $) 7)) (-1938 (((-768)) 22)) (-2821 (($) 25)) (-2799 (($ $ $) 13) (($) 21 T CONST)) (-2848 (($ $ $) 14) (($) 20 T CONST)) (-1906 (((-918) $) 24)) (-2217 (((-1152) $) 9)) (-1495 (($ (-918)) 23)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) +(((-841) (-140)) (T -841)) +((-2799 (*1 *1) (-4 *1 (-841))) (-2848 (*1 *1) (-4 *1 (-841)))) +(-13 (-847) (-368) (-10 -8 (-15 -2799 ($) -2091) (-15 -2848 ($) -2091))) +(((-102) . T) ((-611 (-859)) . T) ((-368) . T) ((-847) . T) ((-1094) . T)) +((-4327 (((-112) (-1259 |#2|) (-1259 |#2|)) 23)) (-4009 (((-112) (-1259 |#2|) (-1259 |#2|)) 24)) (-3397 (((-112) (-1259 |#2|) (-1259 |#2|)) 20))) +(((-842 |#1| |#2|) (-10 -7 (-15 -3397 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -4327 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -4009 ((-112) (-1259 |#2|) (-1259 |#2|)))) (-768) (-789)) (T -842)) +((-4009 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))) (-4327 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768)))) (-3397 (*1 *2 *3 *3) (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-842 *4 *5)) (-14 *4 (-768))))) +(-10 -7 (-15 -3397 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -4327 ((-112) (-1259 |#2|) (-1259 |#2|))) (-15 -4009 ((-112) (-1259 |#2|) (-1259 |#2|)))) +((-3732 (((-112) $ $) 7)) (-2818 (($) 23 T CONST)) (-3951 (((-3 $ "failed") $) 26)) (-3840 (((-112) $) 24)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4321 (($) 22 T CONST)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (** (($ $ (-918)) 21) (($ $ (-768)) 25)) (* (($ $ $) 20))) +(((-843) (-140)) (T -843)) +NIL +(-13 (-854) (-723)) +(((-102) . T) ((-611 (-859)) . T) ((-723) . T) ((-854) . T) ((-847) . T) ((-1106) . T) ((-1094) . T)) +((-3265 (((-564) $) 20)) (-3308 (((-112) $) 10)) (-2839 (((-112) $) 11)) (-2792 (($ $) 22))) +(((-844 |#1|) (-10 -8 (-15 -2792 (|#1| |#1|)) (-15 -3265 ((-564) |#1|)) (-15 -2839 ((-112) |#1|)) (-15 -3308 ((-112) |#1|))) (-845)) (T -844)) +NIL +(-10 -8 (-15 -2792 (|#1| |#1|)) (-15 -3265 ((-564) |#1|)) (-15 -2839 ((-112) |#1|)) (-15 -3308 ((-112) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 24)) (-3239 (((-3 $ "failed") $ $) 26)) (-3265 (((-564) $) 34)) (-2818 (($) 23 T CONST)) (-3951 (((-3 $ "failed") $) 39)) (-3308 (((-112) $) 36)) (-3840 (((-112) $) 41)) (-2839 (((-112) $) 35)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 43)) (-3270 (((-768)) 44 T CONST)) (-2792 (($ $) 33)) (-4311 (($) 22 T CONST)) (-4321 (($) 42 T CONST)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (-1790 (($ $ $) 28) (($ $) 27)) (-1780 (($ $ $) 20)) (** (($ $ (-768)) 40) (($ $ (-918)) 37)) (* (($ (-918) $) 21) (($ (-768) $) 25) (($ (-564) $) 29) (($ $ $) 38))) +(((-845) (-140)) (T -845)) +((-3308 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-2839 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-564)))) (-2792 (*1 *1 *1) (-4 *1 (-845)))) +(-13 (-788) (-1046) (-723) (-10 -8 (-15 -3308 ((-112) $)) (-15 -2839 ((-112) $)) (-15 -3265 ((-564) $)) (-15 -2792 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-847) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2799 (($ $ $) 10)) (-2848 (($ $ $) 9)) (-1751 (((-112) $ $) 12)) (-1731 (((-112) $ $) 11)) (-1741 (((-112) $ $) 13))) +(((-846 |#1|) (-10 -8 (-15 -2799 (|#1| |#1| |#1|)) (-15 -2848 (|#1| |#1| |#1|)) (-15 -1741 ((-112) |#1| |#1|)) (-15 -1751 ((-112) |#1| |#1|)) (-15 -1731 ((-112) |#1| |#1|))) (-847)) (T -846)) +NIL +(-10 -8 (-15 -2799 (|#1| |#1| |#1|)) (-15 -2848 (|#1| |#1| |#1|)) (-15 -1741 ((-112) |#1| |#1|)) (-15 -1751 ((-112) |#1| |#1|)) (-15 -1731 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18))) +(((-847) (-140)) (T -847)) +((-1723 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1731 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1751 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-1741 (*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) (-2848 (*1 *1 *1 *1) (-4 *1 (-847))) (-2799 (*1 *1 *1 *1) (-4 *1 (-847)))) +(-13 (-1094) (-10 -8 (-15 -1723 ((-112) $ $)) (-15 -1731 ((-112) $ $)) (-15 -1751 ((-112) $ $)) (-15 -1741 ((-112) $ $)) (-15 -2848 ($ $ $)) (-15 -2799 ($ $ $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-4048 (($ $ $) 49)) (-2527 (($ $ $) 48)) (-2285 (($ $ $) 46)) (-1617 (($ $ $) 55)) (-2028 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 50)) (-1302 (((-3 $ "failed") $ $) 53)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 29)) (-1989 (($ $) 39)) (-4199 (($ $ $) 43)) (-2700 (($ $ $) 42)) (-2406 (($ $ $) 51)) (-2496 (($ $ $) 57)) (-3969 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 45)) (-4353 (((-3 $ "failed") $ $) 52)) (-1321 (((-3 $ "failed") $ |#2|) 32)) (-4329 ((|#2| $) 36)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#2|) 13)) (-3110 (((-641 |#2|) $) 21)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 25))) +(((-848 |#1| |#2|) (-10 -8 (-15 -2406 (|#1| |#1| |#1|)) (-15 -2028 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1617 (|#1| |#1| |#1|)) (-15 -1302 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4048 (|#1| |#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#1| |#1|)) (-15 -3969 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -2496 (|#1| |#1| |#1|)) (-15 -4353 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 -4329 (|#2| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3110 ((-641 |#2|) |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3742 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -3742 ((-859) |#1|))) (-849 |#2|) (-1046)) (T -848)) +NIL +(-10 -8 (-15 -2406 (|#1| |#1| |#1|)) (-15 -2028 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -1617 (|#1| |#1| |#1|)) (-15 -1302 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4048 (|#1| |#1| |#1|)) (-15 -2527 (|#1| |#1| |#1|)) (-15 -2285 (|#1| |#1| |#1|)) (-15 -3969 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1693 |#1|)) |#1| |#1|)) (-15 -2496 (|#1| |#1| |#1|)) (-15 -4353 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4199 (|#1| |#1| |#1|)) (-15 -2700 (|#1| |#1| |#1|)) (-15 -1989 (|#1| |#1|)) (-15 -4329 (|#2| |#1|)) (-15 -1321 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3110 ((-641 |#2|) |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3742 (|#1| (-564))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-4048 (($ $ $) 44 (|has| |#1| (-363)))) (-2527 (($ $ $) 45 (|has| |#1| (-363)))) (-2285 (($ $ $) 47 (|has| |#1| (-363)))) (-1617 (($ $ $) 42 (|has| |#1| (-363)))) (-2028 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 41 (|has| |#1| (-363)))) (-1302 (((-3 $ "failed") $ $) 43 (|has| |#1| (-363)))) (-3920 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 46 (|has| |#1| (-363)))) (-2111 (((-3 (-564) "failed") $) 74 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 71 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 68)) (-2239 (((-564) $) 73 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 70 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 69)) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1989 (($ $) 54 (|has| |#1| (-452)))) (-3840 (((-112) $) 31)) (-4245 (($ |#1| (-768)) 61)) (-3097 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 56 (|has| |#1| (-556)))) (-1570 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 57 (|has| |#1| (-556)))) (-3469 (((-768) $) 65)) (-4199 (($ $ $) 51 (|has| |#1| (-363)))) (-2700 (($ $ $) 52 (|has| |#1| (-363)))) (-2406 (($ $ $) 40 (|has| |#1| (-363)))) (-2496 (($ $ $) 49 (|has| |#1| (-363)))) (-3969 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 48 (|has| |#1| (-363)))) (-4353 (((-3 $ "failed") $ $) 50 (|has| |#1| (-363)))) (-2695 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 53 (|has| |#1| (-363)))) (-1320 ((|#1| $) 64)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ |#1|) 58 (|has| |#1| (-556)))) (-2266 (((-768) $) 66)) (-4329 ((|#1| $) 55 (|has| |#1| (-452)))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 72 (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) 67)) (-3110 (((-641 |#1|) $) 60)) (-2856 ((|#1| $ (-768)) 62)) (-3270 (((-768)) 28 T CONST)) (-1918 ((|#1| $ |#1| |#1|) 59)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 76) (($ |#1| $) 75))) +(((-849 |#1|) (-140) (-1046)) (T -849)) +((-2266 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-1320 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-1348 (*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-4245 (*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-641 *3)))) (-1918 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) (-1321 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-1570 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-849 *3)))) (-3097 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-849 *3)))) (-4329 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-1989 (*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) (-2695 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-849 *3)))) (-2700 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-4199 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-4353 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-2496 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3969 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1693 *1))) (-4 *1 (-849 *3)))) (-2285 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3920 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-849 *3)))) (-2527 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-4048 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1302 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-1617 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-2028 (*1 *2 *1 *1) (-12 (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1693 *1))) (-4 *1 (-849 *3)))) (-2406 (*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(-13 (-1046) (-111 |t#1| |t#1|) (-411 |t#1|) (-10 -8 (-15 -2266 ((-768) $)) (-15 -3469 ((-768) $)) (-15 -1320 (|t#1| $)) (-15 -1348 ($ $)) (-15 -2856 (|t#1| $ (-768))) (-15 -4245 ($ |t#1| (-768))) (-15 -3110 ((-641 |t#1|) $)) (-15 -1918 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -1321 ((-3 $ "failed") $ |t#1|)) (-15 -1570 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -3097 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -4329 (|t#1| $)) (-15 -1989 ($ $))) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-15 -2695 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -2700 ($ $ $)) (-15 -4199 ($ $ $)) (-15 -4353 ((-3 $ "failed") $ $)) (-15 -2496 ($ $ $)) (-15 -3969 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $)) (-15 -2285 ($ $ $)) (-15 -3920 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -2527 ($ $ $)) (-15 -4048 ($ $ $)) (-15 -1302 ((-3 $ "failed") $ $)) (-15 -1617 ($ $ $)) (-15 -2028 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $)) (-15 -2406 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-411 |#1|) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1035 #0#) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3677 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20)) (-3920 (((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|)) 49 (|has| |#1| (-363)))) (-3097 (((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-556)))) (-1570 (((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-556)))) (-2695 (((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|)) 48 (|has| |#1| (-363)))) (-1918 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 36))) +(((-850 |#1| |#2|) (-10 -7 (-15 -3677 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1918 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -1570 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3097 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2695 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3920 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1046) (-849 |#1|)) (T -850)) +((-3920 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-2695 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-3097 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-1570 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-850 *5 *3)) (-4 *3 (-849 *5)))) (-1918 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1046)) (-5 *1 (-850 *2 *3)) (-4 *3 (-849 *2)))) (-3677 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1046)) (-5 *1 (-850 *5 *2)) (-4 *2 (-849 *5))))) +(-10 -7 (-15 -3677 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -1918 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-556)) (PROGN (-15 -1570 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3097 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2695 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -3920 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-4048 (($ $ $) NIL (|has| |#1| (-363)))) (-2527 (($ $ $) NIL (|has| |#1| (-363)))) (-2285 (($ $ $) NIL (|has| |#1| (-363)))) (-1617 (($ $ $) NIL (|has| |#1| (-363)))) (-2028 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1302 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3920 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 34 (|has| |#1| (-363)))) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452)))) (-1596 (((-859) $ (-859)) NIL)) (-3840 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) NIL)) (-3097 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 30 (|has| |#1| (-556)))) (-1570 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 28 (|has| |#1| (-556)))) (-3469 (((-768) $) NIL)) (-4199 (($ $ $) NIL (|has| |#1| (-363)))) (-2700 (($ $ $) NIL (|has| |#1| (-363)))) (-2406 (($ $ $) NIL (|has| |#1| (-363)))) (-2496 (($ $ $) NIL (|has| |#1| (-363)))) (-3969 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-4353 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-2695 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 32 (|has| |#1| (-363)))) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2266 (((-768) $) NIL)) (-4329 ((|#1| $) NIL (|has| |#1| (-452)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-1035 (-407 (-564))))) (($ |#1|) NIL)) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-768)) NIL)) (-3270 (((-768)) NIL T CONST)) (-1918 ((|#1| $ |#1| |#1|) 15)) (-4311 (($) NIL T CONST)) (-4321 (($) 23 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) 19) (($ $ (-768)) 24)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL))) +(((-851 |#1| |#2| |#3|) (-13 (-849 |#1|) (-10 -8 (-15 -1596 ((-859) $ (-859))))) (-1046) (-99 |#1|) (-1 |#1| |#1|)) (T -851)) +((-1596 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-851 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +(-13 (-849 |#1|) (-10 -8 (-15 -1596 ((-859) $ (-859))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-4048 (($ $ $) NIL (|has| |#2| (-363)))) (-2527 (($ $ $) NIL (|has| |#2| (-363)))) (-2285 (($ $ $) NIL (|has| |#2| (-363)))) (-1617 (($ $ $) NIL (|has| |#2| (-363)))) (-2028 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-363)))) (-1302 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-3920 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#2| (-363)))) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#2| (-452)))) (-3840 (((-112) $) NIL)) (-4245 (($ |#2| (-768)) 17)) (-3097 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#2| (-556)))) (-1570 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#2| (-556)))) (-3469 (((-768) $) NIL)) (-4199 (($ $ $) NIL (|has| |#2| (-363)))) (-2700 (($ $ $) NIL (|has| |#2| (-363)))) (-2406 (($ $ $) NIL (|has| |#2| (-363)))) (-2496 (($ $ $) NIL (|has| |#2| (-363)))) (-3969 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-363)))) (-4353 (((-3 $ "failed") $ $) NIL (|has| |#2| (-363)))) (-2695 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#2| (-363)))) (-1320 ((|#2| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1321 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-2266 (((-768) $) NIL)) (-4329 ((|#2| $) NIL (|has| |#2| (-452)))) (-3742 (((-859) $) 24) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (($ (-1255 |#1|)) 19)) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ (-768)) NIL)) (-3270 (((-768)) NIL T CONST)) (-1918 ((|#2| $ |#2| |#2|) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) 13 T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL))) +(((-852 |#1| |#2| |#3| |#4|) (-13 (-849 |#2|) (-614 (-1255 |#1|))) (-1170) (-1046) (-99 |#2|) (-1 |#2| |#2|)) (T -852)) +NIL +(-13 (-849 |#2|) (-614 (-1255 |#1|))) +((-3937 ((|#1| (-768) |#1|) 48 (|has| |#1| (-38 (-407 (-564)))))) (-2202 ((|#1| (-768) (-768) |#1|) 39) ((|#1| (-768) |#1|) 27)) (-2410 ((|#1| (-768) |#1|) 43)) (-2746 ((|#1| (-768) |#1|) 41)) (-4309 ((|#1| (-768) |#1|) 40))) +(((-853 |#1|) (-10 -7 (-15 -4309 (|#1| (-768) |#1|)) (-15 -2746 (|#1| (-768) |#1|)) (-15 -2410 (|#1| (-768) |#1|)) (-15 -2202 (|#1| (-768) |#1|)) (-15 -2202 (|#1| (-768) (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3937 (|#1| (-768) |#1|)) |%noBranch|)) (-172)) (T -853)) +((-3937 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-172)))) (-2202 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-2202 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-2410 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-2746 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) (-4309 (*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))) +(-10 -7 (-15 -4309 (|#1| (-768) |#1|)) (-15 -2746 (|#1| (-768) |#1|)) (-15 -2410 (|#1| (-768) |#1|)) (-15 -2202 (|#1| (-768) |#1|)) (-15 -2202 (|#1| (-768) (-768) |#1|)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3937 (|#1| (-768) |#1|)) |%noBranch|)) +((-3732 (((-112) $ $) 7)) (-2799 (($ $ $) 13)) (-2848 (($ $ $) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1751 (((-112) $ $) 16)) (-1731 (((-112) $ $) 17)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 15)) (-1723 (((-112) $ $) 18)) (** (($ $ (-918)) 21)) (* (($ $ $) 20))) +(((-854) (-140)) (T -854)) +NIL +(-13 (-847) (-1106)) +(((-102) . T) ((-611 (-859)) . T) ((-847) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-3426 (((-564) $) 14)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 20) (($ (-564)) 13)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 9)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 11))) +(((-855) (-13 (-847) (-10 -8 (-15 -3742 ($ (-564))) (-15 -3426 ((-564) $))))) (T -855)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-855)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-855))))) +(-13 (-847) (-10 -8 (-15 -3742 ($ (-564))) (-15 -3426 ((-564) $)))) +((-4075 (((-687 (-1217)) $ (-1217)) 15)) (-2047 (((-687 (-549)) $ (-549)) 12)) (-3674 (((-768) $ (-128)) 30))) +(((-856 |#1|) (-10 -8 (-15 -3674 ((-768) |#1| (-128))) (-15 -4075 ((-687 (-1217)) |#1| (-1217))) (-15 -2047 ((-687 (-549)) |#1| (-549)))) (-857)) (T -856)) +NIL +(-10 -8 (-15 -3674 ((-768) |#1| (-128))) (-15 -4075 ((-687 (-1217)) |#1| (-1217))) (-15 -2047 ((-687 (-549)) |#1| (-549)))) +((-4075 (((-687 (-1217)) $ (-1217)) 8)) (-2047 (((-687 (-549)) $ (-549)) 9)) (-3674 (((-768) $ (-128)) 7)) (-1768 (((-687 (-129)) $ (-129)) 10)) (-1322 (($ $) 6))) +(((-857) (-140)) (T -857)) +((-1768 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-129))) (-5 *3 (-129)))) (-2047 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-549))) (-5 *3 (-549)))) (-4075 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217)))) (-3674 (*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-128)) (-5 *2 (-768))))) +(-13 (-173) (-10 -8 (-15 -1768 ((-687 (-129)) $ (-129))) (-15 -2047 ((-687 (-549)) $ (-549))) (-15 -4075 ((-687 (-1217)) $ (-1217))) (-15 -3674 ((-768) $ (-128))))) (((-173) . T)) -((-1293 (((-686 (-1215)) $ (-1215)) NIL)) (-1303 (((-686 (-548)) $ (-548)) NIL)) (-4382 (((-767) $ (-128)) NIL)) (-1312 (((-686 (-129)) $ (-129)) 21)) (-1332 (($ (-388)) 12) (($ (-1151)) 14)) (-1322 (((-112) $) 18)) (-2062 (((-858) $) 25)) (-3018 (($ $) 22))) -(((-857) (-13 (-856) (-610 (-858)) (-10 -8 (-15 -1332 ($ (-388))) (-15 -1332 ($ (-1151))) (-15 -1322 ((-112) $))))) (T -857)) -((-1332 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857)))) (-1332 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-857)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) -(-13 (-856) (-610 (-858)) (-10 -8 (-15 -1332 ($ (-388))) (-15 -1332 ($ (-1151))) (-15 -1322 ((-112) $)))) -((-2049 (((-112) $ $) NIL) (($ $ $) 86)) (-1441 (($ $ $) 126)) (-1686 (((-563) $) 31) (((-563)) 36)) (-1506 (($ (-563)) 54)) (-1472 (($ $ $) 55) (($ (-640 $)) 85)) (-1457 (($ $ (-640 $)) 83)) (-1527 (((-563) $) 34)) (-2082 (($ $ $) 74)) (-3887 (($ $) 141) (($ $ $) 142) (($ $ $ $) 143)) (-1540 (((-563) $) 33)) (-1490 (($ $ $) 73)) (-2725 (($ $) 115)) (-1416 (($ $ $) 130)) (-1352 (($ (-640 $)) 62)) (-3333 (($ $ (-640 $)) 80)) (-1495 (($ (-563) (-563)) 56)) (-1608 (($ $) 127) (($ $ $) 128)) (-2665 (($ $ (-563)) 43) (($ $) 46)) (-3495 (($ $ $) 98)) (-1501 (($ $ $) 133)) (-1446 (($ $) 116)) (-3473 (($ $ $) 99)) (-1404 (($ $) 144) (($ $ $) 145) (($ $ $ $) 146)) (-4282 (((-1262) $) 10)) (-1437 (($ $) 119) (($ $ (-767)) 123)) (-1468 (($ $ $) 76)) (-1479 (($ $ $) 75)) (-3090 (($ $ (-640 $)) 111)) (-1451 (($ $ $) 114)) (-1372 (($ (-640 $)) 60)) (-1383 (($ $) 71) (($ (-640 $)) 72)) (-1412 (($ $ $) 124)) (-1425 (($ $) 117)) (-1429 (($ $ $) 129)) (-2494 (($ (-563)) 21) (($ (-1169)) 23) (($ (-1151)) 30) (($ (-225)) 25)) (-3755 (($ $ $) 102)) (-3730 (($ $) 103)) (-1561 (((-1262) (-1151)) 15)) (-3091 (($ (-1151)) 14)) (-3840 (($ (-640 (-640 $))) 59)) (-2654 (($ $ (-563)) 42) (($ $) 45)) (-1938 (((-1151) $) NIL)) (-2831 (($ $ $) 132)) (-3258 (($ $) 147) (($ $ $) 148) (($ $ $ $) 149)) (-2439 (((-112) $) 109)) (-1461 (($ $ (-640 $)) 112) (($ $ $ $) 113)) (-1518 (($ (-563)) 39)) (-1524 (((-563) $) 32) (((-563)) 35)) (-1484 (($ $ $) 40) (($ (-640 $)) 84)) (-3249 (((-1113) $) NIL)) (-3448 (($ $ $) 100)) (-2749 (($) 13)) (-3858 (($ $ (-640 $)) 110)) (-1550 (((-1151) (-1151)) 8)) (-3396 (($ $) 118) (($ $ (-767)) 122)) (-3461 (($ $ $) 97)) (-1361 (($ $ (-767)) 140)) (-1364 (($ (-640 $)) 61)) (-2062 (((-858) $) 19)) (-3219 (($ $ (-563)) 41) (($ $) 44)) (-1394 (($ $) 69) (($ (-640 $)) 70)) (-2121 (($ $) 67) (($ (-640 $)) 68)) (-3548 (($ $) 125)) (-1342 (($ (-640 $)) 66)) (-2991 (($ $ $) 106)) (-1513 (($ $ $) 131)) (-3743 (($ $ $) 101)) (-1866 (($ $ $) 104) (($ $) 105)) (-2998 (($ $ $) 90)) (-2977 (($ $ $) 88)) (-2943 (((-112) $ $) 16) (($ $ $) 17)) (-2988 (($ $ $) 89)) (-2966 (($ $ $) 87)) (-3050 (($ $ $) 95)) (-3039 (($ $ $) 92) (($ $) 93)) (-3027 (($ $ $) 91)) (** (($ $ $) 96)) (* (($ $ $) 94))) -(((-858) (-13 (-1093) (-10 -8 (-15 -4282 ((-1262) $)) (-15 -3091 ($ (-1151))) (-15 -1561 ((-1262) (-1151))) (-15 -2494 ($ (-563))) (-15 -2494 ($ (-1169))) (-15 -2494 ($ (-1151))) (-15 -2494 ($ (-225))) (-15 -2749 ($)) (-15 -1550 ((-1151) (-1151))) (-15 -1686 ((-563) $)) (-15 -1524 ((-563) $)) (-15 -1686 ((-563))) (-15 -1524 ((-563))) (-15 -1540 ((-563) $)) (-15 -1527 ((-563) $)) (-15 -1518 ($ (-563))) (-15 -1506 ($ (-563))) (-15 -1495 ($ (-563) (-563))) (-15 -2654 ($ $ (-563))) (-15 -2665 ($ $ (-563))) (-15 -3219 ($ $ (-563))) (-15 -2654 ($ $)) (-15 -2665 ($ $)) (-15 -3219 ($ $)) (-15 -1484 ($ $ $)) (-15 -1472 ($ $ $)) (-15 -1484 ($ (-640 $))) (-15 -1472 ($ (-640 $))) (-15 -3090 ($ $ (-640 $))) (-15 -1461 ($ $ (-640 $))) (-15 -1461 ($ $ $ $)) (-15 -1451 ($ $ $)) (-15 -2439 ((-112) $)) (-15 -3858 ($ $ (-640 $))) (-15 -2725 ($ $)) (-15 -2831 ($ $ $)) (-15 -3548 ($ $)) (-15 -3840 ($ (-640 (-640 $)))) (-15 -1441 ($ $ $)) (-15 -1608 ($ $)) (-15 -1608 ($ $ $)) (-15 -1429 ($ $ $)) (-15 -1416 ($ $ $)) (-15 -1513 ($ $ $)) (-15 -1501 ($ $ $)) (-15 -1361 ($ $ (-767))) (-15 -2991 ($ $ $)) (-15 -1490 ($ $ $)) (-15 -2082 ($ $ $)) (-15 -1479 ($ $ $)) (-15 -1468 ($ $ $)) (-15 -3333 ($ $ (-640 $))) (-15 -1457 ($ $ (-640 $))) (-15 -1446 ($ $)) (-15 -3396 ($ $)) (-15 -3396 ($ $ (-767))) (-15 -1437 ($ $)) (-15 -1437 ($ $ (-767))) (-15 -1425 ($ $)) (-15 -1412 ($ $ $)) (-15 -3887 ($ $)) (-15 -3887 ($ $ $)) (-15 -3887 ($ $ $ $)) (-15 -1404 ($ $)) (-15 -1404 ($ $ $)) (-15 -1404 ($ $ $ $)) (-15 -3258 ($ $)) (-15 -3258 ($ $ $)) (-15 -3258 ($ $ $ $)) (-15 -2121 ($ $)) (-15 -2121 ($ (-640 $))) (-15 -1394 ($ $)) (-15 -1394 ($ (-640 $))) (-15 -1383 ($ $)) (-15 -1383 ($ (-640 $))) (-15 -1372 ($ (-640 $))) (-15 -1364 ($ (-640 $))) (-15 -1352 ($ (-640 $))) (-15 -1342 ($ (-640 $))) (-15 -2943 ($ $ $)) (-15 -2049 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2977 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2998 ($ $ $)) (-15 -3027 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -3039 ($ $)) (-15 * ($ $ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ $)) (-15 -3461 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -3473 ($ $ $)) (-15 -3448 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -3730 ($ $)) (-15 -1866 ($ $ $)) (-15 -1866 ($ $))))) (T -858)) -((-4282 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-858)))) (-3091 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-1561 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-858)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-858)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-2494 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858)))) (-2749 (*1 *1) (-5 *1 (-858))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1524 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1686 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1524 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1540 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1527 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1518 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1506 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-1495 (*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-2654 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-2665 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-3219 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) (-2654 (*1 *1 *1) (-5 *1 (-858))) (-2665 (*1 *1 *1) (-5 *1 (-858))) (-3219 (*1 *1 *1) (-5 *1 (-858))) (-1484 (*1 *1 *1 *1) (-5 *1 (-858))) (-1472 (*1 *1 *1 *1) (-5 *1 (-858))) (-1484 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1472 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-3090 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1461 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1461 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-1451 (*1 *1 *1 *1) (-5 *1 (-858))) (-2439 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-2725 (*1 *1 *1) (-5 *1 (-858))) (-2831 (*1 *1 *1 *1) (-5 *1 (-858))) (-3548 (*1 *1 *1) (-5 *1 (-858))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-858)))) (-1441 (*1 *1 *1 *1) (-5 *1 (-858))) (-1608 (*1 *1 *1) (-5 *1 (-858))) (-1608 (*1 *1 *1 *1) (-5 *1 (-858))) (-1429 (*1 *1 *1 *1) (-5 *1 (-858))) (-1416 (*1 *1 *1 *1) (-5 *1 (-858))) (-1513 (*1 *1 *1 *1) (-5 *1 (-858))) (-1501 (*1 *1 *1 *1) (-5 *1 (-858))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-2991 (*1 *1 *1 *1) (-5 *1 (-858))) (-1490 (*1 *1 *1 *1) (-5 *1 (-858))) (-2082 (*1 *1 *1 *1) (-5 *1 (-858))) (-1479 (*1 *1 *1 *1) (-5 *1 (-858))) (-1468 (*1 *1 *1 *1) (-5 *1 (-858))) (-3333 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1457 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1446 (*1 *1 *1) (-5 *1 (-858))) (-3396 (*1 *1 *1) (-5 *1 (-858))) (-3396 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-1437 (*1 *1 *1) (-5 *1 (-858))) (-1437 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) (-1425 (*1 *1 *1) (-5 *1 (-858))) (-1412 (*1 *1 *1 *1) (-5 *1 (-858))) (-3887 (*1 *1 *1) (-5 *1 (-858))) (-3887 (*1 *1 *1 *1) (-5 *1 (-858))) (-3887 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-1404 (*1 *1 *1) (-5 *1 (-858))) (-1404 (*1 *1 *1 *1) (-5 *1 (-858))) (-1404 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-3258 (*1 *1 *1) (-5 *1 (-858))) (-3258 (*1 *1 *1 *1) (-5 *1 (-858))) (-3258 (*1 *1 *1 *1 *1) (-5 *1 (-858))) (-2121 (*1 *1 *1) (-5 *1 (-858))) (-2121 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1394 (*1 *1 *1) (-5 *1 (-858))) (-1394 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1383 (*1 *1 *1) (-5 *1 (-858))) (-1383 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1352 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-1342 (*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) (-2943 (*1 *1 *1 *1) (-5 *1 (-858))) (-2049 (*1 *1 *1 *1) (-5 *1 (-858))) (-2966 (*1 *1 *1 *1) (-5 *1 (-858))) (-2977 (*1 *1 *1 *1) (-5 *1 (-858))) (-2988 (*1 *1 *1 *1) (-5 *1 (-858))) (-2998 (*1 *1 *1 *1) (-5 *1 (-858))) (-3027 (*1 *1 *1 *1) (-5 *1 (-858))) (-3039 (*1 *1 *1 *1) (-5 *1 (-858))) (-3039 (*1 *1 *1) (-5 *1 (-858))) (* (*1 *1 *1 *1) (-5 *1 (-858))) (-3050 (*1 *1 *1 *1) (-5 *1 (-858))) (** (*1 *1 *1 *1) (-5 *1 (-858))) (-3461 (*1 *1 *1 *1) (-5 *1 (-858))) (-3495 (*1 *1 *1 *1) (-5 *1 (-858))) (-3473 (*1 *1 *1 *1) (-5 *1 (-858))) (-3448 (*1 *1 *1 *1) (-5 *1 (-858))) (-3743 (*1 *1 *1 *1) (-5 *1 (-858))) (-3755 (*1 *1 *1 *1) (-5 *1 (-858))) (-3730 (*1 *1 *1) (-5 *1 (-858))) (-1866 (*1 *1 *1 *1) (-5 *1 (-858))) (-1866 (*1 *1 *1) (-5 *1 (-858)))) -(-13 (-1093) (-10 -8 (-15 -4282 ((-1262) $)) (-15 -3091 ($ (-1151))) (-15 -1561 ((-1262) (-1151))) (-15 -2494 ($ (-563))) (-15 -2494 ($ (-1169))) (-15 -2494 ($ (-1151))) (-15 -2494 ($ (-225))) (-15 -2749 ($)) (-15 -1550 ((-1151) (-1151))) (-15 -1686 ((-563) $)) (-15 -1524 ((-563) $)) (-15 -1686 ((-563))) (-15 -1524 ((-563))) (-15 -1540 ((-563) $)) (-15 -1527 ((-563) $)) (-15 -1518 ($ (-563))) (-15 -1506 ($ (-563))) (-15 -1495 ($ (-563) (-563))) (-15 -2654 ($ $ (-563))) (-15 -2665 ($ $ (-563))) (-15 -3219 ($ $ (-563))) (-15 -2654 ($ $)) (-15 -2665 ($ $)) (-15 -3219 ($ $)) (-15 -1484 ($ $ $)) (-15 -1472 ($ $ $)) (-15 -1484 ($ (-640 $))) (-15 -1472 ($ (-640 $))) (-15 -3090 ($ $ (-640 $))) (-15 -1461 ($ $ (-640 $))) (-15 -1461 ($ $ $ $)) (-15 -1451 ($ $ $)) (-15 -2439 ((-112) $)) (-15 -3858 ($ $ (-640 $))) (-15 -2725 ($ $)) (-15 -2831 ($ $ $)) (-15 -3548 ($ $)) (-15 -3840 ($ (-640 (-640 $)))) (-15 -1441 ($ $ $)) (-15 -1608 ($ $)) (-15 -1608 ($ $ $)) (-15 -1429 ($ $ $)) (-15 -1416 ($ $ $)) (-15 -1513 ($ $ $)) (-15 -1501 ($ $ $)) (-15 -1361 ($ $ (-767))) (-15 -2991 ($ $ $)) (-15 -1490 ($ $ $)) (-15 -2082 ($ $ $)) (-15 -1479 ($ $ $)) (-15 -1468 ($ $ $)) (-15 -3333 ($ $ (-640 $))) (-15 -1457 ($ $ (-640 $))) (-15 -1446 ($ $)) (-15 -3396 ($ $)) (-15 -3396 ($ $ (-767))) (-15 -1437 ($ $)) (-15 -1437 ($ $ (-767))) (-15 -1425 ($ $)) (-15 -1412 ($ $ $)) (-15 -3887 ($ $)) (-15 -3887 ($ $ $)) (-15 -3887 ($ $ $ $)) (-15 -1404 ($ $)) (-15 -1404 ($ $ $)) (-15 -1404 ($ $ $ $)) (-15 -3258 ($ $)) (-15 -3258 ($ $ $)) (-15 -3258 ($ $ $ $)) (-15 -2121 ($ $)) (-15 -2121 ($ (-640 $))) (-15 -1394 ($ $)) (-15 -1394 ($ (-640 $))) (-15 -1383 ($ $)) (-15 -1383 ($ (-640 $))) (-15 -1372 ($ (-640 $))) (-15 -1364 ($ (-640 $))) (-15 -1352 ($ (-640 $))) (-15 -1342 ($ (-640 $))) (-15 -2943 ($ $ $)) (-15 -2049 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -2977 ($ $ $)) (-15 -2988 ($ $ $)) (-15 -2998 ($ $ $)) (-15 -3027 ($ $ $)) (-15 -3039 ($ $ $)) (-15 -3039 ($ $)) (-15 * ($ $ $)) (-15 -3050 ($ $ $)) (-15 ** ($ $ $)) (-15 -3461 ($ $ $)) (-15 -3495 ($ $ $)) (-15 -3473 ($ $ $)) (-15 -3448 ($ $ $)) (-15 -3743 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -3730 ($ $)) (-15 -1866 ($ $ $)) (-15 -1866 ($ $)))) -((-4067 (((-1262) (-640 (-52))) 24)) (-1989 (((-1262) (-1151) (-858)) 14) (((-1262) (-858)) 9) (((-1262) (-1151)) 11))) -(((-859) (-10 -7 (-15 -1989 ((-1262) (-1151))) (-15 -1989 ((-1262) (-858))) (-15 -1989 ((-1262) (-1151) (-858))) (-15 -4067 ((-1262) (-640 (-52)))))) (T -859)) -((-4067 (*1 *2 *3) (-12 (-5 *3 (-640 (-52))) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-859))))) -(-10 -7 (-15 -1989 ((-1262) (-1151))) (-15 -1989 ((-1262) (-858))) (-15 -1989 ((-1262) (-1151) (-858))) (-15 -4067 ((-1262) (-640 (-52))))) -((-2049 (((-112) $ $) NIL)) (-4040 (((-3 $ "failed") (-1169)) 39)) (-2433 (((-767)) 32)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-3267 (((-917) $) 29)) (-1938 (((-1151) $) 46)) (-3491 (($ (-917)) 28)) (-3249 (((-1113) $) NIL)) (-2802 (((-1169) $) 13) (((-536) $) 19) (((-888 (-379)) $) 26) (((-888 (-563)) $) 22)) (-2062 (((-858) $) 16)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 43)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 41))) -(((-860 |#1|) (-13 (-840) (-611 (-1169)) (-611 (-536)) (-611 (-888 (-379))) (-611 (-888 (-563))) (-10 -8 (-15 -4040 ((-3 $ "failed") (-1169))))) (-640 (-1169))) (T -860)) -((-4040 (*1 *1 *2) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-860 *3)) (-14 *3 (-640 *2))))) -(-13 (-840) (-611 (-1169)) (-611 (-536)) (-611 (-888 (-379))) (-611 (-888 (-563))) (-10 -8 (-15 -4040 ((-3 $ "failed") (-1169))))) -((-2049 (((-112) $ $) NIL)) (-3359 (((-506) $) 9)) (-1572 (((-640 (-439)) $) 13)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 21)) (-2943 (((-112) $ $) 16))) -(((-861) (-13 (-1093) (-10 -8 (-15 -3359 ((-506) $)) (-15 -1572 ((-640 (-439)) $))))) (T -861)) -((-3359 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) (-1572 (*1 *2 *1) (-12 (-5 *2 (-640 (-439))) (-5 *1 (-861))))) -(-13 (-1093) (-10 -8 (-15 -3359 ((-506) $)) (-15 -1572 ((-640 (-439)) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-948 |#1|)) NIL) (((-948 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3192 (((-767)) NIL T CONST)) (-1709 (((-1262) (-767)) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3050 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-862 |#1| |#2| |#3| |#4|) (-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3050 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1709 ((-1262) (-767))))) (-1045) (-640 (-1169)) (-640 (-767)) (-767)) (T -862)) -((-3050 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-767))) (-14 *5 (-767)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-862 *4 *5 *6 *7)) (-4 *4 (-1045)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 *3)) (-14 *7 *3)))) -(-13 (-1045) (-490 (-948 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3050 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1709 ((-1262) (-767))))) -((-1584 (((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|) 43)) (-1596 (((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|) 34))) -(((-863 |#1| |#2| |#3|) (-10 -7 (-15 -1596 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -1584 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) (-363) (-1248 |#1|) (-1233 |#1|)) (T -863)) -((-1584 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5)))) (-1596 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5))))) -(-10 -7 (-15 -1596 ((-3 (-407 |#3|) "failed") (-767) (-767) |#2| |#2|)) (-15 -1584 ((-3 (-174 |#3|) "failed") (-767) (-767) |#2| |#2|))) -((-1596 (((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) 28))) -(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -1596 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (-15 -1596 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|)))) (-363) (-1169) |#1|) (T -864)) -((-1596 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) (-5 *1 (-864 *5 *6 *7)))) (-1596 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) (-5 *1 (-864 *5 *6 *7))))) -(-10 -7 (-15 -1596 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (-15 -1596 ((-3 (-407 (-1230 |#2| |#1|)) "failed") (-767) (-767) (-1249 |#1| |#2| |#3|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-2067 (($ $ (-563)) 63)) (-4332 (((-112) $ $) 60)) (-3684 (($) 17 T CONST)) (-1608 (($ (-1165 (-563)) (-563)) 62)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-1621 (($ $) 65)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-2903 (((-767) $) 70)) (-2712 (((-112) $) 31)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-1646 (((-563)) 67)) (-1634 (((-563) $) 66)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-2884 (($ $ (-563)) 69)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-1658 (((-1149 (-563)) $) 71)) (-2686 (($ $) 68)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-1775 (((-563) $ (-563)) 64)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-865 |#1|) (-140) (-563)) (T -865)) -((-1658 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1149 (-563))))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767)))) (-2884 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-2686 (*1 *1 *1) (-4 *1 (-865 *2))) (-1646 (*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-1621 (*1 *1 *1) (-4 *1 (-865 *2))) (-1775 (*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-2067 (*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) (-1608 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *3 (-563)) (-4 *1 (-865 *4))))) -(-13 (-307) (-147) (-10 -8 (-15 -1658 ((-1149 (-563)) $)) (-15 -2903 ((-767) $)) (-15 -2884 ($ $ (-563))) (-15 -2686 ($ $)) (-15 -1646 ((-563))) (-15 -1634 ((-563) $)) (-15 -1621 ($ $)) (-15 -1775 ((-563) $ (-563))) (-15 -2067 ($ $ (-563))) (-15 -1608 ($ (-1165 (-563)) (-563))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2067 (($ $ (-563)) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-1608 (($ (-1165 (-563)) (-563)) NIL)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-1621 (($ $) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2903 (((-767) $) NIL)) (-2712 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1646 (((-563)) NIL)) (-1634 (((-563) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-2884 (($ $ (-563)) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1658 (((-1149 (-563)) $) NIL)) (-2686 (($ $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL)) (-3192 (((-767)) NIL T CONST)) (-2543 (((-112) $ $) NIL)) (-1775 (((-563) $ (-563)) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL))) -(((-866 |#1|) (-865 |#1|) (-563)) (T -866)) -NIL -(-865 |#1|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| (-866 |#1|) (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-866 |#1|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| (-866 |#1|) (-1034 (-563))))) (-2589 (((-866 |#1|) $) NIL) (((-1169) $) NIL (|has| (-866 |#1|) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-866 |#1|) (-1034 (-563)))) (((-563) $) NIL (|has| (-866 |#1|) (-1034 (-563))))) (-3717 (($ $) NIL) (($ (-563) $) NIL)) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-866 |#1|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-866 |#1|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-866 |#1|))) (|:| |vec| (-1257 (-866 |#1|)))) (-684 $) (-1257 $)) NIL) (((-684 (-866 |#1|)) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-866 |#1|) (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-866 |#1|) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-866 |#1|) (-882 (-379))))) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL)) (-2626 (((-866 |#1|) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| (-866 |#1|) (-1144)))) (-2731 (((-112) $) NIL (|has| (-866 |#1|) (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-4105 (($ $ $) NIL (|has| (-866 |#1|) (-846)))) (-2751 (($ (-1 (-866 |#1|) (-866 |#1|)) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-866 |#1|) (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| (-866 |#1|) (-307)))) (-3233 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-866 |#1|) (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 (-866 |#1|)) (-640 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-866 |#1|) (-866 |#1|)) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-294 (-866 |#1|))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-640 (-294 (-866 |#1|)))) NIL (|has| (-866 |#1|) (-309 (-866 |#1|)))) (($ $ (-640 (-1169)) (-640 (-866 |#1|))) NIL (|has| (-866 |#1|) (-514 (-1169) (-866 |#1|)))) (($ $ (-1169) (-866 |#1|)) NIL (|has| (-866 |#1|) (-514 (-1169) (-866 |#1|))))) (-4322 (((-767) $) NIL)) (-3858 (($ $ (-866 |#1|)) NIL (|has| (-866 |#1|) (-286 (-866 |#1|) (-866 |#1|))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-4362 (($ $) NIL)) (-2636 (((-866 |#1|) $) NIL)) (-2802 (((-888 (-563)) $) NIL (|has| (-866 |#1|) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-866 |#1|) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-866 |#1|) (-611 (-536)))) (((-379) $) NIL (|has| (-866 |#1|) (-1018))) (((-225) $) NIL (|has| (-866 |#1|) (-1018)))) (-1669 (((-174 (-407 (-563))) $) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL) (($ (-866 |#1|)) NIL) (($ (-1169)) NIL (|has| (-866 |#1|) (-1034 (-1169))))) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-866 |#1|) (-905))) (|has| (-866 |#1|) (-145))))) (-3192 (((-767)) NIL T CONST)) (-3241 (((-866 |#1|) $) NIL (|has| (-866 |#1|) (-545)))) (-2543 (((-112) $ $) NIL)) (-1775 (((-407 (-563)) $ (-563)) NIL)) (-3841 (($ $) NIL (|has| (-866 |#1|) (-816)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $) NIL (|has| (-866 |#1|) (-233))) (($ $ (-767)) NIL (|has| (-866 |#1|) (-233))) (($ $ (-1169)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-866 |#1|) (-896 (-1169)))) (($ $ (-1 (-866 |#1|) (-866 |#1|)) (-767)) NIL) (($ $ (-1 (-866 |#1|) (-866 |#1|))) NIL)) (-2998 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-866 |#1|) (-846)))) (-3050 (($ $ $) NIL) (($ (-866 |#1|) (-866 |#1|)) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-866 |#1|) $) NIL) (($ $ (-866 |#1|)) NIL))) -(((-867 |#1|) (-13 (-988 (-866 |#1|)) (-10 -8 (-15 -1775 ((-407 (-563)) $ (-563))) (-15 -1669 ((-174 (-407 (-563))) $)) (-15 -3717 ($ $)) (-15 -3717 ($ (-563) $)))) (-563)) (T -867)) -((-1775 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-867 *4)) (-14 *4 *3) (-5 *3 (-563)))) (-1669 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-867 *3)) (-14 *3 (-563)))) (-3717 (*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-563)))) (-3717 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-867 *3)) (-14 *3 *2)))) -(-13 (-988 (-866 |#1|)) (-10 -8 (-15 -1775 ((-407 (-563)) $ (-563))) (-15 -1669 ((-174 (-407 (-563))) $)) (-15 -3717 ($ $)) (-15 -3717 ($ (-563) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 ((|#2| $) NIL (|has| |#2| (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| |#2| (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (|has| |#2| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563))))) (-2589 ((|#2| $) NIL) (((-1169) $) NIL (|has| |#2| (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-563)))) (((-563) $) NIL (|has| |#2| (-1034 (-563))))) (-3717 (($ $) 35) (($ (-563) $) 38)) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) 63)) (-4301 (($) NIL (|has| |#2| (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) NIL (|has| |#2| (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| |#2| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| |#2| (-882 (-379))))) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL)) (-2626 ((|#2| $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| |#2| (-1144)))) (-2731 (((-112) $) NIL (|has| |#2| (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| |#2| (-846)))) (-4105 (($ $ $) NIL (|has| |#2| (-846)))) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 59)) (-2956 (($) NIL (|has| |#2| (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| |#2| (-307)))) (-3233 ((|#2| $) NIL (|has| |#2| (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 |#2|) (-640 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-640 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-640 (-1169)) (-640 |#2|)) NIL (|has| |#2| (-514 (-1169) |#2|))) (($ $ (-1169) |#2|) NIL (|has| |#2| (-514 (-1169) |#2|)))) (-4322 (((-767) $) NIL)) (-3858 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-4362 (($ $) NIL)) (-2636 ((|#2| $) NIL)) (-2802 (((-888 (-563)) $) NIL (|has| |#2| (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| |#2| (-611 (-888 (-379))))) (((-536) $) NIL (|has| |#2| (-611 (-536)))) (((-379) $) NIL (|has| |#2| (-1018))) (((-225) $) NIL (|has| |#2| (-1018)))) (-1669 (((-174 (-407 (-563))) $) 77)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-2062 (((-858) $) 106) (($ (-563)) 20) (($ $) NIL) (($ (-407 (-563))) 25) (($ |#2|) 19) (($ (-1169)) NIL (|has| |#2| (-1034 (-1169))))) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3241 ((|#2| $) NIL (|has| |#2| (-545)))) (-2543 (((-112) $ $) NIL)) (-1775 (((-407 (-563)) $ (-563)) 70)) (-3841 (($ $) NIL (|has| |#2| (-816)))) (-3790 (($) 15 T CONST)) (-3803 (($) 17 T CONST)) (-4191 (($ $) NIL (|has| |#2| (-233))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2943 (((-112) $ $) 45)) (-2988 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3050 (($ $ $) 24) (($ |#2| |#2|) 64)) (-3039 (($ $) 49) (($ $ $) 51)) (-3027 (($ $ $) 47)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) 60)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 52) (($ $ $) 54) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#2| $) 65) (($ $ |#2|) NIL))) -(((-868 |#1| |#2|) (-13 (-988 |#2|) (-10 -8 (-15 -1775 ((-407 (-563)) $ (-563))) (-15 -1669 ((-174 (-407 (-563))) $)) (-15 -3717 ($ $)) (-15 -3717 ($ (-563) $)))) (-563) (-865 |#1|)) (T -868)) -((-1775 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-563))) (-5 *1 (-868 *4 *5)) (-5 *3 (-563)) (-4 *5 (-865 *4)))) (-1669 (*1 *2 *1) (-12 (-14 *3 (-563)) (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3)))) (-3717 (*1 *1 *1) (-12 (-14 *2 (-563)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2)))) (-3717 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3))))) -(-13 (-988 |#2|) (-10 -8 (-15 -1775 ((-407 (-563)) $ (-563))) (-15 -1669 ((-174 (-407 (-563))) $)) (-15 -3717 ($ $)) (-15 -3717 ($ (-563) $)))) -((-2049 (((-112) $ $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-3919 ((|#2| $) 12)) (-3521 (($ |#1| |#2|) 9)) (-1938 (((-1151) $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-3249 (((-1113) $) NIL (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093))))) (-1884 ((|#1| $) 11)) (-2074 (($ |#1| |#2|) 10)) (-2062 (((-858) $) 18 (-2811 (-12 (|has| |#1| (-610 (-858))) (|has| |#2| (-610 (-858)))) (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093)))))) (-2943 (((-112) $ $) 23 (-12 (|has| |#1| (-1093)) (|has| |#2| (-1093)))))) -(((-869 |#1| |#2|) (-13 (-1208) (-10 -8 (IF (|has| |#1| (-610 (-858))) (IF (|has| |#2| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1093)) (IF (|has| |#2| (-1093)) (-6 (-1093)) |%noBranch|) |%noBranch|) (-15 -3521 ($ |#1| |#2|)) (-15 -2074 ($ |#1| |#2|)) (-15 -1884 (|#1| $)) (-15 -3919 (|#2| $)))) (-1208) (-1208)) (T -869)) -((-3521 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))) (-2074 (*1 *1 *2 *3) (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))) (-1884 (*1 *2 *1) (-12 (-4 *2 (-1208)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1208)))) (-3919 (*1 *2 *1) (-12 (-4 *2 (-1208)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1208))))) -(-13 (-1208) (-10 -8 (IF (|has| |#1| (-610 (-858))) (IF (|has| |#2| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1093)) (IF (|has| |#2| (-1093)) (-6 (-1093)) |%noBranch|) |%noBranch|) (-15 -3521 ($ |#1| |#2|)) (-15 -2074 ($ |#1| |#2|)) (-15 -1884 (|#1| $)) (-15 -3919 (|#2| $)))) -((-2049 (((-112) $ $) NIL)) (-3973 (((-563) $) 16)) (-1694 (($ (-157)) 13)) (-1681 (($ (-157)) 14)) (-1938 (((-1151) $) NIL)) (-3961 (((-157) $) 15)) (-3249 (((-1113) $) NIL)) (-3807 (($ (-157)) 11)) (-1706 (($ (-157)) 10)) (-2062 (((-858) $) 24) (($ (-157)) 17)) (-3972 (($ (-157)) 12)) (-2943 (((-112) $ $) NIL))) -(((-870) (-13 (-1093) (-10 -8 (-15 -1706 ($ (-157))) (-15 -3807 ($ (-157))) (-15 -3972 ($ (-157))) (-15 -1694 ($ (-157))) (-15 -1681 ($ (-157))) (-15 -3961 ((-157) $)) (-15 -3973 ((-563) $)) (-15 -2062 ($ (-157)))))) (T -870)) -((-1706 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3807 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3972 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-1694 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-1681 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) (-3973 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-870)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) -(-13 (-1093) (-10 -8 (-15 -1706 ($ (-157))) (-15 -3807 ($ (-157))) (-15 -3972 ($ (-157))) (-15 -1694 ($ (-157))) (-15 -1681 ($ (-157))) (-15 -3961 ((-157) $)) (-15 -3973 ((-563) $)) (-15 -2062 ($ (-157))))) -((-2062 (((-316 (-563)) (-407 (-948 (-48)))) 23) (((-316 (-563)) (-948 (-48))) 18))) -(((-871) (-10 -7 (-15 -2062 ((-316 (-563)) (-948 (-48)))) (-15 -2062 ((-316 (-563)) (-407 (-948 (-48))))))) (T -871)) -((-2062 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-563))) (-5 *1 (-871)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-563))) (-5 *1 (-871))))) -(-10 -7 (-15 -2062 ((-316 (-563)) (-948 (-48)))) (-15 -2062 ((-316 (-563)) (-407 (-948 (-48)))))) -((-2751 (((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)) 15))) -(((-872 |#1| |#2|) (-10 -7 (-15 -2751 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) (-1208) (-1208)) (T -872)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6))))) -(-10 -7 (-15 -2751 ((-873 |#2|) (-1 |#2| |#1|) (-873 |#1|)))) -((-3724 (($ |#1| |#1|) 8)) (-1747 ((|#1| $ (-767)) 15))) -(((-873 |#1|) (-10 -8 (-15 -3724 ($ |#1| |#1|)) (-15 -1747 (|#1| $ (-767)))) (-1208)) (T -873)) -((-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1208)))) (-3724 (*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1208))))) -(-10 -8 (-15 -3724 ($ |#1| |#1|)) (-15 -1747 (|#1| $ (-767)))) -((-2751 (((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)) 15))) -(((-874 |#1| |#2|) (-10 -7 (-15 -2751 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) (-1208) (-1208)) (T -874)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6))))) -(-10 -7 (-15 -2751 ((-875 |#2|) (-1 |#2| |#1|) (-875 |#1|)))) -((-3724 (($ |#1| |#1| |#1|) 8)) (-1747 ((|#1| $ (-767)) 15))) -(((-875 |#1|) (-10 -8 (-15 -3724 ($ |#1| |#1| |#1|)) (-15 -1747 (|#1| $ (-767)))) (-1208)) (T -875)) -((-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1208)))) (-3724 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1208))))) -(-10 -8 (-15 -3724 ($ |#1| |#1| |#1|)) (-15 -1747 (|#1| $ (-767)))) -((-1718 (((-640 (-1174)) (-1151)) 9))) -(((-876) (-10 -7 (-15 -1718 ((-640 (-1174)) (-1151))))) (T -876)) -((-1718 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-876))))) -(-10 -7 (-15 -1718 ((-640 (-1174)) (-1151)))) -((-2751 (((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)) 15))) -(((-877 |#1| |#2|) (-10 -7 (-15 -2751 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) (-1208) (-1208)) (T -877)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6))))) -(-10 -7 (-15 -2751 ((-878 |#2|) (-1 |#2| |#1|) (-878 |#1|)))) -((-1732 (($ |#1| |#1| |#1|) 8)) (-1747 ((|#1| $ (-767)) 15))) -(((-878 |#1|) (-10 -8 (-15 -1732 ($ |#1| |#1| |#1|)) (-15 -1747 (|#1| $ (-767)))) (-1208)) (T -878)) -((-1747 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1208)))) (-1732 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1208))))) -(-10 -8 (-15 -1732 ($ |#1| |#1| |#1|)) (-15 -1747 (|#1| $ (-767)))) -((-1794 (((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563)))) 47)) (-1782 (((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563))) 43)) (-1805 (((-1149 (-640 (-563))) (-640 (-563))) 57) (((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563))) 55)) (-1816 (((-1149 (-640 (-563))) (-563)) 58)) (-1758 (((-1149 (-640 (-563))) (-563) (-563)) 34) (((-1149 (-640 (-563))) (-563)) 23) (((-1149 (-640 (-563))) (-563) (-563) (-563)) 19)) (-1769 (((-1149 (-640 (-563))) (-1149 (-640 (-563)))) 41)) (-1382 (((-640 (-563)) (-640 (-563))) 40))) -(((-879) (-10 -7 (-15 -1758 ((-1149 (-640 (-563))) (-563) (-563) (-563))) (-15 -1758 ((-1149 (-640 (-563))) (-563))) (-15 -1758 ((-1149 (-640 (-563))) (-563) (-563))) (-15 -1382 ((-640 (-563)) (-640 (-563)))) (-15 -1769 ((-1149 (-640 (-563))) (-1149 (-640 (-563))))) (-15 -1782 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -1794 ((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563))))) (-15 -1805 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -1805 ((-1149 (-640 (-563))) (-640 (-563)))) (-15 -1816 ((-1149 (-640 (-563))) (-563))))) (T -879)) -((-1816 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-1805 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-1805 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-1794 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *3 (-640 (-563))) (-5 *1 (-879)))) (-1782 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-640 (-563))))) (-1769 (*1 *2 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-879)))) (-1758 (*1 *2 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-1758 (*1 *2 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) (-1758 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563))))) -(-10 -7 (-15 -1758 ((-1149 (-640 (-563))) (-563) (-563) (-563))) (-15 -1758 ((-1149 (-640 (-563))) (-563))) (-15 -1758 ((-1149 (-640 (-563))) (-563) (-563))) (-15 -1382 ((-640 (-563)) (-640 (-563)))) (-15 -1769 ((-1149 (-640 (-563))) (-1149 (-640 (-563))))) (-15 -1782 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -1794 ((-1149 (-640 (-563))) (-640 (-563)) (-1149 (-640 (-563))))) (-15 -1805 ((-1149 (-640 (-563))) (-640 (-563)) (-640 (-563)))) (-15 -1805 ((-1149 (-640 (-563))) (-640 (-563)))) (-15 -1816 ((-1149 (-640 (-563))) (-563)))) -((-2802 (((-888 (-379)) $) 9 (|has| |#1| (-611 (-888 (-379))))) (((-888 (-563)) $) 8 (|has| |#1| (-611 (-888 (-563))))))) -(((-880 |#1|) (-140) (-1208)) (T -880)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-611 (-888 (-563)))) (-6 (-611 (-888 (-563)))) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-379)))) (-6 (-611 (-888 (-379)))) |%noBranch|))) -(((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563))))) -((-2049 (((-112) $ $) NIL)) (-2552 (($) 14)) (-1841 (($ (-885 |#1| |#2|) (-885 |#1| |#3|)) 28)) (-3483 (((-885 |#1| |#3|) $) 16)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1936 (((-112) $) 22)) (-2744 (($) 19)) (-2062 (((-858) $) 31)) (-1830 (((-885 |#1| |#2|) $) 15)) (-2943 (((-112) $ $) 26))) -(((-881 |#1| |#2| |#3|) (-13 (-1093) (-10 -8 (-15 -1936 ((-112) $)) (-15 -2744 ($)) (-15 -2552 ($)) (-15 -1841 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -1830 ((-885 |#1| |#2|) $)) (-15 -3483 ((-885 |#1| |#3|) $)))) (-1093) (-1093) (-661 |#2|)) (T -881)) -((-1936 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4)))) (-2744 (*1 *1) (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) (-4 *4 (-661 *3)))) (-2552 (*1 *1) (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) (-4 *4 (-661 *3)))) (-1841 (*1 *1 *2 *3) (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-661 *5)) (-5 *1 (-881 *4 *5 *6)))) (-1830 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4)))) (-3483 (*1 *2 *1) (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5)) (-4 *3 (-1093)) (-4 *5 (-661 *4))))) -(-13 (-1093) (-10 -8 (-15 -1936 ((-112) $)) (-15 -2744 ($)) (-15 -2552 ($)) (-15 -1841 ($ (-885 |#1| |#2|) (-885 |#1| |#3|))) (-15 -1830 ((-885 |#1| |#2|) $)) (-15 -3483 ((-885 |#1| |#3|) $)))) -((-2049 (((-112) $ $) 7)) (-2938 (((-885 |#1| $) $ (-888 |#1|) (-885 |#1| $)) 13)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6))) -(((-882 |#1|) (-140) (-1093)) (T -882)) -((-2938 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4)) (-4 *4 (-1093))))) -(-13 (-1093) (-10 -8 (-15 -2938 ((-885 |t#1| $) $ (-888 |t#1|) (-885 |t#1| $))))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-1854 (((-112) (-640 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-1868 (((-885 |#1| |#2|) |#2| |#3|) 44 (-12 (-3730 (|has| |#2| (-1034 (-1169)))) (-3730 (|has| |#2| (-1045))))) (((-640 (-294 (-948 |#2|))) |#2| |#3|) 43 (-12 (|has| |#2| (-1045)) (-3730 (|has| |#2| (-1034 (-1169)))))) (((-640 (-294 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1034 (-1169)))) (((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|) 20))) -(((-883 |#1| |#2| |#3|) (-10 -7 (-15 -1854 ((-112) |#2| |#3|)) (-15 -1854 ((-112) (-640 |#2|) |#3|)) (-15 -1868 ((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1169))) (-15 -1868 ((-640 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -1868 ((-640 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -1868 ((-885 |#1| |#2|) |#2| |#3|))))) (-1093) (-882 |#1|) (-611 (-888 |#1|))) (T -883)) -((-1868 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4)) (-3730 (-4 *3 (-1034 (-1169)))) (-3730 (-4 *3 (-1045))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-1868 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 (-948 *3)))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) (-3730 (-4 *3 (-1034 (-1169)))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-1868 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 *3))) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1034 (-1169))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) (-1868 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-640 *6))) (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-640 *6)) (-4 *4 (-611 (-888 *5))))) (-1854 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-611 (-888 *5))))) (-1854 (*1 *2 *3 *4) (-12 (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5)))))) -(-10 -7 (-15 -1854 ((-112) |#2| |#3|)) (-15 -1854 ((-112) (-640 |#2|) |#3|)) (-15 -1868 ((-881 |#1| |#2| (-640 |#2|)) (-640 |#2|) |#3|)) (IF (|has| |#2| (-1034 (-1169))) (-15 -1868 ((-640 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1045)) (-15 -1868 ((-640 (-294 (-948 |#2|))) |#2| |#3|)) (-15 -1868 ((-885 |#1| |#2|) |#2| |#3|))))) -((-2751 (((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)) 22))) -(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -2751 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)))) (-1093) (-1093) (-1093)) (T -884)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-885 *5 *7)) (-5 *1 (-884 *5 *6 *7))))) -(-10 -7 (-15 -2751 ((-885 |#1| |#3|) (-1 |#3| |#2|) (-885 |#1| |#2|)))) -((-2049 (((-112) $ $) NIL)) (-3738 (($ $ $) 40)) (-3988 (((-3 (-112) "failed") $ (-888 |#1|)) 37)) (-2552 (($) 12)) (-1938 (((-1151) $) NIL)) (-1895 (($ (-888 |#1|) |#2| $) 20)) (-3249 (((-1113) $) NIL)) (-1923 (((-3 |#2| "failed") (-888 |#1|) $) 51)) (-1936 (((-112) $) 15)) (-2744 (($) 13)) (-2131 (((-640 (-2 (|:| -3320 (-1169)) (|:| -3704 |#2|))) $) 25)) (-2074 (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 |#2|)))) 23)) (-2062 (((-858) $) 45)) (-1882 (($ (-888 |#1|) |#2| $ |#2|) 49)) (-1911 (($ (-888 |#1|) |#2| $) 48)) (-2943 (((-112) $ $) 42))) -(((-885 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -1936 ((-112) $)) (-15 -2744 ($)) (-15 -2552 ($)) (-15 -3738 ($ $ $)) (-15 -1923 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -1911 ($ (-888 |#1|) |#2| $)) (-15 -1895 ($ (-888 |#1|) |#2| $)) (-15 -1882 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -2131 ((-640 (-2 (|:| -3320 (-1169)) (|:| -3704 |#2|))) $)) (-15 -2074 ($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 |#2|))))) (-15 -3988 ((-3 (-112) "failed") $ (-888 |#1|))))) (-1093) (-1093)) (T -885)) -((-1936 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-2744 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-2552 (*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-3738 (*1 *1 *1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-1923 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-4 *2 (-1093)) (-5 *1 (-885 *4 *2)))) (-1911 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-1895 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-1882 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) (-4 *3 (-1093)))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 *4)))) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-2074 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 *4)))) (-4 *4 (-1093)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)))) (-3988 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-885 *4 *5)) (-4 *5 (-1093))))) -(-13 (-1093) (-10 -8 (-15 -1936 ((-112) $)) (-15 -2744 ($)) (-15 -2552 ($)) (-15 -3738 ($ $ $)) (-15 -1923 ((-3 |#2| "failed") (-888 |#1|) $)) (-15 -1911 ($ (-888 |#1|) |#2| $)) (-15 -1895 ($ (-888 |#1|) |#2| $)) (-15 -1882 ($ (-888 |#1|) |#2| $ |#2|)) (-15 -2131 ((-640 (-2 (|:| -3320 (-1169)) (|:| -3704 |#2|))) $)) (-15 -2074 ($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 |#2|))))) (-15 -3988 ((-3 (-112) "failed") $ (-888 |#1|))))) -((-2414 (((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|))) 32) (((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|))) 46) (((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|)) 35)) (-3988 (((-112) (-640 |#2|) (-888 |#1|)) 42) (((-112) |#2| (-888 |#1|)) 36)) (-2223 (((-1 (-112) |#2|) (-888 |#1|)) 16)) (-4007 (((-640 |#2|) (-888 |#1|)) 24)) (-3995 (((-888 |#1|) (-888 |#1|) |#2|) 20))) -(((-886 |#1| |#2|) (-10 -7 (-15 -2414 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -2414 ((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|)))) (-15 -2414 ((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|)))) (-15 -2223 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -3988 ((-112) |#2| (-888 |#1|))) (-15 -3988 ((-112) (-640 |#2|) (-888 |#1|))) (-15 -3995 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -4007 ((-640 |#2|) (-888 |#1|)))) (-1093) (-1208)) (T -886)) -((-4007 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-640 *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))) (-3995 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1208)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6)))) (-3988 (*1 *2 *3 *4) (-12 (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-886 *5 *3)) (-4 *3 (-1208)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))) (-2414 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-888 *5)) (-5 *3 (-640 (-1169))) (-5 *4 (-1 (-112) (-640 *6))) (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-886 *5 *6)))) (-2414 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-640 (-1 (-112) *5))) (-4 *4 (-1093)) (-4 *5 (-1208)) (-5 *1 (-886 *4 *5)))) (-2414 (*1 *2 *2 *3) (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1093)) (-4 *5 (-1208)) (-5 *1 (-886 *4 *5))))) -(-10 -7 (-15 -2414 ((-888 |#1|) (-888 |#1|) (-1 (-112) |#2|))) (-15 -2414 ((-888 |#1|) (-888 |#1|) (-640 (-1 (-112) |#2|)))) (-15 -2414 ((-888 |#1|) (-888 |#1|) (-640 (-1169)) (-1 (-112) (-640 |#2|)))) (-15 -2223 ((-1 (-112) |#2|) (-888 |#1|))) (-15 -3988 ((-112) |#2| (-888 |#1|))) (-15 -3988 ((-112) (-640 |#2|) (-888 |#1|))) (-15 -3995 ((-888 |#1|) (-888 |#1|) |#2|)) (-15 -4007 ((-640 |#2|) (-888 |#1|)))) -((-2751 (((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)) 19))) -(((-887 |#1| |#2|) (-10 -7 (-15 -2751 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) (-1093) (-1093)) (T -887)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6))))) -(-10 -7 (-15 -2751 ((-888 |#2|) (-1 |#2| |#1|) (-888 |#1|)))) -((-2049 (((-112) $ $) NIL)) (-2029 (($ $ (-640 (-52))) 73)) (-2185 (((-640 $) $) 137)) (-1995 (((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $) 29)) (-2043 (((-112) $) 34)) (-2006 (($ $ (-640 (-1169)) (-52)) 30)) (-2041 (($ $ (-640 (-52))) 72)) (-2671 (((-3 |#1| "failed") $) 70) (((-3 (-1169) "failed") $) 161)) (-2589 ((|#1| $) 67) (((-1169) $) NIL)) (-1970 (($ $) 125)) (-3947 (((-112) $) 54)) (-2052 (((-640 (-52)) $) 49)) (-2018 (($ (-1169) (-112) (-112) (-112)) 74)) (-1947 (((-3 (-640 $) "failed") (-640 $)) 81)) (-2076 (((-112) $) 57)) (-3928 (((-112) $) 56)) (-1938 (((-1151) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) 40)) (-1467 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 47)) (-3236 (((-3 (-2 (|:| |val| $) (|:| -2631 $)) "failed") $) 96)) (-3207 (((-3 (-640 $) "failed") $) 39)) (-3977 (((-3 (-640 $) "failed") $ (-114)) 123) (((-3 (-2 (|:| -3673 (-114)) (|:| |arg| (-640 $))) "failed") $) 106)) (-3964 (((-3 (-640 $) "failed") $) 41)) (-3228 (((-3 (-2 (|:| |val| $) (|:| -2631 (-767))) "failed") $) 44)) (-3954 (((-112) $) 33)) (-3249 (((-1113) $) NIL)) (-1982 (((-112) $) 27)) (-2064 (((-112) $) 51)) (-1959 (((-640 (-52)) $) 129)) (-3938 (((-112) $) 55)) (-3858 (($ (-114) (-640 $)) 103)) (-4359 (((-767) $) 32)) (-2208 (($ $) 71)) (-2802 (($ (-640 $)) 68)) (-1998 (((-112) $) 31)) (-2062 (((-858) $) 62) (($ |#1|) 23) (($ (-1169)) 75)) (-3995 (($ $ (-52)) 128)) (-3790 (($) 102 T CONST)) (-3803 (($) 82 T CONST)) (-2943 (((-112) $ $) 92)) (-3050 (($ $ $) 116)) (-3027 (($ $ $) 120)) (** (($ $ (-767)) 114) (($ $ $) 63)) (* (($ $ $) 121))) -(((-888 |#1|) (-13 (-1093) (-1034 |#1|) (-1034 (-1169)) (-10 -8 (-15 0 ($) -2495) (-15 1 ($) -2495) (-15 -3207 ((-3 (-640 $) "failed") $)) (-15 -3218 ((-3 (-640 $) "failed") $)) (-15 -3977 ((-3 (-640 $) "failed") $ (-114))) (-15 -3977 ((-3 (-2 (|:| -3673 (-114)) (|:| |arg| (-640 $))) "failed") $)) (-15 -3228 ((-3 (-2 (|:| |val| $) (|:| -2631 (-767))) "failed") $)) (-15 -1467 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3964 ((-3 (-640 $) "failed") $)) (-15 -3236 ((-3 (-2 (|:| |val| $) (|:| -2631 $)) "failed") $)) (-15 -3858 ($ (-114) (-640 $))) (-15 -3027 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -3050 ($ $ $)) (-15 -4359 ((-767) $)) (-15 -2802 ($ (-640 $))) (-15 -2208 ($ $)) (-15 -3954 ((-112) $)) (-15 -3947 ((-112) $)) (-15 -2043 ((-112) $)) (-15 -1998 ((-112) $)) (-15 -3938 ((-112) $)) (-15 -3928 ((-112) $)) (-15 -2076 ((-112) $)) (-15 -2064 ((-112) $)) (-15 -2052 ((-640 (-52)) $)) (-15 -2041 ($ $ (-640 (-52)))) (-15 -2029 ($ $ (-640 (-52)))) (-15 -2018 ($ (-1169) (-112) (-112) (-112))) (-15 -2006 ($ $ (-640 (-1169)) (-52))) (-15 -1995 ((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $)) (-15 -1982 ((-112) $)) (-15 -1970 ($ $)) (-15 -3995 ($ $ (-52))) (-15 -1959 ((-640 (-52)) $)) (-15 -2185 ((-640 $) $)) (-15 -1947 ((-3 (-640 $) "failed") (-640 $))))) (-1093)) (T -888)) -((-3790 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-3803 (*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-3207 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3218 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3977 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-3977 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3673 (-114)) (|:| |arg| (-640 (-888 *3))))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3228 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -2631 (-767)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1467 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3964 (*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3236 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -2631 (-888 *3)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3858 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 (-888 *4))) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-3027 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-3050 (*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-4359 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2208 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-3954 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2043 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3938 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2064 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2052 (*1 *2 *1) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2029 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2018 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-112)) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-2006 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-52)) (-5 *1 (-888 *4)) (-4 *4 (-1093)))) (-1995 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52)))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1982 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1970 (*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) (-3995 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) (-1947 (*1 *2 *2) (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(-13 (-1093) (-1034 |#1|) (-1034 (-1169)) (-10 -8 (-15 (-3790) ($) -2495) (-15 (-3803) ($) -2495) (-15 -3207 ((-3 (-640 $) "failed") $)) (-15 -3218 ((-3 (-640 $) "failed") $)) (-15 -3977 ((-3 (-640 $) "failed") $ (-114))) (-15 -3977 ((-3 (-2 (|:| -3673 (-114)) (|:| |arg| (-640 $))) "failed") $)) (-15 -3228 ((-3 (-2 (|:| |val| $) (|:| -2631 (-767))) "failed") $)) (-15 -1467 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3964 ((-3 (-640 $) "failed") $)) (-15 -3236 ((-3 (-2 (|:| |val| $) (|:| -2631 $)) "failed") $)) (-15 -3858 ($ (-114) (-640 $))) (-15 -3027 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767))) (-15 ** ($ $ $)) (-15 -3050 ($ $ $)) (-15 -4359 ((-767) $)) (-15 -2802 ($ (-640 $))) (-15 -2208 ($ $)) (-15 -3954 ((-112) $)) (-15 -3947 ((-112) $)) (-15 -2043 ((-112) $)) (-15 -1998 ((-112) $)) (-15 -3938 ((-112) $)) (-15 -3928 ((-112) $)) (-15 -2076 ((-112) $)) (-15 -2064 ((-112) $)) (-15 -2052 ((-640 (-52)) $)) (-15 -2041 ($ $ (-640 (-52)))) (-15 -2029 ($ $ (-640 (-52)))) (-15 -2018 ($ (-1169) (-112) (-112) (-112))) (-15 -2006 ($ $ (-640 (-1169)) (-52))) (-15 -1995 ((-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52))) $)) (-15 -1982 ((-112) $)) (-15 -1970 ($ $)) (-15 -3995 ($ $ (-52))) (-15 -1959 ((-640 (-52)) $)) (-15 -2185 ((-640 $) $)) (-15 -1947 ((-3 (-640 $) "failed") (-640 $))))) -((-2049 (((-112) $ $) NIL)) (-1347 (((-640 |#1|) $) 19)) (-4016 (((-112) $) 49)) (-2671 (((-3 (-667 |#1|) "failed") $) 56)) (-2589 (((-667 |#1|) $) 54)) (-1897 (($ $) 23)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-3322 (((-767) $) 61)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-667 |#1|) $) 21)) (-2062 (((-858) $) 47) (($ (-667 |#1|)) 26) (((-815 |#1|) $) 36) (($ |#1|) 25)) (-3803 (($) 9 T CONST)) (-4025 (((-640 (-667 |#1|)) $) 28)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 12)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 67))) -(((-889 |#1|) (-13 (-846) (-1034 (-667 |#1|)) (-10 -8 (-15 1 ($) -2495) (-15 -2062 ((-815 |#1|) $)) (-15 -2062 ($ |#1|)) (-15 -1884 ((-667 |#1|) $)) (-15 -3322 ((-767) $)) (-15 -4025 ((-640 (-667 |#1|)) $)) (-15 -1897 ($ $)) (-15 -4016 ((-112) $)) (-15 -1347 ((-640 |#1|) $)))) (-846)) (T -889)) -((-3803 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-2062 (*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-1884 (*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-4025 (*1 *2 *1) (-12 (-5 *2 (-640 (-667 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-1897 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) (-4016 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846))))) -(-13 (-846) (-1034 (-667 |#1|)) (-10 -8 (-15 (-3803) ($) -2495) (-15 -2062 ((-815 |#1|) $)) (-15 -2062 ($ |#1|)) (-15 -1884 ((-667 |#1|) $)) (-15 -3322 ((-767) $)) (-15 -4025 ((-640 (-667 |#1|)) $)) (-15 -1897 ($ $)) (-15 -4016 ((-112) $)) (-15 -1347 ((-640 |#1|) $)))) -((-3301 ((|#1| |#1| |#1|) 19))) -(((-890 |#1| |#2|) (-10 -7 (-15 -3301 (|#1| |#1| |#1|))) (-1233 |#2|) (-1045)) (T -890)) -((-3301 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1233 *3))))) -(-10 -7 (-15 -3301 (|#1| |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-4072 (((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 14)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-4036 (((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 13)) (-2943 (((-112) $ $) 6))) -(((-891) (-140)) (T -891)) -((-4072 (*1 *2 *3 *4) (-12 (-4 *1 (-891)) (-5 *3 (-1057)) (-5 *4 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)))))) (-4036 (*1 *2 *3) (-12 (-4 *1 (-891)) (-5 *3 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *2 (-1031))))) -(-13 (-1093) (-10 -7 (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| |explanations| (-1151))) (-1057) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -4036 ((-1031) (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-4060 ((|#1| |#1| (-767)) 29)) (-4048 (((-3 |#1| "failed") |#1| |#1|) 26)) (-3038 (((-3 (-2 (|:| -2654 |#1|) (|:| -2665 |#1|)) "failed") |#1| (-767) (-767)) 32) (((-640 |#1|) |#1|) 39))) -(((-892 |#1| |#2|) (-10 -7 (-15 -3038 ((-640 |#1|) |#1|)) (-15 -3038 ((-3 (-2 (|:| -2654 |#1|) (|:| -2665 |#1|)) "failed") |#1| (-767) (-767))) (-15 -4048 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4060 (|#1| |#1| (-767)))) (-1233 |#2|) (-363)) (T -892)) -((-4060 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) (-4 *2 (-1233 *4)))) (-4048 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) (-4 *2 (-1233 *3)))) (-3038 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2654 *3) (|:| -2665 *3))) (-5 *1 (-892 *3 *5)) (-4 *3 (-1233 *5)))) (-3038 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-892 *3 *4)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -3038 ((-640 |#1|) |#1|)) (-15 -3038 ((-3 (-2 (|:| -2654 |#1|) (|:| -2665 |#1|)) "failed") |#1| (-767) (-767))) (-15 -4048 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4060 (|#1| |#1| (-767)))) -((-1558 (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151)) 106) (((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225)) 102) (((-1031) (-894) (-1057)) 94) (((-1031) (-894)) 95)) (-4072 (((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057)) 65) (((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894)) 67))) -(((-893) (-10 -7 (-15 -1558 ((-1031) (-894))) (-15 -1558 ((-1031) (-894) (-1057))) (-15 -1558 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225))) (-15 -1558 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057))))) (T -893)) -((-4072 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-893)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151))))) (-5 *1 (-893)))) (-1558 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1558 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) (-5 *8 (-225)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893))))) -(-10 -7 (-15 -1558 ((-1031) (-894))) (-15 -1558 ((-1031) (-894) (-1057))) (-15 -1558 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151) (-225))) (-15 -1558 ((-1031) (-379) (-379) (-379) (-379) (-767) (-767) (-640 (-316 (-379))) (-640 (-640 (-316 (-379)))) (-1151))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894))) (-15 -4072 ((-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) (|:| |explanations| (-640 (-1151)))) (-894) (-1057)))) -((-2049 (((-112) $ $) NIL)) (-2589 (((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $) 19)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 21) (($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) 18)) (-2943 (((-112) $ $) NIL))) -(((-894) (-13 (-1093) (-10 -8 (-15 -2062 ($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -2589 ((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $))))) (T -894)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *1 (-894)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225)))) (-5 *1 (-894))))) -(-13 (-1093) (-10 -8 (-15 -2062 ($ (-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))))) (-15 -2589 ((-2 (|:| |pde| (-640 (-316 (-225)))) (|:| |constraints| (-640 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-767)) (|:| |boundaryType| (-563)) (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) (|:| |tol| (-225))) $)))) -((-1361 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) 10) (($ $ |#2| (-767)) 15) (($ $ (-640 |#2|) (-640 (-767))) 18)) (-4191 (($ $ |#2|) 19) (($ $ (-640 |#2|)) 21) (($ $ |#2| (-767)) 22) (($ $ (-640 |#2|) (-640 (-767))) 24))) -(((-895 |#1| |#2|) (-10 -8 (-15 -4191 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -4191 (|#1| |#1| |#2| (-767))) (-15 -4191 (|#1| |#1| (-640 |#2|))) (-15 -4191 (|#1| |#1| |#2|)) (-15 -1361 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -1361 (|#1| |#1| |#2| (-767))) (-15 -1361 (|#1| |#1| (-640 |#2|))) (-15 -1361 (|#1| |#1| |#2|))) (-896 |#2|) (-1093)) (T -895)) -NIL -(-10 -8 (-15 -4191 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -4191 (|#1| |#1| |#2| (-767))) (-15 -4191 (|#1| |#1| (-640 |#2|))) (-15 -4191 (|#1| |#1| |#2|)) (-15 -1361 (|#1| |#1| (-640 |#2|) (-640 (-767)))) (-15 -1361 (|#1| |#1| |#2| (-767))) (-15 -1361 (|#1| |#1| (-640 |#2|))) (-15 -1361 (|#1| |#1| |#2|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1361 (($ $ |#1|) 42) (($ $ (-640 |#1|)) 41) (($ $ |#1| (-767)) 40) (($ $ (-640 |#1|) (-640 (-767))) 39)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ |#1|) 38) (($ $ (-640 |#1|)) 37) (($ $ |#1| (-767)) 36) (($ $ (-640 |#1|) (-640 (-767))) 35)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-896 |#1|) (-140) (-1093)) (T -896)) -((-1361 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) (-1361 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-1361 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1093)))) (-4191 (*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) (-4191 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) (-4191 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) (-4 *4 (-1093))))) -(-13 (-1045) (-10 -8 (-15 -1361 ($ $ |t#1|)) (-15 -1361 ($ $ (-640 |t#1|))) (-15 -1361 ($ $ |t#1| (-767))) (-15 -1361 ($ $ (-640 |t#1|) (-640 (-767)))) (-15 -4191 ($ $ |t#1|)) (-15 -4191 ($ $ (-640 |t#1|))) (-15 -4191 ($ $ |t#1| (-767))) (-15 -4191 ($ $ (-640 |t#1|) (-640 (-767)))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) 26)) (-3740 (((-112) $ (-767)) NIL)) (-3472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-2377 (($ $ $) NIL (|has| $ (-6 -4409)))) (-2390 (($ $ $) NIL (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) (($ $ "left" $) NIL (|has| $ (-6 -4409))) (($ $ "right" $) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2665 (($ $) 25)) (-2644 (($ |#1|) 12) (($ $ $) 17)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-2654 (($ $) 23)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) 20)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-3514 (((-563) $ $) NIL)) (-2181 (((-112) $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-1194 |#1|) $) 9) (((-858) $) 29 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 21 (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-897 |#1|) (-13 (-119 |#1|) (-610 (-1194 |#1|)) (-10 -8 (-15 -2644 ($ |#1|)) (-15 -2644 ($ $ $)))) (-1093)) (T -897)) -((-2644 (*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093)))) (-2644 (*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093))))) -(-13 (-119 |#1|) (-610 (-1194 |#1|)) (-10 -8 (-15 -2644 ($ |#1|)) (-15 -2644 ($ $ $)))) -((-4183 ((|#2| (-1135 |#1| |#2|)) 53))) -(((-898 |#1| |#2|) (-10 -7 (-15 -4183 (|#2| (-1135 |#1| |#2|)))) (-917) (-13 (-1045) (-10 -7 (-6 (-4410 "*"))))) (T -898)) -((-4183 (*1 *2 *3) (-12 (-5 *3 (-1135 *4 *2)) (-14 *4 (-917)) (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4410 "*"))))) (-5 *1 (-898 *4 *2))))) -(-10 -7 (-15 -4183 (|#2| (-1135 |#1| |#2|)))) -((-2049 (((-112) $ $) 7)) (-3684 (($) 18 T CONST)) (-3230 (((-3 $ "failed") $) 15)) (-4264 (((-1095 |#1|) $ |#1|) 32)) (-2712 (((-112) $) 17)) (-3489 (($ $ $) 30 (-2811 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-4105 (($ $ $) 29 (-2811 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-1938 (((-1151) $) 9)) (-3149 (($ $) 24)) (-3249 (((-1113) $) 10)) (-1497 ((|#1| $ |#1|) 34)) (-3858 ((|#1| $ |#1|) 33)) (-4193 (($ (-640 (-640 |#1|))) 35)) (-4203 (($ (-640 |#1|)) 36)) (-1382 (($ $ $) 21)) (-2879 (($ $ $) 20)) (-2062 (((-858) $) 11)) (-3803 (($) 19 T CONST)) (-2998 (((-112) $ $) 27 (-2811 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2977 (((-112) $ $) 26 (-2811 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 28 (-2811 (|has| |#1| (-846)) (|has| |#1| (-368))))) (-2966 (((-112) $ $) 31)) (-3050 (($ $ $) 23)) (** (($ $ (-917)) 13) (($ $ (-767)) 16) (($ $ (-563)) 22)) (* (($ $ $) 14))) -(((-899 |#1|) (-140) (-1093)) (T -899)) -((-4203 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-899 *3)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-4 *1 (-899 *3)))) (-1497 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) (-3858 (*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) (-4264 (*1 *2 *1 *3) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-1095 *3)))) (-2966 (*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) -(-13 (-473) (-10 -8 (-15 -4203 ($ (-640 |t#1|))) (-15 -4193 ($ (-640 (-640 |t#1|)))) (-15 -1497 (|t#1| $ |t#1|)) (-15 -3858 (|t#1| $ |t#1|)) (-15 -4264 ((-1095 |t#1|) $ |t#1|)) (-15 -2966 ((-112) $ $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-846)) |%noBranch|))) -(((-102) . T) ((-610 (-858)) . T) ((-473) . T) ((-722) . T) ((-846) -2811 (|has| |#1| (-846)) (|has| |#1| (-368))) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-4284 (((-640 (-640 (-767))) $) 164)) (-4243 (((-640 (-767)) (-901 |#1|) $) 192)) (-4232 (((-640 (-767)) (-901 |#1|) $) 193)) (-4296 (((-640 (-901 |#1|)) $) 153)) (-4301 (((-901 |#1|) $ (-563)) 158) (((-901 |#1|) $) 159)) (-4274 (($ (-640 (-901 |#1|))) 166)) (-2903 (((-767) $) 160)) (-4253 (((-1095 (-1095 |#1|)) $) 190)) (-4264 (((-1095 |#1|) $ |#1|) 181) (((-1095 (-1095 |#1|)) $ (-1095 |#1|)) 201) (((-1095 (-640 |#1|)) $ (-640 |#1|)) 204)) (-4222 (((-1095 |#1|) $) 156)) (-1949 (((-112) (-901 |#1|) $) 142)) (-1938 (((-1151) $) NIL)) (-4213 (((-1262) $) 146) (((-1262) $ (-563) (-563)) 205)) (-3249 (((-1113) $) NIL)) (-4308 (((-640 (-901 |#1|)) $) 147)) (-3858 (((-901 |#1|) $ (-767)) 154)) (-1962 (((-767) $) 161)) (-2062 (((-858) $) 178) (((-640 (-901 |#1|)) $) 28) (($ (-640 (-901 |#1|))) 165)) (-1433 (((-640 |#1|) $) 163)) (-2943 (((-112) $ $) 198)) (-2988 (((-112) $ $) 196)) (-2966 (((-112) $ $) 195))) -(((-900 |#1|) (-13 (-1093) (-10 -8 (-15 -2062 ((-640 (-901 |#1|)) $)) (-15 -4308 ((-640 (-901 |#1|)) $)) (-15 -3858 ((-901 |#1|) $ (-767))) (-15 -4301 ((-901 |#1|) $ (-563))) (-15 -4301 ((-901 |#1|) $)) (-15 -2903 ((-767) $)) (-15 -1962 ((-767) $)) (-15 -1433 ((-640 |#1|) $)) (-15 -4296 ((-640 (-901 |#1|)) $)) (-15 -4284 ((-640 (-640 (-767))) $)) (-15 -2062 ($ (-640 (-901 |#1|)))) (-15 -4274 ($ (-640 (-901 |#1|)))) (-15 -4264 ((-1095 |#1|) $ |#1|)) (-15 -4253 ((-1095 (-1095 |#1|)) $)) (-15 -4264 ((-1095 (-1095 |#1|)) $ (-1095 |#1|))) (-15 -4264 ((-1095 (-640 |#1|)) $ (-640 |#1|))) (-15 -1949 ((-112) (-901 |#1|) $)) (-15 -4243 ((-640 (-767)) (-901 |#1|) $)) (-15 -4232 ((-640 (-767)) (-901 |#1|) $)) (-15 -4222 ((-1095 |#1|) $)) (-15 -2966 ((-112) $ $)) (-15 -2988 ((-112) $ $)) (-15 -4213 ((-1262) $)) (-15 -4213 ((-1262) $ (-563) (-563))))) (-1093)) (T -900)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4308 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1093)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) (-4 *4 (-1093)))) (-4301 (*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4296 (*1 *2 *1) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))) (-4274 (*1 *1 *2) (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))) (-4264 (*1 *2 *1 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-1095 (-1095 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4264 (*1 *2 *1 *3) (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-900 *4)) (-5 *3 (-1095 *4)))) (-4264 (*1 *2 *1 *3) (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-640 *4))) (-5 *1 (-900 *4)) (-5 *3 (-640 *4)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-900 *4)))) (-4243 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) (-5 *1 (-900 *4)))) (-4232 (*1 *2 *3 *1) (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) (-5 *1 (-900 *4)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2966 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-2988 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) (-4213 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-900 *4)) (-4 *4 (-1093))))) -(-13 (-1093) (-10 -8 (-15 -2062 ((-640 (-901 |#1|)) $)) (-15 -4308 ((-640 (-901 |#1|)) $)) (-15 -3858 ((-901 |#1|) $ (-767))) (-15 -4301 ((-901 |#1|) $ (-563))) (-15 -4301 ((-901 |#1|) $)) (-15 -2903 ((-767) $)) (-15 -1962 ((-767) $)) (-15 -1433 ((-640 |#1|) $)) (-15 -4296 ((-640 (-901 |#1|)) $)) (-15 -4284 ((-640 (-640 (-767))) $)) (-15 -2062 ($ (-640 (-901 |#1|)))) (-15 -4274 ($ (-640 (-901 |#1|)))) (-15 -4264 ((-1095 |#1|) $ |#1|)) (-15 -4253 ((-1095 (-1095 |#1|)) $)) (-15 -4264 ((-1095 (-1095 |#1|)) $ (-1095 |#1|))) (-15 -4264 ((-1095 (-640 |#1|)) $ (-640 |#1|))) (-15 -1949 ((-112) (-901 |#1|) $)) (-15 -4243 ((-640 (-767)) (-901 |#1|) $)) (-15 -4232 ((-640 (-767)) (-901 |#1|) $)) (-15 -4222 ((-1095 |#1|) $)) (-15 -2966 ((-112) $ $)) (-15 -2988 ((-112) $ $)) (-15 -4213 ((-1262) $)) (-15 -4213 ((-1262) $ (-563) (-563))))) -((-2049 (((-112) $ $) NIL)) (-4257 (((-640 $) (-640 $)) 104)) (-2107 (((-563) $) 85)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2903 (((-767) $) 82)) (-4264 (((-1095 |#1|) $ |#1|) 73)) (-2712 (((-112) $) NIL)) (-4107 (((-112) $) 89)) (-4129 (((-767) $) 86)) (-4222 (((-1095 |#1|) $) 62)) (-3489 (($ $ $) NIL (-2811 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-4105 (($ $ $) NIL (-2811 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-4173 (((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $) 57)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 132)) (-3249 (((-1113) $) NIL)) (-4094 (((-1095 |#1|) $) 140 (|has| |#1| (-368)))) (-4118 (((-112) $) 83)) (-1497 ((|#1| $ |#1|) 71)) (-3858 ((|#1| $ |#1|) 134)) (-1962 (((-767) $) 64)) (-4193 (($ (-640 (-640 |#1|))) 119)) (-4140 (((-967) $) 77)) (-4203 (($ (-640 |#1|)) 35)) (-1382 (($ $ $) NIL)) (-2879 (($ $ $) NIL)) (-4164 (($ (-640 (-640 |#1|))) 59)) (-4152 (($ (-640 (-640 |#1|))) 124)) (-4083 (($ (-640 |#1|)) 136)) (-2062 (((-858) $) 118) (($ (-640 (-640 |#1|))) 92) (($ (-640 |#1|)) 93)) (-3803 (($) 27 T CONST)) (-2998 (((-112) $ $) NIL (-2811 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2977 (((-112) $ $) NIL (-2811 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2943 (((-112) $ $) 69)) (-2988 (((-112) $ $) NIL (-2811 (|has| |#1| (-368)) (|has| |#1| (-846))))) (-2966 (((-112) $ $) 91)) (-3050 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ $ $) 36))) -(((-901 |#1|) (-13 (-899 |#1|) (-10 -8 (-15 -4173 ((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $)) (-15 -4164 ($ (-640 (-640 |#1|)))) (-15 -2062 ($ (-640 (-640 |#1|)))) (-15 -2062 ($ (-640 |#1|))) (-15 -4152 ($ (-640 (-640 |#1|)))) (-15 -1962 ((-767) $)) (-15 -4222 ((-1095 |#1|) $)) (-15 -4140 ((-967) $)) (-15 -2903 ((-767) $)) (-15 -4129 ((-767) $)) (-15 -2107 ((-563) $)) (-15 -4118 ((-112) $)) (-15 -4107 ((-112) $)) (-15 -4257 ((-640 $) (-640 $))) (IF (|has| |#1| (-368)) (-15 -4094 ((-1095 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -4083 ($ (-640 |#1|))) (IF (|has| |#1| (-368)) (-15 -4083 ($ (-640 |#1|))) |%noBranch|)))) (-1093)) (T -901)) -((-4173 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-640 *3)) (|:| |image| (-640 *3)))) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4164 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-4152 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4222 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4140 (*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4129 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4107 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4257 (*1 *2 *2) (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) (-4094 (*1 *2 *1) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368)) (-4 *3 (-1093)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3))))) -(-13 (-899 |#1|) (-10 -8 (-15 -4173 ((-2 (|:| |preimage| (-640 |#1|)) (|:| |image| (-640 |#1|))) $)) (-15 -4164 ($ (-640 (-640 |#1|)))) (-15 -2062 ($ (-640 (-640 |#1|)))) (-15 -2062 ($ (-640 |#1|))) (-15 -4152 ($ (-640 (-640 |#1|)))) (-15 -1962 ((-767) $)) (-15 -4222 ((-1095 |#1|) $)) (-15 -4140 ((-967) $)) (-15 -2903 ((-767) $)) (-15 -4129 ((-767) $)) (-15 -2107 ((-563) $)) (-15 -4118 ((-112) $)) (-15 -4107 ((-112) $)) (-15 -4257 ((-640 $) (-640 $))) (IF (|has| |#1| (-368)) (-15 -4094 ((-1095 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -4083 ($ (-640 |#1|))) (IF (|has| |#1| (-368)) (-15 -4083 ($ (-640 |#1|))) |%noBranch|)))) -((-4328 (((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|)) 162)) (-4357 ((|#1|) 101)) (-4347 (((-418 (-1165 |#4|)) (-1165 |#4|)) 171)) (-4366 (((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|)) 88)) (-4338 (((-418 (-1165 |#4|)) (-1165 |#4|)) 181)) (-4319 (((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|) 117))) -(((-902 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4328 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|))) (-15 -4338 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -4347 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -4357 (|#1|)) (-15 -4319 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|)) (-15 -4366 ((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|)))) (-905) (-789) (-846) (-945 |#1| |#2| |#3|)) (T -902)) -((-4366 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1165 *8))) (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1165 *8)))) (-4319 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789)) (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7)))) (-4357 (*1 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) (-4347 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-4338 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) (-4328 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7))))) -(-10 -7 (-15 -4328 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|))) (-15 -4338 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -4347 ((-418 (-1165 |#4|)) (-1165 |#4|))) (-15 -4357 (|#1|)) (-15 -4319 ((-3 (-640 (-1165 |#4|)) "failed") (-640 (-1165 |#4|)) (-1165 |#4|) |#3|)) (-15 -4366 ((-418 (-1165 |#4|)) (-640 |#3|) (-1165 |#4|)))) -((-4328 (((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|)) 41)) (-4357 ((|#1|) 74)) (-4347 (((-418 (-1165 |#2|)) (-1165 |#2|)) 130)) (-4366 (((-418 (-1165 |#2|)) (-1165 |#2|)) 114)) (-4338 (((-418 (-1165 |#2|)) (-1165 |#2|)) 141))) -(((-903 |#1| |#2|) (-10 -7 (-15 -4328 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|))) (-15 -4338 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -4347 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -4357 (|#1|)) (-15 -4366 ((-418 (-1165 |#2|)) (-1165 |#2|)))) (-905) (-1233 |#1|)) (T -903)) -((-4366 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-4357 (*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1233 *2)))) (-4347 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-4338 (*1 *2 *3) (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5)))) (-4328 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5))))) -(-10 -7 (-15 -4328 ((-3 (-640 (-1165 |#2|)) "failed") (-640 (-1165 |#2|)) (-1165 |#2|))) (-15 -4338 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -4347 ((-418 (-1165 |#2|)) (-1165 |#2|))) (-15 -4357 (|#1|)) (-15 -4366 ((-418 (-1165 |#2|)) (-1165 |#2|)))) -((-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 42)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 18)) (-4376 (((-3 $ "failed") $) 36))) -(((-904 |#1|) (-10 -8 (-15 -4376 ((-3 |#1| "failed") |#1|)) (-15 -1297 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) (-905)) (T -904)) -NIL -(-10 -8 (-15 -4376 ((-3 |#1| "failed") |#1|)) (-15 -1297 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-1325 (((-418 (-1165 $)) (-1165 $)) 61)) (-2924 (($ $) 52)) (-2102 (((-418 $) $) 53)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 58)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-3675 (((-112) $) 54)) (-2712 (((-112) $) 31)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-1306 (((-418 (-1165 $)) (-1165 $)) 59)) (-1315 (((-418 (-1165 $)) (-1165 $)) 60)) (-2055 (((-418 $) $) 51)) (-3448 (((-3 $ "failed") $ $) 43)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 57 (|has| $ (-145)))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-4376 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-905) (-140)) (T -905)) -((-1335 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-905)))) (-1325 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-1315 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-1306 (*1 *2 *3) (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1)))) (-1297 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 (-1165 *1))) (-5 *3 (-1165 *1)) (-4 *1 (-905)))) (-4386 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-145)) (-4 *1 (-905)) (-5 *2 (-1257 *1)))) (-4376 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905))))) -(-13 (-1212) (-10 -8 (-15 -1325 ((-418 (-1165 $)) (-1165 $))) (-15 -1315 ((-418 (-1165 $)) (-1165 $))) (-15 -1306 ((-418 (-1165 $)) (-1165 $))) (-15 -1335 ((-1165 $) (-1165 $) (-1165 $))) (-15 -1297 ((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $))) (IF (|has| $ (-145)) (PROGN (-15 -4386 ((-3 (-1257 $) "failed") (-684 $))) (-15 -4376 ((-3 $ "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1819 (((-112) $) NIL)) (-1785 (((-767)) NIL)) (-3282 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-2758 (((-1181 (-917) (-767)) (-563)) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 $ "failed") $) NIL)) (-2589 (($ $) NIL)) (-1505 (($ (-1257 $)) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-2135 (($) NIL)) (-2812 (((-112) $) NIL)) (-2506 (($ $) NIL) (($ $ (-767)) NIL)) (-3675 (((-112) $) NIL)) (-2903 (((-829 (-917)) $) NIL) (((-917) $) NIL)) (-2712 (((-112) $) NIL)) (-3298 (($) NIL (|has| $ (-368)))) (-3277 (((-112) $) NIL (|has| $ (-368)))) (-3251 (($ $ (-917)) NIL (|has| $ (-368))) (($ $) NIL)) (-3113 (((-3 $ "failed") $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2134 (((-1165 $) $ (-917)) NIL (|has| $ (-368))) (((-1165 $) $) NIL)) (-3267 (((-917) $) NIL)) (-3332 (((-1165 $) $) NIL (|has| $ (-368)))) (-3321 (((-3 (-1165 $) "failed") $ $) NIL (|has| $ (-368))) (((-1165 $) $) NIL (|has| $ (-368)))) (-3344 (($ $ (-1165 $)) NIL (|has| $ (-368)))) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL T CONST)) (-3491 (($ (-917)) NIL)) (-1808 (((-112) $) NIL)) (-3249 (((-1113) $) NIL)) (-1738 (($) NIL (|has| $ (-368)))) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL)) (-2055 (((-418 $) $) NIL)) (-1797 (((-917)) NIL) (((-829 (-917))) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2515 (((-3 (-767) "failed") $ $) NIL) (((-767) $) NIL)) (-1575 (((-134)) NIL)) (-1361 (($ $ (-767)) NIL) (($ $) NIL)) (-1962 (((-917) $) NIL) (((-829 (-917)) $) NIL)) (-2713 (((-1165 $)) NIL)) (-2750 (($) NIL)) (-3356 (($) NIL (|has| $ (-368)))) (-1818 (((-684 $) (-1257 $)) NIL) (((-1257 $) $) NIL)) (-2802 (((-563) $) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL)) (-4376 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3288 (((-1257 $) (-917)) NIL) (((-1257 $)) NIL)) (-2543 (((-112) $ $) NIL)) (-1833 (((-112) $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-1772 (($ $ (-767)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) -(((-906 |#1|) (-13 (-349) (-329 $) (-611 (-563))) (-917)) (T -906)) -NIL -(-13 (-349) (-329 $) (-611 (-563))) -((-1356 (((-3 (-2 (|:| -2903 (-767)) (|:| -2729 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 84)) (-1346 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-2903 (((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|)) 15))) -(((-907 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2903 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -1346 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -1356 ((-3 (-2 (|:| -2903 (-767)) (|:| -2729 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-846) (-555) (-1034 (-563))) (-430 |#1|) (-1233 |#2|) (-1233 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -907)) -((-1356 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-2 (|:| -2903 (-767)) (|:| -2729 *8))) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-112)) (-5 *1 (-907 *4 *5 *6 *7 *8)))) (-2903 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-767)) (-5 *1 (-907 *4 *5 *6 *7 *8))))) -(-10 -7 (-15 -2903 ((-3 (-767) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -1346 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -1356 ((-3 (-2 (|:| -2903 (-767)) (|:| -2729 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) -((-1356 (((-3 (-2 (|:| -2903 (-767)) (|:| -2729 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)) 64)) (-1346 (((-112) (-336 (-407 (-563)) |#1| |#2| |#3|)) 16)) (-2903 (((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)) 14))) -(((-908 |#1| |#2| |#3|) (-10 -7 (-15 -2903 ((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -1346 ((-112) (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -1356 ((-3 (-2 (|:| -2903 (-767)) (|:| -2729 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)))) (-1233 (-407 (-563))) (-1233 (-407 |#1|)) (-342 (-407 (-563)) |#1| |#2|)) (T -908)) -((-1356 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-2 (|:| -2903 (-767)) (|:| -2729 *6))) (-5 *1 (-908 *4 *5 *6)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6)))) (-2903 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-767)) (-5 *1 (-908 *4 *5 *6))))) -(-10 -7 (-15 -2903 ((-3 (-767) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -1346 ((-112) (-336 (-407 (-563)) |#1| |#2| |#3|))) (-15 -1356 ((-3 (-2 (|:| -2903 (-767)) (|:| -2729 |#3|)) "failed") (-336 (-407 (-563)) |#1| |#2| |#3|)))) -((-3317 ((|#2| |#2|) 26)) (-1388 (((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))) 15)) (-1367 (((-917) (-563)) 38)) (-1398 (((-563) |#2|) 45)) (-1376 (((-563) |#2|) 21) (((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|) 20))) -(((-909 |#1| |#2|) (-10 -7 (-15 -1367 ((-917) (-563))) (-15 -1376 ((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|)) (-15 -1376 ((-563) |#2|)) (-15 -1388 ((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))))) (-15 -1398 ((-563) |#2|)) (-15 -3317 (|#2| |#2|))) (-1233 (-407 (-563))) (-1233 (-407 |#1|))) (T -909)) -((-3317 (*1 *2 *2) (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *1 (-909 *3 *2)) (-4 *2 (-1233 (-407 *3))))) (-1398 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-1388 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))) (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4))))) (-1376 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) (-4 *3 (-1233 (-407 *4))))) (-1376 (*1 *2 *3) (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *2 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))) (-5 *1 (-909 *3 *4)) (-4 *4 (-1233 (-407 *3))))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-563)) (-4 *4 (-1233 (-407 *3))) (-5 *2 (-917)) (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4)))))) -(-10 -7 (-15 -1367 ((-917) (-563))) (-15 -1376 ((-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))) |#1|)) (-15 -1376 ((-563) |#2|)) (-15 -1388 ((-563) (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))))) (-15 -1398 ((-563) |#2|)) (-15 -3317 (|#2| |#2|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 ((|#1| $) 99)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-3495 (($ $ $) NIL)) (-3230 (((-3 $ "failed") $) 93)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-3413 (($ |#1| (-418 |#1|)) 91)) (-3340 (((-1165 |#1|) |#1| |#1|) 53)) (-3329 (($ $) 61)) (-2712 (((-112) $) NIL)) (-3352 (((-563) $) 96)) (-3366 (($ $ (-563)) 98)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3379 ((|#1| $) 95)) (-3390 (((-418 |#1|) $) 94)) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) 92)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-3400 (($ $) 50)) (-2062 (((-858) $) 123) (($ (-563)) 72) (($ $) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 77) (($ (-407 (-418 |#1|))) 85)) (-3192 (((-767)) 70 T CONST)) (-2543 (((-112) $ $) NIL)) (-3790 (($) 26 T CONST)) (-3803 (($) 15 T CONST)) (-2943 (((-112) $ $) 86)) (-3050 (($ $ $) NIL)) (-3039 (($ $) 107) (($ $ $) NIL)) (-3027 (($ $ $) 49)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 109) (($ $ $) 48) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ |#1| $) 108) (($ $ |#1|) NIL))) -(((-910 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -2062 ((-407 |#1|) $)) (-15 -2062 ($ (-407 (-418 |#1|)))) (-15 -3400 ($ $)) (-15 -3390 ((-418 |#1|) $)) (-15 -3379 (|#1| $)) (-15 -3366 ($ $ (-563))) (-15 -3352 ((-563) $)) (-15 -3340 ((-1165 |#1|) |#1| |#1|)) (-15 -3329 ($ $)) (-15 -3413 ($ |#1| (-418 |#1|))) (-15 -3223 (|#1| $)))) (-307)) (T -910)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) (-3400 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3390 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3379 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3366 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3352 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3340 (*1 *2 *3 *3) (-12 (-5 *2 (-1165 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) (-3329 (*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) (-3413 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) (-3223 (*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) -(-13 (-363) (-38 |#1|) (-10 -8 (-15 -2062 ((-407 |#1|) $)) (-15 -2062 ($ (-407 (-418 |#1|)))) (-15 -3400 ($ $)) (-15 -3390 ((-418 |#1|) $)) (-15 -3379 (|#1| $)) (-15 -3366 ($ $ (-563))) (-15 -3352 ((-563) $)) (-15 -3340 ((-1165 |#1|) |#1| |#1|)) (-15 -3329 ($ $)) (-15 -3413 ($ |#1| (-418 |#1|))) (-15 -3223 (|#1| $)))) -((-3413 (((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169)) 17) (((-52) (-407 (-948 |#1|)) (-1169)) 18))) -(((-911 |#1|) (-10 -7 (-15 -3413 ((-52) (-407 (-948 |#1|)) (-1169))) (-15 -3413 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169)))) (-13 (-307) (-147))) (T -911)) -((-3413 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1169)) (-5 *3 (-948 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6)))) (-3413 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5))))) -(-10 -7 (-15 -3413 ((-52) (-407 (-948 |#1|)) (-1169))) (-15 -3413 ((-52) (-948 |#1|) (-418 (-948 |#1|)) (-1169)))) -((-3423 ((|#4| (-640 |#4|)) 149) (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 85) ((|#4| |#4| |#4|) 148)) (-1647 (((-1165 |#4|) (-640 (-1165 |#4|))) 140) (((-1165 |#4|) (-1165 |#4|) (-1165 |#4|)) 63) ((|#4| (-640 |#4|)) 71) ((|#4| |#4| |#4|) 108))) -(((-912 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1647 (|#4| |#4| |#4|)) (-15 -1647 (|#4| (-640 |#4|))) (-15 -1647 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -1647 ((-1165 |#4|) (-640 (-1165 |#4|)))) (-15 -3423 (|#4| |#4| |#4|)) (-15 -3423 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -3423 (|#4| (-640 |#4|)))) (-789) (-846) (-307) (-945 |#3| |#1| |#2|)) (T -912)) -((-3423 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-3423 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-3423 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-640 (-1165 *7))) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-1165 *7)) (-5 *1 (-912 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) (-1647 (*1 *2 *2 *2) (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)))) (-1647 (*1 *2 *2 *2) (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4))))) -(-10 -7 (-15 -1647 (|#4| |#4| |#4|)) (-15 -1647 (|#4| (-640 |#4|))) (-15 -1647 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -1647 ((-1165 |#4|) (-640 (-1165 |#4|)))) (-15 -3423 (|#4| |#4| |#4|)) (-15 -3423 ((-1165 |#4|) (-1165 |#4|) (-1165 |#4|))) (-15 -3423 (|#4| (-640 |#4|)))) -((-3558 (((-900 (-563)) (-967)) 37) (((-900 (-563)) (-640 (-563))) 34)) (-3431 (((-900 (-563)) (-640 (-563))) 68) (((-900 (-563)) (-917)) 69)) (-3547 (((-900 (-563))) 38)) (-3528 (((-900 (-563))) 54) (((-900 (-563)) (-640 (-563))) 53)) (-3518 (((-900 (-563))) 52) (((-900 (-563)) (-640 (-563))) 51)) (-3509 (((-900 (-563))) 50) (((-900 (-563)) (-640 (-563))) 49)) (-3499 (((-900 (-563))) 48) (((-900 (-563)) (-640 (-563))) 47)) (-3488 (((-900 (-563))) 46) (((-900 (-563)) (-640 (-563))) 45)) (-3538 (((-900 (-563))) 56) (((-900 (-563)) (-640 (-563))) 55)) (-3477 (((-900 (-563)) (-640 (-563))) 73) (((-900 (-563)) (-917)) 75)) (-3467 (((-900 (-563)) (-640 (-563))) 70) (((-900 (-563)) (-917)) 71)) (-3442 (((-900 (-563)) (-640 (-563))) 66) (((-900 (-563)) (-917)) 67)) (-3454 (((-900 (-563)) (-640 (-917))) 59))) -(((-913) (-10 -7 (-15 -3431 ((-900 (-563)) (-917))) (-15 -3431 ((-900 (-563)) (-640 (-563)))) (-15 -3442 ((-900 (-563)) (-917))) (-15 -3442 ((-900 (-563)) (-640 (-563)))) (-15 -3454 ((-900 (-563)) (-640 (-917)))) (-15 -3467 ((-900 (-563)) (-917))) (-15 -3467 ((-900 (-563)) (-640 (-563)))) (-15 -3477 ((-900 (-563)) (-917))) (-15 -3477 ((-900 (-563)) (-640 (-563)))) (-15 -3488 ((-900 (-563)) (-640 (-563)))) (-15 -3488 ((-900 (-563)))) (-15 -3499 ((-900 (-563)) (-640 (-563)))) (-15 -3499 ((-900 (-563)))) (-15 -3509 ((-900 (-563)) (-640 (-563)))) (-15 -3509 ((-900 (-563)))) (-15 -3518 ((-900 (-563)) (-640 (-563)))) (-15 -3518 ((-900 (-563)))) (-15 -3528 ((-900 (-563)) (-640 (-563)))) (-15 -3528 ((-900 (-563)))) (-15 -3538 ((-900 (-563)) (-640 (-563)))) (-15 -3538 ((-900 (-563)))) (-15 -3547 ((-900 (-563)))) (-15 -3558 ((-900 (-563)) (-640 (-563)))) (-15 -3558 ((-900 (-563)) (-967))))) (T -913)) -((-3558 (*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3547 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3538 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3538 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3528 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3518 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3509 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3499 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3488 (*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3488 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3477 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3454 (*1 *2 *3) (-12 (-5 *3 (-640 (-917))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3442 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(-10 -7 (-15 -3431 ((-900 (-563)) (-917))) (-15 -3431 ((-900 (-563)) (-640 (-563)))) (-15 -3442 ((-900 (-563)) (-917))) (-15 -3442 ((-900 (-563)) (-640 (-563)))) (-15 -3454 ((-900 (-563)) (-640 (-917)))) (-15 -3467 ((-900 (-563)) (-917))) (-15 -3467 ((-900 (-563)) (-640 (-563)))) (-15 -3477 ((-900 (-563)) (-917))) (-15 -3477 ((-900 (-563)) (-640 (-563)))) (-15 -3488 ((-900 (-563)) (-640 (-563)))) (-15 -3488 ((-900 (-563)))) (-15 -3499 ((-900 (-563)) (-640 (-563)))) (-15 -3499 ((-900 (-563)))) (-15 -3509 ((-900 (-563)) (-640 (-563)))) (-15 -3509 ((-900 (-563)))) (-15 -3518 ((-900 (-563)) (-640 (-563)))) (-15 -3518 ((-900 (-563)))) (-15 -3528 ((-900 (-563)) (-640 (-563)))) (-15 -3528 ((-900 (-563)))) (-15 -3538 ((-900 (-563)) (-640 (-563)))) (-15 -3538 ((-900 (-563)))) (-15 -3547 ((-900 (-563)))) (-15 -3558 ((-900 (-563)) (-640 (-563)))) (-15 -3558 ((-900 (-563)) (-967)))) -((-3576 (((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))) 14)) (-3567 (((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))) 13))) -(((-914 |#1|) (-10 -7 (-15 -3567 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -3576 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))))) (-452)) (T -914)) -((-3576 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-914 *4)))) (-3567 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) (-5 *1 (-914 *4))))) -(-10 -7 (-15 -3567 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -3576 ((-640 (-948 |#1|)) (-640 (-948 |#1|)) (-640 (-1169))))) -((-2062 (((-316 |#1|) (-477)) 16))) -(((-915 |#1|) (-10 -7 (-15 -2062 ((-316 |#1|) (-477)))) (-13 (-846) (-555))) (T -915)) -((-2062 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4)) (-4 *4 (-13 (-846) (-555)))))) -(-10 -7 (-15 -2062 ((-316 |#1|) (-477)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-2712 (((-112) $) 31)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-916) (-140)) (T -916)) -((-3597 (*1 *2 *3) (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -2765 (-640 *1)) (|:| -1738 *1))) (-5 *3 (-640 *1)))) (-3586 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-916))))) -(-13 (-452) (-10 -8 (-15 -3597 ((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $))) (-15 -3586 ((-3 (-640 $) "failed") (-640 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1647 (($ $ $) NIL)) (-2062 (((-858) $) NIL)) (-3803 (($) NIL T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ $ $) NIL))) -(((-917) (-13 (-790) (-722) (-10 -8 (-15 -1647 ($ $ $)) (-6 (-4410 "*"))))) (T -917)) -((-1647 (*1 *1 *1 *1) (-5 *1 (-917)))) -(-13 (-790) (-722) (-10 -8 (-15 -1647 ($ $ $)) (-6 (-4410 "*")))) +((-4075 (((-687 (-1217)) $ (-1217)) NIL)) (-2047 (((-687 (-549)) $ (-549)) NIL)) (-3674 (((-768) $ (-128)) NIL)) (-1768 (((-687 (-129)) $ (-129)) 21)) (-1957 (($ (-388)) 12) (($ (-1152)) 14)) (-3342 (((-112) $) 18)) (-3742 (((-859) $) 25)) (-1322 (($ $) 22))) +(((-858) (-13 (-857) (-611 (-859)) (-10 -8 (-15 -1957 ($ (-388))) (-15 -1957 ($ (-1152))) (-15 -3342 ((-112) $))))) (T -858)) +((-1957 (*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858)))) (-1957 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) (-3342 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858))))) +(-13 (-857) (-611 (-859)) (-10 -8 (-15 -1957 ($ (-388))) (-15 -1957 ($ (-1152))) (-15 -3342 ((-112) $)))) +((-3732 (((-112) $ $) NIL) (($ $ $) 86)) (-2075 (($ $ $) 126)) (-2741 (((-564) $) 31) (((-564)) 36)) (-2429 (($ (-564)) 54)) (-4360 (($ $ $) 55) (($ (-641 $)) 85)) (-3144 (($ $ (-641 $)) 83)) (-2813 (((-564) $) 34)) (-2341 (($ $ $) 74)) (-2958 (($ $) 141) (($ $ $) 142) (($ $ $ $) 143)) (-1435 (((-564) $) 33)) (-1550 (($ $ $) 73)) (-3961 (($ $) 115)) (-1453 (($ $ $) 130)) (-2942 (($ (-641 $)) 62)) (-2408 (($ $ (-641 $)) 80)) (-3932 (($ (-564) (-564)) 56)) (-3874 (($ $) 127) (($ $ $) 128)) (-2427 (($ $ (-564)) 43) (($ $) 46)) (-1373 (($ $ $) 98)) (-3198 (($ $ $) 133)) (-1406 (($ $) 116)) (-1350 (($ $ $) 99)) (-2458 (($ $) 144) (($ $ $) 145) (($ $ $ $) 146)) (-2205 (((-1264) $) 10)) (-2913 (($ $) 119) (($ $ (-768)) 123)) (-2981 (($ $ $) 76)) (-1797 (($ $ $) 75)) (-4037 (($ $ (-641 $)) 111)) (-3776 (($ $ $) 114)) (-1757 (($ (-641 $)) 60)) (-2211 (($ $) 71) (($ (-641 $)) 72)) (-2128 (($ $ $) 124)) (-4022 (($ $) 117)) (-3273 (($ $ $) 129)) (-1596 (($ (-564)) 21) (($ (-1170)) 23) (($ (-1152)) 30) (($ (-225)) 25)) (-4279 (($ $ $) 102)) (-4255 (($ $) 103)) (-2760 (((-1264) (-1152)) 15)) (-2932 (($ (-1152)) 14)) (-1915 (($ (-641 (-641 $))) 59)) (-2413 (($ $ (-564)) 42) (($ $) 45)) (-2217 (((-1152) $) NIL)) (-2654 (($ $ $) 132)) (-1822 (($ $) 147) (($ $ $) 148) (($ $ $ $) 149)) (-1482 (((-112) $) 109)) (-3609 (($ $ (-641 $)) 112) (($ $ $ $) 113)) (-3302 (($ (-564)) 39)) (-3724 (((-564) $) 32) (((-564)) 35)) (-3488 (($ $ $) 40) (($ (-641 $)) 84)) (-3864 (((-1114) $) NIL)) (-1321 (($ $ $) 100)) (-3434 (($) 13)) (-4382 (($ $ (-641 $)) 110)) (-4252 (((-1152) (-1152)) 8)) (-2952 (($ $) 118) (($ $ (-768)) 122)) (-1337 (($ $ $) 97)) (-4117 (($ $ (-768)) 140)) (-2815 (($ (-641 $)) 61)) (-3742 (((-859) $) 19)) (-2212 (($ $ (-564)) 41) (($ $) 44)) (-2237 (($ $) 69) (($ (-641 $)) 70)) (-4194 (($ $) 67) (($ (-641 $)) 68)) (-1523 (($ $) 125)) (-1786 (($ (-641 $)) 66)) (-3181 (($ $ $) 106)) (-4162 (($ $ $) 131)) (-4267 (($ $ $) 101)) (-4215 (($ $ $) 104) (($ $) 105)) (-1751 (($ $ $) 90)) (-1731 (($ $ $) 88)) (-1705 (((-112) $ $) 16) (($ $ $) 17)) (-1741 (($ $ $) 89)) (-1723 (($ $ $) 87)) (-1799 (($ $ $) 95)) (-1790 (($ $ $) 92) (($ $) 93)) (-1780 (($ $ $) 91)) (** (($ $ $) 96)) (* (($ $ $) 94))) +(((-859) (-13 (-1094) (-10 -8 (-15 -2205 ((-1264) $)) (-15 -2932 ($ (-1152))) (-15 -2760 ((-1264) (-1152))) (-15 -1596 ($ (-564))) (-15 -1596 ($ (-1170))) (-15 -1596 ($ (-1152))) (-15 -1596 ($ (-225))) (-15 -3434 ($)) (-15 -4252 ((-1152) (-1152))) (-15 -2741 ((-564) $)) (-15 -3724 ((-564) $)) (-15 -2741 ((-564))) (-15 -3724 ((-564))) (-15 -1435 ((-564) $)) (-15 -2813 ((-564) $)) (-15 -3302 ($ (-564))) (-15 -2429 ($ (-564))) (-15 -3932 ($ (-564) (-564))) (-15 -2413 ($ $ (-564))) (-15 -2427 ($ $ (-564))) (-15 -2212 ($ $ (-564))) (-15 -2413 ($ $)) (-15 -2427 ($ $)) (-15 -2212 ($ $)) (-15 -3488 ($ $ $)) (-15 -4360 ($ $ $)) (-15 -3488 ($ (-641 $))) (-15 -4360 ($ (-641 $))) (-15 -4037 ($ $ (-641 $))) (-15 -3609 ($ $ (-641 $))) (-15 -3609 ($ $ $ $)) (-15 -3776 ($ $ $)) (-15 -1482 ((-112) $)) (-15 -4382 ($ $ (-641 $))) (-15 -3961 ($ $)) (-15 -2654 ($ $ $)) (-15 -1523 ($ $)) (-15 -1915 ($ (-641 (-641 $)))) (-15 -2075 ($ $ $)) (-15 -3874 ($ $)) (-15 -3874 ($ $ $)) (-15 -3273 ($ $ $)) (-15 -1453 ($ $ $)) (-15 -4162 ($ $ $)) (-15 -3198 ($ $ $)) (-15 -4117 ($ $ (-768))) (-15 -3181 ($ $ $)) (-15 -1550 ($ $ $)) (-15 -2341 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -2408 ($ $ (-641 $))) (-15 -3144 ($ $ (-641 $))) (-15 -1406 ($ $)) (-15 -2952 ($ $)) (-15 -2952 ($ $ (-768))) (-15 -2913 ($ $)) (-15 -2913 ($ $ (-768))) (-15 -4022 ($ $)) (-15 -2128 ($ $ $)) (-15 -2958 ($ $)) (-15 -2958 ($ $ $)) (-15 -2958 ($ $ $ $)) (-15 -2458 ($ $)) (-15 -2458 ($ $ $)) (-15 -2458 ($ $ $ $)) (-15 -1822 ($ $)) (-15 -1822 ($ $ $)) (-15 -1822 ($ $ $ $)) (-15 -4194 ($ $)) (-15 -4194 ($ (-641 $))) (-15 -2237 ($ $)) (-15 -2237 ($ (-641 $))) (-15 -2211 ($ $)) (-15 -2211 ($ (-641 $))) (-15 -1757 ($ (-641 $))) (-15 -2815 ($ (-641 $))) (-15 -2942 ($ (-641 $))) (-15 -1786 ($ (-641 $))) (-15 -1705 ($ $ $)) (-15 -3732 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -1731 ($ $ $)) (-15 -1741 ($ $ $)) (-15 -1751 ($ $ $)) (-15 -1780 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -1790 ($ $)) (-15 * ($ $ $)) (-15 -1799 ($ $ $)) (-15 ** ($ $ $)) (-15 -1337 ($ $ $)) (-15 -1373 ($ $ $)) (-15 -1350 ($ $ $)) (-15 -1321 ($ $ $)) (-15 -4267 ($ $ $)) (-15 -4279 ($ $ $)) (-15 -4255 ($ $)) (-15 -4215 ($ $ $)) (-15 -4215 ($ $))))) (T -859)) +((-2205 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-859)))) (-2932 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-859)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-1596 (*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859)))) (-3434 (*1 *1) (-5 *1 (-859))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) (-2741 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3724 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2741 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3724 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-1435 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2813 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3302 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2429 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-3932 (*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2413 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2427 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2212 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) (-2413 (*1 *1 *1) (-5 *1 (-859))) (-2427 (*1 *1 *1) (-5 *1 (-859))) (-2212 (*1 *1 *1) (-5 *1 (-859))) (-3488 (*1 *1 *1 *1) (-5 *1 (-859))) (-4360 (*1 *1 *1 *1) (-5 *1 (-859))) (-3488 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-4360 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-4037 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3609 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3609 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-3776 (*1 *1 *1 *1) (-5 *1 (-859))) (-1482 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3961 (*1 *1 *1) (-5 *1 (-859))) (-2654 (*1 *1 *1 *1) (-5 *1 (-859))) (-1523 (*1 *1 *1) (-5 *1 (-859))) (-1915 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-859)))) (-2075 (*1 *1 *1 *1) (-5 *1 (-859))) (-3874 (*1 *1 *1) (-5 *1 (-859))) (-3874 (*1 *1 *1 *1) (-5 *1 (-859))) (-3273 (*1 *1 *1 *1) (-5 *1 (-859))) (-1453 (*1 *1 *1 *1) (-5 *1 (-859))) (-4162 (*1 *1 *1 *1) (-5 *1 (-859))) (-3198 (*1 *1 *1 *1) (-5 *1 (-859))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-3181 (*1 *1 *1 *1) (-5 *1 (-859))) (-1550 (*1 *1 *1 *1) (-5 *1 (-859))) (-2341 (*1 *1 *1 *1) (-5 *1 (-859))) (-1797 (*1 *1 *1 *1) (-5 *1 (-859))) (-2981 (*1 *1 *1 *1) (-5 *1 (-859))) (-2408 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1406 (*1 *1 *1) (-5 *1 (-859))) (-2952 (*1 *1 *1) (-5 *1 (-859))) (-2952 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-2913 (*1 *1 *1) (-5 *1 (-859))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) (-4022 (*1 *1 *1) (-5 *1 (-859))) (-2128 (*1 *1 *1 *1) (-5 *1 (-859))) (-2958 (*1 *1 *1) (-5 *1 (-859))) (-2958 (*1 *1 *1 *1) (-5 *1 (-859))) (-2958 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-2458 (*1 *1 *1) (-5 *1 (-859))) (-2458 (*1 *1 *1 *1) (-5 *1 (-859))) (-2458 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-1822 (*1 *1 *1) (-5 *1 (-859))) (-1822 (*1 *1 *1 *1) (-5 *1 (-859))) (-1822 (*1 *1 *1 *1 *1) (-5 *1 (-859))) (-4194 (*1 *1 *1) (-5 *1 (-859))) (-4194 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2237 (*1 *1 *1) (-5 *1 (-859))) (-2237 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2211 (*1 *1 *1) (-5 *1 (-859))) (-2211 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1757 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2815 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-2942 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1786 (*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) (-1705 (*1 *1 *1 *1) (-5 *1 (-859))) (-3732 (*1 *1 *1 *1) (-5 *1 (-859))) (-1723 (*1 *1 *1 *1) (-5 *1 (-859))) (-1731 (*1 *1 *1 *1) (-5 *1 (-859))) (-1741 (*1 *1 *1 *1) (-5 *1 (-859))) (-1751 (*1 *1 *1 *1) (-5 *1 (-859))) (-1780 (*1 *1 *1 *1) (-5 *1 (-859))) (-1790 (*1 *1 *1 *1) (-5 *1 (-859))) (-1790 (*1 *1 *1) (-5 *1 (-859))) (* (*1 *1 *1 *1) (-5 *1 (-859))) (-1799 (*1 *1 *1 *1) (-5 *1 (-859))) (** (*1 *1 *1 *1) (-5 *1 (-859))) (-1337 (*1 *1 *1 *1) (-5 *1 (-859))) (-1373 (*1 *1 *1 *1) (-5 *1 (-859))) (-1350 (*1 *1 *1 *1) (-5 *1 (-859))) (-1321 (*1 *1 *1 *1) (-5 *1 (-859))) (-4267 (*1 *1 *1 *1) (-5 *1 (-859))) (-4279 (*1 *1 *1 *1) (-5 *1 (-859))) (-4255 (*1 *1 *1) (-5 *1 (-859))) (-4215 (*1 *1 *1 *1) (-5 *1 (-859))) (-4215 (*1 *1 *1) (-5 *1 (-859)))) +(-13 (-1094) (-10 -8 (-15 -2205 ((-1264) $)) (-15 -2932 ($ (-1152))) (-15 -2760 ((-1264) (-1152))) (-15 -1596 ($ (-564))) (-15 -1596 ($ (-1170))) (-15 -1596 ($ (-1152))) (-15 -1596 ($ (-225))) (-15 -3434 ($)) (-15 -4252 ((-1152) (-1152))) (-15 -2741 ((-564) $)) (-15 -3724 ((-564) $)) (-15 -2741 ((-564))) (-15 -3724 ((-564))) (-15 -1435 ((-564) $)) (-15 -2813 ((-564) $)) (-15 -3302 ($ (-564))) (-15 -2429 ($ (-564))) (-15 -3932 ($ (-564) (-564))) (-15 -2413 ($ $ (-564))) (-15 -2427 ($ $ (-564))) (-15 -2212 ($ $ (-564))) (-15 -2413 ($ $)) (-15 -2427 ($ $)) (-15 -2212 ($ $)) (-15 -3488 ($ $ $)) (-15 -4360 ($ $ $)) (-15 -3488 ($ (-641 $))) (-15 -4360 ($ (-641 $))) (-15 -4037 ($ $ (-641 $))) (-15 -3609 ($ $ (-641 $))) (-15 -3609 ($ $ $ $)) (-15 -3776 ($ $ $)) (-15 -1482 ((-112) $)) (-15 -4382 ($ $ (-641 $))) (-15 -3961 ($ $)) (-15 -2654 ($ $ $)) (-15 -1523 ($ $)) (-15 -1915 ($ (-641 (-641 $)))) (-15 -2075 ($ $ $)) (-15 -3874 ($ $)) (-15 -3874 ($ $ $)) (-15 -3273 ($ $ $)) (-15 -1453 ($ $ $)) (-15 -4162 ($ $ $)) (-15 -3198 ($ $ $)) (-15 -4117 ($ $ (-768))) (-15 -3181 ($ $ $)) (-15 -1550 ($ $ $)) (-15 -2341 ($ $ $)) (-15 -1797 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -2408 ($ $ (-641 $))) (-15 -3144 ($ $ (-641 $))) (-15 -1406 ($ $)) (-15 -2952 ($ $)) (-15 -2952 ($ $ (-768))) (-15 -2913 ($ $)) (-15 -2913 ($ $ (-768))) (-15 -4022 ($ $)) (-15 -2128 ($ $ $)) (-15 -2958 ($ $)) (-15 -2958 ($ $ $)) (-15 -2958 ($ $ $ $)) (-15 -2458 ($ $)) (-15 -2458 ($ $ $)) (-15 -2458 ($ $ $ $)) (-15 -1822 ($ $)) (-15 -1822 ($ $ $)) (-15 -1822 ($ $ $ $)) (-15 -4194 ($ $)) (-15 -4194 ($ (-641 $))) (-15 -2237 ($ $)) (-15 -2237 ($ (-641 $))) (-15 -2211 ($ $)) (-15 -2211 ($ (-641 $))) (-15 -1757 ($ (-641 $))) (-15 -2815 ($ (-641 $))) (-15 -2942 ($ (-641 $))) (-15 -1786 ($ (-641 $))) (-15 -1705 ($ $ $)) (-15 -3732 ($ $ $)) (-15 -1723 ($ $ $)) (-15 -1731 ($ $ $)) (-15 -1741 ($ $ $)) (-15 -1751 ($ $ $)) (-15 -1780 ($ $ $)) (-15 -1790 ($ $ $)) (-15 -1790 ($ $)) (-15 * ($ $ $)) (-15 -1799 ($ $ $)) (-15 ** ($ $ $)) (-15 -1337 ($ $ $)) (-15 -1373 ($ $ $)) (-15 -1350 ($ $ $)) (-15 -1321 ($ $ $)) (-15 -4267 ($ $ $)) (-15 -4279 ($ $ $)) (-15 -4255 ($ $)) (-15 -4215 ($ $ $)) (-15 -4215 ($ $)))) +((-3842 (((-1264) (-641 (-52))) 24)) (-2170 (((-1264) (-1152) (-859)) 14) (((-1264) (-859)) 9) (((-1264) (-1152)) 11))) +(((-860) (-10 -7 (-15 -2170 ((-1264) (-1152))) (-15 -2170 ((-1264) (-859))) (-15 -2170 ((-1264) (-1152) (-859))) (-15 -3842 ((-1264) (-641 (-52)))))) (T -860)) +((-3842 (*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-860)))) (-2170 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) (-2170 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-860))))) +(-10 -7 (-15 -2170 ((-1264) (-1152))) (-15 -2170 ((-1264) (-859))) (-15 -2170 ((-1264) (-1152) (-859))) (-15 -3842 ((-1264) (-641 (-52))))) +((-3732 (((-112) $ $) NIL)) (-3851 (((-3 $ "failed") (-1170)) 39)) (-1938 (((-768)) 32)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) 29)) (-2217 (((-1152) $) 46)) (-1495 (($ (-918)) 28)) (-3864 (((-1114) $) NIL)) (-2235 (((-1170) $) 13) (((-536) $) 19) (((-889 (-379)) $) 26) (((-889 (-564)) $) 22)) (-3742 (((-859) $) 16)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 43)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 41))) +(((-861 |#1|) (-13 (-841) (-612 (-1170)) (-612 (-536)) (-612 (-889 (-379))) (-612 (-889 (-564))) (-10 -8 (-15 -3851 ((-3 $ "failed") (-1170))))) (-641 (-1170))) (T -861)) +((-3851 (*1 *1 *2) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-861 *3)) (-14 *3 (-641 *2))))) +(-13 (-841) (-612 (-1170)) (-612 (-536)) (-612 (-889 (-379))) (-612 (-889 (-564))) (-10 -8 (-15 -3851 ((-3 $ "failed") (-1170))))) +((-3732 (((-112) $ $) NIL)) (-4324 (((-506) $) 9)) (-1386 (((-641 (-439)) $) 13)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 21)) (-1705 (((-112) $ $) 16))) +(((-862) (-13 (-1094) (-10 -8 (-15 -4324 ((-506) $)) (-15 -1386 ((-641 (-439)) $))))) (T -862)) +((-4324 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-862)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-862))))) +(-13 (-1094) (-10 -8 (-15 -4324 ((-506) $)) (-15 -1386 ((-641 (-439)) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-949 |#1|)) NIL) (((-949 |#1|) $) NIL) (($ |#1|) NIL (|has| |#1| (-172)))) (-3270 (((-768)) NIL T CONST)) (-3722 (((-1264) (-768)) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1799 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-863 |#1| |#2| |#3| |#4|) (-13 (-1046) (-490 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1799 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3722 ((-1264) (-768))))) (-1046) (-641 (-1170)) (-641 (-768)) (-768)) (T -863)) +((-1799 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-863 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-768))) (-14 *5 (-768)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-863 *4 *5 *6 *7)) (-4 *4 (-1046)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) (-14 *7 *3)))) +(-13 (-1046) (-490 (-949 |#1|)) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1799 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3722 ((-1264) (-768))))) +((-3009 (((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|) 43)) (-1860 (((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|) 34))) +(((-864 |#1| |#2| |#3|) (-10 -7 (-15 -1860 ((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|)) (-15 -3009 ((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|))) (-363) (-1250 |#1|) (-1235 |#1|)) (T -864)) +((-3009 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-174 *6)) (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) (-1860 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-407 *6)) (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))) +(-10 -7 (-15 -1860 ((-3 (-407 |#3|) "failed") (-768) (-768) |#2| |#2|)) (-15 -3009 ((-3 (-174 |#3|) "failed") (-768) (-768) |#2| |#2|))) +((-1860 (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)) 30) (((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) 28))) +(((-865 |#1| |#2| |#3|) (-10 -7 (-15 -1860 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -1860 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)))) (-363) (-1170) |#1|) (T -865)) +((-1860 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-865 *5 *6 *7)))) (-1860 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) (-5 *1 (-865 *5 *6 *7))))) +(-10 -7 (-15 -1860 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (-15 -1860 ((-3 (-407 (-1232 |#2| |#1|)) "failed") (-768) (-768) (-1251 |#1| |#2| |#3|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-4137 (($ $ (-564)) 63)) (-2377 (((-112) $ $) 60)) (-2818 (($) 17 T CONST)) (-3874 (($ (-1166 (-564)) (-564)) 62)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-2861 (($ $) 65)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-1619 (((-768) $) 70)) (-3840 (((-112) $) 31)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-1983 (((-564)) 67)) (-3405 (((-564) $) 66)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3004 (($ $ (-564)) 69)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-3716 (((-1150 (-564)) $) 71)) (-2356 (($ $) 68)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-2305 (((-564) $ (-564)) 64)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-866 |#1|) (-140) (-564)) (T -866)) +((-3716 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1150 (-564))))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-768)))) (-3004 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-2356 (*1 *1 *1) (-4 *1 (-866 *2))) (-1983 (*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-2861 (*1 *1 *1) (-4 *1 (-866 *2))) (-2305 (*1 *2 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-4137 (*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) (-3874 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-866 *4))))) +(-13 (-307) (-147) (-10 -8 (-15 -3716 ((-1150 (-564)) $)) (-15 -1619 ((-768) $)) (-15 -3004 ($ $ (-564))) (-15 -2356 ($ $)) (-15 -1983 ((-564))) (-15 -3405 ((-564) $)) (-15 -2861 ($ $)) (-15 -2305 ((-564) $ (-564))) (-15 -4137 ($ $ (-564))) (-15 -3874 ($ (-1166 (-564)) (-564))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-307) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-4137 (($ $ (-564)) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3874 (($ (-1166 (-564)) (-564)) NIL)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2861 (($ $) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-1619 (((-768) $) NIL)) (-3840 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1983 (((-564)) NIL)) (-3405 (((-564) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3004 (($ $ (-564)) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3716 (((-1150 (-564)) $) NIL)) (-2356 (($ $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL)) (-3270 (((-768)) NIL T CONST)) (-3360 (((-112) $ $) NIL)) (-2305 (((-564) $ (-564)) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) +(((-867 |#1|) (-866 |#1|) (-564)) (T -867)) +NIL +(-866 |#1|) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| (-867 |#1|) (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-867 |#1|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| (-867 |#1|) (-1035 (-564))))) (-2239 (((-867 |#1|) $) NIL) (((-1170) $) NIL (|has| (-867 |#1|) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-867 |#1|) (-1035 (-564)))) (((-564) $) NIL (|has| (-867 |#1|) (-1035 (-564))))) (-1480 (($ $) NIL) (($ (-564) $) NIL)) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-867 |#1|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-867 |#1|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-867 |#1|))) (|:| |vec| (-1259 (-867 |#1|)))) (-685 $) (-1259 $)) NIL) (((-685 (-867 |#1|)) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-867 |#1|) (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) NIL (|has| (-867 |#1|) (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-867 |#1|) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-867 |#1|) (-883 (-379))))) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL)) (-1625 (((-867 |#1|) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| (-867 |#1|) (-1145)))) (-2839 (((-112) $) NIL (|has| (-867 |#1|) (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| (-867 |#1|) (-847)))) (-2848 (($ $ $) NIL (|has| (-867 |#1|) (-847)))) (-2187 (($ (-1 (-867 |#1|) (-867 |#1|)) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-867 |#1|) (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| (-867 |#1|) (-307)))) (-3014 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-867 |#1|) (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 (-867 |#1|)) (-641 (-867 |#1|))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-867 |#1|) (-867 |#1|)) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-294 (-867 |#1|))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-641 (-294 (-867 |#1|)))) NIL (|has| (-867 |#1|) (-309 (-867 |#1|)))) (($ $ (-641 (-1170)) (-641 (-867 |#1|))) NIL (|has| (-867 |#1|) (-514 (-1170) (-867 |#1|)))) (($ $ (-1170) (-867 |#1|)) NIL (|has| (-867 |#1|) (-514 (-1170) (-867 |#1|))))) (-4061 (((-768) $) NIL)) (-4382 (($ $ (-867 |#1|)) NIL (|has| (-867 |#1|) (-286 (-867 |#1|) (-867 |#1|))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL (|has| (-867 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-867 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1 (-867 |#1|) (-867 |#1|)) (-768)) NIL) (($ $ (-1 (-867 |#1|) (-867 |#1|))) NIL)) (-2090 (($ $) NIL)) (-1634 (((-867 |#1|) $) NIL)) (-2235 (((-889 (-564)) $) NIL (|has| (-867 |#1|) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-867 |#1|) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-867 |#1|) (-612 (-536)))) (((-379) $) NIL (|has| (-867 |#1|) (-1019))) (((-225) $) NIL (|has| (-867 |#1|) (-1019)))) (-2426 (((-174 (-407 (-564))) $) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-867 |#1|) (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL) (($ (-867 |#1|)) NIL) (($ (-1170)) NIL (|has| (-867 |#1|) (-1035 (-1170))))) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-867 |#1|) (-906))) (|has| (-867 |#1|) (-145))))) (-3270 (((-768)) NIL T CONST)) (-2551 (((-867 |#1|) $) NIL (|has| (-867 |#1|) (-545)))) (-3360 (((-112) $ $) NIL)) (-2305 (((-407 (-564)) $ (-564)) NIL)) (-2792 (($ $) NIL (|has| (-867 |#1|) (-817)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $) NIL (|has| (-867 |#1|) (-233))) (($ $ (-768)) NIL (|has| (-867 |#1|) (-233))) (($ $ (-1170)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-867 |#1|) (-897 (-1170)))) (($ $ (-1 (-867 |#1|) (-867 |#1|)) (-768)) NIL) (($ $ (-1 (-867 |#1|) (-867 |#1|))) NIL)) (-1751 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-867 |#1|) (-847)))) (-1799 (($ $ $) NIL) (($ (-867 |#1|) (-867 |#1|)) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-867 |#1|) $) NIL) (($ $ (-867 |#1|)) NIL))) +(((-868 |#1|) (-13 (-989 (-867 |#1|)) (-10 -8 (-15 -2305 ((-407 (-564)) $ (-564))) (-15 -2426 ((-174 (-407 (-564))) $)) (-15 -1480 ($ $)) (-15 -1480 ($ (-564) $)))) (-564)) (T -868)) +((-2305 (*1 *2 *1 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-868 *4)) (-14 *4 *3) (-5 *3 (-564)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3)) (-14 *3 (-564)))) (-1480 (*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-14 *2 (-564)))) (-1480 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-868 *3)) (-14 *3 *2)))) +(-13 (-989 (-867 |#1|)) (-10 -8 (-15 -2305 ((-407 (-564)) $ (-564))) (-15 -2426 ((-174 (-407 (-564))) $)) (-15 -1480 ($ $)) (-15 -1480 ($ (-564) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 ((|#2| $) NIL (|has| |#2| (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| |#2| (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (|has| |#2| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564))))) (-2239 ((|#2| $) NIL) (((-1170) $) NIL (|has| |#2| (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-564)))) (((-564) $) NIL (|has| |#2| (-1035 (-564))))) (-1480 (($ $) 35) (($ (-564) $) 38)) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) 63)) (-2821 (($) NIL (|has| |#2| (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) NIL (|has| |#2| (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| |#2| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| |#2| (-883 (-379))))) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL)) (-1625 ((|#2| $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-2839 (((-112) $) NIL (|has| |#2| (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| |#2| (-847)))) (-2848 (($ $ $) NIL (|has| |#2| (-847)))) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 59)) (-3258 (($) NIL (|has| |#2| (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| |#2| (-307)))) (-3014 ((|#2| $) NIL (|has| |#2| (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 |#2|) (-641 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-309 |#2|))) (($ $ (-294 |#2|)) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-294 |#2|))) NIL (|has| |#2| (-309 |#2|))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (|has| |#2| (-514 (-1170) |#2|))) (($ $ (-1170) |#2|) NIL (|has| |#2| (-514 (-1170) |#2|)))) (-4061 (((-768) $) NIL)) (-4382 (($ $ |#2|) NIL (|has| |#2| (-286 |#2| |#2|)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) NIL (|has| |#2| (-233))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2090 (($ $) NIL)) (-1634 ((|#2| $) NIL)) (-2235 (((-889 (-564)) $) NIL (|has| |#2| (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| |#2| (-612 (-889 (-379))))) (((-536) $) NIL (|has| |#2| (-612 (-536)))) (((-379) $) NIL (|has| |#2| (-1019))) (((-225) $) NIL (|has| |#2| (-1019)))) (-2426 (((-174 (-407 (-564))) $) 77)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-3742 (((-859) $) 106) (($ (-564)) 20) (($ $) NIL) (($ (-407 (-564))) 25) (($ |#2|) 19) (($ (-1170)) NIL (|has| |#2| (-1035 (-1170))))) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3270 (((-768)) NIL T CONST)) (-2551 ((|#2| $) NIL (|has| |#2| (-545)))) (-3360 (((-112) $ $) NIL)) (-2305 (((-407 (-564)) $ (-564)) 70)) (-2792 (($ $) NIL (|has| |#2| (-817)))) (-4311 (($) 15 T CONST)) (-4321 (($) 17 T CONST)) (-2124 (($ $) NIL (|has| |#2| (-233))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) 45)) (-1741 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1799 (($ $ $) 24) (($ |#2| |#2|) 64)) (-1790 (($ $) 49) (($ $ $) 51)) (-1780 (($ $ $) 47)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) 60)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 52) (($ $ $) 54) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#2| $) 65) (($ $ |#2|) NIL))) +(((-869 |#1| |#2|) (-13 (-989 |#2|) (-10 -8 (-15 -2305 ((-407 (-564)) $ (-564))) (-15 -2426 ((-174 (-407 (-564))) $)) (-15 -1480 ($ $)) (-15 -1480 ($ (-564) $)))) (-564) (-866 |#1|)) (T -869)) +((-2305 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-869 *4 *5)) (-5 *3 (-564)) (-4 *5 (-866 *4)))) (-2426 (*1 *2 *1) (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3)))) (-1480 (*1 *1 *1) (-12 (-14 *2 (-564)) (-5 *1 (-869 *2 *3)) (-4 *3 (-866 *2)))) (-1480 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3))))) +(-13 (-989 |#2|) (-10 -8 (-15 -2305 ((-407 (-564)) $ (-564))) (-15 -2426 ((-174 (-407 (-564))) $)) (-15 -1480 ($ $)) (-15 -1480 ($ (-564) $)))) +((-3732 (((-112) $ $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-2899 ((|#2| $) 12)) (-3390 (($ |#1| |#2|) 9)) (-2217 (((-1152) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-3864 (((-1114) $) NIL (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094))))) (-1966 ((|#1| $) 11)) (-3753 (($ |#1| |#2|) 10)) (-3742 (((-859) $) 18 (-4030 (-12 (|has| |#1| (-611 (-859))) (|has| |#2| (-611 (-859)))) (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) (-1705 (((-112) $ $) 23 (-12 (|has| |#1| (-1094)) (|has| |#2| (-1094)))))) +(((-870 |#1| |#2|) (-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-859))) (IF (|has| |#2| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -3390 ($ |#1| |#2|)) (-15 -3753 ($ |#1| |#2|)) (-15 -1966 (|#1| $)) (-15 -2899 (|#2| $)))) (-1209) (-1209)) (T -870)) +((-3390 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-3753 (*1 *1 *2 *3) (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) (-1966 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1209)))) (-2899 (*1 *2 *1) (-12 (-4 *2 (-1209)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1209))))) +(-13 (-1209) (-10 -8 (IF (|has| |#1| (-611 (-859))) (IF (|has| |#2| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1094)) (IF (|has| |#2| (-1094)) (-6 (-1094)) |%noBranch|) |%noBranch|) (-15 -3390 ($ |#1| |#2|)) (-15 -3753 ($ |#1| |#2|)) (-15 -1966 (|#1| $)) (-15 -2899 (|#2| $)))) +((-3732 (((-112) $ $) NIL)) (-2221 (((-564) $) 16)) (-1924 (($ (-157)) 13)) (-1314 (($ (-157)) 14)) (-2217 (((-1152) $) NIL)) (-2334 (((-157) $) 15)) (-3864 (((-1114) $) NIL)) (-2781 (($ (-157)) 11)) (-1668 (($ (-157)) 10)) (-3742 (((-859) $) 24) (($ (-157)) 17)) (-1840 (($ (-157)) 12)) (-1705 (((-112) $ $) NIL))) +(((-871) (-13 (-1094) (-10 -8 (-15 -1668 ($ (-157))) (-15 -2781 ($ (-157))) (-15 -1840 ($ (-157))) (-15 -1924 ($ (-157))) (-15 -1314 ($ (-157))) (-15 -2334 ((-157) $)) (-15 -2221 ((-564) $)) (-15 -3742 ($ (-157)))))) (T -871)) +((-1668 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2781 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1924 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-1314 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2334 (*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) (-2221 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-871)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) +(-13 (-1094) (-10 -8 (-15 -1668 ($ (-157))) (-15 -2781 ($ (-157))) (-15 -1840 ($ (-157))) (-15 -1924 ($ (-157))) (-15 -1314 ($ (-157))) (-15 -2334 ((-157) $)) (-15 -2221 ((-564) $)) (-15 -3742 ($ (-157))))) +((-3742 (((-316 (-564)) (-407 (-949 (-48)))) 23) (((-316 (-564)) (-949 (-48))) 18))) +(((-872) (-10 -7 (-15 -3742 ((-316 (-564)) (-949 (-48)))) (-15 -3742 ((-316 (-564)) (-407 (-949 (-48))))))) (T -872)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 (-48)))) (-5 *2 (-316 (-564))) (-5 *1 (-872)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-949 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-872))))) +(-10 -7 (-15 -3742 ((-316 (-564)) (-949 (-48)))) (-15 -3742 ((-316 (-564)) (-407 (-949 (-48)))))) +((-2187 (((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)) 15))) +(((-873 |#1| |#2|) (-10 -7 (-15 -2187 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) (-1209) (-1209)) (T -873)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6))))) +(-10 -7 (-15 -2187 ((-874 |#2|) (-1 |#2| |#1|) (-874 |#1|)))) +((-3910 (($ |#1| |#1|) 8)) (-1643 ((|#1| $ (-768)) 15))) +(((-874 |#1|) (-10 -8 (-15 -3910 ($ |#1| |#1|)) (-15 -1643 (|#1| $ (-768)))) (-1209)) (T -874)) +((-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-874 *2)) (-4 *2 (-1209)))) (-3910 (*1 *1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1209))))) +(-10 -8 (-15 -3910 ($ |#1| |#1|)) (-15 -1643 (|#1| $ (-768)))) +((-2187 (((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)) 15))) +(((-875 |#1| |#2|) (-10 -7 (-15 -2187 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) (-1209) (-1209)) (T -875)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-876 *6)) (-5 *1 (-875 *5 *6))))) +(-10 -7 (-15 -2187 ((-876 |#2|) (-1 |#2| |#1|) (-876 |#1|)))) +((-3910 (($ |#1| |#1| |#1|) 8)) (-1643 ((|#1| $ (-768)) 15))) +(((-876 |#1|) (-10 -8 (-15 -3910 ($ |#1| |#1| |#1|)) (-15 -1643 (|#1| $ (-768)))) (-1209)) (T -876)) +((-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-876 *2)) (-4 *2 (-1209)))) (-3910 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1209))))) +(-10 -8 (-15 -3910 ($ |#1| |#1| |#1|)) (-15 -1643 (|#1| $ (-768)))) +((-3277 (((-641 (-1175)) (-1152)) 9))) +(((-877) (-10 -7 (-15 -3277 ((-641 (-1175)) (-1152))))) (T -877)) +((-3277 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-877))))) +(-10 -7 (-15 -3277 ((-641 (-1175)) (-1152)))) +((-2187 (((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)) 15))) +(((-878 |#1| |#2|) (-10 -7 (-15 -2187 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) (-1209) (-1209)) (T -878)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6))))) +(-10 -7 (-15 -2187 ((-879 |#2|) (-1 |#2| |#1|) (-879 |#1|)))) +((-1843 (($ |#1| |#1| |#1|) 8)) (-1643 ((|#1| $ (-768)) 15))) +(((-879 |#1|) (-10 -8 (-15 -1843 ($ |#1| |#1| |#1|)) (-15 -1643 (|#1| $ (-768)))) (-1209)) (T -879)) +((-1643 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-879 *2)) (-4 *2 (-1209)))) (-1843 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1209))))) +(-10 -8 (-15 -1843 ($ |#1| |#1| |#1|)) (-15 -1643 (|#1| $ (-768)))) +((-4294 (((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564)))) 47)) (-1333 (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 43)) (-2950 (((-1150 (-641 (-564))) (-641 (-564))) 57) (((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564))) 55)) (-2793 (((-1150 (-641 (-564))) (-564)) 58)) (-3123 (((-1150 (-641 (-564))) (-564) (-564)) 34) (((-1150 (-641 (-564))) (-564)) 23) (((-1150 (-641 (-564))) (-564) (-564) (-564)) 19)) (-3553 (((-1150 (-641 (-564))) (-1150 (-641 (-564)))) 41)) (-2766 (((-641 (-564)) (-641 (-564))) 40))) +(((-880) (-10 -7 (-15 -3123 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -3123 ((-1150 (-641 (-564))) (-564))) (-15 -3123 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -2766 ((-641 (-564)) (-641 (-564)))) (-15 -3553 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -1333 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -4294 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -2950 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -2950 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -2793 ((-1150 (-641 (-564))) (-564))))) (T -880)) +((-2793 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-2950 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-2950 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-4294 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) (-5 *1 (-880)))) (-1333 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-641 (-564))))) (-3553 (*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)))) (-2766 (*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-880)))) (-3123 (*1 *2 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-3123 (*1 *2 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) (-3123 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))) +(-10 -7 (-15 -3123 ((-1150 (-641 (-564))) (-564) (-564) (-564))) (-15 -3123 ((-1150 (-641 (-564))) (-564))) (-15 -3123 ((-1150 (-641 (-564))) (-564) (-564))) (-15 -2766 ((-641 (-564)) (-641 (-564)))) (-15 -3553 ((-1150 (-641 (-564))) (-1150 (-641 (-564))))) (-15 -1333 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -4294 ((-1150 (-641 (-564))) (-641 (-564)) (-1150 (-641 (-564))))) (-15 -2950 ((-1150 (-641 (-564))) (-641 (-564)) (-641 (-564)))) (-15 -2950 ((-1150 (-641 (-564))) (-641 (-564)))) (-15 -2793 ((-1150 (-641 (-564))) (-564)))) +((-2235 (((-889 (-379)) $) 9 (|has| |#1| (-612 (-889 (-379))))) (((-889 (-564)) $) 8 (|has| |#1| (-612 (-889 (-564))))))) +(((-881 |#1|) (-140) (-1209)) (T -881)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-612 (-889 (-564)))) (-6 (-612 (-889 (-564)))) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-379)))) (-6 (-612 (-889 (-379)))) |%noBranch|))) +(((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564))))) +((-3732 (((-112) $ $) NIL)) (-3619 (($) 14)) (-2289 (($ (-886 |#1| |#2|) (-886 |#1| |#3|)) 28)) (-1615 (((-886 |#1| |#3|) $) 16)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1962 (((-112) $) 22)) (-1986 (($) 19)) (-3742 (((-859) $) 31)) (-2445 (((-886 |#1| |#2|) $) 15)) (-1705 (((-112) $ $) 26))) +(((-882 |#1| |#2| |#3|) (-13 (-1094) (-10 -8 (-15 -1962 ((-112) $)) (-15 -1986 ($)) (-15 -3619 ($)) (-15 -2289 ($ (-886 |#1| |#2|) (-886 |#1| |#3|))) (-15 -2445 ((-886 |#1| |#2|) $)) (-15 -1615 ((-886 |#1| |#3|) $)))) (-1094) (-1094) (-662 |#2|)) (T -882)) +((-1962 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-1986 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-3619 (*1 *1) (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) (-4 *4 (-662 *3)))) (-2289 (*1 *1 *2 *3) (-12 (-5 *2 (-886 *4 *5)) (-5 *3 (-886 *4 *6)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-882 *4 *5 *6)))) (-2445 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *4)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4)))) (-1615 (*1 *2 *1) (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *5)) (-5 *1 (-882 *3 *4 *5)) (-4 *3 (-1094)) (-4 *5 (-662 *4))))) +(-13 (-1094) (-10 -8 (-15 -1962 ((-112) $)) (-15 -1986 ($)) (-15 -3619 ($)) (-15 -2289 ($ (-886 |#1| |#2|) (-886 |#1| |#3|))) (-15 -2445 ((-886 |#1| |#2|) $)) (-15 -1615 ((-886 |#1| |#3|) $)))) +((-3732 (((-112) $ $) 7)) (-3075 (((-886 |#1| $) $ (-889 |#1|) (-886 |#1| $)) 13)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6))) +(((-883 |#1|) (-140) (-1094)) (T -883)) +((-3075 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-886 *4 *1)) (-5 *3 (-889 *4)) (-4 *1 (-883 *4)) (-4 *4 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -3075 ((-886 |t#1| $) $ (-889 |t#1|) (-886 |t#1| $))))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-4211 (((-112) (-641 |#2|) |#3|) 22) (((-112) |#2| |#3|) 17)) (-2924 (((-886 |#1| |#2|) |#2| |#3|) 44 (-12 (-4255 (|has| |#2| (-1035 (-1170)))) (-4255 (|has| |#2| (-1046))))) (((-641 (-294 (-949 |#2|))) |#2| |#3|) 43 (-12 (|has| |#2| (-1046)) (-4255 (|has| |#2| (-1035 (-1170)))))) (((-641 (-294 |#2|)) |#2| |#3|) 35 (|has| |#2| (-1035 (-1170)))) (((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|) 20))) +(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -4211 ((-112) |#2| |#3|)) (-15 -4211 ((-112) (-641 |#2|) |#3|)) (-15 -2924 ((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1035 (-1170))) (-15 -2924 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1046)) (-15 -2924 ((-641 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -2924 ((-886 |#1| |#2|) |#2| |#3|))))) (-1094) (-883 |#1|) (-612 (-889 |#1|))) (T -884)) +((-2924 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-886 *5 *3)) (-5 *1 (-884 *5 *3 *4)) (-4255 (-4 *3 (-1035 (-1170)))) (-4255 (-4 *3 (-1046))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-2924 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-949 *3)))) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1046)) (-4255 (-4 *3 (-1035 (-1170)))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-2924 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1035 (-1170))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) (-2924 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-5 *2 (-882 *5 *6 (-641 *6))) (-5 *1 (-884 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-889 *5))))) (-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-4 *6 (-883 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *6 *4)) (-4 *4 (-612 (-889 *5))))) (-4211 (*1 *2 *3 *4) (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5)))))) +(-10 -7 (-15 -4211 ((-112) |#2| |#3|)) (-15 -4211 ((-112) (-641 |#2|) |#3|)) (-15 -2924 ((-882 |#1| |#2| (-641 |#2|)) (-641 |#2|) |#3|)) (IF (|has| |#2| (-1035 (-1170))) (-15 -2924 ((-641 (-294 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1046)) (-15 -2924 ((-641 (-294 (-949 |#2|))) |#2| |#3|)) (-15 -2924 ((-886 |#1| |#2|) |#2| |#3|))))) +((-2187 (((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)) 22))) +(((-885 |#1| |#2| |#3|) (-10 -7 (-15 -2187 ((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)))) (-1094) (-1094) (-1094)) (T -885)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-886 *5 *6)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-886 *5 *7)) (-5 *1 (-885 *5 *6 *7))))) +(-10 -7 (-15 -2187 ((-886 |#1| |#3|) (-1 |#3| |#2|) (-886 |#1| |#2|)))) +((-3732 (((-112) $ $) NIL)) (-3518 (($ $ $) 40)) (-3124 (((-3 (-112) "failed") $ (-889 |#1|)) 37)) (-3619 (($) 12)) (-2217 (((-1152) $) NIL)) (-3560 (($ (-889 |#1|) |#2| $) 20)) (-3864 (((-1114) $) NIL)) (-3035 (((-3 |#2| "failed") (-889 |#1|) $) 51)) (-1962 (((-112) $) 15)) (-1986 (($) 13)) (-4206 (((-641 (-2 (|:| -1327 (-1170)) (|:| -2423 |#2|))) $) 25)) (-3753 (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 |#2|)))) 23)) (-3742 (((-859) $) 45)) (-2442 (($ (-889 |#1|) |#2| $ |#2|) 49)) (-2252 (($ (-889 |#1|) |#2| $) 48)) (-1705 (((-112) $ $) 42))) +(((-886 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1962 ((-112) $)) (-15 -1986 ($)) (-15 -3619 ($)) (-15 -3518 ($ $ $)) (-15 -3035 ((-3 |#2| "failed") (-889 |#1|) $)) (-15 -2252 ($ (-889 |#1|) |#2| $)) (-15 -3560 ($ (-889 |#1|) |#2| $)) (-15 -2442 ($ (-889 |#1|) |#2| $ |#2|)) (-15 -4206 ((-641 (-2 (|:| -1327 (-1170)) (|:| -2423 |#2|))) $)) (-15 -3753 ($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 |#2|))))) (-15 -3124 ((-3 (-112) "failed") $ (-889 |#1|))))) (-1094) (-1094)) (T -886)) +((-1962 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1986 (*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3619 (*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3518 (*1 *1 *1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3035 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) (-5 *1 (-886 *4 *2)))) (-2252 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-3560 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-2442 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1094)))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 *4)))) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 *4)))) (-4 *4 (-1094)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)))) (-3124 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -1962 ((-112) $)) (-15 -1986 ($)) (-15 -3619 ($)) (-15 -3518 ($ $ $)) (-15 -3035 ((-3 |#2| "failed") (-889 |#1|) $)) (-15 -2252 ($ (-889 |#1|) |#2| $)) (-15 -3560 ($ (-889 |#1|) |#2| $)) (-15 -2442 ($ (-889 |#1|) |#2| $ |#2|)) (-15 -4206 ((-641 (-2 (|:| -1327 (-1170)) (|:| -2423 |#2|))) $)) (-15 -3753 ($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 |#2|))))) (-15 -3124 ((-3 (-112) "failed") $ (-889 |#1|))))) +((-2665 (((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|))) 32) (((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|))) 46) (((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|)) 35)) (-3124 (((-112) (-641 |#2|) (-889 |#1|)) 42) (((-112) |#2| (-889 |#1|)) 36)) (-2510 (((-1 (-112) |#2|) (-889 |#1|)) 16)) (-1502 (((-641 |#2|) (-889 |#1|)) 24)) (-2745 (((-889 |#1|) (-889 |#1|) |#2|) 20))) +(((-887 |#1| |#2|) (-10 -7 (-15 -2665 ((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|))) (-15 -2665 ((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -2665 ((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -2510 ((-1 (-112) |#2|) (-889 |#1|))) (-15 -3124 ((-112) |#2| (-889 |#1|))) (-15 -3124 ((-112) (-641 |#2|) (-889 |#1|))) (-15 -2745 ((-889 |#1|) (-889 |#1|) |#2|)) (-15 -1502 ((-641 |#2|) (-889 |#1|)))) (-1094) (-1209)) (T -887)) +((-1502 (*1 *2 *3) (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) (-2745 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3)) (-4 *3 (-1209)))) (-3124 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6)))) (-3124 (*1 *2 *3 *4) (-12 (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-887 *5 *3)) (-4 *3 (-1209)))) (-2510 (*1 *2 *3) (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) (-2665 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-889 *5)) (-5 *3 (-641 (-1170))) (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-887 *5 *6)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *2 (-889 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) (-4 *5 (-1209)) (-5 *1 (-887 *4 *5))))) +(-10 -7 (-15 -2665 ((-889 |#1|) (-889 |#1|) (-1 (-112) |#2|))) (-15 -2665 ((-889 |#1|) (-889 |#1|) (-641 (-1 (-112) |#2|)))) (-15 -2665 ((-889 |#1|) (-889 |#1|) (-641 (-1170)) (-1 (-112) (-641 |#2|)))) (-15 -2510 ((-1 (-112) |#2|) (-889 |#1|))) (-15 -3124 ((-112) |#2| (-889 |#1|))) (-15 -3124 ((-112) (-641 |#2|) (-889 |#1|))) (-15 -2745 ((-889 |#1|) (-889 |#1|) |#2|)) (-15 -1502 ((-641 |#2|) (-889 |#1|)))) +((-2187 (((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)) 19))) +(((-888 |#1| |#2|) (-10 -7 (-15 -2187 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) (-1094) (-1094)) (T -888)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6))))) +(-10 -7 (-15 -2187 ((-889 |#2|) (-1 |#2| |#1|) (-889 |#1|)))) +((-3732 (((-112) $ $) NIL)) (-3021 (($ $ (-641 (-52))) 73)) (-4269 (((-641 $) $) 137)) (-1499 (((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $) 29)) (-2907 (((-112) $) 34)) (-3201 (($ $ (-641 (-1170)) (-52)) 30)) (-2726 (($ $ (-641 (-52))) 72)) (-2111 (((-3 |#1| "failed") $) 70) (((-3 (-1170) "failed") $) 161)) (-2239 ((|#1| $) 67) (((-1170) $) NIL)) (-3888 (($ $) 125)) (-1722 (((-112) $) 54)) (-2288 (((-641 (-52)) $) 49)) (-1578 (($ (-1170) (-112) (-112) (-112)) 74)) (-3930 (((-3 (-641 $) "failed") (-641 $)) 81)) (-3579 (((-112) $) 57)) (-3592 (((-112) $) 56)) (-2217 (((-1152) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) 40)) (-1777 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 47)) (-3343 (((-3 (-2 (|:| |val| $) (|:| -2515 $)) "failed") $) 96)) (-4386 (((-3 (-641 $) "failed") $) 39)) (-1442 (((-3 (-641 $) "failed") $ (-114)) 123) (((-3 (-2 (|:| -3440 (-114)) (|:| |arg| (-641 $))) "failed") $) 106)) (-2703 (((-3 (-641 $) "failed") $) 41)) (-3758 (((-3 (-2 (|:| |val| $) (|:| -2515 (-768))) "failed") $) 44)) (-4326 (((-112) $) 33)) (-3864 (((-1114) $) NIL)) (-2628 (((-112) $) 27)) (-3905 (((-112) $) 51)) (-2021 (((-641 (-52)) $) 129)) (-1975 (((-112) $) 55)) (-4382 (($ (-114) (-641 $)) 103)) (-3728 (((-768) $) 32)) (-3896 (($ $) 71)) (-2235 (($ (-641 $)) 68)) (-1804 (((-112) $) 31)) (-3742 (((-859) $) 62) (($ |#1|) 23) (($ (-1170)) 75)) (-2745 (($ $ (-52)) 128)) (-4311 (($) 102 T CONST)) (-4321 (($) 82 T CONST)) (-1705 (((-112) $ $) 92)) (-1799 (($ $ $) 116)) (-1780 (($ $ $) 120)) (** (($ $ (-768)) 114) (($ $ $) 63)) (* (($ $ $) 121))) +(((-889 |#1|) (-13 (-1094) (-1035 |#1|) (-1035 (-1170)) (-10 -8 (-15 0 ($) -2091) (-15 1 ($) -2091) (-15 -4386 ((-3 (-641 $) "failed") $)) (-15 -3514 ((-3 (-641 $) "failed") $)) (-15 -1442 ((-3 (-641 $) "failed") $ (-114))) (-15 -1442 ((-3 (-2 (|:| -3440 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -3758 ((-3 (-2 (|:| |val| $) (|:| -2515 (-768))) "failed") $)) (-15 -1777 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2703 ((-3 (-641 $) "failed") $)) (-15 -3343 ((-3 (-2 (|:| |val| $) (|:| -2515 $)) "failed") $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -1780 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ $)) (-15 -1799 ($ $ $)) (-15 -3728 ((-768) $)) (-15 -2235 ($ (-641 $))) (-15 -3896 ($ $)) (-15 -4326 ((-112) $)) (-15 -1722 ((-112) $)) (-15 -2907 ((-112) $)) (-15 -1804 ((-112) $)) (-15 -1975 ((-112) $)) (-15 -3592 ((-112) $)) (-15 -3579 ((-112) $)) (-15 -3905 ((-112) $)) (-15 -2288 ((-641 (-52)) $)) (-15 -2726 ($ $ (-641 (-52)))) (-15 -3021 ($ $ (-641 (-52)))) (-15 -1578 ($ (-1170) (-112) (-112) (-112))) (-15 -3201 ($ $ (-641 (-1170)) (-52))) (-15 -1499 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -2628 ((-112) $)) (-15 -3888 ($ $)) (-15 -2745 ($ $ (-52))) (-15 -2021 ((-641 (-52)) $)) (-15 -4269 ((-641 $) $)) (-15 -3930 ((-3 (-641 $) "failed") (-641 $))))) (-1094)) (T -889)) +((-4311 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-4321 (*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-4386 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3514 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1442 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-889 *4))) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-1442 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3440 (-114)) (|:| |arg| (-641 (-889 *3))))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3758 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -2515 (-768)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1777 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-889 *3)) (|:| |den| (-889 *3)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2703 (*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3343 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -2515 (-889 *3)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4382 (*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 (-889 *4))) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-1780 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-1799 (*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-3728 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3896 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-4326 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1975 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3592 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2726 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3021 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-1578 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-3201 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-889 *4)) (-4 *4 (-1094)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2628 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3888 (*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) (-2745 (*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) (-3930 (*1 *2 *2) (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(-13 (-1094) (-1035 |#1|) (-1035 (-1170)) (-10 -8 (-15 (-4311) ($) -2091) (-15 (-4321) ($) -2091) (-15 -4386 ((-3 (-641 $) "failed") $)) (-15 -3514 ((-3 (-641 $) "failed") $)) (-15 -1442 ((-3 (-641 $) "failed") $ (-114))) (-15 -1442 ((-3 (-2 (|:| -3440 (-114)) (|:| |arg| (-641 $))) "failed") $)) (-15 -3758 ((-3 (-2 (|:| |val| $) (|:| -2515 (-768))) "failed") $)) (-15 -1777 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2703 ((-3 (-641 $) "failed") $)) (-15 -3343 ((-3 (-2 (|:| |val| $) (|:| -2515 $)) "failed") $)) (-15 -4382 ($ (-114) (-641 $))) (-15 -1780 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768))) (-15 ** ($ $ $)) (-15 -1799 ($ $ $)) (-15 -3728 ((-768) $)) (-15 -2235 ($ (-641 $))) (-15 -3896 ($ $)) (-15 -4326 ((-112) $)) (-15 -1722 ((-112) $)) (-15 -2907 ((-112) $)) (-15 -1804 ((-112) $)) (-15 -1975 ((-112) $)) (-15 -3592 ((-112) $)) (-15 -3579 ((-112) $)) (-15 -3905 ((-112) $)) (-15 -2288 ((-641 (-52)) $)) (-15 -2726 ($ $ (-641 (-52)))) (-15 -3021 ($ $ (-641 (-52)))) (-15 -1578 ($ (-1170) (-112) (-112) (-112))) (-15 -3201 ($ $ (-641 (-1170)) (-52))) (-15 -1499 ((-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52))) $)) (-15 -2628 ((-112) $)) (-15 -3888 ($ $)) (-15 -2745 ($ $ (-52))) (-15 -2021 ((-641 (-52)) $)) (-15 -4269 ((-641 $) $)) (-15 -3930 ((-3 (-641 $) "failed") (-641 $))))) +((-3732 (((-112) $ $) NIL)) (-3491 (((-641 |#1|) $) 19)) (-3042 (((-112) $) 49)) (-2111 (((-3 (-668 |#1|) "failed") $) 56)) (-2239 (((-668 |#1|) $) 54)) (-1977 (($ $) 23)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2395 (((-768) $) 61)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-668 |#1|) $) 21)) (-3742 (((-859) $) 47) (($ (-668 |#1|)) 26) (((-816 |#1|) $) 36) (($ |#1|) 25)) (-4321 (($) 9 T CONST)) (-2546 (((-641 (-668 |#1|)) $) 28)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 12)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 67))) +(((-890 |#1|) (-13 (-847) (-1035 (-668 |#1|)) (-10 -8 (-15 1 ($) -2091) (-15 -3742 ((-816 |#1|) $)) (-15 -3742 ($ |#1|)) (-15 -1966 ((-668 |#1|) $)) (-15 -2395 ((-768) $)) (-15 -2546 ((-641 (-668 |#1|)) $)) (-15 -1977 ($ $)) (-15 -3042 ((-112) $)) (-15 -3491 ((-641 |#1|) $)))) (-847)) (T -890)) +((-4321 (*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3742 (*1 *1 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-2546 (*1 *2 *1) (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-1977 (*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) (-3491 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847))))) +(-13 (-847) (-1035 (-668 |#1|)) (-10 -8 (-15 (-4321) ($) -2091) (-15 -3742 ((-816 |#1|) $)) (-15 -3742 ($ |#1|)) (-15 -1966 ((-668 |#1|) $)) (-15 -2395 ((-768) $)) (-15 -2546 ((-641 (-668 |#1|)) $)) (-15 -1977 ($ $)) (-15 -3042 ((-112) $)) (-15 -3491 ((-641 |#1|) $)))) +((-2975 ((|#1| |#1| |#1|) 19))) +(((-891 |#1| |#2|) (-10 -7 (-15 -2975 (|#1| |#1| |#1|))) (-1235 |#2|) (-1046)) (T -891)) +((-2975 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1235 *3))))) +(-10 -7 (-15 -2975 (|#1| |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-3406 (((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 14)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-3968 (((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 13)) (-1705 (((-112) $ $) 6))) +(((-892) (-140)) (T -892)) +((-3406 (*1 *2 *3 *4) (-12 (-4 *1 (-892)) (-5 *3 (-1058)) (-5 *4 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)))))) (-3968 (*1 *2 *3) (-12 (-4 *1 (-892)) (-5 *3 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *2 (-1032))))) +(-13 (-1094) (-10 -7 (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| |explanations| (-1152))) (-1058) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -3968 ((-1032) (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-1586 ((|#1| |#1| (-768)) 29)) (-2717 (((-3 |#1| "failed") |#1| |#1|) 26)) (-2795 (((-3 (-2 (|:| -2413 |#1|) (|:| -2427 |#1|)) "failed") |#1| (-768) (-768)) 32) (((-641 |#1|) |#1|) 39))) +(((-893 |#1| |#2|) (-10 -7 (-15 -2795 ((-641 |#1|) |#1|)) (-15 -2795 ((-3 (-2 (|:| -2413 |#1|) (|:| -2427 |#1|)) "failed") |#1| (-768) (-768))) (-15 -2717 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1586 (|#1| |#1| (-768)))) (-1235 |#2|) (-363)) (T -893)) +((-1586 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-5 *1 (-893 *2 *4)) (-4 *2 (-1235 *4)))) (-2717 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-363)) (-5 *1 (-893 *2 *3)) (-4 *2 (-1235 *3)))) (-2795 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-768)) (-4 *5 (-363)) (-5 *2 (-2 (|:| -2413 *3) (|:| -2427 *3))) (-5 *1 (-893 *3 *5)) (-4 *3 (-1235 *5)))) (-2795 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-893 *3 *4)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -2795 ((-641 |#1|) |#1|)) (-15 -2795 ((-3 (-2 (|:| -2413 |#1|) (|:| -2427 |#1|)) "failed") |#1| (-768) (-768))) (-15 -2717 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1586 (|#1| |#1| (-768)))) +((-2443 (((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152)) 106) (((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225)) 102) (((-1032) (-895) (-1058)) 94) (((-1032) (-895)) 95)) (-3406 (((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058)) 65) (((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895)) 67))) +(((-894) (-10 -7 (-15 -2443 ((-1032) (-895))) (-15 -2443 ((-1032) (-895) (-1058))) (-15 -2443 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -2443 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058))))) (T -894)) +((-3406 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-894)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152))))) (-5 *1 (-894)))) (-2443 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-2443 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-894)))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1032)) (-5 *1 (-894))))) +(-10 -7 (-15 -2443 ((-1032) (-895))) (-15 -2443 ((-1032) (-895) (-1058))) (-15 -2443 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152) (-225))) (-15 -2443 ((-1032) (-379) (-379) (-379) (-379) (-768) (-768) (-641 (-316 (-379))) (-641 (-641 (-316 (-379)))) (-1152))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895))) (-15 -3406 ((-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) (|:| |explanations| (-641 (-1152)))) (-895) (-1058)))) +((-3732 (((-112) $ $) NIL)) (-2239 (((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $) 19)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 21) (($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) 18)) (-1705 (((-112) $ $) NIL))) +(((-895) (-13 (-1094) (-10 -8 (-15 -3742 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -2239 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $))))) (T -895)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-895)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) (-5 *1 (-895))))) +(-13 (-1094) (-10 -8 (-15 -3742 ($ (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))))) (-15 -2239 ((-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) (|:| |grid| (-768)) (|:| |boundaryType| (-564)) (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225))) $)))) +((-4117 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) 10) (($ $ |#2| (-768)) 15) (($ $ (-641 |#2|) (-641 (-768))) 18)) (-2124 (($ $ |#2|) 19) (($ $ (-641 |#2|)) 21) (($ $ |#2| (-768)) 22) (($ $ (-641 |#2|) (-641 (-768))) 24))) +(((-896 |#1| |#2|) (-10 -8 (-15 -2124 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -2124 (|#1| |#1| |#2| (-768))) (-15 -2124 (|#1| |#1| (-641 |#2|))) (-15 -2124 (|#1| |#1| |#2|)) (-15 -4117 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -4117 (|#1| |#1| |#2| (-768))) (-15 -4117 (|#1| |#1| (-641 |#2|))) (-15 -4117 (|#1| |#1| |#2|))) (-897 |#2|) (-1094)) (T -896)) +NIL +(-10 -8 (-15 -2124 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -2124 (|#1| |#1| |#2| (-768))) (-15 -2124 (|#1| |#1| (-641 |#2|))) (-15 -2124 (|#1| |#1| |#2|)) (-15 -4117 (|#1| |#1| (-641 |#2|) (-641 (-768)))) (-15 -4117 (|#1| |#1| |#2| (-768))) (-15 -4117 (|#1| |#1| (-641 |#2|))) (-15 -4117 (|#1| |#1| |#2|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4117 (($ $ |#1|) 42) (($ $ (-641 |#1|)) 41) (($ $ |#1| (-768)) 40) (($ $ (-641 |#1|) (-641 (-768))) 39)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ |#1|) 38) (($ $ (-641 |#1|)) 37) (($ $ |#1| (-768)) 36) (($ $ (-641 |#1|) (-641 (-768))) 35)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-897 |#1|) (-140) (-1094)) (T -897)) +((-4117 (*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) (-4117 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-4117 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) (-4 *4 (-1094)))) (-2124 (*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-2124 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) (-2124 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) (-2124 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) (-4 *4 (-1094))))) +(-13 (-1046) (-10 -8 (-15 -4117 ($ $ |t#1|)) (-15 -4117 ($ $ (-641 |t#1|))) (-15 -4117 ($ $ |t#1| (-768))) (-15 -4117 ($ $ (-641 |t#1|) (-641 (-768)))) (-15 -2124 ($ $ |t#1|)) (-15 -2124 ($ $ (-641 |t#1|))) (-15 -2124 ($ $ |t#1| (-768))) (-15 -2124 ($ $ (-641 |t#1|) (-641 (-768)))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) 26)) (-2969 (((-112) $ (-768)) NIL)) (-3976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-1781 (($ $ $) NIL (|has| $ (-6 -4412)))) (-1573 (($ $ $) NIL (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) (($ $ "left" $) NIL (|has| $ (-6 -4412))) (($ $ "right" $) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2427 (($ $) 25)) (-2281 (($ |#1|) 12) (($ $ $) 17)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2413 (($ $) 23)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) 20)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-4209 (((-564) $ $) NIL)) (-3572 (((-112) $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-1195 |#1|) $) 9) (((-859) $) 29 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 21 (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-898 |#1|) (-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -2281 ($ |#1|)) (-15 -2281 ($ $ $)))) (-1094)) (T -898)) +((-2281 (*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))) (-2281 (*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094))))) +(-13 (-119 |#1|) (-611 (-1195 |#1|)) (-10 -8 (-15 -2281 ($ |#1|)) (-15 -2281 ($ $ $)))) +((-3077 ((|#2| (-1136 |#1| |#2|)) 53))) +(((-899 |#1| |#2|) (-10 -7 (-15 -3077 (|#2| (-1136 |#1| |#2|)))) (-918) (-13 (-1046) (-10 -7 (-6 (-4413 "*"))))) (T -899)) +((-3077 (*1 *2 *3) (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-918)) (-4 *2 (-13 (-1046) (-10 -7 (-6 (-4413 "*"))))) (-5 *1 (-899 *4 *2))))) +(-10 -7 (-15 -3077 (|#2| (-1136 |#1| |#2|)))) +((-3732 (((-112) $ $) 7)) (-2818 (($) 18 T CONST)) (-3951 (((-3 $ "failed") $) 15)) (-3133 (((-1096 |#1|) $ |#1|) 32)) (-3840 (((-112) $) 17)) (-2799 (($ $ $) 30 (-4030 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-2848 (($ $ $) 29 (-4030 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-2217 (((-1152) $) 9)) (-4373 (($ $) 24)) (-3864 (((-1114) $) 10)) (-2416 ((|#1| $ |#1|) 34)) (-4382 ((|#1| $ |#1|) 33)) (-2731 (($ (-641 (-641 |#1|))) 35)) (-4299 (($ (-641 |#1|)) 36)) (-2766 (($ $ $) 21)) (-3671 (($ $ $) 20)) (-3742 (((-859) $) 11)) (-4321 (($) 19 T CONST)) (-1751 (((-112) $ $) 27 (-4030 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1731 (((-112) $ $) 26 (-4030 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 28 (-4030 (|has| |#1| (-847)) (|has| |#1| (-368))))) (-1723 (((-112) $ $) 31)) (-1799 (($ $ $) 23)) (** (($ $ (-918)) 13) (($ $ (-768)) 16) (($ $ (-564)) 22)) (* (($ $ $) 14))) +(((-900 |#1|) (-140) (-1094)) (T -900)) +((-4299 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-2731 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3)))) (-2416 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-4382 (*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) (-3133 (*1 *2 *1 *3) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) (-1723 (*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(-13 (-473) (-10 -8 (-15 -4299 ($ (-641 |t#1|))) (-15 -2731 ($ (-641 (-641 |t#1|)))) (-15 -2416 (|t#1| $ |t#1|)) (-15 -4382 (|t#1| $ |t#1|)) (-15 -3133 ((-1096 |t#1|) $ |t#1|)) (-15 -1723 ((-112) $ $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-368)) (-6 (-847)) |%noBranch|))) +(((-102) . T) ((-611 (-859)) . T) ((-473) . T) ((-723) . T) ((-847) -4030 (|has| |#1| (-847)) (|has| |#1| (-368))) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-1623 (((-641 (-641 (-768))) $) 164)) (-2852 (((-641 (-768)) (-902 |#1|) $) 192)) (-3202 (((-641 (-768)) (-902 |#1|) $) 193)) (-3331 (((-641 (-902 |#1|)) $) 153)) (-2821 (((-902 |#1|) $ (-564)) 158) (((-902 |#1|) $) 159)) (-2916 (($ (-641 (-902 |#1|))) 166)) (-1619 (((-768) $) 160)) (-1481 (((-1096 (-1096 |#1|)) $) 190)) (-3133 (((-1096 |#1|) $ |#1|) 181) (((-1096 (-1096 |#1|)) $ (-1096 |#1|)) 201) (((-1096 (-641 |#1|)) $ (-641 |#1|)) 204)) (-1605 (((-1096 |#1|) $) 156)) (-2431 (((-112) (-902 |#1|) $) 142)) (-2217 (((-1152) $) NIL)) (-1890 (((-1264) $) 146) (((-1264) $ (-564) (-564)) 205)) (-3864 (((-1114) $) NIL)) (-2003 (((-641 (-902 |#1|)) $) 147)) (-4382 (((-902 |#1|) $ (-768)) 154)) (-2266 (((-768) $) 161)) (-3742 (((-859) $) 178) (((-641 (-902 |#1|)) $) 28) (($ (-641 (-902 |#1|))) 165)) (-3237 (((-641 |#1|) $) 163)) (-1705 (((-112) $ $) 198)) (-1741 (((-112) $ $) 196)) (-1723 (((-112) $ $) 195))) +(((-901 |#1|) (-13 (-1094) (-10 -8 (-15 -3742 ((-641 (-902 |#1|)) $)) (-15 -2003 ((-641 (-902 |#1|)) $)) (-15 -4382 ((-902 |#1|) $ (-768))) (-15 -2821 ((-902 |#1|) $ (-564))) (-15 -2821 ((-902 |#1|) $)) (-15 -1619 ((-768) $)) (-15 -2266 ((-768) $)) (-15 -3237 ((-641 |#1|) $)) (-15 -3331 ((-641 (-902 |#1|)) $)) (-15 -1623 ((-641 (-641 (-768))) $)) (-15 -3742 ($ (-641 (-902 |#1|)))) (-15 -2916 ($ (-641 (-902 |#1|)))) (-15 -3133 ((-1096 |#1|) $ |#1|)) (-15 -1481 ((-1096 (-1096 |#1|)) $)) (-15 -3133 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -3133 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -2431 ((-112) (-902 |#1|) $)) (-15 -2852 ((-641 (-768)) (-902 |#1|) $)) (-15 -3202 ((-641 (-768)) (-902 |#1|) $)) (-15 -1605 ((-1096 |#1|) $)) (-15 -1723 ((-112) $ $)) (-15 -1741 ((-112) $ $)) (-15 -1890 ((-1264) $)) (-15 -1890 ((-1264) $ (-564) (-564))))) (-1094)) (T -901)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2003 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-2821 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) (-4 *4 (-1094)))) (-2821 (*1 *2 *1) (-12 (-5 *2 (-902 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3237 (*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3331 (*1 *2 *1) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1623 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-768)))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-2916 (*1 *1 *2) (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) (-3133 (*1 *2 *1 *3) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1481 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-3133 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-901 *4)) (-5 *3 (-1096 *4)))) (-3133 (*1 *2 *1 *3) (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-901 *4)) (-5 *3 (-641 *4)))) (-2431 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-901 *4)))) (-2852 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) (-5 *1 (-901 *4)))) (-3202 (*1 *2 *3 *1) (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) (-5 *1 (-901 *4)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1723 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1741 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1890 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) (-1890 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-901 *4)) (-4 *4 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -3742 ((-641 (-902 |#1|)) $)) (-15 -2003 ((-641 (-902 |#1|)) $)) (-15 -4382 ((-902 |#1|) $ (-768))) (-15 -2821 ((-902 |#1|) $ (-564))) (-15 -2821 ((-902 |#1|) $)) (-15 -1619 ((-768) $)) (-15 -2266 ((-768) $)) (-15 -3237 ((-641 |#1|) $)) (-15 -3331 ((-641 (-902 |#1|)) $)) (-15 -1623 ((-641 (-641 (-768))) $)) (-15 -3742 ($ (-641 (-902 |#1|)))) (-15 -2916 ($ (-641 (-902 |#1|)))) (-15 -3133 ((-1096 |#1|) $ |#1|)) (-15 -1481 ((-1096 (-1096 |#1|)) $)) (-15 -3133 ((-1096 (-1096 |#1|)) $ (-1096 |#1|))) (-15 -3133 ((-1096 (-641 |#1|)) $ (-641 |#1|))) (-15 -2431 ((-112) (-902 |#1|) $)) (-15 -2852 ((-641 (-768)) (-902 |#1|) $)) (-15 -3202 ((-641 (-768)) (-902 |#1|) $)) (-15 -1605 ((-1096 |#1|) $)) (-15 -1723 ((-112) $ $)) (-15 -1741 ((-112) $ $)) (-15 -1890 ((-1264) $)) (-15 -1890 ((-1264) $ (-564) (-564))))) +((-3732 (((-112) $ $) NIL)) (-2777 (((-641 $) (-641 $)) 104)) (-3265 (((-564) $) 85)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-1619 (((-768) $) 82)) (-3133 (((-1096 |#1|) $ |#1|) 73)) (-3840 (((-112) $) NIL)) (-1801 (((-112) $) 89)) (-4230 (((-768) $) 86)) (-1605 (((-1096 |#1|) $) 62)) (-2799 (($ $ $) NIL (-4030 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-2848 (($ $ $) NIL (-4030 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1538 (((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $) 57)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 132)) (-3864 (((-1114) $) NIL)) (-3205 (((-1096 |#1|) $) 140 (|has| |#1| (-368)))) (-1497 (((-112) $) 83)) (-2416 ((|#1| $ |#1|) 71)) (-4382 ((|#1| $ |#1|) 134)) (-2266 (((-768) $) 64)) (-2731 (($ (-641 (-641 |#1|))) 119)) (-2498 (((-968) $) 77)) (-4299 (($ (-641 |#1|)) 35)) (-2766 (($ $ $) NIL)) (-3671 (($ $ $) NIL)) (-1776 (($ (-641 (-641 |#1|))) 59)) (-2960 (($ (-641 (-641 |#1|))) 124)) (-3166 (($ (-641 |#1|)) 136)) (-3742 (((-859) $) 118) (($ (-641 (-641 |#1|))) 92) (($ (-641 |#1|)) 93)) (-4321 (($) 27 T CONST)) (-1751 (((-112) $ $) NIL (-4030 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1731 (((-112) $ $) NIL (-4030 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1705 (((-112) $ $) 69)) (-1741 (((-112) $ $) NIL (-4030 (|has| |#1| (-368)) (|has| |#1| (-847))))) (-1723 (((-112) $ $) 91)) (-1799 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ $ $) 36))) +(((-902 |#1|) (-13 (-900 |#1|) (-10 -8 (-15 -1538 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -1776 ($ (-641 (-641 |#1|)))) (-15 -3742 ($ (-641 (-641 |#1|)))) (-15 -3742 ($ (-641 |#1|))) (-15 -2960 ($ (-641 (-641 |#1|)))) (-15 -2266 ((-768) $)) (-15 -1605 ((-1096 |#1|) $)) (-15 -2498 ((-968) $)) (-15 -1619 ((-768) $)) (-15 -4230 ((-768) $)) (-15 -3265 ((-564) $)) (-15 -1497 ((-112) $)) (-15 -1801 ((-112) $)) (-15 -2777 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -3205 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3166 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -3166 ($ (-641 |#1|))) |%noBranch|)))) (-1094)) (T -902)) +((-1538 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1776 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-2960 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1605 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-968)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-3265 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-2777 (*1 *2 *2) (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-368)) (-4 *3 (-1094)))) (-3166 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3))))) +(-13 (-900 |#1|) (-10 -8 (-15 -1538 ((-2 (|:| |preimage| (-641 |#1|)) (|:| |image| (-641 |#1|))) $)) (-15 -1776 ($ (-641 (-641 |#1|)))) (-15 -3742 ($ (-641 (-641 |#1|)))) (-15 -3742 ($ (-641 |#1|))) (-15 -2960 ($ (-641 (-641 |#1|)))) (-15 -2266 ((-768) $)) (-15 -1605 ((-1096 |#1|) $)) (-15 -2498 ((-968) $)) (-15 -1619 ((-768) $)) (-15 -4230 ((-768) $)) (-15 -3265 ((-564) $)) (-15 -1497 ((-112) $)) (-15 -1801 ((-112) $)) (-15 -2777 ((-641 $) (-641 $))) (IF (|has| |#1| (-368)) (-15 -3205 ((-1096 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-545)) (-15 -3166 ($ (-641 |#1|))) (IF (|has| |#1| (-368)) (-15 -3166 ($ (-641 |#1|))) |%noBranch|)))) +((-3401 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|)) 162)) (-2886 ((|#1|) 101)) (-4270 (((-418 (-1166 |#4|)) (-1166 |#4|)) 171)) (-1424 (((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)) 88)) (-1384 (((-418 (-1166 |#4|)) (-1166 |#4|)) 181)) (-3766 (((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|) 117))) +(((-903 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3401 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -1384 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -4270 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -2886 (|#1|)) (-15 -3766 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -1424 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) (-906) (-790) (-847) (-946 |#1| |#2| |#3|)) (T -903)) +((-1424 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *7)) (-4 *7 (-847)) (-4 *5 (-906)) (-4 *6 (-790)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) (-3766 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-790)) (-4 *4 (-847)) (-5 *1 (-903 *5 *6 *4 *7)))) (-2886 (*1 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) (-4270 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-1384 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) (-3401 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-903 *4 *5 *6 *7))))) +(-10 -7 (-15 -3401 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|))) (-15 -1384 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -4270 ((-418 (-1166 |#4|)) (-1166 |#4|))) (-15 -2886 (|#1|)) (-15 -3766 ((-3 (-641 (-1166 |#4|)) "failed") (-641 (-1166 |#4|)) (-1166 |#4|) |#3|)) (-15 -1424 ((-418 (-1166 |#4|)) (-641 |#3|) (-1166 |#4|)))) +((-3401 (((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|)) 41)) (-2886 ((|#1|) 74)) (-4270 (((-418 (-1166 |#2|)) (-1166 |#2|)) 130)) (-1424 (((-418 (-1166 |#2|)) (-1166 |#2|)) 114)) (-1384 (((-418 (-1166 |#2|)) (-1166 |#2|)) 141))) +(((-904 |#1| |#2|) (-10 -7 (-15 -3401 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -1384 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -4270 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -2886 (|#1|)) (-15 -1424 ((-418 (-1166 |#2|)) (-1166 |#2|)))) (-906) (-1235 |#1|)) (T -904)) +((-1424 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-2886 (*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1235 *2)))) (-4270 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-1384 (*1 *2 *3) (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5)))) (-3401 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5))))) +(-10 -7 (-15 -3401 ((-3 (-641 (-1166 |#2|)) "failed") (-641 (-1166 |#2|)) (-1166 |#2|))) (-15 -1384 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -4270 ((-418 (-1166 |#2|)) (-1166 |#2|))) (-15 -2886 (|#1|)) (-15 -1424 ((-418 (-1166 |#2|)) (-1166 |#2|)))) +((-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 42)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 18)) (-4253 (((-3 $ "failed") $) 36))) +(((-905 |#1|) (-10 -8 (-15 -4253 ((-3 |#1| "failed") |#1|)) (-15 -3561 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) (-906)) (T -905)) +NIL +(-10 -8 (-15 -4253 ((-3 |#1| "failed") |#1|)) (-15 -3561 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-3679 (((-418 (-1166 $)) (-1166 $)) 61)) (-2249 (($ $) 52)) (-3048 (((-418 $) $) 53)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 58)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-4188 (((-112) $) 54)) (-3840 (((-112) $) 31)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-2259 (((-418 (-1166 $)) (-1166 $)) 59)) (-3941 (((-418 (-1166 $)) (-1166 $)) 60)) (-4127 (((-418 $) $) 51)) (-1321 (((-3 $ "failed") $ $) 43)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 57 (|has| $ (-145)))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-4253 (((-3 $ "failed") $) 56 (|has| $ (-145)))) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-906) (-140)) (T -906)) +((-4349 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-906)))) (-3679 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-3941 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-2259 (*1 *2 *3) (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1)))) (-3561 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) (-4 *1 (-906)))) (-2723 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-906)) (-5 *2 (-1259 *1)))) (-4253 (*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906))))) +(-13 (-1213) (-10 -8 (-15 -3679 ((-418 (-1166 $)) (-1166 $))) (-15 -3941 ((-418 (-1166 $)) (-1166 $))) (-15 -2259 ((-418 (-1166 $)) (-1166 $))) (-15 -4349 ((-1166 $) (-1166 $) (-1166 $))) (-15 -3561 ((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $))) (IF (|has| $ (-145)) (PROGN (-15 -2723 ((-3 (-1259 $) "failed") (-685 $))) (-15 -4253 ((-3 $ "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-4217 (((-112) $) NIL)) (-3492 (((-768)) NIL)) (-3809 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-4374 (((-1182 (-918) (-768)) (-564)) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 $ "failed") $) NIL)) (-2239 (($ $) NIL)) (-2340 (($ (-1259 $)) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-2757 (($) NIL)) (-1313 (((-112) $) NIL)) (-3176 (($ $) NIL) (($ $ (-768)) NIL)) (-4188 (((-112) $) NIL)) (-1619 (((-830 (-918)) $) NIL) (((-918) $) NIL)) (-3840 (((-112) $) NIL)) (-2680 (($) NIL (|has| $ (-368)))) (-1530 (((-112) $) NIL (|has| $ (-368)))) (-3328 (($ $ (-918)) NIL (|has| $ (-368))) (($ $) NIL)) (-3907 (((-3 $ "failed") $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2653 (((-1166 $) $ (-918)) NIL (|has| $ (-368))) (((-1166 $) $) NIL)) (-1906 (((-918) $) NIL)) (-2528 (((-1166 $) $) NIL (|has| $ (-368)))) (-2945 (((-3 (-1166 $) "failed") $ $) NIL (|has| $ (-368))) (((-1166 $) $) NIL (|has| $ (-368)))) (-4375 (($ $ (-1166 $)) NIL (|has| $ (-368)))) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL T CONST)) (-1495 (($ (-918)) NIL)) (-3259 (((-112) $) NIL)) (-3864 (((-1114) $) NIL)) (-1693 (($) NIL (|has| $ (-368)))) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL)) (-4127 (((-418 $) $) NIL)) (-1506 (((-918)) NIL) (((-830 (-918))) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-2819 (((-3 (-768) "failed") $ $) NIL) (((-768) $) NIL)) (-3603 (((-134)) NIL)) (-4117 (($ $ (-768)) NIL) (($ $) NIL)) (-2266 (((-918) $) NIL) (((-830 (-918)) $) NIL)) (-3925 (((-1166 $)) NIL)) (-1543 (($) NIL)) (-4220 (($) NIL (|has| $ (-368)))) (-1785 (((-685 $) (-1259 $)) NIL) (((-1259 $) $) NIL)) (-2235 (((-564) $) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL)) (-4253 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3270 (((-768)) NIL T CONST)) (-4265 (((-1259 $) (-918)) NIL) (((-1259 $)) NIL)) (-3360 (((-112) $ $) NIL)) (-2755 (((-112) $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2578 (($ $ (-768)) NIL (|has| $ (-368))) (($ $) NIL (|has| $ (-368)))) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-907 |#1|) (-13 (-349) (-329 $) (-612 (-564))) (-918)) (T -907)) +NIL +(-13 (-349) (-329 $) (-612 (-564))) +((-4335 (((-3 (-2 (|:| -1619 (-768)) (|:| -2390 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)) 84)) (-3474 (((-112) (-336 |#2| |#3| |#4| |#5|)) 17)) (-1619 (((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|)) 15))) +(((-908 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1619 ((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -3474 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -4335 ((-3 (-2 (|:| -1619 (-768)) (|:| -2390 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) (-13 (-847) (-556) (-1035 (-564))) (-430 |#1|) (-1235 |#2|) (-1235 (-407 |#3|)) (-342 |#2| |#3| |#4|)) (T -908)) +((-4335 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-2 (|:| -1619 (-768)) (|:| -2390 *8))) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-112)) (-5 *1 (-908 *4 *5 *6 *7 *8)))) (-1619 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-768)) (-5 *1 (-908 *4 *5 *6 *7 *8))))) +(-10 -7 (-15 -1619 ((-3 (-768) "failed") (-336 |#2| |#3| |#4| |#5|))) (-15 -3474 ((-112) (-336 |#2| |#3| |#4| |#5|))) (-15 -4335 ((-3 (-2 (|:| -1619 (-768)) (|:| -2390 |#5|)) "failed") (-336 |#2| |#3| |#4| |#5|)))) +((-4335 (((-3 (-2 (|:| -1619 (-768)) (|:| -2390 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 64)) (-3474 (((-112) (-336 (-407 (-564)) |#1| |#2| |#3|)) 16)) (-1619 (((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)) 14))) +(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -1619 ((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -3474 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -4335 ((-3 (-2 (|:| -1619 (-768)) (|:| -2390 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) (-1235 (-407 (-564))) (-1235 (-407 |#1|)) (-342 (-407 (-564)) |#1| |#2|)) (T -909)) +((-4335 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-2 (|:| -1619 (-768)) (|:| -2390 *6))) (-5 *1 (-909 *4 *5 *6)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) (-5 *1 (-909 *4 *5 *6)))) (-1619 (*1 *2 *3) (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-768)) (-5 *1 (-909 *4 *5 *6))))) +(-10 -7 (-15 -1619 ((-3 (-768) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -3474 ((-112) (-336 (-407 (-564)) |#1| |#2| |#3|))) (-15 -4335 ((-3 (-2 (|:| -1619 (-768)) (|:| -2390 |#3|)) "failed") (-336 (-407 (-564)) |#1| |#2| |#3|)))) +((-3902 ((|#2| |#2|) 26)) (-3241 (((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) 15)) (-3289 (((-918) (-564)) 38)) (-3063 (((-564) |#2|) 45)) (-2794 (((-564) |#2|) 21) (((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|) 20))) +(((-910 |#1| |#2|) (-10 -7 (-15 -3289 ((-918) (-564))) (-15 -2794 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -2794 ((-564) |#2|)) (-15 -3241 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -3063 ((-564) |#2|)) (-15 -3902 (|#2| |#2|))) (-1235 (-407 (-564))) (-1235 (-407 |#1|))) (T -910)) +((-3902 (*1 *2 *2) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-910 *3 *2)) (-4 *2 (-1235 (-407 *3))))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-3241 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4))))) (-2794 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1235 (-407 *4))))) (-2794 (*1 *2 *3) (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) (-5 *1 (-910 *3 *4)) (-4 *4 (-1235 (-407 *3))))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-918)) (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4)))))) +(-10 -7 (-15 -3289 ((-918) (-564))) (-15 -2794 ((-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))) |#1|)) (-15 -2794 ((-564) |#2|)) (-15 -3241 ((-564) (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))))) (-15 -3063 ((-564) |#2|)) (-15 -3902 (|#2| |#2|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 ((|#1| $) 99)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-1373 (($ $ $) NIL)) (-3951 (((-3 $ "failed") $) 93)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3734 (($ |#1| (-418 |#1|)) 91)) (-2098 (((-1166 |#1|) |#1| |#1|) 53)) (-3502 (($ $) 61)) (-3840 (((-112) $) NIL)) (-3894 (((-564) $) 96)) (-2721 (($ $ (-564)) 98)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1479 ((|#1| $) 95)) (-4271 (((-418 |#1|) $) 94)) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) 92)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-1993 (($ $) 50)) (-3742 (((-859) $) 123) (($ (-564)) 72) (($ $) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 41) (((-407 |#1|) $) 77) (($ (-407 (-418 |#1|))) 85)) (-3270 (((-768)) 70 T CONST)) (-3360 (((-112) $ $) NIL)) (-4311 (($) 26 T CONST)) (-4321 (($) 15 T CONST)) (-1705 (((-112) $ $) 86)) (-1799 (($ $ $) NIL)) (-1790 (($ $) 107) (($ $ $) NIL)) (-1780 (($ $ $) 49)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 109) (($ $ $) 48) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ |#1| $) 108) (($ $ |#1|) NIL))) +(((-911 |#1|) (-13 (-363) (-38 |#1|) (-10 -8 (-15 -3742 ((-407 |#1|) $)) (-15 -3742 ($ (-407 (-418 |#1|)))) (-15 -1993 ($ $)) (-15 -4271 ((-418 |#1|) $)) (-15 -1479 (|#1| $)) (-15 -2721 ($ $ (-564))) (-15 -3894 ((-564) $)) (-15 -2098 ((-1166 |#1|) |#1| |#1|)) (-15 -3502 ($ $)) (-15 -3734 ($ |#1| (-418 |#1|))) (-15 -1473 (|#1| $)))) (-307)) (T -911)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-911 *3)))) (-1993 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-4271 (*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-1479 (*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-2721 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3894 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-2098 (*1 *2 *3 *3) (-12 (-5 *2 (-1166 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) (-3502 (*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) (-3734 (*1 *1 *2 *3) (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-911 *2)))) (-1473 (*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))) +(-13 (-363) (-38 |#1|) (-10 -8 (-15 -3742 ((-407 |#1|) $)) (-15 -3742 ($ (-407 (-418 |#1|)))) (-15 -1993 ($ $)) (-15 -4271 ((-418 |#1|) $)) (-15 -1479 (|#1| $)) (-15 -2721 ($ $ (-564))) (-15 -3894 ((-564) $)) (-15 -2098 ((-1166 |#1|) |#1| |#1|)) (-15 -3502 ($ $)) (-15 -3734 ($ |#1| (-418 |#1|))) (-15 -1473 (|#1| $)))) +((-3734 (((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)) 17) (((-52) (-407 (-949 |#1|)) (-1170)) 18))) +(((-912 |#1|) (-10 -7 (-15 -3734 ((-52) (-407 (-949 |#1|)) (-1170))) (-15 -3734 ((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)))) (-13 (-307) (-147))) (T -912)) +((-3734 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-418 (-949 *6))) (-5 *5 (-1170)) (-5 *3 (-949 *6)) (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *6)))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *5))))) +(-10 -7 (-15 -3734 ((-52) (-407 (-949 |#1|)) (-1170))) (-15 -3734 ((-52) (-949 |#1|) (-418 (-949 |#1|)) (-1170)))) +((-3412 ((|#4| (-641 |#4|)) 149) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 85) ((|#4| |#4| |#4|) 148)) (-2577 (((-1166 |#4|) (-641 (-1166 |#4|))) 140) (((-1166 |#4|) (-1166 |#4|) (-1166 |#4|)) 63) ((|#4| (-641 |#4|)) 71) ((|#4| |#4| |#4|) 108))) +(((-913 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2577 (|#4| |#4| |#4|)) (-15 -2577 (|#4| (-641 |#4|))) (-15 -2577 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2577 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -3412 (|#4| |#4| |#4|)) (-15 -3412 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3412 (|#4| (-641 |#4|)))) (-790) (-847) (-307) (-946 |#3| |#1| |#2|)) (T -913)) +((-3412 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)))) (-3412 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) (-3412 (*1 *2 *2 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-913 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) (-2577 (*1 *2 *2 *2) (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) (-2577 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)))) (-2577 (*1 *2 *2 *2) (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4))))) +(-10 -7 (-15 -2577 (|#4| |#4| |#4|)) (-15 -2577 (|#4| (-641 |#4|))) (-15 -2577 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -2577 ((-1166 |#4|) (-641 (-1166 |#4|)))) (-15 -3412 (|#4| |#4| |#4|)) (-15 -3412 ((-1166 |#4|) (-1166 |#4|) (-1166 |#4|))) (-15 -3412 (|#4| (-641 |#4|)))) +((-3599 (((-901 (-564)) (-968)) 37) (((-901 (-564)) (-641 (-564))) 34)) (-3012 (((-901 (-564)) (-641 (-564))) 68) (((-901 (-564)) (-918)) 69)) (-3192 (((-901 (-564))) 38)) (-3577 (((-901 (-564))) 54) (((-901 (-564)) (-641 (-564))) 53)) (-3332 (((-901 (-564))) 52) (((-901 (-564)) (-641 (-564))) 51)) (-3875 (((-901 (-564))) 50) (((-901 (-564)) (-641 (-564))) 49)) (-2253 (((-901 (-564))) 48) (((-901 (-564)) (-641 (-564))) 47)) (-2789 (((-901 (-564))) 46) (((-901 (-564)) (-641 (-564))) 45)) (-4226 (((-901 (-564))) 56) (((-901 (-564)) (-641 (-564))) 55)) (-3083 (((-901 (-564)) (-641 (-564))) 73) (((-901 (-564)) (-918)) 75)) (-3657 (((-901 (-564)) (-641 (-564))) 70) (((-901 (-564)) (-918)) 71)) (-1761 (((-901 (-564)) (-641 (-564))) 66) (((-901 (-564)) (-918)) 67)) (-3381 (((-901 (-564)) (-641 (-918))) 59))) +(((-914) (-10 -7 (-15 -3012 ((-901 (-564)) (-918))) (-15 -3012 ((-901 (-564)) (-641 (-564)))) (-15 -1761 ((-901 (-564)) (-918))) (-15 -1761 ((-901 (-564)) (-641 (-564)))) (-15 -3381 ((-901 (-564)) (-641 (-918)))) (-15 -3657 ((-901 (-564)) (-918))) (-15 -3657 ((-901 (-564)) (-641 (-564)))) (-15 -3083 ((-901 (-564)) (-918))) (-15 -3083 ((-901 (-564)) (-641 (-564)))) (-15 -2789 ((-901 (-564)) (-641 (-564)))) (-15 -2789 ((-901 (-564)))) (-15 -2253 ((-901 (-564)) (-641 (-564)))) (-15 -2253 ((-901 (-564)))) (-15 -3875 ((-901 (-564)) (-641 (-564)))) (-15 -3875 ((-901 (-564)))) (-15 -3332 ((-901 (-564)) (-641 (-564)))) (-15 -3332 ((-901 (-564)))) (-15 -3577 ((-901 (-564)) (-641 (-564)))) (-15 -3577 ((-901 (-564)))) (-15 -4226 ((-901 (-564)) (-641 (-564)))) (-15 -4226 ((-901 (-564)))) (-15 -3192 ((-901 (-564)))) (-15 -3599 ((-901 (-564)) (-641 (-564)))) (-15 -3599 ((-901 (-564)) (-968))))) (T -914)) +((-3599 (*1 *2 *3) (-12 (-5 *3 (-968)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3192 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-4226 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3577 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3332 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3875 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3875 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2253 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2253 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2789 (*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-2789 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3083 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3657 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-641 (-918))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) (-3012 (*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(-10 -7 (-15 -3012 ((-901 (-564)) (-918))) (-15 -3012 ((-901 (-564)) (-641 (-564)))) (-15 -1761 ((-901 (-564)) (-918))) (-15 -1761 ((-901 (-564)) (-641 (-564)))) (-15 -3381 ((-901 (-564)) (-641 (-918)))) (-15 -3657 ((-901 (-564)) (-918))) (-15 -3657 ((-901 (-564)) (-641 (-564)))) (-15 -3083 ((-901 (-564)) (-918))) (-15 -3083 ((-901 (-564)) (-641 (-564)))) (-15 -2789 ((-901 (-564)) (-641 (-564)))) (-15 -2789 ((-901 (-564)))) (-15 -2253 ((-901 (-564)) (-641 (-564)))) (-15 -2253 ((-901 (-564)))) (-15 -3875 ((-901 (-564)) (-641 (-564)))) (-15 -3875 ((-901 (-564)))) (-15 -3332 ((-901 (-564)) (-641 (-564)))) (-15 -3332 ((-901 (-564)))) (-15 -3577 ((-901 (-564)) (-641 (-564)))) (-15 -3577 ((-901 (-564)))) (-15 -4226 ((-901 (-564)) (-641 (-564)))) (-15 -4226 ((-901 (-564)))) (-15 -3192 ((-901 (-564)))) (-15 -3599 ((-901 (-564)) (-641 (-564)))) (-15 -3599 ((-901 (-564)) (-968)))) +((-2901 (((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))) 14)) (-3283 (((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))) 13))) +(((-915 |#1|) (-10 -7 (-15 -3283 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2901 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))))) (-452)) (T -915)) +((-2901 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-915 *4)))) (-3283 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) (-5 *1 (-915 *4))))) +(-10 -7 (-15 -3283 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2901 ((-641 (-949 |#1|)) (-641 (-949 |#1|)) (-641 (-1170))))) +((-3742 (((-316 |#1|) (-477)) 16))) +(((-916 |#1|) (-10 -7 (-15 -3742 ((-316 |#1|) (-477)))) (-13 (-847) (-556))) (T -916)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-916 *4)) (-4 *4 (-13 (-847) (-556)))))) +(-10 -7 (-15 -3742 ((-316 |#1|) (-477)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-3840 (((-112) $) 31)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-917) (-140)) (T -917)) +((-2052 (*1 *2 *3) (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -1762 (-641 *1)) (|:| -1693 *1))) (-5 *3 (-641 *1)))) (-3678 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-917))))) +(-13 (-452) (-10 -8 (-15 -2052 ((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $))) (-15 -3678 ((-3 (-641 $) "failed") (-641 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2577 (($ $ $) NIL)) (-3742 (((-859) $) NIL)) (-4321 (($) NIL T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ $ $) NIL))) +(((-918) (-13 (-791) (-723) (-10 -8 (-15 -2577 ($ $ $)) (-6 (-4413 "*"))))) (T -918)) +((-2577 (*1 *1 *1 *1) (-5 *1 (-918)))) +(-13 (-791) (-723) (-10 -8 (-15 -2577 ($ $ $)) (-6 (-4413 "*")))) ((|NonNegativeInteger|) (< 0 |#1|)) -((-3607 ((|#2| (-640 |#1|) (-640 |#1|)) 29))) -(((-918 |#1| |#2|) (-10 -7 (-15 -3607 (|#2| (-640 |#1|) (-640 |#1|)))) (-363) (-1233 |#1|)) (T -918)) -((-3607 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-4 *2 (-1233 *4)) (-5 *1 (-918 *4 *2))))) -(-10 -7 (-15 -3607 (|#2| (-640 |#1|) (-640 |#1|)))) -((-3031 (((-1165 |#2|) (-640 |#2|) (-640 |#2|)) 17) (((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|)) 13))) -(((-919 |#1| |#2|) (-10 -7 (-15 -3031 ((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|))) (-15 -3031 ((-1165 |#2|) (-640 |#2|) (-640 |#2|)))) (-1169) (-363)) (T -919)) -((-3031 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *5)) (-4 *5 (-363)) (-5 *2 (-1165 *5)) (-5 *1 (-919 *4 *5)) (-14 *4 (-1169)))) (-3031 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1230 *4 *5)) (-5 *3 (-640 *5)) (-14 *4 (-1169)) (-4 *5 (-363)) (-5 *1 (-919 *4 *5))))) -(-10 -7 (-15 -3031 ((-1230 |#1| |#2|) (-1230 |#1| |#2|) (-640 |#2|) (-640 |#2|))) (-15 -3031 ((-1165 |#2|) (-640 |#2|) (-640 |#2|)))) -((-3627 (((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151)) 176)) (-3839 ((|#4| |#4|) 195)) (-3667 (((-640 (-407 (-948 |#1|))) (-640 (-1169))) 149)) (-3827 (((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563)) 88)) (-3710 (((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|)) 69)) (-3816 (((-684 |#4|) (-684 |#4|) (-640 |#4|)) 65)) (-3636 (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151)) 188)) (-3617 (((-563) (-684 |#4|) (-917) (-1151)) 169) (((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151)) 168) (((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151)) 167) (((-563) (-684 |#4|) (-1151)) 157) (((-563) (-684 |#4|) (-640 (-1169)) (-1151)) 156) (((-563) (-684 |#4|) (-640 |#4|) (-1151)) 155) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917)) 154) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917)) 153) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917)) 152) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|)) 151) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169))) 150) (((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|)) 146)) (-3678 ((|#4| (-948 |#1|)) 80)) (-3792 (((-112) (-640 |#4|) (-640 (-640 |#4|))) 192)) (-3780 (((-640 (-640 (-563))) (-563) (-563)) 162)) (-3768 (((-640 (-640 |#4|)) (-640 (-640 |#4|))) 107)) (-3757 (((-767) (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|))))) 102)) (-3745 (((-767) (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|))))) 101)) (-3849 (((-112) (-640 (-948 |#1|))) 19) (((-112) (-640 |#4|)) 15)) (-3687 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|)) 84)) (-3732 (((-640 |#4|) |#4|) 57)) (-3655 (((-640 (-407 (-948 |#1|))) (-640 |#4|)) 145) (((-684 (-407 (-948 |#1|))) (-684 |#4|)) 66) (((-407 (-948 |#1|)) |#4|) 142)) (-3645 (((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563)) 113)) (-3698 (((-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767)) 100)) (-3806 (((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767)) 124)) (-3722 (((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -4277 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -3406 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) 56))) -(((-920 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917))) (-15 -3617 ((-563) (-684 |#4|) (-640 |#4|) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-640 (-1169)) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-917) (-1151))) (-15 -3627 ((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -3636 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -3645 ((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563))) (-15 -3655 ((-407 (-948 |#1|)) |#4|)) (-15 -3655 ((-684 (-407 (-948 |#1|))) (-684 |#4|))) (-15 -3655 ((-640 (-407 (-948 |#1|))) (-640 |#4|))) (-15 -3667 ((-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3678 (|#4| (-948 |#1|))) (-15 -3687 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|))) (-15 -3698 ((-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767))) (-15 -3710 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|))) (-15 -3722 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -4277 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -3406 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-15 -3732 ((-640 |#4|) |#4|)) (-15 -3745 ((-767) (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -3757 ((-767) (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -3768 ((-640 (-640 |#4|)) (-640 (-640 |#4|)))) (-15 -3780 ((-640 (-640 (-563))) (-563) (-563))) (-15 -3792 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -3806 ((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767))) (-15 -3816 ((-684 |#4|) (-684 |#4|) (-640 |#4|))) (-15 -3827 ((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563))) (-15 -3839 (|#4| |#4|)) (-15 -3849 ((-112) (-640 |#4|))) (-15 -3849 ((-112) (-640 (-948 |#1|))))) (-13 (-307) (-147)) (-13 (-846) (-611 (-1169))) (-789) (-945 |#1| |#3| |#2|)) (T -920)) -((-3849 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-3849 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3839 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4)))) (-3827 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-5 *4 (-684 *12)) (-5 *5 (-640 (-407 (-948 *9)))) (-5 *6 (-640 (-640 *12))) (-5 *7 (-767)) (-5 *8 (-563)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10)) (-4 *10 (-13 (-846) (-611 (-1169)))) (-4 *11 (-789)) (-5 *2 (-2 (|:| |eqzro| (-640 *12)) (|:| |neqzro| (-640 *12)) (|:| |wcond| (-640 (-948 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *9)))) (|:| -3288 (-640 (-1257 (-407 (-948 *9))))))))) (-5 *1 (-920 *9 *10 *11 *12)))) (-3816 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *7)) (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3806 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3792 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3780 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *6 *5)))) (-3768 (*1 *2 *2) (-12 (-5 *2 (-640 (-640 *6))) (-4 *6 (-945 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6)))) (-3757 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3745 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *7))))) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 *3)) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4277 (-684 (-407 (-948 *4)))) (|:| |vec| (-640 (-407 (-948 *4)))) (|:| -3406 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -3288 (-640 (-1257 (-407 (-948 *4))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-3710 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -3288 (-640 (-1257 (-407 (-948 *4))))))) (-5 *3 (-640 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 *8))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767)))) (-3687 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-640 *7)) (|:| |n0| (-640 *7)))) (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)))) (-3667 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-684 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3655 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3)) (-4 *3 (-945 *4 *6 *5)))) (-3645 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-684 *11)) (-5 *4 (-640 (-407 (-948 *8)))) (-5 *5 (-767)) (-5 *6 (-1151)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-611 (-1169)))) (-4 *10 (-789)) (-5 *2 (-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 *11)) (|:| |neqzro| (-640 *11)) (|:| |wcond| (-640 (-948 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *8)))) (|:| -3288 (-640 (-1257 (-407 (-948 *8)))))))))) (|:| |rgsz| (-563)))) (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-563)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) (|:| |wcond| (-640 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -3288 (-640 (-1257 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5)))) (-3627 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -3288 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *4 (-1151)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6)) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-917)) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3617 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *7 *8 *9 *10)))) (-3617 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 *10)) (-5 *5 (-917)) (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *7 *8 *9 *10)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-1151)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8)))) (-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 *9)) (-5 *5 (-1151)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *6 *7 *8 *9)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -3288 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) (|:| |wcond| (-640 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) (|:| -3288 (-640 (-1257 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)))) (-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-684 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) (|:| |wcond| (-640 (-948 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) (|:| -3288 (-640 (-1257 (-407 (-948 *6)))))))))) (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-640 *9)))) (-3617 (*1 *2 *3) (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) (|:| |wcond| (-640 (-948 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) (|:| -3288 (-640 (-1257 (-407 (-948 *4)))))))))) (-5 *1 (-920 *4 *5 *6 *7)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-5 *4 (-640 (-1169))) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -3288 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)))) (-3617 (*1 *2 *3 *4) (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-640 (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) (|:| |wcond| (-640 (-948 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) (|:| -3288 (-640 (-1257 (-407 (-948 *5)))))))))) (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-640 *8))))) -(-10 -7 (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 |#4|) (-917))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-640 (-1169)) (-917))) (-15 -3617 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-684 |#4|) (-917))) (-15 -3617 ((-563) (-684 |#4|) (-640 |#4|) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-640 (-1169)) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-640 |#4|) (-917) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-640 (-1169)) (-917) (-1151))) (-15 -3617 ((-563) (-684 |#4|) (-917) (-1151))) (-15 -3627 ((-563) (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -3636 ((-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|))))))))) (-1151))) (-15 -3645 ((-2 (|:| |rgl| (-640 (-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))))))) (|:| |rgsz| (-563))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-767) (-1151) (-563))) (-15 -3655 ((-407 (-948 |#1|)) |#4|)) (-15 -3655 ((-684 (-407 (-948 |#1|))) (-684 |#4|))) (-15 -3655 ((-640 (-407 (-948 |#1|))) (-640 |#4|))) (-15 -3667 ((-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3678 (|#4| (-948 |#1|))) (-15 -3687 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-640 |#4|)) (|:| |n0| (-640 |#4|))) (-640 |#4|) (-640 |#4|))) (-15 -3698 ((-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))) (-684 |#4|) (-767))) (-15 -3710 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-640 |#4|))) (-15 -3722 ((-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))) (-2 (|:| -4277 (-684 (-407 (-948 |#1|)))) (|:| |vec| (-640 (-407 (-948 |#1|)))) (|:| -3406 (-767)) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (-15 -3732 ((-640 |#4|) |#4|)) (-15 -3745 ((-767) (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -3757 ((-767) (-640 (-2 (|:| -3406 (-767)) (|:| |eqns| (-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))))) (|:| |fgb| (-640 |#4|)))))) (-15 -3768 ((-640 (-640 |#4|)) (-640 (-640 |#4|)))) (-15 -3780 ((-640 (-640 (-563))) (-563) (-563))) (-15 -3792 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -3806 ((-640 (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) (-684 |#4|) (-767))) (-15 -3816 ((-684 |#4|) (-684 |#4|) (-640 |#4|))) (-15 -3827 ((-2 (|:| |eqzro| (-640 |#4|)) (|:| |neqzro| (-640 |#4|)) (|:| |wcond| (-640 (-948 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1257 (-407 (-948 |#1|)))) (|:| -3288 (-640 (-1257 (-407 (-948 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563)))) (-684 |#4|) (-640 (-407 (-948 |#1|))) (-640 (-640 |#4|)) (-767) (-767) (-563))) (-15 -3839 (|#4| |#4|)) (-15 -3849 ((-112) (-640 |#4|))) (-15 -3849 ((-112) (-640 (-948 |#1|))))) -((-2764 (((-923) |#1| (-1169)) 17) (((-923) |#1| (-1169) (-1087 (-225))) 21)) (-2897 (((-923) |#1| |#1| (-1169) (-1087 (-225))) 19) (((-923) |#1| (-1169) (-1087 (-225))) 15))) -(((-921 |#1|) (-10 -7 (-15 -2897 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -2897 ((-923) |#1| |#1| (-1169) (-1087 (-225)))) (-15 -2764 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -2764 ((-923) |#1| (-1169)))) (-611 (-536))) (T -921)) -((-2764 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-2764 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-2897 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) (-2897 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) (-5 *1 (-921 *3)) (-4 *3 (-611 (-536)))))) -(-10 -7 (-15 -2897 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -2897 ((-923) |#1| |#1| (-1169) (-1087 (-225)))) (-15 -2764 ((-923) |#1| (-1169) (-1087 (-225)))) (-15 -2764 ((-923) |#1| (-1169)))) -((-2479 (($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 122)) (-4131 (((-1087 (-225)) $) 63)) (-4120 (((-1087 (-225)) $) 62)) (-4109 (((-1087 (-225)) $) 61)) (-2878 (((-640 (-640 (-225))) $) 68)) (-2887 (((-1087 (-225)) $) 64)) (-2818 (((-563) (-563)) 56)) (-2859 (((-563) (-563)) 52)) (-2839 (((-563) (-563)) 54)) (-2796 (((-112) (-112)) 58)) (-2828 (((-563)) 55)) (-3272 (($ $ (-1087 (-225))) 125) (($ $) 126)) (-2906 (($ (-1 (-939 (-225)) (-225)) (-1087 (-225))) 132) (($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 133)) (-2897 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225))) 135) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 136) (($ $ (-1087 (-225))) 128)) (-2786 (((-563)) 59)) (-2869 (((-563)) 50)) (-2850 (((-563)) 53)) (-2708 (((-640 (-640 (-939 (-225)))) $) 152)) (-2776 (((-112) (-112)) 60)) (-2062 (((-858) $) 150)) (-2808 (((-112)) 57))) -(((-922) (-13 (-970) (-10 -8 (-15 -2906 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -2906 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2897 ($ $ (-1087 (-225)))) (-15 -2479 ($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3272 ($ $ (-1087 (-225)))) (-15 -3272 ($ $)) (-15 -2887 ((-1087 (-225)) $)) (-15 -2878 ((-640 (-640 (-225))) $)) (-15 -2869 ((-563))) (-15 -2859 ((-563) (-563))) (-15 -2850 ((-563))) (-15 -2839 ((-563) (-563))) (-15 -2828 ((-563))) (-15 -2818 ((-563) (-563))) (-15 -2808 ((-112))) (-15 -2796 ((-112) (-112))) (-15 -2786 ((-563))) (-15 -2776 ((-112) (-112)))))) (T -922)) -((-2906 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-2906 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-2897 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-2897 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-922)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-2479 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-3272 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-3272 (*1 *1 *1) (-5 *1 (-922))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) (-2878 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-922)))) (-2869 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2859 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2850 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2839 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2828 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2818 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2808 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-2796 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922)))) (-2786 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922)))) (-2776 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) -(-13 (-970) (-10 -8 (-15 -2906 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -2906 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2897 ($ $ (-1087 (-225)))) (-15 -2479 ($ $ (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -3272 ($ $ (-1087 (-225)))) (-15 -3272 ($ $)) (-15 -2887 ((-1087 (-225)) $)) (-15 -2878 ((-640 (-640 (-225))) $)) (-15 -2869 ((-563))) (-15 -2859 ((-563) (-563))) (-15 -2850 ((-563))) (-15 -2839 ((-563) (-563))) (-15 -2828 ((-563))) (-15 -2818 ((-563) (-563))) (-15 -2808 ((-112))) (-15 -2796 ((-112) (-112))) (-15 -2786 ((-563))) (-15 -2776 ((-112) (-112))))) -((-2479 (($ $ (-1087 (-225))) 123) (($ $ (-1087 (-225)) (-1087 (-225))) 124)) (-4120 (((-1087 (-225)) $) 72)) (-4109 (((-1087 (-225)) $) 71)) (-2887 (((-1087 (-225)) $) 73)) (-3892 (((-563) (-563)) 65)) (-2736 (((-563) (-563)) 61)) (-3910 (((-563) (-563)) 63)) (-3871 (((-112) (-112)) 67)) (-3901 (((-563)) 64)) (-3272 (($ $ (-1087 (-225))) 127) (($ $) 128)) (-2906 (($ (-1 (-939 (-225)) (-225)) (-1087 (-225))) 142) (($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 143)) (-2764 (($ (-1 (-225) (-225)) (-1087 (-225))) 150) (($ (-1 (-225) (-225))) 154)) (-2897 (($ (-1 (-225) (-225)) (-1087 (-225))) 138) (($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225))) 139) (($ (-640 (-1 (-225) (-225))) (-1087 (-225))) 147) (($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225))) 148) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225))) 140) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225))) 141) (($ $ (-1087 (-225))) 129)) (-2755 (((-112) $) 68)) (-3860 (((-563)) 69)) (-2746 (((-563)) 59)) (-2724 (((-563)) 62)) (-2708 (((-640 (-640 (-939 (-225)))) $) 35)) (-4181 (((-112) (-112)) 70)) (-2062 (((-858) $) 168)) (-3881 (((-112)) 66))) -(((-923) (-13 (-951) (-10 -8 (-15 -2897 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2897 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)))) (-15 -2897 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2906 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -2906 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2764 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -2764 ($ (-1 (-225) (-225)))) (-15 -2897 ($ $ (-1087 (-225)))) (-15 -2755 ((-112) $)) (-15 -2479 ($ $ (-1087 (-225)))) (-15 -2479 ($ $ (-1087 (-225)) (-1087 (-225)))) (-15 -3272 ($ $ (-1087 (-225)))) (-15 -3272 ($ $)) (-15 -2887 ((-1087 (-225)) $)) (-15 -2746 ((-563))) (-15 -2736 ((-563) (-563))) (-15 -2724 ((-563))) (-15 -3910 ((-563) (-563))) (-15 -3901 ((-563))) (-15 -3892 ((-563) (-563))) (-15 -3881 ((-112))) (-15 -3871 ((-112) (-112))) (-15 -3860 ((-563))) (-15 -4181 ((-112) (-112)))))) (T -923)) -((-2897 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2897 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2897 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2897 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2897 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2897 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2906 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2906 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2764 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) (-5 *1 (-923)))) (-2764 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923)))) (-2897 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-2755 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-2479 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-2479 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-3272 (*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-3272 (*1 *1 *1) (-5 *1 (-923))) (-2887 (*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) (-2746 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-2736 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-2724 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-3901 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-3881 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-3860 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923)))) (-4181 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(-13 (-951) (-10 -8 (-15 -2897 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2897 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)))) (-15 -2897 ($ (-640 (-1 (-225) (-225))) (-1087 (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)))) (-15 -2897 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2906 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)))) (-15 -2906 ($ (-1 (-939 (-225)) (-225)) (-1087 (-225)) (-1087 (-225)) (-1087 (-225)))) (-15 -2764 ($ (-1 (-225) (-225)) (-1087 (-225)))) (-15 -2764 ($ (-1 (-225) (-225)))) (-15 -2897 ($ $ (-1087 (-225)))) (-15 -2755 ((-112) $)) (-15 -2479 ($ $ (-1087 (-225)))) (-15 -2479 ($ $ (-1087 (-225)) (-1087 (-225)))) (-15 -3272 ($ $ (-1087 (-225)))) (-15 -3272 ($ $)) (-15 -2887 ((-1087 (-225)) $)) (-15 -2746 ((-563))) (-15 -2736 ((-563) (-563))) (-15 -2724 ((-563))) (-15 -3910 ((-563) (-563))) (-15 -3901 ((-563))) (-15 -3892 ((-563) (-563))) (-15 -3881 ((-112))) (-15 -3871 ((-112) (-112))) (-15 -3860 ((-563))) (-15 -4181 ((-112) (-112))))) -((-2917 (((-640 (-1087 (-225))) (-640 (-640 (-939 (-225))))) 34))) -(((-924) (-10 -7 (-15 -2917 ((-640 (-1087 (-225))) (-640 (-640 (-939 (-225)))))))) (T -924)) -((-2917 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-1087 (-225)))) (-5 *1 (-924))))) -(-10 -7 (-15 -2917 ((-640 (-1087 (-225))) (-640 (-640 (-939 (-225))))))) -((-1774 ((|#2| |#2|) 28)) (-2328 ((|#2| |#2|) 29)) (-2495 ((|#2| |#2|) 27)) (-3468 ((|#2| |#2| (-1151)) 26))) -(((-925 |#1| |#2|) (-10 -7 (-15 -3468 (|#2| |#2| (-1151))) (-15 -2495 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -2328 (|#2| |#2|))) (-846) (-430 |#1|)) (T -925)) -((-2328 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-1774 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-2495 (*1 *2 *2) (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) (-3468 (*1 *2 *2 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-846)) (-5 *1 (-925 *4 *2)) (-4 *2 (-430 *4))))) -(-10 -7 (-15 -3468 (|#2| |#2| (-1151))) (-15 -2495 (|#2| |#2|)) (-15 -1774 (|#2| |#2|)) (-15 -2328 (|#2| |#2|))) -((-1774 (((-316 (-563)) (-1169)) 16)) (-2328 (((-316 (-563)) (-1169)) 14)) (-2495 (((-316 (-563)) (-1169)) 12)) (-3468 (((-316 (-563)) (-1169) (-1151)) 19))) -(((-926) (-10 -7 (-15 -3468 ((-316 (-563)) (-1169) (-1151))) (-15 -2495 ((-316 (-563)) (-1169))) (-15 -1774 ((-316 (-563)) (-1169))) (-15 -2328 ((-316 (-563)) (-1169))))) (T -926)) -((-2328 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-2495 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1151)) (-5 *2 (-316 (-563))) (-5 *1 (-926))))) -(-10 -7 (-15 -3468 ((-316 (-563)) (-1169) (-1151))) (-15 -2495 ((-316 (-563)) (-1169))) (-15 -1774 ((-316 (-563)) (-1169))) (-15 -2328 ((-316 (-563)) (-1169)))) -((-2938 (((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)) 25)) (-2928 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) -(((-927 |#1| |#2| |#3|) (-10 -7 (-15 -2928 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2938 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-882 |#1|) (-13 (-1093) (-1034 |#2|))) (T -927)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-13 (-1093) (-1034 *3))) (-4 *3 (-882 *5)) (-5 *1 (-927 *5 *3 *6)))) (-2928 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1093) (-1034 *5))) (-4 *5 (-882 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-927 *4 *5 *6))))) -(-10 -7 (-15 -2928 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -2938 ((-885 |#1| |#3|) |#2| (-888 |#1|) (-885 |#1| |#3|)))) -((-2938 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 30))) -(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -2938 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-13 (-555) (-846) (-882 |#1|)) (-13 (-430 |#2|) (-611 (-888 |#1|)) (-882 |#1|) (-1034 (-609 $)))) (T -928)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-13 (-430 *6) (-611 *4) (-882 *5) (-1034 (-609 $)))) (-5 *4 (-888 *5)) (-4 *6 (-13 (-555) (-846) (-882 *5))) (-5 *1 (-928 *5 *6 *3))))) -(-10 -7 (-15 -2938 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) -((-2938 (((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|)) 13))) -(((-929 |#1|) (-10 -7 (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|)))) (-545)) (T -929)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 (-563) *3)) (-5 *4 (-888 (-563))) (-4 *3 (-545)) (-5 *1 (-929 *3))))) -(-10 -7 (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|)))) -((-2938 (((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|)) 57))) -(((-930 |#1| |#2|) (-10 -7 (-15 -2938 ((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|)))) (-1093) (-13 (-846) (-1034 (-609 $)) (-611 (-888 |#1|)) (-882 |#1|))) (T -930)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-609 *6)) (-4 *5 (-1093)) (-4 *6 (-13 (-846) (-1034 (-609 $)) (-611 *4) (-882 *5))) (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6))))) -(-10 -7 (-15 -2938 ((-885 |#1| |#2|) (-609 |#2|) (-888 |#1|) (-885 |#1| |#2|)))) -((-2938 (((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)) 17))) -(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -2938 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)))) (-1093) (-882 |#1|) (-661 |#2|)) (T -931)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-4 *3 (-661 *6)) (-5 *1 (-931 *5 *6 *3))))) -(-10 -7 (-15 -2938 ((-881 |#1| |#2| |#3|) |#3| (-888 |#1|) (-881 |#1| |#2| |#3|)))) -((-2938 (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|)) 17 (|has| |#3| (-882 |#1|))) (((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|))) 16))) -(((-932 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2938 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -2938 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|)) (-1093) (-789) (-846) (-13 (-1045) (-846) (-882 |#1|)) (-13 (-945 |#4| |#2| |#3|) (-611 (-888 |#1|)))) (T -932)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-13 (-945 *8 *6 *7) (-611 *4))) (-5 *4 (-888 *5)) (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-13 (-1045) (-846) (-882 *5))) (-5 *1 (-932 *5 *6 *7 *8 *3)))) (-2938 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3))) (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6)) (-4 *6 (-1093)) (-4 *3 (-13 (-945 *9 *7 *8) (-611 *4))) (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6))) (-5 *1 (-932 *6 *7 *8 *9 *3))))) -(-10 -7 (-15 -2938 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|) (-1 (-885 |#1| |#5|) |#3| (-888 |#1|) (-885 |#1| |#5|)))) (IF (|has| |#3| (-882 |#1|)) (-15 -2938 ((-885 |#1| |#5|) |#5| (-888 |#1|) (-885 |#1| |#5|))) |%noBranch|)) -((-2414 ((|#2| |#2| (-640 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) -(((-933 |#1| |#2| |#3|) (-10 -7 (-15 -2414 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2414 (|#2| |#2| (-640 (-1 (-112) |#3|))))) (-846) (-430 |#1|) (-1208)) (T -933)) -((-2414 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-4 *4 (-846)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) (-2414 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1208)) (-4 *4 (-846)) (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4))))) -(-10 -7 (-15 -2414 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2414 (|#2| |#2| (-640 (-1 (-112) |#3|))))) -((-2414 (((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|))) 18) (((-316 (-563)) (-1169) (-1 (-112) |#1|)) 15))) -(((-934 |#1|) (-10 -7 (-15 -2414 ((-316 (-563)) (-1169) (-1 (-112) |#1|))) (-15 -2414 ((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|))))) (-1208)) (T -934)) -((-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-5 *2 (-316 (-563))) (-5 *1 (-934 *5)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1208)) (-5 *2 (-316 (-563))) (-5 *1 (-934 *5))))) -(-10 -7 (-15 -2414 ((-316 (-563)) (-1169) (-1 (-112) |#1|))) (-15 -2414 ((-316 (-563)) (-1169) (-640 (-1 (-112) |#1|))))) -((-2938 (((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)) 25))) -(((-935 |#1| |#2| |#3|) (-10 -7 (-15 -2938 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-1093) (-13 (-555) (-882 |#1|) (-611 (-888 |#1|))) (-988 |#2|)) (T -935)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-988 *6)) (-4 *6 (-13 (-555) (-882 *5) (-611 *4))) (-5 *4 (-888 *5)) (-5 *1 (-935 *5 *6 *3))))) -(-10 -7 (-15 -2938 ((-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) -((-2938 (((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169))) 18))) -(((-936 |#1|) (-10 -7 (-15 -2938 ((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169))))) (-1093)) (T -936)) -((-2938 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-885 *5 (-1169))) (-5 *3 (-1169)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *1 (-936 *5))))) -(-10 -7 (-15 -2938 ((-885 |#1| (-1169)) (-1169) (-888 |#1|) (-885 |#1| (-1169))))) -((-2950 (((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 34)) (-2938 (((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))) 33))) -(((-937 |#1| |#2| |#3|) (-10 -7 (-15 -2938 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -2950 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))) (-1093) (-13 (-1045) (-846)) (-13 (-1045) (-611 (-888 |#1|)) (-1034 |#2|))) (T -937)) -((-2950 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-888 *6))) (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1093)) (-4 *8 (-13 (-1045) (-611 (-888 *6)) (-1034 *7))) (-5 *2 (-885 *6 *8)) (-4 *7 (-13 (-1045) (-846))) (-5 *1 (-937 *6 *7 *8)))) (-2938 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-640 (-888 *7))) (-5 *5 (-1 *9 (-640 *9))) (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1093)) (-4 *9 (-13 (-1045) (-611 (-888 *7)) (-1034 *8))) (-5 *2 (-885 *7 *9)) (-5 *3 (-640 *9)) (-4 *8 (-13 (-1045) (-846))) (-5 *1 (-937 *7 *8 *9))))) -(-10 -7 (-15 -2938 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-1 |#3| (-640 |#3|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|)))) (-15 -2950 ((-885 |#1| |#3|) (-640 |#3|) (-640 (-888 |#1|)) (-885 |#1| |#3|) (-1 (-885 |#1| |#3|) |#3| (-888 |#1|) (-885 |#1| |#3|))))) -((-3035 (((-1165 (-407 (-563))) (-563)) 80)) (-3024 (((-1165 (-563)) (-563)) 83)) (-1453 (((-1165 (-563)) (-563)) 77)) (-3014 (((-563) (-1165 (-563))) 73)) (-3005 (((-1165 (-407 (-563))) (-563)) 64)) (-2995 (((-1165 (-563)) (-563)) 48)) (-2985 (((-1165 (-563)) (-563)) 85)) (-2974 (((-1165 (-563)) (-563)) 84)) (-2962 (((-1165 (-407 (-563))) (-563)) 66))) -(((-938) (-10 -7 (-15 -2962 ((-1165 (-407 (-563))) (-563))) (-15 -2974 ((-1165 (-563)) (-563))) (-15 -2985 ((-1165 (-563)) (-563))) (-15 -2995 ((-1165 (-563)) (-563))) (-15 -3005 ((-1165 (-407 (-563))) (-563))) (-15 -3014 ((-563) (-1165 (-563)))) (-15 -1453 ((-1165 (-563)) (-563))) (-15 -3024 ((-1165 (-563)) (-563))) (-15 -3035 ((-1165 (-407 (-563))) (-563))))) (T -938)) -((-3035 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))) (-3024 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-1453 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-3014 (*1 *2 *3) (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-563)) (-5 *1 (-938)))) (-3005 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563)))) (-2995 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-2985 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-2974 (*1 *2 *3) (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) (-2962 (*1 *2 *3) (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563))))) -(-10 -7 (-15 -2962 ((-1165 (-407 (-563))) (-563))) (-15 -2974 ((-1165 (-563)) (-563))) (-15 -2985 ((-1165 (-563)) (-563))) (-15 -2995 ((-1165 (-563)) (-563))) (-15 -3005 ((-1165 (-407 (-563))) (-563))) (-15 -3014 ((-563) (-1165 (-563)))) (-15 -1453 ((-1165 (-563)) (-563))) (-15 -3024 ((-1165 (-563)) (-563))) (-15 -3035 ((-1165 (-407 (-563))) (-563)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1696 (($ (-767)) NIL (|has| |#1| (-23)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) |#1|) 13 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-2256 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-3415 (($ (-640 |#1|)) 14)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3804 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-2552 (($ (-767) |#1|) 10)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 12 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3375 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3604 (((-112) $ (-767)) NIL)) (-3322 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) NIL (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-2884 (($ $ (-640 |#1|)) 28)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 21) (($ $ (-1224 (-563))) NIL)) (-3396 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-1575 (((-917) $) 17)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3387 (($ $ $) 26)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536)))) (($ (-640 |#1|)) 18)) (-2074 (($ (-640 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 27) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3039 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3027 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-1708 (((-767) $) 15 (|has| $ (-6 -4408))))) -(((-939 |#1|) (-976 |#1|) (-1045)) (T -939)) -NIL -(-976 |#1|) -((-3068 (((-481 |#1| |#2|) (-948 |#2|)) 22)) (-3099 (((-247 |#1| |#2|) (-948 |#2|)) 35)) (-3077 (((-948 |#2|) (-481 |#1| |#2|)) 27)) (-3058 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-3086 (((-948 |#2|) (-247 |#1| |#2|)) 32)) (-3046 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48))) -(((-940 |#1| |#2|) (-10 -7 (-15 -3046 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3058 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3068 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -3077 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -3086 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -3099 ((-247 |#1| |#2|) (-948 |#2|)))) (-640 (-1169)) (-1045)) (T -940)) -((-3099 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169))))) (-3086 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-3077 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169))))) (-3058 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5)))) (-3046 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5))))) -(-10 -7 (-15 -3046 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -3058 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -3068 ((-481 |#1| |#2|) (-948 |#2|))) (-15 -3077 ((-948 |#2|) (-481 |#1| |#2|))) (-15 -3086 ((-948 |#2|) (-247 |#1| |#2|))) (-15 -3099 ((-247 |#1| |#2|) (-948 |#2|)))) -((-3110 (((-640 |#2|) |#2| |#2|) 10)) (-3141 (((-767) (-640 |#1|)) 49 (|has| |#1| (-844)))) (-3122 (((-640 |#2|) |#2|) 11)) (-3154 (((-767) (-640 |#1|) (-563) (-563)) 53 (|has| |#1| (-844)))) (-3132 ((|#1| |#2|) 40 (|has| |#1| (-844))))) -(((-941 |#1| |#2|) (-10 -7 (-15 -3110 ((-640 |#2|) |#2| |#2|)) (-15 -3122 ((-640 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3132 (|#1| |#2|)) (-15 -3141 ((-767) (-640 |#1|))) (-15 -3154 ((-767) (-640 |#1|) (-563) (-563)))) |%noBranch|)) (-363) (-1233 |#1|)) (T -941)) -((-3154 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-563)) (-4 *5 (-844)) (-4 *5 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1233 *5)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-941 *4 *5)) (-4 *5 (-1233 *4)))) (-3132 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) (-4 *3 (-1233 *2)))) (-3122 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1233 *4)))) (-3110 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -3110 ((-640 |#2|) |#2| |#2|)) (-15 -3122 ((-640 |#2|) |#2|)) (IF (|has| |#1| (-844)) (PROGN (-15 -3132 (|#1| |#2|)) (-15 -3141 ((-767) (-640 |#1|))) (-15 -3154 ((-767) (-640 |#1|) (-563) (-563)))) |%noBranch|)) -((-2751 (((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)) 19))) -(((-942 |#1| |#2|) (-10 -7 (-15 -2751 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) (-1045) (-1045)) (T -942)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6))))) -(-10 -7 (-15 -2751 ((-948 |#2|) (-1 |#2| |#1|) (-948 |#1|)))) -((-2021 (((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|)) 18))) -(((-943 |#1| |#2|) (-10 -7 (-15 -2021 ((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|)))) (-1169) (-1045)) (T -943)) -((-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-1253 *5)) (-14 *5 (-1169)) (-4 *6 (-1045)) (-5 *2 (-1230 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6))))) -(-10 -7 (-15 -2021 ((-1230 |#1| (-948 |#2|)) (-948 |#2|) (-1253 |#1|)))) -((-3176 (((-767) $) 88) (((-767) $ (-640 |#4|)) 93)) (-2924 (($ $) 204)) (-2102 (((-418 $) $) 196)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 140)) (-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2589 ((|#2| $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL) ((|#4| $) 73)) (-3962 (($ $ $ |#4|) 95)) (-3853 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 130) (((-684 |#2|) (-684 $)) 120)) (-2227 (($ $) 211) (($ $ |#4|) 214)) (-3203 (((-640 $) $) 77)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 230) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 223)) (-3197 (((-640 $) $) 34)) (-2165 (($ |#2| |#3|) NIL) (($ $ |#4| (-767)) NIL) (($ $ (-640 |#4|) (-640 (-767))) 71)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ |#4|) 193)) (-3218 (((-3 (-640 $) "failed") $) 52)) (-3207 (((-3 (-640 $) "failed") $) 39)) (-3228 (((-3 (-2 (|:| |var| |#4|) (|:| -2631 (-767))) "failed") $) 57)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 133)) (-1306 (((-418 (-1165 $)) (-1165 $)) 146)) (-1315 (((-418 (-1165 $)) (-1165 $)) 144)) (-2055 (((-418 $) $) 164)) (-1497 (($ $ (-640 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-640 |#4|) (-640 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-640 |#4|) (-640 $)) NIL)) (-3974 (($ $ |#4|) 97)) (-2802 (((-888 (-379)) $) 244) (((-888 (-563)) $) 237) (((-536) $) 252)) (-3166 ((|#2| $) NIL) (($ $ |#4|) 206)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 183)) (-1304 ((|#2| $ |#3|) NIL) (($ $ |#4| (-767)) 62) (($ $ (-640 |#4|) (-640 (-767))) 69)) (-4376 (((-3 $ "failed") $) 185)) (-2966 (((-112) $ $) 217))) -(((-944 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -4376 ((-3 |#1| "failed") |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2938 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -1315 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1306 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1297 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -4386 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -2227 (|#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#4|)) (-15 -3974 (|#1| |#1| |#4|)) (-15 -3962 (|#1| |#1| |#1| |#4|)) (-15 -3203 ((-640 |#1|) |#1|)) (-15 -3176 ((-767) |#1| (-640 |#4|))) (-15 -3176 ((-767) |#1|)) (-15 -3228 ((-3 (-2 (|:| |var| |#4|) (|:| -2631 (-767))) "failed") |#1|)) (-15 -3218 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -3207 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -2165 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -2165 (|#1| |#1| |#4| (-767))) (-15 -2836 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1| |#4|)) (-15 -3197 ((-640 |#1|) |#1|)) (-15 -1304 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -1304 (|#1| |#1| |#4| (-767))) (-15 -3853 ((-684 |#2|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -2671 ((-3 |#4| "failed") |#1|)) (-15 -2589 (|#4| |#1|)) (-15 -1497 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#4| |#1|)) (-15 -1497 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#4| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2165 (|#1| |#2| |#3|)) (-15 -1304 (|#2| |#1| |#3|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -3166 (|#2| |#1|)) (-15 -2227 (|#1| |#1|))) (-945 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -944)) -NIL -(-10 -8 (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -4376 ((-3 |#1| "failed") |#1|)) (-15 -2966 ((-112) |#1| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2938 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -1315 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1306 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1297 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -4386 ((-3 (-1257 |#1|) "failed") (-684 |#1|))) (-15 -2227 (|#1| |#1| |#4|)) (-15 -3166 (|#1| |#1| |#4|)) (-15 -3974 (|#1| |#1| |#4|)) (-15 -3962 (|#1| |#1| |#1| |#4|)) (-15 -3203 ((-640 |#1|) |#1|)) (-15 -3176 ((-767) |#1| (-640 |#4|))) (-15 -3176 ((-767) |#1|)) (-15 -3228 ((-3 (-2 (|:| |var| |#4|) (|:| -2631 (-767))) "failed") |#1|)) (-15 -3218 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -3207 ((-3 (-640 |#1|) "failed") |#1|)) (-15 -2165 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -2165 (|#1| |#1| |#4| (-767))) (-15 -2836 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1| |#4|)) (-15 -3197 ((-640 |#1|) |#1|)) (-15 -1304 (|#1| |#1| (-640 |#4|) (-640 (-767)))) (-15 -1304 (|#1| |#1| |#4| (-767))) (-15 -3853 ((-684 |#2|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -2671 ((-3 |#4| "failed") |#1|)) (-15 -2589 (|#4| |#1|)) (-15 -1497 (|#1| |#1| (-640 |#4|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#4| |#1|)) (-15 -1497 (|#1| |#1| (-640 |#4|) (-640 |#2|))) (-15 -1497 (|#1| |#1| |#4| |#2|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -2165 (|#1| |#2| |#3|)) (-15 -1304 (|#2| |#1| |#3|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -3166 (|#2| |#1|)) (-15 -2227 (|#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 |#3|) $) 110)) (-2021 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-2554 (($ $) 88 (|has| |#1| (-555)))) (-2533 (((-112) $) 90 (|has| |#1| (-555)))) (-3176 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-1482 (((-3 $ "failed") $ $) 19)) (-1325 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-2924 (($ $) 98 (|has| |#1| (-452)))) (-2102 (((-418 $) $) 97 (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136)) (-2589 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137)) (-3962 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-3213 (($ $) 154)) (-3853 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3230 (((-3 $ "failed") $) 33)) (-2227 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3203 (((-640 $) $) 109)) (-3675 (((-112) $) 96 (|has| |#1| (-905)))) (-3302 (($ $ |#1| |#2| $) 172)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2712 (((-112) $) 31)) (-1528 (((-767) $) 169)) (-2175 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-3197 (((-640 $) $) 126)) (-1871 (((-112) $) 152)) (-2165 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ |#3|) 120)) (-3187 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3489 (($ $ $) 79 (|has| |#1| (-846)))) (-4105 (($ $ $) 78 (|has| |#1| (-846)))) (-3310 (($ (-1 |#2| |#2|) $) 171)) (-2751 (($ (-1 |#1| |#1|) $) 151)) (-2845 (((-3 |#3| "failed") $) 123)) (-3183 (($ $) 149)) (-3193 ((|#1| $) 148)) (-1607 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1938 (((-1151) $) 9)) (-3218 (((-3 (-640 $) "failed") $) 114)) (-3207 (((-3 (-640 $) "failed") $) 115)) (-3228 (((-3 (-2 (|:| |var| |#3|) (|:| -2631 (-767))) "failed") $) 113)) (-3249 (((-1113) $) 10)) (-3160 (((-112) $) 166)) (-3170 ((|#1| $) 167)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-1647 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2055 (((-418 $) $) 99 (|has| |#1| (-905)))) (-3448 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138)) (-3974 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-1361 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39)) (-1962 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129)) (-2802 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 104 (-3743 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-555))) (($ (-407 (-563))) 72 (-2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))))) (-3234 (((-640 |#1|) $) 168)) (-1304 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-4376 (((-3 $ "failed") $) 73 (-2811 (-3743 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) 28 T CONST)) (-3292 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2543 (((-112) $ $) 89 (|has| |#1| (-555)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35)) (-2998 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 75 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 77 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 74 (|has| |#1| (-846)))) (-3050 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-945 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -945)) -((-2227 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-1962 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-1962 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) (-1304 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-1304 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-3197 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-2021 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)))) (-2021 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-1165 *3)))) (-2845 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3187 (*1 *2 *1 *3) (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-767)))) (-3187 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) (-2836 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-945 *4 *5 *3)))) (-2165 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *2 (-846)))) (-2165 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) (-2175 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3)) (-4 *5 (-789)) (-4 *3 (-846)))) (-2175 (*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)))) (-3207 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-3218 (*1 *2 *1) (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-3228 (*1 *2 *1) (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -2631 (-767)))))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-3176 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *5)))) (-3203 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) (-3962 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-3974 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-172)))) (-3166 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-2227 (*1 *1 *1 *2) (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *3 (-452)))) (-2924 (*1 *1 *1) (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2102 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5))))) -(-13 (-896 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1034 |t#3|) (-377 |t#1|) (-10 -8 (-15 -1962 ((-767) $ |t#3|)) (-15 -1962 ((-640 (-767)) $ (-640 |t#3|))) (-15 -1304 ($ $ |t#3| (-767))) (-15 -1304 ($ $ (-640 |t#3|) (-640 (-767)))) (-15 -3197 ((-640 $) $)) (-15 -2021 ((-1165 $) $ |t#3|)) (-15 -2021 ((-1165 |t#1|) $)) (-15 -2845 ((-3 |t#3| "failed") $)) (-15 -3187 ((-767) $ |t#3|)) (-15 -3187 ((-640 (-767)) $ (-640 |t#3|))) (-15 -2836 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $ |t#3|)) (-15 -2165 ($ $ |t#3| (-767))) (-15 -2165 ($ $ (-640 |t#3|) (-640 (-767)))) (-15 -2175 ($ (-1165 |t#1|) |t#3|)) (-15 -2175 ($ (-1165 $) |t#3|)) (-15 -3207 ((-3 (-640 $) "failed") $)) (-15 -3218 ((-3 (-640 $) "failed") $)) (-15 -3228 ((-3 (-2 (|:| |var| |t#3|) (|:| -2631 (-767))) "failed") $)) (-15 -3176 ((-767) $)) (-15 -3176 ((-767) $ (-640 |t#3|))) (-15 -2185 ((-640 |t#3|) $)) (-15 -3203 ((-640 $) $)) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (IF (|has| |t#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-563)))) (IF (|has| |t#3| (-611 (-888 (-563)))) (-6 (-611 (-888 (-563)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-611 (-888 (-379)))) (IF (|has| |t#3| (-611 (-888 (-379)))) (-6 (-611 (-888 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-563))) (IF (|has| |t#3| (-882 (-563))) (-6 (-882 (-563))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-882 (-379))) (IF (|has| |t#3| (-882 (-379))) (-6 (-882 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3962 ($ $ $ |t#3|)) (-15 -3974 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -3166 ($ $ |t#3|)) (-15 -2227 ($ $)) (-15 -2227 ($ $ |t#3|)) (-15 -2102 ((-418 $) $)) (-15 -2924 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4406)) (-6 -4406) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#3|) . T) ((-613 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-290) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2811 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905))) -((-2185 (((-640 |#2|) |#5|) 40)) (-2021 (((-1165 |#5|) |#5| |#2| (-1165 |#5|)) 23) (((-407 (-1165 |#5|)) |#5| |#2|) 16)) (-2175 ((|#5| (-407 (-1165 |#5|)) |#2|) 30)) (-2845 (((-3 |#2| "failed") |#5|) 71)) (-3218 (((-3 (-640 |#5|) "failed") |#5|) 65)) (-3236 (((-3 (-2 (|:| |val| |#5|) (|:| -2631 (-563))) "failed") |#5|) 53)) (-3207 (((-3 (-640 |#5|) "failed") |#5|) 67)) (-3228 (((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-563))) "failed") |#5|) 57))) -(((-946 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2185 ((-640 |#2|) |#5|)) (-15 -2845 ((-3 |#2| "failed") |#5|)) (-15 -2021 ((-407 (-1165 |#5|)) |#5| |#2|)) (-15 -2175 (|#5| (-407 (-1165 |#5|)) |#2|)) (-15 -2021 ((-1165 |#5|) |#5| |#2| (-1165 |#5|))) (-15 -3207 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3218 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3228 ((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-563))) "failed") |#5|)) (-15 -3236 ((-3 (-2 (|:| |val| |#5|) (|:| -2631 (-563))) "failed") |#5|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2062 ($ |#4|)) (-15 -2626 (|#4| $)) (-15 -2636 (|#4| $))))) (T -946)) -((-3236 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2631 (-563)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))))) (-3228 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2631 (-563)))) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))))) (-3218 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))))) (-3207 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))))) (-2021 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))) (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1165 *2))) (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *2 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))) (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4)))) (-2021 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1165 *3))) (-5 *1 (-946 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))))) (-2845 (*1 *2 *3) (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2)) (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *6)) (-15 -2626 (*6 $)) (-15 -2636 (*6 $))))))) (-2185 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *5)) (-5 *1 (-946 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $)))))))) -(-10 -7 (-15 -2185 ((-640 |#2|) |#5|)) (-15 -2845 ((-3 |#2| "failed") |#5|)) (-15 -2021 ((-407 (-1165 |#5|)) |#5| |#2|)) (-15 -2175 (|#5| (-407 (-1165 |#5|)) |#2|)) (-15 -2021 ((-1165 |#5|) |#5| |#2| (-1165 |#5|))) (-15 -3207 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3218 ((-3 (-640 |#5|) "failed") |#5|)) (-15 -3228 ((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-563))) "failed") |#5|)) (-15 -3236 ((-3 (-2 (|:| |val| |#5|) (|:| -2631 (-563))) "failed") |#5|))) -((-2751 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) -(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2751 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-789) (-846) (-1045) (-945 |#3| |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -3027 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (T -947)) -((-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *6 (-789)) (-4 *2 (-13 (-1093) (-10 -8 (-15 -3027 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7))))) -(-10 -7 (-15 -2751 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-1169)) $) 16)) (-2021 (((-1165 $) $ (-1169)) 21) (((-1165 |#1|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-1169))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1169) "failed") $) NIL)) (-2589 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1169) $) NIL)) (-3962 (($ $ $ (-1169)) NIL (|has| |#1| (-172)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1169)) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-3302 (($ $ |#1| (-531 (-1169)) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1169) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1169) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-2175 (($ (-1165 |#1|) (-1169)) NIL) (($ (-1165 $) (-1169)) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-1169)) NIL)) (-3187 (((-531 (-1169)) $) NIL) (((-767) $ (-1169)) NIL) (((-640 (-767)) $ (-640 (-1169))) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-531 (-1169)) (-531 (-1169))) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2845 (((-3 (-1169) "failed") $) 19)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1938 (((-1151) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-1169)) (|:| -2631 (-767))) "failed") $) NIL)) (-3204 (($ $ (-1169)) 29 (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1169) |#1|) NIL) (($ $ (-640 (-1169)) (-640 |#1|)) NIL) (($ $ (-1169) $) NIL) (($ $ (-640 (-1169)) (-640 $)) NIL)) (-3974 (($ $ (-1169)) NIL (|has| |#1| (-172)))) (-1361 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-1962 (((-531 (-1169)) $) NIL) (((-767) $ (-1169)) NIL) (((-640 (-767)) $ (-640 (-1169))) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-1169) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1169) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1169) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1169)) NIL (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) 25) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1169)) 27) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-948 |#1|) (-13 (-945 |#1| (-531 (-1169)) (-1169)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1169))) |%noBranch|))) (-1045)) (T -948)) -((-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045))))) -(-13 (-945 |#1| (-531 (-1169)) (-1169)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1169))) |%noBranch|))) -((-3245 (((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) |#3| (-767)) 49)) (-3256 (((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767)) 44)) (-3278 (((-2 (|:| -2631 (-767)) (|:| -2765 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767)) 65)) (-3268 (((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) |#5| (-767)) 74 (|has| |#3| (-452))))) -(((-949 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3245 ((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3256 ((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767))) (IF (|has| |#3| (-452)) (-15 -3268 ((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -3278 ((-2 (|:| -2631 (-767)) (|:| -2765 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767)))) (-789) (-846) (-555) (-945 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -2062 ($ |#4|)) (-15 -2626 (|#4| $)) (-15 -2636 (|#4| $))))) (T -949)) -((-3278 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *3 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *3) (|:| |radicand| (-640 *3)))) (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2062 ($ *3)) (-15 -2626 (*3 $)) (-15 -2636 (*3 $))))))) (-3268 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *3) (|:| |radicand| *3))) (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) (-4 *3 (-13 (-363) (-10 -8 (-15 -2062 ($ *8)) (-15 -2626 (*8 $)) (-15 -2636 (*8 $))))))) (-3256 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-563))) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6)) (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *9) (|:| |radicand| *9))) (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) (-4 *9 (-13 (-363) (-10 -8 (-15 -2062 ($ *8)) (-15 -2626 (*8 $)) (-15 -2636 (*8 $))))))) (-3245 (*1 *2 *3 *4) (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-555)) (-4 *7 (-945 *3 *5 *6)) (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *8) (|:| |radicand| *8))) (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) (-4 *8 (-13 (-363) (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $)))))))) -(-10 -7 (-15 -3245 ((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) |#3| (-767))) (-15 -3256 ((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) (-407 (-563)) (-767))) (IF (|has| |#3| (-452)) (-15 -3268 ((-2 (|:| -2631 (-767)) (|:| -2765 |#5|) (|:| |radicand| |#5|)) |#5| (-767))) |%noBranch|) (-15 -3278 ((-2 (|:| -2631 (-767)) (|:| -2765 |#4|) (|:| |radicand| (-640 |#4|))) |#4| (-767)))) -((-2049 (((-112) $ $) NIL)) (-3436 (($ (-1113)) 8)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 15) (((-1113) $) 12)) (-2943 (((-112) $ $) 11))) -(((-950) (-13 (-1093) (-610 (-1113)) (-10 -8 (-15 -3436 ($ (-1113)))))) (T -950)) -((-3436 (*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-950))))) -(-13 (-1093) (-610 (-1113)) (-10 -8 (-15 -3436 ($ (-1113))))) -((-4120 (((-1087 (-225)) $) 8)) (-4109 (((-1087 (-225)) $) 9)) (-2708 (((-640 (-640 (-939 (-225)))) $) 10)) (-2062 (((-858) $) 6))) -(((-951) (-140)) (T -951)) -((-2708 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-640 (-640 (-939 (-225))))))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225))))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225)))))) -(-13 (-610 (-858)) (-10 -8 (-15 -2708 ((-640 (-640 (-939 (-225)))) $)) (-15 -4109 ((-1087 (-225)) $)) (-15 -4120 ((-1087 (-225)) $)))) -(((-610 (-858)) . T)) -((-3289 (((-3 (-684 |#1|) "failed") |#2| (-917)) 18))) -(((-952 |#1| |#2|) (-10 -7 (-15 -3289 ((-3 (-684 |#1|) "failed") |#2| (-917)))) (-555) (-651 |#1|)) (T -952)) -((-3289 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-917)) (-4 *5 (-555)) (-5 *2 (-684 *5)) (-5 *1 (-952 *5 *3)) (-4 *3 (-651 *5))))) -(-10 -7 (-15 -3289 ((-3 (-684 |#1|) "failed") |#2| (-917)))) -((-3409 (((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 16)) (-2532 ((|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|) 18)) (-2751 (((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)) 13))) -(((-953 |#1| |#2|) (-10 -7 (-15 -3409 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2532 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2751 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) (-1208) (-1208)) (T -953)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6)))) (-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-953 *5 *2)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5))))) -(-10 -7 (-15 -3409 ((-954 |#2|) (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2532 (|#2| (-1 |#2| |#1| |#2|) (-954 |#1|) |#2|)) (-15 -2751 ((-954 |#2|) (-1 |#2| |#1|) (-954 |#1|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) |#1|) 17 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) 16 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 14)) (-2256 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-2552 (($ (-767) |#1|) 13)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) 11 (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) NIL (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) 21 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) 15) (($ $ (-1224 (-563))) NIL)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) NIL)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-1708 (((-767) $) 8 (|has| $ (-6 -4408))))) -(((-954 |#1|) (-19 |#1|) (-1208)) (T -954)) +((-1772 ((|#2| (-641 |#1|) (-641 |#1|)) 29))) +(((-919 |#1| |#2|) (-10 -7 (-15 -1772 (|#2| (-641 |#1|) (-641 |#1|)))) (-363) (-1235 |#1|)) (T -919)) +((-1772 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) (-5 *1 (-919 *4 *2))))) +(-10 -7 (-15 -1772 (|#2| (-641 |#1|) (-641 |#1|)))) +((-3285 (((-1166 |#2|) (-641 |#2|) (-641 |#2|)) 17) (((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|)) 13))) +(((-920 |#1| |#2|) (-10 -7 (-15 -3285 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -3285 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) (-1170) (-363)) (T -920)) +((-3285 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) (-5 *1 (-920 *4 *5)) (-14 *4 (-1170)))) (-3285 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) (-4 *5 (-363)) (-5 *1 (-920 *4 *5))))) +(-10 -7 (-15 -3285 ((-1232 |#1| |#2|) (-1232 |#1| |#2|) (-641 |#2|) (-641 |#2|))) (-15 -3285 ((-1166 |#2|) (-641 |#2|) (-641 |#2|)))) +((-2936 (((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152)) 176)) (-2676 ((|#4| |#4|) 195)) (-1603 (((-641 (-407 (-949 |#1|))) (-641 (-1170))) 149)) (-3379 (((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564)) 88)) (-1953 (((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|)) 69)) (-3769 (((-685 |#4|) (-685 |#4|) (-641 |#4|)) 65)) (-1471 (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152)) 188)) (-3298 (((-564) (-685 |#4|) (-918) (-1152)) 169) (((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152)) 168) (((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152)) 167) (((-564) (-685 |#4|) (-1152)) 157) (((-564) (-685 |#4|) (-641 (-1170)) (-1152)) 156) (((-564) (-685 |#4|) (-641 |#4|) (-1152)) 155) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918)) 154) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918)) 153) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918)) 152) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|)) 151) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170))) 150) (((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|)) 146)) (-3307 ((|#4| (-949 |#1|)) 80)) (-2447 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 192)) (-3947 (((-641 (-641 (-564))) (-564) (-564)) 162)) (-2456 (((-641 (-641 |#4|)) (-641 (-641 |#4|))) 107)) (-3926 (((-768) (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 102)) (-2071 (((-768) (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|))))) 101)) (-2141 (((-112) (-641 (-949 |#1|))) 19) (((-112) (-641 |#4|)) 15)) (-1984 (((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|)) 84)) (-3489 (((-641 |#4|) |#4|) 57)) (-2765 (((-641 (-407 (-949 |#1|))) (-641 |#4|)) 145) (((-685 (-407 (-949 |#1|))) (-685 |#4|)) 66) (((-407 (-949 |#1|)) |#4|) 142)) (-4260 (((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564)) 113)) (-3847 (((-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768)) 100)) (-2220 (((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768)) 124)) (-3696 (((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -2069 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -1544 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) 56))) +(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918))) (-15 -3298 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-918) (-1152))) (-15 -2936 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -1471 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -4260 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564))) (-15 -2765 ((-407 (-949 |#1|)) |#4|)) (-15 -2765 ((-685 (-407 (-949 |#1|))) (-685 |#4|))) (-15 -2765 ((-641 (-407 (-949 |#1|))) (-641 |#4|))) (-15 -1603 ((-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3307 (|#4| (-949 |#1|))) (-15 -1984 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -3847 ((-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768))) (-15 -1953 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|))) (-15 -3696 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -2069 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -1544 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -3489 ((-641 |#4|) |#4|)) (-15 -2071 ((-768) (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3926 ((-768) (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -2456 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -3947 ((-641 (-641 (-564))) (-564) (-564))) (-15 -2447 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -2220 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768))) (-15 -3769 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -3379 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564))) (-15 -2676 (|#4| |#4|)) (-15 -2141 ((-112) (-641 |#4|))) (-15 -2141 ((-112) (-641 (-949 |#1|))))) (-13 (-307) (-147)) (-13 (-847) (-612 (-1170))) (-790) (-946 |#1| |#3| |#2|)) (T -921)) +((-2141 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-2141 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)))) (-2676 (*1 *2 *2) (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4)))) (-3379 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-949 *9)))) (-5 *6 (-641 (-641 *12))) (-5 *7 (-768)) (-5 *8 (-564)) (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10)) (-4 *10 (-13 (-847) (-612 (-1170)))) (-4 *11 (-790)) (-5 *2 (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) (|:| |wcond| (-641 (-949 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *9)))) (|:| -4265 (-641 (-1259 (-407 (-949 *9))))))))) (-5 *1 (-921 *9 *10 *11 *12)))) (-3769 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))) (-2220 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-768)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-2447 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *5 *6 *7 *8)))) (-3947 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *6 *5)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-946 *3 *5 *4)) (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *6)))) (-3926 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) (-5 *1 (-921 *4 *5 *6 *7)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *7))))) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) (-5 *1 (-921 *4 *5 *6 *7)))) (-3489 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 *3)) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-3696 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2069 (-685 (-407 (-949 *4)))) (|:| |vec| (-641 (-407 (-949 *4)))) (|:| -1544 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -4265 (-641 (-1259 (-407 (-949 *4))))))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-1953 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -4265 (-641 (-1259 (-407 (-949 *4))))))) (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7)))) (-3847 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 *8))))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-768)))) (-1984 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-4 *7 (-946 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-307) (-147))) (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-921 *4 *5 *6 *2)) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-685 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)))) (-2765 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-407 (-949 *4))) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-946 *4 *6 *5)))) (-4260 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-949 *8)))) (-5 *5 (-768)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-847) (-612 (-1170)))) (-4 *10 (-790)) (-5 *2 (-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) (|:| |wcond| (-641 (-949 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *8)))) (|:| -4265 (-641 (-1259 (-407 (-949 *8)))))))))) (|:| |rgsz| (-564)))) (-5 *1 (-921 *8 *9 *10 *11)) (-5 *7 (-564)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -4265 (-641 (-1259 (-407 (-949 *4)))))))))) (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -4265 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6)) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) (-3298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-918)) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-3298 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *7 *8 *9 *10)))) (-3298 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-918)) (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *7 *8 *9 *10)))) (-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) (-3298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-3298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *6 *7 *8 *9)))) (-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-918)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -4265 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-3298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) (|:| -4265 (-641 (-1259 (-407 (-949 *6)))))))))) (-5 *1 (-921 *6 *7 *8 *9)))) (-3298 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-685 *9)) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) (|:| |wcond| (-641 (-949 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) (|:| -4265 (-641 (-1259 (-407 (-949 *6)))))))))) (-5 *1 (-921 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) (-3298 (*1 *2 *3) (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) (|:| |wcond| (-641 (-949 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) (|:| -4265 (-641 (-1259 (-407 (-949 *4)))))))))) (-5 *1 (-921 *4 *5 *6 *7)))) (-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -4265 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)))) (-3298 (*1 *2 *3 *4) (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-641 (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) (|:| |wcond| (-641 (-949 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) (|:| -4265 (-641 (-1259 (-407 (-949 *5)))))))))) (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) +(-10 -7 (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 |#4|) (-918))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-641 (-1170)) (-918))) (-15 -3298 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-685 |#4|) (-918))) (-15 -3298 ((-564) (-685 |#4|) (-641 |#4|) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-641 (-1170)) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-641 |#4|) (-918) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-641 (-1170)) (-918) (-1152))) (-15 -3298 ((-564) (-685 |#4|) (-918) (-1152))) (-15 -2936 ((-564) (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -1471 ((-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|))))))))) (-1152))) (-15 -4260 ((-2 (|:| |rgl| (-641 (-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))))))) (|:| |rgsz| (-564))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-768) (-1152) (-564))) (-15 -2765 ((-407 (-949 |#1|)) |#4|)) (-15 -2765 ((-685 (-407 (-949 |#1|))) (-685 |#4|))) (-15 -2765 ((-641 (-407 (-949 |#1|))) (-641 |#4|))) (-15 -1603 ((-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3307 (|#4| (-949 |#1|))) (-15 -1984 ((-2 (|:| |sysok| (-112)) (|:| |z0| (-641 |#4|)) (|:| |n0| (-641 |#4|))) (-641 |#4|) (-641 |#4|))) (-15 -3847 ((-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))) (-685 |#4|) (-768))) (-15 -1953 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-641 |#4|))) (-15 -3696 ((-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))) (-2 (|:| -2069 (-685 (-407 (-949 |#1|)))) (|:| |vec| (-641 (-407 (-949 |#1|)))) (|:| -1544 (-768)) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (-15 -3489 ((-641 |#4|) |#4|)) (-15 -2071 ((-768) (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -3926 ((-768) (-641 (-2 (|:| -1544 (-768)) (|:| |eqns| (-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))))) (|:| |fgb| (-641 |#4|)))))) (-15 -2456 ((-641 (-641 |#4|)) (-641 (-641 |#4|)))) (-15 -3947 ((-641 (-641 (-564))) (-564) (-564))) (-15 -2447 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -2220 ((-641 (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) (-685 |#4|) (-768))) (-15 -3769 ((-685 |#4|) (-685 |#4|) (-641 |#4|))) (-15 -3379 ((-2 (|:| |eqzro| (-641 |#4|)) (|:| |neqzro| (-641 |#4|)) (|:| |wcond| (-641 (-949 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1259 (-407 (-949 |#1|)))) (|:| -4265 (-641 (-1259 (-407 (-949 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564)))) (-685 |#4|) (-641 (-407 (-949 |#1|))) (-641 (-641 |#4|)) (-768) (-768) (-564))) (-15 -2676 (|#4| |#4|)) (-15 -2141 ((-112) (-641 |#4|))) (-15 -2141 ((-112) (-641 (-949 |#1|))))) +((-3768 (((-924) |#1| (-1170)) 17) (((-924) |#1| (-1170) (-1088 (-225))) 21)) (-2057 (((-924) |#1| |#1| (-1170) (-1088 (-225))) 19) (((-924) |#1| (-1170) (-1088 (-225))) 15))) +(((-922 |#1|) (-10 -7 (-15 -2057 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -2057 ((-924) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -3768 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -3768 ((-924) |#1| (-1170)))) (-612 (-536))) (T -922)) +((-3768 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-3768 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-2057 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) (-5 *1 (-922 *3)) (-4 *3 (-612 (-536)))))) +(-10 -7 (-15 -2057 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -2057 ((-924) |#1| |#1| (-1170) (-1088 (-225)))) (-15 -3768 ((-924) |#1| (-1170) (-1088 (-225)))) (-15 -3768 ((-924) |#1| (-1170)))) +((-2590 (($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 122)) (-2596 (((-1088 (-225)) $) 63)) (-2582 (((-1088 (-225)) $) 62)) (-2568 (((-1088 (-225)) $) 61)) (-1674 (((-641 (-641 (-225))) $) 68)) (-3392 (((-1088 (-225)) $) 64)) (-3800 (((-564) (-564)) 56)) (-3293 (((-564) (-564)) 52)) (-1985 (((-564) (-564)) 54)) (-1316 (((-112) (-112)) 58)) (-3484 (((-564)) 55)) (-2359 (($ $ (-1088 (-225))) 125) (($ $) 126)) (-3803 (($ (-1 (-940 (-225)) (-225)) (-1088 (-225))) 132) (($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 133)) (-2057 (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 135) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 136) (($ $ (-1088 (-225))) 128)) (-1837 (((-564)) 59)) (-1792 (((-564)) 50)) (-1730 (((-564)) 53)) (-1632 (((-641 (-641 (-940 (-225)))) $) 152)) (-3455 (((-112) (-112)) 60)) (-3742 (((-859) $) 150)) (-2184 (((-112)) 57))) +(((-923) (-13 (-971) (-10 -8 (-15 -3803 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -3803 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2057 ($ $ (-1088 (-225)))) (-15 -2590 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2359 ($ $ (-1088 (-225)))) (-15 -2359 ($ $)) (-15 -3392 ((-1088 (-225)) $)) (-15 -1674 ((-641 (-641 (-225))) $)) (-15 -1792 ((-564))) (-15 -3293 ((-564) (-564))) (-15 -1730 ((-564))) (-15 -1985 ((-564) (-564))) (-15 -3484 ((-564))) (-15 -3800 ((-564) (-564))) (-15 -2184 ((-112))) (-15 -1316 ((-112) (-112))) (-15 -1837 ((-564))) (-15 -3455 ((-112) (-112)))))) (T -923)) +((-3803 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-3803 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2057 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2057 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-923)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2590 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2359 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-2359 (*1 *1 *1) (-5 *1 (-923))) (-3392 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) (-1674 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-923)))) (-1792 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3293 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1730 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-1985 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3484 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3800 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-2184 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-1316 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923)))) (-1837 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(-13 (-971) (-10 -8 (-15 -3803 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -3803 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2057 ($ $ (-1088 (-225)))) (-15 -2590 ($ $ (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2359 ($ $ (-1088 (-225)))) (-15 -2359 ($ $)) (-15 -3392 ((-1088 (-225)) $)) (-15 -1674 ((-641 (-641 (-225))) $)) (-15 -1792 ((-564))) (-15 -3293 ((-564) (-564))) (-15 -1730 ((-564))) (-15 -1985 ((-564) (-564))) (-15 -3484 ((-564))) (-15 -3800 ((-564) (-564))) (-15 -2184 ((-112))) (-15 -1316 ((-112) (-112))) (-15 -1837 ((-564))) (-15 -3455 ((-112) (-112))))) +((-2590 (($ $ (-1088 (-225))) 123) (($ $ (-1088 (-225)) (-1088 (-225))) 124)) (-2582 (((-1088 (-225)) $) 72)) (-2568 (((-1088 (-225)) $) 71)) (-3392 (((-1088 (-225)) $) 73)) (-2113 (((-564) (-564)) 65)) (-2686 (((-564) (-564)) 61)) (-1365 (((-564) (-564)) 63)) (-3023 (((-112) (-112)) 67)) (-2844 (((-564)) 64)) (-2359 (($ $ (-1088 (-225))) 127) (($ $) 128)) (-3803 (($ (-1 (-940 (-225)) (-225)) (-1088 (-225))) 142) (($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 143)) (-3768 (($ (-1 (-225) (-225)) (-1088 (-225))) 150) (($ (-1 (-225) (-225))) 154)) (-2057 (($ (-1 (-225) (-225)) (-1088 (-225))) 138) (($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225))) 139) (($ (-641 (-1 (-225) (-225))) (-1088 (-225))) 147) (($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225))) 148) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225))) 140) (($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225))) 141) (($ $ (-1088 (-225))) 129)) (-3408 (((-112) $) 68)) (-4387 (((-564)) 69)) (-2449 (((-564)) 59)) (-2353 (((-564)) 62)) (-1632 (((-641 (-641 (-940 (-225)))) $) 35)) (-2114 (((-112) (-112)) 70)) (-3742 (((-859) $) 168)) (-2580 (((-112)) 66))) +(((-924) (-13 (-952) (-10 -8 (-15 -2057 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2057 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -2057 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3803 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -3803 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3768 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3768 ($ (-1 (-225) (-225)))) (-15 -2057 ($ $ (-1088 (-225)))) (-15 -3408 ((-112) $)) (-15 -2590 ($ $ (-1088 (-225)))) (-15 -2590 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2359 ($ $ (-1088 (-225)))) (-15 -2359 ($ $)) (-15 -3392 ((-1088 (-225)) $)) (-15 -2449 ((-564))) (-15 -2686 ((-564) (-564))) (-15 -2353 ((-564))) (-15 -1365 ((-564) (-564))) (-15 -2844 ((-564))) (-15 -2113 ((-564) (-564))) (-15 -2580 ((-112))) (-15 -3023 ((-112) (-112))) (-15 -4387 ((-564))) (-15 -2114 ((-112) (-112)))))) (T -924)) +((-2057 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2057 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2057 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2057 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2057 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-2057 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3803 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3803 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3768 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) (-5 *1 (-924)))) (-3768 (*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-924)))) (-2057 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-3408 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-2590 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2590 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2359 (*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2359 (*1 *1 *1) (-5 *1 (-924))) (-3392 (*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) (-2449 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2686 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2353 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-1365 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2844 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2113 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2580 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-3023 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924)))) (-4387 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924)))) (-2114 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) +(-13 (-952) (-10 -8 (-15 -2057 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -2057 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)))) (-15 -2057 ($ (-641 (-1 (-225) (-225))) (-1088 (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)))) (-15 -2057 ($ (-1 (-225) (-225)) (-1 (-225) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3803 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)))) (-15 -3803 ($ (-1 (-940 (-225)) (-225)) (-1088 (-225)) (-1088 (-225)) (-1088 (-225)))) (-15 -3768 ($ (-1 (-225) (-225)) (-1088 (-225)))) (-15 -3768 ($ (-1 (-225) (-225)))) (-15 -2057 ($ $ (-1088 (-225)))) (-15 -3408 ((-112) $)) (-15 -2590 ($ $ (-1088 (-225)))) (-15 -2590 ($ $ (-1088 (-225)) (-1088 (-225)))) (-15 -2359 ($ $ (-1088 (-225)))) (-15 -2359 ($ $)) (-15 -3392 ((-1088 (-225)) $)) (-15 -2449 ((-564))) (-15 -2686 ((-564) (-564))) (-15 -2353 ((-564))) (-15 -1365 ((-564) (-564))) (-15 -2844 ((-564))) (-15 -2113 ((-564) (-564))) (-15 -2580 ((-112))) (-15 -3023 ((-112) (-112))) (-15 -4387 ((-564))) (-15 -2114 ((-112) (-112))))) +((-3463 (((-641 (-1088 (-225))) (-641 (-641 (-940 (-225))))) 34))) +(((-925) (-10 -7 (-15 -3463 ((-641 (-1088 (-225))) (-641 (-641 (-940 (-225)))))))) (T -925)) +((-3463 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-925))))) +(-10 -7 (-15 -3463 ((-641 (-1088 (-225))) (-641 (-641 (-940 (-225))))))) +((-1657 ((|#2| |#2|) 28)) (-2573 ((|#2| |#2|) 29)) (-2091 ((|#2| |#2|) 27)) (-1923 ((|#2| |#2| (-1152)) 26))) +(((-926 |#1| |#2|) (-10 -7 (-15 -1923 (|#2| |#2| (-1152))) (-15 -2091 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -2573 (|#2| |#2|))) (-847) (-430 |#1|)) (T -926)) +((-2573 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-1657 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-2091 (*1 *2 *2) (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) (-1923 (*1 *2 *2 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-847)) (-5 *1 (-926 *4 *2)) (-4 *2 (-430 *4))))) +(-10 -7 (-15 -1923 (|#2| |#2| (-1152))) (-15 -2091 (|#2| |#2|)) (-15 -1657 (|#2| |#2|)) (-15 -2573 (|#2| |#2|))) +((-1657 (((-316 (-564)) (-1170)) 16)) (-2573 (((-316 (-564)) (-1170)) 14)) (-2091 (((-316 (-564)) (-1170)) 12)) (-1923 (((-316 (-564)) (-1170) (-1152)) 19))) +(((-927) (-10 -7 (-15 -1923 ((-316 (-564)) (-1170) (-1152))) (-15 -2091 ((-316 (-564)) (-1170))) (-15 -1657 ((-316 (-564)) (-1170))) (-15 -2573 ((-316 (-564)) (-1170))))) (T -927)) +((-2573 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-1657 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) (-1923 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564))) (-5 *1 (-927))))) +(-10 -7 (-15 -1923 ((-316 (-564)) (-1170) (-1152))) (-15 -2091 ((-316 (-564)) (-1170))) (-15 -1657 ((-316 (-564)) (-1170))) (-15 -2573 ((-316 (-564)) (-1170)))) +((-3075 (((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)) 25)) (-1438 (((-1 (-112) |#2|) (-1 (-112) |#3|)) 13))) +(((-928 |#1| |#2| |#3|) (-10 -7 (-15 -1438 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3075 ((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-883 |#1|) (-13 (-1094) (-1035 |#2|))) (T -928)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-13 (-1094) (-1035 *3))) (-4 *3 (-883 *5)) (-5 *1 (-928 *5 *3 *6)))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1035 *5))) (-4 *5 (-883 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) (-5 *1 (-928 *4 *5 *6))))) +(-10 -7 (-15 -1438 ((-1 (-112) |#2|) (-1 (-112) |#3|))) (-15 -3075 ((-886 |#1| |#3|) |#2| (-889 |#1|) (-886 |#1| |#3|)))) +((-3075 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 30))) +(((-929 |#1| |#2| |#3|) (-10 -7 (-15 -3075 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-13 (-556) (-847) (-883 |#1|)) (-13 (-430 |#2|) (-612 (-889 |#1|)) (-883 |#1|) (-1035 (-610 $)))) (T -929)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-430 *6) (-612 *4) (-883 *5) (-1035 (-610 $)))) (-5 *4 (-889 *5)) (-4 *6 (-13 (-556) (-847) (-883 *5))) (-5 *1 (-929 *5 *6 *3))))) +(-10 -7 (-15 -3075 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) +((-3075 (((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)) 13))) +(((-930 |#1|) (-10 -7 (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)))) (-545)) (T -930)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 (-564) *3)) (-5 *4 (-889 (-564))) (-4 *3 (-545)) (-5 *1 (-930 *3))))) +(-10 -7 (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|)))) +((-3075 (((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)) 57))) +(((-931 |#1| |#2|) (-10 -7 (-15 -3075 ((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)))) (-1094) (-13 (-847) (-1035 (-610 $)) (-612 (-889 |#1|)) (-883 |#1|))) (T -931)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) (-4 *6 (-13 (-847) (-1035 (-610 $)) (-612 *4) (-883 *5))) (-5 *4 (-889 *5)) (-5 *1 (-931 *5 *6))))) +(-10 -7 (-15 -3075 ((-886 |#1| |#2|) (-610 |#2|) (-889 |#1|) (-886 |#1| |#2|)))) +((-3075 (((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)) 17))) +(((-932 |#1| |#2| |#3|) (-10 -7 (-15 -3075 ((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)))) (-1094) (-883 |#1|) (-662 |#2|)) (T -932)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-882 *5 *6 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-4 *3 (-662 *6)) (-5 *1 (-932 *5 *6 *3))))) +(-10 -7 (-15 -3075 ((-882 |#1| |#2| |#3|) |#3| (-889 |#1|) (-882 |#1| |#2| |#3|)))) +((-3075 (((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|)) 17 (|has| |#3| (-883 |#1|))) (((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|))) 16))) +(((-933 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3075 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|)))) (IF (|has| |#3| (-883 |#1|)) (-15 -3075 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|))) |%noBranch|)) (-1094) (-790) (-847) (-13 (-1046) (-847) (-883 |#1|)) (-13 (-946 |#4| |#2| |#3|) (-612 (-889 |#1|)))) (T -933)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-13 (-946 *8 *6 *7) (-612 *4))) (-5 *4 (-889 *5)) (-4 *7 (-883 *5)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-13 (-1046) (-847) (-883 *5))) (-5 *1 (-933 *5 *6 *7 *8 *3)))) (-3075 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-886 *6 *3) *8 (-889 *6) (-886 *6 *3))) (-4 *8 (-847)) (-5 *2 (-886 *6 *3)) (-5 *4 (-889 *6)) (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-612 *4))) (-4 *7 (-790)) (-4 *9 (-13 (-1046) (-847) (-883 *6))) (-5 *1 (-933 *6 *7 *8 *9 *3))))) +(-10 -7 (-15 -3075 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|) (-1 (-886 |#1| |#5|) |#3| (-889 |#1|) (-886 |#1| |#5|)))) (IF (|has| |#3| (-883 |#1|)) (-15 -3075 ((-886 |#1| |#5|) |#5| (-889 |#1|) (-886 |#1| |#5|))) |%noBranch|)) +((-2665 ((|#2| |#2| (-641 (-1 (-112) |#3|))) 12) ((|#2| |#2| (-1 (-112) |#3|)) 13))) +(((-934 |#1| |#2| |#3|) (-10 -7 (-15 -2665 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2665 (|#2| |#2| (-641 (-1 (-112) |#3|))))) (-847) (-430 |#1|) (-1209)) (T -934)) +((-2665 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-847)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-847)) (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4))))) +(-10 -7 (-15 -2665 (|#2| |#2| (-1 (-112) |#3|))) (-15 -2665 (|#2| |#2| (-641 (-1 (-112) |#3|))))) +((-2665 (((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))) 18) (((-316 (-564)) (-1170) (-1 (-112) |#1|)) 15))) +(((-935 |#1|) (-10 -7 (-15 -2665 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -2665 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) (-1209)) (T -935)) +((-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))) (-2665 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) (-5 *2 (-316 (-564))) (-5 *1 (-935 *5))))) +(-10 -7 (-15 -2665 ((-316 (-564)) (-1170) (-1 (-112) |#1|))) (-15 -2665 ((-316 (-564)) (-1170) (-641 (-1 (-112) |#1|))))) +((-3075 (((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)) 25))) +(((-936 |#1| |#2| |#3|) (-10 -7 (-15 -3075 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-1094) (-13 (-556) (-883 |#1|) (-612 (-889 |#1|))) (-989 |#2|)) (T -936)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-989 *6)) (-4 *6 (-13 (-556) (-883 *5) (-612 *4))) (-5 *4 (-889 *5)) (-5 *1 (-936 *5 *6 *3))))) +(-10 -7 (-15 -3075 ((-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) +((-3075 (((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))) 18))) +(((-937 |#1|) (-10 -7 (-15 -3075 ((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))))) (-1094)) (T -937)) +((-3075 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-886 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *1 (-937 *5))))) +(-10 -7 (-15 -3075 ((-886 |#1| (-1170)) (-1170) (-889 |#1|) (-886 |#1| (-1170))))) +((-2834 (((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) 34)) (-3075 (((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))) 33))) +(((-938 |#1| |#2| |#3|) (-10 -7 (-15 -3075 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-15 -2834 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))) (-1094) (-13 (-1046) (-847)) (-13 (-1046) (-612 (-889 |#1|)) (-1035 |#2|))) (T -938)) +((-2834 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-889 *6))) (-5 *5 (-1 (-886 *6 *8) *8 (-889 *6) (-886 *6 *8))) (-4 *6 (-1094)) (-4 *8 (-13 (-1046) (-612 (-889 *6)) (-1035 *7))) (-5 *2 (-886 *6 *8)) (-4 *7 (-13 (-1046) (-847))) (-5 *1 (-938 *6 *7 *8)))) (-3075 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-641 (-889 *7))) (-5 *5 (-1 *9 (-641 *9))) (-5 *6 (-1 (-886 *7 *9) *9 (-889 *7) (-886 *7 *9))) (-4 *7 (-1094)) (-4 *9 (-13 (-1046) (-612 (-889 *7)) (-1035 *8))) (-5 *2 (-886 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1046) (-847))) (-5 *1 (-938 *7 *8 *9))))) +(-10 -7 (-15 -3075 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-1 |#3| (-641 |#3|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|)))) (-15 -2834 ((-886 |#1| |#3|) (-641 |#3|) (-641 (-889 |#1|)) (-886 |#1| |#3|) (-1 (-886 |#1| |#3|) |#3| (-889 |#1|) (-886 |#1| |#3|))))) +((-2512 (((-1166 (-407 (-564))) (-564)) 80)) (-3924 (((-1166 (-564)) (-564)) 83)) (-3979 (((-1166 (-564)) (-564)) 77)) (-2148 (((-564) (-1166 (-564))) 73)) (-3574 (((-1166 (-407 (-564))) (-564)) 64)) (-2681 (((-1166 (-564)) (-564)) 48)) (-2746 (((-1166 (-564)) (-564)) 85)) (-4309 (((-1166 (-564)) (-564)) 84)) (-1476 (((-1166 (-407 (-564))) (-564)) 66))) +(((-939) (-10 -7 (-15 -1476 ((-1166 (-407 (-564))) (-564))) (-15 -4309 ((-1166 (-564)) (-564))) (-15 -2746 ((-1166 (-564)) (-564))) (-15 -2681 ((-1166 (-564)) (-564))) (-15 -3574 ((-1166 (-407 (-564))) (-564))) (-15 -2148 ((-564) (-1166 (-564)))) (-15 -3979 ((-1166 (-564)) (-564))) (-15 -3924 ((-1166 (-564)) (-564))) (-15 -2512 ((-1166 (-407 (-564))) (-564))))) (T -939)) +((-2512 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))) (-3924 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-3979 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2148 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-939)))) (-3574 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2681 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-2746 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-4309 (*1 *2 *3) (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) (-1476 (*1 *2 *3) (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564))))) +(-10 -7 (-15 -1476 ((-1166 (-407 (-564))) (-564))) (-15 -4309 ((-1166 (-564)) (-564))) (-15 -2746 ((-1166 (-564)) (-564))) (-15 -2681 ((-1166 (-564)) (-564))) (-15 -3574 ((-1166 (-407 (-564))) (-564))) (-15 -2148 ((-564) (-1166 (-564)))) (-15 -3979 ((-1166 (-564)) (-564))) (-15 -3924 ((-1166 (-564)) (-564))) (-15 -2512 ((-1166 (-407 (-564))) (-564)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1515 (($ (-768)) NIL (|has| |#1| (-23)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) |#1|) 13 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-3305 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-2713 (($ (-641 |#1|)) 14)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-1653 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3619 (($ (-768) |#1|) 10)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 12 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2265 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1500 (((-112) $ (-768)) NIL)) (-2395 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) NIL (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-3004 (($ $ (-641 |#1|)) 28)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 21) (($ $ (-1226 (-564))) NIL)) (-2952 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-3603 (((-918) $) 17)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3987 (($ $ $) 26)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 18)) (-3753 (($ (-641 |#1|)) NIL)) (-1802 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 27) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1790 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1780 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2641 (((-768) $) 15 (|has| $ (-6 -4411))))) +(((-940 |#1|) (-977 |#1|) (-1046)) (T -940)) +NIL +(-977 |#1|) +((-2030 (((-481 |#1| |#2|) (-949 |#2|)) 22)) (-1970 (((-247 |#1| |#2|) (-949 |#2|)) 35)) (-1778 (((-949 |#2|) (-481 |#1| |#2|)) 27)) (-2419 (((-247 |#1| |#2|) (-481 |#1| |#2|)) 57)) (-3464 (((-949 |#2|) (-247 |#1| |#2|)) 32)) (-1307 (((-481 |#1| |#2|) (-247 |#1| |#2|)) 48))) +(((-941 |#1| |#2|) (-10 -7 (-15 -1307 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2419 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -2030 ((-481 |#1| |#2|) (-949 |#2|))) (-15 -1778 ((-949 |#2|) (-481 |#1| |#2|))) (-15 -3464 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -1970 ((-247 |#1| |#2|) (-949 |#2|)))) (-641 (-1170)) (-1046)) (T -941)) +((-1970 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))) (-3464 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170))))) (-2419 (*1 *2 *3) (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5)))) (-1307 (*1 *2 *3) (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5))))) +(-10 -7 (-15 -1307 ((-481 |#1| |#2|) (-247 |#1| |#2|))) (-15 -2419 ((-247 |#1| |#2|) (-481 |#1| |#2|))) (-15 -2030 ((-481 |#1| |#2|) (-949 |#2|))) (-15 -1778 ((-949 |#2|) (-481 |#1| |#2|))) (-15 -3464 ((-949 |#2|) (-247 |#1| |#2|))) (-15 -1970 ((-247 |#1| |#2|) (-949 |#2|)))) +((-1794 (((-641 |#2|) |#2| |#2|) 10)) (-3029 (((-768) (-641 |#1|)) 49 (|has| |#1| (-845)))) (-3418 (((-641 |#2|) |#2|) 11)) (-2737 (((-768) (-641 |#1|) (-564) (-564)) 53 (|has| |#1| (-845)))) (-1637 ((|#1| |#2|) 40 (|has| |#1| (-845))))) +(((-942 |#1| |#2|) (-10 -7 (-15 -1794 ((-641 |#2|) |#2| |#2|)) (-15 -3418 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-845)) (PROGN (-15 -1637 (|#1| |#2|)) (-15 -3029 ((-768) (-641 |#1|))) (-15 -2737 ((-768) (-641 |#1|) (-564) (-564)))) |%noBranch|)) (-363) (-1235 |#1|)) (T -942)) +((-2737 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-845)) (-4 *5 (-363)) (-5 *2 (-768)) (-5 *1 (-942 *5 *6)) (-4 *6 (-1235 *5)))) (-3029 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-845)) (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1235 *4)))) (-1637 (*1 *2 *3) (-12 (-4 *2 (-363)) (-4 *2 (-845)) (-5 *1 (-942 *2 *3)) (-4 *3 (-1235 *2)))) (-3418 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1235 *4)))) (-1794 (*1 *2 *3 *3) (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -1794 ((-641 |#2|) |#2| |#2|)) (-15 -3418 ((-641 |#2|) |#2|)) (IF (|has| |#1| (-845)) (PROGN (-15 -1637 (|#1| |#2|)) (-15 -3029 ((-768) (-641 |#1|))) (-15 -2737 ((-768) (-641 |#1|) (-564) (-564)))) |%noBranch|)) +((-2187 (((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)) 19))) +(((-943 |#1| |#2|) (-10 -7 (-15 -2187 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) (-1046) (-1046)) (T -943)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-949 *6)) (-5 *1 (-943 *5 *6))))) +(-10 -7 (-15 -2187 ((-949 |#2|) (-1 |#2| |#1|) (-949 |#1|)))) +((-4097 (((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)) 18))) +(((-944 |#1| |#2|) (-10 -7 (-15 -4097 ((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)))) (-1170) (-1046)) (T -944)) +((-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1046)) (-5 *2 (-1232 *5 (-949 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-949 *6))))) +(-10 -7 (-15 -4097 ((-1232 |#1| (-949 |#2|)) (-949 |#2|) (-1255 |#1|)))) +((-3913 (((-768) $) 88) (((-768) $ (-641 |#4|)) 93)) (-2249 (($ $) 204)) (-3048 (((-418 $) $) 196)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 140)) (-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) 74)) (-2239 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) 73)) (-2448 (($ $ $ |#4|) 95)) (-3039 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 130) (((-685 |#2|) (-685 $)) 120)) (-1989 (($ $) 211) (($ $ |#4|) 214)) (-1334 (((-641 $) $) 77)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 230) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 223)) (-3707 (((-641 $) $) 34)) (-4245 (($ |#2| |#3|) NIL) (($ $ |#4| (-768)) NIL) (($ $ (-641 |#4|) (-641 (-768))) 71)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ |#4|) 193)) (-3514 (((-3 (-641 $) "failed") $) 52)) (-4386 (((-3 (-641 $) "failed") $) 39)) (-3758 (((-3 (-2 (|:| |var| |#4|) (|:| -2515 (-768))) "failed") $) 57)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 133)) (-2259 (((-418 (-1166 $)) (-1166 $)) 146)) (-3941 (((-418 (-1166 $)) (-1166 $)) 144)) (-4127 (((-418 $) $) 164)) (-2416 (($ $ (-641 (-294 $))) 24) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-641 |#4|) (-641 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-641 |#4|) (-641 $)) NIL)) (-4284 (($ $ |#4|) 97)) (-2235 (((-889 (-379)) $) 244) (((-889 (-564)) $) 237) (((-536) $) 252)) (-4329 ((|#2| $) NIL) (($ $ |#4|) 206)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 183)) (-2856 ((|#2| $ |#3|) NIL) (($ $ |#4| (-768)) 62) (($ $ (-641 |#4|) (-641 (-768))) 69)) (-4253 (((-3 $ "failed") $) 185)) (-1723 (((-112) $ $) 217))) +(((-945 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -4253 ((-3 |#1| "failed") |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -3075 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3941 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2259 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3561 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2723 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -1989 (|#1| |#1| |#4|)) (-15 -4329 (|#1| |#1| |#4|)) (-15 -4284 (|#1| |#1| |#4|)) (-15 -2448 (|#1| |#1| |#1| |#4|)) (-15 -1334 ((-641 |#1|) |#1|)) (-15 -3913 ((-768) |#1| (-641 |#4|))) (-15 -3913 ((-768) |#1|)) (-15 -3758 ((-3 (-2 (|:| |var| |#4|) (|:| -2515 (-768))) "failed") |#1|)) (-15 -3514 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4386 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4245 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -4245 (|#1| |#1| |#4| (-768))) (-15 -2905 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1| |#4|)) (-15 -3707 ((-641 |#1|) |#1|)) (-15 -2856 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -2856 (|#1| |#1| |#4| (-768))) (-15 -3039 ((-685 |#2|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -2111 ((-3 |#4| "failed") |#1|)) (-15 -2239 (|#4| |#1|)) (-15 -2416 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#4| |#1|)) (-15 -2416 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#4| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -4245 (|#1| |#2| |#3|)) (-15 -2856 (|#2| |#1| |#3|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -4329 (|#2| |#1|)) (-15 -1989 (|#1| |#1|))) (-946 |#2| |#3| |#4|) (-1046) (-790) (-847)) (T -945)) +NIL +(-10 -8 (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -4253 ((-3 |#1| "failed") |#1|)) (-15 -1723 ((-112) |#1| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -3075 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3941 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2259 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3561 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -2723 ((-3 (-1259 |#1|) "failed") (-685 |#1|))) (-15 -1989 (|#1| |#1| |#4|)) (-15 -4329 (|#1| |#1| |#4|)) (-15 -4284 (|#1| |#1| |#4|)) (-15 -2448 (|#1| |#1| |#1| |#4|)) (-15 -1334 ((-641 |#1|) |#1|)) (-15 -3913 ((-768) |#1| (-641 |#4|))) (-15 -3913 ((-768) |#1|)) (-15 -3758 ((-3 (-2 (|:| |var| |#4|) (|:| -2515 (-768))) "failed") |#1|)) (-15 -3514 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4386 ((-3 (-641 |#1|) "failed") |#1|)) (-15 -4245 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -4245 (|#1| |#1| |#4| (-768))) (-15 -2905 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1| |#4|)) (-15 -3707 ((-641 |#1|) |#1|)) (-15 -2856 (|#1| |#1| (-641 |#4|) (-641 (-768)))) (-15 -2856 (|#1| |#1| |#4| (-768))) (-15 -3039 ((-685 |#2|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -2111 ((-3 |#4| "failed") |#1|)) (-15 -2239 (|#4| |#1|)) (-15 -2416 (|#1| |#1| (-641 |#4|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#4| |#1|)) (-15 -2416 (|#1| |#1| (-641 |#4|) (-641 |#2|))) (-15 -2416 (|#1| |#1| |#4| |#2|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -4245 (|#1| |#2| |#3|)) (-15 -2856 (|#2| |#1| |#3|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -4329 (|#2| |#1|)) (-15 -1989 (|#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 |#3|) $) 110)) (-4097 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1948 (($ $) 88 (|has| |#1| (-556)))) (-1832 (((-112) $) 90 (|has| |#1| (-556)))) (-3913 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-3239 (((-3 $ "failed") $ $) 19)) (-3679 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2249 (($ $) 98 (|has| |#1| (-452)))) (-3048 (((-418 $) $) 97 (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136)) (-2239 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137)) (-2448 (($ $ $ |#3|) 108 (|has| |#1| (-172)))) (-1348 (($ $) 154)) (-3039 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-3951 (((-3 $ "failed") $) 33)) (-1989 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-1334 (((-641 $) $) 109)) (-4188 (((-112) $) 96 (|has| |#1| (-906)))) (-1866 (($ $ |#1| |#2| $) 172)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-3840 (((-112) $) 31)) (-2918 (((-768) $) 169)) (-4257 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-3707 (((-641 $) $) 126)) (-2005 (((-112) $) 152)) (-4245 (($ |#1| |#2|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ |#3|) 120)) (-3469 ((|#2| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-2799 (($ $ $) 79 (|has| |#1| (-847)))) (-2848 (($ $ $) 78 (|has| |#1| (-847)))) (-1396 (($ (-1 |#2| |#2|) $) 171)) (-2187 (($ (-1 |#1| |#1|) $) 151)) (-1306 (((-3 |#3| "failed") $) 123)) (-1309 (($ $) 149)) (-1320 ((|#1| $) 148)) (-2529 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-2217 (((-1152) $) 9)) (-3514 (((-3 (-641 $) "failed") $) 114)) (-4386 (((-3 (-641 $) "failed") $) 115)) (-3758 (((-3 (-2 (|:| |var| |#3|) (|:| -2515 (-768))) "failed") $) 113)) (-3864 (((-1114) $) 10)) (-4383 (((-112) $) 166)) (-1296 ((|#1| $) 167)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2577 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4127 (((-418 $) $) 99 (|has| |#1| (-906)))) (-1321 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-4284 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4117 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39)) (-2266 ((|#2| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129)) (-2235 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4267 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (($ $) 85 (|has| |#1| (-556))) (($ (-407 (-564))) 72 (-4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))))) (-3110 (((-641 |#1|) $) 168)) (-2856 ((|#1| $ |#2|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4253 (((-3 $ "failed") $) 73 (-4030 (-4267 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) 28 T CONST)) (-3447 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3360 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35)) (-1751 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1799 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-946 |#1| |#2| |#3|) (-140) (-1046) (-790) (-847)) (T -946)) +((-1989 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-768)))) (-2266 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) (-2856 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *2 (-847)))) (-2856 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) (-3707 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-4097 (*1 *2 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-1166 *3)))) (-1306 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3469 (*1 *2 *1 *3) (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-768)))) (-3469 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) (-2905 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-946 *4 *5 *3)))) (-4245 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *2 (-847)))) (-4245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) (-4257 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1046)) (-4 *1 (-946 *4 *5 *3)) (-4 *5 (-790)) (-4 *3 (-847)))) (-4257 (*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)))) (-4386 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3514 (*1 *2 *1) (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-3758 (*1 *2 *1) (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| |var| *5) (|:| -2515 (-768)))))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-768)))) (-3913 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *5)))) (-1334 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) (-2448 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-172)))) (-4284 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-172)))) (-4329 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-452)))) (-1989 (*1 *1 *1 *2) (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *3 (-452)))) (-2249 (*1 *1 *1) (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3048 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-418 *1)) (-4 *1 (-946 *3 *4 *5))))) +(-13 (-897 |t#3|) (-326 |t#1| |t#2|) (-309 $) (-514 |t#3| |t#1|) (-514 |t#3| $) (-1035 |t#3|) (-377 |t#1|) (-10 -8 (-15 -2266 ((-768) $ |t#3|)) (-15 -2266 ((-641 (-768)) $ (-641 |t#3|))) (-15 -2856 ($ $ |t#3| (-768))) (-15 -2856 ($ $ (-641 |t#3|) (-641 (-768)))) (-15 -3707 ((-641 $) $)) (-15 -4097 ((-1166 $) $ |t#3|)) (-15 -4097 ((-1166 |t#1|) $)) (-15 -1306 ((-3 |t#3| "failed") $)) (-15 -3469 ((-768) $ |t#3|)) (-15 -3469 ((-641 (-768)) $ (-641 |t#3|))) (-15 -2905 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $ |t#3|)) (-15 -4245 ($ $ |t#3| (-768))) (-15 -4245 ($ $ (-641 |t#3|) (-641 (-768)))) (-15 -4257 ($ (-1166 |t#1|) |t#3|)) (-15 -4257 ($ (-1166 $) |t#3|)) (-15 -4386 ((-3 (-641 $) "failed") $)) (-15 -3514 ((-3 (-641 $) "failed") $)) (-15 -3758 ((-3 (-2 (|:| |var| |t#3|) (|:| -2515 (-768))) "failed") $)) (-15 -3913 ((-768) $)) (-15 -3913 ((-768) $ (-641 |t#3|))) (-15 -4269 ((-641 |t#3|) $)) (-15 -1334 ((-641 $) $)) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (IF (|has| |t#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-564)))) (IF (|has| |t#3| (-612 (-889 (-564)))) (-6 (-612 (-889 (-564)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-612 (-889 (-379)))) (IF (|has| |t#3| (-612 (-889 (-379)))) (-6 (-612 (-889 (-379)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-883 (-564))) (IF (|has| |t#3| (-883 (-564))) (-6 (-883 (-564))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-883 (-379))) (IF (|has| |t#3| (-883 (-379))) (-6 (-883 (-379))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -2448 ($ $ $ |t#3|)) (-15 -4284 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-6 (-452)) (-15 -4329 ($ $ |t#3|)) (-15 -1989 ($ $)) (-15 -1989 ($ $ |t#3|)) (-15 -3048 ((-418 $) $)) (-15 -2249 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4409)) (-6 -4409) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-290) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4030 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906))) +((-4269 (((-641 |#2|) |#5|) 40)) (-4097 (((-1166 |#5|) |#5| |#2| (-1166 |#5|)) 23) (((-407 (-1166 |#5|)) |#5| |#2|) 16)) (-4257 ((|#5| (-407 (-1166 |#5|)) |#2|) 30)) (-1306 (((-3 |#2| "failed") |#5|) 71)) (-3514 (((-3 (-641 |#5|) "failed") |#5|) 65)) (-3343 (((-3 (-2 (|:| |val| |#5|) (|:| -2515 (-564))) "failed") |#5|) 53)) (-4386 (((-3 (-641 |#5|) "failed") |#5|) 67)) (-3758 (((-3 (-2 (|:| |var| |#2|) (|:| -2515 (-564))) "failed") |#5|) 57))) +(((-947 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4269 ((-641 |#2|) |#5|)) (-15 -1306 ((-3 |#2| "failed") |#5|)) (-15 -4097 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -4257 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -4097 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -4386 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3514 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3758 ((-3 (-2 (|:| |var| |#2|) (|:| -2515 (-564))) "failed") |#5|)) (-15 -3343 ((-3 (-2 (|:| |val| |#5|) (|:| -2515 (-564))) "failed") |#5|))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -3742 ($ |#4|)) (-15 -1625 (|#4| $)) (-15 -1634 (|#4| $))))) (T -947)) +((-3343 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2515 (-564)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))))) (-3758 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2515 (-564)))) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))))) (-3514 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))))) (-4386 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))))) (-4097 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))) (-4 *7 (-946 *6 *5 *4)) (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-5 *1 (-947 *5 *4 *6 *7 *3)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-4 *2 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))) (-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4)))) (-4097 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) (-5 *1 (-947 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))))) (-1306 (*1 *2 *3) (|partial| -12 (-4 *4 (-790)) (-4 *5 (-1046)) (-4 *6 (-946 *5 *4 *2)) (-4 *2 (-847)) (-5 *1 (-947 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *6)) (-15 -1625 (*6 $)) (-15 -1634 (*6 $))))))) (-4269 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *5)) (-5 *1 (-947 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $)))))))) +(-10 -7 (-15 -4269 ((-641 |#2|) |#5|)) (-15 -1306 ((-3 |#2| "failed") |#5|)) (-15 -4097 ((-407 (-1166 |#5|)) |#5| |#2|)) (-15 -4257 (|#5| (-407 (-1166 |#5|)) |#2|)) (-15 -4097 ((-1166 |#5|) |#5| |#2| (-1166 |#5|))) (-15 -4386 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3514 ((-3 (-641 |#5|) "failed") |#5|)) (-15 -3758 ((-3 (-2 (|:| |var| |#2|) (|:| -2515 (-564))) "failed") |#5|)) (-15 -3343 ((-3 (-2 (|:| |val| |#5|) (|:| -2515 (-564))) "failed") |#5|))) +((-2187 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 23))) +(((-948 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2187 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-790) (-847) (-1046) (-946 |#3| |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1780 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) (T -948)) +((-2187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *6 (-790)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -1780 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) (-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7))))) +(-10 -7 (-15 -2187 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-1170)) $) 16)) (-4097 (((-1166 $) $ (-1170)) 21) (((-1166 |#1|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-1170))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) 8) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1170) "failed") $) NIL)) (-2239 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1170) $) NIL)) (-2448 (($ $ $ (-1170)) NIL (|has| |#1| (-172)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-1866 (($ $ |#1| (-531 (-1170)) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1170) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1170) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-4257 (($ (-1166 |#1|) (-1170)) NIL) (($ (-1166 $) (-1170)) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-1170)) NIL)) (-3469 (((-531 (-1170)) $) NIL) (((-768) $ (-1170)) NIL) (((-641 (-768)) $ (-641 (-1170))) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-531 (-1170)) (-531 (-1170))) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1306 (((-3 (-1170) "failed") $) 19)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2217 (((-1152) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-1170)) (|:| -2515 (-768))) "failed") $) NIL)) (-3128 (($ $ (-1170)) 29 (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1170) |#1|) NIL) (($ $ (-641 (-1170)) (-641 |#1|)) NIL) (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL)) (-4284 (($ $ (-1170)) NIL (|has| |#1| (-172)))) (-4117 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2266 (((-531 (-1170)) $) NIL) (((-768) $ (-1170)) NIL) (((-641 (-768)) $ (-641 (-1170))) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-1170) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1170) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1170) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1170)) NIL (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) 25) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1170)) 27) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-949 |#1|) (-13 (-946 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1170))) |%noBranch|))) (-1046)) (T -949)) +((-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046))))) +(-13 (-946 |#1| (-531 (-1170)) (-1170)) (-10 -8 (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1170))) |%noBranch|))) +((-1747 (((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) |#3| (-768)) 49)) (-2411 (((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768)) 44)) (-1624 (((-2 (|:| -2515 (-768)) (|:| -1762 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)) 65)) (-2010 (((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) |#5| (-768)) 74 (|has| |#3| (-452))))) +(((-950 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1747 ((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) |#3| (-768))) (-15 -2411 ((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768))) (IF (|has| |#3| (-452)) (-15 -2010 ((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) |#5| (-768))) |%noBranch|) (-15 -1624 ((-2 (|:| -2515 (-768)) (|:| -1762 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)))) (-790) (-847) (-556) (-946 |#3| |#1| |#2|) (-13 (-363) (-10 -8 (-15 -3742 ($ |#4|)) (-15 -1625 (|#4| $)) (-15 -1634 (|#4| $))))) (T -950)) +((-1624 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *3 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *3) (|:| |radicand| (-641 *3)))) (-5 *1 (-950 *5 *6 *7 *3 *8)) (-5 *4 (-768)) (-4 *8 (-13 (-363) (-10 -8 (-15 -3742 ($ *3)) (-15 -1625 (*3 $)) (-15 -1634 (*3 $))))))) (-2010 (*1 *2 *3 *4) (-12 (-4 *7 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *3) (|:| |radicand| *3))) (-5 *1 (-950 *5 *6 *7 *8 *3)) (-5 *4 (-768)) (-4 *3 (-13 (-363) (-10 -8 (-15 -3742 ($ *8)) (-15 -1625 (*8 $)) (-15 -1634 (*8 $))))))) (-2411 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *9) (|:| |radicand| *9))) (-5 *1 (-950 *5 *6 *7 *8 *9)) (-5 *4 (-768)) (-4 *9 (-13 (-363) (-10 -8 (-15 -3742 ($ *8)) (-15 -1625 (*8 $)) (-15 -1634 (*8 $))))))) (-1747 (*1 *2 *3 *4) (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-556)) (-4 *7 (-946 *3 *5 *6)) (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *8) (|:| |radicand| *8))) (-5 *1 (-950 *5 *6 *3 *7 *8)) (-5 *4 (-768)) (-4 *8 (-13 (-363) (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $)))))))) +(-10 -7 (-15 -1747 ((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) |#3| (-768))) (-15 -2411 ((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) (-407 (-564)) (-768))) (IF (|has| |#3| (-452)) (-15 -2010 ((-2 (|:| -2515 (-768)) (|:| -1762 |#5|) (|:| |radicand| |#5|)) |#5| (-768))) |%noBranch|) (-15 -1624 ((-2 (|:| -2515 (-768)) (|:| -1762 |#4|) (|:| |radicand| (-641 |#4|))) |#4| (-768)))) +((-3732 (((-112) $ $) NIL)) (-1308 (($ (-1114)) 8)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 15) (((-1114) $) 12)) (-1705 (((-112) $ $) 11))) +(((-951) (-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1308 ($ (-1114)))))) (T -951)) +((-1308 (*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-951))))) +(-13 (-1094) (-611 (-1114)) (-10 -8 (-15 -1308 ($ (-1114))))) +((-2582 (((-1088 (-225)) $) 8)) (-2568 (((-1088 (-225)) $) 9)) (-1632 (((-641 (-641 (-940 (-225)))) $) 10)) (-3742 (((-859) $) 6))) +(((-952) (-140)) (T -952)) +((-1632 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-641 (-641 (-940 (-225))))))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225)))))) +(-13 (-611 (-859)) (-10 -8 (-15 -1632 ((-641 (-641 (-940 (-225)))) $)) (-15 -2568 ((-1088 (-225)) $)) (-15 -2582 ((-1088 (-225)) $)))) +(((-611 (-859)) . T)) +((-3126 (((-3 (-685 |#1|) "failed") |#2| (-918)) 18))) +(((-953 |#1| |#2|) (-10 -7 (-15 -3126 ((-3 (-685 |#1|) "failed") |#2| (-918)))) (-556) (-652 |#1|)) (T -953)) +((-3126 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-918)) (-4 *5 (-556)) (-5 *2 (-685 *5)) (-5 *1 (-953 *5 *3)) (-4 *3 (-652 *5))))) +(-10 -7 (-15 -3126 ((-3 (-685 |#1|) "failed") |#2| (-918)))) +((-1525 (((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|) 16)) (-1699 ((|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|) 18)) (-2187 (((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)) 13))) +(((-954 |#1| |#2|) (-10 -7 (-15 -1525 ((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -1699 (|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -2187 ((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)))) (-1209) (-1209)) (T -954)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-955 *6)) (-5 *1 (-954 *5 *6)))) (-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-954 *5 *2)))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-955 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-955 *5)) (-5 *1 (-954 *6 *5))))) +(-10 -7 (-15 -1525 ((-955 |#2|) (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -1699 (|#2| (-1 |#2| |#1| |#2|) (-955 |#1|) |#2|)) (-15 -2187 ((-955 |#2|) (-1 |#2| |#1|) (-955 |#1|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) |#1|) 17 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) 16 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 14)) (-3305 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-3619 (($ (-768) |#1|) 13)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) 11 (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) NIL (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) 21 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) 15) (($ $ (-1226 (-564))) NIL)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) NIL)) (-1802 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-2641 (((-768) $) 8 (|has| $ (-6 -4411))))) +(((-955 |#1|) (-19 |#1|) (-1209)) (T -955)) NIL (-19 |#1|) -((-3299 (($ $ (-1085 $)) 7) (($ $ (-1169)) 6))) -(((-955) (-140)) (T -955)) -((-3299 (*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-955)))) (-3299 (*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1169))))) -(-13 (-10 -8 (-15 -3299 ($ $ (-1169))) (-15 -3299 ($ $ (-1085 $))))) -((-2135 (((-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169)) 30) (((-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169))) 31) (((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169)) 49))) -(((-956 |#1|) (-10 -7 (-15 -2135 ((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169))) (-15 -2135 ((-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -2135 ((-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169)))) (-13 (-363) (-147))) (T -956)) -((-2135 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-5 *5 (-1169)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 *6))) (|:| |prim| (-1165 *6)))) (-5 *1 (-956 *6)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 *5))) (|:| |prim| (-1165 *5)))) (-5 *1 (-956 *5)))) (-2135 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-948 *5)) (-5 *4 (-1169)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 *5)))) (-5 *1 (-956 *5))))) -(-10 -7 (-15 -2135 ((-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) (|:| |prim| (-1165 |#1|))) (-948 |#1|) (-1169) (-948 |#1|) (-1169))) (-15 -2135 ((-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)))) (-15 -2135 ((-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 |#1|))) (|:| |prim| (-1165 |#1|))) (-640 (-948 |#1|)) (-640 (-1169)) (-1169)))) -((-2159 (((-640 |#1|) |#1| |#1|) 46)) (-3675 (((-112) |#1|) 43)) (-2152 ((|#1| |#1|) 80)) (-2143 ((|#1| |#1|) 79))) -(((-957 |#1|) (-10 -7 (-15 -3675 ((-112) |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -2159 ((-640 |#1|) |#1| |#1|))) (-545)) (T -957)) -((-2159 (*1 *2 *3 *3) (-12 (-5 *2 (-640 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545)))) (-2152 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-2143 (*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545)))) (-3675 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545))))) -(-10 -7 (-15 -3675 ((-112) |#1|)) (-15 -2143 (|#1| |#1|)) (-15 -2152 (|#1| |#1|)) (-15 -2159 ((-640 |#1|) |#1| |#1|))) -((-4282 (((-1262) (-858)) 9))) -(((-958) (-10 -7 (-15 -4282 ((-1262) (-858))))) (T -958)) -((-4282 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-958))))) -(-10 -7 (-15 -4282 ((-1262) (-858)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 76 (|has| |#1| (-555)))) (-2554 (($ $) 77 (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 34)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3213 (($ $) 31)) (-3230 (((-3 $ "failed") $) 41)) (-2227 (($ $) NIL (|has| |#1| (-452)))) (-3302 (($ $ |#1| |#2| $) 60)) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) 17)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| |#2|) NIL)) (-3187 ((|#2| $) 24)) (-3310 (($ (-1 |#2| |#2|) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3183 (($ $) 28)) (-3193 ((|#1| $) 26)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) 50)) (-3170 ((|#1| $) NIL)) (-3775 (($ $ |#2| |#1| $) 88 (-12 (|has| |#2| (-131)) (|has| |#1| (-555))))) (-3448 (((-3 $ "failed") $ $) 89 (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) 83 (|has| |#1| (-555)))) (-1962 ((|#2| $) 22)) (-3166 ((|#1| $) NIL (|has| |#1| (-452)))) (-2062 (((-858) $) NIL) (($ (-563)) 45) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 40) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ |#2|) 37)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) 15 T CONST)) (-3292 (($ $ $ (-767)) 72 (|has| |#1| (-172)))) (-2543 (((-112) $ $) 82 (|has| |#1| (-555)))) (-3790 (($) 27 T CONST)) (-3803 (($) 12 T CONST)) (-2943 (((-112) $ $) 81)) (-3050 (($ $ |#1|) 90 (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) 67) (($ $ (-767)) 65)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 64) (($ $ |#1|) 62) (($ |#1| $) 61) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-959 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| |#2| (-131)) (-15 -3775 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045) (-788)) (T -959)) -((-3775 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *2 (-788))))) -(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| |#2| (-131)) (-15 -3775 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-3367 (($ $ $) 65 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (-1482 (((-3 $ "failed") $ $) 52 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (-2433 (((-767)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2168 ((|#2| $) 22)) (-2179 ((|#1| $) 21)) (-3684 (($) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-3230 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-4301 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2712 (((-112) $) NIL (-2811 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (-3489 (($ $ $) NIL (-2811 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-4105 (($ $ $) NIL (-2811 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2188 (($ |#1| |#2|) 20)) (-3267 (((-917) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3491 (($ (-917)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3249 (((-1113) $) NIL)) (-1382 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2879 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-2062 (((-858) $) 14)) (-3790 (($) 42 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))) CONST)) (-3803 (($) 25 (-2811 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))) CONST)) (-2998 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2977 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2943 (((-112) $ $) 19)) (-2988 (((-112) $ $) NIL (-2811 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-2966 (((-112) $ $) 69 (-2811 (-12 (|has| |#1| (-789)) (|has| |#2| (-789))) (-12 (|has| |#1| (-846)) (|has| |#2| (-846)))))) (-3050 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3039 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-3027 (($ $ $) 45 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789)))))) (** (($ $ (-563)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-767)) 32 (-2811 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))) (($ $ (-917)) NIL (-2811 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722)))))) (* (($ (-563) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-767) $) 48 (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ (-917) $) NIL (-2811 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-789)) (|has| |#2| (-789))))) (($ $ $) 28 (-2811 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-722)) (|has| |#2| (-722))))))) -(((-960 |#1| |#2|) (-13 (-1093) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -2188 ($ |#1| |#2|)) (-15 -2179 (|#1| $)) (-15 -2168 (|#2| $)))) (-1093) (-1093)) (T -960)) -((-2188 (*1 *1 *2 *3) (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-2179 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1093)))) (-2168 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1093))))) -(-13 (-1093) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-722)) (IF (|has| |#2| (-722)) (-6 (-722)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-789)) (IF (|has| |#2| (-789)) (-6 (-789)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-846)) (IF (|has| |#2| (-846)) (-6 (-846)) |%noBranch|) |%noBranch|) (-15 -2188 ($ |#1| |#2|)) (-15 -2179 (|#1| $)) (-15 -2168 (|#2| $)))) -((-3556 (((-1097) $) 13)) (-1354 (($ (-1169) (-1097)) 14)) (-3359 (((-1169) $) 11)) (-2062 (((-858) $) 24))) -(((-961) (-13 (-610 (-858)) (-10 -8 (-15 -3359 ((-1169) $)) (-15 -3556 ((-1097) $)) (-15 -1354 ($ (-1169) (-1097)))))) (T -961)) -((-3359 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-961)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-961)))) (-1354 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-961))))) -(-13 (-610 (-858)) (-10 -8 (-15 -3359 ((-1169) $)) (-15 -3556 ((-1097) $)) (-15 -1354 ($ (-1169) (-1097))))) -((-2049 (((-112) $ $) NIL)) (-2185 (((-1095 (-1169)) $) 19)) (-2289 (((-112) $) 28)) (-4040 (((-1169) $) 29)) (-2311 (((-112) $) 26)) (-2300 ((|#1| $) 27)) (-2235 (((-869 $ $) $) 36)) (-2246 (((-112) $) 35)) (-3755 (($ $ $) 12)) (-2279 (($ $) 31)) (-3355 (((-112) $) 30)) (-3730 (($ $) 10)) (-1938 (((-1151) $) NIL)) (-2215 (((-869 $ $) $) 38)) (-2225 (((-112) $) 37)) (-2333 (($ $ $) 13)) (-3249 (((-1113) $) NIL)) (-2195 (((-869 $ $) $) 40)) (-2205 (((-112) $) 39)) (-2322 (($ $ $) 14)) (-2062 (((-858) $) 42) (($ |#1|) 7) (($ (-1169)) 9)) (-2258 (((-869 $ $) $) 34)) (-2268 (((-112) $) 32)) (-3743 (($ $ $) 11)) (-2943 (((-112) $ $) NIL))) -(((-962 |#1|) (-13 (-963) (-10 -8 (-15 -2062 ($ |#1|)) (-15 -2062 ($ (-1169))) (-15 -2185 ((-1095 (-1169)) $)) (-15 -2311 ((-112) $)) (-15 -2300 (|#1| $)) (-15 -2289 ((-112) $)) (-15 -4040 ((-1169) $)) (-15 -3355 ((-112) $)) (-15 -2279 ($ $)) (-15 -2268 ((-112) $)) (-15 -2258 ((-869 $ $) $)) (-15 -2246 ((-112) $)) (-15 -2235 ((-869 $ $) $)) (-15 -2225 ((-112) $)) (-15 -2215 ((-869 $ $) $)) (-15 -2205 ((-112) $)) (-15 -2195 ((-869 $ $) $)))) (-963)) (T -962)) -((-2062 (*1 *1 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2185 (*1 *2 *1) (-12 (-5 *2 (-1095 (-1169))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2300 (*1 *2 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-2289 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-3355 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2246 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2215 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) (-2195 (*1 *2 *1) (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) (-4 *3 (-963))))) -(-13 (-963) (-10 -8 (-15 -2062 ($ |#1|)) (-15 -2062 ($ (-1169))) (-15 -2185 ((-1095 (-1169)) $)) (-15 -2311 ((-112) $)) (-15 -2300 (|#1| $)) (-15 -2289 ((-112) $)) (-15 -4040 ((-1169) $)) (-15 -3355 ((-112) $)) (-15 -2279 ($ $)) (-15 -2268 ((-112) $)) (-15 -2258 ((-869 $ $) $)) (-15 -2246 ((-112) $)) (-15 -2235 ((-869 $ $) $)) (-15 -2225 ((-112) $)) (-15 -2215 ((-869 $ $) $)) (-15 -2205 ((-112) $)) (-15 -2195 ((-869 $ $) $)))) -((-2049 (((-112) $ $) 7)) (-3755 (($ $ $) 15)) (-3730 (($ $) 17)) (-1938 (((-1151) $) 9)) (-2333 (($ $ $) 14)) (-3249 (((-1113) $) 10)) (-2322 (($ $ $) 13)) (-2062 (((-858) $) 11)) (-3743 (($ $ $) 16)) (-2943 (((-112) $ $) 6))) -(((-963) (-140)) (T -963)) -((-3730 (*1 *1 *1) (-4 *1 (-963))) (-3743 (*1 *1 *1 *1) (-4 *1 (-963))) (-3755 (*1 *1 *1 *1) (-4 *1 (-963))) (-2333 (*1 *1 *1 *1) (-4 *1 (-963))) (-2322 (*1 *1 *1 *1) (-4 *1 (-963)))) -(-13 (-1093) (-10 -8 (-15 -3730 ($ $)) (-15 -3743 ($ $ $)) (-15 -3755 ($ $ $)) (-15 -2333 ($ $ $)) (-15 -2322 ($ $ $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-3684 (($) 7 T CONST)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-2346 (($ $ $) 43)) (-2383 (($ $ $) 44)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4105 ((|#1| $) 45)) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-964 |#1|) (-140) (-846)) (T -964)) -((-4105 (*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-2383 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) (-2346 (*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -4105 (|t#1| $)) (-15 -2383 ($ $ $)) (-15 -2346 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2482 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1647 |#2|)) |#2| |#2|) 104)) (-3952 ((|#2| |#2| |#2|) 102)) (-2492 (((-2 (|:| |coef2| |#2|) (|:| -1647 |#2|)) |#2| |#2|) 106)) (-2503 (((-2 (|:| |coef1| |#2|) (|:| -1647 |#2|)) |#2| |#2|) 108)) (-2577 (((-2 (|:| |coef2| |#2|) (|:| -2555 |#1|)) |#2| |#2|) 130 (|has| |#1| (-452)))) (-2646 (((-2 (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|) 56)) (-2369 (((-2 (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|) 80)) (-2381 (((-2 (|:| |coef1| |#2|) (|:| -3962 |#1|)) |#2| |#2|) 82)) (-2473 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2419 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 88)) (-2523 (((-2 (|:| |coef2| |#2|) (|:| -3974 |#1|)) |#2|) 120)) (-2453 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 91)) (-2544 (((-640 (-767)) |#2| |#2|) 101)) (-2627 ((|#1| |#2| |#2|) 50)) (-2566 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2555 |#1|)) |#2| |#2|) 128 (|has| |#1| (-452)))) (-2555 ((|#1| |#2| |#2|) 126 (|has| |#1| (-452)))) (-2637 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|) 54)) (-2358 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|) 79)) (-3962 ((|#1| |#2| |#2|) 76)) (-3926 (((-2 (|:| -2765 |#1|) (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2|) 41)) (-2616 ((|#2| |#2| |#2| |#2| |#1|) 66)) (-2463 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 93)) (-1508 ((|#2| |#2| |#2|) 92)) (-2406 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 86)) (-2394 ((|#2| |#2| |#2| (-767)) 84)) (-1647 ((|#2| |#2| |#2|) 134 (|has| |#1| (-452)))) (-3448 (((-1257 |#2|) (-1257 |#2|) |#1|) 22)) (-2588 (((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2|) 46)) (-2512 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3974 |#1|)) |#2|) 118)) (-3974 ((|#1| |#2|) 115)) (-2442 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767)) 90)) (-2431 ((|#2| |#2| |#2| (-767)) 89)) (-2534 (((-640 |#2|) |#2| |#2|) 98)) (-2607 ((|#2| |#2| |#1| |#1| (-767)) 61)) (-2597 ((|#1| |#1| |#1| (-767)) 60)) (* (((-1257 |#2|) |#1| (-1257 |#2|)) 17))) -(((-965 |#1| |#2|) (-10 -7 (-15 -3962 (|#1| |#2| |#2|)) (-15 -2358 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|)) (-15 -2369 ((-2 (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|)) (-15 -2381 ((-2 (|:| |coef1| |#2|) (|:| -3962 |#1|)) |#2| |#2|)) (-15 -2394 (|#2| |#2| |#2| (-767))) (-15 -2406 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2419 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2431 (|#2| |#2| |#2| (-767))) (-15 -2442 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2453 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1508 (|#2| |#2| |#2|)) (-15 -2463 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2473 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3952 (|#2| |#2| |#2|)) (-15 -2482 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1647 |#2|)) |#2| |#2|)) (-15 -2492 ((-2 (|:| |coef2| |#2|) (|:| -1647 |#2|)) |#2| |#2|)) (-15 -2503 ((-2 (|:| |coef1| |#2|) (|:| -1647 |#2|)) |#2| |#2|)) (-15 -3974 (|#1| |#2|)) (-15 -2512 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3974 |#1|)) |#2|)) (-15 -2523 ((-2 (|:| |coef2| |#2|) (|:| -3974 |#1|)) |#2|)) (-15 -2534 ((-640 |#2|) |#2| |#2|)) (-15 -2544 ((-640 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2555 (|#1| |#2| |#2|)) (-15 -2566 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2555 |#1|)) |#2| |#2|)) (-15 -2577 ((-2 (|:| |coef2| |#2|) (|:| -2555 |#1|)) |#2| |#2|)) (-15 -1647 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1257 |#2|) |#1| (-1257 |#2|))) (-15 -3448 ((-1257 |#2|) (-1257 |#2|) |#1|)) (-15 -3926 ((-2 (|:| -2765 |#1|) (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2|)) (-15 -2588 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2|)) (-15 -2597 (|#1| |#1| |#1| (-767))) (-15 -2607 (|#2| |#2| |#1| |#1| (-767))) (-15 -2616 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2627 (|#1| |#2| |#2|)) (-15 -2637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|)) (-15 -2646 ((-2 (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|))) (-555) (-1233 |#1|)) (T -965)) -((-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3962 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2637 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3962 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2627 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-2616 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-2607 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-2597 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *2 (-555)) (-5 *1 (-965 *2 *4)) (-4 *4 (-1233 *2)))) (-2588 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3926 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -2765 *4) (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3448 (*1 *2 *2 *3) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) (-5 *1 (-965 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) (-5 *1 (-965 *3 *4)))) (-1647 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-2577 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2555 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2566 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2555 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2555 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-2544 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-767))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2534 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2523 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3974 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2512 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3974 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3974 (*1 *2 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) (-2503 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1647 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2492 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1647 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2482 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1647 *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3952 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-2473 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2463 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-1508 (*1 *2 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) (-2453 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-2442 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-2431 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1233 *4)))) (-2419 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-2406 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5)))) (-2394 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) (-4 *2 (-1233 *4)))) (-2381 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3962 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2369 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3962 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-2358 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3962 *4))) (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) (-3962 (*1 *2 *3 *3) (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2))))) -(-10 -7 (-15 -3962 (|#1| |#2| |#2|)) (-15 -2358 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|)) (-15 -2369 ((-2 (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|)) (-15 -2381 ((-2 (|:| |coef1| |#2|) (|:| -3962 |#1|)) |#2| |#2|)) (-15 -2394 (|#2| |#2| |#2| (-767))) (-15 -2406 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2419 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2431 (|#2| |#2| |#2| (-767))) (-15 -2442 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -2453 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-767))) (-15 -1508 (|#2| |#2| |#2|)) (-15 -2463 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2473 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3952 (|#2| |#2| |#2|)) (-15 -2482 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1647 |#2|)) |#2| |#2|)) (-15 -2492 ((-2 (|:| |coef2| |#2|) (|:| -1647 |#2|)) |#2| |#2|)) (-15 -2503 ((-2 (|:| |coef1| |#2|) (|:| -1647 |#2|)) |#2| |#2|)) (-15 -3974 (|#1| |#2|)) (-15 -2512 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3974 |#1|)) |#2|)) (-15 -2523 ((-2 (|:| |coef2| |#2|) (|:| -3974 |#1|)) |#2|)) (-15 -2534 ((-640 |#2|) |#2| |#2|)) (-15 -2544 ((-640 (-767)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2555 (|#1| |#2| |#2|)) (-15 -2566 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2555 |#1|)) |#2| |#2|)) (-15 -2577 ((-2 (|:| |coef2| |#2|) (|:| -2555 |#1|)) |#2| |#2|)) (-15 -1647 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1257 |#2|) |#1| (-1257 |#2|))) (-15 -3448 ((-1257 |#2|) (-1257 |#2|) |#1|)) (-15 -3926 ((-2 (|:| -2765 |#1|) (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2|)) (-15 -2588 ((-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) |#2| |#2|)) (-15 -2597 (|#1| |#1| |#1| (-767))) (-15 -2607 (|#2| |#2| |#1| |#1| (-767))) (-15 -2616 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2627 (|#1| |#2| |#2|)) (-15 -2637 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|)) (-15 -2646 ((-2 (|:| |coef2| |#2|) (|:| -3962 |#1|)) |#2| |#2|))) -((-2049 (((-112) $ $) NIL)) (-2089 (((-1207) $) 13)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2784 (((-1128) $) 10)) (-2062 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-966) (-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)) (-15 -2089 ((-1207) $))))) (T -966)) -((-2784 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-966)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-966))))) -(-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)) (-15 -2089 ((-1207) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) 37)) (-3684 (($) NIL T CONST)) (-2668 (((-640 (-640 (-563))) (-640 (-563))) 46)) (-2657 (((-563) $) 70)) (-2678 (($ (-640 (-563))) 18)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2802 (((-640 (-563)) $) 13)) (-1382 (($ $) 50)) (-2062 (((-858) $) 66) (((-640 (-563)) $) 11)) (-3790 (($) 8 T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 25)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 24)) (-3027 (($ $ $) 26)) (* (($ (-917) $) NIL) (($ (-767) $) 35))) -(((-967) (-13 (-791) (-611 (-640 (-563))) (-610 (-640 (-563))) (-10 -8 (-15 -2678 ($ (-640 (-563)))) (-15 -2668 ((-640 (-640 (-563))) (-640 (-563)))) (-15 -2657 ((-563) $)) (-15 -1382 ($ $))))) (T -967)) -((-2678 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-967)))) (-2668 (*1 *2 *3) (-12 (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-967)) (-5 *3 (-640 (-563))))) (-2657 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-967)))) (-1382 (*1 *1 *1) (-5 *1 (-967)))) -(-13 (-791) (-611 (-640 (-563))) (-610 (-640 (-563))) (-10 -8 (-15 -2678 ($ (-640 (-563)))) (-15 -2668 ((-640 (-640 (-563))) (-640 (-563)))) (-15 -2657 ((-563) $)) (-15 -1382 ($ $)))) -((-3050 (($ $ |#2|) 31)) (-3039 (($ $) 23) (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-563)) $) 27) (($ $ (-407 (-563))) 29))) -(((-968 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -3050 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) (-969 |#2| |#3| |#4|) (-1045) (-788) (-846)) (T -968)) -NIL -(-10 -8 (-15 * (|#1| |#1| (-407 (-563)))) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 -3050 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 * (|#1| (-917) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 |#3|) $) 77)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-2697 (((-112) $) 76)) (-2712 (((-112) $) 31)) (-1871 (((-112) $) 65)) (-2165 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-640 |#3|) (-640 |#2|)) 78)) (-2751 (($ (-1 |#1| |#1|) $) 66)) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1962 ((|#2| $) 67)) (-2686 (($ $) 75)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-1304 ((|#1| $ |#2|) 62)) (-4376 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-969 |#1| |#2| |#3|) (-140) (-1045) (-788) (-846)) (T -969)) -((-3193 (*1 *2 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-3183 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *2 (-788)))) (-2165 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) (-4 *2 (-846)))) (-2165 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 *5)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-640 *5)))) (-2697 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2686 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) (-4 *4 (-846))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -2165 ($ $ |t#3| |t#2|)) (-15 -2165 ($ $ (-640 |t#3|) (-640 |t#2|))) (-15 -3183 ($ $)) (-15 -3193 (|t#1| $)) (-15 -1962 (|t#2| $)) (-15 -2185 ((-640 |t#3|) $)) (-15 -2697 ((-112) $)) (-15 -2686 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-4131 (((-1087 (-225)) $) 8)) (-4120 (((-1087 (-225)) $) 9)) (-4109 (((-1087 (-225)) $) 10)) (-2708 (((-640 (-640 (-939 (-225)))) $) 11)) (-2062 (((-858) $) 6))) -(((-970) (-140)) (T -970)) -((-2708 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-640 (-640 (-939 (-225))))))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225))))) (-4131 (*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225)))))) -(-13 (-610 (-858)) (-10 -8 (-15 -2708 ((-640 (-640 (-939 (-225)))) $)) (-15 -4109 ((-1087 (-225)) $)) (-15 -4120 ((-1087 (-225)) $)) (-15 -4131 ((-1087 (-225)) $)))) -(((-610 (-858)) . T)) -((-2185 (((-640 |#4|) $) 23)) (-1556 (((-112) $) 53)) (-1456 (((-112) $) 52)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#4|) 40)) (-1512 (((-112) $) 54)) (-1534 (((-112) $ $) 60)) (-1523 (((-112) $ $) 63)) (-1545 (((-112) $) 58)) (-1466 (((-640 |#5|) (-640 |#5|) $) 96)) (-1477 (((-640 |#5|) (-640 |#5|) $) 93)) (-1488 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 86)) (-1616 (((-640 |#4|) $) 27)) (-1602 (((-112) |#4| $) 33)) (-1500 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 79)) (-1566 (($ $ |#4|) 37)) (-1591 (($ $ |#4|) 36)) (-1579 (($ $ |#4|) 38)) (-2943 (((-112) $ $) 44))) -(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1456 ((-112) |#1|)) (-15 -1466 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -1477 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -1488 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1500 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1512 ((-112) |#1|)) (-15 -1523 ((-112) |#1| |#1|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -1545 ((-112) |#1|)) (-15 -1556 ((-112) |#1|)) (-15 -4257 ((-2 (|:| |under| |#1|) (|:| -3233 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1566 (|#1| |#1| |#4|)) (-15 -1579 (|#1| |#1| |#4|)) (-15 -1591 (|#1| |#1| |#4|)) (-15 -1602 ((-112) |#4| |#1|)) (-15 -1616 ((-640 |#4|) |#1|)) (-15 -2185 ((-640 |#4|) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) (-972 |#2| |#3| |#4| |#5|) (-1045) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -971)) -NIL -(-10 -8 (-15 -1456 ((-112) |#1|)) (-15 -1466 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -1477 ((-640 |#5|) (-640 |#5|) |#1|)) (-15 -1488 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1500 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1512 ((-112) |#1|)) (-15 -1523 ((-112) |#1| |#1|)) (-15 -1534 ((-112) |#1| |#1|)) (-15 -1545 ((-112) |#1|)) (-15 -1556 ((-112) |#1|)) (-15 -4257 ((-2 (|:| |under| |#1|) (|:| -3233 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1566 (|#1| |#1| |#4|)) (-15 -1579 (|#1| |#1| |#4|)) (-15 -1591 (|#1| |#1| |#4|)) (-15 -1602 ((-112) |#4| |#1|)) (-15 -1616 ((-640 |#4|) |#1|)) (-15 -2185 ((-640 |#4|) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2185 (((-640 |#3|) $) 33)) (-1556 (((-112) $) 26)) (-1456 (((-112) $) 17 (|has| |#1| (-555)))) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) 27)) (-3740 (((-112) $ (-767)) 44)) (-1907 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408)))) (-3684 (($) 45 T CONST)) (-1512 (((-112) $) 22 (|has| |#1| (-555)))) (-1534 (((-112) $ $) 24 (|has| |#1| (-555)))) (-1523 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1545 (((-112) $) 25 (|has| |#1| (-555)))) (-1466 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) 36)) (-2589 (($ (-640 |#4|)) 35)) (-1920 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408)))) (-4236 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-2674 ((|#3| $) 34)) (-3633 (((-112) $ (-767)) 43)) (-1572 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 47)) (-1616 (((-640 |#3|) $) 32)) (-1602 (((-112) |#3| $) 31)) (-3604 (((-112) $ (-767)) 42)) (-1938 (((-1151) $) 9)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-3249 (((-1113) $) 10)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3837 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) 38)) (-2820 (((-112) $) 41)) (-2749 (($) 40)) (-3261 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-2208 (($ $) 39)) (-2802 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 60)) (-1566 (($ $ |#3|) 28)) (-1591 (($ $ |#3|) 30)) (-1579 (($ $ |#3|) 29)) (-2062 (((-858) $) 11) (((-640 |#4|) $) 37)) (-3848 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 6)) (-1708 (((-767) $) 46 (|has| $ (-6 -4408))))) -(((-972 |#1| |#2| |#3| |#4|) (-140) (-1045) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -972)) -((-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) (-2674 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-1616 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-1602 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-1591 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-1579 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-1566 (*1 *1 *1 *2) (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2)))) (-4257 (*1 *2 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3233 *1) (|:| |upper| *1))) (-4 *1 (-972 *4 *5 *3 *6)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1545 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-1534 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-1523 (*1 *2 *1 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-1512 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112)))) (-1500 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1488 (*1 *2 *3 *1) (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1477 (*1 *2 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)))) (-1466 (*1 *2 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)))) (-1456 (*1 *2 *1) (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-5 *2 (-112))))) -(-13 (-1093) (-151 |t#4|) (-610 (-640 |t#4|)) (-10 -8 (-6 -4408) (-15 -2671 ((-3 $ "failed") (-640 |t#4|))) (-15 -2589 ($ (-640 |t#4|))) (-15 -2674 (|t#3| $)) (-15 -2185 ((-640 |t#3|) $)) (-15 -1616 ((-640 |t#3|) $)) (-15 -1602 ((-112) |t#3| $)) (-15 -1591 ($ $ |t#3|)) (-15 -1579 ($ $ |t#3|)) (-15 -1566 ($ $ |t#3|)) (-15 -4257 ((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |t#3|)) (-15 -1556 ((-112) $)) (IF (|has| |t#1| (-555)) (PROGN (-15 -1545 ((-112) $)) (-15 -1534 ((-112) $ $)) (-15 -1523 ((-112) $ $)) (-15 -1512 ((-112) $)) (-15 -1500 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1488 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1477 ((-640 |t#4|) (-640 |t#4|) $)) (-15 -1466 ((-640 |t#4|) (-640 |t#4|) $)) (-15 -1456 ((-112) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-1093) . T) ((-1208) . T)) -((-1640 (((-640 |#4|) |#4| |#4|) 134)) (-1930 (((-640 |#4|) (-640 |#4|) (-112)) 123 (|has| |#1| (-452))) (((-640 |#4|) (-640 |#4|)) 124 (|has| |#1| (-452)))) (-1764 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 43)) (-1753 (((-112) |#4|) 42)) (-1917 (((-640 |#4|) |#4|) 119 (|has| |#1| (-452)))) (-1700 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|)) 23)) (-1712 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|)) 29)) (-1726 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|)) 30)) (-1860 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|)) 88)) (-1888 (((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 101)) (-1903 (((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127)) (-1628 (((-640 |#4|) (-640 |#4|)) 126)) (-1823 (((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112)) 57) (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 59)) (-1836 ((|#4| |#4| (-640 |#4|)) 58)) (-1942 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 130 (|has| |#1| (-452)))) (-1965 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 133 (|has| |#1| (-452)))) (-1954 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 132 (|has| |#1| (-452)))) (-1652 (((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|))) 103) (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 105) (((-640 |#4|) (-640 |#4|) |#4|) 139) (((-640 |#4|) |#4| |#4|) 135) (((-640 |#4|) (-640 |#4|)) 104)) (-2001 (((-640 |#4|) (-640 |#4|) (-640 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-1740 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 50)) (-1688 (((-112) (-640 |#4|)) 77)) (-1675 (((-112) (-640 |#4|) (-640 (-640 |#4|))) 65)) (-1789 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 36)) (-1777 (((-112) |#4|) 35)) (-1990 (((-640 |#4|) (-640 |#4|)) 114 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-1976 (((-640 |#4|) (-640 |#4|)) 115 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-1847 (((-640 |#4|) (-640 |#4|)) 81)) (-1874 (((-640 |#4|) (-640 |#4|)) 95)) (-1664 (((-112) (-640 |#4|) (-640 |#4|)) 63)) (-1811 (((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|)) 48)) (-1800 (((-112) |#4|) 44))) -(((-973 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1652 ((-640 |#4|) (-640 |#4|))) (-15 -1652 ((-640 |#4|) |#4| |#4|)) (-15 -1628 ((-640 |#4|) (-640 |#4|))) (-15 -1640 ((-640 |#4|) |#4| |#4|)) (-15 -1652 ((-640 |#4|) (-640 |#4|) |#4|)) (-15 -1652 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1652 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|)))) (-15 -1664 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -1675 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -1688 ((-112) (-640 |#4|))) (-15 -1700 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|))) (-15 -1712 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -1726 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -1740 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1753 ((-112) |#4|)) (-15 -1764 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1777 ((-112) |#4|)) (-15 -1789 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1800 ((-112) |#4|)) (-15 -1811 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1823 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1823 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112))) (-15 -1836 (|#4| |#4| (-640 |#4|))) (-15 -1847 ((-640 |#4|) (-640 |#4|))) (-15 -1860 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|))) (-15 -1874 ((-640 |#4|) (-640 |#4|))) (-15 -1888 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1903 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1917 ((-640 |#4|) |#4|)) (-15 -1930 ((-640 |#4|) (-640 |#4|))) (-15 -1930 ((-640 |#4|) (-640 |#4|) (-112))) (-15 -1942 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1954 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1965 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -1976 ((-640 |#4|) (-640 |#4|))) (-15 -1990 ((-640 |#4|) (-640 |#4|))) (-15 -2001 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) |%noBranch|)) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -973)) -((-2001 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1990 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1965 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1954 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1942 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1930 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-1930 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-1903 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8)))) (-1888 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-640 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9)))) (-1874 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1860 (*1 *2 *3) (|partial| -12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -3796 (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-1847 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1836 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2)))) (-1823 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-1823 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1811 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-1800 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-1789 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-1777 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-1764 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-1753 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-1740 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) (-1726 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-1712 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-1700 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) (-1688 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-1675 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8)))) (-1664 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *4 *5 *6 *7)))) (-1652 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-640 *7) (-640 *7))) (-5 *2 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7)))) (-1652 (*1 *2 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1652 (*1 *2 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) (-1640 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-1628 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) (-1652 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) -(-10 -7 (-15 -1652 ((-640 |#4|) (-640 |#4|))) (-15 -1652 ((-640 |#4|) |#4| |#4|)) (-15 -1628 ((-640 |#4|) (-640 |#4|))) (-15 -1640 ((-640 |#4|) |#4| |#4|)) (-15 -1652 ((-640 |#4|) (-640 |#4|) |#4|)) (-15 -1652 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1652 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-1 (-640 |#4|) (-640 |#4|)))) (-15 -1664 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -1675 ((-112) (-640 |#4|) (-640 (-640 |#4|)))) (-15 -1688 ((-112) (-640 |#4|))) (-15 -1700 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-1 (-112) |#4|) (-640 |#4|))) (-15 -1712 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -1726 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 (-1 (-112) |#4|)) (-640 |#4|))) (-15 -1740 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1753 ((-112) |#4|)) (-15 -1764 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1777 ((-112) |#4|)) (-15 -1789 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1800 ((-112) |#4|)) (-15 -1811 ((-2 (|:| |goodPols| (-640 |#4|)) (|:| |badPols| (-640 |#4|))) (-640 |#4|))) (-15 -1823 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1823 ((-640 |#4|) (-640 |#4|) (-640 |#4|) (-112))) (-15 -1836 (|#4| |#4| (-640 |#4|))) (-15 -1847 ((-640 |#4|) (-640 |#4|))) (-15 -1860 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|))) (-15 -1874 ((-640 |#4|) (-640 |#4|))) (-15 -1888 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1903 ((-640 |#4|) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1917 ((-640 |#4|) |#4|)) (-15 -1930 ((-640 |#4|) (-640 |#4|))) (-15 -1930 ((-640 |#4|) (-640 |#4|) (-112))) (-15 -1942 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1954 ((-640 |#4|) (-640 |#4|) (-640 |#4|))) (-15 -1965 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -1976 ((-640 |#4|) (-640 |#4|))) (-15 -1990 ((-640 |#4|) (-640 |#4|))) (-15 -2001 ((-640 |#4|) (-640 |#4|) (-640 |#4|)))) |%noBranch|) |%noBranch|)) -((-2013 (((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2037 (((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)) 43)) (-2025 (((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) -(((-974 |#1|) (-10 -7 (-15 -2013 ((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2025 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2037 ((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)))) (-363)) (T -974)) -((-2037 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5))))) (-5 *1 (-974 *5)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)))) (-2025 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-684 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-974 *5)))) (-2013 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-684 *6)) (|:| A (-684 *6)) (|:| |Ainv| (-684 *6)))) (-5 *1 (-974 *6)) (-5 *3 (-684 *6))))) -(-10 -7 (-15 -2013 ((-2 (|:| R (-684 |#1|)) (|:| A (-684 |#1|)) (|:| |Ainv| (-684 |#1|))) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2025 ((-684 |#1|) (-684 |#1|) (-684 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2037 ((-640 (-2 (|:| C (-684 |#1|)) (|:| |g| (-1257 |#1|)))) (-684 |#1|) (-1257 |#1|)))) -((-2102 (((-418 |#4|) |#4|) 56))) -(((-975 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2102 ((-418 |#4|) |#4|))) (-846) (-789) (-452) (-945 |#3| |#2| |#1|)) (T -975)) -((-2102 (*1 *2 *3) (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) -(-10 -7 (-15 -2102 ((-418 |#4|) |#4|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-1696 (($ (-767)) 112 (|has| |#1| (-23)))) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-3934 (($ $) 90 (|has| $ (-6 -4409)))) (-4294 (($ $) 100)) (-1920 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 51)) (-2256 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-3415 (($ (-640 |#1|)) 118)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3804 (((-684 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-2552 (($ (-767) |#1|) 69)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-3489 (($ $ $) 87 (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4105 (($ $ $) 86 (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3375 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3604 (((-112) $ (-767)) 10)) (-3322 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 42 (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3357 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-2884 (($ $ (-640 |#1|)) 116)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-3396 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-1575 (((-917) $) 117)) (-4159 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-3387 (($ $ $) 104)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2155 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 79 (|has| |#1| (-611 (-536)))) (($ (-640 |#1|)) 119)) (-2074 (($ (-640 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-2988 (((-112) $ $) 85 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 82 (|has| |#1| (-846)))) (-3039 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-3027 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-563) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-976 |#1|) (-140) (-1045)) (T -976)) -((-3415 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917)))) (-3387 (*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) (-2884 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045))))) -(-13 (-1255 |t#1|) (-615 (-640 |t#1|)) (-10 -8 (-15 -3415 ($ (-640 |t#1|))) (-15 -1575 ((-917) $)) (-15 -3387 ($ $ $)) (-15 -2884 ($ $ (-640 |t#1|))))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-615 (-640 |#1|)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T) ((-1255 |#1|) . T)) -((-2751 (((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)) 17))) -(((-977 |#1| |#2|) (-10 -7 (-15 -2751 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) (-1045) (-1045)) (T -977)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6))))) -(-10 -7 (-15 -2751 ((-939 |#2|) (-1 |#2| |#1|) (-939 |#1|)))) -((-2071 ((|#1| (-939 |#1|)) 14)) (-2059 ((|#1| (-939 |#1|)) 13)) (-2046 ((|#1| (-939 |#1|)) 12)) (-2094 ((|#1| (-939 |#1|)) 16)) (-3973 ((|#1| (-939 |#1|)) 24)) (-2084 ((|#1| (-939 |#1|)) 15)) (-2105 ((|#1| (-939 |#1|)) 17)) (-3961 ((|#1| (-939 |#1|)) 23)) (-2114 ((|#1| (-939 |#1|)) 22))) -(((-978 |#1|) (-10 -7 (-15 -2046 (|#1| (-939 |#1|))) (-15 -2059 (|#1| (-939 |#1|))) (-15 -2071 (|#1| (-939 |#1|))) (-15 -2084 (|#1| (-939 |#1|))) (-15 -2094 (|#1| (-939 |#1|))) (-15 -2105 (|#1| (-939 |#1|))) (-15 -2114 (|#1| (-939 |#1|))) (-15 -3961 (|#1| (-939 |#1|))) (-15 -3973 (|#1| (-939 |#1|)))) (-1045)) (T -978)) -((-3973 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-3961 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2114 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2084 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2071 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2059 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045)))) (-2046 (*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(-10 -7 (-15 -2046 (|#1| (-939 |#1|))) (-15 -2059 (|#1| (-939 |#1|))) (-15 -2071 (|#1| (-939 |#1|))) (-15 -2084 (|#1| (-939 |#1|))) (-15 -2094 (|#1| (-939 |#1|))) (-15 -2105 (|#1| (-939 |#1|))) (-15 -2114 (|#1| (-939 |#1|))) (-15 -3961 (|#1| (-939 |#1|))) (-15 -3973 (|#1| (-939 |#1|)))) -((-4169 (((-3 |#1| "failed") |#1|) 18)) (-4031 (((-3 |#1| "failed") |#1|) 6)) (-4147 (((-3 |#1| "failed") |#1|) 16)) (-4013 (((-3 |#1| "failed") |#1|) 4)) (-4188 (((-3 |#1| "failed") |#1|) 20)) (-4056 (((-3 |#1| "failed") |#1|) 8)) (-3984 (((-3 |#1| "failed") |#1| (-767)) 1)) (-4003 (((-3 |#1| "failed") |#1|) 3)) (-3992 (((-3 |#1| "failed") |#1|) 2)) (-4198 (((-3 |#1| "failed") |#1|) 21)) (-4068 (((-3 |#1| "failed") |#1|) 9)) (-4178 (((-3 |#1| "failed") |#1|) 19)) (-4043 (((-3 |#1| "failed") |#1|) 7)) (-4160 (((-3 |#1| "failed") |#1|) 17)) (-4022 (((-3 |#1| "failed") |#1|) 5)) (-4227 (((-3 |#1| "failed") |#1|) 24)) (-4100 (((-3 |#1| "failed") |#1|) 12)) (-4209 (((-3 |#1| "failed") |#1|) 22)) (-4078 (((-3 |#1| "failed") |#1|) 10)) (-4249 (((-3 |#1| "failed") |#1|) 26)) (-4124 (((-3 |#1| "failed") |#1|) 14)) (-4259 (((-3 |#1| "failed") |#1|) 27)) (-4135 (((-3 |#1| "failed") |#1|) 15)) (-4239 (((-3 |#1| "failed") |#1|) 25)) (-4113 (((-3 |#1| "failed") |#1|) 13)) (-4218 (((-3 |#1| "failed") |#1|) 23)) (-4089 (((-3 |#1| "failed") |#1|) 11))) -(((-979 |#1|) (-140) (-1193)) (T -979)) -((-4259 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4249 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4239 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4227 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4218 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4209 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4198 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4188 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4178 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4169 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4160 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4147 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4135 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4124 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4113 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4100 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4089 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4078 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4068 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4056 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4043 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4031 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4022 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4013 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-4003 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3992 (*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193)))) (-3984 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(-13 (-10 -7 (-15 -3984 ((-3 |t#1| "failed") |t#1| (-767))) (-15 -3992 ((-3 |t#1| "failed") |t#1|)) (-15 -4003 ((-3 |t#1| "failed") |t#1|)) (-15 -4013 ((-3 |t#1| "failed") |t#1|)) (-15 -4022 ((-3 |t#1| "failed") |t#1|)) (-15 -4031 ((-3 |t#1| "failed") |t#1|)) (-15 -4043 ((-3 |t#1| "failed") |t#1|)) (-15 -4056 ((-3 |t#1| "failed") |t#1|)) (-15 -4068 ((-3 |t#1| "failed") |t#1|)) (-15 -4078 ((-3 |t#1| "failed") |t#1|)) (-15 -4089 ((-3 |t#1| "failed") |t#1|)) (-15 -4100 ((-3 |t#1| "failed") |t#1|)) (-15 -4113 ((-3 |t#1| "failed") |t#1|)) (-15 -4124 ((-3 |t#1| "failed") |t#1|)) (-15 -4135 ((-3 |t#1| "failed") |t#1|)) (-15 -4147 ((-3 |t#1| "failed") |t#1|)) (-15 -4160 ((-3 |t#1| "failed") |t#1|)) (-15 -4169 ((-3 |t#1| "failed") |t#1|)) (-15 -4178 ((-3 |t#1| "failed") |t#1|)) (-15 -4188 ((-3 |t#1| "failed") |t#1|)) (-15 -4198 ((-3 |t#1| "failed") |t#1|)) (-15 -4209 ((-3 |t#1| "failed") |t#1|)) (-15 -4218 ((-3 |t#1| "failed") |t#1|)) (-15 -4227 ((-3 |t#1| "failed") |t#1|)) (-15 -4239 ((-3 |t#1| "failed") |t#1|)) (-15 -4249 ((-3 |t#1| "failed") |t#1|)) (-15 -4259 ((-3 |t#1| "failed") |t#1|)))) -((-4279 ((|#4| |#4| (-640 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-4269 ((|#4| |#4| (-640 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2751 ((|#4| (-1 |#4| (-948 |#1|)) |#4|) 31))) -(((-980 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4269 (|#4| |#4| |#3|)) (-15 -4269 (|#4| |#4| (-640 |#3|))) (-15 -4279 (|#4| |#4| |#3|)) (-15 -4279 (|#4| |#4| (-640 |#3|))) (-15 -2751 (|#4| (-1 |#4| (-948 |#1|)) |#4|))) (-1045) (-789) (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169))))) (-945 (-948 |#1|) |#2| |#3|)) (T -980)) -((-2751 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045)) (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *6 *2)))) (-4279 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-4279 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) (-4269 (*1 *2 *2 *3) (-12 (-5 *3 (-640 *6)) (-4 *6 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169)))))) (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) (-4 *2 (-945 (-948 *4) *5 *6)))) (-4269 (*1 *2 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)) (-15 -4040 ((-3 $ "failed") (-1169)))))) (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3))))) -(-10 -7 (-15 -4269 (|#4| |#4| |#3|)) (-15 -4269 (|#4| |#4| (-640 |#3|))) (-15 -4279 (|#4| |#4| |#3|)) (-15 -4279 (|#4| |#4| (-640 |#3|))) (-15 -2751 (|#4| (-1 |#4| (-948 |#1|)) |#4|))) -((-4290 ((|#2| |#3|) 35)) (-1672 (((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|) 86)) (-1661 (((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) 106))) -(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1661 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -1672 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)) (-15 -4290 (|#2| |#3|))) (-349) (-1233 |#1|) (-1233 |#2|) (-720 |#2| |#3|)) (T -981)) -((-4290 (*1 *2 *3) (-12 (-4 *3 (-1233 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-981 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-720 *2 *3)))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) (-5 *2 (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) (-1661 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -3288 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4)))) (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5))))) -(-10 -7 (-15 -1661 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -1672 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|)) (-15 -4290 (|#2| |#3|))) -((-4352 (((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563))))) 83))) -(((-982 |#1| |#2|) (-10 -7 (-15 -4352 ((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563))))))) (-640 (-1169)) (-767)) (T -982)) -((-4352 (*1 *2 *2) (-12 (-5 *2 (-983 (-407 (-563)) (-860 *3) (-240 *4 (-767)) (-247 *3 (-407 (-563))))) (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4))))) -(-10 -7 (-15 -4352 ((-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563)))) (-983 (-407 (-563)) (-860 |#1|) (-240 |#2| (-767)) (-247 |#1| (-407 (-563))))))) -((-2049 (((-112) $ $) NIL)) (-2600 (((-3 (-112) "failed") $) 71)) (-4115 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-4334 (($ $ (-3 (-112) "failed")) 72)) (-4343 (($ (-640 |#4|) |#4|) 25)) (-1938 (((-1151) $) NIL)) (-4303 (($ $) 69)) (-3249 (((-1113) $) NIL)) (-2820 (((-112) $) 70)) (-2749 (($) 30)) (-4313 ((|#4| $) 74)) (-4324 (((-640 |#4|) $) 73)) (-2062 (((-858) $) 68)) (-2943 (((-112) $ $) NIL))) -(((-983 |#1| |#2| |#3| |#4|) (-13 (-1093) (-610 (-858)) (-10 -8 (-15 -2749 ($)) (-15 -4343 ($ (-640 |#4|) |#4|)) (-15 -2600 ((-3 (-112) "failed") $)) (-15 -4334 ($ $ (-3 (-112) "failed"))) (-15 -2820 ((-112) $)) (-15 -4324 ((-640 |#4|) $)) (-15 -4313 (|#4| $)) (-15 -4303 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -4115 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-846) (-789) (-945 |#1| |#3| |#2|)) (T -983)) -((-2749 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-4343 (*1 *1 *2 *3) (-12 (-5 *2 (-640 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3)))) (-2600 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-4334 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-2820 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-4324 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-640 *6)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) (-4313 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)))) (-4303 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) (-4115 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))) -(-13 (-1093) (-610 (-858)) (-10 -8 (-15 -2749 ($)) (-15 -4343 ($ (-640 |#4|) |#4|)) (-15 -2600 ((-3 (-112) "failed") $)) (-15 -4334 ($ $ (-3 (-112) "failed"))) (-15 -2820 ((-112) $)) (-15 -4324 ((-640 |#4|) $)) (-15 -4313 (|#4| $)) (-15 -4303 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -4115 ($ $)) |%noBranch|) |%noBranch|))) -((-2130 (((-112) |#5| |#5|) 43)) (-3997 (((-112) |#5| |#5|) 57)) (-4050 (((-112) |#5| (-640 |#5|)) 79) (((-112) |#5| |#5|) 66)) (-4009 (((-112) (-640 |#4|) (-640 |#4|)) 63)) (-4074 (((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) 68)) (-2120 (((-1262)) 33)) (-2110 (((-1262) (-1151) (-1151) (-1151)) 29)) (-4062 (((-640 |#5|) (-640 |#5|)) 98)) (-4084 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) 90)) (-4096 (((-640 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112)) 120)) (-2148 (((-112) |#5| |#5|) 52)) (-4038 (((-3 (-112) "failed") |#5| |#5|) 76)) (-4018 (((-112) (-640 |#4|) (-640 |#4|)) 62)) (-4027 (((-112) (-640 |#4|) (-640 |#4|)) 64)) (-3449 (((-112) (-640 |#4|) (-640 |#4|)) 65)) (-4108 (((-3 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)) 115)) (-2140 (((-640 |#5|) (-640 |#5|)) 48))) -(((-984 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2110 ((-1262) (-1151) (-1151) (-1151))) (-15 -2120 ((-1262))) (-15 -2130 ((-112) |#5| |#5|)) (-15 -2140 ((-640 |#5|) (-640 |#5|))) (-15 -2148 ((-112) |#5| |#5|)) (-15 -3997 ((-112) |#5| |#5|)) (-15 -4009 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4018 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4027 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3449 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4038 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4050 ((-112) |#5| |#5|)) (-15 -4050 ((-112) |#5| (-640 |#5|))) (-15 -4062 ((-640 |#5|) (-640 |#5|))) (-15 -4074 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) (-15 -4084 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-15 -4096 ((-640 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -4108 ((-3 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -984)) -((-4108 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -3087 (-640 *9)) (|:| -1926 *4) (|:| |ineq| (-640 *9)))) (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-4096 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| -3087 (-640 *9)) (|:| -1926 *10) (|:| |ineq| (-640 *9))))) (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -1926 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-4074 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -1926 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-4050 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) (-4050 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4038 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3449 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4027 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4018 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4009 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3997 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2148 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2140 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) (-2130 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2120 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2110 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(-10 -7 (-15 -2110 ((-1262) (-1151) (-1151) (-1151))) (-15 -2120 ((-1262))) (-15 -2130 ((-112) |#5| |#5|)) (-15 -2140 ((-640 |#5|) (-640 |#5|))) (-15 -2148 ((-112) |#5| |#5|)) (-15 -3997 ((-112) |#5| |#5|)) (-15 -4009 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4018 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4027 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3449 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4038 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4050 ((-112) |#5| |#5|)) (-15 -4050 ((-112) |#5| (-640 |#5|))) (-15 -4062 ((-640 |#5|) (-640 |#5|))) (-15 -4074 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) (-15 -4084 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-15 -4096 ((-640 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -4108 ((-3 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-4040 (((-1169) $) 15)) (-3556 (((-1151) $) 16)) (-2320 (($ (-1169) (-1151)) 14)) (-2062 (((-858) $) 13))) -(((-985) (-13 (-610 (-858)) (-10 -8 (-15 -2320 ($ (-1169) (-1151))) (-15 -4040 ((-1169) $)) (-15 -3556 ((-1151) $))))) (T -985)) -((-2320 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-985)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-985)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-985))))) -(-13 (-610 (-858)) (-10 -8 (-15 -2320 ($ (-1169) (-1151))) (-15 -4040 ((-1169) $)) (-15 -3556 ((-1151) $)))) -((-2751 ((|#4| (-1 |#2| |#1|) |#3|) 14))) -(((-986 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#4| (-1 |#2| |#1|) |#3|))) (-555) (-555) (-988 |#1|) (-988 |#2|)) (T -986)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-555)) (-4 *6 (-555)) (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5))))) -(-10 -7 (-15 -2751 (|#4| (-1 |#2| |#1|) |#3|))) -((-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-1169) "failed") $) 66) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) 96)) (-2589 ((|#2| $) NIL) (((-1169) $) 61) (((-407 (-563)) $) NIL) (((-563) $) 93)) (-3853 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 115) (((-684 |#2|) (-684 $)) 28)) (-4301 (($) 99)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 76) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 85)) (-4372 (($ $) 10)) (-3113 (((-3 $ "failed") $) 20)) (-2751 (($ (-1 |#2| |#2|) $) 22)) (-2956 (($) 16)) (-3212 (($ $) 55)) (-1361 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-4362 (($ $) 12)) (-2802 (((-888 (-563)) $) 71) (((-888 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 91) (($ |#2|) NIL) (($ (-1169)) 58)) (-3192 (((-767)) 31)) (-2966 (((-112) $ $) 51))) -(((-987 |#1| |#2|) (-10 -8 (-15 -2966 ((-112) |#1| |#1|)) (-15 -2956 (|#1|)) (-15 -3113 ((-3 |#1| "failed") |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2802 ((-225) |#1|)) (-15 -2802 ((-379) |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2062 (|#1| (-1169))) (-15 -2671 ((-3 (-1169) "failed") |#1|)) (-15 -2589 ((-1169) |#1|)) (-15 -4301 (|#1|)) (-15 -3212 (|#1| |#1|)) (-15 -4362 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -2938 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -3853 ((-684 |#2|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| |#1|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-988 |#2|) (-555)) (T -987)) -((-3192 (*1 *2) (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4)) (-4 *3 (-988 *4))))) -(-10 -8 (-15 -2966 ((-112) |#1| |#1|)) (-15 -2956 (|#1|)) (-15 -3113 ((-3 |#1| "failed") |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2802 ((-225) |#1|)) (-15 -2802 ((-379) |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2062 (|#1| (-1169))) (-15 -2671 ((-3 (-1169) "failed") |#1|)) (-15 -2589 ((-1169) |#1|)) (-15 -4301 (|#1|)) (-15 -3212 (|#1| |#1|)) (-15 -4362 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -2938 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2938 ((-885 (-563) |#1|) |#1| (-888 (-563)) (-885 (-563) |#1|))) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -3853 ((-684 |#2|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| |#1|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3223 ((|#1| $) 138 (|has| |#1| (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-1325 (((-418 (-1165 $)) (-1165 $)) 129 (|has| |#1| (-905)))) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 132 (|has| |#1| (-905)))) (-4332 (((-112) $ $) 60)) (-2107 (((-563) $) 119 (|has| |#1| (-816)))) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#1| "failed") $) 176) (((-3 (-1169) "failed") $) 127 (|has| |#1| (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 110 (|has| |#1| (-1034 (-563)))) (((-3 (-563) "failed") $) 108 (|has| |#1| (-1034 (-563))))) (-2589 ((|#1| $) 177) (((-1169) $) 128 (|has| |#1| (-1034 (-1169)))) (((-407 (-563)) $) 111 (|has| |#1| (-1034 (-563)))) (((-563) $) 109 (|has| |#1| (-1034 (-563))))) (-3495 (($ $ $) 56)) (-3853 (((-684 (-563)) (-684 $)) 151 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 150 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 149) (((-684 |#1|) (-684 $)) 148)) (-3230 (((-3 $ "failed") $) 33)) (-4301 (($) 136 (|has| |#1| (-545)))) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-3675 (((-112) $) 72)) (-2720 (((-112) $) 121 (|has| |#1| (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 145 (|has| |#1| (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 144 (|has| |#1| (-882 (-379))))) (-2712 (((-112) $) 31)) (-4372 (($ $) 140)) (-2626 ((|#1| $) 142)) (-3113 (((-3 $ "failed") $) 107 (|has| |#1| (-1144)))) (-2731 (((-112) $) 120 (|has| |#1| (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3489 (($ $ $) 117 (|has| |#1| (-846)))) (-4105 (($ $ $) 116 (|has| |#1| (-846)))) (-2751 (($ (-1 |#1| |#1|) $) 168)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-2956 (($) 106 (|has| |#1| (-1144)) CONST)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-3212 (($ $) 137 (|has| |#1| (-307)))) (-3233 ((|#1| $) 134 (|has| |#1| (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) 131 (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) 130 (|has| |#1| (-905)))) (-2055 (((-418 $) $) 75)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 170 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 169 (|has| |#1| (-514 (-1169) |#1|)))) (-4322 (((-767) $) 59)) (-3858 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-1361 (($ $) 167 (|has| |#1| (-233))) (($ $ (-767)) 165 (|has| |#1| (-233))) (($ $ (-1169)) 163 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 162 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 161 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 160 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-4362 (($ $) 139)) (-2636 ((|#1| $) 141)) (-2802 (((-888 (-563)) $) 147 (|has| |#1| (-611 (-888 (-563))))) (((-888 (-379)) $) 146 (|has| |#1| (-611 (-888 (-379))))) (((-536) $) 124 (|has| |#1| (-611 (-536)))) (((-379) $) 123 (|has| |#1| (-1018))) (((-225) $) 122 (|has| |#1| (-1018)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 133 (-3743 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 180) (($ (-1169)) 126 (|has| |#1| (-1034 (-1169))))) (-4376 (((-3 $ "failed") $) 125 (-2811 (|has| |#1| (-145)) (-3743 (|has| $ (-145)) (|has| |#1| (-905)))))) (-3192 (((-767)) 28 T CONST)) (-3241 ((|#1| $) 135 (|has| |#1| (-545)))) (-2543 (((-112) $ $) 40)) (-3841 (($ $) 118 (|has| |#1| (-816)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $) 166 (|has| |#1| (-233))) (($ $ (-767)) 164 (|has| |#1| (-233))) (($ $ (-1169)) 159 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 158 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 157 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 156 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-2998 (((-112) $ $) 114 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 113 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 115 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 112 (|has| |#1| (-846)))) (-3050 (($ $ $) 66) (($ |#1| |#1|) 143)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) -(((-988 |#1|) (-140) (-555)) (T -988)) -((-3050 (*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2626 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-2636 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-4372 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-4362 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) (-3212 (*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) (-4301 (*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-555)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545)))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545))))) -(-13 (-363) (-38 |t#1|) (-1034 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-880 |t#1|) (-400 |t#1|) (-10 -8 (-15 -3050 ($ |t#1| |t#1|)) (-15 -2626 (|t#1| $)) (-15 -2636 (|t#1| $)) (-15 -4372 ($ $)) (-15 -4362 ($ $)) (IF (|has| |t#1| (-1144)) (-6 (-1144)) |%noBranch|) (IF (|has| |t#1| (-1034 (-563))) (PROGN (-6 (-1034 (-563))) (-6 (-1034 (-407 (-563))))) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-816)) (-6 (-816)) |%noBranch|) (IF (|has| |t#1| (-1018)) (-6 (-1018)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1034 (-1169))) (-6 (-1034 (-1169))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -3223 (|t#1| $)) (-15 -3212 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -4301 ($)) (-15 -3241 (|t#1| $)) (-15 -3233 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-905)) (-6 (-905)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 #1=(-1169)) |has| |#1| (-1034 (-1169))) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) |has| |#1| (-1018)) ((-611 (-379)) |has| |#1| (-1018)) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-611 (-888 (-379))) |has| |#1| (-611 (-888 (-379)))) ((-611 (-888 (-563))) |has| |#1| (-611 (-888 (-563)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-787) |has| |#1| (-816)) ((-788) |has| |#1| (-816)) ((-790) |has| |#1| (-816)) ((-791) |has| |#1| (-816)) ((-816) |has| |#1| (-816)) ((-844) |has| |#1| (-816)) ((-846) -2811 (|has| |#1| (-846)) (|has| |#1| (-816))) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) |has| |#1| (-882 (-379))) ((-882 (-563)) |has| |#1| (-882 (-563))) ((-880 |#1|) . T) ((-905) |has| |#1| (-905)) ((-916) . T) ((-1018) |has| |#1| (-1018)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-563))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #1#) |has| |#1| (-1034 (-1169))) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-1144)) ((-1208) . T) ((-1212) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-4381 (($ (-1135 |#1| |#2|)) 11)) (-3840 (((-1135 |#1| |#2|) $) 12)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3858 ((|#2| $ (-240 |#1| |#2|)) 16)) (-2062 (((-858) $) NIL)) (-3790 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL))) -(((-989 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -4381 ($ (-1135 |#1| |#2|))) (-15 -3840 ((-1135 |#1| |#2|) $)) (-15 -3858 (|#2| $ (-240 |#1| |#2|))))) (-917) (-363)) (T -989)) -((-4381 (*1 *1 *2) (-12 (-5 *2 (-1135 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)) (-5 *1 (-989 *3 *4)))) (-3840 (*1 *2 *1) (-12 (-5 *2 (-1135 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363)) (-5 *1 (-989 *4 *2))))) -(-13 (-21) (-10 -8 (-15 -4381 ($ (-1135 |#1| |#2|))) (-15 -3840 ((-1135 |#1| |#2|) $)) (-15 -3858 (|#2| $ (-240 |#1| |#2|))))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2784 (((-1128) $) 9)) (-2062 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-990) (-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $))))) (T -990)) -((-2784 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-990))))) -(-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) 8)) (-3684 (($) 7 T CONST)) (-1311 (($ $) 46)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-3322 (((-767) $) 45)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1302 ((|#1| $) 44)) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-1331 ((|#1| |#1| $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-1321 ((|#1| $) 47)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 42)) (-1292 ((|#1| $) 43)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-991 |#1|) (-140) (-1208)) (T -991)) -((-1331 (*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-1321 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-1311 (*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-1302 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208)))) (-1292 (*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -1331 (|t#1| |t#1| $)) (-15 -1321 (|t#1| $)) (-15 -1311 ($ $)) (-15 -3322 ((-767) $)) (-15 -1302 (|t#1| $)) (-15 -1292 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2741 (((-112) $) 43)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2589 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#2| $) 44)) (-3459 (((-3 (-407 (-563)) "failed") $) 79)) (-3447 (((-112) $) 73)) (-3437 (((-407 (-563)) $) 77)) (-2712 (((-112) $) 42)) (-3251 ((|#2| $) 22)) (-2751 (($ (-1 |#2| |#2|) $) 19)) (-3149 (($ $) 60)) (-1361 (($ $) NIL) (($ $ (-767)) NIL) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2802 (((-536) $) 68)) (-1382 (($ $) 17)) (-2062 (((-858) $) 55) (($ (-563)) 39) (($ |#2|) 37) (($ (-407 (-563))) NIL)) (-3192 (((-767)) 10)) (-3841 ((|#2| $) 72)) (-2943 (((-112) $ $) 26)) (-2966 (((-112) $ $) 70)) (-3039 (($ $) 30) (($ $ $) 29)) (-3027 (($ $ $) 27)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL))) -(((-992 |#1| |#2|) (-10 -8 (-15 -2062 (|#1| (-407 (-563)))) (-15 -2966 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 -3149 (|#1| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3251 (|#2| |#1|)) (-15 -1382 (|#1| |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 -2712 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) (-993 |#2|) (-172)) (T -992)) -((-3192 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4)) (-4 *3 (-993 *4))))) -(-10 -8 (-15 -2062 (|#1| (-407 (-563)))) (-15 -2966 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-563)) |#1|)) (-15 * (|#1| |#1| (-407 (-563)))) (-15 -3149 (|#1| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -3841 (|#2| |#1|)) (-15 -3251 (|#2| |#1|)) (-15 -1382 (|#1| |#1|)) (-15 -2751 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 -2712 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 * (|#1| (-767) |#1|)) (-15 -2741 ((-112) |#1|)) (-15 * (|#1| (-917) |#1|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-2671 (((-3 (-563) "failed") $) 118 (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 116 (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) 113)) (-2589 (((-563) $) 117 (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) 115 (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) 114)) (-3853 (((-684 (-563)) (-684 $)) 88 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 87 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 86) (((-684 |#1|) (-684 $)) 85)) (-3230 (((-3 $ "failed") $) 33)) (-2079 ((|#1| $) 78)) (-3459 (((-3 (-407 (-563)) "failed") $) 74 (|has| |#1| (-545)))) (-3447 (((-112) $) 76 (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) 75 (|has| |#1| (-545)))) (-1341 (($ |#1| |#1| |#1| |#1|) 79)) (-2712 (((-112) $) 31)) (-3251 ((|#1| $) 80)) (-3489 (($ $ $) 67 (|has| |#1| (-846)))) (-4105 (($ $ $) 66 (|has| |#1| (-846)))) (-2751 (($ (-1 |#1| |#1|) $) 89)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71 (|has| |#1| (-363)))) (-1351 ((|#1| $) 81)) (-1363 ((|#1| $) 82)) (-1371 ((|#1| $) 83)) (-3249 (((-1113) $) 10)) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) 91 (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) 90 (|has| |#1| (-514 (-1169) |#1|)))) (-3858 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-1361 (($ $) 112 (|has| |#1| (-233))) (($ $ (-767)) 110 (|has| |#1| (-233))) (($ $ (-1169)) 108 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 107 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 106 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 105 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2802 (((-536) $) 72 (|has| |#1| (-611 (-536))))) (-1382 (($ $) 84)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 38) (($ (-407 (-563))) 61 (-2811 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-4376 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3841 ((|#1| $) 77 (|has| |#1| (-1054)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $) 111 (|has| |#1| (-233))) (($ $ (-767)) 109 (|has| |#1| (-233))) (($ $ (-1169)) 104 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 103 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 102 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 101 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-2998 (((-112) $ $) 64 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 63 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 65 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 62 (|has| |#1| (-846)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70 (|has| |#1| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-563))) 69 (|has| |#1| (-363))) (($ (-407 (-563)) $) 68 (|has| |#1| (-363))))) -(((-993 |#1|) (-140) (-172)) (T -993)) -((-1382 (*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1363 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3251 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-1341 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-2079 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) (-3447 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-3437 (*1 *2 *1) (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563))))) (-3459 (*1 *2 *1) (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-563)))))) -(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -1382 ($ $)) (-15 -1371 (|t#1| $)) (-15 -1363 (|t#1| $)) (-15 -1351 (|t#1| $)) (-15 -3251 (|t#1| $)) (-15 -1341 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2079 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-846)) (-6 (-846)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1054)) (-15 -3841 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -3447 ((-112) $)) (-15 -3437 ((-407 (-563)) $)) (-15 -3459 ((-3 (-407 (-563)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-363))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -2811 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1169) |#1|) |has| |#1| (-514 (-1169) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-643 #0#) |has| |#1| (-363)) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-363)) ((-713 |#1|) . T) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1051 #0#) |has| |#1| (-363)) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2751 ((|#3| (-1 |#4| |#2|) |#1|) 16))) -(((-994 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#3| (-1 |#4| |#2|) |#1|))) (-993 |#2|) (-172) (-993 |#4|) (-172)) (T -994)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5))))) -(-10 -7 (-15 -2751 (|#3| (-1 |#4| |#2|) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2079 ((|#1| $) 12)) (-3459 (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-545)))) (-3447 (((-112) $) NIL (|has| |#1| (-545)))) (-3437 (((-407 (-563)) $) NIL (|has| |#1| (-545)))) (-1341 (($ |#1| |#1| |#1| |#1|) 16)) (-2712 (((-112) $) NIL)) (-3251 ((|#1| $) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-1351 ((|#1| $) 15)) (-1363 ((|#1| $) 14)) (-1371 ((|#1| $) 13)) (-3249 (((-1113) $) NIL)) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-514 (-1169) |#1|))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-514 (-1169) |#1|)))) (-3858 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-1361 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-1382 (($ $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3841 ((|#1| $) NIL (|has| |#1| (-1054)))) (-3790 (($) 8 T CONST)) (-3803 (($) 10 T CONST)) (-4191 (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-363))))) -(((-995 |#1|) (-993 |#1|) (-172)) (T -995)) -NIL -(-993 |#1|) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3740 (((-112) $ (-767)) NIL)) (-3684 (($) NIL T CONST)) (-1311 (($ $) 23)) (-1393 (($ (-640 |#1|)) 33)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-3322 (((-767) $) 26)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3835 ((|#1| $) 28)) (-1956 (($ |#1| $) 17)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1302 ((|#1| $) 27)) (-3847 ((|#1| $) 22)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-1331 ((|#1| |#1| $) 16)) (-2820 (((-112) $) 18)) (-2749 (($) NIL)) (-1321 ((|#1| $) 21)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) NIL)) (-1292 ((|#1| $) 30)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-996 |#1|) (-13 (-991 |#1|) (-10 -8 (-15 -1393 ($ (-640 |#1|))))) (-1093)) (T -996)) -((-1393 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-996 *3))))) -(-13 (-991 |#1|) (-10 -8 (-15 -1393 ($ (-640 |#1|))))) -((-2067 (($ $) 12)) (-1403 (($ $ (-563)) 13))) -(((-997 |#1|) (-10 -8 (-15 -2067 (|#1| |#1|)) (-15 -1403 (|#1| |#1| (-563)))) (-998)) (T -997)) -NIL -(-10 -8 (-15 -2067 (|#1| |#1|)) (-15 -1403 (|#1| |#1| (-563)))) -((-2067 (($ $) 6)) (-1403 (($ $ (-563)) 7)) (** (($ $ (-407 (-563))) 8))) -(((-998) (-140)) (T -998)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-563))))) (-1403 (*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-563)))) (-2067 (*1 *1 *1) (-4 *1 (-998)))) -(-13 (-10 -8 (-15 -2067 ($ $)) (-15 -1403 ($ $ (-563))) (-15 ** ($ $ (-407 (-563)))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3648 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-2554 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2533 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2660 (((-684 (-407 |#2|)) (-1257 $)) NIL) (((-684 (-407 |#2|))) NIL)) (-3282 (((-407 |#2|) $) NIL)) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| (-407 |#2|) (-349)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2102 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4332 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2433 (((-767)) NIL (|has| (-407 |#2|) (-368)))) (-3809 (((-112)) NIL)) (-3795 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| (-407 |#2|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-407 |#2|) (-1034 (-407 (-563))))) (((-407 |#2|) $) NIL)) (-1505 (($ (-1257 (-407 |#2|)) (-1257 $)) NIL) (($ (-1257 (-407 |#2|))) 81) (($ (-1257 |#2|) |#2|) NIL)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-3495 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2649 (((-684 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-407 |#2|) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-407 |#2|))) (|:| |vec| (-1257 (-407 |#2|)))) (-684 $) (-1257 $)) NIL) (((-684 (-407 |#2|)) (-684 $)) NIL)) (-3703 (((-1257 $) (-1257 $)) NIL)) (-2532 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3230 (((-3 $ "failed") $) NIL)) (-3570 (((-640 (-640 |#1|))) NIL (|has| |#1| (-368)))) (-3842 (((-112) |#1| |#1|) NIL)) (-3406 (((-917)) NIL)) (-4301 (($) NIL (|has| (-407 |#2|) (-368)))) (-3784 (((-112)) NIL)) (-3772 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-3473 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| (-407 |#2|) (-363)))) (-2227 (($ $) NIL)) (-2135 (($) NIL (|has| (-407 |#2|) (-349)))) (-2812 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-2506 (($ $ (-767)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-3675 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-2903 (((-917) $) NIL (|has| (-407 |#2|) (-349))) (((-829 (-917)) $) NIL (|has| (-407 |#2|) (-349)))) (-2712 (((-112) $) NIL)) (-3794 (((-767)) NIL)) (-3714 (((-1257 $) (-1257 $)) NIL)) (-3251 (((-407 |#2|) $) NIL)) (-3579 (((-640 (-948 |#1|)) (-1169)) NIL (|has| |#1| (-363)))) (-3113 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2134 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-3267 (((-917) $) NIL (|has| (-407 |#2|) (-368)))) (-2521 ((|#3| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1938 (((-1151) $) NIL)) (-3660 (((-684 (-407 |#2|))) 57)) (-3681 (((-684 (-407 |#2|))) 56)) (-3149 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3630 (($ (-1257 |#2|) |#2|) 82)) (-3671 (((-684 (-407 |#2|))) 55)) (-3691 (((-684 (-407 |#2|))) 54)) (-3620 (((-2 (|:| |num| (-684 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-3639 (((-2 (|:| |num| (-1257 |#2|)) (|:| |den| |#2|)) $) 88)) (-3760 (((-1257 $)) 51)) (-1661 (((-1257 $)) 50)) (-3748 (((-112) $) NIL)) (-3735 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-2956 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-3491 (($ (-917)) NIL (|has| (-407 |#2|) (-368)))) (-3600 (((-3 |#2| "failed")) 70)) (-3249 (((-1113) $) NIL)) (-3863 (((-767)) NIL)) (-1738 (($) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| (-407 |#2|) (-363)))) (-1647 (($ (-640 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| (-407 |#2|) (-349)))) (-2055 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3448 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4322 (((-767) $) NIL (|has| (-407 |#2|) (-363)))) (-3858 ((|#1| $ |#1| |#1|) NIL)) (-3610 (((-3 |#2| "failed")) 68)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3974 (((-407 |#2|) (-1257 $)) NIL) (((-407 |#2|)) 47)) (-2515 (((-767) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-767) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-1361 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-2811 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2811 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2701 (((-684 (-407 |#2|)) (-1257 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-2713 ((|#3|) 58)) (-2750 (($) NIL (|has| (-407 |#2|) (-349)))) (-1818 (((-1257 (-407 |#2|)) $ (-1257 $)) NIL) (((-684 (-407 |#2|)) (-1257 $) (-1257 $)) NIL) (((-1257 (-407 |#2|)) $) 83) (((-684 (-407 |#2|)) (-1257 $)) NIL)) (-2802 (((-1257 (-407 |#2|)) $) NIL) (($ (-1257 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| (-407 |#2|) (-349)))) (-3725 (((-1257 $) (-1257 $)) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-563))) NIL (-2811 (|has| (-407 |#2|) (-1034 (-407 (-563)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4376 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-3015 ((|#3| $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3830 (((-112)) 65)) (-3819 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-3288 (((-1257 $)) 143)) (-2543 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-3589 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-3852 (((-112)) NIL)) (-3790 (($) 109 T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-767)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-896 (-1169))))) (($ $ (-767)) NIL (-2811 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-2811 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-563))) NIL (|has| (-407 |#2|) (-363))))) -(((-999 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1212) (-1233 |#1|) (-1233 (-407 |#2|)) (-407 |#2|) (-767)) (T -999)) +((-2787 (($ $ (-1086 $)) 7) (($ $ (-1170)) 6))) +(((-956) (-140)) (T -956)) +((-2787 (*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-956)))) (-2787 (*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1170))))) +(-13 (-10 -8 (-15 -2787 ($ $ (-1170))) (-15 -2787 ($ $ (-1086 $))))) +((-2757 (((-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)) 30) (((-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170))) 31) (((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170)) 49))) +(((-957 |#1|) (-10 -7 (-15 -2757 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170))) (-15 -2757 ((-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2757 ((-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)))) (-13 (-363) (-147))) (T -957)) +((-2757 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) (-4 *6 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) (|:| |prim| (-1166 *6)))) (-5 *1 (-957 *6)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) (|:| |prim| (-1166 *5)))) (-5 *1 (-957 *5)))) (-2757 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-949 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) (-5 *2 (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 *5)))) (-5 *1 (-957 *5))))) +(-10 -7 (-15 -2757 ((-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) (|:| |prim| (-1166 |#1|))) (-949 |#1|) (-1170) (-949 |#1|) (-1170))) (-15 -2757 ((-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)))) (-15 -2757 ((-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 |#1|))) (|:| |prim| (-1166 |#1|))) (-641 (-949 |#1|)) (-641 (-1170)) (-1170)))) +((-2271 (((-641 |#1|) |#1| |#1|) 46)) (-4188 (((-112) |#1|) 43)) (-2929 ((|#1| |#1|) 80)) (-3425 ((|#1| |#1|) 79))) +(((-958 |#1|) (-10 -7 (-15 -4188 ((-112) |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -2929 (|#1| |#1|)) (-15 -2271 ((-641 |#1|) |#1| |#1|))) (-545)) (T -958)) +((-2271 (*1 *2 *3 *3) (-12 (-5 *2 (-641 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545)))) (-2929 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-3425 (*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545)))) (-4188 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545))))) +(-10 -7 (-15 -4188 ((-112) |#1|)) (-15 -3425 (|#1| |#1|)) (-15 -2929 (|#1| |#1|)) (-15 -2271 ((-641 |#1|) |#1| |#1|))) +((-2205 (((-1264) (-859)) 9))) +(((-959) (-10 -7 (-15 -2205 ((-1264) (-859))))) (T -959)) +((-2205 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-959))))) +(-10 -7 (-15 -2205 ((-1264) (-859)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 76 (|has| |#1| (-556)))) (-1948 (($ $) 77 (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 34)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1348 (($ $) 31)) (-3951 (((-3 $ "failed") $) 41)) (-1989 (($ $) NIL (|has| |#1| (-452)))) (-1866 (($ $ |#1| |#2| $) 60)) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) 17)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| |#2|) NIL)) (-3469 ((|#2| $) 24)) (-1396 (($ (-1 |#2| |#2|) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1309 (($ $) 28)) (-1320 ((|#1| $) 26)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) 50)) (-1296 ((|#1| $) NIL)) (-3637 (($ $ |#2| |#1| $) 88 (-12 (|has| |#2| (-131)) (|has| |#1| (-556))))) (-1321 (((-3 $ "failed") $ $) 89 (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) 83 (|has| |#1| (-556)))) (-2266 ((|#2| $) 22)) (-4329 ((|#1| $) NIL (|has| |#1| (-452)))) (-3742 (((-859) $) NIL) (($ (-564)) 45) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 40) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ |#2|) 37)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) 15 T CONST)) (-3447 (($ $ $ (-768)) 72 (|has| |#1| (-172)))) (-3360 (((-112) $ $) 82 (|has| |#1| (-556)))) (-4311 (($) 27 T CONST)) (-4321 (($) 12 T CONST)) (-1705 (((-112) $ $) 81)) (-1799 (($ $ |#1|) 90 (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) 67) (($ $ (-768)) 65)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ |#1|) 62) (($ |#1| $) 61) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-960 |#1| |#2|) (-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -3637 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) (-1046) (-789)) (T -960)) +((-3637 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *2 (-789))))) +(-13 (-326 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| |#2| (-131)) (-15 -3637 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL (-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (-2850 (($ $ $) 65 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (-3239 (((-3 $ "failed") $ $) 52 (-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (-1938 (((-768)) 36 (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3812 ((|#2| $) 22)) (-3333 ((|#1| $) 21)) (-2818 (($) NIL (-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) CONST)) (-3951 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-2821 (($) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3840 (((-112) $) NIL (-4030 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (-2799 (($ $ $) NIL (-4030 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-2848 (($ $ $) NIL (-4030 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-2883 (($ |#1| |#2|) 20)) (-1906 (((-918) $) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 39 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1495 (($ (-918)) NIL (-12 (|has| |#1| (-368)) (|has| |#2| (-368))))) (-3864 (((-1114) $) NIL)) (-2766 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3671 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-3742 (((-859) $) 14)) (-4311 (($) 42 (-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))) CONST)) (-4321 (($) 25 (-4030 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))) CONST)) (-1751 (((-112) $ $) NIL (-4030 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1731 (((-112) $ $) NIL (-4030 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1705 (((-112) $ $) 19)) (-1741 (((-112) $ $) NIL (-4030 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1723 (((-112) $ $) 69 (-4030 (-12 (|has| |#1| (-790)) (|has| |#2| (-790))) (-12 (|has| |#1| (-847)) (|has| |#2| (-847)))))) (-1799 (($ $ $) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473))))) (-1790 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-1780 (($ $ $) 45 (-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790)))))) (** (($ $ (-564)) NIL (-12 (|has| |#1| (-473)) (|has| |#2| (-473)))) (($ $ (-768)) 32 (-4030 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))) (($ $ (-918)) NIL (-4030 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723)))))) (* (($ (-564) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-768) $) 48 (-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (($ (-918) $) NIL (-4030 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-131)) (|has| |#2| (-131))) (-12 (|has| |#1| (-790)) (|has| |#2| (-790))))) (($ $ $) 28 (-4030 (-12 (|has| |#1| (-473)) (|has| |#2| (-473))) (-12 (|has| |#1| (-723)) (|has| |#2| (-723))))))) +(((-961 |#1| |#2|) (-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-790)) (IF (|has| |#2| (-790)) (-6 (-790)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-847)) (IF (|has| |#2| (-847)) (-6 (-847)) |%noBranch|) |%noBranch|) (-15 -2883 ($ |#1| |#2|)) (-15 -3333 (|#1| $)) (-15 -3812 (|#2| $)))) (-1094) (-1094)) (T -961)) +((-2883 (*1 *1 *2 *3) (-12 (-5 *1 (-961 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3333 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1094)))) (-3812 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-961 *3 *2)) (-4 *3 (-1094))))) +(-13 (-1094) (-10 -8 (IF (|has| |#1| (-368)) (IF (|has| |#2| (-368)) (-6 (-368)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-723)) (IF (|has| |#2| (-723)) (-6 (-723)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-131)) (IF (|has| |#2| (-131)) (-6 (-131)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-473)) (IF (|has| |#2| (-473)) (-6 (-473)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-790)) (IF (|has| |#2| (-790)) (-6 (-790)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-847)) (IF (|has| |#2| (-847)) (-6 (-847)) |%noBranch|) |%noBranch|) (-15 -2883 ($ |#1| |#2|)) (-15 -3333 (|#1| $)) (-15 -3812 (|#2| $)))) +((-3426 (((-1098) $) 13)) (-4336 (($ (-1170) (-1098)) 14)) (-4324 (((-1170) $) 11)) (-3742 (((-859) $) 24))) +(((-962) (-13 (-611 (-859)) (-10 -8 (-15 -4324 ((-1170) $)) (-15 -3426 ((-1098) $)) (-15 -4336 ($ (-1170) (-1098)))))) (T -962)) +((-4324 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-962)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-962)))) (-4336 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-962))))) +(-13 (-611 (-859)) (-10 -8 (-15 -4324 ((-1170) $)) (-15 -3426 ((-1098) $)) (-15 -4336 ($ (-1170) (-1098))))) +((-3732 (((-112) $ $) NIL)) (-4269 (((-1096 (-1170)) $) 19)) (-1416 (((-112) $) 28)) (-3851 (((-1170) $) 29)) (-2814 (((-112) $) 26)) (-3043 ((|#1| $) 27)) (-1654 (((-870 $ $) $) 36)) (-3367 (((-112) $) 35)) (-4279 (($ $ $) 12)) (-2944 (($ $) 31)) (-1367 (((-112) $) 30)) (-4255 (($ $) 10)) (-2217 (((-1152) $) NIL)) (-3278 (((-870 $ $) $) 38)) (-2937 (((-112) $) 37)) (-3150 (($ $ $) 13)) (-3864 (((-1114) $) NIL)) (-2218 (((-870 $ $) $) 40)) (-3795 (((-112) $) 39)) (-1456 (($ $ $) 14)) (-3742 (((-859) $) 42) (($ |#1|) 7) (($ (-1170)) 9)) (-2038 (((-870 $ $) $) 34)) (-3784 (((-112) $) 32)) (-4267 (($ $ $) 11)) (-1705 (((-112) $ $) NIL))) +(((-963 |#1|) (-13 (-964) (-10 -8 (-15 -3742 ($ |#1|)) (-15 -3742 ($ (-1170))) (-15 -4269 ((-1096 (-1170)) $)) (-15 -2814 ((-112) $)) (-15 -3043 (|#1| $)) (-15 -1416 ((-112) $)) (-15 -3851 ((-1170) $)) (-15 -1367 ((-112) $)) (-15 -2944 ($ $)) (-15 -3784 ((-112) $)) (-15 -2038 ((-870 $ $) $)) (-15 -3367 ((-112) $)) (-15 -1654 ((-870 $ $) $)) (-15 -2937 ((-112) $)) (-15 -3278 ((-870 $ $) $)) (-15 -3795 ((-112) $)) (-15 -2218 ((-870 $ $) $)))) (-964)) (T -963)) +((-3742 (*1 *1 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-4269 (*1 *2 *1) (-12 (-5 *2 (-1096 (-1170))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2814 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3043 (*1 *2 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-1416 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-1367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2944 (*1 *1 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3367 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2937 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3278 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) (-2218 (*1 *2 *1) (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) (-4 *3 (-964))))) +(-13 (-964) (-10 -8 (-15 -3742 ($ |#1|)) (-15 -3742 ($ (-1170))) (-15 -4269 ((-1096 (-1170)) $)) (-15 -2814 ((-112) $)) (-15 -3043 (|#1| $)) (-15 -1416 ((-112) $)) (-15 -3851 ((-1170) $)) (-15 -1367 ((-112) $)) (-15 -2944 ($ $)) (-15 -3784 ((-112) $)) (-15 -2038 ((-870 $ $) $)) (-15 -3367 ((-112) $)) (-15 -1654 ((-870 $ $) $)) (-15 -2937 ((-112) $)) (-15 -3278 ((-870 $ $) $)) (-15 -3795 ((-112) $)) (-15 -2218 ((-870 $ $) $)))) +((-3732 (((-112) $ $) 7)) (-4279 (($ $ $) 15)) (-4255 (($ $) 17)) (-2217 (((-1152) $) 9)) (-3150 (($ $ $) 14)) (-3864 (((-1114) $) 10)) (-1456 (($ $ $) 13)) (-3742 (((-859) $) 11)) (-4267 (($ $ $) 16)) (-1705 (((-112) $ $) 6))) +(((-964) (-140)) (T -964)) +((-4255 (*1 *1 *1) (-4 *1 (-964))) (-4267 (*1 *1 *1 *1) (-4 *1 (-964))) (-4279 (*1 *1 *1 *1) (-4 *1 (-964))) (-3150 (*1 *1 *1 *1) (-4 *1 (-964))) (-1456 (*1 *1 *1 *1) (-4 *1 (-964)))) +(-13 (-1094) (-10 -8 (-15 -4255 ($ $)) (-15 -4267 ($ $ $)) (-15 -4279 ($ $ $)) (-15 -3150 ($ $ $)) (-15 -1456 ($ $ $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-2818 (($) 7 T CONST)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1457 (($ $ $) 43)) (-2164 (($ $ $) 44)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2848 ((|#1| $) 45)) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-965 |#1|) (-140) (-847)) (T -965)) +((-2848 (*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) (-2164 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) (-1457 (*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4411) (-15 -2848 (|t#1| $)) (-15 -2164 ($ $ $)) (-15 -1457 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2876 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2577 |#2|)) |#2| |#2|) 104)) (-4107 ((|#2| |#2| |#2|) 102)) (-1391 (((-2 (|:| |coef2| |#2|) (|:| -2577 |#2|)) |#2| |#2|) 106)) (-4122 (((-2 (|:| |coef1| |#2|) (|:| -2577 |#2|)) |#2| |#2|) 108)) (-2407 (((-2 (|:| |coef2| |#2|) (|:| -2060 |#1|)) |#2| |#2|) 130 (|has| |#1| (-452)))) (-1613 (((-2 (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|) 56)) (-3606 (((-2 (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|) 80)) (-2007 (((-2 (|:| |coef1| |#2|) (|:| -2448 |#1|)) |#2| |#2|) 82)) (-2081 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 95)) (-2474 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 88)) (-2171 (((-2 (|:| |coef2| |#2|) (|:| -4284 |#1|)) |#2|) 120)) (-3999 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 91)) (-3462 (((-641 (-768)) |#2| |#2|) 101)) (-3363 ((|#1| |#2| |#2|) 50)) (-3843 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2060 |#1|)) |#2| |#2|) 128 (|has| |#1| (-452)))) (-2060 ((|#1| |#2| |#2|) 126 (|has| |#1| (-452)))) (-1891 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|) 54)) (-4051 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|) 79)) (-2448 ((|#1| |#2| |#2|) 76)) (-3370 (((-2 (|:| -1762 |#1|) (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2|) 41)) (-1691 ((|#2| |#2| |#2| |#2| |#1|) 66)) (-2486 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 93)) (-2643 ((|#2| |#2| |#2|) 92)) (-3430 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 86)) (-3720 ((|#2| |#2| |#2| (-768)) 84)) (-2577 ((|#2| |#2| |#2|) 134 (|has| |#1| (-452)))) (-1321 (((-1259 |#2|) (-1259 |#2|) |#1|) 22)) (-1318 (((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2|) 46)) (-2501 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4284 |#1|)) |#2|) 118)) (-4284 ((|#1| |#2|) 115)) (-4208 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768)) 90)) (-3384 ((|#2| |#2| |#2| (-768)) 89)) (-3849 (((-641 |#2|) |#2| |#2|) 98)) (-1963 ((|#2| |#2| |#1| |#1| (-768)) 61)) (-4041 ((|#1| |#1| |#1| (-768)) 60)) (* (((-1259 |#2|) |#1| (-1259 |#2|)) 17))) +(((-966 |#1| |#2|) (-10 -7 (-15 -2448 (|#1| |#2| |#2|)) (-15 -4051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|)) (-15 -3606 ((-2 (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|)) (-15 -2007 ((-2 (|:| |coef1| |#2|) (|:| -2448 |#1|)) |#2| |#2|)) (-15 -3720 (|#2| |#2| |#2| (-768))) (-15 -3430 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2474 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3384 (|#2| |#2| |#2| (-768))) (-15 -4208 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3999 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2643 (|#2| |#2| |#2|)) (-15 -2486 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2081 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4107 (|#2| |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2577 |#2|)) |#2| |#2|)) (-15 -1391 ((-2 (|:| |coef2| |#2|) (|:| -2577 |#2|)) |#2| |#2|)) (-15 -4122 ((-2 (|:| |coef1| |#2|) (|:| -2577 |#2|)) |#2| |#2|)) (-15 -4284 (|#1| |#2|)) (-15 -2501 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4284 |#1|)) |#2|)) (-15 -2171 ((-2 (|:| |coef2| |#2|) (|:| -4284 |#1|)) |#2|)) (-15 -3849 ((-641 |#2|) |#2| |#2|)) (-15 -3462 ((-641 (-768)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2060 (|#1| |#2| |#2|)) (-15 -3843 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2060 |#1|)) |#2| |#2|)) (-15 -2407 ((-2 (|:| |coef2| |#2|) (|:| -2060 |#1|)) |#2| |#2|)) (-15 -2577 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -1321 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -3370 ((-2 (|:| -1762 |#1|) (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2|)) (-15 -1318 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2|)) (-15 -4041 (|#1| |#1| |#1| (-768))) (-15 -1963 (|#2| |#2| |#1| |#1| (-768))) (-15 -1691 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3363 (|#1| |#2| |#2|)) (-15 -1891 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|)) (-15 -1613 ((-2 (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|))) (-556) (-1235 |#1|)) (T -966)) +((-1613 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2448 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1891 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2448 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3363 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-1691 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-1963 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-4041 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *2 (-556)) (-5 *1 (-966 *2 *4)) (-4 *4 (-1235 *2)))) (-1318 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3370 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1762 *4) (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1321 (*1 *2 *2 *3) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-966 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) (-5 *1 (-966 *3 *4)))) (-2577 (*1 *2 *2 *2) (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2407 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2060 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3843 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2060 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2060 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-3462 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-768))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3849 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2171 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4284 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2501 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4284 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4284 (*1 *2 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) (-4122 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2577 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-1391 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2577 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2876 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2577 *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4107 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-2081 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2486 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2643 (*1 *2 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) (-3999 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-4208 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-3384 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) (-4 *2 (-1235 *4)))) (-2474 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-3430 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5)))) (-3720 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) (-4 *2 (-1235 *4)))) (-2007 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2448 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-3606 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2448 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-4051 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2448 *4))) (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) (-2448 (*1 *2 *3 *3) (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2))))) +(-10 -7 (-15 -2448 (|#1| |#2| |#2|)) (-15 -4051 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|)) (-15 -3606 ((-2 (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|)) (-15 -2007 ((-2 (|:| |coef1| |#2|) (|:| -2448 |#1|)) |#2| |#2|)) (-15 -3720 (|#2| |#2| |#2| (-768))) (-15 -3430 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2474 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3384 (|#2| |#2| |#2| (-768))) (-15 -4208 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -3999 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-768))) (-15 -2643 (|#2| |#2| |#2|)) (-15 -2486 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2081 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4107 (|#2| |#2| |#2|)) (-15 -2876 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2577 |#2|)) |#2| |#2|)) (-15 -1391 ((-2 (|:| |coef2| |#2|) (|:| -2577 |#2|)) |#2| |#2|)) (-15 -4122 ((-2 (|:| |coef1| |#2|) (|:| -2577 |#2|)) |#2| |#2|)) (-15 -4284 (|#1| |#2|)) (-15 -2501 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4284 |#1|)) |#2|)) (-15 -2171 ((-2 (|:| |coef2| |#2|) (|:| -4284 |#1|)) |#2|)) (-15 -3849 ((-641 |#2|) |#2| |#2|)) (-15 -3462 ((-641 (-768)) |#2| |#2|)) (IF (|has| |#1| (-452)) (PROGN (-15 -2060 (|#1| |#2| |#2|)) (-15 -3843 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2060 |#1|)) |#2| |#2|)) (-15 -2407 ((-2 (|:| |coef2| |#2|) (|:| -2060 |#1|)) |#2| |#2|)) (-15 -2577 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1259 |#2|) |#1| (-1259 |#2|))) (-15 -1321 ((-1259 |#2|) (-1259 |#2|) |#1|)) (-15 -3370 ((-2 (|:| -1762 |#1|) (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2|)) (-15 -1318 ((-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) |#2| |#2|)) (-15 -4041 (|#1| |#1| |#1| (-768))) (-15 -1963 (|#2| |#2| |#1| |#1| (-768))) (-15 -1691 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3363 (|#1| |#2| |#2|)) (-15 -1891 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|)) (-15 -1613 ((-2 (|:| |coef2| |#2|) (|:| -2448 |#1|)) |#2| |#2|))) +((-3732 (((-112) $ $) NIL)) (-3107 (((-1208) $) 13)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2575 (((-1129) $) 10)) (-3742 (((-859) $) 22) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-967) (-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)) (-15 -3107 ((-1208) $))))) (T -967)) +((-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-967)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-967))))) +(-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)) (-15 -3107 ((-1208) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) 37)) (-2818 (($) NIL T CONST)) (-2915 (((-641 (-641 (-564))) (-641 (-564))) 46)) (-3212 (((-564) $) 70)) (-4104 (($ (-641 (-564))) 18)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2235 (((-641 (-564)) $) 13)) (-2766 (($ $) 50)) (-3742 (((-859) $) 66) (((-641 (-564)) $) 11)) (-4311 (($) 8 T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 25)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 24)) (-1780 (($ $ $) 26)) (* (($ (-918) $) NIL) (($ (-768) $) 35))) +(((-968) (-13 (-792) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -4104 ($ (-641 (-564)))) (-15 -2915 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -3212 ((-564) $)) (-15 -2766 ($ $))))) (T -968)) +((-4104 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-968)))) (-2915 (*1 *2 *3) (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-968)) (-5 *3 (-641 (-564))))) (-3212 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-968)))) (-2766 (*1 *1 *1) (-5 *1 (-968)))) +(-13 (-792) (-612 (-641 (-564))) (-611 (-641 (-564))) (-10 -8 (-15 -4104 ($ (-641 (-564)))) (-15 -2915 ((-641 (-641 (-564))) (-641 (-564)))) (-15 -3212 ((-564) $)) (-15 -2766 ($ $)))) +((-1799 (($ $ |#2|) 31)) (-1790 (($ $) 23) (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 17) (($ $ $) NIL) (($ $ |#2|) 21) (($ |#2| $) 20) (($ (-407 (-564)) $) 27) (($ $ (-407 (-564))) 29))) +(((-969 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1799 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) (-970 |#2| |#3| |#4|) (-1046) (-789) (-847)) (T -969)) +NIL +(-10 -8 (-15 * (|#1| |#1| (-407 (-564)))) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 -1799 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 * (|#1| (-918) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 |#3|) $) 77)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1988 (((-112) $) 76)) (-3840 (((-112) $) 31)) (-2005 (((-112) $) 65)) (-4245 (($ |#1| |#2|) 64) (($ $ |#3| |#2|) 79) (($ $ (-641 |#3|) (-641 |#2|)) 78)) (-2187 (($ (-1 |#1| |#1|) $) 66)) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2266 ((|#2| $) 67)) (-2356 (($ $) 75)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-2856 ((|#1| $ |#2|) 62)) (-4253 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-970 |#1| |#2| |#3|) (-140) (-1046) (-789) (-847)) (T -970)) +((-1320 (*1 *2 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *3 (-789)) (-4 *4 (-847)) (-4 *2 (-1046)))) (-1309 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *4 (-847)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *2 *4)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *2 (-789)))) (-4245 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-970 *4 *3 *2)) (-4 *4 (-1046)) (-4 *3 (-789)) (-4 *2 (-847)))) (-4245 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-970 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-789)) (-4 *6 (-847)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *5 (-847)) (-5 *2 (-641 *5)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) (-4 *5 (-847)) (-5 *2 (-112)))) (-2356 (*1 *1 *1) (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) (-4 *4 (-847))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4245 ($ $ |t#3| |t#2|)) (-15 -4245 ($ $ (-641 |t#3|) (-641 |t#2|))) (-15 -1309 ($ $)) (-15 -1320 (|t#1| $)) (-15 -2266 (|t#2| $)) (-15 -4269 ((-641 |t#3|) $)) (-15 -1988 ((-112) $)) (-15 -2356 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2596 (((-1088 (-225)) $) 8)) (-2582 (((-1088 (-225)) $) 9)) (-2568 (((-1088 (-225)) $) 10)) (-1632 (((-641 (-641 (-940 (-225)))) $) 11)) (-3742 (((-859) $) 6))) +(((-971) (-140)) (T -971)) +((-1632 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-641 (-641 (-940 (-225))))))) (-2568 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))) (-2582 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225))))) (-2596 (*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225)))))) +(-13 (-611 (-859)) (-10 -8 (-15 -1632 ((-641 (-641 (-940 (-225)))) $)) (-15 -2568 ((-1088 (-225)) $)) (-15 -2582 ((-1088 (-225)) $)) (-15 -2596 ((-1088 (-225)) $)))) +(((-611 (-859)) . T)) +((-4269 (((-641 |#4|) $) 23)) (-3547 (((-112) $) 53)) (-4281 (((-112) $) 52)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#4|) 40)) (-4076 (((-112) $) 54)) (-2072 (((-112) $ $) 60)) (-2494 (((-112) $ $) 63)) (-3791 (((-112) $) 58)) (-2868 (((-641 |#5|) (-641 |#5|) $) 96)) (-1910 (((-641 |#5|) (-641 |#5|) $) 93)) (-1363 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 86)) (-3483 (((-641 |#4|) $) 27)) (-1410 (((-112) |#4| $) 33)) (-3088 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 79)) (-2031 (($ $ |#4|) 37)) (-2401 (($ $ |#4|) 36)) (-2624 (($ $ |#4|) 38)) (-1705 (((-112) $ $) 44))) +(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4281 ((-112) |#1|)) (-15 -2868 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -1910 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -1363 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3088 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4076 ((-112) |#1|)) (-15 -2494 ((-112) |#1| |#1|)) (-15 -2072 ((-112) |#1| |#1|)) (-15 -3791 ((-112) |#1|)) (-15 -3547 ((-112) |#1|)) (-15 -2777 ((-2 (|:| |under| |#1|) (|:| -3014 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2031 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -2401 (|#1| |#1| |#4|)) (-15 -1410 ((-112) |#4| |#1|)) (-15 -3483 ((-641 |#4|) |#1|)) (-15 -4269 ((-641 |#4|) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) (-973 |#2| |#3| |#4| |#5|) (-1046) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -972)) +NIL +(-10 -8 (-15 -4281 ((-112) |#1|)) (-15 -2868 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -1910 ((-641 |#5|) (-641 |#5|) |#1|)) (-15 -1363 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3088 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4076 ((-112) |#1|)) (-15 -2494 ((-112) |#1| |#1|)) (-15 -2072 ((-112) |#1| |#1|)) (-15 -3791 ((-112) |#1|)) (-15 -3547 ((-112) |#1|)) (-15 -2777 ((-2 (|:| |under| |#1|) (|:| -3014 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2031 (|#1| |#1| |#4|)) (-15 -2624 (|#1| |#1| |#4|)) (-15 -2401 (|#1| |#1| |#4|)) (-15 -1410 ((-112) |#4| |#1|)) (-15 -3483 ((-641 |#4|) |#1|)) (-15 -4269 ((-641 |#4|) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4269 (((-641 |#3|) $) 33)) (-3547 (((-112) $) 26)) (-4281 (((-112) $) 17 (|has| |#1| (-556)))) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) 27)) (-2969 (((-112) $ (-768)) 44)) (-3548 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411)))) (-2818 (($) 45 T CONST)) (-4076 (((-112) $) 22 (|has| |#1| (-556)))) (-2072 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2494 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3791 (((-112) $) 25 (|has| |#1| (-556)))) (-2868 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) 36)) (-2239 (($ (-641 |#4|)) 35)) (-1996 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411)))) (-3616 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-3782 ((|#3| $) 34)) (-2275 (((-112) $ (-768)) 43)) (-1386 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 47)) (-3483 (((-641 |#3|) $) 32)) (-1410 (((-112) |#3| $) 31)) (-1500 (((-112) $ (-768)) 42)) (-2217 (((-1152) $) 9)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3864 (((-1114) $) 10)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3736 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) 38)) (-4003 (((-112) $) 41)) (-3434 (($) 40)) (-3873 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-3896 (($ $) 39)) (-2235 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 60)) (-2031 (($ $ |#3|) 28)) (-2401 (($ $ |#3|) 30)) (-2624 (($ $ |#3|) 29)) (-3742 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1417 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 6)) (-2641 (((-768) $) 46 (|has| $ (-6 -4411))))) +(((-973 |#1| |#2| |#3| |#4|) (-140) (-1046) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -973)) +((-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-1060 *3 *4 *2)) (-4 *2 (-847)))) (-4269 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-1410 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *3 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) (-2401 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-2624 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-2031 (*1 *1 *1 *2) (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2)))) (-2777 (*1 *2 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3014 *1) (|:| |upper| *1))) (-4 *1 (-973 *4 *5 *3 *6)))) (-3547 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2072 (*1 *2 *1 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-2494 (*1 *2 *1 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-4076 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112)))) (-3088 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-1363 (*1 *2 *3 *1) (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-1910 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)))) (-2868 (*1 *2 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)))) (-4281 (*1 *2 *1) (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-5 *2 (-112))))) +(-13 (-1094) (-151 |t#4|) (-611 (-641 |t#4|)) (-10 -8 (-6 -4411) (-15 -2111 ((-3 $ "failed") (-641 |t#4|))) (-15 -2239 ($ (-641 |t#4|))) (-15 -3782 (|t#3| $)) (-15 -4269 ((-641 |t#3|) $)) (-15 -3483 ((-641 |t#3|) $)) (-15 -1410 ((-112) |t#3| $)) (-15 -2401 ($ $ |t#3|)) (-15 -2624 ($ $ |t#3|)) (-15 -2031 ($ $ |t#3|)) (-15 -2777 ((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |t#3|)) (-15 -3547 ((-112) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -3791 ((-112) $)) (-15 -2072 ((-112) $ $)) (-15 -2494 ((-112) $ $)) (-15 -4076 ((-112) $)) (-15 -3088 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1363 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -1910 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -2868 ((-641 |t#4|) (-641 |t#4|) $)) (-15 -4281 ((-112) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-1094) . T) ((-1209) . T)) +((-2668 (((-641 |#4|) |#4| |#4|) 134)) (-2524 (((-641 |#4|) (-641 |#4|) (-112)) 123 (|has| |#1| (-452))) (((-641 |#4|) (-641 |#4|)) 124 (|has| |#1| (-452)))) (-4228 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 43)) (-3944 (((-112) |#4|) 42)) (-3709 (((-641 |#4|) |#4|) 119 (|has| |#1| (-452)))) (-4254 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|)) 23)) (-3956 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 29)) (-2459 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|)) 30)) (-3602 (((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|)) 88)) (-2994 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 101)) (-1810 (((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 127)) (-1345 (((-641 |#4|) (-641 |#4|)) 126)) (-3255 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112)) 57) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 59)) (-1862 ((|#4| |#4| (-641 |#4|)) 58)) (-1524 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 130 (|has| |#1| (-452)))) (-1448 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 133 (|has| |#1| (-452)))) (-2817 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 132 (|has| |#1| (-452)))) (-4358 (((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|))) 103) (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 105) (((-641 |#4|) (-641 |#4|) |#4|) 139) (((-641 |#4|) |#4| |#4|) 135) (((-641 |#4|) (-641 |#4|)) 104)) (-4002 (((-641 |#4|) (-641 |#4|) (-641 |#4|)) 116 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2231 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 50)) (-3844 (((-112) (-641 |#4|)) 77)) (-1911 (((-112) (-641 |#4|) (-641 (-641 |#4|))) 65)) (-3061 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 36)) (-2930 (((-112) |#4|) 35)) (-2061 (((-641 |#4|) (-641 |#4|)) 114 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-3340 (((-641 |#4|) (-641 |#4|)) 115 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-1755 (((-641 |#4|) (-641 |#4|)) 81)) (-2251 (((-641 |#4|) (-641 |#4|)) 95)) (-3156 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-2282 (((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|)) 48)) (-3698 (((-112) |#4|) 44))) +(((-974 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4358 ((-641 |#4|) (-641 |#4|))) (-15 -4358 ((-641 |#4|) |#4| |#4|)) (-15 -1345 ((-641 |#4|) (-641 |#4|))) (-15 -2668 ((-641 |#4|) |#4| |#4|)) (-15 -4358 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -4358 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -4358 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3156 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1911 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3844 ((-112) (-641 |#4|))) (-15 -4254 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -3956 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2459 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2231 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3944 ((-112) |#4|)) (-15 -4228 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2930 ((-112) |#4|)) (-15 -3061 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3698 ((-112) |#4|)) (-15 -2282 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3255 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3255 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -1862 (|#4| |#4| (-641 |#4|))) (-15 -1755 ((-641 |#4|) (-641 |#4|))) (-15 -3602 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -2251 ((-641 |#4|) (-641 |#4|))) (-15 -2994 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1810 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3709 ((-641 |#4|) |#4|)) (-15 -2524 ((-641 |#4|) (-641 |#4|))) (-15 -2524 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -1524 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2817 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -1448 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -3340 ((-641 |#4|) (-641 |#4|))) (-15 -2061 ((-641 |#4|) (-641 |#4|))) (-15 -4002 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -974)) +((-4002 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2061 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1448 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2817 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1524 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2524 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3709 (*1 *2 *3) (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-1810 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-974 *5 *6 *7 *8)))) (-2994 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *1 (-974 *6 *7 *8 *9)))) (-2251 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-3602 (*1 *2 *3) (|partial| -12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2519 (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-1755 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *2)))) (-3255 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-3255 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-2282 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3698 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-3061 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2930 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-4228 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-3944 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-2231 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) (-2459 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-4254 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) (-3844 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *7)))) (-1911 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *5 *6 *7 *8)))) (-3156 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *4 *5 *6 *7)))) (-4358 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7)))) (-4358 (*1 *2 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4358 (*1 *2 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *3)))) (-2668 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-1345 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) (-4358 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) (-4358 (*1 *2 *2) (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))) +(-10 -7 (-15 -4358 ((-641 |#4|) (-641 |#4|))) (-15 -4358 ((-641 |#4|) |#4| |#4|)) (-15 -1345 ((-641 |#4|) (-641 |#4|))) (-15 -2668 ((-641 |#4|) |#4| |#4|)) (-15 -4358 ((-641 |#4|) (-641 |#4|) |#4|)) (-15 -4358 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -4358 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-1 (-641 |#4|) (-641 |#4|)))) (-15 -3156 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -1911 ((-112) (-641 |#4|) (-641 (-641 |#4|)))) (-15 -3844 ((-112) (-641 |#4|))) (-15 -4254 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-1 (-112) |#4|) (-641 |#4|))) (-15 -3956 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2459 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 (-1 (-112) |#4|)) (-641 |#4|))) (-15 -2231 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3944 ((-112) |#4|)) (-15 -4228 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -2930 ((-112) |#4|)) (-15 -3061 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3698 ((-112) |#4|)) (-15 -2282 ((-2 (|:| |goodPols| (-641 |#4|)) (|:| |badPols| (-641 |#4|))) (-641 |#4|))) (-15 -3255 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -3255 ((-641 |#4|) (-641 |#4|) (-641 |#4|) (-112))) (-15 -1862 (|#4| |#4| (-641 |#4|))) (-15 -1755 ((-641 |#4|) (-641 |#4|))) (-15 -3602 ((-3 (-2 (|:| |bas| (-476 |#1| |#2| |#3| |#4|)) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|))) (-15 -2251 ((-641 |#4|) (-641 |#4|))) (-15 -2994 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1810 ((-641 |#4|) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-452)) (PROGN (-15 -3709 ((-641 |#4|) |#4|)) (-15 -2524 ((-641 |#4|) (-641 |#4|))) (-15 -2524 ((-641 |#4|) (-641 |#4|) (-112))) (-15 -1524 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -2817 ((-641 |#4|) (-641 |#4|) (-641 |#4|))) (-15 -1448 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (PROGN (-15 -3340 ((-641 |#4|) (-641 |#4|))) (-15 -2061 ((-641 |#4|) (-641 |#4|))) (-15 -4002 ((-641 |#4|) (-641 |#4|) (-641 |#4|)))) |%noBranch|) |%noBranch|)) +((-4320 (((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19)) (-2326 (((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)) 43)) (-3928 (((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16))) +(((-975 |#1|) (-10 -7 (-15 -4320 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3928 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2326 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) (-363)) (T -975)) +((-2326 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) (-5 *1 (-975 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)))) (-3928 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) (-5 *1 (-975 *5)))) (-4320 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) (-5 *1 (-975 *6)) (-5 *3 (-685 *6))))) +(-10 -7 (-15 -4320 ((-2 (|:| R (-685 |#1|)) (|:| A (-685 |#1|)) (|:| |Ainv| (-685 |#1|))) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3928 ((-685 |#1|) (-685 |#1|) (-685 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2326 ((-641 (-2 (|:| C (-685 |#1|)) (|:| |g| (-1259 |#1|)))) (-685 |#1|) (-1259 |#1|)))) +((-3048 (((-418 |#4|) |#4|) 56))) +(((-976 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3048 ((-418 |#4|) |#4|))) (-847) (-790) (-452) (-946 |#3| |#2| |#1|)) (T -976)) +((-3048 (*1 *2 *3) (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-452)) (-5 *2 (-418 *3)) (-5 *1 (-976 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4))))) +(-10 -7 (-15 -3048 ((-418 |#4|) |#4|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1515 (($ (-768)) 112 (|has| |#1| (-23)))) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-2797 (($ $) 90 (|has| $ (-6 -4412)))) (-1856 (($ $) 100)) (-1996 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 51)) (-3305 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-2713 (($ (-641 |#1|)) 118)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-1653 (((-685 |#1|) $ $) 105 (|has| |#1| (-1046)))) (-3619 (($ (-768) |#1|) 69)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-2799 (($ $ $) 87 (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2848 (($ $ $) 86 (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2265 ((|#1| $) 102 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-1500 (((-112) $ (-768)) 10)) (-2395 ((|#1| $) 103 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 42 (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3099 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-3004 (($ $ (-641 |#1|)) 116)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2952 ((|#1| $ $) 106 (|has| |#1| (-1046)))) (-3603 (((-918) $) 117)) (-2004 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3987 (($ $ $) 104)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1999 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 79 (|has| |#1| (-612 (-536)))) (($ (-641 |#1|)) 119)) (-3753 (($ (-641 |#1|)) 70)) (-1802 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1741 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 82 (|has| |#1| (-847)))) (-1790 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1780 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-723))) (($ $ |#1|) 107 (|has| |#1| (-723)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-977 |#1|) (-140) (-1046)) (T -977)) +((-2713 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-977 *3)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1046)) (-5 *2 (-918)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1046)))) (-3004 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-977 *3)) (-4 *3 (-1046))))) +(-13 (-1257 |t#1|) (-616 (-641 |t#1|)) (-10 -8 (-15 -2713 ($ (-641 |t#1|))) (-15 -3603 ((-918) $)) (-15 -3987 ($ $ $)) (-15 -3004 ($ $ (-641 |t#1|))))) +(((-34) . T) ((-102) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-616 (-641 |#1|)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T) ((-1257 |#1|) . T)) +((-2187 (((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)) 17))) +(((-978 |#1| |#2|) (-10 -7 (-15 -2187 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)))) (-1046) (-1046)) (T -978)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-940 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-940 *6)) (-5 *1 (-978 *5 *6))))) +(-10 -7 (-15 -2187 ((-940 |#2|) (-1 |#2| |#1|) (-940 |#1|)))) +((-3175 ((|#1| (-940 |#1|)) 14)) (-1684 ((|#1| (-940 |#1|)) 13)) (-1967 ((|#1| (-940 |#1|)) 12)) (-3115 ((|#1| (-940 |#1|)) 16)) (-2221 ((|#1| (-940 |#1|)) 24)) (-3519 ((|#1| (-940 |#1|)) 15)) (-3019 ((|#1| (-940 |#1|)) 17)) (-2334 ((|#1| (-940 |#1|)) 23)) (-1562 ((|#1| (-940 |#1|)) 22))) +(((-979 |#1|) (-10 -7 (-15 -1967 (|#1| (-940 |#1|))) (-15 -1684 (|#1| (-940 |#1|))) (-15 -3175 (|#1| (-940 |#1|))) (-15 -3519 (|#1| (-940 |#1|))) (-15 -3115 (|#1| (-940 |#1|))) (-15 -3019 (|#1| (-940 |#1|))) (-15 -1562 (|#1| (-940 |#1|))) (-15 -2334 (|#1| (-940 |#1|))) (-15 -2221 (|#1| (-940 |#1|)))) (-1046)) (T -979)) +((-2221 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-2334 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-1562 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3019 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3115 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3519 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-3175 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-1684 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(-10 -7 (-15 -1967 (|#1| (-940 |#1|))) (-15 -1684 (|#1| (-940 |#1|))) (-15 -3175 (|#1| (-940 |#1|))) (-15 -3519 (|#1| (-940 |#1|))) (-15 -3115 (|#1| (-940 |#1|))) (-15 -3019 (|#1| (-940 |#1|))) (-15 -1562 (|#1| (-940 |#1|))) (-15 -2334 (|#1| (-940 |#1|))) (-15 -2221 (|#1| (-940 |#1|)))) +((-4219 (((-3 |#1| "failed") |#1|) 18)) (-1547 (((-3 |#1| "failed") |#1|) 6)) (-1848 (((-3 |#1| "failed") |#1|) 16)) (-3996 (((-3 |#1| "failed") |#1|) 4)) (-2311 (((-3 |#1| "failed") |#1|) 20)) (-2245 (((-3 |#1| "failed") |#1|) 8)) (-4010 (((-3 |#1| "failed") |#1| (-768)) 1)) (-2274 (((-3 |#1| "failed") |#1|) 3)) (-3645 (((-3 |#1| "failed") |#1|) 2)) (-1951 (((-3 |#1| "failed") |#1|) 21)) (-4201 (((-3 |#1| "failed") |#1|) 9)) (-3923 (((-3 |#1| "failed") |#1|) 19)) (-3438 (((-3 |#1| "failed") |#1|) 7)) (-2292 (((-3 |#1| "failed") |#1|) 17)) (-3640 (((-3 |#1| "failed") |#1|) 5)) (-3955 (((-3 |#1| "failed") |#1|) 24)) (-2492 (((-3 |#1| "failed") |#1|) 12)) (-1556 (((-3 |#1| "failed") |#1|) 22)) (-2761 (((-3 |#1| "failed") |#1|) 10)) (-2189 (((-3 |#1| "failed") |#1|) 26)) (-3811 (((-3 |#1| "failed") |#1|) 14)) (-3870 (((-3 |#1| "failed") |#1|) 27)) (-3445 (((-3 |#1| "failed") |#1|) 15)) (-2420 (((-3 |#1| "failed") |#1|) 25)) (-2173 (((-3 |#1| "failed") |#1|) 13)) (-2329 (((-3 |#1| "failed") |#1|) 23)) (-4073 (((-3 |#1| "failed") |#1|) 11))) +(((-980 |#1|) (-140) (-1194)) (T -980)) +((-3870 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2189 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2420 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3955 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2329 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1556 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1951 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2311 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3923 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4219 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2292 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1848 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3445 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3811 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2173 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2492 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4073 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2761 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4201 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2245 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3438 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-1547 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3640 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3996 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-2274 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-3645 (*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194)))) (-4010 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(-13 (-10 -7 (-15 -4010 ((-3 |t#1| "failed") |t#1| (-768))) (-15 -3645 ((-3 |t#1| "failed") |t#1|)) (-15 -2274 ((-3 |t#1| "failed") |t#1|)) (-15 -3996 ((-3 |t#1| "failed") |t#1|)) (-15 -3640 ((-3 |t#1| "failed") |t#1|)) (-15 -1547 ((-3 |t#1| "failed") |t#1|)) (-15 -3438 ((-3 |t#1| "failed") |t#1|)) (-15 -2245 ((-3 |t#1| "failed") |t#1|)) (-15 -4201 ((-3 |t#1| "failed") |t#1|)) (-15 -2761 ((-3 |t#1| "failed") |t#1|)) (-15 -4073 ((-3 |t#1| "failed") |t#1|)) (-15 -2492 ((-3 |t#1| "failed") |t#1|)) (-15 -2173 ((-3 |t#1| "failed") |t#1|)) (-15 -3811 ((-3 |t#1| "failed") |t#1|)) (-15 -3445 ((-3 |t#1| "failed") |t#1|)) (-15 -1848 ((-3 |t#1| "failed") |t#1|)) (-15 -2292 ((-3 |t#1| "failed") |t#1|)) (-15 -4219 ((-3 |t#1| "failed") |t#1|)) (-15 -3923 ((-3 |t#1| "failed") |t#1|)) (-15 -2311 ((-3 |t#1| "failed") |t#1|)) (-15 -1951 ((-3 |t#1| "failed") |t#1|)) (-15 -1556 ((-3 |t#1| "failed") |t#1|)) (-15 -2329 ((-3 |t#1| "failed") |t#1|)) (-15 -3955 ((-3 |t#1| "failed") |t#1|)) (-15 -2420 ((-3 |t#1| "failed") |t#1|)) (-15 -2189 ((-3 |t#1| "failed") |t#1|)) (-15 -3870 ((-3 |t#1| "failed") |t#1|)))) +((-2278 ((|#4| |#4| (-641 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-3686 ((|#4| |#4| (-641 |#3|)) 24) ((|#4| |#4| |#3|) 20)) (-2187 ((|#4| (-1 |#4| (-949 |#1|)) |#4|) 31))) +(((-981 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3686 (|#4| |#4| |#3|)) (-15 -3686 (|#4| |#4| (-641 |#3|))) (-15 -2278 (|#4| |#4| |#3|)) (-15 -2278 (|#4| |#4| (-641 |#3|))) (-15 -2187 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) (-1046) (-790) (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170))))) (-946 (-949 |#1|) |#2| |#3|)) (T -981)) +((-2187 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1046)) (-4 *2 (-946 (-949 *4) *5 *6)) (-4 *5 (-790)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *6 *2)))) (-2278 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) (-4 *2 (-946 (-949 *4) *5 *6)))) (-2278 (*1 *2 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))) (-3686 (*1 *2 *2 *3) (-12 (-5 *3 (-641 *6)) (-4 *6 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170)))))) (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) (-4 *2 (-946 (-949 *4) *5 *6)))) (-3686 (*1 *2 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)) (-15 -3851 ((-3 $ "failed") (-1170)))))) (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3))))) +(-10 -7 (-15 -3686 (|#4| |#4| |#3|)) (-15 -3686 (|#4| |#4| (-641 |#3|))) (-15 -2278 (|#4| |#4| |#3|)) (-15 -2278 (|#4| |#4| (-641 |#3|))) (-15 -2187 (|#4| (-1 |#4| (-949 |#1|)) |#4|))) +((-4080 ((|#2| |#3|) 35)) (-2791 (((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 86)) (-4054 (((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 106))) +(((-982 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4054 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -2791 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -4080 (|#2| |#3|))) (-349) (-1235 |#1|) (-1235 |#2|) (-721 |#2| |#3|)) (T -982)) +((-4080 (*1 *2 *3) (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-982 *4 *2 *3 *5)) (-4 *4 (-349)) (-4 *5 (-721 *2 *3)))) (-2791 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-982 *4 *3 *5 *6)) (-4 *6 (-721 *3 *5)))) (-4054 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -4265 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-721 *4 *5))))) +(-10 -7 (-15 -4054 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -2791 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|)) (-15 -4080 (|#2| |#3|))) +((-3618 (((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))) 83))) +(((-983 |#1| |#2|) (-10 -7 (-15 -3618 ((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))))) (-641 (-1170)) (-768)) (T -983)) +((-3618 (*1 *2 *2) (-12 (-5 *2 (-984 (-407 (-564)) (-861 *3) (-240 *4 (-768)) (-247 *3 (-407 (-564))))) (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-983 *3 *4))))) +(-10 -7 (-15 -3618 ((-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564)))) (-984 (-407 (-564)) (-861 |#1|) (-240 |#2| (-768)) (-247 |#1| (-407 (-564))))))) +((-3732 (((-112) $ $) NIL)) (-2240 (((-3 (-112) "failed") $) 71)) (-4307 (($ $) 36 (-12 (|has| |#1| (-147)) (|has| |#1| (-307))))) (-2603 (($ $ (-3 (-112) "failed")) 72)) (-3804 (($ (-641 |#4|) |#4|) 25)) (-2217 (((-1152) $) NIL)) (-2829 (($ $) 69)) (-3864 (((-1114) $) NIL)) (-4003 (((-112) $) 70)) (-3434 (($) 30)) (-1458 ((|#4| $) 74)) (-4246 (((-641 |#4|) $) 73)) (-3742 (((-859) $) 68)) (-1705 (((-112) $ $) NIL))) +(((-984 |#1| |#2| |#3| |#4|) (-13 (-1094) (-611 (-859)) (-10 -8 (-15 -3434 ($)) (-15 -3804 ($ (-641 |#4|) |#4|)) (-15 -2240 ((-3 (-112) "failed") $)) (-15 -2603 ($ $ (-3 (-112) "failed"))) (-15 -4003 ((-112) $)) (-15 -4246 ((-641 |#4|) $)) (-15 -1458 (|#4| $)) (-15 -2829 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -4307 ($ $)) |%noBranch|) |%noBranch|))) (-452) (-847) (-790) (-946 |#1| |#3| |#2|)) (T -984)) +((-3434 (*1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-3804 (*1 *1 *2 *3) (-12 (-5 *2 (-641 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452)) (-4 *5 (-847)) (-4 *6 (-790)) (-5 *1 (-984 *4 *5 *6 *3)))) (-2240 (*1 *2 *1) (|partial| -12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-2603 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-4003 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-4246 (*1 *2 *1) (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-641 *6)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) (-1458 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-984 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)))) (-2829 (*1 *1 *1) (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) (-4307 (*1 *1 *1) (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3))))) +(-13 (-1094) (-611 (-859)) (-10 -8 (-15 -3434 ($)) (-15 -3804 ($ (-641 |#4|) |#4|)) (-15 -2240 ((-3 (-112) "failed") $)) (-15 -2603 ($ $ (-3 (-112) "failed"))) (-15 -4003 ((-112) $)) (-15 -4246 ((-641 |#4|) $)) (-15 -1458 (|#4| $)) (-15 -2829 ($ $)) (IF (|has| |#1| (-307)) (IF (|has| |#1| (-147)) (-15 -4307 ($ $)) |%noBranch|) |%noBranch|))) +((-2351 (((-112) |#5| |#5|) 43)) (-1831 (((-112) |#5| |#5|) 57)) (-2939 (((-112) |#5| (-641 |#5|)) 79) (((-112) |#5| |#5|) 66)) (-1721 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-3648 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) 68)) (-4045 (((-1264)) 33)) (-4249 (((-1264) (-1152) (-1152) (-1152)) 29)) (-1783 (((-641 |#5|) (-641 |#5|)) 98)) (-3300 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) 90)) (-3410 (((-641 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 120)) (-2639 (((-112) |#5| |#5|) 52)) (-4216 (((-3 (-112) "failed") |#5| |#5|) 76)) (-3243 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-2236 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-4179 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-1869 (((-3 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 115)) (-1972 (((-641 |#5|) (-641 |#5|)) 48))) +(((-985 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4249 ((-1264) (-1152) (-1152) (-1152))) (-15 -4045 ((-1264))) (-15 -2351 ((-112) |#5| |#5|)) (-15 -1972 ((-641 |#5|) (-641 |#5|))) (-15 -2639 ((-112) |#5| |#5|)) (-15 -1831 ((-112) |#5| |#5|)) (-15 -1721 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3243 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2236 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4179 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4216 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2939 ((-112) |#5| |#5|)) (-15 -2939 ((-112) |#5| (-641 |#5|))) (-15 -1783 ((-641 |#5|) (-641 |#5|))) (-15 -3648 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) (-15 -3300 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-15 -3410 ((-641 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1869 ((-3 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -985)) +((-1869 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| -4032 (-641 *9)) (|:| -2084 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-985 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-3410 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -4032 (-641 *9)) (|:| -2084 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-985 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2084 *7)))) (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-3648 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2084 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8 *3)))) (-2939 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4216 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4179 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2236 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3243 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1721 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1831 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2639 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) (-2351 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4045 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-4249 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(-10 -7 (-15 -4249 ((-1264) (-1152) (-1152) (-1152))) (-15 -4045 ((-1264))) (-15 -2351 ((-112) |#5| |#5|)) (-15 -1972 ((-641 |#5|) (-641 |#5|))) (-15 -2639 ((-112) |#5| |#5|)) (-15 -1831 ((-112) |#5| |#5|)) (-15 -1721 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3243 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2236 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4179 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4216 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2939 ((-112) |#5| |#5|)) (-15 -2939 ((-112) |#5| (-641 |#5|))) (-15 -1783 ((-641 |#5|) (-641 |#5|))) (-15 -3648 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) (-15 -3300 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-15 -3410 ((-641 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1869 ((-3 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3851 (((-1170) $) 15)) (-3426 (((-1152) $) 16)) (-2372 (($ (-1170) (-1152)) 14)) (-3742 (((-859) $) 13))) +(((-986) (-13 (-611 (-859)) (-10 -8 (-15 -2372 ($ (-1170) (-1152))) (-15 -3851 ((-1170) $)) (-15 -3426 ((-1152) $))))) (T -986)) +((-2372 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-986)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-986)))) (-3426 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-986))))) +(-13 (-611 (-859)) (-10 -8 (-15 -2372 ($ (-1170) (-1152))) (-15 -3851 ((-1170) $)) (-15 -3426 ((-1152) $)))) +((-2187 ((|#4| (-1 |#2| |#1|) |#3|) 14))) +(((-987 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#4| (-1 |#2| |#1|) |#3|))) (-556) (-556) (-989 |#1|) (-989 |#2|)) (T -987)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) (-4 *2 (-989 *6)) (-5 *1 (-987 *5 *6 *4 *2)) (-4 *4 (-989 *5))))) +(-10 -7 (-15 -2187 (|#4| (-1 |#2| |#1|) |#3|))) +((-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-1170) "failed") $) 66) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) 96)) (-2239 ((|#2| $) NIL) (((-1170) $) 61) (((-407 (-564)) $) NIL) (((-564) $) 93)) (-3039 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 115) (((-685 |#2|) (-685 $)) 28)) (-2821 (($) 99)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 76) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 85)) (-3834 (($ $) 10)) (-3907 (((-3 $ "failed") $) 20)) (-2187 (($ (-1 |#2| |#2|) $) 22)) (-3258 (($) 16)) (-1941 (($ $) 55)) (-4117 (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2090 (($ $) 12)) (-2235 (((-889 (-564)) $) 71) (((-889 (-379)) $) 80) (((-536) $) 40) (((-379) $) 44) (((-225) $) 48)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 91) (($ |#2|) NIL) (($ (-1170)) 58)) (-3270 (((-768)) 31)) (-1723 (((-112) $ $) 51))) +(((-988 |#1| |#2|) (-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -3258 (|#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2235 ((-225) |#1|)) (-15 -2235 ((-379) |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -3742 (|#1| (-1170))) (-15 -2111 ((-3 (-1170) "failed") |#1|)) (-15 -2239 ((-1170) |#1|)) (-15 -2821 (|#1|)) (-15 -1941 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3075 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -3039 ((-685 |#2|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| |#1|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-989 |#2|) (-556)) (T -988)) +((-3270 (*1 *2) (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-988 *3 *4)) (-4 *3 (-989 *4))))) +(-10 -8 (-15 -1723 ((-112) |#1| |#1|)) (-15 -3258 (|#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2235 ((-225) |#1|)) (-15 -2235 ((-379) |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -3742 (|#1| (-1170))) (-15 -2111 ((-3 (-1170) "failed") |#1|)) (-15 -2239 ((-1170) |#1|)) (-15 -2821 (|#1|)) (-15 -1941 (|#1| |#1|)) (-15 -2090 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3075 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -3075 ((-886 (-564) |#1|) |#1| (-889 (-564)) (-886 (-564) |#1|))) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -3039 ((-685 |#2|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| |#1|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-1473 ((|#1| $) 138 (|has| |#1| (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-3679 (((-418 (-1166 $)) (-1166 $)) 129 (|has| |#1| (-906)))) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 132 (|has| |#1| (-906)))) (-2377 (((-112) $ $) 60)) (-3265 (((-564) $) 119 (|has| |#1| (-817)))) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#1| "failed") $) 176) (((-3 (-1170) "failed") $) 127 (|has| |#1| (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 110 (|has| |#1| (-1035 (-564)))) (((-3 (-564) "failed") $) 108 (|has| |#1| (-1035 (-564))))) (-2239 ((|#1| $) 177) (((-1170) $) 128 (|has| |#1| (-1035 (-1170)))) (((-407 (-564)) $) 111 (|has| |#1| (-1035 (-564)))) (((-564) $) 109 (|has| |#1| (-1035 (-564))))) (-1373 (($ $ $) 56)) (-3039 (((-685 (-564)) (-685 $)) 151 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 150 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 149) (((-685 |#1|) (-685 $)) 148)) (-3951 (((-3 $ "failed") $) 33)) (-2821 (($) 136 (|has| |#1| (-545)))) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-4188 (((-112) $) 72)) (-3308 (((-112) $) 121 (|has| |#1| (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 145 (|has| |#1| (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 144 (|has| |#1| (-883 (-379))))) (-3840 (((-112) $) 31)) (-3834 (($ $) 140)) (-1625 ((|#1| $) 142)) (-3907 (((-3 $ "failed") $) 107 (|has| |#1| (-1145)))) (-2839 (((-112) $) 120 (|has| |#1| (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2799 (($ $ $) 117 (|has| |#1| (-847)))) (-2848 (($ $ $) 116 (|has| |#1| (-847)))) (-2187 (($ (-1 |#1| |#1|) $) 168)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-3258 (($) 106 (|has| |#1| (-1145)) CONST)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-1941 (($ $) 137 (|has| |#1| (-307)))) (-3014 ((|#1| $) 134 (|has| |#1| (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) 131 (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) 130 (|has| |#1| (-906)))) (-4127 (((-418 $) $) 75)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) 174 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 173 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 172 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 171 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 170 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 169 (|has| |#1| (-514 (-1170) |#1|)))) (-4061 (((-768) $) 59)) (-4382 (($ $ |#1|) 175 (|has| |#1| (-286 |#1| |#1|)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-4117 (($ $) 167 (|has| |#1| (-233))) (($ $ (-768)) 165 (|has| |#1| (-233))) (($ $ (-1170)) 163 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 162 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 161 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 160 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2090 (($ $) 139)) (-1634 ((|#1| $) 141)) (-2235 (((-889 (-564)) $) 147 (|has| |#1| (-612 (-889 (-564))))) (((-889 (-379)) $) 146 (|has| |#1| (-612 (-889 (-379))))) (((-536) $) 124 (|has| |#1| (-612 (-536)))) (((-379) $) 123 (|has| |#1| (-1019))) (((-225) $) 122 (|has| |#1| (-1019)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 133 (-4267 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 180) (($ (-1170)) 126 (|has| |#1| (-1035 (-1170))))) (-4253 (((-3 $ "failed") $) 125 (-4030 (|has| |#1| (-145)) (-4267 (|has| $ (-145)) (|has| |#1| (-906)))))) (-3270 (((-768)) 28 T CONST)) (-2551 ((|#1| $) 135 (|has| |#1| (-545)))) (-3360 (((-112) $ $) 40)) (-2792 (($ $) 118 (|has| |#1| (-817)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $) 166 (|has| |#1| (-233))) (($ $ (-768)) 164 (|has| |#1| (-233))) (($ $ (-1170)) 159 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 158 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 157 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 156 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 155) (($ $ (-1 |#1| |#1|)) 154)) (-1751 (((-112) $ $) 114 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 113 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 115 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 112 (|has| |#1| (-847)))) (-1799 (($ $ $) 66) (($ |#1| |#1|) 143)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ |#1| $) 179) (($ $ |#1|) 178))) +(((-989 |#1|) (-140) (-556)) (T -989)) +((-1799 (*1 *1 *2 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1634 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-2090 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-1941 (*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) (-2821 (*1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-545)) (-4 *2 (-556)))) (-2551 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) (-3014 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545))))) +(-13 (-363) (-38 |t#1|) (-1035 |t#1|) (-338 |t#1|) (-231 |t#1|) (-377 |t#1|) (-881 |t#1|) (-400 |t#1|) (-10 -8 (-15 -1799 ($ |t#1| |t#1|)) (-15 -1625 (|t#1| $)) (-15 -1634 (|t#1| $)) (-15 -3834 ($ $)) (-15 -2090 ($ $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-1035 (-564))) (PROGN (-6 (-1035 (-564))) (-6 (-1035 (-407 (-564))))) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-817)) (-6 (-817)) |%noBranch|) (IF (|has| |t#1| (-1019)) (-6 (-1019)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1035 (-1170))) (-6 (-1035 (-1170))) |%noBranch|) (IF (|has| |t#1| (-307)) (PROGN (-15 -1473 (|t#1| $)) (-15 -1941 ($ $))) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -2821 ($)) (-15 -2551 (|t#1| $)) (-15 -3014 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-906)) (-6 (-906)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 #1=(-1170)) |has| |#1| (-1035 (-1170))) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) |has| |#1| (-1019)) ((-612 (-379)) |has| |#1| (-1019)) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-612 (-889 (-379))) |has| |#1| (-612 (-889 (-379)))) ((-612 (-889 (-564))) |has| |#1| (-612 (-889 (-564)))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) . T) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) . T) ((-307) . T) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-363) . T) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-400 |#1|) . T) ((-452) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-788) |has| |#1| (-817)) ((-789) |has| |#1| (-817)) ((-791) |has| |#1| (-817)) ((-792) |has| |#1| (-817)) ((-817) |has| |#1| (-817)) ((-845) |has| |#1| (-817)) ((-847) -4030 (|has| |#1| (-847)) (|has| |#1| (-817))) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) |has| |#1| (-883 (-379))) ((-883 (-564)) |has| |#1| (-883 (-564))) ((-881 |#1|) . T) ((-906) |has| |#1| (-906)) ((-917) . T) ((-1019) |has| |#1| (-1019)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-564))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #1#) |has| |#1| (-1035 (-1170))) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1209) . T) ((-1213) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-3593 (($ (-1136 |#1| |#2|)) 11)) (-1915 (((-1136 |#1| |#2|) $) 12)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4382 ((|#2| $ (-240 |#1| |#2|)) 16)) (-3742 (((-859) $) NIL)) (-4311 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL))) +(((-990 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -3593 ($ (-1136 |#1| |#2|))) (-15 -1915 ((-1136 |#1| |#2|) $)) (-15 -4382 (|#2| $ (-240 |#1| |#2|))))) (-918) (-363)) (T -990)) +((-3593 (*1 *1 *2) (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)) (-5 *1 (-990 *3 *4)))) (-1915 (*1 *2 *1) (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-990 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-918)) (-4 *2 (-363)) (-5 *1 (-990 *4 *2))))) +(-13 (-21) (-10 -8 (-15 -3593 ($ (-1136 |#1| |#2|))) (-15 -1915 ((-1136 |#1| |#2|) $)) (-15 -4382 (|#2| $ (-240 |#1| |#2|))))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2575 (((-1129) $) 9)) (-3742 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-991) (-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $))))) (T -991)) +((-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-991))))) +(-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) 8)) (-2818 (($) 7 T CONST)) (-1649 (($ $) 46)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2395 (((-768) $) 45)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1945 ((|#1| $) 44)) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2971 ((|#1| |#1| $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-3220 ((|#1| $) 47)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 42)) (-3957 ((|#1| $) 43)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-992 |#1|) (-140) (-1209)) (T -992)) +((-2971 (*1 *2 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-1649 (*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209)))) (-3957 (*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4411) (-15 -2971 (|t#1| |t#1| $)) (-15 -3220 (|t#1| $)) (-15 -1649 ($ $)) (-15 -2395 ((-768) $)) (-15 -1945 (|t#1| $)) (-15 -3957 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-4173 (((-112) $) 43)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#2| "failed") $) 46)) (-2239 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#2| $) 44)) (-2646 (((-3 (-407 (-564)) "failed") $) 79)) (-4072 (((-112) $) 73)) (-2350 (((-407 (-564)) $) 77)) (-3840 (((-112) $) 42)) (-3328 ((|#2| $) 22)) (-2187 (($ (-1 |#2| |#2|) $) 19)) (-4373 (($ $) 60)) (-4117 (($ $) NIL) (($ $ (-768)) NIL) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 35)) (-2235 (((-536) $) 68)) (-2766 (($ $) 17)) (-3742 (((-859) $) 55) (($ (-564)) 39) (($ |#2|) 37) (($ (-407 (-564))) NIL)) (-3270 (((-768)) 10)) (-2792 ((|#2| $) 72)) (-1705 (((-112) $ $) 26)) (-1723 (((-112) $ $) 70)) (-1790 (($ $) 30) (($ $ $) 29)) (-1780 (($ $ $) 27)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 34) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 31) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL))) +(((-993 |#1| |#2|) (-10 -8 (-15 -3742 (|#1| (-407 (-564)))) (-15 -1723 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -4373 (|#1| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2792 (|#2| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -2766 (|#1| |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 -3840 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -4173 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) (-994 |#2|) (-172)) (T -993)) +((-3270 (*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-993 *3 *4)) (-4 *3 (-994 *4))))) +(-10 -8 (-15 -3742 (|#1| (-407 (-564)))) (-15 -1723 ((-112) |#1| |#1|)) (-15 * (|#1| (-407 (-564)) |#1|)) (-15 * (|#1| |#1| (-407 (-564)))) (-15 -4373 (|#1| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2792 (|#2| |#1|)) (-15 -3328 (|#2| |#1|)) (-15 -2766 (|#1| |#1|)) (-15 -2187 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 -3840 ((-112) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 * (|#1| (-768) |#1|)) (-15 -4173 ((-112) |#1|)) (-15 * (|#1| (-918) |#1|)) (-15 -1780 (|#1| |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2111 (((-3 (-564) "failed") $) 118 (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 116 (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) 113)) (-2239 (((-564) $) 117 (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) 115 (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) 114)) (-3039 (((-685 (-564)) (-685 $)) 88 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 86) (((-685 |#1|) (-685 $)) 85)) (-3951 (((-3 $ "failed") $) 33)) (-4151 ((|#1| $) 78)) (-2646 (((-3 (-407 (-564)) "failed") $) 74 (|has| |#1| (-545)))) (-4072 (((-112) $) 76 (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) 75 (|has| |#1| (-545)))) (-2099 (($ |#1| |#1| |#1| |#1|) 79)) (-3840 (((-112) $) 31)) (-3328 ((|#1| $) 80)) (-2799 (($ $ $) 67 (|has| |#1| (-847)))) (-2848 (($ $ $) 66 (|has| |#1| (-847)))) (-2187 (($ (-1 |#1| |#1|) $) 89)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71 (|has| |#1| (-363)))) (-4078 ((|#1| $) 81)) (-2499 ((|#1| $) 82)) (-2040 ((|#1| $) 83)) (-3864 (((-1114) $) 10)) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) 95 (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) 94 (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) 93 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) 92 (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) 91 (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) 90 (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) 96 (|has| |#1| (-286 |#1| |#1|)))) (-4117 (($ $) 112 (|has| |#1| (-233))) (($ $ (-768)) 110 (|has| |#1| (-233))) (($ $ (-1170)) 108 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 107 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 106 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 105 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 98) (($ $ (-1 |#1| |#1|)) 97)) (-2235 (((-536) $) 72 (|has| |#1| (-612 (-536))))) (-2766 (($ $) 84)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 38) (($ (-407 (-564))) 61 (-4030 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4253 (((-3 $ "failed") $) 73 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-2792 ((|#1| $) 77 (|has| |#1| (-1055)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $) 111 (|has| |#1| (-233))) (($ $ (-768)) 109 (|has| |#1| (-233))) (($ $ (-1170)) 104 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 103 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 102 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 101 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 100) (($ $ (-1 |#1| |#1|)) 99)) (-1751 (((-112) $ $) 64 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 63 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 65 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 62 (|has| |#1| (-847)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70 (|has| |#1| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 40) (($ |#1| $) 39) (($ $ (-407 (-564))) 69 (|has| |#1| (-363))) (($ (-407 (-564)) $) 68 (|has| |#1| (-363))))) +(((-994 |#1|) (-140) (-172)) (T -994)) +((-2766 (*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2040 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-4078 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-3328 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2099 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-4151 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) (-2792 (*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564))))) (-2646 (*1 *2 *1) (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-407 (-564)))))) +(-13 (-38 |t#1|) (-411 |t#1|) (-231 |t#1|) (-338 |t#1|) (-377 |t#1|) (-10 -8 (-15 -2766 ($ $)) (-15 -2040 (|t#1| $)) (-15 -2499 (|t#1| $)) (-15 -4078 (|t#1| $)) (-15 -3328 (|t#1| $)) (-15 -2099 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4151 (|t#1| $)) (IF (|has| |t#1| (-290)) (-6 (-290)) |%noBranch|) (IF (|has| |t#1| (-847)) (-6 (-847)) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-243)) |%noBranch|) (IF (|has| |t#1| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-145)) |%noBranch|) (IF (|has| |t#1| (-1055)) (-15 -2792 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-545)) (PROGN (-15 -4072 ((-112) $)) (-15 -2350 ((-407 (-564)) $)) (-15 -2646 ((-3 (-407 (-564)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-363)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-363)) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-363))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-231 |#1|) . T) ((-233) |has| |#1| (-233)) ((-243) |has| |#1| (-363)) ((-286 |#1| $) |has| |#1| (-286 |#1| |#1|)) ((-290) -4030 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-309 |#1|) |has| |#1| (-309 |#1|)) ((-338 |#1|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-514 (-1170) |#1|) |has| |#1| (-514 (-1170) |#1|)) ((-514 |#1| |#1|) |has| |#1| (-309 |#1|)) ((-644 #0#) |has| |#1| (-363)) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-363)) ((-714 |#1|) . T) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1052 #0#) |has| |#1| (-363)) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-363)) (|has| |#1| (-290))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2187 ((|#3| (-1 |#4| |#2|) |#1|) 16))) +(((-995 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#3| (-1 |#4| |#2|) |#1|))) (-994 |#2|) (-172) (-994 |#4|) (-172)) (T -995)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-994 *6)) (-5 *1 (-995 *4 *5 *2 *6)) (-4 *4 (-994 *5))))) +(-10 -7 (-15 -2187 (|#3| (-1 |#4| |#2|) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-4151 ((|#1| $) 12)) (-2646 (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-545)))) (-4072 (((-112) $) NIL (|has| |#1| (-545)))) (-2350 (((-407 (-564)) $) NIL (|has| |#1| (-545)))) (-2099 (($ |#1| |#1| |#1| |#1|) 16)) (-3840 (((-112) $) NIL)) (-3328 ((|#1| $) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-4078 ((|#1| $) 15)) (-2499 ((|#1| $) 14)) (-2040 ((|#1| $) 13)) (-3864 (((-1114) $) NIL)) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-309 |#1|))) (($ $ (-294 |#1|)) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-294 |#1|))) NIL (|has| |#1| (-309 |#1|))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-514 (-1170) |#1|))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-514 (-1170) |#1|)))) (-4382 (($ $ |#1|) NIL (|has| |#1| (-286 |#1| |#1|)))) (-4117 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-2766 (($ $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2792 ((|#1| $) NIL (|has| |#1| (-1055)))) (-4311 (($) 8 T CONST)) (-4321 (($) 10 T CONST)) (-2124 (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))))) +(((-996 |#1|) (-994 |#1|) (-172)) (T -996)) +NIL +(-994 |#1|) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2969 (((-112) $ (-768)) NIL)) (-2818 (($) NIL T CONST)) (-1649 (($ $) 23)) (-2142 (($ (-641 |#1|)) 33)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2395 (((-768) $) 26)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2828 ((|#1| $) 28)) (-2974 (($ |#1| $) 17)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1945 ((|#1| $) 27)) (-1292 ((|#1| $) 22)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2971 ((|#1| |#1| $) 16)) (-4003 (((-112) $) 18)) (-3434 (($) NIL)) (-3220 ((|#1| $) 21)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) NIL)) (-3957 ((|#1| $) 30)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-997 |#1|) (-13 (-992 |#1|) (-10 -8 (-15 -2142 ($ (-641 |#1|))))) (-1094)) (T -997)) +((-2142 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-997 *3))))) +(-13 (-992 |#1|) (-10 -8 (-15 -2142 ($ (-641 |#1|))))) +((-4137 (($ $) 12)) (-2347 (($ $ (-564)) 13))) +(((-998 |#1|) (-10 -8 (-15 -4137 (|#1| |#1|)) (-15 -2347 (|#1| |#1| (-564)))) (-999)) (T -998)) +NIL +(-10 -8 (-15 -4137 (|#1| |#1|)) (-15 -2347 (|#1| |#1| (-564)))) +((-4137 (($ $) 6)) (-2347 (($ $ (-564)) 7)) (** (($ $ (-407 (-564))) 8))) +(((-999) (-140)) (T -999)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-407 (-564))))) (-2347 (*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-564)))) (-4137 (*1 *1 *1) (-4 *1 (-999)))) +(-13 (-10 -8 (-15 -4137 ($ $)) (-15 -2347 ($ $ (-564))) (-15 ** ($ $ (-407 (-564)))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3240 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| (-407 |#2|) (-363)))) (-1948 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-1832 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-3580 (((-685 (-407 |#2|)) (-1259 $)) NIL) (((-685 (-407 |#2|))) NIL)) (-3809 (((-407 |#2|) $) NIL)) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| (-407 |#2|) (-349)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-3048 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2377 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1938 (((-768)) NIL (|has| (-407 |#2|) (-368)))) (-4341 (((-112)) NIL)) (-2714 (((-112) |#1|) 173) (((-112) |#2|) 177)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-3 (-407 |#2|) "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| (-407 |#2|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-407 |#2|) (-1035 (-407 (-564))))) (((-407 |#2|) $) NIL)) (-2340 (($ (-1259 (-407 |#2|)) (-1259 $)) NIL) (($ (-1259 (-407 |#2|))) 81) (($ (-1259 |#2|) |#2|) NIL)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-407 |#2|) (-349)))) (-1373 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-3807 (((-685 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-407 |#2|) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-407 |#2|))) (|:| |vec| (-1259 (-407 |#2|)))) (-685 $) (-1259 $)) NIL) (((-685 (-407 |#2|)) (-685 $)) NIL)) (-3071 (((-1259 $) (-1259 $)) NIL)) (-1699 (($ |#3|) 75) (((-3 $ "failed") (-407 |#3|)) NIL (|has| (-407 |#2|) (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-2299 (((-641 (-641 |#1|))) NIL (|has| |#1| (-368)))) (-2900 (((-112) |#1| |#1|) NIL)) (-1544 (((-918)) NIL)) (-2821 (($) NIL (|has| (-407 |#2|) (-368)))) (-3040 (((-112)) NIL)) (-2904 (((-112) |#1|) 61) (((-112) |#2|) 175)) (-1350 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| (-407 |#2|) (-363)))) (-1989 (($ $) NIL)) (-2757 (($) NIL (|has| (-407 |#2|) (-349)))) (-1313 (((-112) $) NIL (|has| (-407 |#2|) (-349)))) (-3176 (($ $ (-768)) NIL (|has| (-407 |#2|) (-349))) (($ $) NIL (|has| (-407 |#2|) (-349)))) (-4188 (((-112) $) NIL (|has| (-407 |#2|) (-363)))) (-1619 (((-918) $) NIL (|has| (-407 |#2|) (-349))) (((-830 (-918)) $) NIL (|has| (-407 |#2|) (-349)))) (-3840 (((-112) $) NIL)) (-2660 (((-768)) NIL)) (-2273 (((-1259 $) (-1259 $)) NIL)) (-3328 (((-407 |#2|) $) NIL)) (-1943 (((-641 (-949 |#1|)) (-1170)) NIL (|has| |#1| (-363)))) (-3907 (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-349)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-2653 ((|#3| $) NIL (|has| (-407 |#2|) (-363)))) (-1906 (((-918) $) NIL (|has| (-407 |#2|) (-368)))) (-1687 ((|#3| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-2217 (((-1152) $) NIL)) (-1939 (((-685 (-407 |#2|))) 57)) (-2392 (((-685 (-407 |#2|))) 56)) (-4373 (($ $) NIL (|has| (-407 |#2|) (-363)))) (-2014 (($ (-1259 |#2|) |#2|) 82)) (-3830 (((-685 (-407 |#2|))) 55)) (-1295 (((-685 (-407 |#2|))) 54)) (-3625 (((-2 (|:| |num| (-685 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 97)) (-1750 (((-2 (|:| |num| (-1259 |#2|)) (|:| |den| |#2|)) $) 88)) (-4240 (((-1259 $)) 51)) (-4054 (((-1259 $)) 50)) (-4364 (((-112) $) NIL)) (-2505 (((-112) $) NIL) (((-112) $ |#1|) NIL) (((-112) $ |#2|) NIL)) (-3258 (($) NIL (|has| (-407 |#2|) (-349)) CONST)) (-1495 (($ (-918)) NIL (|has| (-407 |#2|) (-368)))) (-2307 (((-3 |#2| "failed")) 70)) (-3864 (((-1114) $) NIL)) (-1582 (((-768)) NIL)) (-1693 (($) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| (-407 |#2|) (-363)))) (-2577 (($ (-641 $)) NIL (|has| (-407 |#2|) (-363))) (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| (-407 |#2|) (-349)))) (-4127 (((-418 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-407 |#2|) (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| (-407 |#2|) (-363)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| (-407 |#2|) (-363)))) (-4061 (((-768) $) NIL (|has| (-407 |#2|) (-363)))) (-4382 ((|#1| $ |#1| |#1|) NIL)) (-3945 (((-3 |#2| "failed")) 68)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| (-407 |#2|) (-363)))) (-4284 (((-407 |#2|) (-1259 $)) NIL) (((-407 |#2|)) 47)) (-2819 (((-768) $) NIL (|has| (-407 |#2|) (-349))) (((-3 (-768) "failed") $ $) NIL (|has| (-407 |#2|) (-349)))) (-4117 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4030 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4030 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-2277 (((-685 (-407 |#2|)) (-1259 $) (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363)))) (-3925 ((|#3|) 58)) (-1543 (($) NIL (|has| (-407 |#2|) (-349)))) (-1785 (((-1259 (-407 |#2|)) $ (-1259 $)) NIL) (((-685 (-407 |#2|)) (-1259 $) (-1259 $)) NIL) (((-1259 (-407 |#2|)) $) 83) (((-685 (-407 |#2|)) (-1259 $)) NIL)) (-2235 (((-1259 (-407 |#2|)) $) NIL) (($ (-1259 (-407 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| (-407 |#2|) (-349)))) (-4005 (((-1259 $) (-1259 $)) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 |#2|)) NIL) (($ (-407 (-564))) NIL (-4030 (|has| (-407 |#2|) (-1035 (-407 (-564)))) (|has| (-407 |#2|) (-363)))) (($ $) NIL (|has| (-407 |#2|) (-363)))) (-4253 (($ $) NIL (|has| (-407 |#2|) (-349))) (((-3 $ "failed") $) NIL (|has| (-407 |#2|) (-145)))) (-2230 ((|#3| $) NIL)) (-3270 (((-768)) NIL T CONST)) (-2342 (((-112)) 65)) (-4000 (((-112) |#1|) 178) (((-112) |#2|) 179)) (-4265 (((-1259 $)) 143)) (-3360 (((-112) $ $) NIL (|has| (-407 |#2|) (-363)))) (-2674 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1532 (((-112)) NIL)) (-4311 (($) 109 T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-1 (-407 |#2|) (-407 |#2|)) (-768)) NIL (|has| (-407 |#2|) (-363))) (($ $ (-1 (-407 |#2|) (-407 |#2|))) NIL (|has| (-407 |#2|) (-363))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| (-407 |#2|) (-363)) (|has| (-407 |#2|) (-897 (-1170))))) (($ $ (-768)) NIL (-4030 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349)))) (($ $) NIL (-4030 (-12 (|has| (-407 |#2|) (-233)) (|has| (-407 |#2|) (-363))) (|has| (-407 |#2|) (-349))))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ $) NIL (|has| (-407 |#2|) (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| (-407 |#2|) (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 |#2|)) NIL) (($ (-407 |#2|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-407 |#2|) (-363))) (($ $ (-407 (-564))) NIL (|has| (-407 |#2|) (-363))))) +(((-1000 |#1| |#2| |#3| |#4| |#5|) (-342 |#1| |#2| |#3|) (-1213) (-1235 |#1|) (-1235 (-407 |#2|)) (-407 |#2|) (-768)) (T -1000)) NIL (-342 |#1| |#2| |#3|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3384 (((-640 (-563)) $) 73)) (-1424 (($ (-640 (-563))) 81)) (-3223 (((-563) $) 48 (|has| (-563) (-307)))) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL (|has| (-563) (-816)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) 60) (((-3 (-1169) "failed") $) NIL (|has| (-563) (-1034 (-1169)))) (((-3 (-407 (-563)) "failed") $) 57 (|has| (-563) (-1034 (-563)))) (((-3 (-563) "failed") $) 60 (|has| (-563) (-1034 (-563))))) (-2589 (((-563) $) NIL) (((-1169) $) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) NIL (|has| (-563) (-1034 (-563)))) (((-563) $) NIL (|has| (-563) (-1034 (-563))))) (-3495 (($ $ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| (-563) (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-4301 (($) NIL (|has| (-563) (-545)))) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-3358 (((-640 (-563)) $) 79)) (-2720 (((-112) $) NIL (|has| (-563) (-816)))) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (|has| (-563) (-882 (-563)))) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (|has| (-563) (-882 (-379))))) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL)) (-2626 (((-563) $) 45)) (-3113 (((-3 $ "failed") $) NIL (|has| (-563) (-1144)))) (-2731 (((-112) $) NIL (|has| (-563) (-816)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| (-563) (-846)))) (-2751 (($ (-1 (-563) (-563)) $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL)) (-2956 (($) NIL (|has| (-563) (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-3212 (($ $) NIL (|has| (-563) (-307))) (((-407 (-563)) $) 50)) (-3372 (((-1149 (-563)) $) 78)) (-1411 (($ (-640 (-563)) (-640 (-563))) 82)) (-3233 (((-563) $) 64 (|has| (-563) (-545)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| (-563) (-905)))) (-2055 (((-418 $) $) NIL)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-1497 (($ $ (-640 (-563)) (-640 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-563) (-563)) NIL (|has| (-563) (-309 (-563)))) (($ $ (-294 (-563))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-294 (-563)))) NIL (|has| (-563) (-309 (-563)))) (($ $ (-640 (-1169)) (-640 (-563))) NIL (|has| (-563) (-514 (-1169) (-563)))) (($ $ (-1169) (-563)) NIL (|has| (-563) (-514 (-1169) (-563))))) (-4322 (((-767) $) NIL)) (-3858 (($ $ (-563)) NIL (|has| (-563) (-286 (-563) (-563))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $) 15 (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-4362 (($ $) NIL)) (-2636 (((-563) $) 47)) (-1436 (((-640 (-563)) $) 80)) (-2802 (((-888 (-563)) $) NIL (|has| (-563) (-611 (-888 (-563))))) (((-888 (-379)) $) NIL (|has| (-563) (-611 (-888 (-379))))) (((-536) $) NIL (|has| (-563) (-611 (-536)))) (((-379) $) NIL (|has| (-563) (-1018))) (((-225) $) NIL (|has| (-563) (-1018)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-563) (-905))))) (-2062 (((-858) $) 106) (($ (-563)) 51) (($ $) NIL) (($ (-407 (-563))) 27) (($ (-563)) 51) (($ (-1169)) NIL (|has| (-563) (-1034 (-1169)))) (((-407 (-563)) $) 25)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-563) (-905))) (|has| (-563) (-145))))) (-3192 (((-767)) 13 T CONST)) (-3241 (((-563) $) 62 (|has| (-563) (-545)))) (-2543 (((-112) $ $) NIL)) (-3841 (($ $) NIL (|has| (-563) (-816)))) (-3790 (($) 14 T CONST)) (-3803 (($) 17 T CONST)) (-4191 (($ $) NIL (|has| (-563) (-233))) (($ $ (-767)) NIL (|has| (-563) (-233))) (($ $ (-1169)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| (-563) (-896 (-1169)))) (($ $ (-1 (-563) (-563)) (-767)) NIL) (($ $ (-1 (-563) (-563))) NIL)) (-2998 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2943 (((-112) $ $) 21)) (-2988 (((-112) $ $) NIL (|has| (-563) (-846)))) (-2966 (((-112) $ $) 40 (|has| (-563) (-846)))) (-3050 (($ $ $) 36) (($ (-563) (-563)) 38)) (-3039 (($ $) 23) (($ $ $) 30)) (-3027 (($ $ $) 28)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 32) (($ $ $) 34) (($ $ (-407 (-563))) NIL) (($ (-407 (-563)) $) NIL) (($ (-563) $) 32) (($ $ (-563)) NIL))) -(((-1000 |#1|) (-13 (-988 (-563)) (-610 (-407 (-563))) (-10 -8 (-15 -3212 ((-407 (-563)) $)) (-15 -3384 ((-640 (-563)) $)) (-15 -3372 ((-1149 (-563)) $)) (-15 -3358 ((-640 (-563)) $)) (-15 -1436 ((-640 (-563)) $)) (-15 -1424 ($ (-640 (-563)))) (-15 -1411 ($ (-640 (-563)) (-640 (-563)))))) (-563)) (T -1000)) -((-3212 (*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-3384 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-3372 (*1 *2 *1) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-1424 (*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) (-1411 (*1 *1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) -(-13 (-988 (-563)) (-610 (-407 (-563))) (-10 -8 (-15 -3212 ((-407 (-563)) $)) (-15 -3384 ((-640 (-563)) $)) (-15 -3372 ((-1149 (-563)) $)) (-15 -3358 ((-640 (-563)) $)) (-15 -1436 ((-640 (-563)) $)) (-15 -1424 ($ (-640 (-563)))) (-15 -1411 ($ (-640 (-563)) (-640 (-563)))))) -((-3393 (((-52) (-407 (-563)) (-563)) 9))) -(((-1001) (-10 -7 (-15 -3393 ((-52) (-407 (-563)) (-563))))) (T -1001)) -((-3393 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-563))) (-5 *4 (-563)) (-5 *2 (-52)) (-5 *1 (-1001))))) -(-10 -7 (-15 -3393 ((-52) (-407 (-563)) (-563)))) -((-2433 (((-563)) 23)) (-3428 (((-563)) 28)) (-3418 (((-1262) (-563)) 26)) (-3405 (((-563) (-563)) 29) (((-563)) 22))) -(((-1002) (-10 -7 (-15 -3405 ((-563))) (-15 -2433 ((-563))) (-15 -3405 ((-563) (-563))) (-15 -3418 ((-1262) (-563))) (-15 -3428 ((-563))))) (T -1002)) -((-3428 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-3418 (*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1002)))) (-3405 (*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-2433 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) (-3405 (*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002))))) -(-10 -7 (-15 -3405 ((-563))) (-15 -2433 ((-563))) (-15 -3405 ((-563) (-563))) (-15 -3418 ((-1262) (-563))) (-15 -3428 ((-563)))) -((-3739 (((-418 |#1|) |#1|) 43)) (-2055 (((-418 |#1|) |#1|) 41))) -(((-1003 |#1|) (-10 -7 (-15 -2055 ((-418 |#1|) |#1|)) (-15 -3739 ((-418 |#1|) |#1|))) (-1233 (-407 (-563)))) (T -1003)) -((-3739 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1233 (-407 (-563)))))) (-2055 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) (-4 *3 (-1233 (-407 (-563))))))) -(-10 -7 (-15 -2055 ((-418 |#1|) |#1|)) (-15 -3739 ((-418 |#1|) |#1|))) -((-3459 (((-3 (-407 (-563)) "failed") |#1|) 15)) (-3447 (((-112) |#1|) 14)) (-3437 (((-407 (-563)) |#1|) 10))) -(((-1004 |#1|) (-10 -7 (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|))) (-1034 (-407 (-563)))) (T -1004)) -((-3459 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2)))) (-3447 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-563)))))) (-3437 (*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2))))) -(-10 -7 (-15 -3437 ((-407 (-563)) |#1|)) (-15 -3447 ((-112) |#1|)) (-15 -3459 ((-3 (-407 (-563)) "failed") |#1|))) -((-2189 ((|#2| $ "value" |#2|) 12)) (-3858 ((|#2| $ "value") 10)) (-3504 (((-112) $ $) 18))) -(((-1005 |#1| |#2|) (-10 -8 (-15 -2189 (|#2| |#1| "value" |#2|)) (-15 -3504 ((-112) |#1| |#1|)) (-15 -3858 (|#2| |#1| "value"))) (-1006 |#2|) (-1208)) (T -1005)) -NIL -(-10 -8 (-15 -2189 (|#2| |#1| "value" |#2|)) (-15 -3504 ((-112) |#1| |#1|)) (-15 -3858 (|#2| |#1| "value"))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3556 ((|#1| $) 48)) (-3740 (((-112) $ (-767)) 8)) (-3472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-3684 (($) 7 T CONST)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 50)) (-3494 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-3884 (((-640 |#1|) $) 45)) (-2484 (((-112) $) 49)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ "value") 47)) (-3514 (((-563) $ $) 44)) (-2181 (((-112) $) 46)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 51)) (-3504 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-1006 |#1|) (-140) (-1208)) (T -1006)) -((-2432 (*1 *2 *1) (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))) (-3524 (*1 *2 *1) (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-3556 (*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3)))) (-3514 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-563)))) (-3504 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-3494 (*1 *2 *1 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-3482 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *1)) (|has| *1 (-6 -4409)) (-4 *1 (-1006 *3)) (-4 *3 (-1208)))) (-2189 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) (-3472 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1208))))) -(-13 (-489 |t#1|) (-10 -8 (-15 -2432 ((-640 $) $)) (-15 -3524 ((-640 $) $)) (-15 -2484 ((-112) $)) (-15 -3556 (|t#1| $)) (-15 -3858 (|t#1| $ "value")) (-15 -2181 ((-112) $)) (-15 -3884 ((-640 |t#1|) $)) (-15 -3514 ((-563) $ $)) (IF (|has| |t#1| (-1093)) (PROGN (-15 -3504 ((-112) $ $)) (-15 -3494 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4409)) (PROGN (-15 -3482 ($ $ (-640 $))) (-15 -2189 (|t#1| $ "value" |t#1|)) (-15 -3472 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2067 (($ $) 9) (($ $ (-917)) 49) (($ (-407 (-563))) 13) (($ (-563)) 15)) (-2691 (((-3 $ "failed") (-1165 $) (-917) (-858)) 24) (((-3 $ "failed") (-1165 $) (-917)) 32)) (-1403 (($ $ (-563)) 58)) (-3192 (((-767)) 18)) (-2702 (((-640 $) (-1165 $)) NIL) (((-640 $) (-1165 (-407 (-563)))) 63) (((-640 $) (-1165 (-563))) 68) (((-640 $) (-948 $)) 72) (((-640 $) (-948 (-407 (-563)))) 76) (((-640 $) (-948 (-563))) 80)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) 53))) -(((-1007 |#1|) (-10 -8 (-15 -2067 (|#1| (-563))) (-15 -2067 (|#1| (-407 (-563)))) (-15 -2067 (|#1| |#1| (-917))) (-15 -2702 ((-640 |#1|) (-948 (-563)))) (-15 -2702 ((-640 |#1|) (-948 (-407 (-563))))) (-15 -2702 ((-640 |#1|) (-948 |#1|))) (-15 -2702 ((-640 |#1|) (-1165 (-563)))) (-15 -2702 ((-640 |#1|) (-1165 (-407 (-563))))) (-15 -2702 ((-640 |#1|) (-1165 |#1|))) (-15 -2691 ((-3 |#1| "failed") (-1165 |#1|) (-917))) (-15 -2691 ((-3 |#1| "failed") (-1165 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1403 (|#1| |#1| (-563))) (-15 -2067 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -3192 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) (-1008)) (T -1007)) -((-3192 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008))))) -(-10 -8 (-15 -2067 (|#1| (-563))) (-15 -2067 (|#1| (-407 (-563)))) (-15 -2067 (|#1| |#1| (-917))) (-15 -2702 ((-640 |#1|) (-948 (-563)))) (-15 -2702 ((-640 |#1|) (-948 (-407 (-563))))) (-15 -2702 ((-640 |#1|) (-948 |#1|))) (-15 -2702 ((-640 |#1|) (-1165 (-563)))) (-15 -2702 ((-640 |#1|) (-1165 (-407 (-563))))) (-15 -2702 ((-640 |#1|) (-1165 |#1|))) (-15 -2691 ((-3 |#1| "failed") (-1165 |#1|) (-917))) (-15 -2691 ((-3 |#1| "failed") (-1165 |#1|) (-917) (-858))) (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -1403 (|#1| |#1| (-563))) (-15 -2067 (|#1| |#1|)) (-15 ** (|#1| |#1| (-563))) (-15 -3192 ((-767))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 91)) (-2554 (($ $) 92)) (-2533 (((-112) $) 94)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 111)) (-2102 (((-418 $) $) 112)) (-2067 (($ $) 75) (($ $ (-917)) 61) (($ (-407 (-563))) 60) (($ (-563)) 59)) (-4332 (((-112) $ $) 102)) (-2107 (((-563) $) 128)) (-3684 (($) 17 T CONST)) (-2691 (((-3 $ "failed") (-1165 $) (-917) (-858)) 69) (((-3 $ "failed") (-1165 $) (-917)) 68)) (-2671 (((-3 (-563) "failed") $) 88 (|has| (-407 (-563)) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 86 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-3 (-407 (-563)) "failed") $) 83)) (-2589 (((-563) $) 87 (|has| (-407 (-563)) (-1034 (-563)))) (((-407 (-563)) $) 85 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-407 (-563)) $) 84)) (-3543 (($ $ (-858)) 58)) (-3533 (($ $ (-858)) 57)) (-3495 (($ $ $) 106)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 105)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 100)) (-3675 (((-112) $) 113)) (-2720 (((-112) $) 126)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 74)) (-2731 (((-112) $) 127)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 109)) (-3489 (($ $ $) 125)) (-4105 (($ $ $) 124)) (-3553 (((-3 (-1165 $) "failed") $) 70)) (-3572 (((-3 (-858) "failed") $) 72)) (-3563 (((-3 (-1165 $) "failed") $) 71)) (-1607 (($ (-640 $)) 98) (($ $ $) 97)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 114)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 99)) (-1647 (($ (-640 $)) 96) (($ $ $) 95)) (-2055 (((-418 $) $) 110)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 107)) (-3448 (((-3 $ "failed") $ $) 90)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 101)) (-4322 (((-767) $) 103)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 104)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 118) (($ $) 89) (($ (-407 (-563))) 82) (($ (-563)) 81) (($ (-407 (-563))) 78)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 93)) (-1775 (((-407 (-563)) $ $) 56)) (-2702 (((-640 $) (-1165 $)) 67) (((-640 $) (-1165 (-407 (-563)))) 66) (((-640 $) (-1165 (-563))) 65) (((-640 $) (-948 $)) 64) (((-640 $) (-948 (-407 (-563)))) 63) (((-640 $) (-948 (-563))) 62)) (-3841 (($ $) 129)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2998 (((-112) $ $) 122)) (-2977 (((-112) $ $) 121)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 123)) (-2966 (((-112) $ $) 120)) (-3050 (($ $ $) 119)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 115) (($ $ (-407 (-563))) 73)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ (-407 (-563)) $) 117) (($ $ (-407 (-563))) 116) (($ (-563) $) 80) (($ $ (-563)) 79) (($ (-407 (-563)) $) 77) (($ $ (-407 (-563))) 76))) -(((-1008) (-140)) (T -1008)) -((-2067 (*1 *1 *1) (-4 *1 (-1008))) (-3572 (*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-3563 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008)))) (-3553 (*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008)))) (-2691 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-5 *4 (-858)) (-4 *1 (-1008)))) (-2691 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-4 *1 (-1008)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-1165 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) (-2067 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1008)))) (-2067 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1008)))) (-3543 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-3533 (*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858)))) (-1775 (*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-563)))))) -(-13 (-147) (-844) (-172) (-363) (-411 (-407 (-563))) (-38 (-563)) (-38 (-407 (-563))) (-998) (-10 -8 (-15 -3572 ((-3 (-858) "failed") $)) (-15 -3563 ((-3 (-1165 $) "failed") $)) (-15 -3553 ((-3 (-1165 $) "failed") $)) (-15 -2691 ((-3 $ "failed") (-1165 $) (-917) (-858))) (-15 -2691 ((-3 $ "failed") (-1165 $) (-917))) (-15 -2702 ((-640 $) (-1165 $))) (-15 -2702 ((-640 $) (-1165 (-407 (-563))))) (-15 -2702 ((-640 $) (-1165 (-563)))) (-15 -2702 ((-640 $) (-948 $))) (-15 -2702 ((-640 $) (-948 (-407 (-563))))) (-15 -2702 ((-640 $) (-948 (-563)))) (-15 -2067 ($ $ (-917))) (-15 -2067 ($ $)) (-15 -2067 ($ (-407 (-563)))) (-15 -2067 ($ (-563))) (-15 -3543 ($ $ (-858))) (-15 -3533 ($ $ (-858))) (-15 -1775 ((-407 (-563)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 #1=(-563)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-563))) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 #1#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 #1#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-916) . T) ((-998) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) |has| (-407 (-563)) (-1034 (-563))) ((-1051 #0#) . T) ((-1051 #1#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) -((-3581 (((-2 (|:| |ans| |#2|) (|:| -2665 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) -(((-1009 |#1| |#2|) (-10 -7 (-15 -3581 ((-2 (|:| |ans| |#2|) (|:| -2665 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-27) (-430 |#1|))) (T -1009)) -((-3581 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1169)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-640 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3971 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1193) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-563)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2665 *4) (|:| |sol?| (-112)))) (-5 *1 (-1009 *8 *4))))) -(-10 -7 (-15 -3581 ((-2 (|:| |ans| |#2|) (|:| -2665 |#2|) (|:| |sol?| (-112))) (-563) |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3591 (((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) -(((-1010 |#1| |#2|) (-10 -7 (-15 -3591 ((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563))) (-13 (-1193) (-27) (-430 |#1|))) (T -1010)) -((-3591 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1169)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-640 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3971 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1193) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) (-5 *3 (-563)) (-5 *2 (-640 *4)) (-5 *1 (-1010 *8 *4))))) -(-10 -7 (-15 -3591 ((-3 (-640 |#2|) "failed") (-563) |#2| |#2| |#2| (-1169) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-640 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-640 |#2|)) (-1 (-3 (-2 (|:| -3971 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) -((-3622 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3087 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|)) 39)) (-3603 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -3460 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 69)) (-3612 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 74))) -(((-1011 |#1| |#2|) (-10 -7 (-15 -3603 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -3460 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3612 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3622 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3087 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -1011)) -((-3622 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-563)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -3087 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1011 *6 *3)))) (-3612 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5)))) (-3603 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -3460 *6))) (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -3603 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -3460 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3612 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -3622 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -3087 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-563)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-563) (-1 |#2| |#2|)))) -((-3632 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -3460 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3641 (((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34))) -(((-1012 |#1| |#2|) (-10 -7 (-15 -3632 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -3460 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3641 ((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1034 (-563))) (-1233 |#1|)) (T -1012)) -((-3641 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) (-5 *2 (-640 (-407 *5))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-3632 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -3460 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) -(-10 -7 (-15 -3632 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -3460 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3641 ((-3 (-640 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) -((-3650 (((-1 |#1|) (-640 (-2 (|:| -3556 |#1|) (|:| -2417 (-563))))) 37)) (-2980 (((-1 |#1|) (-1095 |#1|)) 45)) (-3662 (((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563)) 34))) -(((-1013 |#1|) (-10 -7 (-15 -2980 ((-1 |#1|) (-1095 |#1|))) (-15 -3650 ((-1 |#1|) (-640 (-2 (|:| -3556 |#1|) (|:| -2417 (-563)))))) (-15 -3662 ((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563)))) (-1093)) (T -1013)) -((-3662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1257 *6)) (-5 *4 (-1257 (-563))) (-5 *5 (-563)) (-4 *6 (-1093)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6)))) (-3650 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -3556 *4) (|:| -2417 (-563))))) (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4))))) -(-10 -7 (-15 -2980 ((-1 |#1|) (-1095 |#1|))) (-15 -3650 ((-1 |#1|) (-640 (-2 (|:| -3556 |#1|) (|:| -2417 (-563)))))) (-15 -3662 ((-1 |#1|) (-1257 |#1|) (-1257 (-563)) (-563)))) -((-2903 (((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) -(((-1014 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2903 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1233 |#1|) (-1233 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1014)) -((-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1233 *6)) (-4 *4 (-1233 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) (-5 *1 (-1014 *6 *7 *4 *8 *9))))) -(-10 -7 (-15 -2903 ((-767) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) -((-2049 (((-112) $ $) NIL)) (-3674 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-1128) $) 11)) (-2943 (((-112) $ $) NIL))) -(((-1015) (-13 (-1076) (-10 -8 (-15 -3674 ((-1128) $)) (-15 -3373 ((-1128) $))))) (T -1015)) -((-3674 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015))))) -(-13 (-1076) (-10 -8 (-15 -3674 ((-1128) $)) (-15 -3373 ((-1128) $)))) -((-3272 (((-3 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) "failed") |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) 32) (((-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563))) 29)) (-3706 (((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563))) 34) (((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-407 (-563))) 30) (((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) 33) (((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1|) 28)) (-3693 (((-640 (-407 (-563))) (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) 20)) (-3683 (((-407 (-563)) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) 17))) -(((-1016 |#1|) (-10 -7 (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1|)) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563)))) (-15 -3272 ((-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563)))) (-15 -3272 ((-3 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) "failed") |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-15 -3683 ((-407 (-563)) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-15 -3693 ((-640 (-407 (-563))) (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))))) (-1233 (-563))) (T -1016)) -((-3693 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-5 *2 (-640 (-407 (-563)))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563))))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) (-5 *2 (-407 (-563))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563))))) (-3272 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) (-3272 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) (-5 *4 (-407 (-563))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) (-3706 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -2654 *5) (|:| -2665 *5)))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -2654 *5) (|:| -2665 *5))))) (-3706 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-407 (-563))))) (-3706 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))))) (-3706 (*1 *2 *3) (-12 (-5 *2 (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563)))))) -(-10 -7 (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1|)) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563)))) (-15 -3272 ((-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563)))) (-15 -3272 ((-3 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) "failed") |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-15 -3683 ((-407 (-563)) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-15 -3693 ((-640 (-407 (-563))) (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))))) -((-3272 (((-3 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) "failed") |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) 35) (((-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563))) 32)) (-3706 (((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563))) 30) (((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-407 (-563))) 26) (((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) 28) (((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1|) 24))) -(((-1017 |#1|) (-10 -7 (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1|)) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563)))) (-15 -3272 ((-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563)))) (-15 -3272 ((-3 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) "failed") |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))))) (-1233 (-407 (-563)))) (T -1017)) -((-3272 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))))) (-3272 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) (-5 *4 (-407 (-563))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4)))) (-3706 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -2654 *5) (|:| -2665 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *5)) (-5 *4 (-2 (|:| -2654 *5) (|:| -2665 *5))))) (-3706 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-563))) (-5 *2 (-640 (-2 (|:| -2654 *4) (|:| -2665 *4)))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *2 (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))) (-5 *4 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))))) (-3706 (*1 *2 *3) (-12 (-5 *2 (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563))))))) -(-10 -7 (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1|)) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-407 (-563)))) (-15 -3706 ((-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563)))) (-15 -3272 ((-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-407 (-563)))) (-15 -3272 ((-3 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) "failed") |#1| (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))) (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))))) -((-2802 (((-225) $) 6) (((-379) $) 9))) -(((-1018) (-140)) (T -1018)) -NIL -(-13 (-611 (-225)) (-611 (-379))) -(((-611 (-225)) . T) ((-611 (-379)) . T)) -((-1558 (((-640 (-379)) (-948 (-563)) (-379)) 28) (((-640 (-379)) (-948 (-407 (-563))) (-379)) 27)) (-2080 (((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379)) 37))) -(((-1019) (-10 -7 (-15 -1558 ((-640 (-379)) (-948 (-407 (-563))) (-379))) (-15 -1558 ((-640 (-379)) (-948 (-563)) (-379))) (-15 -2080 ((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379))))) (T -1019)) -((-2080 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 (-379))) (-5 *1 (-1019)) (-5 *4 (-379)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 (-379))) (-5 *1 (-1019)) (-5 *4 (-379))))) -(-10 -7 (-15 -1558 ((-640 (-379)) (-948 (-407 (-563))) (-379))) (-15 -1558 ((-640 (-379)) (-948 (-563)) (-379))) (-15 -2080 ((-640 (-640 (-379))) (-640 (-948 (-563))) (-640 (-1169)) (-379)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 75)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-2067 (($ $) NIL) (($ $ (-917)) NIL) (($ (-407 (-563))) NIL) (($ (-563)) NIL)) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) 70)) (-3684 (($) NIL T CONST)) (-2691 (((-3 $ "failed") (-1165 $) (-917) (-858)) NIL) (((-3 $ "failed") (-1165 $) (-917)) 55)) (-2671 (((-3 (-407 (-563)) "failed") $) NIL (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-563) "failed") $) NIL (-2811 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))))) (-2589 (((-407 (-563)) $) 17 (|has| (-407 (-563)) (-1034 (-407 (-563))))) (((-407 (-563)) $) 17) ((|#1| $) 117) (((-563) $) NIL (-2811 (|has| (-407 (-563)) (-1034 (-563))) (|has| |#1| (-1034 (-563)))))) (-3543 (($ $ (-858)) 47)) (-3533 (($ $ (-858)) 48)) (-3495 (($ $ $) NIL)) (-2682 (((-407 (-563)) $ $) 21)) (-3230 (((-3 $ "failed") $) 88)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2720 (((-112) $) 66)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL)) (-2731 (((-112) $) 69)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-3553 (((-3 (-1165 $) "failed") $) 83)) (-3572 (((-3 (-858) "failed") $) 82)) (-3563 (((-3 (-1165 $) "failed") $) 80)) (-3716 (((-3 (-1055 $ (-1165 $)) "failed") $) 78)) (-1607 (($ (-640 $)) NIL) (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 89)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ (-640 $)) NIL) (($ $ $) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-2062 (((-858) $) 87) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ $) 63) (($ (-407 (-563))) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#1|) 119)) (-3192 (((-767)) NIL T CONST)) (-2543 (((-112) $ $) NIL)) (-1775 (((-407 (-563)) $ $) 27)) (-2702 (((-640 $) (-1165 $)) 61) (((-640 $) (-1165 (-407 (-563)))) NIL) (((-640 $) (-1165 (-563))) NIL) (((-640 $) (-948 $)) NIL) (((-640 $) (-948 (-407 (-563)))) NIL) (((-640 $) (-948 (-563))) NIL)) (-3727 (($ (-1055 $ (-1165 $)) (-858)) 46)) (-3841 (($ $) 22)) (-3790 (($) 32 T CONST)) (-3803 (($) 39 T CONST)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 76)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 24)) (-3050 (($ $ $) 37)) (-3039 (($ $) 38) (($ $ $) 74)) (-3027 (($ $ $) 112)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL) (($ $ (-407 (-563))) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 98) (($ $ $) 104) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ (-563) $) 98) (($ $ (-563)) NIL) (($ (-407 (-563)) $) NIL) (($ $ (-407 (-563))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) -(((-1020 |#1|) (-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3727 ($ (-1055 $ (-1165 $)) (-858))) (-15 -3716 ((-3 (-1055 $ (-1165 $)) "failed") $)) (-15 -2682 ((-407 (-563)) $ $)))) (-13 (-844) (-363) (-1018))) (T -1020)) -((-3727 (*1 *1 *2 *3) (-12 (-5 *2 (-1055 (-1020 *4) (-1165 (-1020 *4)))) (-5 *3 (-858)) (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018))))) (-3716 (*1 *2 *1) (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1165 (-1020 *3)))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018))))) (-2682 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018)))))) -(-13 (-1008) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -3727 ($ (-1055 $ (-1165 $)) (-858))) (-15 -3716 ((-3 (-1055 $ (-1165 $)) "failed") $)) (-15 -2682 ((-407 (-563)) $ $)))) -((-3737 (((-2 (|:| -3087 |#2|) (|:| -3673 (-640 |#1|))) |#2| (-640 |#1|)) 32) ((|#2| |#2| |#1|) 27))) -(((-1021 |#1| |#2|) (-10 -7 (-15 -3737 (|#2| |#2| |#1|)) (-15 -3737 ((-2 (|:| -3087 |#2|) (|:| -3673 (-640 |#1|))) |#2| (-640 |#1|)))) (-363) (-651 |#1|)) (T -1021)) -((-3737 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -3087 *3) (|:| -3673 (-640 *5)))) (-5 *1 (-1021 *5 *3)) (-5 *4 (-640 *5)) (-4 *3 (-651 *5)))) (-3737 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-651 *3))))) -(-10 -7 (-15 -3737 (|#2| |#2| |#1|)) (-15 -3737 ((-2 (|:| -3087 |#2|) (|:| -3673 (-640 |#1|))) |#2| (-640 |#1|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3750 ((|#1| $ |#1|) 14)) (-2189 ((|#1| $ |#1|) 12)) (-3774 (($ |#1|) 10)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3858 ((|#1| $) 11)) (-3762 ((|#1| $) 13)) (-2062 (((-858) $) 21 (|has| |#1| (-1093)))) (-2943 (((-112) $ $) 9))) -(((-1022 |#1|) (-13 (-1208) (-10 -8 (-15 -3774 ($ |#1|)) (-15 -3858 (|#1| $)) (-15 -2189 (|#1| $ |#1|)) (-15 -3762 (|#1| $)) (-15 -3750 (|#1| $ |#1|)) (-15 -2943 ((-112) $ $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1022)) -((-3774 (*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-3858 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-2189 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-3762 (*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-3750 (*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) (-2943 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1208))))) -(-13 (-1208) (-10 -8 (-15 -3774 ($ |#1|)) (-15 -3858 (|#1| $)) (-15 -2189 (|#1| $ |#1|)) (-15 -3762 (|#1| $)) (-15 -3750 (|#1| $ |#1|)) (-15 -2943 ((-112) $ $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) NIL)) (-1353 (((-640 $) (-640 |#4|)) 115) (((-640 $) (-640 |#4|) (-112)) 116) (((-640 $) (-640 |#4|) (-112) (-112)) 114) (((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112)) 117)) (-2185 (((-640 |#3|) $) NIL)) (-1556 (((-112) $) NIL)) (-1456 (((-112) $) NIL (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1413 ((|#4| |#4| $) NIL)) (-2924 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| $) 109)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-1907 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 63)) (-3684 (($) NIL T CONST)) (-1512 (((-112) $) 29 (|has| |#1| (-555)))) (-1534 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1523 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1545 (((-112) $) NIL (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1466 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2589 (($ (-640 |#4|)) NIL)) (-1897 (((-3 $ "failed") $) 45)) (-1384 ((|#4| |#4| $) 66)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1417 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 82 (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1365 ((|#4| |#4| $) NIL)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) NIL)) (-1586 (((-112) |#4| $) NIL)) (-1563 (((-112) |#4| $) NIL)) (-1598 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3060 (((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112)) 130)) (-4236 (((-640 |#4|) $) 18 (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2674 ((|#3| $) 38)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#4|) $) 19 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-4139 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 23)) (-1616 (((-640 |#3|) $) NIL)) (-1602 (((-112) |#3| $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1520 (((-3 |#4| (-640 $)) |#4| |#4| $) NIL)) (-1508 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| |#4| $) 107)) (-1442 (((-3 |#4| "failed") $) 42)) (-1529 (((-640 $) |#4| $) 90)) (-1552 (((-3 (-112) (-640 $)) |#4| $) NIL)) (-1542 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 $))) |#4| $) 100) (((-112) |#4| $) 61)) (-1913 (((-640 $) |#4| $) 112) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 113) (((-640 $) |#4| (-640 $)) NIL)) (-3070 (((-640 $) (-640 |#4|) (-112) (-112) (-112)) 125)) (-3079 (($ |#4| $) 79) (($ (-640 |#4|) $) 80) (((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 76)) (-1514 (((-640 |#4|) $) NIL)) (-1447 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1395 ((|#4| |#4| $) NIL)) (-3449 (((-112) $ $) NIL)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1405 ((|#4| |#4| $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-3 |#4| "failed") $) 40)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1323 (((-3 $ "failed") $ |#4|) 57)) (-2884 (($ $ |#4|) NIL) (((-640 $) |#4| $) 92) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 86)) (-3837 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 17)) (-2749 (($) 14)) (-1962 (((-767) $) NIL)) (-3261 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) 13)) (-2802 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 22)) (-1566 (($ $ |#3|) 52)) (-1591 (($ $ |#3|) 53)) (-1373 (($ $) NIL)) (-1579 (($ $ |#3|) NIL)) (-2062 (((-858) $) 35) (((-640 |#4|) $) 46)) (-1313 (((-767) $) NIL (|has| |#3| (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-1496 (((-640 $) |#4| $) 89) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) NIL)) (-3848 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) NIL)) (-1574 (((-112) |#4| $) NIL)) (-1833 (((-112) |#3| $) 62)) (-2943 (((-112) $ $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1023 |#1| |#2| |#3| |#4|) (-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3079 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1353 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -1353 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -3070 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -3060 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1023)) -((-3079 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-1353 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-3070 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) (-3060 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-640 *8)) (|:| |towers| (-640 (-1023 *5 *6 *7 *8))))) (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) -(-13 (-1065 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3079 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1353 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -1353 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -3070 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -3060 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) -((-3897 (((-640 (-684 |#1|)) (-640 (-684 |#1|))) 73) (((-684 |#1|) (-684 |#1|)) 72) (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|))) 71) (((-684 |#1|) (-684 |#1|) (-684 |#1|)) 68)) (-3886 (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917)) 66) (((-684 |#1|) (-684 |#1|) (-917)) 65)) (-3906 (((-640 (-684 (-563))) (-640 (-640 (-563)))) 84) (((-640 (-684 (-563))) (-640 (-901 (-563))) (-563)) 83) (((-684 (-563)) (-640 (-563))) 80) (((-684 (-563)) (-901 (-563)) (-563)) 78)) (-3877 (((-684 (-948 |#1|)) (-767)) 98)) (-3865 (((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917)) 52 (|has| |#1| (-6 (-4410 "*")))) (((-684 |#1|) (-684 |#1|) (-917)) 50 (|has| |#1| (-6 (-4410 "*")))))) -(((-1024 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -3865 ((-684 |#1|) (-684 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -3865 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) |%noBranch|) (-15 -3877 ((-684 (-948 |#1|)) (-767))) (-15 -3886 ((-684 |#1|) (-684 |#1|) (-917))) (-15 -3886 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) (-15 -3897 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3897 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3897 ((-684 |#1|) (-684 |#1|))) (-15 -3897 ((-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3906 ((-684 (-563)) (-901 (-563)) (-563))) (-15 -3906 ((-684 (-563)) (-640 (-563)))) (-15 -3906 ((-640 (-684 (-563))) (-640 (-901 (-563))) (-563))) (-15 -3906 ((-640 (-684 (-563))) (-640 (-640 (-563)))))) (-1045)) (T -1024)) -((-3906 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-563)))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-3906 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-901 (-563)))) (-5 *4 (-563)) (-5 *2 (-640 (-684 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-3906 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-3906 (*1 *2 *3 *4) (-12 (-5 *3 (-901 (-563))) (-5 *4 (-563)) (-5 *2 (-684 *4)) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3897 (*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3897 (*1 *2 *2 *2) (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3897 (*1 *2 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) (-3886 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-3886 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-684 (-948 *4))) (-5 *1 (-1024 *4)) (-4 *4 (-1045)))) (-3865 (*1 *2 *2 *3) (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (|has| *4 (-6 (-4410 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) (-3865 (*1 *2 *2 *3) (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4410 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4))))) -(-10 -7 (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -3865 ((-684 |#1|) (-684 |#1|) (-917))) |%noBranch|) (IF (|has| |#1| (-6 (-4410 "*"))) (-15 -3865 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) |%noBranch|) (-15 -3877 ((-684 (-948 |#1|)) (-767))) (-15 -3886 ((-684 |#1|) (-684 |#1|) (-917))) (-15 -3886 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-917))) (-15 -3897 ((-684 |#1|) (-684 |#1|) (-684 |#1|))) (-15 -3897 ((-640 (-684 |#1|)) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3897 ((-684 |#1|) (-684 |#1|))) (-15 -3897 ((-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -3906 ((-684 (-563)) (-901 (-563)) (-563))) (-15 -3906 ((-684 (-563)) (-640 (-563)))) (-15 -3906 ((-640 (-684 (-563))) (-640 (-901 (-563))) (-563))) (-15 -3906 ((-640 (-684 (-563))) (-640 (-640 (-563)))))) -((-3944 (((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)) 69 (|has| |#1| (-307)))) (-2919 (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))) 110 (|has| |#1| (-363))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|)) 117 (|has| |#1| (-363)))) (-2790 (((-1257 |#1|) (-640 (-1257 |#1|)) (-563)) 134 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2781 (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917)) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112)) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|))) 121 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563)) 120 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2770 (((-112) (-640 (-684 |#1|))) 103 (|has| |#1| (-363))) (((-112) (-640 (-684 |#1|)) (-563)) 106 (|has| |#1| (-363)))) (-3935 (((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|)) 66 (|has| |#1| (-307)))) (-3925 (((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|)) 47)) (-3915 (((-684 |#1|) (-1257 (-1257 |#1|))) 40)) (-2760 (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563)) 94 (|has| |#1| (-363))) (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|))) 93 (|has| |#1| (-363))) (((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563)) 101 (|has| |#1| (-363))))) -(((-1025 |#1|) (-10 -7 (-15 -3915 ((-684 |#1|) (-1257 (-1257 |#1|)))) (-15 -3925 ((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3935 ((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -3944 ((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2760 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563))) (-15 -2760 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -2760 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563))) (-15 -2770 ((-112) (-640 (-684 |#1|)) (-563))) (-15 -2770 ((-112) (-640 (-684 |#1|)))) (-15 -2919 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -2919 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2781 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563))) (-15 -2781 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)))) (-15 -2781 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112))) (-15 -2781 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917))) (-15 -2790 ((-1257 |#1|) (-640 (-1257 |#1|)) (-563)))) |%noBranch|) |%noBranch|)) (-1045)) (T -1025)) -((-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1257 *5))) (-5 *4 (-563)) (-5 *2 (-1257 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-2781 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-2781 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) (-5 *2 (-640 (-640 (-684 *4)))) (-5 *1 (-1025 *4)) (-5 *3 (-640 (-684 *4))))) (-2781 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-563)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1045)) (-5 *2 (-640 (-640 (-684 *6)))) (-5 *1 (-1025 *6)) (-5 *3 (-640 (-684 *6))))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-1257 (-1257 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-2919 (*1 *2 *3 *4) (-12 (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) (-5 *3 (-640 (-684 *5))))) (-2770 (*1 *2 *3) (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *4)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-4 *5 (-363)) (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5)))) (-2760 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045)))) (-2760 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4)) (-4 *4 (-363)) (-4 *4 (-1045)))) (-2760 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-640 (-684 *6))) (-5 *4 (-112)) (-5 *5 (-563)) (-5 *2 (-684 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) (-3944 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-1257 *5)) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5)))) (-3935 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-684 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) (-5 *2 (-1257 (-1257 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1257 *5)))) (-3925 (*1 *2 *3 *2) (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1025 *4)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1257 (-1257 *4))) (-4 *4 (-1045)) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4))))) -(-10 -7 (-15 -3915 ((-684 |#1|) (-1257 (-1257 |#1|)))) (-15 -3925 ((-684 |#1|) (-640 (-684 |#1|)) (-684 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -3935 ((-1257 (-1257 |#1|)) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -3944 ((-684 |#1|) (-640 (-684 |#1|)) (-1257 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -2760 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-112) (-563))) (-15 -2760 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -2760 ((-684 |#1|) (-640 (-684 |#1|)) (-640 (-684 |#1|)) (-563))) (-15 -2770 ((-112) (-640 (-684 |#1|)) (-563))) (-15 -2770 ((-112) (-640 (-684 |#1|)))) (-15 -2919 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 |#1|))) (-15 -2919 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-1257 (-1257 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2781 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112) (-563) (-563))) (-15 -2781 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)))) (-15 -2781 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-112))) (-15 -2781 ((-640 (-640 (-684 |#1|))) (-640 (-684 |#1|)) (-917))) (-15 -2790 ((-1257 |#1|) (-640 (-1257 |#1|)) (-563)))) |%noBranch|) |%noBranch|)) -((-2963 ((|#1| (-917) |#1|) 18))) -(((-1026 |#1|) (-10 -7 (-15 -2963 (|#1| (-917) |#1|))) (-13 (-1093) (-10 -8 (-15 -3027 ($ $ $))))) (T -1026)) -((-2963 (*1 *2 *3 *2) (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2)) (-4 *2 (-13 (-1093) (-10 -8 (-15 -3027 ($ $ $)))))))) -(-10 -7 (-15 -2963 (|#1| (-917) |#1|))) -((-3786 (((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563))))) 67)) (-3798 (((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563))))) 52)) (-3811 (((-640 (-316 (-563))) (-684 (-407 (-948 (-563))))) 45)) (-3854 (((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563))))) 87)) (-3832 (((-684 (-316 (-563))) (-684 (-316 (-563)))) 38)) (-3844 (((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563))))) 76)) (-3822 (((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563))))) 85))) -(((-1027) (-10 -7 (-15 -3786 ((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563)))))) (-15 -3798 ((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563)))))) (-15 -3811 ((-640 (-316 (-563))) (-684 (-407 (-948 (-563)))))) (-15 -3822 ((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563)))))) (-15 -3832 ((-684 (-316 (-563))) (-684 (-316 (-563))))) (-15 -3844 ((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563)))))) (-15 -3854 ((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563)))))))) (T -1027)) -((-3854 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)))) (-3844 (*1 *2 *2) (-12 (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027)))) (-3822 (*1 *2 *3) (|partial| -12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027)))) (-3811 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-316 (-563)))) (-5 *1 (-1027)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *4 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)) (-5 *3 (-316 (-563))))) (-3786 (*1 *2 *3) (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563)))))))) (-5 *1 (-1027))))) -(-10 -7 (-15 -3786 ((-640 (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) (|:| |radvect| (-640 (-684 (-316 (-563))))))) (-684 (-407 (-948 (-563)))))) (-15 -3798 ((-640 (-684 (-316 (-563)))) (-316 (-563)) (-684 (-407 (-948 (-563)))))) (-15 -3811 ((-640 (-316 (-563))) (-684 (-407 (-948 (-563)))))) (-15 -3822 ((-3 (-684 (-316 (-563))) "failed") (-684 (-407 (-948 (-563)))))) (-15 -3832 ((-684 (-316 (-563))) (-684 (-316 (-563))))) (-15 -3844 ((-640 (-684 (-316 (-563)))) (-640 (-684 (-316 (-563)))))) (-15 -3854 ((-640 (-684 (-316 (-563)))) (-684 (-407 (-948 (-563))))))) -((-2804 ((|#1| |#1| (-917)) 18))) -(((-1028 |#1|) (-10 -7 (-15 -2804 (|#1| |#1| (-917)))) (-13 (-1093) (-10 -8 (-15 * ($ $ $))))) (T -1028)) -((-2804 (*1 *2 *2 *3) (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2)) (-4 *2 (-13 (-1093) (-10 -8 (-15 * ($ $ $)))))))) -(-10 -7 (-15 -2804 (|#1| |#1| (-917)))) -((-2062 ((|#1| (-312)) 11) (((-1262) |#1|) 9))) -(((-1029 |#1|) (-10 -7 (-15 -2062 ((-1262) |#1|)) (-15 -2062 (|#1| (-312)))) (-1208)) (T -1029)) -((-2062 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1208)))) (-2062 (*1 *2 *3) (-12 (-5 *2 (-1262)) (-5 *1 (-1029 *3)) (-4 *3 (-1208))))) -(-10 -7 (-15 -2062 ((-1262) |#1|)) (-15 -2062 (|#1| (-312)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2532 (($ |#4|) 25)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-2521 ((|#4| $) 27)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 46) (($ (-563)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3192 (((-767)) 43 T CONST)) (-3790 (($) 21 T CONST)) (-3803 (($) 23 T CONST)) (-2943 (((-112) $ $) 40)) (-3039 (($ $) 31) (($ $ $) NIL)) (-3027 (($ $ $) 29)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) -(((-1030 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -2532 ($ |#4|)) (-15 -2062 ($ |#4|)) (-15 -2521 (|#4| $)))) (-363) (-789) (-846) (-945 |#1| |#2| |#3|) (-640 |#4|)) (T -1030)) -((-2532 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-640 *2)))) (-2062 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) (-14 *6 (-640 *2)))) (-2521 (*1 *2 *1) (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-640 *2))))) -(-13 (-172) (-38 |#1|) (-10 -8 (-15 -2532 ($ |#4|)) (-15 -2062 ($ |#4|)) (-15 -2521 (|#4| $)))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL)) (-1435 (((-1262) $ (-1169) (-1169)) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2825 (((-112) (-112)) 43)) (-2814 (((-112) (-112)) 42)) (-2189 (((-52) $ (-1169) (-52)) NIL)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 (-52) "failed") (-1169) $) NIL)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-2841 (($ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-52) "failed") (-1169) $) NIL)) (-1417 (($ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-4150 (((-52) $ (-1169) (-52)) NIL (|has| $ (-6 -4409)))) (-4085 (((-52) $ (-1169)) NIL)) (-4236 (((-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-1169) $) NIL (|has| (-1169) (-846)))) (-1572 (((-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-3383 (((-1169) $) NIL (|has| (-1169) (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-2706 (((-640 (-1169)) $) 37)) (-3435 (((-112) (-1169) $) NIL)) (-3835 (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL)) (-1956 (($ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL)) (-3404 (((-640 (-1169)) $) NIL)) (-3417 (((-112) (-1169) $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-1884 (((-52) $) NIL (|has| (-1169) (-846)))) (-1828 (((-3 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) "failed") (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL)) (-3357 (($ $ (-52)) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))))) NIL (-12 (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL (-12 (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ $ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) NIL (-12 (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL (-12 (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-3427 (((-640 (-52)) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 (((-52) $ (-1169)) 39) (((-52) $ (-1169) (-52)) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL)) (-2062 (((-858) $) 41 (-2811 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1031) (-13 (-1184 (-1169) (-52)) (-10 -7 (-15 -2825 ((-112) (-112))) (-15 -2814 ((-112) (-112))) (-6 -4408)))) (T -1031)) -((-2825 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031)))) (-2814 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) -(-13 (-1184 (-1169) (-52)) (-10 -7 (-15 -2825 ((-112) (-112))) (-15 -2814 ((-112) (-112))) (-6 -4408))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2784 (((-1128) $) 9)) (-2062 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-1032) (-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $))))) (T -1032)) -((-2784 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1032))))) -(-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)))) -((-2589 ((|#2| $) 10))) -(((-1033 |#1| |#2|) (-10 -8 (-15 -2589 (|#2| |#1|))) (-1034 |#2|) (-1208)) (T -1033)) -NIL -(-10 -8 (-15 -2589 (|#2| |#1|))) -((-2671 (((-3 |#1| "failed") $) 9)) (-2589 ((|#1| $) 8)) (-2062 (($ |#1|) 6))) -(((-1034 |#1|) (-140) (-1208)) (T -1034)) -((-2671 (*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1208)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1208))))) -(-13 (-613 |t#1|) (-10 -8 (-15 -2671 ((-3 |t#1| "failed") $)) (-15 -2589 (|t#1| $)))) -(((-613 |#1|) . T)) -((-2835 (((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169))) 38))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -2835 ((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169))))) (-555) (-13 (-555) (-1034 |#1|))) (T -1035)) -((-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-13 (-555) (-1034 *5))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6))))) -(-10 -7 (-15 -2835 ((-640 (-640 (-294 (-407 (-948 |#2|))))) (-640 (-948 |#2|)) (-640 (-1169))))) -((-2855 (((-379)) 17)) (-2980 (((-1 (-379)) (-379) (-379)) 22)) (-3460 (((-1 (-379)) (-767)) 50)) (-2865 (((-379)) 37)) (-3385 (((-1 (-379)) (-379) (-379)) 38)) (-2874 (((-379)) 29)) (-2892 (((-1 (-379)) (-379)) 30)) (-2883 (((-379) (-767)) 45)) (-2902 (((-1 (-379)) (-767)) 46)) (-2036 (((-1 (-379)) (-767) (-767)) 49)) (-3851 (((-1 (-379)) (-767) (-767)) 47))) -(((-1036) (-10 -7 (-15 -2855 ((-379))) (-15 -2865 ((-379))) (-15 -2874 ((-379))) (-15 -2883 ((-379) (-767))) (-15 -2980 ((-1 (-379)) (-379) (-379))) (-15 -3385 ((-1 (-379)) (-379) (-379))) (-15 -2892 ((-1 (-379)) (-379))) (-15 -2902 ((-1 (-379)) (-767))) (-15 -3851 ((-1 (-379)) (-767) (-767))) (-15 -2036 ((-1 (-379)) (-767) (-767))) (-15 -3460 ((-1 (-379)) (-767))))) (T -1036)) -((-3460 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2036 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-3851 (*1 *2 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) (-2892 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-3385 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-2980 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036)))) (-2874 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-2865 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036)))) (-2855 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) -(-10 -7 (-15 -2855 ((-379))) (-15 -2865 ((-379))) (-15 -2874 ((-379))) (-15 -2883 ((-379) (-767))) (-15 -2980 ((-1 (-379)) (-379) (-379))) (-15 -3385 ((-1 (-379)) (-379) (-379))) (-15 -2892 ((-1 (-379)) (-379))) (-15 -2902 ((-1 (-379)) (-767))) (-15 -3851 ((-1 (-379)) (-767) (-767))) (-15 -2036 ((-1 (-379)) (-767) (-767))) (-15 -3460 ((-1 (-379)) (-767)))) -((-2055 (((-418 |#1|) |#1|) 33))) -(((-1037 |#1|) (-10 -7 (-15 -2055 ((-418 |#1|) |#1|))) (-1233 (-407 (-948 (-563))))) (T -1037)) -((-2055 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3)) (-4 *3 (-1233 (-407 (-948 (-563)))))))) -(-10 -7 (-15 -2055 ((-418 |#1|) |#1|))) -((-2913 (((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))) 14))) -(((-1038 |#1|) (-10 -7 (-15 -2913 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))))) (-307)) (T -1038)) -((-2913 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4))))) -(-10 -7 (-15 -2913 ((-407 (-418 (-948 |#1|))) (-407 (-948 |#1|))))) -((-2185 (((-640 (-1169)) (-407 (-948 |#1|))) 17)) (-2021 (((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169)) 24)) (-2175 (((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169)) 26)) (-2845 (((-3 (-1169) "failed") (-407 (-948 |#1|))) 20)) (-1497 (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|))))) 32) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|)))) 33) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|)))) 28) (((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|))) 29)) (-2062 (((-407 (-948 |#1|)) |#1|) 11))) -(((-1039 |#1|) (-10 -7 (-15 -2185 ((-640 (-1169)) (-407 (-948 |#1|)))) (-15 -2845 ((-3 (-1169) "failed") (-407 (-948 |#1|)))) (-15 -2021 ((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -2175 ((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169))) (-15 -1497 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)))) (-15 -1497 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|))))) (-15 -1497 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1497 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -2062 ((-407 (-948 |#1|)) |#1|))) (-555)) (T -1039)) -((-2062 (*1 *2 *3) (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-555)))) (-1497 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-1497 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-1497 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-5 *4 (-640 (-407 (-948 *5)))) (-5 *2 (-407 (-948 *5))) (-4 *5 (-555)) (-5 *1 (-1039 *5)))) (-1497 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-555)) (-5 *1 (-1039 *4)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1165 (-407 (-948 *5))))) (-5 *4 (-1169)) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-555)))) (-2021 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-407 (-1165 (-407 (-948 *5))))) (-5 *1 (-1039 *5)) (-5 *3 (-407 (-948 *5))))) (-2845 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-1169)) (-5 *1 (-1039 *4)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-1169))) (-5 *1 (-1039 *4))))) -(-10 -7 (-15 -2185 ((-640 (-1169)) (-407 (-948 |#1|)))) (-15 -2845 ((-3 (-1169) "failed") (-407 (-948 |#1|)))) (-15 -2021 ((-407 (-1165 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -2175 ((-407 (-948 |#1|)) (-407 (-1165 (-407 (-948 |#1|)))) (-1169))) (-15 -1497 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)))) (-15 -1497 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-1169)) (-640 (-407 (-948 |#1|))))) (-15 -1497 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-294 (-407 (-948 |#1|))))) (-15 -1497 ((-407 (-948 |#1|)) (-407 (-948 |#1|)) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -2062 ((-407 (-948 |#1|)) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3684 (($) 17 T CONST)) (-2955 ((|#1| $) 22)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2946 ((|#1| $) 21)) (-2923 ((|#1|) 19 T CONST)) (-2062 (((-858) $) 11)) (-2933 ((|#1| $) 20)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) -(((-1040 |#1|) (-140) (-23)) (T -1040)) -((-2955 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-2933 (*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23)))) (-2923 (*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -2955 (|t#1| $)) (-15 -2946 (|t#1| $)) (-15 -2933 (|t#1| $)) (-15 -2923 (|t#1|) -2495))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2969 (($) 24 T CONST)) (-3684 (($) 17 T CONST)) (-2955 ((|#1| $) 22)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2946 ((|#1| $) 21)) (-2923 ((|#1|) 19 T CONST)) (-2062 (((-858) $) 11)) (-2933 ((|#1| $) 20)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3889 (((-641 (-564)) $) 73)) (-3914 (($ (-641 (-564))) 81)) (-1473 (((-564) $) 48 (|has| (-564) (-307)))) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL (|has| (-564) (-817)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) 60) (((-3 (-1170) "failed") $) NIL (|has| (-564) (-1035 (-1170)))) (((-3 (-407 (-564)) "failed") $) 57 (|has| (-564) (-1035 (-564)))) (((-3 (-564) "failed") $) 60 (|has| (-564) (-1035 (-564))))) (-2239 (((-564) $) NIL) (((-1170) $) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) NIL (|has| (-564) (-1035 (-564)))) (((-564) $) NIL (|has| (-564) (-1035 (-564))))) (-1373 (($ $ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| (-564) (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2821 (($) NIL (|has| (-564) (-545)))) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3235 (((-641 (-564)) $) 79)) (-3308 (((-112) $) NIL (|has| (-564) (-817)))) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (|has| (-564) (-883 (-564)))) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (|has| (-564) (-883 (-379))))) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL)) (-1625 (((-564) $) 45)) (-3907 (((-3 $ "failed") $) NIL (|has| (-564) (-1145)))) (-2839 (((-112) $) NIL (|has| (-564) (-817)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| (-564) (-847)))) (-2187 (($ (-1 (-564) (-564)) $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL)) (-3258 (($) NIL (|has| (-564) (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-1941 (($ $) NIL (|has| (-564) (-307))) (((-407 (-564)) $) 50)) (-2153 (((-1150 (-564)) $) 78)) (-2025 (($ (-641 (-564)) (-641 (-564))) 82)) (-3014 (((-564) $) 64 (|has| (-564) (-545)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| (-564) (-906)))) (-4127 (((-418 $) $) NIL)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2416 (($ $ (-641 (-564)) (-641 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-564) (-564)) NIL (|has| (-564) (-309 (-564)))) (($ $ (-294 (-564))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-294 (-564)))) NIL (|has| (-564) (-309 (-564)))) (($ $ (-641 (-1170)) (-641 (-564))) NIL (|has| (-564) (-514 (-1170) (-564)))) (($ $ (-1170) (-564)) NIL (|has| (-564) (-514 (-1170) (-564))))) (-4061 (((-768) $) NIL)) (-4382 (($ $ (-564)) NIL (|has| (-564) (-286 (-564) (-564))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $) 15 (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-2090 (($ $) NIL)) (-1634 (((-564) $) 47)) (-2785 (((-641 (-564)) $) 80)) (-2235 (((-889 (-564)) $) NIL (|has| (-564) (-612 (-889 (-564))))) (((-889 (-379)) $) NIL (|has| (-564) (-612 (-889 (-379))))) (((-536) $) NIL (|has| (-564) (-612 (-536)))) (((-379) $) NIL (|has| (-564) (-1019))) (((-225) $) NIL (|has| (-564) (-1019)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-564) (-906))))) (-3742 (((-859) $) 106) (($ (-564)) 51) (($ $) NIL) (($ (-407 (-564))) 27) (($ (-564)) 51) (($ (-1170)) NIL (|has| (-564) (-1035 (-1170)))) (((-407 (-564)) $) 25)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-564) (-906))) (|has| (-564) (-145))))) (-3270 (((-768)) 13 T CONST)) (-2551 (((-564) $) 62 (|has| (-564) (-545)))) (-3360 (((-112) $ $) NIL)) (-2792 (($ $) NIL (|has| (-564) (-817)))) (-4311 (($) 14 T CONST)) (-4321 (($) 17 T CONST)) (-2124 (($ $) NIL (|has| (-564) (-233))) (($ $ (-768)) NIL (|has| (-564) (-233))) (($ $ (-1170)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| (-564) (-897 (-1170)))) (($ $ (-1 (-564) (-564)) (-768)) NIL) (($ $ (-1 (-564) (-564))) NIL)) (-1751 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1705 (((-112) $ $) 21)) (-1741 (((-112) $ $) NIL (|has| (-564) (-847)))) (-1723 (((-112) $ $) 40 (|has| (-564) (-847)))) (-1799 (($ $ $) 36) (($ (-564) (-564)) 38)) (-1790 (($ $) 23) (($ $ $) 30)) (-1780 (($ $ $) 28)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 32) (($ $ $) 34) (($ $ (-407 (-564))) NIL) (($ (-407 (-564)) $) NIL) (($ (-564) $) 32) (($ $ (-564)) NIL))) +(((-1001 |#1|) (-13 (-989 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -1941 ((-407 (-564)) $)) (-15 -3889 ((-641 (-564)) $)) (-15 -2153 ((-1150 (-564)) $)) (-15 -3235 ((-641 (-564)) $)) (-15 -2785 ((-641 (-564)) $)) (-15 -3914 ($ (-641 (-564)))) (-15 -2025 ($ (-641 (-564)) (-641 (-564)))))) (-564)) (T -1001)) +((-1941 (*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3889 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2153 (*1 *2 *1) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2785 (*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-3914 (*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) (-2025 (*1 *1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) +(-13 (-989 (-564)) (-611 (-407 (-564))) (-10 -8 (-15 -1941 ((-407 (-564)) $)) (-15 -3889 ((-641 (-564)) $)) (-15 -2153 ((-1150 (-564)) $)) (-15 -3235 ((-641 (-564)) $)) (-15 -2785 ((-641 (-564)) $)) (-15 -3914 ($ (-641 (-564)))) (-15 -2025 ($ (-641 (-564)) (-641 (-564)))))) +((-2870 (((-52) (-407 (-564)) (-564)) 9))) +(((-1002) (-10 -7 (-15 -2870 ((-52) (-407 (-564)) (-564))))) (T -1002)) +((-2870 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) (-5 *1 (-1002))))) +(-10 -7 (-15 -2870 ((-52) (-407 (-564)) (-564)))) +((-1938 (((-564)) 23)) (-2696 (((-564)) 28)) (-4183 (((-1264) (-564)) 26)) (-4384 (((-564) (-564)) 29) (((-564)) 22))) +(((-1003) (-10 -7 (-15 -4384 ((-564))) (-15 -1938 ((-564))) (-15 -4384 ((-564) (-564))) (-15 -4183 ((-1264) (-564))) (-15 -2696 ((-564))))) (T -1003)) +((-2696 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-4183 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1003)))) (-4384 (*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-1938 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) (-4384 (*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))) +(-10 -7 (-15 -4384 ((-564))) (-15 -1938 ((-564))) (-15 -4384 ((-564) (-564))) (-15 -4183 ((-1264) (-564))) (-15 -2696 ((-564)))) +((-2877 (((-418 |#1|) |#1|) 43)) (-4127 (((-418 |#1|) |#1|) 41))) +(((-1004 |#1|) (-10 -7 (-15 -4127 ((-418 |#1|) |#1|)) (-15 -2877 ((-418 |#1|) |#1|))) (-1235 (-407 (-564)))) (T -1004)) +((-2877 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) (-4 *3 (-1235 (-407 (-564))))))) +(-10 -7 (-15 -4127 ((-418 |#1|) |#1|)) (-15 -2877 ((-418 |#1|) |#1|))) +((-2646 (((-3 (-407 (-564)) "failed") |#1|) 15)) (-4072 (((-112) |#1|) 14)) (-2350 (((-407 (-564)) |#1|) 10))) +(((-1005 |#1|) (-10 -7 (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|))) (-1035 (-407 (-564)))) (T -1005)) +((-2646 (*1 *2 *3) (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2)))) (-4072 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1005 *3)) (-4 *3 (-1035 (-407 (-564)))))) (-2350 (*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2))))) +(-10 -7 (-15 -2350 ((-407 (-564)) |#1|)) (-15 -4072 ((-112) |#1|)) (-15 -2646 ((-3 (-407 (-564)) "failed") |#1|))) +((-3877 ((|#2| $ "value" |#2|) 12)) (-4382 ((|#2| $ "value") 10)) (-1584 (((-112) $ $) 18))) +(((-1006 |#1| |#2|) (-10 -8 (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -1584 ((-112) |#1| |#1|)) (-15 -4382 (|#2| |#1| "value"))) (-1007 |#2|) (-1209)) (T -1006)) +NIL +(-10 -8 (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -1584 ((-112) |#1| |#1|)) (-15 -4382 (|#2| |#1| "value"))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3426 ((|#1| $) 48)) (-2969 (((-112) $ (-768)) 8)) (-3976 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2818 (($) 7 T CONST)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 50)) (-1940 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2333 (((-641 |#1|) $) 45)) (-1881 (((-112) $) 49)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ "value") 47)) (-4209 (((-564) $ $) 44)) (-3572 (((-112) $) 46)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 51)) (-1584 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-1007 |#1|) (-140) (-1209)) (T -1007)) +((-3167 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) (-2488 (*1 *2 *1) (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) (-1881 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-3426 (*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2333 (*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3)))) (-4209 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-1584 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-1940 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-2306 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4412)) (-4 *1 (-1007 *3)) (-4 *3 (-1209)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4412)) (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) (-3976 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1007 *2)) (-4 *2 (-1209))))) +(-13 (-489 |t#1|) (-10 -8 (-15 -3167 ((-641 $) $)) (-15 -2488 ((-641 $) $)) (-15 -1881 ((-112) $)) (-15 -3426 (|t#1| $)) (-15 -4382 (|t#1| $ "value")) (-15 -3572 ((-112) $)) (-15 -2333 ((-641 |t#1|) $)) (-15 -4209 ((-564) $ $)) (IF (|has| |t#1| (-1094)) (PROGN (-15 -1584 ((-112) $ $)) (-15 -1940 ((-112) $ $))) |%noBranch|) (IF (|has| $ (-6 -4412)) (PROGN (-15 -2306 ($ $ (-641 $))) (-15 -3877 (|t#1| $ "value" |t#1|)) (-15 -3976 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-4137 (($ $) 9) (($ $ (-918)) 49) (($ (-407 (-564))) 13) (($ (-564)) 15)) (-2854 (((-3 $ "failed") (-1166 $) (-918) (-859)) 24) (((-3 $ "failed") (-1166 $) (-918)) 32)) (-2347 (($ $ (-564)) 58)) (-3270 (((-768)) 18)) (-4354 (((-641 $) (-1166 $)) NIL) (((-641 $) (-1166 (-407 (-564)))) 63) (((-641 $) (-1166 (-564))) 68) (((-641 $) (-949 $)) 72) (((-641 $) (-949 (-407 (-564)))) 76) (((-641 $) (-949 (-564))) 80)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) 53))) +(((-1008 |#1|) (-10 -8 (-15 -4137 (|#1| (-564))) (-15 -4137 (|#1| (-407 (-564)))) (-15 -4137 (|#1| |#1| (-918))) (-15 -4354 ((-641 |#1|) (-949 (-564)))) (-15 -4354 ((-641 |#1|) (-949 (-407 (-564))))) (-15 -4354 ((-641 |#1|) (-949 |#1|))) (-15 -4354 ((-641 |#1|) (-1166 (-564)))) (-15 -4354 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -4354 ((-641 |#1|) (-1166 |#1|))) (-15 -2854 ((-3 |#1| "failed") (-1166 |#1|) (-918))) (-15 -2854 ((-3 |#1| "failed") (-1166 |#1|) (-918) (-859))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2347 (|#1| |#1| (-564))) (-15 -4137 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3270 ((-768))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) (-1009)) (T -1008)) +((-3270 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1008 *3)) (-4 *3 (-1009))))) +(-10 -8 (-15 -4137 (|#1| (-564))) (-15 -4137 (|#1| (-407 (-564)))) (-15 -4137 (|#1| |#1| (-918))) (-15 -4354 ((-641 |#1|) (-949 (-564)))) (-15 -4354 ((-641 |#1|) (-949 (-407 (-564))))) (-15 -4354 ((-641 |#1|) (-949 |#1|))) (-15 -4354 ((-641 |#1|) (-1166 (-564)))) (-15 -4354 ((-641 |#1|) (-1166 (-407 (-564))))) (-15 -4354 ((-641 |#1|) (-1166 |#1|))) (-15 -2854 ((-3 |#1| "failed") (-1166 |#1|) (-918))) (-15 -2854 ((-3 |#1| "failed") (-1166 |#1|) (-918) (-859))) (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2347 (|#1| |#1| (-564))) (-15 -4137 (|#1| |#1|)) (-15 ** (|#1| |#1| (-564))) (-15 -3270 ((-768))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 91)) (-1948 (($ $) 92)) (-1832 (((-112) $) 94)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 111)) (-3048 (((-418 $) $) 112)) (-4137 (($ $) 75) (($ $ (-918)) 61) (($ (-407 (-564))) 60) (($ (-564)) 59)) (-2377 (((-112) $ $) 102)) (-3265 (((-564) $) 128)) (-2818 (($) 17 T CONST)) (-2854 (((-3 $ "failed") (-1166 $) (-918) (-859)) 69) (((-3 $ "failed") (-1166 $) (-918)) 68)) (-2111 (((-3 (-564) "failed") $) 88 (|has| (-407 (-564)) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 86 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) 83)) (-2239 (((-564) $) 87 (|has| (-407 (-564)) (-1035 (-564)))) (((-407 (-564)) $) 85 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-407 (-564)) $) 84)) (-3155 (($ $ (-859)) 58)) (-2846 (($ $ (-859)) 57)) (-1373 (($ $ $) 106)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 105)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 100)) (-4188 (((-112) $) 113)) (-3308 (((-112) $) 126)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 74)) (-2839 (((-112) $) 127)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 109)) (-2799 (($ $ $) 125)) (-2848 (($ $ $) 124)) (-1310 (((-3 (-1166 $) "failed") $) 70)) (-2497 (((-3 (-859) "failed") $) 72)) (-4108 (((-3 (-1166 $) "failed") $) 71)) (-2529 (($ (-641 $)) 98) (($ $ $) 97)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 114)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 99)) (-2577 (($ (-641 $)) 96) (($ $ $) 95)) (-4127 (((-418 $) $) 110)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 107)) (-1321 (((-3 $ "failed") $ $) 90)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 101)) (-4061 (((-768) $) 103)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 104)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 118) (($ $) 89) (($ (-407 (-564))) 82) (($ (-564)) 81) (($ (-407 (-564))) 78)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 93)) (-2305 (((-407 (-564)) $ $) 56)) (-4354 (((-641 $) (-1166 $)) 67) (((-641 $) (-1166 (-407 (-564)))) 66) (((-641 $) (-1166 (-564))) 65) (((-641 $) (-949 $)) 64) (((-641 $) (-949 (-407 (-564)))) 63) (((-641 $) (-949 (-564))) 62)) (-2792 (($ $) 129)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1751 (((-112) $ $) 122)) (-1731 (((-112) $ $) 121)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 123)) (-1723 (((-112) $ $) 120)) (-1799 (($ $ $) 119)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 115) (($ $ (-407 (-564))) 73)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ (-407 (-564)) $) 117) (($ $ (-407 (-564))) 116) (($ (-564) $) 80) (($ $ (-564)) 79) (($ (-407 (-564)) $) 77) (($ $ (-407 (-564))) 76))) +(((-1009) (-140)) (T -1009)) +((-4137 (*1 *1 *1) (-4 *1 (-1009))) (-2497 (*1 *2 *1) (|partial| -12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-4108 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))) (-1310 (*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009)))) (-2854 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-5 *4 (-859)) (-4 *1 (-1009)))) (-2854 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-4 *1 (-1009)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) (-4137 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-918)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1009)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1009)))) (-3155 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-2846 (*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859)))) (-2305 (*1 *2 *1 *1) (-12 (-4 *1 (-1009)) (-5 *2 (-407 (-564)))))) +(-13 (-147) (-845) (-172) (-363) (-411 (-407 (-564))) (-38 (-564)) (-38 (-407 (-564))) (-999) (-10 -8 (-15 -2497 ((-3 (-859) "failed") $)) (-15 -4108 ((-3 (-1166 $) "failed") $)) (-15 -1310 ((-3 (-1166 $) "failed") $)) (-15 -2854 ((-3 $ "failed") (-1166 $) (-918) (-859))) (-15 -2854 ((-3 $ "failed") (-1166 $) (-918))) (-15 -4354 ((-641 $) (-1166 $))) (-15 -4354 ((-641 $) (-1166 (-407 (-564))))) (-15 -4354 ((-641 $) (-1166 (-564)))) (-15 -4354 ((-641 $) (-949 $))) (-15 -4354 ((-641 $) (-949 (-407 (-564))))) (-15 -4354 ((-641 $) (-949 (-564)))) (-15 -4137 ($ $ (-918))) (-15 -4137 ($ $)) (-15 -4137 ($ (-407 (-564)))) (-15 -4137 ($ (-564))) (-15 -3155 ($ $ (-859))) (-15 -2846 ($ $ (-859))) (-15 -2305 ((-407 (-564)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 #1=(-564)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-411 (-407 (-564))) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 #1#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 #1#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-917) . T) ((-999) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) |has| (-407 (-564)) (-1035 (-564))) ((-1052 #0#) . T) ((-1052 #1#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-2092 (((-2 (|:| |ans| |#2|) (|:| -2427 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67))) +(((-1010 |#1| |#2|) (-10 -7 (-15 -2092 ((-2 (|:| |ans| |#2|) (|:| -2427 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1010)) +((-2092 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-2 (|:| |ans| *4) (|:| -2427 *4) (|:| |sol?| (-112)))) (-5 *1 (-1010 *8 *4))))) +(-10 -7 (-15 -2092 ((-2 (|:| |ans| |#2|) (|:| -2427 |#2|) (|:| |sol?| (-112))) (-564) |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2887 (((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55))) +(((-1011 |#1| |#2|) (-10 -7 (-15 -2887 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564))) (-13 (-1194) (-27) (-430 |#1|))) (T -1011)) +((-2887 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1170)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-641 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1194) (-27) (-430 *8))) (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1011 *8 *4))))) +(-10 -7 (-15 -2887 ((-3 (-641 |#2|) "failed") (-564) |#2| |#2| |#2| (-1170) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-641 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-641 |#2|)) (-1 (-3 (-2 (|:| -2118 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) +((-2514 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4032 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)) 39)) (-1403 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1335 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 69)) (-4133 (((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|)) 74))) +(((-1012 |#1| |#2|) (-10 -7 (-15 -1403 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1335 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -4133 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2514 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4032 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -1012)) +((-2514 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 *4))) (-5 *4 (-564)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) (|:| -4032 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1012 *6 *3)))) (-4133 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5)))) (-1403 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) (|:| -1335 *6))) (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -1403 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |c| (-407 |#2|)) (|:| -1335 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -4133 ((-2 (|:| |ans| (-407 |#2|)) (|:| |nosol| (-112))) (-407 |#2|) (-407 |#2|))) (-15 -2514 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-112)))) (|:| -4032 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-564)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-564) (-1 |#2| |#2|)))) +((-2180 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1335 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|)) 22)) (-3859 (((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)) 34))) +(((-1013 |#1| |#2|) (-10 -7 (-15 -2180 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1335 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3859 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) (-13 (-363) (-147) (-1035 (-564))) (-1235 |#1|)) (T -1013)) +((-3859 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1013 *4 *5)) (-5 *3 (-407 *5)))) (-2180 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1335 *6))) (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6))))) +(-10 -7 (-15 -2180 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-407 |#2|)) (|:| |h| |#2|) (|:| |c1| (-407 |#2|)) (|:| |c2| (-407 |#2|)) (|:| -1335 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|) (-1 |#2| |#2|))) (-15 -3859 ((-3 (-641 (-407 |#2|)) "failed") (-407 |#2|) (-407 |#2|) (-407 |#2|)))) +((-3476 (((-1 |#1|) (-641 (-2 (|:| -3426 |#1|) (|:| -3564 (-564))))) 37)) (-3635 (((-1 |#1|) (-1096 |#1|)) 45)) (-2163 (((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)) 34))) +(((-1014 |#1|) (-10 -7 (-15 -3635 ((-1 |#1|) (-1096 |#1|))) (-15 -3476 ((-1 |#1|) (-641 (-2 (|:| -3426 |#1|) (|:| -3564 (-564)))))) (-15 -2163 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) (-1094)) (T -1014)) +((-2163 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564)) (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1014 *6)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -3426 *4) (|:| -3564 (-564))))) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4))))) +(-10 -7 (-15 -3635 ((-1 |#1|) (-1096 |#1|))) (-15 -3476 ((-1 |#1|) (-641 (-2 (|:| -3426 |#1|) (|:| -3564 (-564)))))) (-15 -2163 ((-1 |#1|) (-1259 |#1|) (-1259 (-564)) (-564)))) +((-1619 (((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23))) +(((-1015 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1619 ((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-363) (-1235 |#1|) (-1235 (-407 |#2|)) (-342 |#1| |#2| |#3|) (-13 (-368) (-363))) (T -1015)) +((-1619 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) (-4 *9 (-13 (-368) (-363))) (-5 *2 (-768)) (-5 *1 (-1015 *6 *7 *4 *8 *9))))) +(-10 -7 (-15 -1619 ((-768) (-336 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) +((-3732 (((-112) $ $) NIL)) (-4058 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-1129) $) 11)) (-1705 (((-112) $ $) NIL))) +(((-1016) (-13 (-1077) (-10 -8 (-15 -4058 ((-1129) $)) (-15 -4337 ((-1129) $))))) (T -1016)) +((-4058 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016))))) +(-13 (-1077) (-10 -8 (-15 -4058 ((-1129) $)) (-15 -4337 ((-1129) $)))) +((-2359 (((-3 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) "failed") |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) 32) (((-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564))) 29)) (-3269 (((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564))) 34) (((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-407 (-564))) 30) (((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) 33) (((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1|) 28)) (-1558 (((-641 (-407 (-564))) (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) 20)) (-2679 (((-407 (-564)) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) 17))) +(((-1017 |#1|) (-10 -7 (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1|)) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564)))) (-15 -2359 ((-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564)))) (-15 -2359 ((-3 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) "failed") |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-15 -2679 ((-407 (-564)) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-15 -1558 ((-641 (-407 (-564))) (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))))) (-1235 (-564))) (T -1017)) +((-1558 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))) (-2679 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) (-5 *2 (-407 (-564))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564))))) (-2359 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) (-2359 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) (-3269 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -2413 *5) (|:| -2427 *5)))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -2413 *5) (|:| -2427 *5))))) (-3269 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) (-3269 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))))) (-3269 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564)))))) +(-10 -7 (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1|)) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564)))) (-15 -2359 ((-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564)))) (-15 -2359 ((-3 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) "failed") |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-15 -2679 ((-407 (-564)) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-15 -1558 ((-641 (-407 (-564))) (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))))) +((-2359 (((-3 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) "failed") |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) 35) (((-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564))) 32)) (-3269 (((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564))) 30) (((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-407 (-564))) 26) (((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) 28) (((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1|) 24))) +(((-1018 |#1|) (-10 -7 (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1|)) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564)))) (-15 -2359 ((-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564)))) (-15 -2359 ((-3 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) "failed") |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))))) (-1235 (-407 (-564)))) (T -1018)) +((-2359 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))) (-2359 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) (-3269 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -2413 *5) (|:| -2427 *5)))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -2413 *5) (|:| -2427 *5))))) (-3269 (*1 *2 *3 *4) (-12 (-5 *4 (-407 (-564))) (-5 *2 (-641 (-2 (|:| -2413 *4) (|:| -2427 *4)))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) (-3269 (*1 *2 *3 *4) (-12 (-5 *2 (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))) (-5 *4 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))))) (-3269 (*1 *2 *3) (-12 (-5 *2 (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564))))))) +(-10 -7 (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1|)) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-407 (-564)))) (-15 -3269 ((-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564)))) (-15 -2359 ((-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-407 (-564)))) (-15 -2359 ((-3 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) "failed") |#1| (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))) (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))))) +((-2235 (((-225) $) 6) (((-379) $) 9))) +(((-1019) (-140)) (T -1019)) +NIL +(-13 (-612 (-225)) (-612 (-379))) +(((-612 (-225)) . T) ((-612 (-379)) . T)) +((-2443 (((-641 (-379)) (-949 (-564)) (-379)) 28) (((-641 (-379)) (-949 (-407 (-564))) (-379)) 27)) (-3171 (((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379)) 37))) +(((-1020) (-10 -7 (-15 -2443 ((-641 (-379)) (-949 (-407 (-564))) (-379))) (-15 -2443 ((-641 (-379)) (-949 (-564)) (-379))) (-15 -3171 ((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379))))) (T -1020)) +((-3171 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1020)) (-5 *5 (-379)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) (-5 *4 (-379)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) (-5 *4 (-379))))) +(-10 -7 (-15 -2443 ((-641 (-379)) (-949 (-407 (-564))) (-379))) (-15 -2443 ((-641 (-379)) (-949 (-564)) (-379))) (-15 -3171 ((-641 (-641 (-379))) (-641 (-949 (-564))) (-641 (-1170)) (-379)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 75)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-4137 (($ $) NIL) (($ $ (-918)) NIL) (($ (-407 (-564))) NIL) (($ (-564)) NIL)) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) 70)) (-2818 (($) NIL T CONST)) (-2854 (((-3 $ "failed") (-1166 $) (-918) (-859)) NIL) (((-3 $ "failed") (-1166 $) (-918)) 55)) (-2111 (((-3 (-407 (-564)) "failed") $) NIL (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#1| "failed") $) 116) (((-3 (-564) "failed") $) NIL (-4030 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))))) (-2239 (((-407 (-564)) $) 17 (|has| (-407 (-564)) (-1035 (-407 (-564))))) (((-407 (-564)) $) 17) ((|#1| $) 117) (((-564) $) NIL (-4030 (|has| (-407 (-564)) (-1035 (-564))) (|has| |#1| (-1035 (-564)))))) (-3155 (($ $ (-859)) 47)) (-2846 (($ $ (-859)) 48)) (-1373 (($ $ $) NIL)) (-3267 (((-407 (-564)) $ $) 21)) (-3951 (((-3 $ "failed") $) 88)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-3308 (((-112) $) 66)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL)) (-2839 (((-112) $) 69)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-1310 (((-3 (-1166 $) "failed") $) 83)) (-2497 (((-3 (-859) "failed") $) 82)) (-4108 (((-3 (-1166 $) "failed") $) 80)) (-1359 (((-3 (-1056 $ (-1166 $)) "failed") $) 78)) (-2529 (($ (-641 $)) NIL) (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 89)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ (-641 $)) NIL) (($ $ $) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3742 (((-859) $) 87) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) 63) (($ (-407 (-564))) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#1|) 119)) (-3270 (((-768)) NIL T CONST)) (-3360 (((-112) $ $) NIL)) (-2305 (((-407 (-564)) $ $) 27)) (-4354 (((-641 $) (-1166 $)) 61) (((-641 $) (-1166 (-407 (-564)))) NIL) (((-641 $) (-1166 (-564))) NIL) (((-641 $) (-949 $)) NIL) (((-641 $) (-949 (-407 (-564)))) NIL) (((-641 $) (-949 (-564))) NIL)) (-4227 (($ (-1056 $ (-1166 $)) (-859)) 46)) (-2792 (($ $) 22)) (-4311 (($) 32 T CONST)) (-4321 (($) 39 T CONST)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 76)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 24)) (-1799 (($ $ $) 37)) (-1790 (($ $) 38) (($ $ $) 74)) (-1780 (($ $ $) 112)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL) (($ $ (-407 (-564))) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 98) (($ $ $) 104) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ (-564) $) 98) (($ $ (-564)) NIL) (($ (-407 (-564)) $) NIL) (($ $ (-407 (-564))) NIL) (($ |#1| $) 102) (($ $ |#1|) NIL))) +(((-1021 |#1|) (-13 (-1009) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -4227 ($ (-1056 $ (-1166 $)) (-859))) (-15 -1359 ((-3 (-1056 $ (-1166 $)) "failed") $)) (-15 -3267 ((-407 (-564)) $ $)))) (-13 (-845) (-363) (-1019))) (T -1021)) +((-4227 (*1 *1 *2 *3) (-12 (-5 *2 (-1056 (-1021 *4) (-1166 (-1021 *4)))) (-5 *3 (-859)) (-5 *1 (-1021 *4)) (-4 *4 (-13 (-845) (-363) (-1019))))) (-1359 (*1 *2 *1) (|partial| -12 (-5 *2 (-1056 (-1021 *3) (-1166 (-1021 *3)))) (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019))))) (-3267 (*1 *2 *1 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019)))))) +(-13 (-1009) (-411 |#1|) (-38 |#1|) (-10 -8 (-15 -4227 ($ (-1056 $ (-1166 $)) (-859))) (-15 -1359 ((-3 (-1056 $ (-1166 $)) "failed") $)) (-15 -3267 ((-407 (-564)) $ $)))) +((-2754 (((-2 (|:| -4032 |#2|) (|:| -3440 (-641 |#1|))) |#2| (-641 |#1|)) 32) ((|#2| |#2| |#1|) 27))) +(((-1022 |#1| |#2|) (-10 -7 (-15 -2754 (|#2| |#2| |#1|)) (-15 -2754 ((-2 (|:| -4032 |#2|) (|:| -3440 (-641 |#1|))) |#2| (-641 |#1|)))) (-363) (-652 |#1|)) (T -1022)) +((-2754 (*1 *2 *3 *4) (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -4032 *3) (|:| -3440 (-641 *5)))) (-5 *1 (-1022 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5)))) (-2754 (*1 *2 *2 *3) (-12 (-4 *3 (-363)) (-5 *1 (-1022 *3 *2)) (-4 *2 (-652 *3))))) +(-10 -7 (-15 -2754 (|#2| |#2| |#1|)) (-15 -2754 ((-2 (|:| -4032 |#2|) (|:| -3440 (-641 |#1|))) |#2| (-641 |#1|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1520 ((|#1| $ |#1|) 14)) (-3877 ((|#1| $ |#1|) 12)) (-1646 (($ |#1|) 10)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-4382 ((|#1| $) 11)) (-3225 ((|#1| $) 13)) (-3742 (((-859) $) 21 (|has| |#1| (-1094)))) (-1705 (((-112) $ $) 9))) +(((-1023 |#1|) (-13 (-1209) (-10 -8 (-15 -1646 ($ |#1|)) (-15 -4382 (|#1| $)) (-15 -3877 (|#1| $ |#1|)) (-15 -3225 (|#1| $)) (-15 -1520 (|#1| $ |#1|)) (-15 -1705 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1023)) +((-1646 (*1 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-3877 (*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-3225 (*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1520 (*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) (-1705 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1209))))) +(-13 (-1209) (-10 -8 (-15 -1646 ($ |#1|)) (-15 -4382 (|#1| $)) (-15 -3877 (|#1| $ |#1|)) (-15 -3225 (|#1| $)) (-15 -1520 (|#1| $ |#1|)) (-15 -1705 ((-112) $ $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) NIL)) (-1454 (((-641 $) (-641 |#4|)) 115) (((-641 $) (-641 |#4|) (-112)) 116) (((-641 $) (-641 |#4|) (-112) (-112)) 114) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 117)) (-4269 (((-641 |#3|) $) NIL)) (-3547 (((-112) $) NIL)) (-4281 (((-112) $) NIL (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2244 ((|#4| |#4| $) NIL)) (-2249 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| $) 109)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3548 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 63)) (-2818 (($) NIL T CONST)) (-4076 (((-112) $) 29 (|has| |#1| (-556)))) (-2072 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2494 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3791 (((-112) $) NIL (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2868 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2239 (($ (-641 |#4|)) NIL)) (-1977 (((-3 $ "failed") $) 45)) (-4263 ((|#4| |#4| $) 66)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2366 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 82 (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2920 ((|#4| |#4| $) NIL)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) NIL)) (-3254 (((-112) |#4| $) NIL)) (-2954 (((-112) |#4| $) NIL)) (-2078 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2633 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 130)) (-3616 (((-641 |#4|) $) 18 (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3782 ((|#3| $) 38)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#4|) $) 19 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2606 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 23)) (-3483 (((-641 |#3|) $) NIL)) (-1410 (((-112) |#3| $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-3530 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-2643 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| |#4| $) 107)) (-2389 (((-3 |#4| "failed") $) 42)) (-2999 (((-641 $) |#4| $) 90)) (-3213 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-1614 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 $))) |#4| $) 100) (((-112) |#4| $) 61)) (-1353 (((-641 $) |#4| $) 112) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 113) (((-641 $) |#4| (-641 $)) NIL)) (-2197 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 125)) (-3901 (($ |#4| $) 79) (($ (-641 |#4|) $) 80) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 76)) (-4258 (((-641 |#4|) $) NIL)) (-1591 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4266 ((|#4| |#4| $) NIL)) (-4179 (((-112) $ $) NIL)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2601 ((|#4| |#4| $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-3 |#4| "failed") $) 40)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3465 (((-3 $ "failed") $ |#4|) 57)) (-3004 (($ $ |#4|) NIL) (((-641 $) |#4| $) 92) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 86)) (-3736 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 17)) (-3434 (($) 14)) (-2266 (((-768) $) NIL)) (-3873 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) 13)) (-2235 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 22)) (-2031 (($ $ |#3|) 52)) (-2401 (($ $ |#3|) 53)) (-2158 (($ $) NIL)) (-2624 (($ $ |#3|) NIL)) (-3742 (((-859) $) 35) (((-641 |#4|) $) 46)) (-1849 (((-768) $) NIL (|has| |#3| (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-4020 (((-641 $) |#4| $) 89) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-1417 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) NIL)) (-3485 (((-112) |#4| $) NIL)) (-2755 (((-112) |#3| $) 62)) (-1705 (((-112) $ $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1024 |#1| |#2| |#3| |#4|) (-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3901 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1454 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -1454 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2197 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2633 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1024)) +((-3901 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *3))) (-5 *1 (-1024 *5 *6 *7 *3)) (-4 *3 (-1060 *5 *6 *7)))) (-1454 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-1454 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-2197 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) (-2633 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1024 *5 *6 *7 *8))))) (-5 *1 (-1024 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(-13 (-1066 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3901 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1454 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -1454 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2197 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2633 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) +((-1331 (((-641 (-685 |#1|)) (-641 (-685 |#1|))) 73) (((-685 |#1|) (-685 |#1|)) 72) (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 71) (((-685 |#1|) (-685 |#1|) (-685 |#1|)) 68)) (-1774 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918)) 66) (((-685 |#1|) (-685 |#1|) (-918)) 65)) (-2109 (((-641 (-685 (-564))) (-641 (-641 (-564)))) 84) (((-641 (-685 (-564))) (-641 (-902 (-564))) (-564)) 83) (((-685 (-564)) (-641 (-564))) 80) (((-685 (-564)) (-902 (-564)) (-564)) 78)) (-3467 (((-685 (-949 |#1|)) (-768)) 98)) (-3670 (((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918)) 52 (|has| |#1| (-6 (-4413 "*")))) (((-685 |#1|) (-685 |#1|) (-918)) 50 (|has| |#1| (-6 (-4413 "*")))))) +(((-1025 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4413 "*"))) (-15 -3670 ((-685 |#1|) (-685 |#1|) (-918))) |%noBranch|) (IF (|has| |#1| (-6 (-4413 "*"))) (-15 -3670 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) |%noBranch|) (-15 -3467 ((-685 (-949 |#1|)) (-768))) (-15 -1774 ((-685 |#1|) (-685 |#1|) (-918))) (-15 -1774 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) (-15 -1331 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1331 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -1331 ((-685 |#1|) (-685 |#1|))) (-15 -1331 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2109 ((-685 (-564)) (-902 (-564)) (-564))) (-15 -2109 ((-685 (-564)) (-641 (-564)))) (-15 -2109 ((-641 (-685 (-564))) (-641 (-902 (-564))) (-564))) (-15 -2109 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) (-1046)) (T -1025)) +((-2109 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-902 (-564)))) (-5 *4 (-564)) (-5 *2 (-641 (-685 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-2109 (*1 *2 *3 *4) (-12 (-5 *3 (-902 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) (-1331 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-1331 (*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-1331 (*1 *2 *2 *2) (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-1331 (*1 *2 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) (-1774 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-1774 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-3467 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-685 (-949 *4))) (-5 *1 (-1025 *4)) (-4 *4 (-1046)))) (-3670 (*1 *2 *2 *3) (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (|has| *4 (-6 (-4413 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) (-3670 (*1 *2 *2 *3) (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (|has| *4 (-6 (-4413 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4))))) +(-10 -7 (IF (|has| |#1| (-6 (-4413 "*"))) (-15 -3670 ((-685 |#1|) (-685 |#1|) (-918))) |%noBranch|) (IF (|has| |#1| (-6 (-4413 "*"))) (-15 -3670 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) |%noBranch|) (-15 -3467 ((-685 (-949 |#1|)) (-768))) (-15 -1774 ((-685 |#1|) (-685 |#1|) (-918))) (-15 -1774 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-918))) (-15 -1331 ((-685 |#1|) (-685 |#1|) (-685 |#1|))) (-15 -1331 ((-641 (-685 |#1|)) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -1331 ((-685 |#1|) (-685 |#1|))) (-15 -1331 ((-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -2109 ((-685 (-564)) (-902 (-564)) (-564))) (-15 -2109 ((-685 (-564)) (-641 (-564)))) (-15 -2109 ((-641 (-685 (-564))) (-641 (-902 (-564))) (-564))) (-15 -2109 ((-641 (-685 (-564))) (-641 (-641 (-564)))))) +((-1418 (((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)) 69 (|has| |#1| (-307)))) (-3651 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))) 110 (|has| |#1| (-363))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|)) 117 (|has| |#1| (-363)))) (-2123 (((-1259 |#1|) (-641 (-1259 |#1|)) (-564)) 134 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-2687 (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918)) 123 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112)) 122 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|))) 121 (-12 (|has| |#1| (-363)) (|has| |#1| (-368)))) (((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564)) 120 (-12 (|has| |#1| (-363)) (|has| |#1| (-368))))) (-3033 (((-112) (-641 (-685 |#1|))) 103 (|has| |#1| (-363))) (((-112) (-641 (-685 |#1|)) (-564)) 106 (|has| |#1| (-363)))) (-2893 (((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|)) 66 (|has| |#1| (-307)))) (-3262 (((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|)) 47)) (-3731 (((-685 |#1|) (-1259 (-1259 |#1|))) 40)) (-1484 (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564)) 94 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|))) 93 (|has| |#1| (-363))) (((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564)) 101 (|has| |#1| (-363))))) +(((-1026 |#1|) (-10 -7 (-15 -3731 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -3262 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -2893 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -1418 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1484 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -1484 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -1484 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -3033 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -3033 ((-112) (-641 (-685 |#1|)))) (-15 -3651 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3651 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2687 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -2687 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -2687 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -2687 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918))) (-15 -2123 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) (-1046)) (T -1026)) +((-2123 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-2687 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-2687 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1046)) (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1026 *4)) (-5 *3 (-641 (-685 *4))))) (-2687 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) (-4 *6 (-1046)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1026 *6)) (-5 *3 (-641 (-685 *6))))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-3651 (*1 *2 *3 *4) (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) (-5 *3 (-641 (-685 *5))))) (-3033 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *4)))) (-3033 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) (-4 *5 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *5)))) (-1484 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1046)))) (-1484 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4)) (-4 *4 (-363)) (-4 *4 (-1046)))) (-1484 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) (-5 *2 (-685 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1046)))) (-1418 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) (-4 *5 (-1046)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5)))) (-2893 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1046)) (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1259 *5)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1026 *4)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1046)) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4))))) +(-10 -7 (-15 -3731 ((-685 |#1|) (-1259 (-1259 |#1|)))) (-15 -3262 ((-685 |#1|) (-641 (-685 |#1|)) (-685 |#1|))) (IF (|has| |#1| (-307)) (PROGN (-15 -2893 ((-1259 (-1259 |#1|)) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -1418 ((-685 |#1|) (-641 (-685 |#1|)) (-1259 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -1484 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-112) (-564))) (-15 -1484 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -1484 ((-685 |#1|) (-641 (-685 |#1|)) (-641 (-685 |#1|)) (-564))) (-15 -3033 ((-112) (-641 (-685 |#1|)) (-564))) (-15 -3033 ((-112) (-641 (-685 |#1|)))) (-15 -3651 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 |#1|))) (-15 -3651 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-1259 (-1259 |#1|))))) |%noBranch|) (IF (|has| |#1| (-368)) (IF (|has| |#1| (-363)) (PROGN (-15 -2687 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112) (-564) (-564))) (-15 -2687 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)))) (-15 -2687 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-112))) (-15 -2687 ((-641 (-641 (-685 |#1|))) (-641 (-685 |#1|)) (-918))) (-15 -2123 ((-1259 |#1|) (-641 (-1259 |#1|)) (-564)))) |%noBranch|) |%noBranch|)) +((-2045 ((|#1| (-918) |#1|) 18))) +(((-1027 |#1|) (-10 -7 (-15 -2045 (|#1| (-918) |#1|))) (-13 (-1094) (-10 -8 (-15 -1780 ($ $ $))))) (T -1027)) +((-2045 (*1 *2 *3 *2) (-12 (-5 *3 (-918)) (-5 *1 (-1027 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 -1780 ($ $ $)))))))) +(-10 -7 (-15 -2045 (|#1| (-918) |#1|))) +((-3253 (((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564))))) 67)) (-2927 (((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564))))) 52)) (-1443 (((-641 (-316 (-564))) (-685 (-407 (-949 (-564))))) 45)) (-3165 (((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564))))) 87)) (-2538 (((-685 (-316 (-564))) (-685 (-316 (-564)))) 38)) (-3828 (((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564))))) 76)) (-4187 (((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564))))) 85))) +(((-1028) (-10 -7 (-15 -3253 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564)))))) (-15 -2927 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564)))))) (-15 -1443 ((-641 (-316 (-564))) (-685 (-407 (-949 (-564)))))) (-15 -4187 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564)))))) (-15 -2538 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -3828 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -3165 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564)))))))) (T -1028)) +((-3165 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))) (-3828 (*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)))) (-2538 (*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))) (-4187 (*1 *2 *3) (|partial| -12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-316 (-564)))) (-5 *1 (-1028)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *4 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)) (-5 *3 (-316 (-564))))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564)))))))) (-5 *1 (-1028))))) +(-10 -7 (-15 -3253 ((-641 (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) (|:| |radvect| (-641 (-685 (-316 (-564))))))) (-685 (-407 (-949 (-564)))))) (-15 -2927 ((-641 (-685 (-316 (-564)))) (-316 (-564)) (-685 (-407 (-949 (-564)))))) (-15 -1443 ((-641 (-316 (-564))) (-685 (-407 (-949 (-564)))))) (-15 -4187 ((-3 (-685 (-316 (-564))) "failed") (-685 (-407 (-949 (-564)))))) (-15 -2538 ((-685 (-316 (-564))) (-685 (-316 (-564))))) (-15 -3828 ((-641 (-685 (-316 (-564)))) (-641 (-685 (-316 (-564)))))) (-15 -3165 ((-641 (-685 (-316 (-564)))) (-685 (-407 (-949 (-564))))))) +((-1845 ((|#1| |#1| (-918)) 18))) +(((-1029 |#1|) (-10 -7 (-15 -1845 (|#1| |#1| (-918)))) (-13 (-1094) (-10 -8 (-15 * ($ $ $))))) (T -1029)) +((-1845 (*1 *2 *2 *3) (-12 (-5 *3 (-918)) (-5 *1 (-1029 *2)) (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $)))))))) +(-10 -7 (-15 -1845 (|#1| |#1| (-918)))) +((-3742 ((|#1| (-312)) 11) (((-1264) |#1|) 9))) +(((-1030 |#1|) (-10 -7 (-15 -3742 ((-1264) |#1|)) (-15 -3742 (|#1| (-312)))) (-1209)) (T -1030)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1030 *2)) (-4 *2 (-1209)))) (-3742 (*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1030 *3)) (-4 *3 (-1209))))) +(-10 -7 (-15 -3742 ((-1264) |#1|)) (-15 -3742 (|#1| (-312)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-1699 (($ |#4|) 25)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-1687 ((|#4| $) 27)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 46) (($ (-564)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3270 (((-768)) 43 T CONST)) (-4311 (($) 21 T CONST)) (-4321 (($) 23 T CONST)) (-1705 (((-112) $ $) 40)) (-1790 (($ $) 31) (($ $ $) NIL)) (-1780 (($ $ $) 29)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL))) +(((-1031 |#1| |#2| |#3| |#4| |#5|) (-13 (-172) (-38 |#1|) (-10 -8 (-15 -1699 ($ |#4|)) (-15 -3742 ($ |#4|)) (-15 -1687 (|#4| $)))) (-363) (-790) (-847) (-946 |#1| |#2| |#3|) (-641 |#4|)) (T -1031)) +((-1699 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-641 *2)))) (-3742 (*1 *1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) (-14 *6 (-641 *2)))) (-1687 (*1 *2 *1) (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-14 *6 (-641 *2))))) +(-13 (-172) (-38 |#1|) (-10 -8 (-15 -1699 ($ |#4|)) (-15 -3742 ($ |#4|)) (-15 -1687 (|#4| $)))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL)) (-2645 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3151 (((-112) (-112)) 43)) (-1554 (((-112) (-112)) 42)) (-3877 (((-52) $ (-1170) (-52)) NIL)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 (-52) "failed") (-1170) $) NIL)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-2154 (($ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2366 (($ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-2619 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4412)))) (-2540 (((-52) $ (-1170)) NIL)) (-3616 (((-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-1170) $) NIL (|has| (-1170) (-847)))) (-1386 (((-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-3774 (((-1170) $) NIL (|has| (-1170) (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-1823 (((-641 (-1170)) $) 37)) (-2219 (((-112) (-1170) $) NIL)) (-2828 (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL)) (-2974 (($ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL)) (-2312 (((-641 (-1170)) $) NIL)) (-4062 (((-112) (-1170) $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-1966 (((-52) $) NIL (|has| (-1170) (-847)))) (-3582 (((-3 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) "failed") (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL)) (-3099 (($ $ (-52)) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))))) NIL (-12 (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL (-12 (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ $ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) NIL (-12 (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL (-12 (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-2572 (((-641 (-52)) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 (((-52) $ (-1170)) 39) (((-52) $ (-1170) (-52)) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL)) (-3742 (((-859) $) 41 (-4030 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1032) (-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -3151 ((-112) (-112))) (-15 -1554 ((-112) (-112))) (-6 -4411)))) (T -1032)) +((-3151 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032)))) (-1554 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032))))) +(-13 (-1185 (-1170) (-52)) (-10 -7 (-15 -3151 ((-112) (-112))) (-15 -1554 ((-112) (-112))) (-6 -4411))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2575 (((-1129) $) 9)) (-3742 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-1033) (-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $))))) (T -1033)) +((-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1033))))) +(-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)))) +((-2239 ((|#2| $) 10))) +(((-1034 |#1| |#2|) (-10 -8 (-15 -2239 (|#2| |#1|))) (-1035 |#2|) (-1209)) (T -1034)) +NIL +(-10 -8 (-15 -2239 (|#2| |#1|))) +((-2111 (((-3 |#1| "failed") $) 9)) (-2239 ((|#1| $) 8)) (-3742 (($ |#1|) 6))) +(((-1035 |#1|) (-140) (-1209)) (T -1035)) +((-2111 (*1 *2 *1) (|partial| -12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))) (-2239 (*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1209))))) +(-13 (-614 |t#1|) (-10 -8 (-15 -2111 ((-3 |t#1| "failed") $)) (-15 -2239 (|t#1| $)))) +(((-614 |#1|) . T)) +((-2809 (((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))) 38))) +(((-1036 |#1| |#2|) (-10 -7 (-15 -2809 ((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))))) (-556) (-13 (-556) (-1035 |#1|))) (T -1036)) +((-2809 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-13 (-556) (-1035 *5))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *6)))))) (-5 *1 (-1036 *5 *6))))) +(-10 -7 (-15 -2809 ((-641 (-641 (-294 (-407 (-949 |#2|))))) (-641 (-949 |#2|)) (-641 (-1170))))) +((-4098 (((-379)) 17)) (-3635 (((-1 (-379)) (-379) (-379)) 22)) (-1335 (((-1 (-379)) (-768)) 50)) (-2435 (((-379)) 37)) (-3087 (((-1 (-379)) (-379) (-379)) 38)) (-4275 (((-379)) 29)) (-2759 (((-1 (-379)) (-379)) 30)) (-4121 (((-379) (-768)) 45)) (-1513 (((-1 (-379)) (-768)) 46)) (-3510 (((-1 (-379)) (-768) (-768)) 49)) (-2397 (((-1 (-379)) (-768) (-768)) 47))) +(((-1037) (-10 -7 (-15 -4098 ((-379))) (-15 -2435 ((-379))) (-15 -4275 ((-379))) (-15 -4121 ((-379) (-768))) (-15 -3635 ((-1 (-379)) (-379) (-379))) (-15 -3087 ((-1 (-379)) (-379) (-379))) (-15 -2759 ((-1 (-379)) (-379))) (-15 -1513 ((-1 (-379)) (-768))) (-15 -2397 ((-1 (-379)) (-768) (-768))) (-15 -3510 ((-1 (-379)) (-768) (-768))) (-15 -1335 ((-1 (-379)) (-768))))) (T -1037)) +((-1335 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-3510 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-2397 (*1 *2 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) (-2759 (*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-3087 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-3635 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) (-4121 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-379)) (-5 *1 (-1037)))) (-4275 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))) (-2435 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037)))) (-4098 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037))))) +(-10 -7 (-15 -4098 ((-379))) (-15 -2435 ((-379))) (-15 -4275 ((-379))) (-15 -4121 ((-379) (-768))) (-15 -3635 ((-1 (-379)) (-379) (-379))) (-15 -3087 ((-1 (-379)) (-379) (-379))) (-15 -2759 ((-1 (-379)) (-379))) (-15 -1513 ((-1 (-379)) (-768))) (-15 -2397 ((-1 (-379)) (-768) (-768))) (-15 -3510 ((-1 (-379)) (-768) (-768))) (-15 -1335 ((-1 (-379)) (-768)))) +((-4127 (((-418 |#1|) |#1|) 33))) +(((-1038 |#1|) (-10 -7 (-15 -4127 ((-418 |#1|) |#1|))) (-1235 (-407 (-949 (-564))))) (T -1038)) +((-4127 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1235 (-407 (-949 (-564)))))))) +(-10 -7 (-15 -4127 ((-418 |#1|) |#1|))) +((-3054 (((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))) 14))) +(((-1039 |#1|) (-10 -7 (-15 -3054 ((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))))) (-307)) (T -1039)) +((-3054 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-307)) (-5 *2 (-407 (-418 (-949 *4)))) (-5 *1 (-1039 *4))))) +(-10 -7 (-15 -3054 ((-407 (-418 (-949 |#1|))) (-407 (-949 |#1|))))) +((-4269 (((-641 (-1170)) (-407 (-949 |#1|))) 17)) (-4097 (((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170)) 24)) (-4257 (((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170)) 26)) (-1306 (((-3 (-1170) "failed") (-407 (-949 |#1|))) 20)) (-2416 (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|))))) 32) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|)))) 33) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|)))) 28) (((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|))) 29)) (-3742 (((-407 (-949 |#1|)) |#1|) 11))) +(((-1040 |#1|) (-10 -7 (-15 -4269 ((-641 (-1170)) (-407 (-949 |#1|)))) (-15 -1306 ((-3 (-1170) "failed") (-407 (-949 |#1|)))) (-15 -4097 ((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -4257 ((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170))) (-15 -2416 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))) (-15 -2416 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|))))) (-15 -2416 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2416 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -3742 ((-407 (-949 |#1|)) |#1|))) (-556)) (T -1040)) +((-3742 (*1 *2 *3) (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-1040 *3)) (-4 *3 (-556)))) (-2416 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-5 *2 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-2416 (*1 *2 *2 *3) (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-5 *2 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-2416 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-949 *5)))) (-5 *2 (-407 (-949 *5))) (-4 *5 (-556)) (-5 *1 (-1040 *5)))) (-2416 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) (-5 *1 (-1040 *4)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-1166 (-407 (-949 *5))))) (-5 *4 (-1170)) (-5 *2 (-407 (-949 *5))) (-5 *1 (-1040 *5)) (-4 *5 (-556)))) (-4097 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-407 (-1166 (-407 (-949 *5))))) (-5 *1 (-1040 *5)) (-5 *3 (-407 (-949 *5))))) (-1306 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-1170)) (-5 *1 (-1040 *4)))) (-4269 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) (-5 *1 (-1040 *4))))) +(-10 -7 (-15 -4269 ((-641 (-1170)) (-407 (-949 |#1|)))) (-15 -1306 ((-3 (-1170) "failed") (-407 (-949 |#1|)))) (-15 -4097 ((-407 (-1166 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -4257 ((-407 (-949 |#1|)) (-407 (-1166 (-407 (-949 |#1|)))) (-1170))) (-15 -2416 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)))) (-15 -2416 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-1170)) (-641 (-407 (-949 |#1|))))) (-15 -2416 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-294 (-407 (-949 |#1|))))) (-15 -2416 ((-407 (-949 |#1|)) (-407 (-949 |#1|)) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -3742 ((-407 (-949 |#1|)) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-2818 (($) 17 T CONST)) (-2137 ((|#1| $) 22)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3659 ((|#1| $) 21)) (-2161 ((|#1|) 19 T CONST)) (-3742 (((-859) $) 11)) (-3869 ((|#1| $) 20)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15))) (((-1041 |#1|) (-140) (-23)) (T -1041)) -((-2969 (*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) -(-13 (-1040 |t#1|) (-10 -8 (-15 -2969 ($) -2495))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-610 (-858)) . T) ((-1040 |#1|) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 (-776 |#1| (-860 |#2|)))))) (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-1353 (((-640 $) (-640 (-776 |#1| (-860 |#2|)))) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112)) NIL)) (-2185 (((-640 (-860 |#2|)) $) NIL)) (-1556 (((-112) $) NIL)) (-1456 (((-112) $) NIL (|has| |#1| (-555)))) (-1469 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-1413 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2924 (((-640 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -1926 $))) (-776 |#1| (-860 |#2|)) $) NIL)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ (-860 |#2|)) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-1907 (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 (-776 |#1| (-860 |#2|)) "failed") $ (-860 |#2|)) NIL)) (-3684 (($) NIL T CONST)) (-1512 (((-112) $) NIL (|has| |#1| (-555)))) (-1534 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1523 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1545 (((-112) $) NIL (|has| |#1| (-555)))) (-1426 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-1466 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-555)))) (-1477 (((-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-2589 (($ (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-1897 (((-3 $ "failed") $) NIL)) (-1384 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-1417 (($ (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-555)))) (-1480 (((-112) (-776 |#1| (-860 |#2|)) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-1365 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-2532 (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $ (-776 |#1| (-860 |#2|))) NIL (|has| $ (-6 -4408))) (((-776 |#1| (-860 |#2|)) (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-1502 (((-2 (|:| -3028 (-640 (-776 |#1| (-860 |#2|)))) (|:| -1934 (-640 (-776 |#1| (-860 |#2|))))) $) NIL)) (-1586 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-1563 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-1598 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-4236 (((-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1491 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-2674 (((-860 |#2|) $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-4139 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) $) NIL)) (-1616 (((-640 (-860 |#2|)) $) NIL)) (-1602 (((-112) (-860 |#2|) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1520 (((-3 (-776 |#1| (-860 |#2|)) (-640 $)) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1508 (((-640 (-2 (|:| |val| (-776 |#1| (-860 |#2|))) (|:| -1926 $))) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1442 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-1529 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL)) (-1552 (((-3 (-112) (-640 $)) (-776 |#1| (-860 |#2|)) $) NIL)) (-1542 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 $))) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-1913 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL)) (-3079 (($ (-776 |#1| (-860 |#2|)) $) NIL) (($ (-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-1514 (((-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-1447 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-1395 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3449 (((-112) $ $) NIL)) (-1500 (((-2 (|:| |num| (-776 |#1| (-860 |#2|))) (|:| |den| |#1|)) (-776 |#1| (-860 |#2|)) $) NIL (|has| |#1| (-555)))) (-1458 (((-112) (-776 |#1| (-860 |#2|)) $) NIL) (((-112) $) NIL)) (-1405 (((-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)) $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-3 (-776 |#1| (-860 |#2|)) "failed") $) NIL)) (-1828 (((-3 (-776 |#1| (-860 |#2|)) "failed") (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL)) (-1323 (((-3 $ "failed") $ (-776 |#1| (-860 |#2|))) NIL)) (-2884 (($ $ (-776 |#1| (-860 |#2|))) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL)) (-3837 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-776 |#1| (-860 |#2|))) (-640 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-294 (-776 |#1| (-860 |#2|)))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (($ $ (-640 (-294 (-776 |#1| (-860 |#2|))))) NIL (-12 (|has| (-776 |#1| (-860 |#2|)) (-309 (-776 |#1| (-860 |#2|)))) (|has| (-776 |#1| (-860 |#2|)) (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-1962 (((-767) $) NIL)) (-3261 (((-767) (-776 |#1| (-860 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-776 |#1| (-860 |#2|)) (-1093)))) (((-767) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-776 |#1| (-860 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-776 |#1| (-860 |#2|)))) NIL)) (-1566 (($ $ (-860 |#2|)) NIL)) (-1591 (($ $ (-860 |#2|)) NIL)) (-1373 (($ $) NIL)) (-1579 (($ $ (-860 |#2|)) NIL)) (-2062 (((-858) $) NIL) (((-640 (-776 |#1| (-860 |#2|))) $) NIL)) (-1313 (((-767) $) NIL (|has| (-860 |#2|) (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 (-776 |#1| (-860 |#2|))))) "failed") (-640 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 (-776 |#1| (-860 |#2|))))) "failed") (-640 (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|))) (-1 (-112) (-776 |#1| (-860 |#2|)) (-776 |#1| (-860 |#2|)))) NIL)) (-1438 (((-112) $ (-1 (-112) (-776 |#1| (-860 |#2|)) (-640 (-776 |#1| (-860 |#2|))))) NIL)) (-1496 (((-640 $) (-776 |#1| (-860 |#2|)) $) NIL) (((-640 $) (-776 |#1| (-860 |#2|)) (-640 $)) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) $) NIL) (((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-640 $)) NIL)) (-3848 (((-112) (-1 (-112) (-776 |#1| (-860 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1333 (((-640 (-860 |#2|)) $) NIL)) (-1574 (((-112) (-776 |#1| (-860 |#2|)) $) NIL)) (-1833 (((-112) (-860 |#2|) $) NIL)) (-2943 (((-112) $ $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1042 |#1| |#2|) (-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -1353 ((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112))))) (-452) (-640 (-1169))) (T -1042)) -((-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1042 *5 *6))))) -(-13 (-1065 |#1| (-531 (-860 |#2|)) (-860 |#2|) (-776 |#1| (-860 |#2|))) (-10 -8 (-15 -1353 ((-640 $) (-640 (-776 |#1| (-860 |#2|))) (-112) (-112))))) -((-2980 (((-1 (-563)) (-1087 (-563))) 33)) (-3020 (((-563) (-563) (-563) (-563) (-563)) 30)) (-3001 (((-1 (-563)) |RationalNumber|) NIL)) (-3010 (((-1 (-563)) |RationalNumber|) NIL)) (-2991 (((-1 (-563)) (-563) |RationalNumber|) NIL))) -(((-1043) (-10 -7 (-15 -2980 ((-1 (-563)) (-1087 (-563)))) (-15 -2991 ((-1 (-563)) (-563) |RationalNumber|)) (-15 -3001 ((-1 (-563)) |RationalNumber|)) (-15 -3010 ((-1 (-563)) |RationalNumber|)) (-15 -3020 ((-563) (-563) (-563) (-563) (-563))))) (T -1043)) -((-3020 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1043)))) (-3010 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))) (-3001 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)) (-5 *3 (-563)))) (-2980 (*1 *2 *3) (-12 (-5 *3 (-1087 (-563))) (-5 *2 (-1 (-563))) (-5 *1 (-1043))))) -(-10 -7 (-15 -2980 ((-1 (-563)) (-1087 (-563)))) (-15 -2991 ((-1 (-563)) (-563) |RationalNumber|)) (-15 -3001 ((-1 (-563)) |RationalNumber|)) (-15 -3010 ((-1 (-563)) |RationalNumber|)) (-15 -3020 ((-563) (-563) (-563) (-563) (-563)))) -((-2062 (((-858) $) NIL) (($ (-563)) 10))) -(((-1044 |#1|) (-10 -8 (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-1045)) (T -1044)) -NIL -(-10 -8 (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-1045) (-140)) (T -1045)) -((-3192 (*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767))))) -(-13 (-1052) (-722) (-643 $) (-613 (-563)) (-10 -7 (-15 -3192 ((-767)) -2495) (-6 -4405))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-613 (-563)) . T) ((-610 (-858)) . T) ((-643 $) . T) ((-722) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-3031 (((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767)) 60))) -(((-1046 |#1| |#2|) (-10 -7 (-15 -3031 ((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767)))) (-1169) (-363)) (T -1046)) -((-3031 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-767)) (-4 *6 (-363)) (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1169))))) -(-10 -7 (-15 -3031 ((-407 (-948 |#2|)) (-640 |#2|) (-640 |#2|) (-767) (-767)))) -((-3148 (((-112) $) 40)) (-3172 (((-112) $) 17)) (-3955 (((-767) $) 13)) (-3965 (((-767) $) 14)) (-3162 (((-112) $) 30)) (-3137 (((-112) $) 42))) -(((-1047 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3965 ((-767) |#1|)) (-15 -3955 ((-767) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -3148 ((-112) |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3172 ((-112) |#1|))) (-1048 |#2| |#3| |#4| |#5| |#6|) (-767) (-767) (-1045) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1047)) -NIL -(-10 -8 (-15 -3965 ((-767) |#1|)) (-15 -3955 ((-767) |#1|)) (-15 -3137 ((-112) |#1|)) (-15 -3148 ((-112) |#1|)) (-15 -3162 ((-112) |#1|)) (-15 -3172 ((-112) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3148 (((-112) $) 51)) (-1482 (((-3 $ "failed") $ $) 19)) (-3172 (((-112) $) 53)) (-3740 (((-112) $ (-767)) 61)) (-3684 (($) 17 T CONST)) (-3063 (($ $) 34 (|has| |#3| (-307)))) (-3082 ((|#4| $ (-563)) 39)) (-3406 (((-767) $) 33 (|has| |#3| (-555)))) (-4085 ((|#3| $ (-563) (-563)) 41)) (-4236 (((-640 |#3|) $) 68 (|has| $ (-6 -4408)))) (-3054 (((-767) $) 32 (|has| |#3| (-555)))) (-3042 (((-640 |#5|) $) 31 (|has| |#3| (-555)))) (-3955 (((-767) $) 45)) (-3965 (((-767) $) 44)) (-3633 (((-112) $ (-767)) 60)) (-3127 (((-563) $) 49)) (-3105 (((-563) $) 47)) (-1572 (((-640 |#3|) $) 69 (|has| $ (-6 -4408)))) (-1949 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1093)) (|has| $ (-6 -4408))))) (-3117 (((-563) $) 48)) (-3094 (((-563) $) 46)) (-3840 (($ (-640 (-640 |#3|))) 54)) (-4139 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-1791 (((-640 (-640 |#3|)) $) 43)) (-3604 (((-112) $ (-767)) 59)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-555)))) (-3837 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#3|) (-640 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 (-294 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-3752 (((-112) $ $) 55)) (-2820 (((-112) $) 58)) (-2749 (($) 57)) (-3858 ((|#3| $ (-563) (-563)) 42) ((|#3| $ (-563) (-563) |#3|) 40)) (-3162 (((-112) $) 52)) (-3261 (((-767) |#3| $) 70 (-12 (|has| |#3| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4408)))) (-2208 (($ $) 56)) (-3073 ((|#5| $ (-563)) 38)) (-2062 (((-858) $) 11)) (-3848 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4408)))) (-3137 (((-112) $) 50)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-1708 (((-767) $) 62 (|has| $ (-6 -4408))))) -(((-1048 |#1| |#2| |#3| |#4| |#5|) (-140) (-767) (-767) (-1045) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1048)) -((-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3840 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *5))) (-4 *5 (-1045)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3162 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3148 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3137 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3127 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-3105 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-3094 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-3965 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-640 (-640 *5))))) (-3858 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-4085 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) (-3858 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-3082 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-3073 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2751 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-3448 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-555)))) (-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-3063 (*1 *1 *1) (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-767)))) (-3054 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-767)))) (-3042 (*1 *2 *1) (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) (-5 *2 (-640 *7))))) -(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4408) (IF (|has| |t#3| (-172)) (-6 (-713 |t#3|)) |%noBranch|) (-15 -3840 ($ (-640 (-640 |t#3|)))) (-15 -3172 ((-112) $)) (-15 -3162 ((-112) $)) (-15 -3148 ((-112) $)) (-15 -3137 ((-112) $)) (-15 -3127 ((-563) $)) (-15 -3117 ((-563) $)) (-15 -3105 ((-563) $)) (-15 -3094 ((-563) $)) (-15 -3955 ((-767) $)) (-15 -3965 ((-767) $)) (-15 -1791 ((-640 (-640 |t#3|)) $)) (-15 -3858 (|t#3| $ (-563) (-563))) (-15 -4085 (|t#3| $ (-563) (-563))) (-15 -3858 (|t#3| $ (-563) (-563) |t#3|)) (-15 -3082 (|t#4| $ (-563))) (-15 -3073 (|t#5| $ (-563))) (-15 -2751 ($ (-1 |t#3| |t#3|) $)) (-15 -2751 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-555)) (-15 -3448 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -3050 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -3063 ($ $)) |%noBranch|) (IF (|has| |t#3| (-555)) (PROGN (-15 -3406 ((-767) $)) (-15 -3054 ((-767) $)) (-15 -3042 ((-640 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-610 (-858)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))) ((-643 |#3|) . T) ((-713 |#3|) |has| |#3| (-172)) ((-1051 |#3|) . T) ((-1093) . T) ((-1208) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3148 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3172 (((-112) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-3684 (($) NIL T CONST)) (-3063 (($ $) 47 (|has| |#3| (-307)))) (-3082 (((-240 |#2| |#3|) $ (-563)) 36)) (-3182 (($ (-684 |#3|)) 45)) (-3406 (((-767) $) 49 (|has| |#3| (-555)))) (-4085 ((|#3| $ (-563) (-563)) NIL)) (-4236 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-3054 (((-767) $) 51 (|has| |#3| (-555)))) (-3042 (((-640 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-555)))) (-3955 (((-767) $) NIL)) (-3965 (((-767) $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3127 (((-563) $) NIL)) (-3105 (((-563) $) NIL)) (-1572 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-3117 (((-563) $) NIL)) (-3094 (((-563) $) NIL)) (-3840 (($ (-640 (-640 |#3|))) 31)) (-4139 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-1791 (((-640 (-640 |#3|)) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3448 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-555)))) (-3837 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#3| $ (-563) (-563)) NIL) ((|#3| $ (-563) (-563) |#3|) NIL)) (-1575 (((-134)) 59 (|has| |#3| (-363)))) (-3162 (((-112) $) NIL)) (-3261 (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093)))) (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) 66 (|has| |#3| (-611 (-536))))) (-3073 (((-240 |#1| |#3|) $ (-563)) 40)) (-2062 (((-858) $) 19) (((-684 |#3|) $) 42)) (-3848 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-3137 (((-112) $) NIL)) (-3790 (($) 16 T CONST)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1049 |#1| |#2| |#3|) (-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-610 (-684 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1264 |#3|)) |%noBranch|) (IF (|has| |#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (-15 -3182 ($ (-684 |#3|))))) (-767) (-767) (-1045)) (T -1049)) -((-3182 (*1 *1 *2) (-12 (-5 *2 (-684 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) (-14 *3 (-767)) (-14 *4 (-767))))) -(-13 (-1048 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-610 (-684 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1264 |#3|)) |%noBranch|) (IF (|has| |#3| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|) (-15 -3182 ($ (-684 |#3|))))) -((-2532 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2751 ((|#10| (-1 |#7| |#3|) |#6|) 34))) -(((-1050 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2751 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2532 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-767) (-767) (-1045) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1048 |#1| |#2| |#3| |#4| |#5|) (-1045) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1048 |#1| |#2| |#7| |#8| |#9|)) (T -1050)) -((-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) -(-10 -7 (-15 -2751 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2532 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ |#1|) 23))) -(((-1051 |#1|) (-140) (-1052)) (T -1051)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052))))) +((-2137 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-3869 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23)))) (-2161 (*1 *2) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -2137 (|t#1| $)) (-15 -3659 (|t#1| $)) (-15 -3869 (|t#1| $)) (-15 -2161 (|t#1|) -2091))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3886 (($) 24 T CONST)) (-2818 (($) 17 T CONST)) (-2137 ((|#1| $) 22)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3659 ((|#1| $) 21)) (-2161 ((|#1|) 19 T CONST)) (-3742 (((-859) $) 11)) (-3869 ((|#1| $) 20)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15))) +(((-1042 |#1|) (-140) (-23)) (T -1042)) +((-3886 (*1 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) +(-13 (-1041 |t#1|) (-10 -8 (-15 -3886 ($) -2091))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-611 (-859)) . T) ((-1041 |#1|) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 (-777 |#1| (-861 |#2|)))))) (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-1454 (((-641 $) (-641 (-777 |#1| (-861 |#2|)))) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112)) NIL)) (-4269 (((-641 (-861 |#2|)) $) NIL)) (-3547 (((-112) $) NIL)) (-4281 (((-112) $) NIL (|has| |#1| (-556)))) (-1968 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-2244 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2249 (((-641 (-2 (|:| |val| (-777 |#1| (-861 |#2|))) (|:| -2084 $))) (-777 |#1| (-861 |#2|)) $) NIL)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ (-861 |#2|)) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3548 (($ (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 (-777 |#1| (-861 |#2|)) "failed") $ (-861 |#2|)) NIL)) (-2818 (($) NIL T CONST)) (-4076 (((-112) $) NIL (|has| |#1| (-556)))) (-2072 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2494 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3791 (((-112) $) NIL (|has| |#1| (-556)))) (-4144 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-2868 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| |#1| (-556)))) (-1910 (((-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-2239 (($ (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-1977 (((-3 $ "failed") $) NIL)) (-4263 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-2366 (($ (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-777 |#1| (-861 |#2|))) (|:| |den| |#1|)) (-777 |#1| (-861 |#2|)) $) NIL (|has| |#1| (-556)))) (-3116 (((-112) (-777 |#1| (-861 |#2|)) $ (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-2920 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1699 (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $ (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $ (-777 |#1| (-861 |#2|))) NIL (|has| $ (-6 -4411))) (((-777 |#1| (-861 |#2|)) (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-3318 (((-2 (|:| -3566 (-641 (-777 |#1| (-861 |#2|)))) (|:| -1702 (-641 (-777 |#1| (-861 |#2|))))) $) NIL)) (-3254 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-2954 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-2078 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-3616 (((-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1641 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-3782 (((-861 |#2|) $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-2606 (($ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) $) NIL)) (-3483 (((-641 (-861 |#2|)) $) NIL)) (-1410 (((-112) (-861 |#2|) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-3530 (((-3 (-777 |#1| (-861 |#2|)) (-641 $)) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2643 (((-641 (-2 (|:| |val| (-777 |#1| (-861 |#2|))) (|:| -2084 $))) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-2389 (((-3 (-777 |#1| (-861 |#2|)) "failed") $) NIL)) (-2999 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL)) (-3213 (((-3 (-112) (-641 $)) (-777 |#1| (-861 |#2|)) $) NIL)) (-1614 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 $))) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-1353 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL)) (-3901 (($ (-777 |#1| (-861 |#2|)) $) NIL) (($ (-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-4258 (((-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-1591 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-4266 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-4179 (((-112) $ $) NIL)) (-3088 (((-2 (|:| |num| (-777 |#1| (-861 |#2|))) (|:| |den| |#1|)) (-777 |#1| (-861 |#2|)) $) NIL (|has| |#1| (-556)))) (-3244 (((-112) (-777 |#1| (-861 |#2|)) $) NIL) (((-112) $) NIL)) (-2601 (((-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)) $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-3 (-777 |#1| (-861 |#2|)) "failed") $) NIL)) (-3582 (((-3 (-777 |#1| (-861 |#2|)) "failed") (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL)) (-3465 (((-3 $ "failed") $ (-777 |#1| (-861 |#2|))) NIL)) (-3004 (($ $ (-777 |#1| (-861 |#2|))) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL)) (-3736 (((-112) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-777 |#1| (-861 |#2|))) (-641 (-777 |#1| (-861 |#2|)))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-294 (-777 |#1| (-861 |#2|)))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (($ $ (-641 (-294 (-777 |#1| (-861 |#2|))))) NIL (-12 (|has| (-777 |#1| (-861 |#2|)) (-309 (-777 |#1| (-861 |#2|)))) (|has| (-777 |#1| (-861 |#2|)) (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-2266 (((-768) $) NIL)) (-3873 (((-768) (-777 |#1| (-861 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-777 |#1| (-861 |#2|)) (-1094)))) (((-768) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-777 |#1| (-861 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-777 |#1| (-861 |#2|)))) NIL)) (-2031 (($ $ (-861 |#2|)) NIL)) (-2401 (($ $ (-861 |#2|)) NIL)) (-2158 (($ $) NIL)) (-2624 (($ $ (-861 |#2|)) NIL)) (-3742 (((-859) $) NIL) (((-641 (-777 |#1| (-861 |#2|))) $) NIL)) (-1849 (((-768) $) NIL (|has| (-861 |#2|) (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 (-777 |#1| (-861 |#2|))))) "failed") (-641 (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 (-777 |#1| (-861 |#2|))))) "failed") (-641 (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|))) (-1 (-112) (-777 |#1| (-861 |#2|)) (-777 |#1| (-861 |#2|)))) NIL)) (-1839 (((-112) $ (-1 (-112) (-777 |#1| (-861 |#2|)) (-641 (-777 |#1| (-861 |#2|))))) NIL)) (-4020 (((-641 $) (-777 |#1| (-861 |#2|)) $) NIL) (((-641 $) (-777 |#1| (-861 |#2|)) (-641 $)) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) $) NIL) (((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-641 $)) NIL)) (-1417 (((-112) (-1 (-112) (-777 |#1| (-861 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-4126 (((-641 (-861 |#2|)) $) NIL)) (-3485 (((-112) (-777 |#1| (-861 |#2|)) $) NIL)) (-2755 (((-112) (-861 |#2|) $) NIL)) (-1705 (((-112) $ $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1043 |#1| |#2|) (-13 (-1066 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) (-10 -8 (-15 -1454 ((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112))))) (-452) (-641 (-1170))) (T -1043)) +((-1454 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1043 *5 *6))))) +(-13 (-1066 |#1| (-531 (-861 |#2|)) (-861 |#2|) (-777 |#1| (-861 |#2|))) (-10 -8 (-15 -1454 ((-641 $) (-641 (-777 |#1| (-861 |#2|))) (-112) (-112))))) +((-3635 (((-1 (-564)) (-1088 (-564))) 33)) (-1593 (((-564) (-564) (-564) (-564) (-564)) 30)) (-3074 (((-1 (-564)) |RationalNumber|) NIL)) (-2884 (((-1 (-564)) |RationalNumber|) NIL)) (-3181 (((-1 (-564)) (-564) |RationalNumber|) NIL))) +(((-1044) (-10 -7 (-15 -3635 ((-1 (-564)) (-1088 (-564)))) (-15 -3181 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3074 ((-1 (-564)) |RationalNumber|)) (-15 -2884 ((-1 (-564)) |RationalNumber|)) (-15 -1593 ((-564) (-564) (-564) (-564) (-564))))) (T -1044)) +((-1593 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1044)))) (-2884 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))) (-3074 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)))) (-3181 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)) (-5 *3 (-564)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1044))))) +(-10 -7 (-15 -3635 ((-1 (-564)) (-1088 (-564)))) (-15 -3181 ((-1 (-564)) (-564) |RationalNumber|)) (-15 -3074 ((-1 (-564)) |RationalNumber|)) (-15 -2884 ((-1 (-564)) |RationalNumber|)) (-15 -1593 ((-564) (-564) (-564) (-564) (-564)))) +((-3742 (((-859) $) NIL) (($ (-564)) 10))) +(((-1045 |#1|) (-10 -8 (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-1046)) (T -1045)) +NIL +(-10 -8 (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-1046) (-140)) (T -1046)) +((-3270 (*1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-768))))) +(-13 (-1053) (-723) (-644 $) (-614 (-564)) (-10 -7 (-15 -3270 ((-768)) -2091) (-6 -4408))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-614 (-564)) . T) ((-611 (-859)) . T) ((-644 $) . T) ((-723) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3285 (((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)) 60))) +(((-1047 |#1| |#2|) (-10 -7 (-15 -3285 ((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)))) (-1170) (-363)) (T -1047)) +((-3285 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-768)) (-4 *6 (-363)) (-5 *2 (-407 (-949 *6))) (-5 *1 (-1047 *5 *6)) (-14 *5 (-1170))))) +(-10 -7 (-15 -3285 ((-407 (-949 |#2|)) (-641 |#2|) (-641 |#2|) (-768) (-768)))) +((-2335 (((-112) $) 40)) (-1695 (((-112) $) 17)) (-2659 (((-768) $) 13)) (-2671 (((-768) $) 14)) (-2041 (((-112) $) 30)) (-3938 (((-112) $) 42))) +(((-1048 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2671 ((-768) |#1|)) (-15 -2659 ((-768) |#1|)) (-15 -3938 ((-112) |#1|)) (-15 -2335 ((-112) |#1|)) (-15 -2041 ((-112) |#1|)) (-15 -1695 ((-112) |#1|))) (-1049 |#2| |#3| |#4| |#5| |#6|) (-768) (-768) (-1046) (-238 |#3| |#4|) (-238 |#2| |#4|)) (T -1048)) +NIL +(-10 -8 (-15 -2671 ((-768) |#1|)) (-15 -2659 ((-768) |#1|)) (-15 -3938 ((-112) |#1|)) (-15 -2335 ((-112) |#1|)) (-15 -2041 ((-112) |#1|)) (-15 -1695 ((-112) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-2335 (((-112) $) 51)) (-3239 (((-3 $ "failed") $ $) 19)) (-1695 (((-112) $) 53)) (-2969 (((-112) $ (-768)) 61)) (-2818 (($) 17 T CONST)) (-2903 (($ $) 34 (|has| |#3| (-307)))) (-4236 ((|#4| $ (-564)) 39)) (-1544 (((-768) $) 33 (|has| |#3| (-556)))) (-2540 ((|#3| $ (-564) (-564)) 41)) (-3616 (((-641 |#3|) $) 68 (|has| $ (-6 -4411)))) (-3735 (((-768) $) 32 (|has| |#3| (-556)))) (-1973 (((-641 |#5|) $) 31 (|has| |#3| (-556)))) (-2659 (((-768) $) 45)) (-2671 (((-768) $) 44)) (-2275 (((-112) $ (-768)) 60)) (-1305 (((-564) $) 49)) (-1392 (((-564) $) 47)) (-1386 (((-641 |#3|) $) 69 (|has| $ (-6 -4411)))) (-2431 (((-112) |#3| $) 71 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4411))))) (-4212 (((-564) $) 48)) (-2739 (((-564) $) 46)) (-1915 (($ (-641 (-641 |#3|))) 54)) (-2606 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3299 (((-641 (-641 |#3|)) $) 43)) (-1500 (((-112) $ (-768)) 59)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-556)))) (-3736 (((-112) (-1 (-112) |#3|) $) 66 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#3|) (-641 |#3|)) 75 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) 73 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) 72 (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-1717 (((-112) $ $) 55)) (-4003 (((-112) $) 58)) (-3434 (($) 57)) (-4382 ((|#3| $ (-564) (-564)) 42) ((|#3| $ (-564) (-564) |#3|) 40)) (-2041 (((-112) $) 52)) (-3873 (((-768) |#3| $) 70 (-12 (|has| |#3| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#3|) $) 67 (|has| $ (-6 -4411)))) (-3896 (($ $) 56)) (-1346 ((|#5| $ (-564)) 38)) (-3742 (((-859) $) 11)) (-1417 (((-112) (-1 (-112) |#3|) $) 65 (|has| $ (-6 -4411)))) (-3938 (((-112) $) 50)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#3|) 35 (|has| |#3| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2641 (((-768) $) 62 (|has| $ (-6 -4411))))) +(((-1049 |#1| |#2| |#3| |#4| |#5|) (-140) (-768) (-768) (-1046) (-238 |t#2| |t#3|) (-238 |t#1| |t#3|)) (T -1049)) +((-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1915 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1046)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1695 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2041 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-2335 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112)))) (-1305 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-4212 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-1392 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2739 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564)))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) (-4382 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) (-2540 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) (-4382 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *2 (-1046)) (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) (-4236 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *2 *7)) (-4 *6 (-1046)) (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6)))) (-1346 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *7 *2)) (-4 *6 (-1046)) (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6)))) (-2187 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) (-1321 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) (-1799 (*1 *1 *1 *2) (-12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) (-2903 (*1 *1 *1) (-12 (-4 *1 (-1049 *2 *3 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307)))) (-1544 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-768)))) (-3735 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-768)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) (-5 *2 (-641 *7))))) +(-13 (-111 |t#3| |t#3|) (-489 |t#3|) (-10 -8 (-6 -4411) (IF (|has| |t#3| (-172)) (-6 (-714 |t#3|)) |%noBranch|) (-15 -1915 ($ (-641 (-641 |t#3|)))) (-15 -1695 ((-112) $)) (-15 -2041 ((-112) $)) (-15 -2335 ((-112) $)) (-15 -3938 ((-112) $)) (-15 -1305 ((-564) $)) (-15 -4212 ((-564) $)) (-15 -1392 ((-564) $)) (-15 -2739 ((-564) $)) (-15 -2659 ((-768) $)) (-15 -2671 ((-768) $)) (-15 -3299 ((-641 (-641 |t#3|)) $)) (-15 -4382 (|t#3| $ (-564) (-564))) (-15 -2540 (|t#3| $ (-564) (-564))) (-15 -4382 (|t#3| $ (-564) (-564) |t#3|)) (-15 -4236 (|t#4| $ (-564))) (-15 -1346 (|t#5| $ (-564))) (-15 -2187 ($ (-1 |t#3| |t#3|) $)) (-15 -2187 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-556)) (-15 -1321 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-363)) (-15 -1799 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-307)) (-15 -2903 ($ $)) |%noBranch|) (IF (|has| |t#3| (-556)) (PROGN (-15 -1544 ((-768) $)) (-15 -3735 ((-768) $)) (-15 -1973 ((-641 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-131) . T) ((-611 (-859)) . T) ((-309 |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-489 |#3|) . T) ((-514 |#3| |#3|) -12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))) ((-644 |#3|) . T) ((-714 |#3|) |has| |#3| (-172)) ((-1052 |#3|) . T) ((-1094) . T) ((-1209) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2335 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1695 (((-112) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-2818 (($) NIL T CONST)) (-2903 (($ $) 47 (|has| |#3| (-307)))) (-4236 (((-240 |#2| |#3|) $ (-564)) 36)) (-3100 (($ (-685 |#3|)) 45)) (-1544 (((-768) $) 49 (|has| |#3| (-556)))) (-2540 ((|#3| $ (-564) (-564)) NIL)) (-3616 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-3735 (((-768) $) 51 (|has| |#3| (-556)))) (-1973 (((-641 (-240 |#1| |#3|)) $) 55 (|has| |#3| (-556)))) (-2659 (((-768) $) NIL)) (-2671 (((-768) $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-1305 (((-564) $) NIL)) (-1392 (((-564) $) NIL)) (-1386 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-4212 (((-564) $) NIL)) (-2739 (((-564) $) NIL)) (-1915 (($ (-641 (-641 |#3|))) 31)) (-2606 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3299 (((-641 (-641 |#3|)) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1321 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-556)))) (-3736 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#3| $ (-564) (-564)) NIL) ((|#3| $ (-564) (-564) |#3|) NIL)) (-3603 (((-134)) 59 (|has| |#3| (-363)))) (-2041 (((-112) $) NIL)) (-3873 (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094)))) (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) 66 (|has| |#3| (-612 (-536))))) (-1346 (((-240 |#1| |#3|) $ (-564)) 40)) (-3742 (((-859) $) 19) (((-685 |#3|) $) 42)) (-1417 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-3938 (((-112) $) NIL)) (-4311 (($) 16 T CONST)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1050 |#1| |#2| |#3|) (-13 (-1049 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -3100 ($ (-685 |#3|))))) (-768) (-768) (-1046)) (T -1050)) +((-3100 (*1 *1 *2) (-12 (-5 *2 (-685 *5)) (-4 *5 (-1046)) (-5 *1 (-1050 *3 *4 *5)) (-14 *3 (-768)) (-14 *4 (-768))))) +(-13 (-1049 |#1| |#2| |#3| (-240 |#2| |#3|) (-240 |#1| |#3|)) (-611 (-685 |#3|)) (-10 -8 (IF (|has| |#3| (-363)) (-6 (-1266 |#3|)) |%noBranch|) (IF (|has| |#3| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|) (-15 -3100 ($ (-685 |#3|))))) +((-1699 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36)) (-2187 ((|#10| (-1 |#7| |#3|) |#6|) 34))) +(((-1051 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2187 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1699 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-768) (-768) (-1046) (-238 |#2| |#3|) (-238 |#1| |#3|) (-1049 |#1| |#2| |#3| |#4| |#5|) (-1046) (-238 |#2| |#7|) (-238 |#1| |#7|) (-1049 |#1| |#2| |#7| |#8| |#9|)) (T -1051)) +((-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1046)) (-4 *2 (-1046)) (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *12 (-1049 *5 *6 *2 *10 *11)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1046)) (-4 *10 (-1046)) (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) (-4 *9 (-238 *5 *7)) (-4 *2 (-1049 *5 *6 *10 *11 *12)) (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10))))) +(-10 -7 (-15 -2187 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1699 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ |#1|) 23))) +(((-1052 |#1|) (-140) (-1053)) (T -1052)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1053))))) (-13 (-21) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-1052) (-140)) (T -1052)) -NIL -(-13 (-21) (-1105)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-610 (-858)) . T) ((-1105) . T) ((-1093) . T)) -((-2893 (($ $) 17)) (-3202 (($ $) 25)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 54)) (-3251 (($ $) 27)) (-3212 (($ $) 12)) (-3233 (($ $) 43)) (-2802 (((-379) $) NIL) (((-225) $) NIL) (((-888 (-379)) $) 36)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL) (($ (-407 (-563))) 31) (($ (-563)) NIL) (($ (-407 (-563))) 31)) (-3192 (((-767)) 9)) (-3241 (($ $) 44))) -(((-1053 |#1|) (-10 -8 (-15 -3202 (|#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -3212 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -3251 (|#1| |#1|)) (-15 -2938 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| (-563))) (-15 -2802 ((-225) |#1|)) (-15 -2802 ((-379) |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| |#1|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-1054)) (T -1053)) -((-3192 (*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054))))) -(-10 -8 (-15 -3202 (|#1| |#1|)) (-15 -2893 (|#1| |#1|)) (-15 -3212 (|#1| |#1|)) (-15 -3233 (|#1| |#1|)) (-15 -3241 (|#1| |#1|)) (-15 -3251 (|#1| |#1|)) (-15 -2938 ((-885 (-379) |#1|) |#1| (-888 (-379)) (-885 (-379) |#1|))) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| (-563))) (-15 -2802 ((-225) |#1|)) (-15 -2802 ((-379) |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| |#1|)) (-15 -3192 ((-767))) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3223 (((-563) $) 90)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-2893 (($ $) 88)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-2067 (($ $) 98)) (-4332 (((-112) $ $) 60)) (-2107 (((-563) $) 115)) (-3684 (($) 17 T CONST)) (-3202 (($ $) 87)) (-2671 (((-3 (-563) "failed") $) 103) (((-3 (-407 (-563)) "failed") $) 100)) (-2589 (((-563) $) 104) (((-407 (-563)) $) 101)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-3675 (((-112) $) 72)) (-2720 (((-112) $) 113)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 94)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 97)) (-3251 (($ $) 93)) (-2731 (((-112) $) 114)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-3489 (($ $ $) 112)) (-4105 (($ $ $) 111)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-3212 (($ $) 89)) (-3233 (($ $) 91)) (-2055 (((-418 $) $) 75)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-2802 (((-379) $) 106) (((-225) $) 105) (((-888 (-379)) $) 95)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ (-563)) 102) (($ (-407 (-563))) 99)) (-3192 (((-767)) 28 T CONST)) (-3241 (($ $) 92)) (-2543 (((-112) $ $) 40)) (-3841 (($ $) 116)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2998 (((-112) $ $) 109)) (-2977 (((-112) $ $) 108)) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 110)) (-2966 (((-112) $ $) 107)) (-3050 (($ $ $) 66)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70) (($ $ (-407 (-563))) 96)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68))) -(((-1054) (-140)) (T -1054)) -((-3841 (*1 *1 *1) (-4 *1 (-1054))) (-3251 (*1 *1 *1) (-4 *1 (-1054))) (-3241 (*1 *1 *1) (-4 *1 (-1054))) (-3233 (*1 *1 *1) (-4 *1 (-1054))) (-3223 (*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-563)))) (-3212 (*1 *1 *1) (-4 *1 (-1054))) (-2893 (*1 *1 *1) (-4 *1 (-1054))) (-3202 (*1 *1 *1) (-4 *1 (-1054)))) -(-13 (-363) (-844) (-1018) (-1034 (-563)) (-1034 (-407 (-563))) (-998) (-611 (-888 (-379))) (-882 (-379)) (-147) (-10 -8 (-15 -3251 ($ $)) (-15 -3241 ($ $)) (-15 -3233 ($ $)) (-15 -3223 ((-563) $)) (-15 -3212 ($ $)) (-15 -2893 ($ $)) (-15 -3202 ($ $)) (-15 -3841 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-611 (-225)) . T) ((-611 (-379)) . T) ((-611 (-888 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 $) . T) ((-722) . T) ((-787) . T) ((-788) . T) ((-790) . T) ((-791) . T) ((-844) . T) ((-846) . T) ((-882 (-379)) . T) ((-916) . T) ((-998) . T) ((-1018) . T) ((-1034 (-407 (-563))) . T) ((-1034 (-563)) . T) ((-1051 #0#) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) |#2| $) 26)) (-2433 ((|#1| $) 10)) (-2107 (((-563) |#2| $) 114)) (-2691 (((-3 $ "failed") |#2| (-917)) 75)) (-2665 ((|#1| $) 31)) (-2682 ((|#1| |#2| $ |#1|) 40)) (-3272 (($ $) 28)) (-3230 (((-3 |#2| "failed") |#2| $) 110)) (-2720 (((-112) |#2| $) NIL)) (-2731 (((-112) |#2| $) NIL)) (-3263 (((-112) |#2| $) 27)) (-3284 ((|#1| $) 115)) (-2654 ((|#1| $) 30)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2713 ((|#2| $) 102)) (-2062 (((-858) $) 94)) (-1775 ((|#1| |#2| $ |#1|) 41)) (-2702 (((-640 $) |#2|) 77)) (-2943 (((-112) $ $) 97))) -(((-1055 |#1| |#2|) (-13 (-1062 |#1| |#2|) (-10 -8 (-15 -2654 (|#1| $)) (-15 -2665 (|#1| $)) (-15 -2433 (|#1| $)) (-15 -3284 (|#1| $)) (-15 -3272 ($ $)) (-15 -3263 ((-112) |#2| $)) (-15 -2682 (|#1| |#2| $ |#1|)))) (-13 (-844) (-363)) (-1233 |#1|)) (T -1055)) -((-2682 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-2654 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-2665 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-2433 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-3284 (*1 *2 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-3272 (*1 *1 *1) (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) (-4 *3 (-1233 *2)))) (-3263 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) (-4 *3 (-1233 *4))))) -(-13 (-1062 |#1| |#2|) (-10 -8 (-15 -2654 (|#1| $)) (-15 -2665 (|#1| $)) (-15 -2433 (|#1| $)) (-15 -3284 (|#1| $)) (-15 -3272 ($ $)) (-15 -3263 ((-112) |#2| $)) (-15 -2682 (|#1| |#2| $ |#1|)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-2379 (($ $ $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2356 (($ $ $ $) NIL)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2107 (((-563) $) NIL)) (-1318 (($ $ $) NIL)) (-3684 (($) NIL T CONST)) (-3294 (($ (-1169)) 10) (($ (-563)) 7)) (-2671 (((-3 (-563) "failed") $) NIL)) (-2589 (((-563) $) NIL)) (-3495 (($ $ $) NIL)) (-3853 (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-684 (-563)) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3459 (((-3 (-407 (-563)) "failed") $) NIL)) (-3447 (((-112) $) NIL)) (-3437 (((-407 (-563)) $) NIL)) (-4301 (($) NIL) (($ $) NIL)) (-3473 (($ $ $) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2331 (($ $ $ $) NIL)) (-2392 (($ $ $) NIL)) (-2720 (((-112) $) NIL)) (-3243 (($ $ $) NIL)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-2712 (((-112) $) NIL)) (-4107 (((-112) $) NIL)) (-3113 (((-3 $ "failed") $) NIL)) (-2731 (((-112) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2344 (($ $ $ $) NIL)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2450 (($ $) NIL)) (-3322 (($ $) NIL)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-2321 (($ $ $) NIL)) (-2956 (($) NIL T CONST)) (-2051 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1979 (($ $) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4118 (((-112) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-1361 (($ $ (-767)) NIL) (($ $) NIL)) (-3394 (($ $) NIL)) (-2208 (($ $) NIL)) (-2802 (((-563) $) 16) (((-536) $) NIL) (((-888 (-563)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1169)) 9)) (-2062 (((-858) $) 23) (($ (-563)) 6) (($ $) NIL) (($ (-563)) 6)) (-3192 (((-767)) NIL T CONST)) (-2404 (((-112) $ $) NIL)) (-2991 (($ $ $) NIL)) (-1433 (($) NIL)) (-2543 (((-112) $ $) NIL)) (-2367 (($ $ $ $) NIL)) (-3841 (($ $) NIL)) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL)) (-3039 (($ $) 22) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL))) -(((-1056) (-13 (-545) (-615 (-1169)) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -3294 ($ (-1169))) (-15 -3294 ($ (-563)))))) (T -1056)) -((-3294 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1056)))) (-3294 (*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1056))))) -(-13 (-545) (-615 (-1169)) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -3294 ($ (-1169))) (-15 -3294 ($ (-563))))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL)) (-1435 (((-1262) $ (-1169) (-1169)) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-3312 (($) 9)) (-2189 (((-52) $ (-1169) (-52)) NIL)) (-2211 (($ $) 32)) (-2241 (($ $) 30)) (-2251 (($ $) 29)) (-2230 (($ $) 31)) (-2200 (($ $) 35)) (-2192 (($ $) 36)) (-2263 (($ $) 28)) (-2220 (($ $) 33)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) 27 (|has| $ (-6 -4408)))) (-3742 (((-3 (-52) "failed") (-1169) $) 43)) (-3684 (($) NIL T CONST)) (-2274 (($) 7)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-2841 (($ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) 53 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-3 (-52) "failed") (-1169) $) NIL)) (-1417 (($ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408)))) (-3304 (((-3 (-1151) "failed") $ (-1151) (-563)) 74)) (-4150 (((-52) $ (-1169) (-52)) NIL (|has| $ (-6 -4409)))) (-4085 (((-52) $ (-1169)) NIL)) (-4236 (((-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-1169) $) NIL (|has| (-1169) (-846)))) (-1572 (((-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) 38 (|has| $ (-6 -4408))) (((-640 (-52)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-3383 (((-1169) $) NIL (|has| (-1169) (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4409))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-2706 (((-640 (-1169)) $) NIL)) (-3435 (((-112) (-1169) $) NIL)) (-3835 (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL)) (-1956 (($ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) 46)) (-3404 (((-640 (-1169)) $) NIL)) (-3417 (((-112) (-1169) $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-2164 (((-379) $ (-1169)) 52)) (-3335 (((-640 (-1151)) $ (-1151)) 76)) (-1884 (((-52) $) NIL (|has| (-1169) (-846)))) (-1828 (((-3 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) "failed") (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL)) (-3357 (($ $ (-52)) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))))) NIL (-12 (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ $ (-294 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL (-12 (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ $ (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) NIL (-12 (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ $ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL (-12 (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-309 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (($ $ (-640 (-52)) (-640 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093)))) (($ $ (-640 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093))))) (-3427 (((-640 (-52)) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 (((-52) $ (-1169)) NIL) (((-52) $ (-1169) (-52)) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL)) (-3324 (($ $ (-1169)) 54)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093)))) (((-767) (-52) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-52) (-1093)))) (((-767) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) 40)) (-1951 (($ $ $) 41)) (-2062 (((-858) $) NIL (-2811 (|has| (-52) (-610 (-858))) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-610 (-858)))))) (-2184 (($ $ (-1169) (-379)) 50)) (-2173 (($ $ (-1169) (-379)) 51)) (-4034 (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 (-1169)) (|:| -3704 (-52)))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-52) (-1093)) (|has| (-2 (|:| -3320 (-1169)) (|:| -3704 (-52))) (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1057) (-13 (-1184 (-1169) (-52)) (-10 -8 (-15 -1951 ($ $ $)) (-15 -2274 ($)) (-15 -2263 ($ $)) (-15 -2251 ($ $)) (-15 -2241 ($ $)) (-15 -2230 ($ $)) (-15 -2220 ($ $)) (-15 -2211 ($ $)) (-15 -2200 ($ $)) (-15 -2192 ($ $)) (-15 -2184 ($ $ (-1169) (-379))) (-15 -2173 ($ $ (-1169) (-379))) (-15 -2164 ((-379) $ (-1169))) (-15 -3335 ((-640 (-1151)) $ (-1151))) (-15 -3324 ($ $ (-1169))) (-15 -3312 ($)) (-15 -3304 ((-3 (-1151) "failed") $ (-1151) (-563))) (-6 -4408)))) (T -1057)) -((-1951 (*1 *1 *1 *1) (-5 *1 (-1057))) (-2274 (*1 *1) (-5 *1 (-1057))) (-2263 (*1 *1 *1) (-5 *1 (-1057))) (-2251 (*1 *1 *1) (-5 *1 (-1057))) (-2241 (*1 *1 *1) (-5 *1 (-1057))) (-2230 (*1 *1 *1) (-5 *1 (-1057))) (-2220 (*1 *1 *1) (-5 *1 (-1057))) (-2211 (*1 *1 *1) (-5 *1 (-1057))) (-2200 (*1 *1 *1) (-5 *1 (-1057))) (-2192 (*1 *1 *1) (-5 *1 (-1057))) (-2184 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-2173 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057)))) (-2164 (*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-379)) (-5 *1 (-1057)))) (-3335 (*1 *2 *1 *3) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1057)) (-5 *3 (-1151)))) (-3324 (*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1057)))) (-3312 (*1 *1) (-5 *1 (-1057))) (-3304 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-1057))))) -(-13 (-1184 (-1169) (-52)) (-10 -8 (-15 -1951 ($ $ $)) (-15 -2274 ($)) (-15 -2263 ($ $)) (-15 -2251 ($ $)) (-15 -2241 ($ $)) (-15 -2230 ($ $)) (-15 -2220 ($ $)) (-15 -2211 ($ $)) (-15 -2200 ($ $)) (-15 -2192 ($ $)) (-15 -2184 ($ $ (-1169) (-379))) (-15 -2173 ($ $ (-1169) (-379))) (-15 -2164 ((-379) $ (-1169))) (-15 -3335 ((-640 (-1151)) $ (-1151))) (-15 -3324 ($ $ (-1169))) (-15 -3312 ($)) (-15 -3304 ((-3 (-1151) "failed") $ (-1151) (-563))) (-6 -4408))) -((-1588 (($ $) 46)) (-2539 (((-112) $ $) 80)) (-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-948 (-407 (-563)))) 248) (((-3 $ "failed") (-948 (-563))) 247) (((-3 $ "failed") (-948 |#2|)) 250)) (-2589 ((|#2| $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL) ((|#4| $) NIL) (($ (-948 (-407 (-563)))) 236) (($ (-948 (-563))) 232) (($ (-948 |#2|)) 252)) (-3213 (($ $) NIL) (($ $ |#4|) 44)) (-1480 (((-112) $ $) 126) (((-112) $ (-640 $)) 130)) (-2603 (((-112) $) 60)) (-3926 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 120)) (-2316 (($ $) 155)) (-2437 (($ $) 151)) (-2448 (($ $) 150)) (-2528 (($ $ $) 85) (($ $ $ |#4|) 90)) (-2517 (($ $ $) 88) (($ $ $ |#4|) 92)) (-1491 (((-112) $ $) 138) (((-112) $ (-640 $)) 139)) (-2674 ((|#4| $) 32)) (-2468 (($ $ $) 123)) (-2612 (((-112) $) 59)) (-2662 (((-767) $) 35)) (-2284 (($ $) 169)) (-2295 (($ $) 166)) (-2561 (((-640 $) $) 72)) (-2593 (($ $) 62)) (-2305 (($ $) 162)) (-2572 (((-640 $) $) 69)) (-2582 (($ $) 64)) (-3193 ((|#2| $) NIL) (($ $ |#4|) 39)) (-2459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3381 (-767))) $ $) 125)) (-2478 (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $) 121) (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $ |#4|) 122)) (-2488 (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -1488 $)) $ $) 116) (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -1488 $)) $ $ |#4|) 118)) (-2508 (($ $ $) 95) (($ $ $ |#4|) 103)) (-2499 (($ $ $) 96) (($ $ $ |#4|) 104)) (-2632 (((-640 $) $) 54)) (-1447 (((-112) $ $) 135) (((-112) $ (-640 $)) 136)) (-1395 (($ $ $) 111)) (-2956 (($ $) 37)) (-3449 (((-112) $ $) 78)) (-1458 (((-112) $ $) 131) (((-112) $ (-640 $)) 133)) (-1405 (($ $ $) 109)) (-2651 (($ $) 41)) (-1647 ((|#2| |#2| $) 159) (($ (-640 $)) NIL) (($ $ $) NIL)) (-2413 (($ $ |#2|) NIL) (($ $ $) 148)) (-2425 (($ $ |#2|) 143) (($ $ $) 146)) (-2642 (($ $) 49)) (-2621 (($ $) 55)) (-2802 (((-888 (-379)) $) NIL) (((-888 (-563)) $) NIL) (((-536) $) NIL) (($ (-948 (-407 (-563)))) 238) (($ (-948 (-563))) 234) (($ (-948 |#2|)) 249) (((-1151) $) 277) (((-948 |#2|) $) 179)) (-2062 (((-858) $) 29) (($ (-563)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-948 |#2|) $) 180) (($ (-407 (-563))) NIL) (($ $) NIL)) (-2549 (((-3 (-112) "failed") $ $) 77))) -(((-1058 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2062 (|#1| |#1|)) (-15 -1647 (|#1| |#1| |#1|)) (-15 -1647 (|#1| (-640 |#1|))) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 ((-948 |#2|) |#1|)) (-15 -2802 ((-948 |#2|) |#1|)) (-15 -2802 ((-1151) |#1|)) (-15 -2284 (|#1| |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2316 (|#1| |#1|)) (-15 -1647 (|#2| |#2| |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -2425 (|#1| |#1| |#1|)) (-15 -2413 (|#1| |#1| |#2|)) (-15 -2425 (|#1| |#1| |#2|)) (-15 -2437 (|#1| |#1|)) (-15 -2448 (|#1| |#1|)) (-15 -2802 (|#1| (-948 |#2|))) (-15 -2589 (|#1| (-948 |#2|))) (-15 -2671 ((-3 |#1| "failed") (-948 |#2|))) (-15 -2802 (|#1| (-948 (-563)))) (-15 -2589 (|#1| (-948 (-563)))) (-15 -2671 ((-3 |#1| "failed") (-948 (-563)))) (-15 -2802 (|#1| (-948 (-407 (-563))))) (-15 -2589 (|#1| (-948 (-407 (-563))))) (-15 -2671 ((-3 |#1| "failed") (-948 (-407 (-563))))) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1405 (|#1| |#1| |#1|)) (-15 -2459 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3381 (-767))) |#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -3926 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -2478 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1| |#4|)) (-15 -2478 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -2488 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -1488 |#1|)) |#1| |#1| |#4|)) (-15 -2488 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -2499 (|#1| |#1| |#1| |#4|)) (-15 -2508 (|#1| |#1| |#1| |#4|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2508 (|#1| |#1| |#1|)) (-15 -2517 (|#1| |#1| |#1| |#4|)) (-15 -2528 (|#1| |#1| |#1| |#4|)) (-15 -2517 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|)) (-15 -1491 ((-112) |#1| (-640 |#1|))) (-15 -1491 ((-112) |#1| |#1|)) (-15 -1447 ((-112) |#1| (-640 |#1|))) (-15 -1447 ((-112) |#1| |#1|)) (-15 -1458 ((-112) |#1| (-640 |#1|))) (-15 -1458 ((-112) |#1| |#1|)) (-15 -1480 ((-112) |#1| (-640 |#1|))) (-15 -1480 ((-112) |#1| |#1|)) (-15 -2539 ((-112) |#1| |#1|)) (-15 -3449 ((-112) |#1| |#1|)) (-15 -2549 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2561 ((-640 |#1|) |#1|)) (-15 -2572 ((-640 |#1|) |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -2603 ((-112) |#1|)) (-15 -2612 ((-112) |#1|)) (-15 -3213 (|#1| |#1| |#4|)) (-15 -3193 (|#1| |#1| |#4|)) (-15 -2621 (|#1| |#1|)) (-15 -2632 ((-640 |#1|) |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -2956 (|#1| |#1|)) (-15 -2662 ((-767) |#1|)) (-15 -2674 (|#4| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2062 (|#1| |#4|)) (-15 -2671 ((-3 |#4| "failed") |#1|)) (-15 -2589 (|#4| |#1|)) (-15 -3193 (|#2| |#1|)) (-15 -3213 (|#1| |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-1059 |#2| |#3| |#4|) (-1045) (-789) (-846)) (T -1058)) -NIL -(-10 -8 (-15 -2062 (|#1| |#1|)) (-15 -1647 (|#1| |#1| |#1|)) (-15 -1647 (|#1| (-640 |#1|))) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 ((-948 |#2|) |#1|)) (-15 -2802 ((-948 |#2|) |#1|)) (-15 -2802 ((-1151) |#1|)) (-15 -2284 (|#1| |#1|)) (-15 -2295 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2316 (|#1| |#1|)) (-15 -1647 (|#2| |#2| |#1|)) (-15 -2413 (|#1| |#1| |#1|)) (-15 -2425 (|#1| |#1| |#1|)) (-15 -2413 (|#1| |#1| |#2|)) (-15 -2425 (|#1| |#1| |#2|)) (-15 -2437 (|#1| |#1|)) (-15 -2448 (|#1| |#1|)) (-15 -2802 (|#1| (-948 |#2|))) (-15 -2589 (|#1| (-948 |#2|))) (-15 -2671 ((-3 |#1| "failed") (-948 |#2|))) (-15 -2802 (|#1| (-948 (-563)))) (-15 -2589 (|#1| (-948 (-563)))) (-15 -2671 ((-3 |#1| "failed") (-948 (-563)))) (-15 -2802 (|#1| (-948 (-407 (-563))))) (-15 -2589 (|#1| (-948 (-407 (-563))))) (-15 -2671 ((-3 |#1| "failed") (-948 (-407 (-563))))) (-15 -1395 (|#1| |#1| |#1|)) (-15 -1405 (|#1| |#1| |#1|)) (-15 -2459 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3381 (-767))) |#1| |#1|)) (-15 -2468 (|#1| |#1| |#1|)) (-15 -3926 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -2478 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1| |#4|)) (-15 -2478 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -2488 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -1488 |#1|)) |#1| |#1| |#4|)) (-15 -2488 ((-2 (|:| -2765 |#1|) (|:| |gap| (-767)) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -2499 (|#1| |#1| |#1| |#4|)) (-15 -2508 (|#1| |#1| |#1| |#4|)) (-15 -2499 (|#1| |#1| |#1|)) (-15 -2508 (|#1| |#1| |#1|)) (-15 -2517 (|#1| |#1| |#1| |#4|)) (-15 -2528 (|#1| |#1| |#1| |#4|)) (-15 -2517 (|#1| |#1| |#1|)) (-15 -2528 (|#1| |#1| |#1|)) (-15 -1491 ((-112) |#1| (-640 |#1|))) (-15 -1491 ((-112) |#1| |#1|)) (-15 -1447 ((-112) |#1| (-640 |#1|))) (-15 -1447 ((-112) |#1| |#1|)) (-15 -1458 ((-112) |#1| (-640 |#1|))) (-15 -1458 ((-112) |#1| |#1|)) (-15 -1480 ((-112) |#1| (-640 |#1|))) (-15 -1480 ((-112) |#1| |#1|)) (-15 -2539 ((-112) |#1| |#1|)) (-15 -3449 ((-112) |#1| |#1|)) (-15 -2549 ((-3 (-112) "failed") |#1| |#1|)) (-15 -2561 ((-640 |#1|) |#1|)) (-15 -2572 ((-640 |#1|) |#1|)) (-15 -2582 (|#1| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -2603 ((-112) |#1|)) (-15 -2612 ((-112) |#1|)) (-15 -3213 (|#1| |#1| |#4|)) (-15 -3193 (|#1| |#1| |#4|)) (-15 -2621 (|#1| |#1|)) (-15 -2632 ((-640 |#1|) |#1|)) (-15 -2642 (|#1| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -2651 (|#1| |#1|)) (-15 -2956 (|#1| |#1|)) (-15 -2662 ((-767) |#1|)) (-15 -2674 (|#4| |#1|)) (-15 -2802 ((-536) |#1|)) (-15 -2802 ((-888 (-563)) |#1|)) (-15 -2802 ((-888 (-379)) |#1|)) (-15 -2062 (|#1| |#4|)) (-15 -2671 ((-3 |#4| "failed") |#1|)) (-15 -2589 (|#4| |#1|)) (-15 -3193 (|#2| |#1|)) (-15 -3213 (|#1| |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 |#3|) $) 110)) (-2021 (((-1165 $) $ |#3|) 125) (((-1165 |#1|) $) 124)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-2554 (($ $) 88 (|has| |#1| (-555)))) (-2533 (((-112) $) 90 (|has| |#1| (-555)))) (-3176 (((-767) $) 112) (((-767) $ (-640 |#3|)) 111)) (-1588 (($ $) 271)) (-2539 (((-112) $ $) 257)) (-1482 (((-3 $ "failed") $ $) 19)) (-3952 (($ $ $) 216 (|has| |#1| (-555)))) (-2363 (((-640 $) $ $) 211 (|has| |#1| (-555)))) (-1325 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-2924 (($ $) 98 (|has| |#1| (-452)))) (-2102 (((-418 $) $) 97 (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-948 (-407 (-563)))) 231 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (((-3 $ "failed") (-948 (-563))) 228 (-2811 (-12 (-3730 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (((-3 $ "failed") (-948 |#1|)) 225 (-2811 (-12 (-3730 (|has| |#1| (-38 (-407 (-563))))) (-3730 (|has| |#1| (-38 (-563)))) (|has| |#3| (-611 (-1169)))) (-12 (-3730 (|has| |#1| (-545))) (-3730 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (-3730 (|has| |#1| (-988 (-563)))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))))) (-2589 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) ((|#3| $) 137) (($ (-948 (-407 (-563)))) 230 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (($ (-948 (-563))) 227 (-2811 (-12 (-3730 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (($ (-948 |#1|)) 224 (-2811 (-12 (-3730 (|has| |#1| (-38 (-407 (-563))))) (-3730 (|has| |#1| (-38 (-563)))) (|has| |#3| (-611 (-1169)))) (-12 (-3730 (|has| |#1| (-545))) (-3730 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (-3730 (|has| |#1| (-988 (-563)))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))))) (-3962 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-555)))) (-3213 (($ $) 154) (($ $ |#3|) 266)) (-3853 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-1480 (((-112) $ $) 256) (((-112) $ (-640 $)) 255)) (-3230 (((-3 $ "failed") $) 33)) (-2603 (((-112) $) 264)) (-3926 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 236)) (-2316 (($ $) 205 (|has| |#1| (-452)))) (-2227 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-3203 (((-640 $) $) 109)) (-3675 (((-112) $) 96 (|has| |#1| (-905)))) (-2437 (($ $) 221 (|has| |#1| (-555)))) (-2448 (($ $) 222 (|has| |#1| (-555)))) (-2528 (($ $ $) 248) (($ $ $ |#3|) 246)) (-2517 (($ $ $) 247) (($ $ $ |#3|) 245)) (-3302 (($ $ |#1| |#2| $) 172)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| |#3| (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| |#3| (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2712 (((-112) $) 31)) (-1528 (((-767) $) 169)) (-1491 (((-112) $ $) 250) (((-112) $ (-640 $)) 249)) (-2327 (($ $ $ $ $) 207 (|has| |#1| (-555)))) (-2674 ((|#3| $) 275)) (-2175 (($ (-1165 |#1|) |#3|) 117) (($ (-1165 $) |#3|) 116)) (-3197 (((-640 $) $) 126)) (-1871 (((-112) $) 152)) (-2165 (($ |#1| |#2|) 153) (($ $ |#3| (-767)) 119) (($ $ (-640 |#3|) (-640 (-767))) 118)) (-2468 (($ $ $) 235)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ |#3|) 120)) (-2612 (((-112) $) 265)) (-3187 ((|#2| $) 170) (((-767) $ |#3|) 122) (((-640 (-767)) $ (-640 |#3|)) 121)) (-3489 (($ $ $) 79 (|has| |#1| (-846)))) (-2662 (((-767) $) 274)) (-4105 (($ $ $) 78 (|has| |#1| (-846)))) (-3310 (($ (-1 |#2| |#2|) $) 171)) (-2751 (($ (-1 |#1| |#1|) $) 151)) (-2845 (((-3 |#3| "failed") $) 123)) (-2284 (($ $) 202 (|has| |#1| (-452)))) (-2295 (($ $) 203 (|has| |#1| (-452)))) (-2561 (((-640 $) $) 260)) (-2593 (($ $) 263)) (-2305 (($ $) 204 (|has| |#1| (-452)))) (-2572 (((-640 $) $) 261)) (-2582 (($ $) 262)) (-3183 (($ $) 149)) (-3193 ((|#1| $) 148) (($ $ |#3|) 267)) (-1607 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-2459 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3381 (-767))) $ $) 234)) (-2478 (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $) 238) (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $ |#3|) 237)) (-2488 (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -1488 $)) $ $) 240) (((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -1488 $)) $ $ |#3|) 239)) (-2508 (($ $ $) 244) (($ $ $ |#3|) 242)) (-2499 (($ $ $) 243) (($ $ $ |#3|) 241)) (-1938 (((-1151) $) 9)) (-1508 (($ $ $) 210 (|has| |#1| (-555)))) (-2632 (((-640 $) $) 269)) (-3218 (((-3 (-640 $) "failed") $) 114)) (-3207 (((-3 (-640 $) "failed") $) 115)) (-3228 (((-3 (-2 (|:| |var| |#3|) (|:| -2631 (-767))) "failed") $) 113)) (-1447 (((-112) $ $) 252) (((-112) $ (-640 $)) 251)) (-1395 (($ $ $) 232)) (-2956 (($ $) 273)) (-3449 (((-112) $ $) 258)) (-1458 (((-112) $ $) 254) (((-112) $ (-640 $)) 253)) (-1405 (($ $ $) 233)) (-2651 (($ $) 272)) (-3249 (((-1113) $) 10)) (-2374 (((-2 (|:| -1647 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-555)))) (-2387 (((-2 (|:| -1647 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-555)))) (-3160 (((-112) $) 166)) (-3170 ((|#1| $) 167)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-1647 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2055 (((-418 $) $) 99 (|has| |#1| (-905)))) (-2401 (((-2 (|:| -1647 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-555)))) (-3448 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-2413 (($ $ |#1|) 219 (|has| |#1| (-555))) (($ $ $) 217 (|has| |#1| (-555)))) (-2425 (($ $ |#1|) 220 (|has| |#1| (-555))) (($ $ $) 218 (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-640 |#3|) (-640 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-640 |#3|) (-640 $)) 138)) (-3974 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-1361 (($ $ |#3|) 42) (($ $ (-640 |#3|)) 41) (($ $ |#3| (-767)) 40) (($ $ (-640 |#3|) (-640 (-767))) 39)) (-1962 ((|#2| $) 150) (((-767) $ |#3|) 130) (((-640 (-767)) $ (-640 |#3|)) 129)) (-2642 (($ $) 270)) (-2621 (($ $) 268)) (-2802 (((-888 (-379)) $) 82 (-12 (|has| |#3| (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| |#3| (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| |#3| (-611 (-536))) (|has| |#1| (-611 (-536))))) (($ (-948 (-407 (-563)))) 229 (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169))))) (($ (-948 (-563))) 226 (-2811 (-12 (-3730 (|has| |#1| (-38 (-407 (-563))))) (|has| |#1| (-38 (-563))) (|has| |#3| (-611 (-1169)))) (-12 (|has| |#1| (-38 (-407 (-563)))) (|has| |#3| (-611 (-1169)))))) (($ (-948 |#1|)) 223 (|has| |#3| (-611 (-1169)))) (((-1151) $) 201 (-12 (|has| |#1| (-1034 (-563))) (|has| |#3| (-611 (-1169))))) (((-948 |#1|) $) 200 (|has| |#3| (-611 (-1169))))) (-3166 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 104 (-3743 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-948 |#1|) $) 199 (|has| |#3| (-611 (-1169)))) (($ (-407 (-563))) 72 (-2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) 168)) (-1304 ((|#1| $ |#2|) 155) (($ $ |#3| (-767)) 128) (($ $ (-640 |#3|) (-640 (-767))) 127)) (-4376 (((-3 $ "failed") $) 73 (-2811 (-3743 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) 28 T CONST)) (-3292 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2543 (((-112) $ $) 89 (|has| |#1| (-555)))) (-3790 (($) 18 T CONST)) (-2549 (((-3 (-112) "failed") $ $) 259)) (-3803 (($) 30 T CONST)) (-2339 (($ $ $ $ (-767)) 208 (|has| |#1| (-555)))) (-2353 (($ $ $ (-767)) 209 (|has| |#1| (-555)))) (-4191 (($ $ |#3|) 38) (($ $ (-640 |#3|)) 37) (($ $ |#3| (-767)) 36) (($ $ (-640 |#3|) (-640 (-767))) 35)) (-2998 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 75 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 77 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 74 (|has| |#1| (-846)))) (-3050 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1059 |#1| |#2| |#3|) (-140) (-1045) (-789) (-846)) (T -1059)) -((-2674 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2662 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-767)))) (-2956 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2651 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1588 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2642 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2632 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2621 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-3193 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-3213 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2603 (*1 *2 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2582 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2572 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2561 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-2549 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-3449 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-2539 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1480 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1480 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-1458 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1458 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-1447 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1447 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-1491 (*1 *2 *1 *1) (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)))) (-1491 (*1 *2 *1 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) (-2528 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2517 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2528 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2517 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2508 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2499 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2508 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2499 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *2 (-846)))) (-2488 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2765 *1) (|:| |gap| (-767)) (|:| -1488 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2488 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2765 *1) (|:| |gap| (-767)) (|:| -1488 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-2478 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2765 *1) (|:| |gap| (-767)) (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2478 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-2 (|:| -2765 *1) (|:| |gap| (-767)) (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-1059 *4 *5 *3)))) (-3926 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2468 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2459 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3381 (-767)))) (-4 *1 (-1059 *3 *4 *5)))) (-1405 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-1395 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)))) (-2671 (*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)))) (-2671 (*1 *1 *2) (|partial| -2811 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2589 (*1 *1 *2) (-2811 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2802 (*1 *1 *2) (-2811 (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2671 (*1 *1 *2) (|partial| -2811 (-12 (-5 *2 (-948 *3)) (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) (-3730 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-3730 (-4 *3 (-545))) (-3730 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-3730 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2589 (*1 *1 *2) (-2811 (-12 (-5 *2 (-948 *3)) (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) (-3730 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-3730 (-4 *3 (-545))) (-3730 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))) (-12 (-5 *2 (-948 *3)) (-12 (-3730 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) (-4 *5 (-846))))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *5 (-611 (-1169))) (-4 *4 (-789)) (-4 *5 (-846)))) (-2448 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2437 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2425 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2413 (*1 *1 *1 *2) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2425 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2413 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-3952 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2401 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -1647 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2387 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -1647 *1) (|:| |coef1| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-2374 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-2 (|:| -1647 *1) (|:| |coef2| *1))) (-4 *1 (-1059 *3 *4 *5)))) (-3962 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2363 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5)))) (-1508 (*1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-2353 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555)))) (-2339 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555)))) (-2327 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-555)))) (-1647 (*1 *2 *2 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2316 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2305 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2295 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452)))) (-2284 (*1 *1 *1) (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-452))))) -(-13 (-945 |t#1| |t#2| |t#3|) (-10 -8 (-15 -2674 (|t#3| $)) (-15 -2662 ((-767) $)) (-15 -2956 ($ $)) (-15 -2651 ($ $)) (-15 -1588 ($ $)) (-15 -2642 ($ $)) (-15 -2632 ((-640 $) $)) (-15 -2621 ($ $)) (-15 -3193 ($ $ |t#3|)) (-15 -3213 ($ $ |t#3|)) (-15 -2612 ((-112) $)) (-15 -2603 ((-112) $)) (-15 -2593 ($ $)) (-15 -2582 ($ $)) (-15 -2572 ((-640 $) $)) (-15 -2561 ((-640 $) $)) (-15 -2549 ((-3 (-112) "failed") $ $)) (-15 -3449 ((-112) $ $)) (-15 -2539 ((-112) $ $)) (-15 -1480 ((-112) $ $)) (-15 -1480 ((-112) $ (-640 $))) (-15 -1458 ((-112) $ $)) (-15 -1458 ((-112) $ (-640 $))) (-15 -1447 ((-112) $ $)) (-15 -1447 ((-112) $ (-640 $))) (-15 -1491 ((-112) $ $)) (-15 -1491 ((-112) $ (-640 $))) (-15 -2528 ($ $ $)) (-15 -2517 ($ $ $)) (-15 -2528 ($ $ $ |t#3|)) (-15 -2517 ($ $ $ |t#3|)) (-15 -2508 ($ $ $)) (-15 -2499 ($ $ $)) (-15 -2508 ($ $ $ |t#3|)) (-15 -2499 ($ $ $ |t#3|)) (-15 -2488 ((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -1488 $)) $ $)) (-15 -2488 ((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -1488 $)) $ $ |t#3|)) (-15 -2478 ((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -2478 ((-2 (|:| -2765 $) (|:| |gap| (-767)) (|:| -2896 $) (|:| -1488 $)) $ $ |t#3|)) (-15 -3926 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -2468 ($ $ $)) (-15 -2459 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3381 (-767))) $ $)) (-15 -1405 ($ $ $)) (-15 -1395 ($ $ $)) (IF (|has| |t#3| (-611 (-1169))) (PROGN (-6 (-610 (-948 |t#1|))) (-6 (-611 (-948 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -2671 ((-3 $ "failed") (-948 (-407 (-563))))) (-15 -2589 ($ (-948 (-407 (-563))))) (-15 -2802 ($ (-948 (-407 (-563))))) (-15 -2671 ((-3 $ "failed") (-948 (-563)))) (-15 -2589 ($ (-948 (-563)))) (-15 -2802 ($ (-948 (-563)))) (IF (|has| |t#1| (-988 (-563))) |%noBranch| (PROGN (-15 -2671 ((-3 $ "failed") (-948 |t#1|))) (-15 -2589 ($ (-948 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-563))) (IF (|has| |t#1| (-38 (-407 (-563)))) |%noBranch| (PROGN (-15 -2671 ((-3 $ "failed") (-948 (-563)))) (-15 -2589 ($ (-948 (-563)))) (-15 -2802 ($ (-948 (-563)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -2671 ((-3 $ "failed") (-948 |t#1|))) (-15 -2589 ($ (-948 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-563))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-563)))) |%noBranch| (PROGN (-15 -2671 ((-3 $ "failed") (-948 |t#1|))) (-15 -2589 ($ (-948 |t#1|)))))) (-15 -2802 ($ (-948 |t#1|))) (IF (|has| |t#1| (-1034 (-563))) (-6 (-611 (-1151))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-15 -2448 ($ $)) (-15 -2437 ($ $)) (-15 -2425 ($ $ |t#1|)) (-15 -2413 ($ $ |t#1|)) (-15 -2425 ($ $ $)) (-15 -2413 ($ $ $)) (-15 -3952 ($ $ $)) (-15 -2401 ((-2 (|:| -1647 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2387 ((-2 (|:| -1647 $) (|:| |coef1| $)) $ $)) (-15 -2374 ((-2 (|:| -1647 $) (|:| |coef2| $)) $ $)) (-15 -3962 ($ $ $)) (-15 -2363 ((-640 $) $ $)) (-15 -1508 ($ $ $)) (-15 -2353 ($ $ $ (-767))) (-15 -2339 ($ $ $ $ (-767))) (-15 -2327 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -1647 (|t#1| |t#1| $)) (-15 -2316 ($ $)) (-15 -2305 ($ $)) (-15 -2295 ($ $)) (-15 -2284 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 |#3|) . T) ((-613 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-610 (-858)) . T) ((-610 (-948 |#1|)) |has| |#3| (-611 (-1169))) ((-172) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| |#1| (-611 (-536))) (|has| |#3| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#3| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#3| (-611 (-888 (-563))))) ((-611 (-948 |#1|)) |has| |#3| (-611 (-1169))) ((-611 (-1151)) -12 (|has| |#1| (-1034 (-563))) (|has| |#3| (-611 (-1169)))) ((-290) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2811 (|has| |#1| (-905)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-555) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 |#3|) . T) ((-882 (-379)) -12 (|has| |#1| (-882 (-379))) (|has| |#3| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-882 (-563))) (|has| |#3| (-882 (-563)))) ((-945 |#1| |#2| |#3|) . T) ((-905) |has| |#1| (-905)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 |#1|) . T) ((-1034 |#3|) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) |has| |#1| (-905))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-4053 (((-640 (-1128)) $) 18)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 29) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-1128) $) 20)) (-2943 (((-112) $ $) NIL))) -(((-1060) (-13 (-1076) (-10 -8 (-15 -4053 ((-640 (-1128)) $)) (-15 -3373 ((-1128) $))))) (T -1060)) -((-4053 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1060)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1060))))) -(-13 (-1076) (-10 -8 (-15 -4053 ((-640 (-1128)) $)) (-15 -3373 ((-1128) $)))) -((-2741 (((-112) |#3| $) 15)) (-2691 (((-3 $ "failed") |#3| (-917)) 29)) (-3230 (((-3 |#3| "failed") |#3| $) 45)) (-2720 (((-112) |#3| $) 19)) (-2731 (((-112) |#3| $) 17))) -(((-1061 |#1| |#2| |#3|) (-10 -8 (-15 -2691 ((-3 |#1| "failed") |#3| (-917))) (-15 -3230 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2720 ((-112) |#3| |#1|)) (-15 -2731 ((-112) |#3| |#1|)) (-15 -2741 ((-112) |#3| |#1|))) (-1062 |#2| |#3|) (-13 (-844) (-363)) (-1233 |#2|)) (T -1061)) -NIL -(-10 -8 (-15 -2691 ((-3 |#1| "failed") |#3| (-917))) (-15 -3230 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2720 ((-112) |#3| |#1|)) (-15 -2731 ((-112) |#3| |#1|)) (-15 -2741 ((-112) |#3| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) |#2| $) 21)) (-2107 (((-563) |#2| $) 22)) (-2691 (((-3 $ "failed") |#2| (-917)) 15)) (-2682 ((|#1| |#2| $ |#1|) 13)) (-3230 (((-3 |#2| "failed") |#2| $) 18)) (-2720 (((-112) |#2| $) 19)) (-2731 (((-112) |#2| $) 20)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2713 ((|#2| $) 17)) (-2062 (((-858) $) 11)) (-1775 ((|#1| |#2| $ |#1|) 14)) (-2702 (((-640 $) |#2|) 16)) (-2943 (((-112) $ $) 6))) -(((-1062 |#1| |#2|) (-140) (-13 (-844) (-363)) (-1233 |t#1|)) (T -1062)) -((-2107 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-563)))) (-2741 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-2731 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-2720 (*1 *2 *3 *1) (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-112)))) (-3230 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1233 *3)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) (-4 *2 (-1233 *3)))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-640 *1)) (-4 *1 (-1062 *4 *3)))) (-2691 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363))) (-4 *1 (-1062 *4 *2)) (-4 *2 (-1233 *4)))) (-1775 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1233 *2)))) (-2682 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) (-4 *3 (-1233 *2))))) -(-13 (-1093) (-10 -8 (-15 -2107 ((-563) |t#2| $)) (-15 -2741 ((-112) |t#2| $)) (-15 -2731 ((-112) |t#2| $)) (-15 -2720 ((-112) |t#2| $)) (-15 -3230 ((-3 |t#2| "failed") |t#2| $)) (-15 -2713 (|t#2| $)) (-15 -2702 ((-640 $) |t#2|)) (-15 -2691 ((-3 $ "failed") |t#2| (-917))) (-15 -1775 (|t#1| |t#2| $ |t#1|)) (-15 -2682 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-3048 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-767)) 114)) (-3016 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767)) 63)) (-2791 (((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-767)) 100)) (-2997 (((-767) (-640 |#4|) (-640 |#5|)) 30)) (-3026 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767)) 65) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767) (-112)) 67)) (-3038 (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112)) 87)) (-2802 (((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) 92)) (-3007 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-112)) 62)) (-2987 (((-767) (-640 |#4|) (-640 |#5|)) 21))) -(((-1063 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2987 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -2997 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3007 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-112))) (-15 -3016 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767))) (-15 -3016 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767))) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3038 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -3038 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3048 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-767))) (-15 -2802 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) (-15 -2791 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1063)) -((-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -1926 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -1926 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) (-5 *1 (-1063 *4 *5 *6 *7 *8)))) (-3048 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-640 *11)) (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -1926 *11)))))) (-5 *6 (-767)) (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -1926 *11)))) (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) (-3038 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3038 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-3026 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3026 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) (-3016 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-3016 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-3007 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-2997 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2987 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -2997 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3007 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-112))) (-15 -3016 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767))) (-15 -3016 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767))) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3038 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -3038 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3048 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-767))) (-15 -2802 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) (-15 -2791 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-767)))) -((-1586 (((-112) |#5| $) 25)) (-1563 (((-112) |#5| $) 28)) (-1598 (((-112) |#5| $) 18) (((-112) $) 51)) (-1913 (((-640 $) |#5| $) NIL) (((-640 $) (-640 |#5|) $) 93) (((-640 $) (-640 |#5|) (-640 $)) 91) (((-640 $) |#5| (-640 $)) 94)) (-2884 (($ $ |#5|) NIL) (((-640 $) |#5| $) NIL) (((-640 $) |#5| (-640 $)) 72) (((-640 $) (-640 |#5|) $) 74) (((-640 $) (-640 |#5|) (-640 $)) 76)) (-1496 (((-640 $) |#5| $) NIL) (((-640 $) |#5| (-640 $)) 63) (((-640 $) (-640 |#5|) $) 68) (((-640 $) (-640 |#5|) (-640 $)) 70)) (-1574 (((-112) |#5| $) 31))) -(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2884 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -2884 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -2884 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -2884 ((-640 |#1|) |#5| |#1|)) (-15 -1496 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -1496 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -1496 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -1496 ((-640 |#1|) |#5| |#1|)) (-15 -1913 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -1913 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -1913 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -1913 ((-640 |#1|) |#5| |#1|)) (-15 -1563 ((-112) |#5| |#1|)) (-15 -1598 ((-112) |#1|)) (-15 -1574 ((-112) |#5| |#1|)) (-15 -1586 ((-112) |#5| |#1|)) (-15 -1598 ((-112) |#5| |#1|)) (-15 -2884 (|#1| |#1| |#5|))) (-1065 |#2| |#3| |#4| |#5|) (-452) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1064)) -NIL -(-10 -8 (-15 -2884 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -2884 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -2884 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -2884 ((-640 |#1|) |#5| |#1|)) (-15 -1496 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -1496 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -1496 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -1496 ((-640 |#1|) |#5| |#1|)) (-15 -1913 ((-640 |#1|) |#5| (-640 |#1|))) (-15 -1913 ((-640 |#1|) (-640 |#5|) (-640 |#1|))) (-15 -1913 ((-640 |#1|) (-640 |#5|) |#1|)) (-15 -1913 ((-640 |#1|) |#5| |#1|)) (-15 -1563 ((-112) |#5| |#1|)) (-15 -1598 ((-112) |#1|)) (-15 -1574 ((-112) |#5| |#1|)) (-15 -1586 ((-112) |#5| |#1|)) (-15 -1598 ((-112) |#5| |#1|)) (-15 -2884 (|#1| |#1| |#5|))) -((-2049 (((-112) $ $) 7)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) 85)) (-1353 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2185 (((-640 |#3|) $) 33)) (-1556 (((-112) $) 26)) (-1456 (((-112) $) 17 (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) 101) (((-112) $) 97)) (-1413 ((|#4| |#4| $) 92)) (-2924 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| $) 126)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) 27)) (-3740 (((-112) $ (-767)) 44)) (-1907 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-3684 (($) 45 T CONST)) (-1512 (((-112) $) 22 (|has| |#1| (-555)))) (-1534 (((-112) $ $) 24 (|has| |#1| (-555)))) (-1523 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1545 (((-112) $) 25 (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1466 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) 36)) (-2589 (($ (-640 |#4|)) 35)) (-1897 (((-3 $ "failed") $) 82)) (-1384 ((|#4| |#4| $) 89)) (-1920 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1365 ((|#4| |#4| $) 87)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) 105)) (-1586 (((-112) |#4| $) 136)) (-1563 (((-112) |#4| $) 133)) (-1598 (((-112) |#4| $) 137) (((-112) $) 134)) (-4236 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) 104) (((-112) $) 103)) (-2674 ((|#3| $) 34)) (-3633 (((-112) $ (-767)) 43)) (-1572 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 47)) (-1616 (((-640 |#3|) $) 32)) (-1602 (((-112) |#3| $) 31)) (-3604 (((-112) $ (-767)) 42)) (-1938 (((-1151) $) 9)) (-1520 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-1508 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-1529 (((-640 $) |#4| $) 129)) (-1552 (((-3 (-112) (-640 $)) |#4| $) 132)) (-1542 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1913 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-3079 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-1514 (((-640 |#4|) $) 107)) (-1447 (((-112) |#4| $) 99) (((-112) $) 95)) (-1395 ((|#4| |#4| $) 90)) (-3449 (((-112) $ $) 110)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) 100) (((-112) $) 96)) (-1405 ((|#4| |#4| $) 91)) (-3249 (((-1113) $) 10)) (-1884 (((-3 |#4| "failed") $) 84)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1323 (((-3 $ "failed") $ |#4|) 78)) (-2884 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-3837 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) 38)) (-2820 (((-112) $) 41)) (-2749 (($) 40)) (-1962 (((-767) $) 106)) (-3261 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-2208 (($ $) 39)) (-2802 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 60)) (-1566 (($ $ |#3|) 28)) (-1591 (($ $ |#3|) 30)) (-1373 (($ $) 88)) (-1579 (($ $ |#3|) 29)) (-2062 (((-858) $) 11) (((-640 |#4|) $) 37)) (-1313 (((-767) $) 76 (|has| |#3| (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-1496 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-3848 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) 81)) (-1574 (((-112) |#4| $) 135)) (-1833 (((-112) |#3| $) 80)) (-2943 (((-112) $ $) 6)) (-1708 (((-767) $) 46 (|has| $ (-6 -4408))))) -(((-1065 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1065)) -((-1598 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1586 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1574 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1563 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1552 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-640 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1542 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1542 (*1 *2 *3 *1) (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1529 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1520 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-640 *1))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1508 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2924 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *1)))) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1913 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1913 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-1913 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-1913 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-1496 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-1496 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-1496 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-1496 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-3079 (*1 *1 *2 *1) (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-3079 (*1 *1 *2 *1) (-12 (-5 *2 (-640 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) (-2884 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)))) (-2884 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) (-2884 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *7)))) (-2884 (*1 *2 *3 *2) (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)))) (-1353 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1065 *5 *6 *7 *8))))) -(-13 (-1201 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1598 ((-112) |t#4| $)) (-15 -1586 ((-112) |t#4| $)) (-15 -1574 ((-112) |t#4| $)) (-15 -1598 ((-112) $)) (-15 -1563 ((-112) |t#4| $)) (-15 -1552 ((-3 (-112) (-640 $)) |t#4| $)) (-15 -1542 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 $))) |t#4| $)) (-15 -1542 ((-112) |t#4| $)) (-15 -1529 ((-640 $) |t#4| $)) (-15 -1520 ((-3 |t#4| (-640 $)) |t#4| |t#4| $)) (-15 -1508 ((-640 (-2 (|:| |val| |t#4|) (|:| -1926 $))) |t#4| |t#4| $)) (-15 -2924 ((-640 (-2 (|:| |val| |t#4|) (|:| -1926 $))) |t#4| $)) (-15 -1913 ((-640 $) |t#4| $)) (-15 -1913 ((-640 $) (-640 |t#4|) $)) (-15 -1913 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -1913 ((-640 $) |t#4| (-640 $))) (-15 -1496 ((-640 $) |t#4| $)) (-15 -1496 ((-640 $) |t#4| (-640 $))) (-15 -1496 ((-640 $) (-640 |t#4|) $)) (-15 -1496 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -3079 ($ |t#4| $)) (-15 -3079 ($ (-640 |t#4|) $)) (-15 -2884 ((-640 $) |t#4| $)) (-15 -2884 ((-640 $) |t#4| (-640 $))) (-15 -2884 ((-640 $) (-640 |t#4|) $)) (-15 -2884 ((-640 $) (-640 |t#4|) (-640 $))) (-15 -1353 ((-640 $) (-640 |t#4|) (-112))))) -(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T)) -((-1683 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|) 87)) (-1648 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|) 129)) (-1671 (((-640 |#5|) |#4| |#5|) 75)) (-1660 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-4154 (((-1262)) 37)) (-4130 (((-1262)) 26)) (-4142 (((-1262) (-1151) (-1151) (-1151)) 33)) (-4119 (((-1262) (-1151) (-1151) (-1151)) 22)) (-1610 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#4| |#4| |#5|) 109)) (-1623 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#3| (-112)) 120) (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-1636 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|) 115))) -(((-1066 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4119 ((-1262) (-1151) (-1151) (-1151))) (-15 -4130 ((-1262))) (-15 -4142 ((-1262) (-1151) (-1151) (-1151))) (-15 -4154 ((-1262))) (-15 -1610 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -1623 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1623 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#3| (-112))) (-15 -1636 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -1648 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -1660 ((-112) |#4| |#5|)) (-15 -1660 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -1671 ((-640 |#5|) |#4| |#5|)) (-15 -1683 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1066)) -((-1683 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1671 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1660 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1660 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1648 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1636 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-1623 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -1926 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -1926 *9)))) (-5 *1 (-1066 *6 *7 *4 *8 *9)))) (-1623 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-1610 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))) (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4154 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-4142 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4130 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-4119 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(-10 -7 (-15 -4119 ((-1262) (-1151) (-1151) (-1151))) (-15 -4130 ((-1262))) (-15 -4142 ((-1262) (-1151) (-1151) (-1151))) (-15 -4154 ((-1262))) (-15 -1610 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -1623 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1623 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#3| (-112))) (-15 -1636 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -1648 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -1660 ((-112) |#4| |#5|)) (-15 -1660 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -1671 ((-640 |#5|) |#4| |#5|)) (-15 -1683 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|))) -((-2049 (((-112) $ $) NIL)) (-2089 (((-1207) $) 13)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2784 (((-1128) $) 10)) (-2062 (((-858) $) 22) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-1067) (-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)) (-15 -2089 ((-1207) $))))) (T -1067)) -((-2784 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1067)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1067))))) -(-13 (-1076) (-10 -8 (-15 -2784 ((-1128) $)) (-15 -2089 ((-1207) $)))) -((-2049 (((-112) $ $) NIL)) (-3359 (((-1169) $) 8)) (-1938 (((-1151) $) 17)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 14))) -(((-1068 |#1|) (-13 (-1093) (-10 -8 (-15 -3359 ((-1169) $)))) (-1169)) (T -1068)) -((-3359 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1068 *3)) (-14 *3 *2)))) -(-13 (-1093) (-10 -8 (-15 -3359 ((-1169) $)))) -((-2049 (((-112) $ $) NIL)) (-2414 (($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|))) 34)) (-3510 (($ |#3| |#3|) 23) (($ |#3| |#3| (-640 (-1169))) 21)) (-4156 ((|#3| $) 13)) (-2671 (((-3 (-294 |#3|) "failed") $) 60)) (-2589 (((-294 |#3|) $) NIL)) (-1695 (((-640 (-1169)) $) 16)) (-3049 (((-888 |#1|) $) 11)) (-4144 ((|#3| $) 12)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3858 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-917)) 41)) (-2062 (((-858) $) 89) (($ (-294 |#3|)) 22)) (-2943 (((-112) $ $) 38))) -(((-1069 |#1| |#2| |#3|) (-13 (-1093) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -3510 ($ |#3| |#3|)) (-15 -3510 ($ |#3| |#3| (-640 (-1169)))) (-15 -2414 ($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|)))) (-15 -3049 ((-888 |#1|) $)) (-15 -4144 (|#3| $)) (-15 -4156 (|#3| $)) (-15 -3858 (|#3| $ |#3| (-917))) (-15 -1695 ((-640 (-1169)) $)))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -1069)) -((-3510 (*1 *1 *2 *2) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))) (-3510 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-2414 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1 (-112) (-640 *6))) (-4 *6 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *6)))) (-3049 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 *2))) (-5 *2 (-888 *3)) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 *2))))) (-4144 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) (-4156 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1069 *3 *4 *2)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) (-3858 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1069 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) (-1695 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *2 (-640 (-1169))) (-5 *1 (-1069 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))))) -(-13 (-1093) (-286 |#3| |#3|) (-1034 (-294 |#3|)) (-10 -8 (-15 -3510 ($ |#3| |#3|)) (-15 -3510 ($ |#3| |#3| (-640 (-1169)))) (-15 -2414 ($ $ (-640 (-1169)) (-1 (-112) (-640 |#3|)))) (-15 -3049 ((-888 |#1|) $)) (-15 -4144 (|#3| $)) (-15 -4156 (|#3| $)) (-15 -3858 (|#3| $ |#3| (-917))) (-15 -1695 ((-640 (-1169)) $)))) -((-2049 (((-112) $ $) NIL)) (-2375 (($ (-640 (-1069 |#1| |#2| |#3|))) 14)) (-2935 (((-640 (-1069 |#1| |#2| |#3|)) $) 21)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3858 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-917)) 27)) (-2062 (((-858) $) 17)) (-2943 (((-112) $ $) 20))) -(((-1070 |#1| |#2| |#3|) (-13 (-1093) (-286 |#3| |#3|) (-10 -8 (-15 -2375 ($ (-640 (-1069 |#1| |#2| |#3|)))) (-15 -2935 ((-640 (-1069 |#1| |#2| |#3|)) $)) (-15 -3858 (|#3| $ |#3| (-917))))) (-1093) (-13 (-1045) (-882 |#1|) (-846) (-611 (-888 |#1|))) (-13 (-430 |#2|) (-882 |#1|) (-611 (-888 |#1|)))) (T -1070)) -((-2375 (*1 *1 *2) (-12 (-5 *2 (-640 (-1069 *3 *4 *5))) (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) (-5 *1 (-1070 *3 *4 *5)))) (-2935 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) (-5 *2 (-640 (-1069 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))))) (-3858 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-917)) (-4 *4 (-1093)) (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4))))))) -(-13 (-1093) (-286 |#3| |#3|) (-10 -8 (-15 -2375 ($ (-640 (-1069 |#1| |#2| |#3|)))) (-15 -2935 ((-640 (-1069 |#1| |#2| |#3|)) $)) (-15 -3858 (|#3| $ |#3| (-917))))) -((-1707 (((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)) 87) (((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|))) 91) (((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112)) 89))) -(((-1071 |#1| |#2|) (-10 -7 (-15 -1707 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -1707 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -1707 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-640 (-1169))) (T -1071)) -((-1707 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))))) (-1707 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -2303 (-1165 *4)) (|:| -1818 (-640 (-948 *4)))))) (-5 *1 (-1071 *4 *5)) (-5 *3 (-640 (-948 *4))) (-14 *5 (-640 (-1169))))) (-1707 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169)))))) -(-10 -7 (-15 -1707 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -1707 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -1707 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)))) -((-2055 (((-418 |#3|) |#3|) 18))) -(((-1072 |#1| |#2| |#3|) (-10 -7 (-15 -2055 ((-418 |#3|) |#3|))) (-1233 (-407 (-563))) (-13 (-363) (-147) (-720 (-407 (-563)) |#1|)) (-1233 |#2|)) (T -1072)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-563)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1072 *4 *5 *3)) (-4 *3 (-1233 *5))))) -(-10 -7 (-15 -2055 ((-418 |#3|) |#3|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 142)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-2554 (($ $) NIL (|has| |#1| (-363)))) (-2533 (((-112) $) NIL (|has| |#1| (-363)))) (-2660 (((-684 |#1|) (-1257 $)) NIL) (((-684 |#1|)) 125)) (-3282 ((|#1| $) 130)) (-2758 (((-1181 (-917) (-767)) (-563)) NIL (|has| |#1| (-349)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2433 (((-767)) 46 (|has| |#1| (-368)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-1505 (($ (-1257 |#1|) (-1257 $)) NIL) (($ (-1257 |#1|)) 49)) (-2739 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-2649 (((-684 |#1|) $ (-1257 $)) NIL) (((-684 |#1|) $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 115) (((-684 |#1|) (-684 $)) 110)) (-2532 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-3230 (((-3 $ "failed") $) NIL)) (-3406 (((-917)) 84)) (-4301 (($) 50 (|has| |#1| (-368)))) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2135 (($) NIL (|has| |#1| (-349)))) (-2812 (((-112) $) NIL (|has| |#1| (-349)))) (-2506 (($ $ (-767)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2903 (((-917) $) NIL (|has| |#1| (-349))) (((-829 (-917)) $) NIL (|has| |#1| (-349)))) (-2712 (((-112) $) NIL)) (-3251 ((|#1| $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-2134 ((|#2| $) 91 (|has| |#1| (-363)))) (-3267 (((-917) $) 150 (|has| |#1| (-368)))) (-2521 ((|#2| $) 64)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-2956 (($) NIL (|has| |#1| (-349)) CONST)) (-3491 (($ (-917)) 141 (|has| |#1| (-368)))) (-3249 (((-1113) $) NIL)) (-1738 (($) 132)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2768 (((-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563))))) NIL (|has| |#1| (-349)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-3974 ((|#1| (-1257 $)) NIL) ((|#1|) 119)) (-2515 (((-767) $) NIL (|has| |#1| (-349))) (((-3 (-767) "failed") $ $) NIL (|has| |#1| (-349)))) (-1361 (($ $) NIL (-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2701 (((-684 |#1|) (-1257 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2713 ((|#2|) 80)) (-2750 (($) NIL (|has| |#1| (-349)))) (-1818 (((-1257 |#1|) $ (-1257 $)) 96) (((-684 |#1|) (-1257 $) (-1257 $)) NIL) (((-1257 |#1|) $) 77) (((-684 |#1|) (-1257 $)) 92)) (-2802 (((-1257 |#1|) $) NIL) (($ (-1257 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (|has| |#1| (-349)))) (-2062 (((-858) $) 63) (($ (-563)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-363)) (|has| |#1| (-1034 (-407 (-563))))))) (-4376 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3015 ((|#2| $) 89)) (-3192 (((-767)) 82 T CONST)) (-3288 (((-1257 $)) 88)) (-2543 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3790 (($) 32 T CONST)) (-3803 (($) 19 T CONST)) (-4191 (($ $) NIL (-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-767)) NIL (-2811 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-896 (-1169))))) (($ $ (-1 |#1| |#1|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2943 (((-112) $ $) 69)) (-3050 (($ $ $) NIL (|has| |#1| (-363)))) (-3039 (($ $) 73) (($ $ $) NIL)) (-3027 (($ $ $) 71)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-563)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-563))) NIL (|has| |#1| (-363))))) -(((-1073 |#1| |#2| |#3|) (-720 |#1| |#2|) (-172) (-1233 |#1|) |#2|) (T -1073)) -NIL -(-720 |#1| |#2|) -((-2055 (((-418 |#3|) |#3|) 19))) -(((-1074 |#1| |#2| |#3|) (-10 -7 (-15 -2055 ((-418 |#3|) |#3|))) (-1233 (-407 (-948 (-563)))) (-13 (-363) (-147) (-720 (-407 (-948 (-563))) |#1|)) (-1233 |#2|)) (T -1074)) -((-2055 (*1 *2 *3) (-12 (-4 *4 (-1233 (-407 (-948 (-563))))) (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-563))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1233 *5))))) -(-10 -7 (-15 -2055 ((-418 |#3|) |#3|))) -((-2049 (((-112) $ $) NIL)) (-3489 (($ $ $) 16)) (-4105 (($ $ $) 17)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1719 (($) 6)) (-2802 (((-1169) $) 20)) (-2062 (((-858) $) 13)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 15)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 9))) -(((-1075) (-13 (-846) (-611 (-1169)) (-10 -8 (-15 -1719 ($))))) (T -1075)) -((-1719 (*1 *1) (-5 *1 (-1075)))) -(-13 (-846) (-611 (-1169)) (-10 -8 (-15 -1719 ($)))) -((-2049 (((-112) $ $) 7)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-2943 (((-112) $ $) 6))) -(((-1076) (-140)) (T -1076)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-1053) (-140)) (T -1053)) +NIL +(-13 (-21) (-1106)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-131) . T) ((-611 (-859)) . T) ((-1106) . T) ((-1094) . T)) +((-2892 (($ $) 17)) (-3000 (($ $) 25)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 54)) (-3328 (($ $) 27)) (-1941 (($ $) 12)) (-3014 (($ $) 43)) (-2235 (((-379) $) NIL) (((-225) $) NIL) (((-889 (-379)) $) 36)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL) (($ (-407 (-564))) 31) (($ (-564)) NIL) (($ (-407 (-564))) 31)) (-3270 (((-768)) 9)) (-2551 (($ $) 44))) +(((-1054 |#1|) (-10 -8 (-15 -3000 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -2551 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3075 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| (-564))) (-15 -2235 ((-225) |#1|)) (-15 -2235 ((-379) |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| |#1|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-1055)) (T -1054)) +((-3270 (*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1054 *3)) (-4 *3 (-1055))))) +(-10 -8 (-15 -3000 (|#1| |#1|)) (-15 -2892 (|#1| |#1|)) (-15 -1941 (|#1| |#1|)) (-15 -3014 (|#1| |#1|)) (-15 -2551 (|#1| |#1|)) (-15 -3328 (|#1| |#1|)) (-15 -3075 ((-886 (-379) |#1|) |#1| (-889 (-379)) (-886 (-379) |#1|))) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| (-564))) (-15 -2235 ((-225) |#1|)) (-15 -2235 ((-379) |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| |#1|)) (-15 -3270 ((-768))) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-1473 (((-564) $) 90)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-2892 (($ $) 88)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-4137 (($ $) 98)) (-2377 (((-112) $ $) 60)) (-3265 (((-564) $) 115)) (-2818 (($) 17 T CONST)) (-3000 (($ $) 87)) (-2111 (((-3 (-564) "failed") $) 103) (((-3 (-407 (-564)) "failed") $) 100)) (-2239 (((-564) $) 104) (((-407 (-564)) $) 101)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-4188 (((-112) $) 72)) (-3308 (((-112) $) 113)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 94)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 97)) (-3328 (($ $) 93)) (-2839 (((-112) $) 114)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2799 (($ $ $) 112)) (-2848 (($ $ $) 111)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-1941 (($ $) 89)) (-3014 (($ $) 91)) (-4127 (((-418 $) $) 75)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-2235 (((-379) $) 106) (((-225) $) 105) (((-889 (-379)) $) 95)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ (-564)) 102) (($ (-407 (-564))) 99)) (-3270 (((-768)) 28 T CONST)) (-2551 (($ $) 92)) (-3360 (((-112) $ $) 40)) (-2792 (($ $) 116)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1751 (((-112) $ $) 109)) (-1731 (((-112) $ $) 108)) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 110)) (-1723 (((-112) $ $) 107)) (-1799 (($ $ $) 66)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70) (($ $ (-407 (-564))) 96)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68))) +(((-1055) (-140)) (T -1055)) +((-2792 (*1 *1 *1) (-4 *1 (-1055))) (-3328 (*1 *1 *1) (-4 *1 (-1055))) (-2551 (*1 *1 *1) (-4 *1 (-1055))) (-3014 (*1 *1 *1) (-4 *1 (-1055))) (-1473 (*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-564)))) (-1941 (*1 *1 *1) (-4 *1 (-1055))) (-2892 (*1 *1 *1) (-4 *1 (-1055))) (-3000 (*1 *1 *1) (-4 *1 (-1055)))) +(-13 (-363) (-845) (-1019) (-1035 (-564)) (-1035 (-407 (-564))) (-999) (-612 (-889 (-379))) (-883 (-379)) (-147) (-10 -8 (-15 -3328 ($ $)) (-15 -2551 ($ $)) (-15 -3014 ($ $)) (-15 -1473 ((-564) $)) (-15 -1941 ($ $)) (-15 -2892 ($ $)) (-15 -3000 ($ $)) (-15 -2792 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-131) . T) ((-147) . T) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-612 (-225)) . T) ((-612 (-379)) . T) ((-612 (-889 (-379))) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 $) . T) ((-723) . T) ((-788) . T) ((-789) . T) ((-791) . T) ((-792) . T) ((-845) . T) ((-847) . T) ((-883 (-379)) . T) ((-917) . T) ((-999) . T) ((-1019) . T) ((-1035 (-407 (-564))) . T) ((-1035 (-564)) . T) ((-1052 #0#) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) |#2| $) 26)) (-1938 ((|#1| $) 10)) (-3265 (((-564) |#2| $) 114)) (-2854 (((-3 $ "failed") |#2| (-918)) 75)) (-2427 ((|#1| $) 31)) (-3267 ((|#1| |#2| $ |#1|) 40)) (-2359 (($ $) 28)) (-3951 (((-3 |#2| "failed") |#2| $) 110)) (-3308 (((-112) |#2| $) NIL)) (-2839 (((-112) |#2| $) NIL)) (-2835 (((-112) |#2| $) 27)) (-3975 ((|#1| $) 115)) (-2413 ((|#1| $) 30)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3925 ((|#2| $) 102)) (-3742 (((-859) $) 94)) (-2305 ((|#1| |#2| $ |#1|) 41)) (-4354 (((-641 $) |#2|) 77)) (-1705 (((-112) $ $) 97))) +(((-1056 |#1| |#2|) (-13 (-1063 |#1| |#2|) (-10 -8 (-15 -2413 (|#1| $)) (-15 -2427 (|#1| $)) (-15 -1938 (|#1| $)) (-15 -3975 (|#1| $)) (-15 -2359 ($ $)) (-15 -2835 ((-112) |#2| $)) (-15 -3267 (|#1| |#2| $ |#1|)))) (-13 (-845) (-363)) (-1235 |#1|)) (T -1056)) +((-3267 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2413 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2427 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-1938 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-3975 (*1 *2 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2359 (*1 *1 *1) (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) (-4 *3 (-1235 *2)))) (-2835 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-845) (-363))) (-5 *2 (-112)) (-5 *1 (-1056 *4 *3)) (-4 *3 (-1235 *4))))) +(-13 (-1063 |#1| |#2|) (-10 -8 (-15 -2413 (|#1| $)) (-15 -2427 (|#1| $)) (-15 -1938 (|#1| $)) (-15 -3975 (|#1| $)) (-15 -2359 ($ $)) (-15 -2835 ((-112) |#2| $)) (-15 -3267 (|#1| |#2| $ |#1|)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-1929 (($ $ $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) NIL)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-3265 (((-564) $) NIL)) (-2338 (($ $ $) NIL)) (-2818 (($) NIL T CONST)) (-3665 (($ (-1170)) 10) (($ (-564)) 7)) (-2111 (((-3 (-564) "failed") $) NIL)) (-2239 (((-564) $) NIL)) (-1373 (($ $ $) NIL)) (-3039 (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-685 (-564)) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2646 (((-3 (-407 (-564)) "failed") $) NIL)) (-4072 (((-112) $) NIL)) (-2350 (((-407 (-564)) $) NIL)) (-2821 (($) NIL) (($ $) NIL)) (-1350 (($ $ $) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-4167 (($ $ $ $) NIL)) (-1744 (($ $ $) NIL)) (-3308 (((-112) $) NIL)) (-2742 (($ $ $) NIL)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-3840 (((-112) $) NIL)) (-1801 (((-112) $) NIL)) (-3907 (((-3 $ "failed") $) NIL)) (-2839 (((-112) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2634 (($ $ $ $) NIL)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-1494 (($ $) NIL)) (-2395 (($ $) NIL)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-1326 (($ $ $) NIL)) (-3258 (($) NIL T CONST)) (-4171 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) NIL) (($ (-641 $)) NIL)) (-3676 (($ $) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1497 (((-112) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-4117 (($ $ (-768)) NIL) (($ $) NIL)) (-1901 (($ $) NIL)) (-3896 (($ $) NIL)) (-2235 (((-564) $) 16) (((-536) $) NIL) (((-889 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL) (($ (-1170)) 9)) (-3742 (((-859) $) 23) (($ (-564)) 6) (($ $) NIL) (($ (-564)) 6)) (-3270 (((-768)) NIL T CONST)) (-3248 (((-112) $ $) NIL)) (-3181 (($ $ $) NIL)) (-3237 (($) NIL)) (-3360 (((-112) $ $) NIL)) (-3501 (($ $ $ $) NIL)) (-2792 (($ $) NIL)) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL)) (-1790 (($ $) 22) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL))) +(((-1057) (-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4398) (-6 -4403) (-6 -4399) (-15 -3665 ($ (-1170))) (-15 -3665 ($ (-564)))))) (T -1057)) +((-3665 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057)))) (-3665 (*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1057))))) +(-13 (-545) (-616 (-1170)) (-10 -8 (-6 -4398) (-6 -4403) (-6 -4399) (-15 -3665 ($ (-1170))) (-15 -3665 ($ (-564))))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL)) (-2645 (((-1264) $ (-1170) (-1170)) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-1600 (($) 9)) (-3877 (((-52) $ (-1170) (-52)) NIL)) (-3049 (($ $) 32)) (-4100 (($ $) 30)) (-2733 (($ $) 29)) (-4250 (($ $) 31)) (-1609 (($ $) 35)) (-1964 (($ $) 36)) (-1491 (($ $) 28)) (-2543 (($ $) 33)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) 27 (|has| $ (-6 -4411)))) (-3638 (((-3 (-52) "failed") (-1170) $) 43)) (-2818 (($) NIL T CONST)) (-3032 (($) 7)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-2154 (($ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) 53 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-3 (-52) "failed") (-1170) $) NIL)) (-2366 (($ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411)))) (-2048 (((-3 (-1152) "failed") $ (-1152) (-564)) 74)) (-2619 (((-52) $ (-1170) (-52)) NIL (|has| $ (-6 -4412)))) (-2540 (((-52) $ (-1170)) NIL)) (-3616 (((-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-1170) $) NIL (|has| (-1170) (-847)))) (-1386 (((-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) 38 (|has| $ (-6 -4411))) (((-641 (-52)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-3774 (((-1170) $) NIL (|has| (-1170) (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4412))) (($ (-1 (-52) (-52)) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL) (($ (-1 (-52) (-52)) $) NIL) (($ (-1 (-52) (-52) (-52)) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-1823 (((-641 (-1170)) $) NIL)) (-2219 (((-112) (-1170) $) NIL)) (-2828 (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL)) (-2974 (($ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) 46)) (-2312 (((-641 (-1170)) $) NIL)) (-4062 (((-112) (-1170) $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-1635 (((-379) $ (-1170)) 52)) (-2823 (((-641 (-1152)) $ (-1152)) 76)) (-1966 (((-52) $) NIL (|has| (-1170) (-847)))) (-3582 (((-3 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) "failed") (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL)) (-3099 (($ $ (-52)) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))))) NIL (-12 (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ $ (-294 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL (-12 (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ $ (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) NIL (-12 (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ $ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL (-12 (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-309 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (($ $ (-641 (-52)) (-641 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-52) (-52)) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-294 (-52))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094)))) (($ $ (-641 (-294 (-52)))) NIL (-12 (|has| (-52) (-309 (-52))) (|has| (-52) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094))))) (-2572 (((-641 (-52)) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 (((-52) $ (-1170)) NIL) (((-52) $ (-1170) (-52)) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL)) (-3030 (($ $ (-1170)) 54)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094)))) (((-768) (-52) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-52) (-1094)))) (((-768) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) 40)) (-1802 (($ $ $) 41)) (-3742 (((-859) $) NIL (-4030 (|has| (-52) (-611 (-859))) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-611 (-859)))))) (-2569 (($ $ (-1170) (-379)) 50)) (-4277 (($ $ (-1170) (-379)) 51)) (-3745 (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 (-1170)) (|:| -2423 (-52)))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) (-52)) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-52) (-1094)) (|has| (-2 (|:| -1327 (-1170)) (|:| -2423 (-52))) (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1058) (-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -1802 ($ $ $)) (-15 -3032 ($)) (-15 -1491 ($ $)) (-15 -2733 ($ $)) (-15 -4100 ($ $)) (-15 -4250 ($ $)) (-15 -2543 ($ $)) (-15 -3049 ($ $)) (-15 -1609 ($ $)) (-15 -1964 ($ $)) (-15 -2569 ($ $ (-1170) (-379))) (-15 -4277 ($ $ (-1170) (-379))) (-15 -1635 ((-379) $ (-1170))) (-15 -2823 ((-641 (-1152)) $ (-1152))) (-15 -3030 ($ $ (-1170))) (-15 -1600 ($)) (-15 -2048 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4411)))) (T -1058)) +((-1802 (*1 *1 *1 *1) (-5 *1 (-1058))) (-3032 (*1 *1) (-5 *1 (-1058))) (-1491 (*1 *1 *1) (-5 *1 (-1058))) (-2733 (*1 *1 *1) (-5 *1 (-1058))) (-4100 (*1 *1 *1) (-5 *1 (-1058))) (-4250 (*1 *1 *1) (-5 *1 (-1058))) (-2543 (*1 *1 *1) (-5 *1 (-1058))) (-3049 (*1 *1 *1) (-5 *1 (-1058))) (-1609 (*1 *1 *1) (-5 *1 (-1058))) (-1964 (*1 *1 *1) (-5 *1 (-1058))) (-2569 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))) (-4277 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058)))) (-1635 (*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1058)))) (-2823 (*1 *2 *1 *3) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1058)) (-5 *3 (-1152)))) (-3030 (*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1058)))) (-1600 (*1 *1) (-5 *1 (-1058))) (-2048 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1058))))) +(-13 (-1185 (-1170) (-52)) (-10 -8 (-15 -1802 ($ $ $)) (-15 -3032 ($)) (-15 -1491 ($ $)) (-15 -2733 ($ $)) (-15 -4100 ($ $)) (-15 -4250 ($ $)) (-15 -2543 ($ $)) (-15 -3049 ($ $)) (-15 -1609 ($ $)) (-15 -1964 ($ $)) (-15 -2569 ($ $ (-1170) (-379))) (-15 -4277 ($ $ (-1170) (-379))) (-15 -1635 ((-379) $ (-1170))) (-15 -2823 ((-641 (-1152)) $ (-1152))) (-15 -3030 ($ $ (-1170))) (-15 -1600 ($)) (-15 -2048 ((-3 (-1152) "failed") $ (-1152) (-564))) (-6 -4411))) +((-3813 (($ $) 46)) (-3121 (((-112) $ $) 80)) (-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-949 (-407 (-564)))) 248) (((-3 $ "failed") (-949 (-564))) 247) (((-3 $ "failed") (-949 |#2|)) 250)) (-2239 ((|#2| $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL) ((|#4| $) NIL) (($ (-949 (-407 (-564)))) 236) (($ (-949 (-564))) 232) (($ (-949 |#2|)) 252)) (-1348 (($ $) NIL) (($ $ |#4|) 44)) (-3116 (((-112) $ $) 126) (((-112) $ (-641 $)) 130)) (-3280 (((-112) $) 60)) (-3370 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 120)) (-2121 (($ $) 155)) (-3082 (($ $) 151)) (-3610 (($ $) 150)) (-1571 (($ $ $) 85) (($ $ $ |#4|) 90)) (-3027 (($ $ $) 88) (($ $ $ |#4|) 92)) (-1641 (((-112) $ $) 138) (((-112) $ (-641 $)) 139)) (-3782 ((|#4| $) 32)) (-1805 (($ $ $) 123)) (-4348 (((-112) $) 59)) (-2467 (((-768) $) 35)) (-2134 (($ $) 169)) (-3837 (($ $) 166)) (-1498 (((-641 $) $) 72)) (-1758 (($ $) 62)) (-3641 (($ $) 162)) (-3187 (((-641 $) $) 69)) (-1874 (($ $) 64)) (-1320 ((|#2| $) NIL) (($ $ |#4|) 39)) (-3391 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1703 (-768))) $ $) 125)) (-2471 (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $) 121) (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $ |#4|) 122)) (-2139 (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1363 $)) $ $) 116) (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1363 $)) $ $ |#4|) 118)) (-3407 (($ $ $) 95) (($ $ $ |#4|) 103)) (-3761 (($ $ $) 96) (($ $ $ |#4|) 104)) (-2651 (((-641 $) $) 54)) (-1591 (((-112) $ $) 135) (((-112) $ (-641 $)) 136)) (-4266 (($ $ $) 111)) (-3258 (($ $) 37)) (-4179 (((-112) $ $) 78)) (-3244 (((-112) $ $) 131) (((-112) $ (-641 $)) 133)) (-2601 (($ $ $) 109)) (-4024 (($ $) 41)) (-2577 ((|#2| |#2| $) 159) (($ (-641 $)) NIL) (($ $ $) NIL)) (-2581 (($ $ |#2|) NIL) (($ $ $) 148)) (-2554 (($ $ |#2|) 143) (($ $ $) 146)) (-4391 (($ $) 49)) (-4139 (($ $) 55)) (-2235 (((-889 (-379)) $) NIL) (((-889 (-564)) $) NIL) (((-536) $) NIL) (($ (-949 (-407 (-564)))) 238) (($ (-949 (-564))) 234) (($ (-949 |#2|)) 249) (((-1152) $) 277) (((-949 |#2|) $) 179)) (-3742 (((-859) $) 29) (($ (-564)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-949 |#2|) $) 180) (($ (-407 (-564))) NIL) (($ $) NIL)) (-2779 (((-3 (-112) "failed") $ $) 77))) +(((-1059 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -2577 (|#1| |#1| |#1|)) (-15 -2577 (|#1| (-641 |#1|))) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 ((-949 |#2|) |#1|)) (-15 -2235 ((-949 |#2|) |#1|)) (-15 -2235 ((-1152) |#1|)) (-15 -2134 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -2121 (|#1| |#1|)) (-15 -2577 (|#2| |#2| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| |#1|)) (-15 -2581 (|#1| |#1| |#2|)) (-15 -2554 (|#1| |#1| |#2|)) (-15 -3082 (|#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -2235 (|#1| (-949 |#2|))) (-15 -2239 (|#1| (-949 |#2|))) (-15 -2111 ((-3 |#1| "failed") (-949 |#2|))) (-15 -2235 (|#1| (-949 (-564)))) (-15 -2239 (|#1| (-949 (-564)))) (-15 -2111 ((-3 |#1| "failed") (-949 (-564)))) (-15 -2235 (|#1| (-949 (-407 (-564))))) (-15 -2239 (|#1| (-949 (-407 (-564))))) (-15 -2111 ((-3 |#1| "failed") (-949 (-407 (-564))))) (-15 -4266 (|#1| |#1| |#1|)) (-15 -2601 (|#1| |#1| |#1|)) (-15 -3391 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1703 (-768))) |#1| |#1|)) (-15 -1805 (|#1| |#1| |#1|)) (-15 -3370 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -2471 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1| |#4|)) (-15 -2471 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -2139 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1363 |#1|)) |#1| |#1| |#4|)) (-15 -2139 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -3761 (|#1| |#1| |#1| |#4|)) (-15 -3407 (|#1| |#1| |#1| |#4|)) (-15 -3761 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -3027 (|#1| |#1| |#1| |#4|)) (-15 -1571 (|#1| |#1| |#1| |#4|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -1571 (|#1| |#1| |#1|)) (-15 -1641 ((-112) |#1| (-641 |#1|))) (-15 -1641 ((-112) |#1| |#1|)) (-15 -1591 ((-112) |#1| (-641 |#1|))) (-15 -1591 ((-112) |#1| |#1|)) (-15 -3244 ((-112) |#1| (-641 |#1|))) (-15 -3244 ((-112) |#1| |#1|)) (-15 -3116 ((-112) |#1| (-641 |#1|))) (-15 -3116 ((-112) |#1| |#1|)) (-15 -3121 ((-112) |#1| |#1|)) (-15 -4179 ((-112) |#1| |#1|)) (-15 -2779 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1498 ((-641 |#1|) |#1|)) (-15 -3187 ((-641 |#1|) |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -3280 ((-112) |#1|)) (-15 -4348 ((-112) |#1|)) (-15 -1348 (|#1| |#1| |#4|)) (-15 -1320 (|#1| |#1| |#4|)) (-15 -4139 (|#1| |#1|)) (-15 -2651 ((-641 |#1|) |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -2467 ((-768) |#1|)) (-15 -3782 (|#4| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -3742 (|#1| |#4|)) (-15 -2111 ((-3 |#4| "failed") |#1|)) (-15 -2239 (|#4| |#1|)) (-15 -1320 (|#2| |#1|)) (-15 -1348 (|#1| |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-1060 |#2| |#3| |#4|) (-1046) (-790) (-847)) (T -1059)) +NIL +(-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -2577 (|#1| |#1| |#1|)) (-15 -2577 (|#1| (-641 |#1|))) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 ((-949 |#2|) |#1|)) (-15 -2235 ((-949 |#2|) |#1|)) (-15 -2235 ((-1152) |#1|)) (-15 -2134 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -3641 (|#1| |#1|)) (-15 -2121 (|#1| |#1|)) (-15 -2577 (|#2| |#2| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -2554 (|#1| |#1| |#1|)) (-15 -2581 (|#1| |#1| |#2|)) (-15 -2554 (|#1| |#1| |#2|)) (-15 -3082 (|#1| |#1|)) (-15 -3610 (|#1| |#1|)) (-15 -2235 (|#1| (-949 |#2|))) (-15 -2239 (|#1| (-949 |#2|))) (-15 -2111 ((-3 |#1| "failed") (-949 |#2|))) (-15 -2235 (|#1| (-949 (-564)))) (-15 -2239 (|#1| (-949 (-564)))) (-15 -2111 ((-3 |#1| "failed") (-949 (-564)))) (-15 -2235 (|#1| (-949 (-407 (-564))))) (-15 -2239 (|#1| (-949 (-407 (-564))))) (-15 -2111 ((-3 |#1| "failed") (-949 (-407 (-564))))) (-15 -4266 (|#1| |#1| |#1|)) (-15 -2601 (|#1| |#1| |#1|)) (-15 -3391 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -1703 (-768))) |#1| |#1|)) (-15 -1805 (|#1| |#1| |#1|)) (-15 -3370 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -2471 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1| |#4|)) (-15 -2471 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -2139 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1363 |#1|)) |#1| |#1| |#4|)) (-15 -2139 ((-2 (|:| -1762 |#1|) (|:| |gap| (-768)) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -3761 (|#1| |#1| |#1| |#4|)) (-15 -3407 (|#1| |#1| |#1| |#4|)) (-15 -3761 (|#1| |#1| |#1|)) (-15 -3407 (|#1| |#1| |#1|)) (-15 -3027 (|#1| |#1| |#1| |#4|)) (-15 -1571 (|#1| |#1| |#1| |#4|)) (-15 -3027 (|#1| |#1| |#1|)) (-15 -1571 (|#1| |#1| |#1|)) (-15 -1641 ((-112) |#1| (-641 |#1|))) (-15 -1641 ((-112) |#1| |#1|)) (-15 -1591 ((-112) |#1| (-641 |#1|))) (-15 -1591 ((-112) |#1| |#1|)) (-15 -3244 ((-112) |#1| (-641 |#1|))) (-15 -3244 ((-112) |#1| |#1|)) (-15 -3116 ((-112) |#1| (-641 |#1|))) (-15 -3116 ((-112) |#1| |#1|)) (-15 -3121 ((-112) |#1| |#1|)) (-15 -4179 ((-112) |#1| |#1|)) (-15 -2779 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1498 ((-641 |#1|) |#1|)) (-15 -3187 ((-641 |#1|) |#1|)) (-15 -1874 (|#1| |#1|)) (-15 -1758 (|#1| |#1|)) (-15 -3280 ((-112) |#1|)) (-15 -4348 ((-112) |#1|)) (-15 -1348 (|#1| |#1| |#4|)) (-15 -1320 (|#1| |#1| |#4|)) (-15 -4139 (|#1| |#1|)) (-15 -2651 ((-641 |#1|) |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -4024 (|#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -2467 ((-768) |#1|)) (-15 -3782 (|#4| |#1|)) (-15 -2235 ((-536) |#1|)) (-15 -2235 ((-889 (-564)) |#1|)) (-15 -2235 ((-889 (-379)) |#1|)) (-15 -3742 (|#1| |#4|)) (-15 -2111 ((-3 |#4| "failed") |#1|)) (-15 -2239 (|#4| |#1|)) (-15 -1320 (|#2| |#1|)) (-15 -1348 (|#1| |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 |#3|) $) 110)) (-4097 (((-1166 $) $ |#3|) 125) (((-1166 |#1|) $) 124)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1948 (($ $) 88 (|has| |#1| (-556)))) (-1832 (((-112) $) 90 (|has| |#1| (-556)))) (-3913 (((-768) $) 112) (((-768) $ (-641 |#3|)) 111)) (-3813 (($ $) 271)) (-3121 (((-112) $ $) 257)) (-3239 (((-3 $ "failed") $ $) 19)) (-4107 (($ $ $) 216 (|has| |#1| (-556)))) (-3193 (((-641 $) $ $) 211 (|has| |#1| (-556)))) (-3679 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2249 (($ $) 98 (|has| |#1| (-452)))) (-3048 (((-418 $) $) 97 (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 |#3| "failed") $) 136) (((-3 $ "failed") (-949 (-407 (-564)))) 231 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (((-3 $ "failed") (-949 (-564))) 228 (-4030 (-12 (-4255 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (((-3 $ "failed") (-949 |#1|)) 225 (-4030 (-12 (-4255 (|has| |#1| (-38 (-407 (-564))))) (-4255 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-4255 (|has| |#1| (-545))) (-4255 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-4255 (|has| |#1| (-989 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-2239 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) ((|#3| $) 137) (($ (-949 (-407 (-564)))) 230 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-949 (-564))) 227 (-4030 (-12 (-4255 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-949 |#1|)) 224 (-4030 (-12 (-4255 (|has| |#1| (-38 (-407 (-564))))) (-4255 (|has| |#1| (-38 (-564)))) (|has| |#3| (-612 (-1170)))) (-12 (-4255 (|has| |#1| (-545))) (-4255 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (-4255 (|has| |#1| (-989 (-564)))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))))) (-2448 (($ $ $ |#3|) 108 (|has| |#1| (-172))) (($ $ $) 212 (|has| |#1| (-556)))) (-1348 (($ $) 154) (($ $ |#3|) 266)) (-3039 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-3116 (((-112) $ $) 256) (((-112) $ (-641 $)) 255)) (-3951 (((-3 $ "failed") $) 33)) (-3280 (((-112) $) 264)) (-3370 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 236)) (-2121 (($ $) 205 (|has| |#1| (-452)))) (-1989 (($ $) 176 (|has| |#1| (-452))) (($ $ |#3|) 105 (|has| |#1| (-452)))) (-1334 (((-641 $) $) 109)) (-4188 (((-112) $) 96 (|has| |#1| (-906)))) (-3082 (($ $) 221 (|has| |#1| (-556)))) (-3610 (($ $) 222 (|has| |#1| (-556)))) (-1571 (($ $ $) 248) (($ $ $ |#3|) 246)) (-3027 (($ $ $) 247) (($ $ $ |#3|) 245)) (-1866 (($ $ |#1| |#2| $) 172)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| |#3| (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| |#3| (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-3840 (((-112) $) 31)) (-2918 (((-768) $) 169)) (-1641 (((-112) $ $) 250) (((-112) $ (-641 $)) 249)) (-3866 (($ $ $ $ $) 207 (|has| |#1| (-556)))) (-3782 ((|#3| $) 275)) (-4257 (($ (-1166 |#1|) |#3|) 117) (($ (-1166 $) |#3|) 116)) (-3707 (((-641 $) $) 126)) (-2005 (((-112) $) 152)) (-4245 (($ |#1| |#2|) 153) (($ $ |#3| (-768)) 119) (($ $ (-641 |#3|) (-641 (-768))) 118)) (-1805 (($ $ $) 235)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ |#3|) 120)) (-4348 (((-112) $) 265)) (-3469 ((|#2| $) 170) (((-768) $ |#3|) 122) (((-641 (-768)) $ (-641 |#3|)) 121)) (-2799 (($ $ $) 79 (|has| |#1| (-847)))) (-2467 (((-768) $) 274)) (-2848 (($ $ $) 78 (|has| |#1| (-847)))) (-1396 (($ (-1 |#2| |#2|) $) 171)) (-2187 (($ (-1 |#1| |#1|) $) 151)) (-1306 (((-3 |#3| "failed") $) 123)) (-2134 (($ $) 202 (|has| |#1| (-452)))) (-3837 (($ $) 203 (|has| |#1| (-452)))) (-1498 (((-641 $) $) 260)) (-1758 (($ $) 263)) (-3641 (($ $) 204 (|has| |#1| (-452)))) (-3187 (((-641 $) $) 261)) (-1874 (($ $) 262)) (-1309 (($ $) 149)) (-1320 ((|#1| $) 148) (($ $ |#3|) 267)) (-2529 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-3391 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1703 (-768))) $ $) 234)) (-2471 (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $) 238) (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $ |#3|) 237)) (-2139 (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1363 $)) $ $) 240) (((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1363 $)) $ $ |#3|) 239)) (-3407 (($ $ $) 244) (($ $ $ |#3|) 242)) (-3761 (($ $ $) 243) (($ $ $ |#3|) 241)) (-2217 (((-1152) $) 9)) (-2643 (($ $ $) 210 (|has| |#1| (-556)))) (-2651 (((-641 $) $) 269)) (-3514 (((-3 (-641 $) "failed") $) 114)) (-4386 (((-3 (-641 $) "failed") $) 115)) (-3758 (((-3 (-2 (|:| |var| |#3|) (|:| -2515 (-768))) "failed") $) 113)) (-1591 (((-112) $ $) 252) (((-112) $ (-641 $)) 251)) (-4266 (($ $ $) 232)) (-3258 (($ $) 273)) (-4179 (((-112) $ $) 258)) (-3244 (((-112) $ $) 254) (((-112) $ (-641 $)) 253)) (-2601 (($ $ $) 233)) (-4024 (($ $) 272)) (-3864 (((-1114) $) 10)) (-2801 (((-2 (|:| -2577 $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-556)))) (-4376 (((-2 (|:| -2577 $) (|:| |coef1| $)) $ $) 214 (|has| |#1| (-556)))) (-4383 (((-112) $) 166)) (-1296 ((|#1| $) 167)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2577 ((|#1| |#1| $) 206 (|has| |#1| (-452))) (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4127 (((-418 $) $) 99 (|has| |#1| (-906)))) (-4221 (((-2 (|:| -2577 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 215 (|has| |#1| (-556)))) (-1321 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-2581 (($ $ |#1|) 219 (|has| |#1| (-556))) (($ $ $) 217 (|has| |#1| (-556)))) (-2554 (($ $ |#1|) 220 (|has| |#1| (-556))) (($ $ $) 218 (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ |#3| |#1|) 141) (($ $ (-641 |#3|) (-641 |#1|)) 140) (($ $ |#3| $) 139) (($ $ (-641 |#3|) (-641 $)) 138)) (-4284 (($ $ |#3|) 107 (|has| |#1| (-172)))) (-4117 (($ $ |#3|) 42) (($ $ (-641 |#3|)) 41) (($ $ |#3| (-768)) 40) (($ $ (-641 |#3|) (-641 (-768))) 39)) (-2266 ((|#2| $) 150) (((-768) $ |#3|) 130) (((-641 (-768)) $ (-641 |#3|)) 129)) (-4391 (($ $) 270)) (-4139 (($ $) 268)) (-2235 (((-889 (-379)) $) 82 (-12 (|has| |#3| (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| |#3| (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| |#3| (-612 (-536))) (|has| |#1| (-612 (-536))))) (($ (-949 (-407 (-564)))) 229 (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170))))) (($ (-949 (-564))) 226 (-4030 (-12 (-4255 (|has| |#1| (-38 (-407 (-564))))) (|has| |#1| (-38 (-564))) (|has| |#3| (-612 (-1170)))) (-12 (|has| |#1| (-38 (-407 (-564)))) (|has| |#3| (-612 (-1170)))))) (($ (-949 |#1|)) 223 (|has| |#3| (-612 (-1170)))) (((-1152) $) 201 (-12 (|has| |#1| (-1035 (-564))) (|has| |#3| (-612 (-1170))))) (((-949 |#1|) $) 200 (|has| |#3| (-612 (-1170))))) (-4329 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ |#3|) 106 (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4267 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ |#3|) 135) (((-949 |#1|) $) 199 (|has| |#3| (-612 (-1170)))) (($ (-407 (-564))) 72 (-4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) 168)) (-2856 ((|#1| $ |#2|) 155) (($ $ |#3| (-768)) 128) (($ $ (-641 |#3|) (-641 (-768))) 127)) (-4253 (((-3 $ "failed") $) 73 (-4030 (-4267 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) 28 T CONST)) (-3447 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3360 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4311 (($) 18 T CONST)) (-2779 (((-3 (-112) "failed") $ $) 259)) (-4321 (($) 30 T CONST)) (-3614 (($ $ $ $ (-768)) 208 (|has| |#1| (-556)))) (-3666 (($ $ $ (-768)) 209 (|has| |#1| (-556)))) (-2124 (($ $ |#3|) 38) (($ $ (-641 |#3|)) 37) (($ $ |#3| (-768)) 36) (($ $ (-641 |#3|) (-641 (-768))) 35)) (-1751 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1799 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1060 |#1| |#2| |#3|) (-140) (-1046) (-790) (-847)) (T -1060)) +((-3782 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-2467 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-768)))) (-3258 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4024 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2651 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-4139 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1320 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-1348 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-4348 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3280 (*1 *2 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1758 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1874 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3187 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-1498 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-2779 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3121 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3116 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3116 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-3244 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-3244 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-1591 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1591 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-1641 (*1 *2 *1 *1) (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)))) (-1641 (*1 *2 *1 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) (-1571 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3027 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-1571 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3027 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3407 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3761 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3407 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-3761 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *2 (-847)))) (-2139 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -1762 *1) (|:| |gap| (-768)) (|:| -1363 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2139 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1762 *1) (|:| |gap| (-768)) (|:| -1363 *1))) (-4 *1 (-1060 *4 *5 *3)))) (-2471 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -1762 *1) (|:| |gap| (-768)) (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2471 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-2 (|:| -1762 *1) (|:| |gap| (-768)) (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-1060 *4 *5 *3)))) (-3370 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-1060 *3 *4 *5)))) (-1805 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-3391 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1703 (-768)))) (-4 *1 (-1060 *3 *4 *5)))) (-2601 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-4266 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)))) (-2111 (*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)))) (-2111 (*1 *1 *2) (|partial| -4030 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2239 (*1 *1 *2) (-4030 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2235 (*1 *1 *2) (-4030 (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2111 (*1 *1 *2) (|partial| -4030 (-12 (-5 *2 (-949 *3)) (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) (-4255 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4255 (-4 *3 (-545))) (-4255 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4255 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2239 (*1 *1 *2) (-4030 (-12 (-5 *2 (-949 *3)) (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) (-4255 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4255 (-4 *3 (-545))) (-4255 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))) (-12 (-5 *2 (-949 *3)) (-12 (-4255 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) (-4 *5 (-847))))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *5 (-612 (-1170))) (-4 *4 (-790)) (-4 *5 (-847)))) (-3610 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3082 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2554 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2581 (*1 *1 *1 *2) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2554 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2581 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-4107 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-4221 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2577 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-4376 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2577 *1) (|:| |coef1| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2801 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-2 (|:| -2577 *1) (|:| |coef2| *1))) (-4 *1 (-1060 *3 *4 *5)))) (-2448 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3193 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5)))) (-2643 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-3666 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))) (-3614 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556)))) (-3866 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-556)))) (-2577 (*1 *2 *2 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-2121 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3641 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-3837 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452)))) (-2134 (*1 *1 *1) (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-452))))) +(-13 (-946 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3782 (|t#3| $)) (-15 -2467 ((-768) $)) (-15 -3258 ($ $)) (-15 -4024 ($ $)) (-15 -3813 ($ $)) (-15 -4391 ($ $)) (-15 -2651 ((-641 $) $)) (-15 -4139 ($ $)) (-15 -1320 ($ $ |t#3|)) (-15 -1348 ($ $ |t#3|)) (-15 -4348 ((-112) $)) (-15 -3280 ((-112) $)) (-15 -1758 ($ $)) (-15 -1874 ($ $)) (-15 -3187 ((-641 $) $)) (-15 -1498 ((-641 $) $)) (-15 -2779 ((-3 (-112) "failed") $ $)) (-15 -4179 ((-112) $ $)) (-15 -3121 ((-112) $ $)) (-15 -3116 ((-112) $ $)) (-15 -3116 ((-112) $ (-641 $))) (-15 -3244 ((-112) $ $)) (-15 -3244 ((-112) $ (-641 $))) (-15 -1591 ((-112) $ $)) (-15 -1591 ((-112) $ (-641 $))) (-15 -1641 ((-112) $ $)) (-15 -1641 ((-112) $ (-641 $))) (-15 -1571 ($ $ $)) (-15 -3027 ($ $ $)) (-15 -1571 ($ $ $ |t#3|)) (-15 -3027 ($ $ $ |t#3|)) (-15 -3407 ($ $ $)) (-15 -3761 ($ $ $)) (-15 -3407 ($ $ $ |t#3|)) (-15 -3761 ($ $ $ |t#3|)) (-15 -2139 ((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1363 $)) $ $)) (-15 -2139 ((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1363 $)) $ $ |t#3|)) (-15 -2471 ((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -2471 ((-2 (|:| -1762 $) (|:| |gap| (-768)) (|:| -1935 $) (|:| -1363 $)) $ $ |t#3|)) (-15 -3370 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -1805 ($ $ $)) (-15 -3391 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -1703 (-768))) $ $)) (-15 -2601 ($ $ $)) (-15 -4266 ($ $ $)) (IF (|has| |t#3| (-612 (-1170))) (PROGN (-6 (-611 (-949 |t#1|))) (-6 (-612 (-949 |t#1|))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -2111 ((-3 $ "failed") (-949 (-407 (-564))))) (-15 -2239 ($ (-949 (-407 (-564))))) (-15 -2235 ($ (-949 (-407 (-564))))) (-15 -2111 ((-3 $ "failed") (-949 (-564)))) (-15 -2239 ($ (-949 (-564)))) (-15 -2235 ($ (-949 (-564)))) (IF (|has| |t#1| (-989 (-564))) |%noBranch| (PROGN (-15 -2111 ((-3 $ "failed") (-949 |t#1|))) (-15 -2239 ($ (-949 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2111 ((-3 $ "failed") (-949 (-564)))) (-15 -2239 ($ (-949 (-564)))) (-15 -2235 ($ (-949 (-564)))) (IF (|has| |t#1| (-545)) |%noBranch| (PROGN (-15 -2111 ((-3 $ "failed") (-949 |t#1|))) (-15 -2239 ($ (-949 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-564))) |%noBranch| (IF (|has| |t#1| (-38 (-407 (-564)))) |%noBranch| (PROGN (-15 -2111 ((-3 $ "failed") (-949 |t#1|))) (-15 -2239 ($ (-949 |t#1|)))))) (-15 -2235 ($ (-949 |t#1|))) (IF (|has| |t#1| (-1035 (-564))) (-6 (-612 (-1152))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-15 -3610 ($ $)) (-15 -3082 ($ $)) (-15 -2554 ($ $ |t#1|)) (-15 -2581 ($ $ |t#1|)) (-15 -2554 ($ $ $)) (-15 -2581 ($ $ $)) (-15 -4107 ($ $ $)) (-15 -4221 ((-2 (|:| -2577 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4376 ((-2 (|:| -2577 $) (|:| |coef1| $)) $ $)) (-15 -2801 ((-2 (|:| -2577 $) (|:| |coef2| $)) $ $)) (-15 -2448 ($ $ $)) (-15 -3193 ((-641 $) $ $)) (-15 -2643 ($ $ $)) (-15 -3666 ($ $ $ (-768))) (-15 -3614 ($ $ $ $ (-768))) (-15 -3866 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (PROGN (-15 -2577 (|t#1| |t#1| $)) (-15 -2121 ($ $)) (-15 -3641 ($ $)) (-15 -3837 ($ $)) (-15 -2134 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 |#3|) . T) ((-614 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-611 (-859)) . T) ((-611 (-949 |#1|)) |has| |#3| (-612 (-1170))) ((-172) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| |#1| (-612 (-536))) (|has| |#3| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#3| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#3| (-612 (-889 (-564))))) ((-612 (-949 |#1|)) |has| |#3| (-612 (-1170))) ((-612 (-1152)) -12 (|has| |#1| (-1035 (-564))) (|has| |#3| (-612 (-1170)))) ((-290) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-309 $) . T) ((-326 |#1| |#2|) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4030 (|has| |#1| (-906)) (|has| |#1| (-452))) ((-514 |#3| |#1|) . T) ((-514 |#3| $) . T) ((-514 $ $) . T) ((-556) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 |#3|) . T) ((-883 (-379)) -12 (|has| |#1| (-883 (-379))) (|has| |#3| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-883 (-564))) (|has| |#3| (-883 (-564)))) ((-946 |#1| |#2| |#3|) . T) ((-906) |has| |#1| (-906)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 |#1|) . T) ((-1035 |#3|) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) |has| |#1| (-906))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3862 (((-641 (-1129)) $) 18)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 29) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-1129) $) 20)) (-1705 (((-112) $ $) NIL))) +(((-1061) (-13 (-1077) (-10 -8 (-15 -3862 ((-641 (-1129)) $)) (-15 -4337 ((-1129) $))))) (T -1061)) +((-3862 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1061)))) (-4337 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1061))))) +(-13 (-1077) (-10 -8 (-15 -3862 ((-641 (-1129)) $)) (-15 -4337 ((-1129) $)))) +((-4173 (((-112) |#3| $) 15)) (-2854 (((-3 $ "failed") |#3| (-918)) 29)) (-3951 (((-3 |#3| "failed") |#3| $) 45)) (-3308 (((-112) |#3| $) 19)) (-2839 (((-112) |#3| $) 17))) +(((-1062 |#1| |#2| |#3|) (-10 -8 (-15 -2854 ((-3 |#1| "failed") |#3| (-918))) (-15 -3951 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3308 ((-112) |#3| |#1|)) (-15 -2839 ((-112) |#3| |#1|)) (-15 -4173 ((-112) |#3| |#1|))) (-1063 |#2| |#3|) (-13 (-845) (-363)) (-1235 |#2|)) (T -1062)) +NIL +(-10 -8 (-15 -2854 ((-3 |#1| "failed") |#3| (-918))) (-15 -3951 ((-3 |#3| "failed") |#3| |#1|)) (-15 -3308 ((-112) |#3| |#1|)) (-15 -2839 ((-112) |#3| |#1|)) (-15 -4173 ((-112) |#3| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) |#2| $) 21)) (-3265 (((-564) |#2| $) 22)) (-2854 (((-3 $ "failed") |#2| (-918)) 15)) (-3267 ((|#1| |#2| $ |#1|) 13)) (-3951 (((-3 |#2| "failed") |#2| $) 18)) (-3308 (((-112) |#2| $) 19)) (-2839 (((-112) |#2| $) 20)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3925 ((|#2| $) 17)) (-3742 (((-859) $) 11)) (-2305 ((|#1| |#2| $ |#1|) 14)) (-4354 (((-641 $) |#2|) 16)) (-1705 (((-112) $ $) 6))) +(((-1063 |#1| |#2|) (-140) (-13 (-845) (-363)) (-1235 |t#1|)) (T -1063)) +((-3265 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-564)))) (-4173 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-2839 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-3308 (*1 *2 *3 *1) (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-112)))) (-3951 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) (-4 *2 (-1235 *3)))) (-3925 (*1 *2 *1) (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) (-4 *2 (-1235 *3)))) (-4354 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) (-4 *1 (-1063 *4 *3)))) (-2854 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-918)) (-4 *4 (-13 (-845) (-363))) (-4 *1 (-1063 *4 *2)) (-4 *2 (-1235 *4)))) (-2305 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) (-4 *3 (-1235 *2)))) (-3267 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) (-4 *3 (-1235 *2))))) +(-13 (-1094) (-10 -8 (-15 -3265 ((-564) |t#2| $)) (-15 -4173 ((-112) |t#2| $)) (-15 -2839 ((-112) |t#2| $)) (-15 -3308 ((-112) |t#2| $)) (-15 -3951 ((-3 |t#2| "failed") |t#2| $)) (-15 -3925 (|t#2| $)) (-15 -4354 ((-641 $) |t#2|)) (-15 -2854 ((-3 $ "failed") |t#2| (-918))) (-15 -2305 (|t#1| |t#2| $ |t#1|)) (-15 -3267 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-1535 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-768)) 114)) (-4318 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768)) 63)) (-3801 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-768)) 100)) (-2894 (((-768) (-641 |#4|) (-641 |#5|)) 30)) (-4165 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|) 66) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768)) 65) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768) (-112)) 67)) (-2795 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 86) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 87)) (-2235 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) 92)) (-2470 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-112)) 62)) (-2965 (((-768) (-641 |#4|) (-641 |#5|)) 21))) +(((-1064 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2965 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2894 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2470 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-112))) (-15 -4318 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768))) (-15 -4318 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768))) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -2795 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2795 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1535 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-768))) (-15 -2235 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) (-15 -3801 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-768)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1064)) +((-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2084 *9)))) (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2084 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) (-5 *1 (-1064 *4 *5 *6 *7 *8)))) (-1535 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2084 *11)))))) (-5 *6 (-768)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2084 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-5 *1 (-1064 *7 *8 *9 *10 *11)))) (-2795 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2795 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-4165 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-4165 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3)))) (-4318 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4318 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-2470 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) (-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2965 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2894 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2470 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-112))) (-15 -4318 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768))) (-15 -4318 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768))) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -2795 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2795 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1535 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-768))) (-15 -2235 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) (-15 -3801 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-768)))) +((-3254 (((-112) |#5| $) 25)) (-2954 (((-112) |#5| $) 28)) (-2078 (((-112) |#5| $) 18) (((-112) $) 51)) (-1353 (((-641 $) |#5| $) NIL) (((-641 $) (-641 |#5|) $) 93) (((-641 $) (-641 |#5|) (-641 $)) 91) (((-641 $) |#5| (-641 $)) 94)) (-3004 (($ $ |#5|) NIL) (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 72) (((-641 $) (-641 |#5|) $) 74) (((-641 $) (-641 |#5|) (-641 $)) 76)) (-4020 (((-641 $) |#5| $) NIL) (((-641 $) |#5| (-641 $)) 63) (((-641 $) (-641 |#5|) $) 68) (((-641 $) (-641 |#5|) (-641 $)) 70)) (-3485 (((-112) |#5| $) 31))) +(((-1065 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3004 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3004 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3004 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3004 ((-641 |#1|) |#5| |#1|)) (-15 -4020 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -4020 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -4020 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -4020 ((-641 |#1|) |#5| |#1|)) (-15 -1353 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -1353 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -1353 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -1353 ((-641 |#1|) |#5| |#1|)) (-15 -2954 ((-112) |#5| |#1|)) (-15 -2078 ((-112) |#1|)) (-15 -3485 ((-112) |#5| |#1|)) (-15 -3254 ((-112) |#5| |#1|)) (-15 -2078 ((-112) |#5| |#1|)) (-15 -3004 (|#1| |#1| |#5|))) (-1066 |#2| |#3| |#4| |#5|) (-452) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -1065)) +NIL +(-10 -8 (-15 -3004 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -3004 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -3004 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -3004 ((-641 |#1|) |#5| |#1|)) (-15 -4020 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -4020 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -4020 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -4020 ((-641 |#1|) |#5| |#1|)) (-15 -1353 ((-641 |#1|) |#5| (-641 |#1|))) (-15 -1353 ((-641 |#1|) (-641 |#5|) (-641 |#1|))) (-15 -1353 ((-641 |#1|) (-641 |#5|) |#1|)) (-15 -1353 ((-641 |#1|) |#5| |#1|)) (-15 -2954 ((-112) |#5| |#1|)) (-15 -2078 ((-112) |#1|)) (-15 -3485 ((-112) |#5| |#1|)) (-15 -3254 ((-112) |#5| |#1|)) (-15 -2078 ((-112) |#5| |#1|)) (-15 -3004 (|#1| |#1| |#5|))) +((-3732 (((-112) $ $) 7)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) 85)) (-1454 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4269 (((-641 |#3|) $) 33)) (-3547 (((-112) $) 26)) (-4281 (((-112) $) 17 (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) 101) (((-112) $) 97)) (-2244 ((|#4| |#4| $) 92)) (-2249 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| $) 126)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) 27)) (-2969 (((-112) $ (-768)) 44)) (-3548 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-2818 (($) 45 T CONST)) (-4076 (((-112) $) 22 (|has| |#1| (-556)))) (-2072 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2494 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3791 (((-112) $) 25 (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2868 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) 36)) (-2239 (($ (-641 |#4|)) 35)) (-1977 (((-3 $ "failed") $) 82)) (-4263 ((|#4| |#4| $) 89)) (-1996 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2920 ((|#4| |#4| $) 87)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) 105)) (-3254 (((-112) |#4| $) 136)) (-2954 (((-112) |#4| $) 133)) (-2078 (((-112) |#4| $) 137) (((-112) $) 134)) (-3616 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) 104) (((-112) $) 103)) (-3782 ((|#3| $) 34)) (-2275 (((-112) $ (-768)) 43)) (-1386 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 47)) (-3483 (((-641 |#3|) $) 32)) (-1410 (((-112) |#3| $) 31)) (-1500 (((-112) $ (-768)) 42)) (-2217 (((-1152) $) 9)) (-3530 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2643 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| |#4| $) 127)) (-2389 (((-3 |#4| "failed") $) 83)) (-2999 (((-641 $) |#4| $) 129)) (-3213 (((-3 (-112) (-641 $)) |#4| $) 132)) (-1614 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1353 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-3901 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4258 (((-641 |#4|) $) 107)) (-1591 (((-112) |#4| $) 99) (((-112) $) 95)) (-4266 ((|#4| |#4| $) 90)) (-4179 (((-112) $ $) 110)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) 100) (((-112) $) 96)) (-2601 ((|#4| |#4| $) 91)) (-3864 (((-1114) $) 10)) (-1966 (((-3 |#4| "failed") $) 84)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3465 (((-3 $ "failed") $ |#4|) 78)) (-3004 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-3736 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) 38)) (-4003 (((-112) $) 41)) (-3434 (($) 40)) (-2266 (((-768) $) 106)) (-3873 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-3896 (($ $) 39)) (-2235 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 60)) (-2031 (($ $ |#3|) 28)) (-2401 (($ $ |#3|) 30)) (-2158 (($ $) 88)) (-2624 (($ $ |#3|) 29)) (-3742 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1849 (((-768) $) 76 (|has| |#3| (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4020 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-1417 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) 81)) (-3485 (((-112) |#4| $) 135)) (-2755 (((-112) |#3| $) 80)) (-1705 (((-112) $ $) 6)) (-2641 (((-768) $) 46 (|has| $ (-6 -4411))))) +(((-1066 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1066)) +((-2078 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3254 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3485 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-2954 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3213 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1614 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1614 (*1 *2 *3 *1) (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-2999 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3530 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2643 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-2249 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *1)))) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1353 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-1353 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-1353 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-1353 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-4020 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-4020 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-4020 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-4020 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-3901 (*1 *1 *2 *1) (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3901 (*1 *1 *2 *1) (-12 (-5 *2 (-641 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)))) (-3004 (*1 *2 *3 *1) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)))) (-3004 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) (-3004 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *7)))) (-3004 (*1 *2 *3 *2) (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)))) (-1454 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1066 *5 *6 *7 *8))))) +(-13 (-1202 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2078 ((-112) |t#4| $)) (-15 -3254 ((-112) |t#4| $)) (-15 -3485 ((-112) |t#4| $)) (-15 -2078 ((-112) $)) (-15 -2954 ((-112) |t#4| $)) (-15 -3213 ((-3 (-112) (-641 $)) |t#4| $)) (-15 -1614 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 $))) |t#4| $)) (-15 -1614 ((-112) |t#4| $)) (-15 -2999 ((-641 $) |t#4| $)) (-15 -3530 ((-3 |t#4| (-641 $)) |t#4| |t#4| $)) (-15 -2643 ((-641 (-2 (|:| |val| |t#4|) (|:| -2084 $))) |t#4| |t#4| $)) (-15 -2249 ((-641 (-2 (|:| |val| |t#4|) (|:| -2084 $))) |t#4| $)) (-15 -1353 ((-641 $) |t#4| $)) (-15 -1353 ((-641 $) (-641 |t#4|) $)) (-15 -1353 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -1353 ((-641 $) |t#4| (-641 $))) (-15 -4020 ((-641 $) |t#4| $)) (-15 -4020 ((-641 $) |t#4| (-641 $))) (-15 -4020 ((-641 $) (-641 |t#4|) $)) (-15 -4020 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -3901 ($ |t#4| $)) (-15 -3901 ($ (-641 |t#4|) $)) (-15 -3004 ((-641 $) |t#4| $)) (-15 -3004 ((-641 $) |t#4| (-641 $))) (-15 -3004 ((-641 $) (-641 |t#4|) $)) (-15 -3004 ((-641 $) (-641 |t#4|) (-641 $))) (-15 -1454 ((-641 $) (-641 |t#4|) (-112))))) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) +((-1542 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|) 87)) (-2066 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|) 129)) (-2675 (((-641 |#5|) |#4| |#5|) 75)) (-3940 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3743 (((-1264)) 37)) (-3067 (((-1264)) 26)) (-2688 (((-1264) (-1152) (-1152) (-1152)) 33)) (-1594 (((-1264) (-1152) (-1152) (-1152)) 22)) (-4090 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#4| |#4| |#5|) 109)) (-1904 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#3| (-112)) 120) (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3600 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|) 115))) +(((-1067 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1594 ((-1264) (-1152) (-1152) (-1152))) (-15 -3067 ((-1264))) (-15 -2688 ((-1264) (-1152) (-1152) (-1152))) (-15 -3743 ((-1264))) (-15 -4090 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -1904 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1904 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#3| (-112))) (-15 -3600 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -2066 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -3940 ((-112) |#4| |#5|)) (-15 -3940 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -2675 ((-641 |#5|) |#4| |#5|)) (-15 -1542 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1067)) +((-1542 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2675 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3940 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3940 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2066 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3600 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2084 *9)))) (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2084 *9)))) (-5 *1 (-1067 *6 *7 *4 *8 *9)))) (-1904 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-4090 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))) (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3743 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-2688 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3067 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-1594 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(-10 -7 (-15 -1594 ((-1264) (-1152) (-1152) (-1152))) (-15 -3067 ((-1264))) (-15 -2688 ((-1264) (-1152) (-1152) (-1152))) (-15 -3743 ((-1264))) (-15 -4090 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -1904 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -1904 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#3| (-112))) (-15 -3600 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -2066 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -3940 ((-112) |#4| |#5|)) (-15 -3940 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -2675 ((-641 |#5|) |#4| |#5|)) (-15 -1542 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|))) +((-3732 (((-112) $ $) NIL)) (-3107 (((-1208) $) 13)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2575 (((-1129) $) 10)) (-3742 (((-859) $) 22) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-1068) (-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)) (-15 -3107 ((-1208) $))))) (T -1068)) +((-2575 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1068)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1068))))) +(-13 (-1077) (-10 -8 (-15 -2575 ((-1129) $)) (-15 -3107 ((-1208) $)))) +((-3732 (((-112) $ $) NIL)) (-4324 (((-1170) $) 8)) (-2217 (((-1152) $) 17)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 14))) +(((-1069 |#1|) (-13 (-1094) (-10 -8 (-15 -4324 ((-1170) $)))) (-1170)) (T -1069)) +((-4324 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2)))) +(-13 (-1094) (-10 -8 (-15 -4324 ((-1170) $)))) +((-3732 (((-112) $ $) NIL)) (-2665 (($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|))) 34)) (-1880 (($ |#3| |#3|) 23) (($ |#3| |#3| (-641 (-1170))) 21)) (-3076 ((|#3| $) 13)) (-2111 (((-3 (-294 |#3|) "failed") $) 60)) (-2239 (((-294 |#3|) $) NIL)) (-2001 (((-641 (-1170)) $) 16)) (-2890 (((-889 |#1|) $) 11)) (-3065 ((|#3| $) 12)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4382 ((|#3| $ |#3|) 28) ((|#3| $ |#3| (-918)) 41)) (-3742 (((-859) $) 89) (($ (-294 |#3|)) 22)) (-1705 (((-112) $ $) 38))) +(((-1070 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-1035 (-294 |#3|)) (-10 -8 (-15 -1880 ($ |#3| |#3|)) (-15 -1880 ($ |#3| |#3| (-641 (-1170)))) (-15 -2665 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -2890 ((-889 |#1|) $)) (-15 -3065 (|#3| $)) (-15 -3076 (|#3| $)) (-15 -4382 (|#3| $ |#3| (-918))) (-15 -2001 ((-641 (-1170)) $)))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -1070)) +((-1880 (*1 *1 *2 *2) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))) (-1880 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-2665 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) (-4 *6 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *6)))) (-2890 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 *2))) (-5 *2 (-889 *3)) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 *2))))) (-3065 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) (-3076 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1070 *3 *4 *2)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) (-4382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1070 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) (-2001 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))))) +(-13 (-1094) (-286 |#3| |#3|) (-1035 (-294 |#3|)) (-10 -8 (-15 -1880 ($ |#3| |#3|)) (-15 -1880 ($ |#3| |#3| (-641 (-1170)))) (-15 -2665 ($ $ (-641 (-1170)) (-1 (-112) (-641 |#3|)))) (-15 -2890 ((-889 |#1|) $)) (-15 -3065 (|#3| $)) (-15 -3076 (|#3| $)) (-15 -4382 (|#3| $ |#3| (-918))) (-15 -2001 ((-641 (-1170)) $)))) +((-3732 (((-112) $ $) NIL)) (-2630 (($ (-641 (-1070 |#1| |#2| |#3|))) 14)) (-2753 (((-641 (-1070 |#1| |#2| |#3|)) $) 21)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4382 ((|#3| $ |#3|) 24) ((|#3| $ |#3| (-918)) 27)) (-3742 (((-859) $) 17)) (-1705 (((-112) $ $) 20))) +(((-1071 |#1| |#2| |#3|) (-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -2630 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -2753 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4382 (|#3| $ |#3| (-918))))) (-1094) (-13 (-1046) (-883 |#1|) (-847) (-612 (-889 |#1|))) (-13 (-430 |#2|) (-883 |#1|) (-612 (-889 |#1|)))) (T -1071)) +((-2630 (*1 *1 *2) (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) (-5 *1 (-1071 *3 *4 *5)))) (-2753 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))))) (-4382 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-918)) (-4 *4 (-1094)) (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) (-5 *1 (-1071 *4 *5 *2)) (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4))))))) +(-13 (-1094) (-286 |#3| |#3|) (-10 -8 (-15 -2630 ($ (-641 (-1070 |#1| |#2| |#3|)))) (-15 -2753 ((-641 (-1070 |#1| |#2| |#3|)) $)) (-15 -4382 (|#3| $ |#3| (-918))))) +((-3649 (((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)) 87) (((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|))) 91) (((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112)) 89))) +(((-1072 |#1| |#2|) (-10 -7 (-15 -3649 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -3649 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3649 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)))) (-13 (-307) (-147)) (-641 (-1170))) (T -1072)) +((-3649 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))))) (-3649 (*1 *2 *3) (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3400 (-1166 *4)) (|:| -1785 (-641 (-949 *4)))))) (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-949 *4))) (-14 *5 (-641 (-1170))))) (-3649 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170)))))) +(-10 -7 (-15 -3649 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -3649 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3649 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)))) +((-4127 (((-418 |#3|) |#3|) 18))) +(((-1073 |#1| |#2| |#3|) (-10 -7 (-15 -4127 ((-418 |#3|) |#3|))) (-1235 (-407 (-564))) (-13 (-363) (-147) (-721 (-407 (-564)) |#1|)) (-1235 |#2|)) (T -1073)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-13 (-363) (-147) (-721 (-407 (-564)) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -4127 ((-418 |#3|) |#3|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 142)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-363)))) (-1948 (($ $) NIL (|has| |#1| (-363)))) (-1832 (((-112) $) NIL (|has| |#1| (-363)))) (-3580 (((-685 |#1|) (-1259 $)) NIL) (((-685 |#1|)) 125)) (-3809 ((|#1| $) 130)) (-4374 (((-1182 (-918) (-768)) (-564)) NIL (|has| |#1| (-349)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-1938 (((-768)) 46 (|has| |#1| (-368)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-2340 (($ (-1259 |#1|) (-1259 $)) NIL) (($ (-1259 |#1|)) 49)) (-3013 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-3807 (((-685 |#1|) $ (-1259 $)) NIL) (((-685 |#1|) $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 115) (((-685 |#1|) (-685 $)) 110)) (-1699 (($ |#2|) 67) (((-3 $ "failed") (-407 |#2|)) NIL (|has| |#1| (-363)))) (-3951 (((-3 $ "failed") $) NIL)) (-1544 (((-918)) 84)) (-2821 (($) 50 (|has| |#1| (-368)))) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-2757 (($) NIL (|has| |#1| (-349)))) (-1313 (((-112) $) NIL (|has| |#1| (-349)))) (-3176 (($ $ (-768)) NIL (|has| |#1| (-349))) (($ $) NIL (|has| |#1| (-349)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-1619 (((-918) $) NIL (|has| |#1| (-349))) (((-830 (-918)) $) NIL (|has| |#1| (-349)))) (-3840 (((-112) $) NIL)) (-3328 ((|#1| $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2653 ((|#2| $) 91 (|has| |#1| (-363)))) (-1906 (((-918) $) 150 (|has| |#1| (-368)))) (-1687 ((|#2| $) 64)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-3258 (($) NIL (|has| |#1| (-349)) CONST)) (-1495 (($ (-918)) 141 (|has| |#1| (-368)))) (-3864 (((-1114) $) NIL)) (-1693 (($) 132)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4056 (((-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564))))) NIL (|has| |#1| (-349)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4284 ((|#1| (-1259 $)) NIL) ((|#1|) 119)) (-2819 (((-768) $) NIL (|has| |#1| (-349))) (((-3 (-768) "failed") $ $) NIL (|has| |#1| (-349)))) (-4117 (($ $) NIL (-4030 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) NIL (-4030 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1 |#1| |#1|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-2277 (((-685 |#1|) (-1259 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-3925 ((|#2|) 80)) (-1543 (($) NIL (|has| |#1| (-349)))) (-1785 (((-1259 |#1|) $ (-1259 $)) 96) (((-685 |#1|) (-1259 $) (-1259 $)) NIL) (((-1259 |#1|) $) 77) (((-685 |#1|) (-1259 $)) 92)) (-2235 (((-1259 |#1|) $) NIL) (($ (-1259 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (|has| |#1| (-349)))) (-3742 (((-859) $) 63) (($ (-564)) 59) (($ |#1|) 60) (($ $) NIL (|has| |#1| (-363))) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-363)) (|has| |#1| (-1035 (-407 (-564))))))) (-4253 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-2230 ((|#2| $) 89)) (-3270 (((-768)) 82 T CONST)) (-4265 (((-1259 $)) 88)) (-3360 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4311 (($) 32 T CONST)) (-4321 (($) 19 T CONST)) (-2124 (($ $) NIL (-4030 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-768)) NIL (-4030 (-12 (|has| |#1| (-233)) (|has| |#1| (-363))) (|has| |#1| (-349)))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-363)) (|has| |#1| (-897 (-1170))))) (($ $ (-1 |#1| |#1|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-363)))) (-1705 (((-112) $ $) 69)) (-1799 (($ $ $) NIL (|has| |#1| (-363)))) (-1790 (($ $) 73) (($ $ $) NIL)) (-1780 (($ $ $) 71)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 57) (($ $ $) 75) (($ $ |#1|) NIL) (($ |#1| $) 54) (($ (-407 (-564)) $) NIL (|has| |#1| (-363))) (($ $ (-407 (-564))) NIL (|has| |#1| (-363))))) +(((-1074 |#1| |#2| |#3|) (-721 |#1| |#2|) (-172) (-1235 |#1|) |#2|) (T -1074)) +NIL +(-721 |#1| |#2|) +((-4127 (((-418 |#3|) |#3|) 19))) +(((-1075 |#1| |#2| |#3|) (-10 -7 (-15 -4127 ((-418 |#3|) |#3|))) (-1235 (-407 (-949 (-564)))) (-13 (-363) (-147) (-721 (-407 (-949 (-564))) |#1|)) (-1235 |#2|)) (T -1075)) +((-4127 (*1 *2 *3) (-12 (-4 *4 (-1235 (-407 (-949 (-564))))) (-4 *5 (-13 (-363) (-147) (-721 (-407 (-949 (-564))) *4))) (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(-10 -7 (-15 -4127 ((-418 |#3|) |#3|))) +((-3732 (((-112) $ $) NIL)) (-2799 (($ $ $) 16)) (-2848 (($ $ $) 17)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3373 (($) 6)) (-2235 (((-1170) $) 20)) (-3742 (((-859) $) 13)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 15)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 9))) +(((-1076) (-13 (-847) (-612 (-1170)) (-10 -8 (-15 -3373 ($))))) (T -1076)) +((-3373 (*1 *1) (-5 *1 (-1076)))) +(-13 (-847) (-612 (-1170)) (-10 -8 (-15 -3373 ($)))) +((-3732 (((-112) $ $) 7)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-1705 (((-112) $ $) 6))) +(((-1077) (-140)) (T -1077)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T)) -((-1733 ((|#1| |#1| (-1 (-563) |#1| |#1|)) 38) ((|#1| |#1| (-1 (-112) |#1|)) 29)) (-4208 (((-1262)) 18)) (-2569 (((-640 |#1|)) 10))) -(((-1077 |#1|) (-10 -7 (-15 -4208 ((-1262))) (-15 -2569 ((-640 |#1|))) (-15 -1733 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1733 (|#1| |#1| (-1 (-563) |#1| |#1|)))) (-132)) (T -1077)) -((-1733 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-563) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) (-1733 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) (-2569 (*1 *2) (-12 (-5 *2 (-640 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-132)))) (-4208 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1077 *3)) (-4 *3 (-132))))) -(-10 -7 (-15 -4208 ((-1262))) (-15 -2569 ((-640 |#1|))) (-15 -1733 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1733 (|#1| |#1| (-1 (-563) |#1| |#1|)))) -((-1771 (($ (-109) $) 16)) (-1784 (((-3 (-109) "failed") (-1169) $) 15)) (-2749 (($) 7)) (-1760 (($) 17)) (-1748 (($) 18)) (-1796 (((-640 (-175)) $) 10)) (-2062 (((-858) $) 21))) -(((-1078) (-13 (-610 (-858)) (-10 -8 (-15 -2749 ($)) (-15 -1796 ((-640 (-175)) $)) (-15 -1784 ((-3 (-109) "failed") (-1169) $)) (-15 -1771 ($ (-109) $)) (-15 -1760 ($)) (-15 -1748 ($))))) (T -1078)) -((-2749 (*1 *1) (-5 *1 (-1078))) (-1796 (*1 *2 *1) (-12 (-5 *2 (-640 (-175))) (-5 *1 (-1078)))) (-1784 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-1078)))) (-1771 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1078)))) (-1760 (*1 *1) (-5 *1 (-1078))) (-1748 (*1 *1) (-5 *1 (-1078)))) -(-13 (-610 (-858)) (-10 -8 (-15 -2749 ($)) (-15 -1796 ((-640 (-175)) $)) (-15 -1784 ((-3 (-109) "failed") (-1169) $)) (-15 -1771 ($ (-109) $)) (-15 -1760 ($)) (-15 -1748 ($)))) -((-1807 (((-1257 (-684 |#1|)) (-640 (-684 |#1|))) 47) (((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|))) 76) (((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|)))) 94)) (-1818 (((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|))) 41))) -(((-1079 |#1|) (-10 -7 (-15 -1807 ((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|))))) (-15 -1807 ((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|)))) (-15 -1807 ((-1257 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1818 ((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|))))) (-363)) (T -1079)) -((-1818 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-684 *5))) (-5 *3 (-684 *5)) (-4 *5 (-363)) (-5 *2 (-1257 *5)) (-5 *1 (-1079 *5)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-1079 *4)))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) (-5 *2 (-1257 (-684 (-948 *5)))) (-5 *1 (-1079 *5)) (-5 *4 (-684 (-948 *5))))) (-1807 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) (-5 *2 (-1257 (-684 (-407 (-948 *5))))) (-5 *1 (-1079 *5)) (-5 *4 (-684 (-407 (-948 *5))))))) -(-10 -7 (-15 -1807 ((-1257 (-684 (-407 (-948 |#1|)))) (-640 (-1169)) (-684 (-407 (-948 |#1|))))) (-15 -1807 ((-1257 (-684 (-948 |#1|))) (-640 (-1169)) (-684 (-948 |#1|)))) (-15 -1807 ((-1257 (-684 |#1|)) (-640 (-684 |#1|)))) (-15 -1818 ((-1257 |#1|) (-684 |#1|) (-640 (-684 |#1|))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2092 (((-640 (-767)) $) NIL) (((-640 (-767)) $ (-1169)) NIL)) (-2417 (((-767) $) NIL) (((-767) $ (-1169)) NIL)) (-2185 (((-640 (-1081 (-1169))) $) NIL)) (-2021 (((-1165 $) $ (-1081 (-1169))) NIL) (((-1165 |#1|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-1081 (-1169)))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2069 (($ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1081 (-1169)) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL) (((-3 (-1118 |#1| (-1169)) "failed") $) NIL)) (-2589 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1081 (-1169)) $) NIL) (((-1169) $) NIL) (((-1118 |#1| (-1169)) $) NIL)) (-3962 (($ $ $ (-1081 (-1169))) NIL (|has| |#1| (-172)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1081 (-1169))) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-3302 (($ $ |#1| (-531 (-1081 (-1169))) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1081 (-1169)) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1081 (-1169)) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2903 (((-767) $ (-1169)) NIL) (((-767) $) NIL)) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-2175 (($ (-1165 |#1|) (-1081 (-1169))) NIL) (($ (-1165 $) (-1081 (-1169))) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-531 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-1081 (-1169))) NIL)) (-3187 (((-531 (-1081 (-1169))) $) NIL) (((-767) $ (-1081 (-1169))) NIL) (((-640 (-767)) $ (-640 (-1081 (-1169)))) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-531 (-1081 (-1169))) (-531 (-1081 (-1169)))) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2428 (((-1 $ (-767)) (-1169)) NIL) (((-1 $ (-767)) $) NIL (|has| |#1| (-233)))) (-2845 (((-3 (-1081 (-1169)) "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-4103 (((-1081 (-1169)) $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1938 (((-1151) $) NIL)) (-2081 (((-112) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-1081 (-1169))) (|:| -2631 (-767))) "failed") $) NIL)) (-1478 (($ $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1081 (-1169)) |#1|) NIL) (($ $ (-640 (-1081 (-1169))) (-640 |#1|)) NIL) (($ $ (-1081 (-1169)) $) NIL) (($ $ (-640 (-1081 (-1169))) (-640 $)) NIL) (($ $ (-1169) $) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 $)) NIL (|has| |#1| (-233))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-233))) (($ $ (-640 (-1169)) (-640 |#1|)) NIL (|has| |#1| (-233)))) (-3974 (($ $ (-1081 (-1169))) NIL (|has| |#1| (-172)))) (-1361 (($ $ (-1081 (-1169))) NIL) (($ $ (-640 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2103 (((-640 (-1169)) $) NIL)) (-1962 (((-531 (-1081 (-1169))) $) NIL) (((-767) $ (-1081 (-1169))) NIL) (((-640 (-767)) $ (-640 (-1081 (-1169)))) NIL) (((-767) $ (-1169)) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1081 (-1169)) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1081 (-1169))) NIL (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-1081 (-1169))) NIL) (($ (-1169)) NIL) (($ (-1118 |#1| (-1169))) NIL) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-531 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-1081 (-1169))) NIL) (($ $ (-640 (-1081 (-1169)))) NIL) (($ $ (-1081 (-1169)) (-767)) NIL) (($ $ (-640 (-1081 (-1169))) (-640 (-767))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-767)) NIL (|has| |#1| (-233))) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1080 |#1|) (-13 (-253 |#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) (-1034 (-1118 |#1| (-1169)))) (-1045)) (T -1080)) -NIL -(-13 (-253 |#1| (-1169) (-1081 (-1169)) (-531 (-1081 (-1169)))) (-1034 (-1118 |#1| (-1169)))) -((-2049 (((-112) $ $) NIL)) (-2417 (((-767) $) NIL)) (-4040 ((|#1| $) 10)) (-2671 (((-3 |#1| "failed") $) NIL)) (-2589 ((|#1| $) NIL)) (-2903 (((-767) $) 11)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2428 (($ |#1| (-767)) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1361 (($ $) NIL) (($ $ (-767)) NIL)) (-2062 (((-858) $) NIL) (($ |#1|) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 16))) -(((-1081 |#1|) (-266 |#1|) (-846)) (T -1081)) +(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T)) +((-1920 ((|#1| |#1| (-1 (-564) |#1| |#1|)) 38) ((|#1| |#1| (-1 (-112) |#1|)) 29)) (-1773 (((-1264)) 18)) (-3636 (((-641 |#1|)) 10))) +(((-1078 |#1|) (-10 -7 (-15 -1773 ((-1264))) (-15 -3636 ((-641 |#1|))) (-15 -1920 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1920 (|#1| |#1| (-1 (-564) |#1| |#1|)))) (-132)) (T -1078)) +((-1920 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-1920 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) (-3636 (*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132)))) (-1773 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132))))) +(-10 -7 (-15 -1773 ((-1264))) (-15 -3636 ((-641 |#1|))) (-15 -1920 (|#1| |#1| (-1 (-112) |#1|))) (-15 -1920 (|#1| |#1| (-1 (-564) |#1| |#1|)))) +((-2463 (($ (-109) $) 20)) (-2767 (((-687 (-109)) (-1170) $) 19)) (-3434 (($) 7)) (-3829 (($) 21)) (-1725 (($) 22)) (-1409 (((-641 (-175)) $) 10)) (-3742 (((-859) $) 25))) +(((-1079) (-13 (-611 (-859)) (-10 -8 (-15 -3434 ($)) (-15 -1409 ((-641 (-175)) $)) (-15 -2767 ((-687 (-109)) (-1170) $)) (-15 -2463 ($ (-109) $)) (-15 -3829 ($)) (-15 -1725 ($))))) (T -1079)) +((-3434 (*1 *1) (-5 *1 (-1079))) (-1409 (*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079)))) (-2767 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079)))) (-2463 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079)))) (-3829 (*1 *1) (-5 *1 (-1079))) (-1725 (*1 *1) (-5 *1 (-1079)))) +(-13 (-611 (-859)) (-10 -8 (-15 -3434 ($)) (-15 -1409 ((-641 (-175)) $)) (-15 -2767 ((-687 (-109)) (-1170) $)) (-15 -2463 ($ (-109) $)) (-15 -3829 ($)) (-15 -1725 ($)))) +((-3147 (((-1259 (-685 |#1|)) (-641 (-685 |#1|))) 47) (((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|))) 76) (((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|)))) 94)) (-1785 (((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))) 41))) +(((-1080 |#1|) (-10 -7 (-15 -3147 ((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|))))) (-15 -3147 ((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|)))) (-15 -3147 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -1785 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) (-363)) (T -1080)) +((-1785 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4)))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-949 *5)))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-949 *5))))) (-3147 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) (-5 *2 (-1259 (-685 (-407 (-949 *5))))) (-5 *1 (-1080 *5)) (-5 *4 (-685 (-407 (-949 *5))))))) +(-10 -7 (-15 -3147 ((-1259 (-685 (-407 (-949 |#1|)))) (-641 (-1170)) (-685 (-407 (-949 |#1|))))) (-15 -3147 ((-1259 (-685 (-949 |#1|))) (-641 (-1170)) (-685 (-949 |#1|)))) (-15 -3147 ((-1259 (-685 |#1|)) (-641 (-685 |#1|)))) (-15 -1785 ((-1259 |#1|) (-685 |#1|) (-641 (-685 |#1|))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2878 (((-641 (-768)) $) NIL) (((-641 (-768)) $ (-1170)) NIL)) (-3564 (((-768) $) NIL) (((-768) $ (-1170)) NIL)) (-4269 (((-641 (-1082 (-1170))) $) NIL)) (-4097 (((-1166 $) $ (-1082 (-1170))) NIL) (((-1166 |#1|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-1082 (-1170)))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2992 (($ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1082 (-1170)) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL) (((-3 (-1119 |#1| (-1170)) "failed") $) NIL)) (-2239 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1082 (-1170)) $) NIL) (((-1170) $) NIL) (((-1119 |#1| (-1170)) $) NIL)) (-2448 (($ $ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-1866 (($ $ |#1| (-531 (-1082 (-1170))) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1082 (-1170)) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1082 (-1170)) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1619 (((-768) $ (-1170)) NIL) (((-768) $) NIL)) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-4257 (($ (-1166 |#1|) (-1082 (-1170))) NIL) (($ (-1166 $) (-1082 (-1170))) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-1082 (-1170))) NIL)) (-3469 (((-531 (-1082 (-1170))) $) NIL) (((-768) $ (-1082 (-1170))) NIL) (((-641 (-768)) $ (-641 (-1082 (-1170)))) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-531 (-1082 (-1170))) (-531 (-1082 (-1170)))) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-4303 (((-1 $ (-768)) (-1170)) NIL) (((-1 $ (-768)) $) NIL (|has| |#1| (-233)))) (-1306 (((-3 (-1082 (-1170)) "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2550 (((-1082 (-1170)) $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2217 (((-1152) $) NIL)) (-3257 (((-112) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-1082 (-1170))) (|:| -2515 (-768))) "failed") $) NIL)) (-4345 (($ $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1082 (-1170)) |#1|) NIL) (($ $ (-641 (-1082 (-1170))) (-641 |#1|)) NIL) (($ $ (-1082 (-1170)) $) NIL) (($ $ (-641 (-1082 (-1170))) (-641 $)) NIL) (($ $ (-1170) $) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 $)) NIL (|has| |#1| (-233))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-233))) (($ $ (-641 (-1170)) (-641 |#1|)) NIL (|has| |#1| (-233)))) (-4284 (($ $ (-1082 (-1170))) NIL (|has| |#1| (-172)))) (-4117 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2331 (((-641 (-1170)) $) NIL)) (-2266 (((-531 (-1082 (-1170))) $) NIL) (((-768) $ (-1082 (-1170))) NIL) (((-641 (-768)) $ (-641 (-1082 (-1170)))) NIL) (((-768) $ (-1170)) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1082 (-1170)) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) NIL (|has| |#1| (-452))) (($ $ (-1082 (-1170))) NIL (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-1082 (-1170))) NIL) (($ (-1170)) NIL) (($ (-1119 |#1| (-1170))) NIL) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-531 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-1082 (-1170))) NIL) (($ $ (-641 (-1082 (-1170)))) NIL) (($ $ (-1082 (-1170)) (-768)) NIL) (($ $ (-641 (-1082 (-1170))) (-641 (-768))) NIL) (($ $) NIL (|has| |#1| (-233))) (($ $ (-768)) NIL (|has| |#1| (-233))) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1081 |#1|) (-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1035 (-1119 |#1| (-1170)))) (-1046)) (T -1081)) +NIL +(-13 (-253 |#1| (-1170) (-1082 (-1170)) (-531 (-1082 (-1170)))) (-1035 (-1119 |#1| (-1170)))) +((-3732 (((-112) $ $) NIL)) (-3564 (((-768) $) NIL)) (-3851 ((|#1| $) 10)) (-2111 (((-3 |#1| "failed") $) NIL)) (-2239 ((|#1| $) NIL)) (-1619 (((-768) $) 11)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-4303 (($ |#1| (-768)) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4117 (($ $) NIL) (($ $ (-768)) NIL)) (-3742 (((-859) $) NIL) (($ |#1|) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 16))) +(((-1082 |#1|) (-266 |#1|) (-847)) (T -1082)) NIL (-266 |#1|) -((-2751 (((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 27 (|has| |#1| (-844))) (((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|)) 14))) -(((-1082 |#1| |#2|) (-10 -7 (-15 -2751 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) (IF (|has| |#1| (-844)) (-15 -2751 ((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) |%noBranch|)) (-1208) (-1208)) (T -1082)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-844)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-1082 *5 *6)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1087 *6)) (-5 *1 (-1082 *5 *6))))) -(-10 -7 (-15 -2751 ((-1087 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) (IF (|has| |#1| (-844)) (-15 -2751 ((-640 |#2|) (-1 |#2| |#1|) (-1087 |#1|))) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 18) (($ (-1174)) NIL) (((-1174) $) NIL)) (-1832 (((-640 (-1128)) $) 10)) (-2943 (((-112) $ $) NIL))) -(((-1083) (-13 (-1076) (-10 -8 (-15 -1832 ((-640 (-1128)) $))))) (T -1083)) -((-1832 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1083))))) -(-13 (-1076) (-10 -8 (-15 -1832 ((-640 (-1128)) $)))) -((-2751 (((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)) 19))) -(((-1084 |#1| |#2|) (-10 -7 (-15 -2751 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) (-1208) (-1208)) (T -1084)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1085 *6)) (-5 *1 (-1084 *5 *6))))) -(-10 -7 (-15 -2751 ((-1085 |#2|) (-1 |#2| |#1|) (-1085 |#1|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-4040 (((-1169) $) 11)) (-3111 (((-1087 |#1|) $) 12)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2320 (($ (-1169) (-1087 |#1|)) 10)) (-2062 (((-858) $) 22 (|has| |#1| (-1093)))) (-2943 (((-112) $ $) 17 (|has| |#1| (-1093))))) -(((-1085 |#1|) (-13 (-1208) (-10 -8 (-15 -2320 ($ (-1169) (-1087 |#1|))) (-15 -4040 ((-1169) $)) (-15 -3111 ((-1087 |#1|) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1085)) -((-2320 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1087 *4)) (-4 *4 (-1208)) (-5 *1 (-1085 *4)))) (-4040 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1085 *3)) (-4 *3 (-1208)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-1087 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-1208))))) -(-13 (-1208) (-10 -8 (-15 -2320 ($ (-1169) (-1087 |#1|))) (-15 -4040 ((-1169) $)) (-15 -3111 ((-1087 |#1|) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) -((-3111 (($ |#1| |#1|) 8)) (-1856 ((|#1| $) 11)) (-3276 ((|#1| $) 13)) (-3398 (((-563) $) 9)) (-1843 ((|#1| $) 10)) (-3411 ((|#1| $) 12)) (-2802 (($ |#1|) 6)) (-1866 (($ |#1| |#1|) 15)) (-2732 (($ $ (-563)) 14))) -(((-1086 |#1|) (-140) (-1208)) (T -1086)) -((-1866 (*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-2732 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1086 *3)) (-4 *3 (-1208)))) (-3276 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3411 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-1843 (*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-1086 *3)) (-4 *3 (-1208)) (-5 *2 (-563)))) (-3111 (*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) -(-13 (-615 |t#1|) (-10 -8 (-15 -1866 ($ |t#1| |t#1|)) (-15 -2732 ($ $ (-563))) (-15 -3276 (|t#1| $)) (-15 -3411 (|t#1| $)) (-15 -1856 (|t#1| $)) (-15 -1843 (|t#1| $)) (-15 -3398 ((-563) $)) (-15 -3111 ($ |t#1| |t#1|)))) -(((-615 |#1|) . T)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3111 (($ |#1| |#1|) 16)) (-2751 (((-640 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-844)))) (-1856 ((|#1| $) 12)) (-3276 ((|#1| $) 11)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3398 (((-563) $) 15)) (-1843 ((|#1| $) 14)) (-3411 ((|#1| $) 13)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1864 (((-640 |#1|) $) 42 (|has| |#1| (-844))) (((-640 |#1|) (-640 $)) 41 (|has| |#1| (-844)))) (-2802 (($ |#1|) 29)) (-2062 (((-858) $) 28 (|has| |#1| (-1093)))) (-1866 (($ |#1| |#1|) 10)) (-2732 (($ $ (-563)) 17)) (-2943 (((-112) $ $) 22 (|has| |#1| (-1093))))) -(((-1087 |#1|) (-13 (-1086 |#1|) (-10 -7 (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-640 |#1|))) |%noBranch|))) (-1208)) (T -1087)) -NIL -(-13 (-1086 |#1|) (-10 -7 (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-640 |#1|))) |%noBranch|))) -((-3111 (($ |#1| |#1|) 8)) (-2751 ((|#2| (-1 |#1| |#1|) $) 16)) (-1856 ((|#1| $) 11)) (-3276 ((|#1| $) 13)) (-3398 (((-563) $) 9)) (-1843 ((|#1| $) 10)) (-3411 ((|#1| $) 12)) (-1864 ((|#2| (-640 $)) 18) ((|#2| $) 17)) (-2802 (($ |#1|) 6)) (-1866 (($ |#1| |#1|) 15)) (-2732 (($ $ (-563)) 14))) -(((-1088 |#1| |#2|) (-140) (-844) (-1142 |t#1|)) (T -1088)) -((-1864 (*1 *2 *3) (-12 (-5 *3 (-640 *1)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1142 *4)))) (-1864 (*1 *2 *1) (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1142 *3)))) (-2751 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) (-4 *2 (-1142 *4))))) -(-13 (-1086 |t#1|) (-10 -8 (-15 -1864 (|t#2| (-640 $))) (-15 -1864 (|t#2| $)) (-15 -2751 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-615 |#1|) . T) ((-1086 |#1|) . T)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-1442 (((-1128) $) 12)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 20) (($ (-1174)) NIL) (((-1174) $) NIL)) (-3373 (((-640 (-1128)) $) 10)) (-2943 (((-112) $ $) NIL))) -(((-1089) (-13 (-1076) (-10 -8 (-15 -3373 ((-640 (-1128)) $)) (-15 -1442 ((-1128) $))))) (T -1089)) -((-3373 (*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1089)))) (-1442 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1089))))) -(-13 (-1076) (-10 -8 (-15 -3373 ((-640 (-1128)) $)) (-15 -1442 ((-1128) $)))) -((-3738 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1883 (($ $ $) 10)) (-1896 (($ $ $) NIL) (($ $ |#2|) 15))) -(((-1090 |#1| |#2|) (-10 -8 (-15 -3738 (|#1| |#2| |#1|)) (-15 -3738 (|#1| |#1| |#2|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -1883 (|#1| |#1| |#1|)) (-15 -1896 (|#1| |#1| |#2|)) (-15 -1896 (|#1| |#1| |#1|))) (-1091 |#2|) (-1093)) (T -1090)) -NIL -(-10 -8 (-15 -3738 (|#1| |#2| |#1|)) (-15 -3738 (|#1| |#1| |#2|)) (-15 -3738 (|#1| |#1| |#1|)) (-15 -1883 (|#1| |#1| |#1|)) (-15 -1896 (|#1| |#1| |#2|)) (-15 -1896 (|#1| |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-3738 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1883 (($ $ $) 20)) (-1870 (((-112) $ $) 19)) (-3740 (((-112) $ (-767)) 35)) (-3158 (($) 25) (($ (-640 |#1|)) 24)) (-1907 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4408)))) (-3684 (($) 36 T CONST)) (-1920 (($ $) 59 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#1| $) 58 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4408)))) (-4236 (((-640 |#1|) $) 43 (|has| $ (-6 -4408)))) (-1925 (((-112) $ $) 28)) (-3633 (((-112) $ (-767)) 34)) (-1572 (((-640 |#1|) $) 44 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 38)) (-3604 (((-112) $ (-767)) 33)) (-1938 (((-1151) $) 9)) (-1913 (($ $ $) 23)) (-3249 (((-1113) $) 10)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3837 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#1|) (-640 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-294 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 29)) (-2820 (((-112) $) 32)) (-2749 (($) 31)) (-1896 (($ $ $) 22) (($ $ |#1|) 21)) (-3261 (((-767) |#1| $) 45 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4408)))) (-2208 (($ $) 30)) (-2802 (((-536) $) 60 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 51)) (-2062 (((-858) $) 11)) (-2121 (($) 27) (($ (-640 |#1|)) 26)) (-3848 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 6)) (-1708 (((-767) $) 37 (|has| $ (-6 -4408))))) -(((-1091 |#1|) (-140) (-1093)) (T -1091)) -((-1925 (*1 *2 *1 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-2121 (*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-2121 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) (-3158 (*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) (-1913 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-1896 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-1896 (*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-1883 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-1870 (*1 *2 *1 *1) (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))) (-3738 (*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-3738 (*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) (-3738 (*1 *1 *2 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) -(-13 (-1093) (-151 |t#1|) (-10 -8 (-6 -4398) (-15 -1925 ((-112) $ $)) (-15 -2121 ($)) (-15 -2121 ($ (-640 |t#1|))) (-15 -3158 ($)) (-15 -3158 ($ (-640 |t#1|))) (-15 -1913 ($ $ $)) (-15 -1896 ($ $ $)) (-15 -1896 ($ $ |t#1|)) (-15 -1883 ($ $ $)) (-15 -1870 ((-112) $ $)) (-15 -3738 ($ $ $)) (-15 -3738 ($ $ |t#1|)) (-15 -3738 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) . T) ((-1208) . T)) -((-1938 (((-1151) $) 10)) (-3249 (((-1113) $) 8))) -(((-1092 |#1|) (-10 -8 (-15 -1938 ((-1151) |#1|)) (-15 -3249 ((-1113) |#1|))) (-1093)) (T -1092)) -NIL -(-10 -8 (-15 -1938 ((-1151) |#1|)) (-15 -3249 ((-1113) |#1|))) -((-2049 (((-112) $ $) 7)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6))) -(((-1093) (-140)) (T -1093)) -((-3249 (*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1113)))) (-1938 (*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1151))))) -(-13 (-102) (-610 (-858)) (-10 -8 (-15 -3249 ((-1113) $)) (-15 -1938 ((-1151) $)))) -(((-102) . T) ((-610 (-858)) . T)) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) 36)) (-1972 (($ (-640 (-917))) 72)) (-1997 (((-3 $ "failed") $ (-917) (-917)) 83)) (-4301 (($) 40)) (-1949 (((-112) (-917) $) 44)) (-3267 (((-917) $) 66)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) 39)) (-2008 (((-3 $ "failed") $ (-917)) 79)) (-3249 (((-1113) $) NIL)) (-1961 (((-1257 $)) 49)) (-1984 (((-640 (-917)) $) 27)) (-2016 (((-767) $ (-917) (-917)) 80)) (-2062 (((-858) $) 32)) (-2943 (((-112) $ $) 24))) -(((-1094 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -2008 ((-3 $ "failed") $ (-917))) (-15 -1997 ((-3 $ "failed") $ (-917) (-917))) (-15 -1984 ((-640 (-917)) $)) (-15 -1972 ($ (-640 (-917)))) (-15 -1961 ((-1257 $))) (-15 -1949 ((-112) (-917) $)) (-15 -2016 ((-767) $ (-917) (-917))))) (-917) (-917)) (T -1094)) -((-2008 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1997 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1984 (*1 *2 *1) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-1961 (*1 *2) (-12 (-5 *2 (-1257 (-1094 *3 *4))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2016 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(-13 (-368) (-10 -8 (-15 -2008 ((-3 $ "failed") $ (-917))) (-15 -1997 ((-3 $ "failed") $ (-917) (-917))) (-15 -1984 ((-640 (-917)) $)) (-15 -1972 ($ (-640 (-917)))) (-15 -1961 ((-1257 $))) (-15 -1949 ((-112) (-917) $)) (-15 -2016 ((-767) $ (-917) (-917))))) -((-2049 (((-112) $ $) NIL)) (-1583 (($) NIL (|has| |#1| (-368)))) (-3738 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 80)) (-1883 (($ $ $) 78)) (-1870 (((-112) $ $) 79)) (-3740 (((-112) $ (-767)) NIL)) (-2433 (((-767)) NIL (|has| |#1| (-368)))) (-3158 (($ (-640 |#1|)) NIL) (($) 13)) (-1736 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2841 (($ |#1| $) 74 (|has| $ (-6 -4408))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4408)))) (-4301 (($) NIL (|has| |#1| (-368)))) (-4236 (((-640 |#1|) $) 19 (|has| $ (-6 -4408)))) (-1925 (((-112) $ $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3489 ((|#1| $) 55 (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4105 ((|#1| $) 53 (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 34)) (-3267 (((-917) $) NIL (|has| |#1| (-368)))) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1913 (($ $ $) 76)) (-3835 ((|#1| $) 25)) (-1956 (($ |#1| $) 69)) (-3491 (($ (-917)) NIL (|has| |#1| (-368)))) (-3249 (((-1113) $) NIL)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-3847 ((|#1| $) 27)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 21)) (-2749 (($) 11)) (-1896 (($ $ |#1|) NIL) (($ $ $) 77)) (-3139 (($) NIL) (($ (-640 |#1|)) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) 16)) (-2802 (((-536) $) 50 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 62)) (-1595 (($ $) NIL (|has| |#1| (-368)))) (-2062 (((-858) $) NIL)) (-1606 (((-767) $) NIL)) (-2121 (($ (-640 |#1|)) NIL) (($) 12)) (-4034 (($ (-640 |#1|)) NIL)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 52)) (-1708 (((-767) $) 10 (|has| $ (-6 -4408))))) -(((-1095 |#1|) (-425 |#1|) (-1093)) (T -1095)) +((-2187 (((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 27 (|has| |#1| (-845))) (((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|)) 14))) +(((-1083 |#1| |#2|) (-10 -7 (-15 -2187 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-845)) (-15 -2187 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1083)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-845)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-1083 *5 *6)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6))))) +(-10 -7 (-15 -2187 ((-1088 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) (IF (|has| |#1| (-845)) (-15 -2187 ((-641 |#2|) (-1 |#2| |#1|) (-1088 |#1|))) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 18) (($ (-1175)) NIL) (((-1175) $) NIL)) (-2663 (((-641 (-1129)) $) 10)) (-1705 (((-112) $ $) NIL))) +(((-1084) (-13 (-1077) (-10 -8 (-15 -2663 ((-641 (-1129)) $))))) (T -1084)) +((-2663 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084))))) +(-13 (-1077) (-10 -8 (-15 -2663 ((-641 (-1129)) $)))) +((-2187 (((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)) 19))) +(((-1085 |#1| |#2|) (-10 -7 (-15 -2187 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) (-1209) (-1209)) (T -1085)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6))))) +(-10 -7 (-15 -2187 ((-1086 |#2|) (-1 |#2| |#1|) (-1086 |#1|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3851 (((-1170) $) 11)) (-2177 (((-1088 |#1|) $) 12)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-2372 (($ (-1170) (-1088 |#1|)) 10)) (-3742 (((-859) $) 22 (|has| |#1| (-1094)))) (-1705 (((-112) $ $) 17 (|has| |#1| (-1094))))) +(((-1086 |#1|) (-13 (-1209) (-10 -8 (-15 -2372 ($ (-1170) (-1088 |#1|))) (-15 -3851 ((-1170) $)) (-15 -2177 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1086)) +((-2372 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) (-5 *1 (-1086 *4)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) (-2177 (*1 *2 *1) (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209))))) +(-13 (-1209) (-10 -8 (-15 -2372 ($ (-1170) (-1088 |#1|))) (-15 -3851 ((-1170) $)) (-15 -2177 ((-1088 |#1|) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) +((-2177 (($ |#1| |#1|) 8)) (-3163 ((|#1| $) 11)) (-3419 ((|#1| $) 13)) (-3432 (((-564) $) 9)) (-1380 ((|#1| $) 10)) (-3571 ((|#1| $) 12)) (-2235 (($ |#1|) 6)) (-4215 (($ |#1| |#1|) 15)) (-1488 (($ $ (-564)) 14))) +(((-1087 |#1|) (-140) (-1209)) (T -1087)) +((-4215 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1488 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209)))) (-3419 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3571 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3163 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-1380 (*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) (-3432 (*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564)))) (-2177 (*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(-13 (-616 |t#1|) (-10 -8 (-15 -4215 ($ |t#1| |t#1|)) (-15 -1488 ($ $ (-564))) (-15 -3419 (|t#1| $)) (-15 -3571 (|t#1| $)) (-15 -3163 (|t#1| $)) (-15 -1380 (|t#1| $)) (-15 -3432 ((-564) $)) (-15 -2177 ($ |t#1| |t#1|)))) +(((-616 |#1|) . T)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2177 (($ |#1| |#1|) 16)) (-2187 (((-641 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-845)))) (-3163 ((|#1| $) 12)) (-3419 ((|#1| $) 11)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3432 (((-564) $) 15)) (-1380 ((|#1| $) 14)) (-3571 ((|#1| $) 13)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3512 (((-641 |#1|) $) 42 (|has| |#1| (-845))) (((-641 |#1|) (-641 $)) 41 (|has| |#1| (-845)))) (-2235 (($ |#1|) 29)) (-3742 (((-859) $) 28 (|has| |#1| (-1094)))) (-4215 (($ |#1| |#1|) 10)) (-1488 (($ $ (-564)) 17)) (-1705 (((-112) $ $) 22 (|has| |#1| (-1094))))) +(((-1088 |#1|) (-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|))) (-1209)) (T -1088)) +NIL +(-13 (-1087 |#1|) (-10 -7 (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-641 |#1|))) |%noBranch|))) +((-2177 (($ |#1| |#1|) 8)) (-2187 ((|#2| (-1 |#1| |#1|) $) 16)) (-3163 ((|#1| $) 11)) (-3419 ((|#1| $) 13)) (-3432 (((-564) $) 9)) (-1380 ((|#1| $) 10)) (-3571 ((|#1| $) 12)) (-3512 ((|#2| (-641 $)) 18) ((|#2| $) 17)) (-2235 (($ |#1|) 6)) (-4215 (($ |#1| |#1|) 15)) (-1488 (($ $ (-564)) 14))) +(((-1089 |#1| |#2|) (-140) (-845) (-1143 |t#1|)) (T -1089)) +((-3512 (*1 *2 *3) (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1143 *4)))) (-3512 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1143 *3)))) (-2187 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) (-4 *2 (-1143 *4))))) +(-13 (-1087 |t#1|) (-10 -8 (-15 -3512 (|t#2| (-641 $))) (-15 -3512 (|t#2| $)) (-15 -2187 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-616 |#1|) . T) ((-1087 |#1|) . T)) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-2389 (((-1129) $) 12)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 20) (($ (-1175)) NIL) (((-1175) $) NIL)) (-4337 (((-641 (-1129)) $) 10)) (-1705 (((-112) $ $) NIL))) +(((-1090) (-13 (-1077) (-10 -8 (-15 -4337 ((-641 (-1129)) $)) (-15 -2389 ((-1129) $))))) (T -1090)) +((-4337 (*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090)))) (-2389 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090))))) +(-13 (-1077) (-10 -8 (-15 -4337 ((-641 (-1129)) $)) (-15 -2389 ((-1129) $)))) +((-3518 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-2570 (($ $ $) 10)) (-2365 (($ $ $) NIL) (($ $ |#2|) 15))) +(((-1091 |#1| |#2|) (-10 -8 (-15 -3518 (|#1| |#2| |#1|)) (-15 -3518 (|#1| |#1| |#2|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -2365 (|#1| |#1| |#2|)) (-15 -2365 (|#1| |#1| |#1|))) (-1092 |#2|) (-1094)) (T -1091)) +NIL +(-10 -8 (-15 -3518 (|#1| |#2| |#1|)) (-15 -3518 (|#1| |#1| |#2|)) (-15 -3518 (|#1| |#1| |#1|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -2365 (|#1| |#1| |#2|)) (-15 -2365 (|#1| |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-3518 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-2570 (($ $ $) 20)) (-1905 (((-112) $ $) 19)) (-2969 (((-112) $ (-768)) 35)) (-3688 (($) 25) (($ (-641 |#1|)) 24)) (-3548 (($ (-1 (-112) |#1|) $) 56 (|has| $ (-6 -4411)))) (-2818 (($) 36 T CONST)) (-1996 (($ $) 59 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#1| $) 58 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 55 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4411)))) (-3616 (((-641 |#1|) $) 43 (|has| $ (-6 -4411)))) (-3296 (((-112) $ $) 28)) (-2275 (((-112) $ (-768)) 34)) (-1386 (((-641 |#1|) $) 44 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 46 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 38)) (-1500 (((-112) $ (-768)) 33)) (-2217 (((-1152) $) 9)) (-1353 (($ $ $) 23)) (-3864 (((-1114) $) 10)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 52)) (-3736 (((-112) (-1 (-112) |#1|) $) 41 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#1|) (-641 |#1|)) 50 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 48 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) 47 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 29)) (-4003 (((-112) $) 32)) (-3434 (($) 31)) (-2365 (($ $ $) 22) (($ $ |#1|) 21)) (-3873 (((-768) |#1| $) 45 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#1|) $) 42 (|has| $ (-6 -4411)))) (-3896 (($ $) 30)) (-2235 (((-536) $) 60 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 51)) (-3742 (((-859) $) 11)) (-4194 (($) 27) (($ (-641 |#1|)) 26)) (-1417 (((-112) (-1 (-112) |#1|) $) 40 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 6)) (-2641 (((-768) $) 37 (|has| $ (-6 -4411))))) +(((-1092 |#1|) (-140) (-1094)) (T -1092)) +((-3296 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-4194 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-4194 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-3688 (*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3688 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) (-1353 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2365 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2365 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-2570 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-1905 (*1 *2 *1 *1) (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) (-3518 (*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3518 (*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) (-3518 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(-13 (-1094) (-151 |t#1|) (-10 -8 (-6 -4401) (-15 -3296 ((-112) $ $)) (-15 -4194 ($)) (-15 -4194 ($ (-641 |t#1|))) (-15 -3688 ($)) (-15 -3688 ($ (-641 |t#1|))) (-15 -1353 ($ $ $)) (-15 -2365 ($ $ $)) (-15 -2365 ($ $ |t#1|)) (-15 -2570 ($ $ $)) (-15 -1905 ((-112) $ $)) (-15 -3518 ($ $ $)) (-15 -3518 ($ $ |t#1|)) (-15 -3518 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) . T) ((-1209) . T)) +((-2217 (((-1152) $) 10)) (-3864 (((-1114) $) 8))) +(((-1093 |#1|) (-10 -8 (-15 -2217 ((-1152) |#1|)) (-15 -3864 ((-1114) |#1|))) (-1094)) (T -1093)) +NIL +(-10 -8 (-15 -2217 ((-1152) |#1|)) (-15 -3864 ((-1114) |#1|))) +((-3732 (((-112) $ $) 7)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6))) +(((-1094) (-140)) (T -1094)) +((-3864 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152))))) +(-13 (-102) (-611 (-859)) (-10 -8 (-15 -3864 ((-1114) $)) (-15 -2217 ((-1152) $)))) +(((-102) . T) ((-611 (-859)) . T)) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) 36)) (-4128 (($ (-641 (-918))) 72)) (-1710 (((-3 $ "failed") $ (-918) (-918)) 83)) (-2821 (($) 40)) (-2431 (((-112) (-918) $) 44)) (-1906 (((-918) $) 66)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) 39)) (-3433 (((-3 $ "failed") $ (-918)) 79)) (-3864 (((-1114) $) NIL)) (-2188 (((-1259 $)) 49)) (-2845 (((-641 (-918)) $) 27)) (-3178 (((-768) $ (-918) (-918)) 80)) (-3742 (((-859) $) 32)) (-1705 (((-112) $ $) 24))) +(((-1095 |#1| |#2|) (-13 (-368) (-10 -8 (-15 -3433 ((-3 $ "failed") $ (-918))) (-15 -1710 ((-3 $ "failed") $ (-918) (-918))) (-15 -2845 ((-641 (-918)) $)) (-15 -4128 ($ (-641 (-918)))) (-15 -2188 ((-1259 $))) (-15 -2431 ((-112) (-918) $)) (-15 -3178 ((-768) $ (-918) (-918))))) (-918) (-918)) (T -1095)) +((-3433 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1710 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2845 (*1 *2 *1) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-4128 (*1 *1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2188 (*1 *2) (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) (-2431 (*1 *2 *3 *1) (-12 (-5 *3 (-918)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3178 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-768)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +(-13 (-368) (-10 -8 (-15 -3433 ((-3 $ "failed") $ (-918))) (-15 -1710 ((-3 $ "failed") $ (-918) (-918))) (-15 -2845 ((-641 (-918)) $)) (-15 -4128 ($ (-641 (-918)))) (-15 -2188 ((-1259 $))) (-15 -2431 ((-112) (-918) $)) (-15 -3178 ((-768) $ (-918) (-918))))) +((-3732 (((-112) $ $) NIL)) (-3026 (($) NIL (|has| |#1| (-368)))) (-3518 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 80)) (-2570 (($ $ $) 78)) (-1905 (((-112) $ $) 79)) (-2969 (((-112) $ (-768)) NIL)) (-1938 (((-768)) NIL (|has| |#1| (-368)))) (-3688 (($ (-641 |#1|)) NIL) (($) 13)) (-2068 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2154 (($ |#1| $) 74 (|has| $ (-6 -4411))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4411)))) (-2821 (($) NIL (|has| |#1| (-368)))) (-3616 (((-641 |#1|) $) 19 (|has| $ (-6 -4411)))) (-3296 (((-112) $ $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2799 ((|#1| $) 55 (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2848 ((|#1| $) 53 (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 34)) (-1906 (((-918) $) NIL (|has| |#1| (-368)))) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-1353 (($ $ $) 76)) (-2828 ((|#1| $) 25)) (-2974 (($ |#1| $) 69)) (-1495 (($ (-918)) NIL (|has| |#1| (-368)))) (-3864 (((-1114) $) NIL)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 31)) (-1292 ((|#1| $) 27)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 21)) (-3434 (($) 11)) (-2365 (($ $ |#1|) NIL) (($ $ $) 77)) (-4085 (($) NIL) (($ (-641 |#1|)) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) 16)) (-2235 (((-536) $) 50 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 62)) (-2926 (($ $) NIL (|has| |#1| (-368)))) (-3742 (((-859) $) NIL)) (-3749 (((-768) $) NIL)) (-4194 (($ (-641 |#1|)) NIL) (($) 12)) (-3745 (($ (-641 |#1|)) NIL)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 52)) (-2641 (((-768) $) 10 (|has| $ (-6 -4411))))) +(((-1096 |#1|) (-425 |#1|) (-1094)) (T -1096)) NIL (-425 |#1|) -((-2049 (((-112) $ $) 7)) (-2043 (((-112) $) 32)) (-2774 ((|#2| $) 27)) (-2054 (((-112) $) 33)) (-2725 ((|#1| $) 28)) (-2078 (((-112) $) 35)) (-2100 (((-112) $) 37)) (-2066 (((-112) $) 34)) (-1938 (((-1151) $) 9)) (-2031 (((-112) $) 31)) (-2794 ((|#3| $) 26)) (-3249 (((-1113) $) 10)) (-2020 (((-112) $) 30)) (-2469 ((|#4| $) 25)) (-3999 ((|#5| $) 24)) (-3087 (((-112) $ $) 38)) (-3858 (($ $ (-563)) 20) (($ $ (-640 (-563))) 19)) (-2131 (((-640 $) $) 29)) (-2802 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-640 $)) 39)) (-2062 (((-858) $) 11)) (-2360 (($ $) 22)) (-2348 (($ $) 23)) (-2088 (((-112) $) 36)) (-2943 (((-112) $ $) 6)) (-1708 (((-563) $) 21))) -(((-1096 |#1| |#2| |#3| |#4| |#5|) (-140) (-1093) (-1093) (-1093) (-1093) (-1093)) (T -1096)) -((-3087 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2078 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2054 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2043 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2020 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112)))) (-2131 (*1 *2 *1) (-12 (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-1096 *3 *4 *5 *6 *7)))) (-2725 (*1 *2 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *2 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-2794 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-2469 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *2 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *2)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) (-2348 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)))) (-2360 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)))) (-1708 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-563)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093))))) -(-13 (-1093) (-615 |t#1|) (-615 |t#2|) (-615 |t#3|) (-615 |t#4|) (-615 |t#4|) (-615 |t#5|) (-615 (-640 $)) (-10 -8 (-15 -3087 ((-112) $ $)) (-15 -2100 ((-112) $)) (-15 -2088 ((-112) $)) (-15 -2078 ((-112) $)) (-15 -2066 ((-112) $)) (-15 -2054 ((-112) $)) (-15 -2043 ((-112) $)) (-15 -2031 ((-112) $)) (-15 -2020 ((-112) $)) (-15 -2131 ((-640 $) $)) (-15 -2725 (|t#1| $)) (-15 -2774 (|t#2| $)) (-15 -2794 (|t#3| $)) (-15 -2469 (|t#4| $)) (-15 -3999 (|t#5| $)) (-15 -2348 ($ $)) (-15 -2360 ($ $)) (-15 -1708 ((-563) $)) (-15 -3858 ($ $ (-563))) (-15 -3858 ($ $ (-640 (-563)))))) -(((-102) . T) ((-610 (-858)) . T) ((-615 (-640 $)) . T) ((-615 |#1|) . T) ((-615 |#2|) . T) ((-615 |#3|) . T) ((-615 |#4|) . T) ((-615 |#5|) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2043 (((-112) $) NIL)) (-2774 (((-1169) $) NIL)) (-2054 (((-112) $) NIL)) (-2725 (((-1151) $) NIL)) (-2078 (((-112) $) NIL)) (-2100 (((-112) $) NIL)) (-2066 (((-112) $) NIL)) (-1938 (((-1151) $) NIL)) (-2031 (((-112) $) NIL)) (-2794 (((-563) $) NIL)) (-3249 (((-1113) $) NIL)) (-2020 (((-112) $) NIL)) (-2469 (((-225) $) NIL)) (-3999 (((-858) $) NIL)) (-3087 (((-112) $ $) NIL)) (-3858 (($ $ (-563)) NIL) (($ $ (-640 (-563))) NIL)) (-2131 (((-640 $) $) NIL)) (-2802 (($ (-1151)) NIL) (($ (-1169)) NIL) (($ (-563)) NIL) (($ (-225)) NIL) (($ (-858)) NIL) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL)) (-2360 (($ $) NIL)) (-2348 (($ $) NIL)) (-2088 (((-112) $) NIL)) (-2943 (((-112) $ $) NIL)) (-1708 (((-563) $) NIL))) -(((-1097) (-1096 (-1151) (-1169) (-563) (-225) (-858))) (T -1097)) -NIL -(-1096 (-1151) (-1169) (-563) (-225) (-858)) -((-2049 (((-112) $ $) NIL)) (-2043 (((-112) $) 44)) (-2774 ((|#2| $) 47)) (-2054 (((-112) $) 20)) (-2725 ((|#1| $) 21)) (-2078 (((-112) $) 41)) (-2100 (((-112) $) 14)) (-2066 (((-112) $) 43)) (-1938 (((-1151) $) NIL)) (-2031 (((-112) $) 45)) (-2794 ((|#3| $) 49)) (-3249 (((-1113) $) NIL)) (-2020 (((-112) $) 46)) (-2469 ((|#4| $) 48)) (-3999 ((|#5| $) 50)) (-3087 (((-112) $ $) 40)) (-3858 (($ $ (-563)) 61) (($ $ (-640 (-563))) 63)) (-2131 (((-640 $) $) 26)) (-2802 (($ |#1|) 52) (($ |#2|) 53) (($ |#3|) 54) (($ |#4|) 55) (($ |#5|) 56) (($ (-640 $)) 51)) (-2062 (((-858) $) 27)) (-2360 (($ $) 25)) (-2348 (($ $) 57)) (-2088 (((-112) $) 23)) (-2943 (((-112) $ $) 39)) (-1708 (((-563) $) 59))) -(((-1098 |#1| |#2| |#3| |#4| |#5|) (-1096 |#1| |#2| |#3| |#4| |#5|) (-1093) (-1093) (-1093) (-1093) (-1093)) (T -1098)) -NIL -(-1096 |#1| |#2| |#3| |#4| |#5|) -((-4000 (((-1262) $) 23)) (-3594 (($ (-1169) (-434) |#2|) 11)) (-2062 (((-858) $) 16))) -(((-1099 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3594 ($ (-1169) (-434) |#2|)))) (-846) (-430 |#1|)) (T -1099)) -((-3594 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1169)) (-5 *3 (-434)) (-4 *5 (-846)) (-5 *1 (-1099 *5 *4)) (-4 *4 (-430 *5))))) -(-13 (-395) (-10 -8 (-15 -3594 ($ (-1169) (-434) |#2|)))) -((-2130 (((-112) |#5| |#5|) 43)) (-3997 (((-112) |#5| |#5|) 57)) (-4050 (((-112) |#5| (-640 |#5|)) 80) (((-112) |#5| |#5|) 66)) (-4009 (((-112) (-640 |#4|) (-640 |#4|)) 63)) (-4074 (((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) 68)) (-2120 (((-1262)) 33)) (-2110 (((-1262) (-1151) (-1151) (-1151)) 29)) (-4062 (((-640 |#5|) (-640 |#5|)) 99)) (-4084 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) 91)) (-4096 (((-640 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112)) 121)) (-2148 (((-112) |#5| |#5|) 52)) (-4038 (((-3 (-112) "failed") |#5| |#5|) 76)) (-4018 (((-112) (-640 |#4|) (-640 |#4|)) 62)) (-4027 (((-112) (-640 |#4|) (-640 |#4|)) 64)) (-3449 (((-112) (-640 |#4|) (-640 |#4|)) 65)) (-4108 (((-3 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)) 116)) (-2140 (((-640 |#5|) (-640 |#5|)) 48))) -(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2110 ((-1262) (-1151) (-1151) (-1151))) (-15 -2120 ((-1262))) (-15 -2130 ((-112) |#5| |#5|)) (-15 -2140 ((-640 |#5|) (-640 |#5|))) (-15 -2148 ((-112) |#5| |#5|)) (-15 -3997 ((-112) |#5| |#5|)) (-15 -4009 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4018 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4027 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3449 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4038 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4050 ((-112) |#5| |#5|)) (-15 -4050 ((-112) |#5| (-640 |#5|))) (-15 -4062 ((-640 |#5|) (-640 |#5|))) (-15 -4074 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) (-15 -4084 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-15 -4096 ((-640 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -4108 ((-3 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1100)) -((-4108 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| -3087 (-640 *9)) (|:| -1926 *4) (|:| |ineq| (-640 *9)))) (-5 *1 (-1100 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) (-4 *4 (-1065 *6 *7 *8 *9)))) (-4096 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| -3087 (-640 *9)) (|:| -1926 *10) (|:| |ineq| (-640 *9))))) (-5 *1 (-1100 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))) (-4084 (*1 *2 *2) (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -1926 *7)))) (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-4074 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -1926 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)))) (-4062 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-4050 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *8 *3)))) (-4050 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-4038 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-3449 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4027 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4018 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4009 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-3997 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2148 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2140 (*1 *2 *2) (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-1100 *3 *4 *5 *6 *7)))) (-2130 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) (-2120 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-2110 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(-10 -7 (-15 -2110 ((-1262) (-1151) (-1151) (-1151))) (-15 -2120 ((-1262))) (-15 -2130 ((-112) |#5| |#5|)) (-15 -2140 ((-640 |#5|) (-640 |#5|))) (-15 -2148 ((-112) |#5| |#5|)) (-15 -3997 ((-112) |#5| |#5|)) (-15 -4009 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4018 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4027 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -3449 ((-112) (-640 |#4|) (-640 |#4|))) (-15 -4038 ((-3 (-112) "failed") |#5| |#5|)) (-15 -4050 ((-112) |#5| |#5|)) (-15 -4050 ((-112) |#5| (-640 |#5|))) (-15 -4062 ((-640 |#5|) (-640 |#5|))) (-15 -4074 ((-112) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) (-15 -4084 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-15 -4096 ((-640 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|)))) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -4108 ((-3 (-2 (|:| -3087 (-640 |#4|)) (|:| -1926 |#5|) (|:| |ineq| (-640 |#4|))) "failed") (-640 |#4|) |#5| (-640 |#4|) (-112) (-112) (-112) (-112) (-112)))) -((-4266 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|) 110)) (-4166 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#4| |#4| |#5|) 82)) (-4195 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|) 104)) (-4215 (((-640 |#5|) |#4| |#5|) 126)) (-4233 (((-640 |#5|) |#4| |#5|) 133)) (-4255 (((-640 |#5|) |#4| |#5|) 134)) (-4204 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|) 111)) (-4224 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|) 132)) (-4245 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-4175 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#3| (-112)) 94) (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-4185 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|) 89)) (-4154 (((-1262)) 37)) (-4130 (((-1262)) 26)) (-4142 (((-1262) (-1151) (-1151) (-1151)) 33)) (-4119 (((-1262) (-1151) (-1151) (-1151)) 22))) -(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4119 ((-1262) (-1151) (-1151) (-1151))) (-15 -4130 ((-1262))) (-15 -4142 ((-1262) (-1151) (-1151) (-1151))) (-15 -4154 ((-1262))) (-15 -4166 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -4175 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4175 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#3| (-112))) (-15 -4185 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -4195 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -4245 ((-112) |#4| |#5|)) (-15 -4204 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -4215 ((-640 |#5|) |#4| |#5|)) (-15 -4224 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -4233 ((-640 |#5|) |#4| |#5|)) (-15 -4245 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -4255 ((-640 |#5|) |#4| |#5|)) (-15 -4266 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1065 |#1| |#2| |#3| |#4|)) (T -1101)) -((-4266 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4255 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4245 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4233 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4224 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4215 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4204 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4245 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4195 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4185 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4175 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -1926 *9)))) (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -1926 *9)))) (-5 *1 (-1101 *6 *7 *4 *8 *9)))) (-4175 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) (-4166 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))) (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) (-4154 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-4142 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) (-4130 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) (-4119 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(-10 -7 (-15 -4119 ((-1262) (-1151) (-1151) (-1151))) (-15 -4130 ((-1262))) (-15 -4142 ((-1262) (-1151) (-1151) (-1151))) (-15 -4154 ((-1262))) (-15 -4166 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -4175 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -4175 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) |#3| (-112))) (-15 -4185 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -4195 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#4| |#5|)) (-15 -4245 ((-112) |#4| |#5|)) (-15 -4204 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -4215 ((-640 |#5|) |#4| |#5|)) (-15 -4224 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -4233 ((-640 |#5|) |#4| |#5|)) (-15 -4245 ((-640 (-2 (|:| |val| (-112)) (|:| -1926 |#5|))) |#4| |#5|)) (-15 -4255 ((-640 |#5|) |#4| |#5|)) (-15 -4266 ((-640 (-2 (|:| |val| |#4|) (|:| -1926 |#5|))) |#4| |#5|))) -((-2049 (((-112) $ $) 7)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) 85)) (-1353 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2185 (((-640 |#3|) $) 33)) (-1556 (((-112) $) 26)) (-1456 (((-112) $) 17 (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) 101) (((-112) $) 97)) (-1413 ((|#4| |#4| $) 92)) (-2924 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| $) 126)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) 27)) (-3740 (((-112) $ (-767)) 44)) (-1907 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-3684 (($) 45 T CONST)) (-1512 (((-112) $) 22 (|has| |#1| (-555)))) (-1534 (((-112) $ $) 24 (|has| |#1| (-555)))) (-1523 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1545 (((-112) $) 25 (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1466 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) 36)) (-2589 (($ (-640 |#4|)) 35)) (-1897 (((-3 $ "failed") $) 82)) (-1384 ((|#4| |#4| $) 89)) (-1920 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1365 ((|#4| |#4| $) 87)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) 105)) (-1586 (((-112) |#4| $) 136)) (-1563 (((-112) |#4| $) 133)) (-1598 (((-112) |#4| $) 137) (((-112) $) 134)) (-4236 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) 104) (((-112) $) 103)) (-2674 ((|#3| $) 34)) (-3633 (((-112) $ (-767)) 43)) (-1572 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 47)) (-1616 (((-640 |#3|) $) 32)) (-1602 (((-112) |#3| $) 31)) (-3604 (((-112) $ (-767)) 42)) (-1938 (((-1151) $) 9)) (-1520 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-1508 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-1529 (((-640 $) |#4| $) 129)) (-1552 (((-3 (-112) (-640 $)) |#4| $) 132)) (-1542 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1913 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-3079 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-1514 (((-640 |#4|) $) 107)) (-1447 (((-112) |#4| $) 99) (((-112) $) 95)) (-1395 ((|#4| |#4| $) 90)) (-3449 (((-112) $ $) 110)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) 100) (((-112) $) 96)) (-1405 ((|#4| |#4| $) 91)) (-3249 (((-1113) $) 10)) (-1884 (((-3 |#4| "failed") $) 84)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1323 (((-3 $ "failed") $ |#4|) 78)) (-2884 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-3837 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) 38)) (-2820 (((-112) $) 41)) (-2749 (($) 40)) (-1962 (((-767) $) 106)) (-3261 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-2208 (($ $) 39)) (-2802 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 60)) (-1566 (($ $ |#3|) 28)) (-1591 (($ $ |#3|) 30)) (-1373 (($ $) 88)) (-1579 (($ $ |#3|) 29)) (-2062 (((-858) $) 11) (((-640 |#4|) $) 37)) (-1313 (((-767) $) 76 (|has| |#3| (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-1496 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-3848 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) 81)) (-1574 (((-112) |#4| $) 135)) (-1833 (((-112) |#3| $) 80)) (-2943 (((-112) $ $) 6)) (-1708 (((-767) $) 46 (|has| $ (-6 -4408))))) -(((-1102 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1102)) -NIL -(-13 (-1065 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T)) -((-4378 (((-640 (-563)) (-563) (-563) (-563)) 37)) (-4369 (((-640 (-563)) (-563) (-563) (-563)) 27)) (-4358 (((-640 (-563)) (-563) (-563) (-563)) 32)) (-4349 (((-563) (-563) (-563)) 22)) (-4340 (((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563)) 72) (((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563)) 67)) (-4330 (((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112)) 49)) (-4321 (((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563))) 71)) (-4310 (((-684 (-563)) (-640 (-563)) (-640 (-563))) 55)) (-4298 (((-640 (-684 (-563))) (-640 (-563))) 60)) (-4286 (((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563))) 75)) (-4276 (((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563))) 85))) -(((-1103) (-10 -7 (-15 -4276 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -4286 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -4298 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -4310 ((-684 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -4321 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -4330 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112))) (-15 -4340 ((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563))) (-15 -4340 ((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563))) (-15 -4349 ((-563) (-563) (-563))) (-15 -4358 ((-640 (-563)) (-563) (-563) (-563))) (-15 -4369 ((-640 (-563)) (-563) (-563) (-563))) (-15 -4378 ((-640 (-563)) (-563) (-563) (-563))))) (T -1103)) -((-4378 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-4369 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-4358 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563)))) (-4349 (*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1103)))) (-4340 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-640 (-563))) (-5 *4 (-563)) (-5 *1 (-1103)))) (-4340 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-563)) (-5 *1 (-1103)))) (-4330 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *3 (-112)) (-5 *1 (-1103)))) (-4321 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-684 (-563))) (-5 *3 (-640 (-563))) (-5 *1 (-1103)))) (-4310 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103)))) (-4298 (*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-1103)))) (-4286 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *3 (-684 (-563))) (-5 *1 (-1103)))) (-4276 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103))))) -(-10 -7 (-15 -4276 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -4286 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -4298 ((-640 (-684 (-563))) (-640 (-563)))) (-15 -4310 ((-684 (-563)) (-640 (-563)) (-640 (-563)))) (-15 -4321 ((-684 (-563)) (-640 (-563)) (-640 (-563)) (-684 (-563)))) (-15 -4330 ((-640 (-563)) (-640 (-563)) (-640 (-563)) (-112))) (-15 -4340 ((-1257 (-563)) (-1257 (-563)) (-1257 (-563)) (-563))) (-15 -4340 ((-1257 (-563)) (-640 (-563)) (-1257 (-563)) (-563))) (-15 -4349 ((-563) (-563) (-563))) (-15 -4358 ((-640 (-563)) (-563) (-563) (-563))) (-15 -4369 ((-640 (-563)) (-563) (-563) (-563))) (-15 -4378 ((-640 (-563)) (-563) (-563) (-563)))) -((** (($ $ (-917)) 10))) -(((-1104 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-917)))) (-1105)) (T -1104)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-917)))) -((-2049 (((-112) $ $) 7)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6)) (** (($ $ (-917)) 13)) (* (($ $ $) 14))) -(((-1105) (-140)) (T -1105)) -((* (*1 *1 *1 *1) (-4 *1 (-1105))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-917))))) -(-13 (-1093) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-917))))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL (|has| |#3| (-1093)))) (-2741 (((-112) $) NIL (|has| |#3| (-131)))) (-3525 (($ (-917)) NIL (|has| |#3| (-1045)))) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-3367 (($ $ $) NIL (|has| |#3| (-789)))) (-1482 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-3740 (((-112) $ (-767)) NIL)) (-2433 (((-767)) NIL (|has| |#3| (-368)))) (-2107 (((-563) $) NIL (|has| |#3| (-844)))) (-2189 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1093)))) (-2589 (((-563) $) NIL (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093)))) (((-407 (-563)) $) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) ((|#3| $) NIL (|has| |#3| (-1093)))) (-3853 (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#3| (-636 (-563))) (|has| |#3| (-1045)))) (((-2 (|:| -4277 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) NIL (|has| |#3| (-1045))) (((-684 |#3|) (-684 $)) NIL (|has| |#3| (-1045)))) (-3230 (((-3 $ "failed") $) NIL (|has| |#3| (-722)))) (-4301 (($) NIL (|has| |#3| (-368)))) (-4150 ((|#3| $ (-563) |#3|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#3| $ (-563)) 12)) (-2720 (((-112) $) NIL (|has| |#3| (-844)))) (-4236 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-2712 (((-112) $) NIL (|has| |#3| (-722)))) (-2731 (((-112) $) NIL (|has| |#3| (-844)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-1572 (((-640 |#3|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-4139 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#3| |#3|) $) NIL)) (-3267 (((-917) $) NIL (|has| |#3| (-368)))) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#3| (-1093)))) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3491 (($ (-917)) NIL (|has| |#3| (-368)))) (-3249 (((-1113) $) NIL (|has| |#3| (-1093)))) (-1884 ((|#3| $) NIL (|has| (-563) (-846)))) (-3357 (($ $ |#3|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093)))) (($ $ (-640 |#3|) (-640 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-3427 (((-640 |#3|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#3| $ (-563) |#3|) NIL) ((|#3| $ (-563)) NIL)) (-3396 ((|#3| $ $) NIL (|has| |#3| (-1045)))) (-2101 (($ (-1257 |#3|)) NIL)) (-1575 (((-134)) NIL (|has| |#3| (-363)))) (-1361 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-3261 (((-767) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408))) (((-767) |#3| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#3| (-1093))))) (-2208 (($ $) NIL)) (-2062 (((-1257 |#3|) $) NIL) (($ (-563)) NIL (-2811 (-12 (|has| |#3| (-1034 (-563))) (|has| |#3| (-1093))) (|has| |#3| (-1045)))) (($ (-407 (-563))) NIL (-12 (|has| |#3| (-1034 (-407 (-563)))) (|has| |#3| (-1093)))) (($ |#3|) NIL (|has| |#3| (-1093))) (((-858) $) NIL (|has| |#3| (-610 (-858))))) (-3192 (((-767)) NIL (|has| |#3| (-1045)) CONST)) (-3848 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4408)))) (-3841 (($ $) NIL (|has| |#3| (-844)))) (-3790 (($) NIL (|has| |#3| (-131)) CONST)) (-3803 (($) NIL (|has| |#3| (-722)) CONST)) (-4191 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-767)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1045)))) (($ $ (-1169)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#3| (-896 (-1169))) (|has| |#3| (-1045)))) (($ $ (-1 |#3| |#3|) (-767)) NIL (|has| |#3| (-1045))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1045)))) (-2998 (((-112) $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2977 (((-112) $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2943 (((-112) $ $) NIL (|has| |#3| (-1093)))) (-2988 (((-112) $ $) NIL (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-2966 (((-112) $ $) 24 (-2811 (|has| |#3| (-789)) (|has| |#3| (-844))))) (-3050 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-3039 (($ $ $) NIL (|has| |#3| (-1045))) (($ $) NIL (|has| |#3| (-1045)))) (-3027 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-767)) NIL (|has| |#3| (-722))) (($ $ (-917)) NIL (|has| |#3| (-722)))) (* (($ (-563) $) NIL (|has| |#3| (-1045))) (($ $ $) NIL (|has| |#3| (-722))) (($ $ |#3|) NIL (|has| |#3| (-722))) (($ |#3| $) NIL (|has| |#3| (-722))) (($ (-767) $) NIL (|has| |#3| (-131))) (($ (-917) $) NIL (|has| |#3| (-25)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1106 |#1| |#2| |#3|) (-238 |#1| |#3|) (-767) (-767) (-789)) (T -1106)) +((-3732 (((-112) $ $) 7)) (-2907 (((-112) $) 32)) (-2561 ((|#2| $) 27)) (-1325 (((-112) $) 33)) (-3961 ((|#1| $) 28)) (-4304 (((-112) $) 35)) (-1577 (((-112) $) 37)) (-4091 (((-112) $) 34)) (-2217 (((-1152) $) 9)) (-3215 (((-112) $) 31)) (-2589 ((|#3| $) 26)) (-3864 (((-1114) $) 10)) (-1719 (((-112) $) 30)) (-2140 ((|#4| $) 25)) (-3808 ((|#5| $) 24)) (-4032 (((-112) $ $) 38)) (-4382 (($ $ (-564)) 20) (($ $ (-641 (-564))) 19)) (-4206 (((-641 $) $) 29)) (-2235 (($ |#1|) 44) (($ |#2|) 43) (($ |#3|) 42) (($ |#4|) 41) (($ |#5|) 40) (($ (-641 $)) 39)) (-3742 (((-859) $) 11)) (-1877 (($ $) 22)) (-1867 (($ $) 23)) (-2652 (((-112) $) 36)) (-1705 (((-112) $ $) 6)) (-2641 (((-564) $) 21))) +(((-1097 |#1| |#2| |#3| |#4| |#5|) (-140) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1097)) +((-4032 (*1 *2 *1 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1577 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-4304 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1325 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-2907 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-3215 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112)))) (-4206 (*1 *2 *1) (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7)))) (-3961 (*1 *2 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2561 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2589 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-3808 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) (-1867 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-1877 (*1 *1 *1) (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094))))) +(-13 (-1094) (-616 |t#1|) (-616 |t#2|) (-616 |t#3|) (-616 |t#4|) (-616 |t#4|) (-616 |t#5|) (-616 (-641 $)) (-10 -8 (-15 -4032 ((-112) $ $)) (-15 -1577 ((-112) $)) (-15 -2652 ((-112) $)) (-15 -4304 ((-112) $)) (-15 -4091 ((-112) $)) (-15 -1325 ((-112) $)) (-15 -2907 ((-112) $)) (-15 -3215 ((-112) $)) (-15 -1719 ((-112) $)) (-15 -4206 ((-641 $) $)) (-15 -3961 (|t#1| $)) (-15 -2561 (|t#2| $)) (-15 -2589 (|t#3| $)) (-15 -2140 (|t#4| $)) (-15 -3808 (|t#5| $)) (-15 -1867 ($ $)) (-15 -1877 ($ $)) (-15 -2641 ((-564) $)) (-15 -4382 ($ $ (-564))) (-15 -4382 ($ $ (-641 (-564)))))) +(((-102) . T) ((-611 (-859)) . T) ((-616 (-641 $)) . T) ((-616 |#1|) . T) ((-616 |#2|) . T) ((-616 |#3|) . T) ((-616 |#4|) . T) ((-616 |#5|) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-2907 (((-112) $) NIL)) (-2561 (((-1170) $) NIL)) (-1325 (((-112) $) NIL)) (-3961 (((-1152) $) NIL)) (-4304 (((-112) $) NIL)) (-1577 (((-112) $) NIL)) (-4091 (((-112) $) NIL)) (-2217 (((-1152) $) NIL)) (-3215 (((-112) $) NIL)) (-2589 (((-564) $) NIL)) (-3864 (((-1114) $) NIL)) (-1719 (((-112) $) NIL)) (-2140 (((-225) $) NIL)) (-3808 (((-859) $) NIL)) (-4032 (((-112) $ $) NIL)) (-4382 (($ $ (-564)) NIL) (($ $ (-641 (-564))) NIL)) (-4206 (((-641 $) $) NIL)) (-2235 (($ (-1152)) NIL) (($ (-1170)) NIL) (($ (-564)) NIL) (($ (-225)) NIL) (($ (-859)) NIL) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL)) (-1877 (($ $) NIL)) (-1867 (($ $) NIL)) (-2652 (((-112) $) NIL)) (-1705 (((-112) $ $) NIL)) (-2641 (((-564) $) NIL))) +(((-1098) (-1097 (-1152) (-1170) (-564) (-225) (-859))) (T -1098)) +NIL +(-1097 (-1152) (-1170) (-564) (-225) (-859)) +((-3732 (((-112) $ $) NIL)) (-2907 (((-112) $) 44)) (-2561 ((|#2| $) 47)) (-1325 (((-112) $) 20)) (-3961 ((|#1| $) 21)) (-4304 (((-112) $) 41)) (-1577 (((-112) $) 14)) (-4091 (((-112) $) 43)) (-2217 (((-1152) $) NIL)) (-3215 (((-112) $) 45)) (-2589 ((|#3| $) 49)) (-3864 (((-1114) $) NIL)) (-1719 (((-112) $) 46)) (-2140 ((|#4| $) 48)) (-3808 ((|#5| $) 50)) (-4032 (((-112) $ $) 40)) (-4382 (($ $ (-564)) 61) (($ $ (-641 (-564))) 63)) (-4206 (((-641 $) $) 26)) (-2235 (($ |#1|) 52) (($ |#2|) 53) (($ |#3|) 54) (($ |#4|) 55) (($ |#5|) 56) (($ (-641 $)) 51)) (-3742 (((-859) $) 27)) (-1877 (($ $) 25)) (-1867 (($ $) 57)) (-2652 (((-112) $) 23)) (-1705 (((-112) $ $) 39)) (-2641 (((-564) $) 59))) +(((-1099 |#1| |#2| |#3| |#4| |#5|) (-1097 |#1| |#2| |#3| |#4| |#5|) (-1094) (-1094) (-1094) (-1094) (-1094)) (T -1099)) +NIL +(-1097 |#1| |#2| |#3| |#4| |#5|) +((-2150 (((-1264) $) 23)) (-3898 (($ (-1170) (-434) |#2|) 11)) (-3742 (((-859) $) 16))) +(((-1100 |#1| |#2|) (-13 (-395) (-10 -8 (-15 -3898 ($ (-1170) (-434) |#2|)))) (-847) (-430 |#1|)) (T -1100)) +((-3898 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-847)) (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5))))) +(-13 (-395) (-10 -8 (-15 -3898 ($ (-1170) (-434) |#2|)))) +((-2351 (((-112) |#5| |#5|) 43)) (-1831 (((-112) |#5| |#5|) 57)) (-2939 (((-112) |#5| (-641 |#5|)) 80) (((-112) |#5| |#5|) 66)) (-1721 (((-112) (-641 |#4|) (-641 |#4|)) 63)) (-3648 (((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) 68)) (-4045 (((-1264)) 33)) (-4249 (((-1264) (-1152) (-1152) (-1152)) 29)) (-1783 (((-641 |#5|) (-641 |#5|)) 99)) (-3300 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) 91)) (-3410 (((-641 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112)) 121)) (-2639 (((-112) |#5| |#5|) 52)) (-4216 (((-3 (-112) "failed") |#5| |#5|) 76)) (-3243 (((-112) (-641 |#4|) (-641 |#4|)) 62)) (-2236 (((-112) (-641 |#4|) (-641 |#4|)) 64)) (-4179 (((-112) (-641 |#4|) (-641 |#4|)) 65)) (-1869 (((-3 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)) 116)) (-1972 (((-641 |#5|) (-641 |#5|)) 48))) +(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4249 ((-1264) (-1152) (-1152) (-1152))) (-15 -4045 ((-1264))) (-15 -2351 ((-112) |#5| |#5|)) (-15 -1972 ((-641 |#5|) (-641 |#5|))) (-15 -2639 ((-112) |#5| |#5|)) (-15 -1831 ((-112) |#5| |#5|)) (-15 -1721 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3243 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2236 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4179 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4216 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2939 ((-112) |#5| |#5|)) (-15 -2939 ((-112) |#5| (-641 |#5|))) (-15 -1783 ((-641 |#5|) (-641 |#5|))) (-15 -3648 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) (-15 -3300 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-15 -3410 ((-641 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1869 ((-3 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1101)) +((-1869 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| -4032 (-641 *9)) (|:| -2084 *4) (|:| |ineq| (-641 *9)))) (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) (-4 *4 (-1066 *6 *7 *8 *9)))) (-3410 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| -4032 (-641 *9)) (|:| -2084 *10) (|:| |ineq| (-641 *9))))) (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) (-3300 (*1 *2 *2) (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2084 *7)))) (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-3648 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2084 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)))) (-1783 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-2939 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3)))) (-2939 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4216 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4179 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-2236 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3243 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1721 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-1831 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-2639 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-1101 *3 *4 *5 *6 *7)))) (-2351 (*1 *2 *3 *3) (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) (-4045 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-4249 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(-10 -7 (-15 -4249 ((-1264) (-1152) (-1152) (-1152))) (-15 -4045 ((-1264))) (-15 -2351 ((-112) |#5| |#5|)) (-15 -1972 ((-641 |#5|) (-641 |#5|))) (-15 -2639 ((-112) |#5| |#5|)) (-15 -1831 ((-112) |#5| |#5|)) (-15 -1721 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -3243 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -2236 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4179 ((-112) (-641 |#4|) (-641 |#4|))) (-15 -4216 ((-3 (-112) "failed") |#5| |#5|)) (-15 -2939 ((-112) |#5| |#5|)) (-15 -2939 ((-112) |#5| (-641 |#5|))) (-15 -1783 ((-641 |#5|) (-641 |#5|))) (-15 -3648 ((-112) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) (-15 -3300 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-15 -3410 ((-641 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|)))) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -1869 ((-3 (-2 (|:| -4032 (-641 |#4|)) (|:| -2084 |#5|) (|:| |ineq| (-641 |#4|))) "failed") (-641 |#4|) |#5| (-641 |#4|) (-112) (-112) (-112) (-112) (-112)))) +((-3353 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|) 110)) (-3227 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#4| |#4| |#5|) 82)) (-1736 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|) 104)) (-2062 (((-641 |#5|) |#4| |#5|) 126)) (-3310 (((-641 |#5|) |#4| |#5|) 133)) (-1681 (((-641 |#5|) |#4| |#5|) 134)) (-4381 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|) 111)) (-1784 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|) 132)) (-3038 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|) 48) (((-112) |#4| |#5|) 56)) (-3621 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#3| (-112)) 94) (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5| (-112) (-112)) 53)) (-3294 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|) 89)) (-3743 (((-1264)) 37)) (-3067 (((-1264)) 26)) (-2688 (((-1264) (-1152) (-1152) (-1152)) 33)) (-1594 (((-1264) (-1152) (-1152) (-1152)) 22))) +(((-1102 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1594 ((-1264) (-1152) (-1152) (-1152))) (-15 -3067 ((-1264))) (-15 -2688 ((-1264) (-1152) (-1152) (-1152))) (-15 -3743 ((-1264))) (-15 -3227 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -3621 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3621 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#3| (-112))) (-15 -3294 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -1736 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -3038 ((-112) |#4| |#5|)) (-15 -4381 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -2062 ((-641 |#5|) |#4| |#5|)) (-15 -1784 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -3310 ((-641 |#5|) |#4| |#5|)) (-15 -3038 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -1681 ((-641 |#5|) |#4| |#5|)) (-15 -3353 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1066 |#1| |#2| |#3| |#4|)) (T -1102)) +((-3353 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1681 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3310 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1784 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-2062 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-4381 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3038 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-1736 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3294 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3621 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2084 *9)))) (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2084 *9)))) (-5 *1 (-1102 *6 *7 *4 *8 *9)))) (-3621 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) (-3227 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))) (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) (-3743 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-2688 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) (-3067 (*1 *2) (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) (-1594 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(-10 -7 (-15 -1594 ((-1264) (-1152) (-1152) (-1152))) (-15 -3067 ((-1264))) (-15 -2688 ((-1264) (-1152) (-1152) (-1152))) (-15 -3743 ((-1264))) (-15 -3227 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -3621 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5| (-112) (-112))) (-15 -3621 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) |#3| (-112))) (-15 -3294 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -1736 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#4| |#5|)) (-15 -3038 ((-112) |#4| |#5|)) (-15 -4381 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -2062 ((-641 |#5|) |#4| |#5|)) (-15 -1784 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -3310 ((-641 |#5|) |#4| |#5|)) (-15 -3038 ((-641 (-2 (|:| |val| (-112)) (|:| -2084 |#5|))) |#4| |#5|)) (-15 -1681 ((-641 |#5|) |#4| |#5|)) (-15 -3353 ((-641 (-2 (|:| |val| |#4|) (|:| -2084 |#5|))) |#4| |#5|))) +((-3732 (((-112) $ $) 7)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) 85)) (-1454 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4269 (((-641 |#3|) $) 33)) (-3547 (((-112) $) 26)) (-4281 (((-112) $) 17 (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) 101) (((-112) $) 97)) (-2244 ((|#4| |#4| $) 92)) (-2249 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| $) 126)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) 27)) (-2969 (((-112) $ (-768)) 44)) (-3548 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-2818 (($) 45 T CONST)) (-4076 (((-112) $) 22 (|has| |#1| (-556)))) (-2072 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2494 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3791 (((-112) $) 25 (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2868 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) 36)) (-2239 (($ (-641 |#4|)) 35)) (-1977 (((-3 $ "failed") $) 82)) (-4263 ((|#4| |#4| $) 89)) (-1996 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2920 ((|#4| |#4| $) 87)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) 105)) (-3254 (((-112) |#4| $) 136)) (-2954 (((-112) |#4| $) 133)) (-2078 (((-112) |#4| $) 137) (((-112) $) 134)) (-3616 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) 104) (((-112) $) 103)) (-3782 ((|#3| $) 34)) (-2275 (((-112) $ (-768)) 43)) (-1386 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 47)) (-3483 (((-641 |#3|) $) 32)) (-1410 (((-112) |#3| $) 31)) (-1500 (((-112) $ (-768)) 42)) (-2217 (((-1152) $) 9)) (-3530 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2643 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| |#4| $) 127)) (-2389 (((-3 |#4| "failed") $) 83)) (-2999 (((-641 $) |#4| $) 129)) (-3213 (((-3 (-112) (-641 $)) |#4| $) 132)) (-1614 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1353 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-3901 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4258 (((-641 |#4|) $) 107)) (-1591 (((-112) |#4| $) 99) (((-112) $) 95)) (-4266 ((|#4| |#4| $) 90)) (-4179 (((-112) $ $) 110)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) 100) (((-112) $) 96)) (-2601 ((|#4| |#4| $) 91)) (-3864 (((-1114) $) 10)) (-1966 (((-3 |#4| "failed") $) 84)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3465 (((-3 $ "failed") $ |#4|) 78)) (-3004 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-3736 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) 38)) (-4003 (((-112) $) 41)) (-3434 (($) 40)) (-2266 (((-768) $) 106)) (-3873 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-3896 (($ $) 39)) (-2235 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 60)) (-2031 (($ $ |#3|) 28)) (-2401 (($ $ |#3|) 30)) (-2158 (($ $) 88)) (-2624 (($ $ |#3|) 29)) (-3742 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1849 (((-768) $) 76 (|has| |#3| (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4020 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-1417 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) 81)) (-3485 (((-112) |#4| $) 135)) (-2755 (((-112) |#3| $) 80)) (-1705 (((-112) $ $) 6)) (-2641 (((-768) $) 46 (|has| $ (-6 -4411))))) +(((-1103 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1103)) +NIL +(-13 (-1066 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) +((-3238 (((-641 (-564)) (-564) (-564) (-564)) 37)) (-1636 (((-641 (-564)) (-564) (-564) (-564)) 27)) (-2988 (((-641 (-564)) (-564) (-564) (-564)) 32)) (-3256 (((-564) (-564) (-564)) 22)) (-1598 (((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564)) 72) (((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564)) 67)) (-3597 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112)) 49)) (-3958 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 71)) (-2238 (((-685 (-564)) (-641 (-564)) (-641 (-564))) 55)) (-3601 (((-641 (-685 (-564))) (-641 (-564))) 60)) (-3740 (((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564))) 75)) (-1956 (((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564))) 85))) +(((-1104) (-10 -7 (-15 -1956 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -3740 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -3601 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2238 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -3958 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -3597 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -1598 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -1598 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -3256 ((-564) (-564) (-564))) (-15 -2988 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1636 ((-641 (-564)) (-564) (-564) (-564))) (-15 -3238 ((-641 (-564)) (-564) (-564) (-564))))) (T -1104)) +((-3238 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-1636 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-2988 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564)))) (-3256 (*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104)))) (-1598 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) (-5 *1 (-1104)))) (-1598 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) (-3597 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104)))) (-3958 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104)))) (-2238 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-1104)))) (-3740 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104)))) (-1956 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) +(-10 -7 (-15 -1956 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -3740 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -3601 ((-641 (-685 (-564))) (-641 (-564)))) (-15 -2238 ((-685 (-564)) (-641 (-564)) (-641 (-564)))) (-15 -3958 ((-685 (-564)) (-641 (-564)) (-641 (-564)) (-685 (-564)))) (-15 -3597 ((-641 (-564)) (-641 (-564)) (-641 (-564)) (-112))) (-15 -1598 ((-1259 (-564)) (-1259 (-564)) (-1259 (-564)) (-564))) (-15 -1598 ((-1259 (-564)) (-641 (-564)) (-1259 (-564)) (-564))) (-15 -3256 ((-564) (-564) (-564))) (-15 -2988 ((-641 (-564)) (-564) (-564) (-564))) (-15 -1636 ((-641 (-564)) (-564) (-564) (-564))) (-15 -3238 ((-641 (-564)) (-564) (-564) (-564)))) +((** (($ $ (-918)) 10))) +(((-1105 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-918)))) (-1106)) (T -1105)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-918)))) +((-3732 (((-112) $ $) 7)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6)) (** (($ $ (-918)) 13)) (* (($ $ $) 14))) +(((-1106) (-140)) (T -1106)) +((* (*1 *1 *1 *1) (-4 *1 (-1106))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-918))))) +(-13 (-1094) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-918))))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-4173 (((-112) $) NIL (|has| |#3| (-131)))) (-2595 (($ (-918)) NIL (|has| |#3| (-1046)))) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-2850 (($ $ $) NIL (|has| |#3| (-790)))) (-3239 (((-3 $ "failed") $ $) NIL (|has| |#3| (-131)))) (-2969 (((-112) $ (-768)) NIL)) (-1938 (((-768)) NIL (|has| |#3| (-368)))) (-3265 (((-564) $) NIL (|has| |#3| (-845)))) (-3877 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1094)))) (-2239 (((-564) $) NIL (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094)))) (((-407 (-564)) $) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) ((|#3| $) NIL (|has| |#3| (-1094)))) (-3039 (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#3| (-637 (-564))) (|has| |#3| (-1046)))) (((-2 (|:| -2069 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) NIL (|has| |#3| (-1046))) (((-685 |#3|) (-685 $)) NIL (|has| |#3| (-1046)))) (-3951 (((-3 $ "failed") $) NIL (|has| |#3| (-723)))) (-2821 (($) NIL (|has| |#3| (-368)))) (-2619 ((|#3| $ (-564) |#3|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#3| $ (-564)) 12)) (-3308 (((-112) $) NIL (|has| |#3| (-845)))) (-3616 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-3840 (((-112) $) NIL (|has| |#3| (-723)))) (-2839 (((-112) $) NIL (|has| |#3| (-845)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1386 (((-641 |#3|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-2606 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#3| |#3|) $) NIL)) (-1906 (((-918) $) NIL (|has| |#3| (-368)))) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#3| (-1094)))) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-1495 (($ (-918)) NIL (|has| |#3| (-368)))) (-3864 (((-1114) $) NIL (|has| |#3| (-1094)))) (-1966 ((|#3| $) NIL (|has| (-564) (-847)))) (-3099 (($ $ |#3|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#3|))) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-294 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094)))) (($ $ (-641 |#3|) (-641 |#3|)) NIL (-12 (|has| |#3| (-309 |#3|)) (|has| |#3| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-2572 (((-641 |#3|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#3| $ (-564) |#3|) NIL) ((|#3| $ (-564)) NIL)) (-2952 ((|#3| $ $) NIL (|has| |#3| (-1046)))) (-4169 (($ (-1259 |#3|)) NIL)) (-3603 (((-134)) NIL (|has| |#3| (-363)))) (-4117 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046)))) (-3873 (((-768) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411))) (((-768) |#3| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#3| (-1094))))) (-3896 (($ $) NIL)) (-3742 (((-1259 |#3|) $) NIL) (($ (-564)) NIL (-4030 (-12 (|has| |#3| (-1035 (-564))) (|has| |#3| (-1094))) (|has| |#3| (-1046)))) (($ (-407 (-564))) NIL (-12 (|has| |#3| (-1035 (-407 (-564)))) (|has| |#3| (-1094)))) (($ |#3|) NIL (|has| |#3| (-1094))) (((-859) $) NIL (|has| |#3| (-611 (-859))))) (-3270 (((-768)) NIL (|has| |#3| (-1046)) CONST)) (-1417 (((-112) (-1 (-112) |#3|) $) NIL (|has| $ (-6 -4411)))) (-2792 (($ $) NIL (|has| |#3| (-845)))) (-4311 (($) NIL (|has| |#3| (-131)) CONST)) (-4321 (($) NIL (|has| |#3| (-723)) CONST)) (-2124 (($ $) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-768)) NIL (-12 (|has| |#3| (-233)) (|has| |#3| (-1046)))) (($ $ (-1170)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#3| (-897 (-1170))) (|has| |#3| (-1046)))) (($ $ (-1 |#3| |#3|) (-768)) NIL (|has| |#3| (-1046))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1046)))) (-1751 (((-112) $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1731 (((-112) $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1705 (((-112) $ $) NIL (|has| |#3| (-1094)))) (-1741 (((-112) $ $) NIL (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1723 (((-112) $ $) 24 (-4030 (|has| |#3| (-790)) (|has| |#3| (-845))))) (-1799 (($ $ |#3|) NIL (|has| |#3| (-363)))) (-1790 (($ $ $) NIL (|has| |#3| (-1046))) (($ $) NIL (|has| |#3| (-1046)))) (-1780 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-768)) NIL (|has| |#3| (-723))) (($ $ (-918)) NIL (|has| |#3| (-723)))) (* (($ (-564) $) NIL (|has| |#3| (-1046))) (($ $ $) NIL (|has| |#3| (-723))) (($ $ |#3|) NIL (|has| |#3| (-723))) (($ |#3| $) NIL (|has| |#3| (-723))) (($ (-768) $) NIL (|has| |#3| (-131))) (($ (-918) $) NIL (|has| |#3| (-25)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1107 |#1| |#2| |#3|) (-238 |#1| |#3|) (-768) (-768) (-790)) (T -1107)) NIL (-238 |#1| |#3|) -((-4388 (((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 52)) (-1348 (((-563) (-1230 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-1327 (((-563) (-1230 |#2| |#1|)) 81)) (-1299 (((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 62)) (-1337 (((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 98 (|has| |#1| (-452)))) (-1308 (((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 66)) (-1317 (((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|)) 80))) -(((-1107 |#1| |#2|) (-10 -7 (-15 -4388 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1299 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1308 ((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1317 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1327 ((-563) (-1230 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1337 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1348 ((-563) (-1230 |#2| |#1|)))) |%noBranch|)) (-816) (-1169)) (T -1107)) -((-1348 (*1 *2 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-1337 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-1317 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5)))) (-1308 (*1 *2 *3 *3) (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 *4)) (-5 *1 (-1107 *4 *5)))) (-1299 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4)))) (-4388 (*1 *2 *3 *3) (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4))))) -(-10 -7 (-15 -4388 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1299 ((-640 (-1230 |#2| |#1|)) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1308 ((-640 |#1|) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1317 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1327 ((-563) (-1230 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -1337 ((-563) (-1230 |#2| |#1|) (-1230 |#2| |#1|))) (-15 -1348 ((-563) (-1230 |#2| |#1|)))) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-1358 (($ (-506) (-1111)) 14)) (-1380 (((-1111) $) 20)) (-3359 (((-506) $) 17)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 28) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-1108) (-13 (-1076) (-10 -8 (-15 -1358 ($ (-506) (-1111))) (-15 -3359 ((-506) $)) (-15 -1380 ((-1111) $))))) (T -1108)) -((-1358 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-1108)))) (-3359 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1108)))) (-1380 (*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1108))))) -(-13 (-1076) (-10 -8 (-15 -1358 ($ (-506) (-1111))) (-15 -3359 ((-506) $)) (-15 -1380 ((-1111) $)))) -((-2107 (((-3 (-563) "failed") |#2| (-1169) |#2| (-1151)) 19) (((-3 (-563) "failed") |#2| (-1169) (-839 |#2|)) 17) (((-3 (-563) "failed") |#2|) 60))) -(((-1109 |#1| |#2|) (-10 -7 (-15 -2107 ((-3 (-563) "failed") |#2|)) (-15 -2107 ((-3 (-563) "failed") |#2| (-1169) (-839 |#2|))) (-15 -2107 ((-3 (-563) "failed") |#2| (-1169) |#2| (-1151)))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|))) (T -1109)) -((-2107 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-1151)) (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))))) (-2107 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)))) (-2107 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) (-5 *2 (-563)) (-5 *1 (-1109 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4)))))) -(-10 -7 (-15 -2107 ((-3 (-563) "failed") |#2|)) (-15 -2107 ((-3 (-563) "failed") |#2| (-1169) (-839 |#2|))) (-15 -2107 ((-3 (-563) "failed") |#2| (-1169) |#2| (-1151)))) -((-2107 (((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151)) 38) (((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|)))) 33) (((-3 (-563) "failed") (-407 (-948 |#1|))) 14))) -(((-1110 |#1|) (-10 -7 (-15 -2107 ((-3 (-563) "failed") (-407 (-948 |#1|)))) (-15 -2107 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|))))) (-15 -2107 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151)))) (-452)) (T -1110)) -((-2107 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1169)) (-5 *5 (-1151)) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6)))) (-2107 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 (-407 (-948 *6)))) (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6)))) (-2107 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *4))))) -(-10 -7 (-15 -2107 ((-3 (-563) "failed") (-407 (-948 |#1|)))) (-15 -2107 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-839 (-407 (-948 |#1|))))) (-15 -2107 ((-3 (-563) "failed") (-407 (-948 |#1|)) (-1169) (-407 (-948 |#1|)) (-1151)))) -((-2049 (((-112) $ $) NIL)) (-2089 (((-1174) $) 12)) (-2032 (((-640 (-1174)) $) 14)) (-1380 (($ (-640 (-1174)) (-1174)) 10)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 29)) (-2943 (((-112) $ $) 17))) -(((-1111) (-13 (-1093) (-10 -8 (-15 -1380 ($ (-640 (-1174)) (-1174))) (-15 -2089 ((-1174) $)) (-15 -2032 ((-640 (-1174)) $))))) (T -1111)) -((-1380 (*1 *1 *2 *3) (-12 (-5 *2 (-640 (-1174))) (-5 *3 (-1174)) (-5 *1 (-1111)))) (-2089 (*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1111)))) (-2032 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1111))))) -(-13 (-1093) (-10 -8 (-15 -1380 ($ (-640 (-1174)) (-1174))) (-15 -2089 ((-1174) $)) (-15 -2032 ((-640 (-1174)) $)))) -((-4115 (((-316 (-563)) (-48)) 12))) -(((-1112) (-10 -7 (-15 -4115 ((-316 (-563)) (-48))))) (T -1112)) -((-4115 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-563))) (-5 *1 (-1112))))) -(-10 -7 (-15 -4115 ((-316 (-563)) (-48)))) -((-2049 (((-112) $ $) NIL)) (-1909 (($ $) 44)) (-2741 (((-112) $) 65)) (-3766 (($ $ $) 51)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 93)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-2379 (($ $ $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2356 (($ $ $ $) 76)) (-2924 (($ $) NIL)) (-2102 (((-418 $) $) NIL)) (-4332 (((-112) $ $) NIL)) (-2433 (((-767)) 78)) (-2107 (((-563) $) NIL)) (-1318 (($ $ $) 73)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL)) (-2589 (((-563) $) NIL)) (-3495 (($ $ $) 59)) (-3853 (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 87) (((-684 (-563)) (-684 $)) 32)) (-3230 (((-3 $ "failed") $) NIL)) (-3459 (((-3 (-407 (-563)) "failed") $) NIL)) (-3447 (((-112) $) NIL)) (-3437 (((-407 (-563)) $) NIL)) (-4301 (($) 90) (($ $) 91)) (-3473 (($ $ $) 58)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL)) (-3675 (((-112) $) NIL)) (-2331 (($ $ $ $) NIL)) (-2392 (($ $ $) 88)) (-2720 (((-112) $) NIL)) (-3243 (($ $ $) NIL)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL)) (-2712 (((-112) $) 67)) (-4107 (((-112) $) 64)) (-3730 (($ $) 45)) (-3113 (((-3 $ "failed") $) NIL)) (-2731 (((-112) $) 77)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-2344 (($ $ $ $) 74)) (-3489 (($ $ $) 69) (($) 42 T CONST)) (-4105 (($ $ $) 68) (($) 41 T CONST)) (-2450 (($ $) NIL)) (-3267 (((-917) $) 83)) (-3322 (($ $) 72)) (-1607 (($ $ $) NIL) (($ (-640 $)) NIL)) (-1938 (((-1151) $) NIL)) (-2321 (($ $ $) NIL)) (-2956 (($) NIL T CONST)) (-3491 (($ (-917)) 82)) (-2051 (($ $) 52)) (-3249 (((-1113) $) 71)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL)) (-1647 (($ $ $) 62) (($ (-640 $)) NIL)) (-1979 (($ $) NIL)) (-2055 (((-418 $) $) NIL)) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL)) (-3448 (((-3 $ "failed") $ $) NIL)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL)) (-4118 (((-112) $) NIL)) (-4322 (((-767) $) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 61)) (-1361 (($ $ (-767)) NIL) (($ $) NIL)) (-3394 (($ $) 53)) (-2208 (($ $) NIL)) (-2802 (((-563) $) 17) (((-536) $) NIL) (((-888 (-563)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-2062 (((-858) $) 35) (($ (-563)) 89) (($ $) NIL) (($ (-563)) 89)) (-3192 (((-767)) NIL T CONST)) (-2404 (((-112) $ $) NIL)) (-2991 (($ $ $) NIL)) (-1433 (($) 40)) (-2543 (((-112) $ $) NIL)) (-2367 (($ $ $ $) 75)) (-3841 (($ $) 63)) (-3670 (($ $ $) 47)) (-3790 (($) 7 T CONST)) (-1734 (($ $ $) 50)) (-3803 (($) 39 T CONST)) (-2038 (((-1151) $) 26) (((-1151) $ (-112)) 27) (((-1262) (-818) $) 28) (((-1262) (-818) $ (-112)) 29)) (-1749 (($ $) 48)) (-4191 (($ $ (-767)) NIL) (($ $) NIL)) (-1720 (($ $ $) 49)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 43)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 10)) (-3658 (($ $ $) 46)) (-3039 (($ $) 16) (($ $ $) 55)) (-3027 (($ $ $) 54)) (** (($ $ (-917)) NIL) (($ $ (-767)) 57)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 38) (($ $ $) 37))) -(((-1113) (-13 (-545) (-840) (-656) (-824) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -3730 ($ $)) (-15 -3766 ($ $ $)) (-15 -1749 ($ $)) (-15 -1720 ($ $ $)) (-15 -1734 ($ $ $))))) (T -1113)) -((-3730 (*1 *1 *1) (-5 *1 (-1113))) (-3766 (*1 *1 *1 *1) (-5 *1 (-1113))) (-1749 (*1 *1 *1) (-5 *1 (-1113))) (-1720 (*1 *1 *1 *1) (-5 *1 (-1113))) (-1734 (*1 *1 *1 *1) (-5 *1 (-1113)))) -(-13 (-545) (-840) (-656) (-824) (-10 -8 (-6 -4395) (-6 -4400) (-6 -4396) (-15 -3730 ($ $)) (-15 -3766 ($ $ $)) (-15 -1749 ($ $)) (-15 -1720 ($ $ $)) (-15 -1734 ($ $ $)))) +((-2925 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 52)) (-4229 (((-564) (-1232 |#2| |#1|)) 99 (|has| |#1| (-452)))) (-2618 (((-564) (-1232 |#2| |#1|)) 81)) (-2855 (((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 62)) (-2300 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 98 (|has| |#1| (-452)))) (-1360 (((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 66)) (-4152 (((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|)) 80))) +(((-1108 |#1| |#2|) (-10 -7 (-15 -2925 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2855 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1360 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4152 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2618 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2300 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4229 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) (-817) (-1170)) (T -1108)) +((-4229 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-2300 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-4152 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5)))) (-1360 (*1 *2 *3 *3) (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5)))) (-2855 (*1 *2 *3 *3) (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4)))) (-2925 (*1 *2 *3 *3) (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) +(-10 -7 (-15 -2925 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2855 ((-641 (-1232 |#2| |#1|)) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -1360 ((-641 |#1|) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4152 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -2618 ((-564) (-1232 |#2| |#1|))) (IF (|has| |#1| (-452)) (PROGN (-15 -2300 ((-564) (-1232 |#2| |#1|) (-1232 |#2| |#1|))) (-15 -4229 ((-564) (-1232 |#2| |#1|)))) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-2298 (($ (-506) (-1112)) 14)) (-4287 (((-1112) $) 20)) (-4324 (((-506) $) 17)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 28) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-1109) (-13 (-1077) (-10 -8 (-15 -2298 ($ (-506) (-1112))) (-15 -4324 ((-506) $)) (-15 -4287 ((-1112) $))))) (T -1109)) +((-2298 (*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109)))) (-4324 (*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) (-4287 (*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109))))) +(-13 (-1077) (-10 -8 (-15 -2298 ($ (-506) (-1112))) (-15 -4324 ((-506) $)) (-15 -4287 ((-1112) $)))) +((-3265 (((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)) 19) (((-3 (-564) "failed") |#2| (-1170) (-840 |#2|)) 17) (((-3 (-564) "failed") |#2|) 60))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -3265 ((-3 (-564) "failed") |#2|)) (-15 -3265 ((-3 (-564) "failed") |#2| (-1170) (-840 |#2|))) (-15 -3265 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|))) (T -1110)) +((-3265 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))))) (-3265 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) (-3265 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) +(-10 -7 (-15 -3265 ((-3 (-564) "failed") |#2|)) (-15 -3265 ((-3 (-564) "failed") |#2| (-1170) (-840 |#2|))) (-15 -3265 ((-3 (-564) "failed") |#2| (-1170) |#2| (-1152)))) +((-3265 (((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)) 38) (((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|)))) 33) (((-3 (-564) "failed") (-407 (-949 |#1|))) 14))) +(((-1111 |#1|) (-10 -7 (-15 -3265 ((-3 (-564) "failed") (-407 (-949 |#1|)))) (-15 -3265 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|))))) (-15 -3265 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)))) (-452)) (T -1111)) +((-3265 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1170)) (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3265 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 (-407 (-949 *6)))) (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) (-3265 (*1 *2 *3) (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *4))))) +(-10 -7 (-15 -3265 ((-3 (-564) "failed") (-407 (-949 |#1|)))) (-15 -3265 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-840 (-407 (-949 |#1|))))) (-15 -3265 ((-3 (-564) "failed") (-407 (-949 |#1|)) (-1170) (-407 (-949 |#1|)) (-1152)))) +((-3732 (((-112) $ $) NIL)) (-3107 (((-1175) $) 12)) (-3052 (((-641 (-1175)) $) 14)) (-4287 (($ (-641 (-1175)) (-1175)) 10)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 29)) (-1705 (((-112) $ $) 17))) +(((-1112) (-13 (-1094) (-10 -8 (-15 -4287 ($ (-641 (-1175)) (-1175))) (-15 -3107 ((-1175) $)) (-15 -3052 ((-641 (-1175)) $))))) (T -1112)) +((-4287 (*1 *1 *2 *3) (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112)))) (-3107 (*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112))))) +(-13 (-1094) (-10 -8 (-15 -4287 ($ (-641 (-1175)) (-1175))) (-15 -3107 ((-1175) $)) (-15 -3052 ((-641 (-1175)) $)))) +((-4307 (((-316 (-564)) (-48)) 12))) +(((-1113) (-10 -7 (-15 -4307 ((-316 (-564)) (-48))))) (T -1113)) +((-4307 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113))))) +(-10 -7 (-15 -4307 ((-316 (-564)) (-48)))) +((-3732 (((-112) $ $) NIL)) (-1680 (($ $) 44)) (-4173 (((-112) $) 65)) (-4289 (($ $ $) 51)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 93)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-1929 (($ $ $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3887 (($ $ $ $) 76)) (-2249 (($ $) NIL)) (-3048 (((-418 $) $) NIL)) (-2377 (((-112) $ $) NIL)) (-1938 (((-768)) 78)) (-3265 (((-564) $) NIL)) (-2338 (($ $ $) 73)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL)) (-2239 (((-564) $) NIL)) (-1373 (($ $ $) 59)) (-3039 (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 87) (((-685 (-564)) (-685 $)) 32)) (-3951 (((-3 $ "failed") $) NIL)) (-2646 (((-3 (-407 (-564)) "failed") $) NIL)) (-4072 (((-112) $) NIL)) (-2350 (((-407 (-564)) $) NIL)) (-2821 (($) 90) (($ $) 91)) (-1350 (($ $ $) 58)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL)) (-4188 (((-112) $) NIL)) (-4167 (($ $ $ $) NIL)) (-1744 (($ $ $) 88)) (-3308 (((-112) $) NIL)) (-2742 (($ $ $) NIL)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL)) (-3840 (((-112) $) 67)) (-1801 (((-112) $) 64)) (-4255 (($ $) 45)) (-3907 (((-3 $ "failed") $) NIL)) (-2839 (((-112) $) 77)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-2634 (($ $ $ $) 74)) (-2799 (($ $ $) 69) (($) 42 T CONST)) (-2848 (($ $ $) 68) (($) 41 T CONST)) (-1494 (($ $) NIL)) (-1906 (((-918) $) 83)) (-2395 (($ $) 72)) (-2529 (($ $ $) NIL) (($ (-641 $)) NIL)) (-2217 (((-1152) $) NIL)) (-1326 (($ $ $) NIL)) (-3258 (($) NIL T CONST)) (-1495 (($ (-918)) 82)) (-4171 (($ $) 52)) (-3864 (((-1114) $) 71)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL)) (-2577 (($ $ $) 62) (($ (-641 $)) NIL)) (-3676 (($ $) NIL)) (-4127 (((-418 $) $) NIL)) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL)) (-1321 (((-3 $ "failed") $ $) NIL)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL)) (-1497 (((-112) $) NIL)) (-4061 (((-768) $) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 61)) (-4117 (($ $ (-768)) NIL) (($ $) NIL)) (-1901 (($ $) 53)) (-3896 (($ $) NIL)) (-2235 (((-564) $) 17) (((-536) $) NIL) (((-889 (-564)) $) NIL) (((-379) $) NIL) (((-225) $) NIL)) (-3742 (((-859) $) 35) (($ (-564)) 89) (($ $) NIL) (($ (-564)) 89)) (-3270 (((-768)) NIL T CONST)) (-3248 (((-112) $ $) NIL)) (-3181 (($ $ $) NIL)) (-3237 (($) 40)) (-3360 (((-112) $ $) NIL)) (-3501 (($ $ $ $) 75)) (-2792 (($ $) 63)) (-4042 (($ $ $) 47)) (-4311 (($) 7 T CONST)) (-1549 (($ $ $) 50)) (-4321 (($) 39 T CONST)) (-2412 (((-1152) $) 26) (((-1152) $ (-112)) 27) (((-1264) (-819) $) 28) (((-1264) (-819) $ (-112)) 29)) (-1560 (($ $) 48)) (-2124 (($ $ (-768)) NIL) (($ $) NIL)) (-1537 (($ $ $) 49)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 43)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 10)) (-4029 (($ $ $) 46)) (-1790 (($ $) 16) (($ $ $) 55)) (-1780 (($ $ $) 54)) (** (($ $ (-918)) NIL) (($ $ (-768)) 57)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 38) (($ $ $) 37))) +(((-1114) (-13 (-545) (-841) (-657) (-825) (-10 -8 (-6 -4398) (-6 -4403) (-6 -4399) (-15 -4255 ($ $)) (-15 -4289 ($ $ $)) (-15 -1560 ($ $)) (-15 -1537 ($ $ $)) (-15 -1549 ($ $ $))))) (T -1114)) +((-4255 (*1 *1 *1) (-5 *1 (-1114))) (-4289 (*1 *1 *1 *1) (-5 *1 (-1114))) (-1560 (*1 *1 *1) (-5 *1 (-1114))) (-1537 (*1 *1 *1 *1) (-5 *1 (-1114))) (-1549 (*1 *1 *1 *1) (-5 *1 (-1114)))) +(-13 (-545) (-841) (-657) (-825) (-10 -8 (-6 -4398) (-6 -4403) (-6 -4399) (-15 -4255 ($ $)) (-15 -4289 ($ $ $)) (-15 -1560 ($ $)) (-15 -1537 ($ $ $)) (-15 -1549 ($ $ $)))) ((|Integer|) (SMINTP |#1|)) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3796 ((|#1| $) 44)) (-3740 (((-112) $ (-767)) 8)) (-3684 (($) 7 T CONST)) (-1378 ((|#1| |#1| $) 46)) (-1369 ((|#1| $) 45)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-3835 ((|#1| $) 39)) (-1956 (($ |#1| $) 40)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-3847 ((|#1| $) 41)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-4359 (((-767) $) 43)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) 42)) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-1114 |#1|) (-140) (-1208)) (T -1114)) -((-1378 (*1 *2 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-1369 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208)))) (-4359 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4408) (-15 -1378 (|t#1| |t#1| $)) (-15 -1369 (|t#1| $)) (-15 -3796 (|t#1| $)) (-15 -4359 ((-767) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-3282 ((|#3| $) 87)) (-2671 (((-3 (-563) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2589 (((-563) $) NIL) (((-407 (-563)) $) NIL) ((|#3| $) 47)) (-3853 (((-684 (-563)) (-684 $)) NIL) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL) (((-2 (|:| -4277 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 $) (-1257 $)) 84) (((-684 |#3|) (-684 $)) 76)) (-1361 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169)) NIL) (($ $ (-767)) NIL) (($ $) NIL)) (-1408 ((|#3| $) 89)) (-1419 ((|#4| $) 43)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ |#3|) 25)) (** (($ $ (-917)) NIL) (($ $ (-767)) 24) (($ $ (-563)) 95))) -(((-1115 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 -1408 (|#3| |#1|)) (-15 -3282 (|#3| |#1|)) (-15 -1419 (|#4| |#1|)) (-15 -3853 ((-684 |#3|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -2062 (|#1| |#3|)) (-15 -2671 ((-3 |#3| "failed") |#1|)) (-15 -2589 (|#3| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2062 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -2062 ((-858) |#1|))) (-1116 |#2| |#3| |#4| |#5|) (-767) (-1045) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1115)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-563))) (-15 -1408 (|#3| |#1|)) (-15 -3282 (|#3| |#1|)) (-15 -1419 (|#4| |#1|)) (-15 -3853 ((-684 |#3|) (-684 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 |#3|)) (|:| |vec| (-1257 |#3|))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 |#1|) (-1257 |#1|))) (-15 -3853 ((-684 (-563)) (-684 |#1|))) (-15 -2062 (|#1| |#3|)) (-15 -2671 ((-3 |#3| "failed") |#1|)) (-15 -2589 (|#3| |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|) (-767))) (-15 -1361 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2062 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3282 ((|#2| $) 71)) (-3148 (((-112) $) 111)) (-1482 (((-3 $ "failed") $ $) 19)) (-3172 (((-112) $) 109)) (-3740 (((-112) $ (-767)) 101)) (-1444 (($ |#2|) 74)) (-3684 (($) 17 T CONST)) (-3063 (($ $) 128 (|has| |#2| (-307)))) (-3082 ((|#3| $ (-563)) 123)) (-2671 (((-3 (-563) "failed") $) 86 (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) 83 (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) 80)) (-2589 (((-563) $) 85 (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) 82 (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) 81)) (-3853 (((-684 (-563)) (-684 $)) 78 (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 77 (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 76) (((-684 |#2|) (-684 $)) 75)) (-3230 (((-3 $ "failed") $) 33)) (-3406 (((-767) $) 129 (|has| |#2| (-555)))) (-4085 ((|#2| $ (-563) (-563)) 121)) (-4236 (((-640 |#2|) $) 94 (|has| $ (-6 -4408)))) (-2712 (((-112) $) 31)) (-3054 (((-767) $) 130 (|has| |#2| (-555)))) (-3042 (((-640 |#4|) $) 131 (|has| |#2| (-555)))) (-3955 (((-767) $) 117)) (-3965 (((-767) $) 118)) (-3633 (((-112) $ (-767)) 102)) (-1390 ((|#2| $) 66 (|has| |#2| (-6 (-4410 "*"))))) (-3127 (((-563) $) 113)) (-3105 (((-563) $) 115)) (-1572 (((-640 |#2|) $) 93 (|has| $ (-6 -4408)))) (-1949 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-3117 (((-563) $) 114)) (-3094 (((-563) $) 116)) (-3840 (($ (-640 (-640 |#2|))) 108)) (-4139 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-1791 (((-640 (-640 |#2|)) $) 119)) (-3604 (((-112) $ (-767)) 103)) (-1938 (((-1151) $) 9)) (-1755 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-3249 (((-1113) $) 10)) (-3448 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-555)))) (-3837 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) 107)) (-2820 (((-112) $) 104)) (-2749 (($) 105)) (-3858 ((|#2| $ (-563) (-563) |#2|) 122) ((|#2| $ (-563) (-563)) 120)) (-1361 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-767)) 51) (($ $ (-640 (-1169)) (-640 (-767))) 44 (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) 43 (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) 42 (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) 41 (|has| |#2| (-896 (-1169)))) (($ $ (-767)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-1408 ((|#2| $) 70)) (-1431 (($ (-640 |#2|)) 73)) (-3162 (((-112) $) 110)) (-1419 ((|#3| $) 72)) (-1400 ((|#2| $) 67 (|has| |#2| (-6 (-4410 "*"))))) (-3261 (((-767) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4408))) (((-767) |#2| $) 92 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 106)) (-3073 ((|#4| $ (-563)) 124)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 84 (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) 79)) (-3192 (((-767)) 28 T CONST)) (-3848 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4408)))) (-3137 (((-112) $) 112)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-767)) 49) (($ $ (-640 (-1169)) (-640 (-767))) 48 (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) 47 (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) 46 (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) 45 (|has| |#2| (-896 (-1169)))) (($ $ (-767)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 64 (|has| |#2| (-363)))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-1708 (((-767) $) 100 (|has| $ (-6 -4408))))) -(((-1116 |#1| |#2| |#3| |#4|) (-140) (-767) (-1045) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1116)) -((-1444 (*1 *1 *2) (-12 (-4 *2 (-1045)) (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-640 *4)) (-4 *4 (-1045)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1045)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-1400 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) (-1755 (*1 *1 *1) (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))) -(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1048 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-713 |t#2|)) |%noBranch|) (-15 -1444 ($ |t#2|)) (-15 -1431 ($ (-640 |t#2|))) (-15 -1419 (|t#3| $)) (-15 -3282 (|t#2| $)) (-15 -1408 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4410 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -1400 (|t#2| $)) (-15 -1390 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -1755 ((-3 $ "failed") $)) (-15 ** ($ $ (-563)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4410 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 #0=(-407 (-563))) |has| |#2| (-1034 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-643 |#2|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#2| (-636 (-563))) ((-636 |#2|) . T) ((-713 |#2|) -2811 (|has| |#2| (-172)) (|has| |#2| (-6 (-4410 "*")))) ((-722) . T) ((-896 (-1169)) |has| |#2| (-896 (-1169))) ((-1048 |#1| |#1| |#2| |#3| |#4|) . T) ((-1034 #0#) |has| |#2| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#2| (-1034 (-563))) ((-1034 |#2|) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1208) . T)) -((-1474 ((|#4| |#4|) 82)) (-1453 ((|#4| |#4|) 77)) (-3414 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|))) |#4| |#3|) 92)) (-3402 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 81)) (-1463 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 79))) -(((-1117 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1453 (|#4| |#4|)) (-15 -1463 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1474 (|#4| |#4|)) (-15 -3402 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3414 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -1117)) -((-3414 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) (-5 *1 (-1117 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) (-3402 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-1474 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-1463 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) -(-10 -7 (-15 -1453 (|#4| |#4|)) (-15 -1463 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1474 (|#4| |#4|)) (-15 -3402 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3414 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3288 (-640 |#3|))) |#4| |#3|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 18)) (-2185 (((-640 |#2|) $) 176)) (-2021 (((-1165 $) $ |#2|) 62) (((-1165 |#1|) $) 51)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 116 (|has| |#1| (-555)))) (-2554 (($ $) 118 (|has| |#1| (-555)))) (-2533 (((-112) $) 120 (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 |#2|)) 215)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) 170) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 |#2| "failed") $) NIL)) (-2589 ((|#1| $) 168) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) ((|#2| $) NIL)) (-3962 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-3213 (($ $) 219)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) 90)) (-2227 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-3302 (($ $ |#1| (-531 |#2|) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#1| (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#1| (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-2712 (((-112) $) 20)) (-1528 (((-767) $) 30)) (-2175 (($ (-1165 |#1|) |#2|) 56) (($ (-1165 $) |#2|) 73)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) 41)) (-2165 (($ |#1| (-531 |#2|)) 80) (($ $ |#2| (-767)) 60) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ |#2|) NIL)) (-3187 (((-531 |#2|) $) 207) (((-767) $ |#2|) 208) (((-640 (-767)) $ (-640 |#2|)) 209)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) 128)) (-2845 (((-3 |#2| "failed") $) 179)) (-3183 (($ $) 218)) (-3193 ((|#1| $) 45)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1938 (((-1151) $) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-767))) "failed") $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) 42)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 148 (|has| |#1| (-452)))) (-1647 (($ (-640 $)) 153 (|has| |#1| (-452))) (($ $ $) 138 (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#1| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-905)))) (-3448 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-555)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ |#2| |#1|) 182) (($ $ (-640 |#2|) (-640 |#1|)) 197) (($ $ |#2| $) 181) (($ $ (-640 |#2|) (-640 $)) 196)) (-3974 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-1361 (($ $ |#2|) 217) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1962 (((-531 |#2|) $) 203) (((-767) $ |#2|) 198) (((-640 (-767)) $ (-640 |#2|)) 201)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| |#1| (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| |#1| (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| |#1| (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3166 ((|#1| $) 134 (|has| |#1| (-452))) (($ $ |#2|) 137 (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-2062 (((-858) $) 159) (($ (-563)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3234 (((-640 |#1|) $) 162)) (-1304 ((|#1| $ (-531 |#2|)) 82) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) 87 T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) 123 (|has| |#1| (-555)))) (-3790 (($) 12 T CONST)) (-3803 (($) 14 T CONST)) (-4191 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) 106)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) 132 (|has| |#1| (-363)))) (-3039 (($ $) 93) (($ $ $) 104)) (-3027 (($ $ $) 57)) (** (($ $ (-917)) 110) (($ $ (-767)) 109)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 96) (($ $ $) 74) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) -(((-1118 |#1| |#2|) (-945 |#1| (-531 |#2|) |#2|) (-1045) (-846)) (T -1118)) -NIL -(-945 |#1| (-531 |#2|) |#2|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 |#2|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3419 (($ $) 151 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3395 (($ $) 147 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-2242 (($ $) 155 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3894 (((-948 |#1|) $ (-767)) NIL) (((-948 |#1|) $ (-767) (-767)) NIL)) (-2697 (((-112) $) NIL)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-767) $ |#2|) NIL) (((-767) $ |#2| (-767)) NIL)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1871 (((-112) $) NIL)) (-2165 (($ $ (-640 |#2|) (-640 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-767)) 62) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2497 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3204 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) NIL)) (-1294 (($ (-1 $) |#2| |#1|) 173 (|has| |#1| (-38 (-407 (-563)))))) (-2884 (($ $ (-767)) 16)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3177 (($ $) 119 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (($ $ |#2| $) 105) (($ $ (-640 |#2|) (-640 $)) 98) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL)) (-1361 (($ $ |#2|) 108) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-1962 (((-531 |#2|) $) NIL)) (-3425 (((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|))) 86)) (-2252 (($ $) 157 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 153 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 149 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 18)) (-2062 (((-858) $) 198) (($ (-563)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#2|) 69) (($ |#3|) 67)) (-1304 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL) ((|#3| $ (-767)) 43)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-2285 (($ $) 163 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) 159 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 167 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-4205 (($ $) 169 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 165 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 161 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 52 T CONST)) (-3803 (($) 61 T CONST)) (-4191 (($ $ |#2|) NIL) (($ $ (-640 |#2|)) NIL) (($ $ |#2| (-767)) NIL) (($ $ (-640 |#2|) (-640 (-767))) NIL)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) 200 (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 65)) (** (($ $ (-917)) NIL) (($ $ (-767)) 76) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 111 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 64) (($ $ (-407 (-563))) 116 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 114 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) -(((-1119 |#1| |#2| |#3|) (-13 (-736 |#1| |#2|) (-10 -8 (-15 -1304 (|#3| $ (-767))) (-15 -2062 ($ |#2|)) (-15 -2062 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3425 ((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $ |#2| |#1|)) (-15 -1294 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1045) (-846) (-945 |#1| (-531 |#2|) |#2|)) (T -1119)) -((-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5)) (-5 *1 (-1119 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) (-2062 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-2062 (*1 *1 *2) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) (-4 *2 (-945 *3 (-531 *4) *4)))) (-3425 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1149 *7))) (-4 *6 (-846)) (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045)) (-5 *2 (-1 (-1149 *7) *7)) (-5 *1 (-1119 *5 *6 *7)))) (-3204 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) (-1294 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1119 *4 *3 *5))) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1119 *4 *3 *5)) (-4 *5 (-945 *4 (-531 *3) *3))))) -(-13 (-736 |#1| |#2|) (-10 -8 (-15 -1304 (|#3| $ (-767))) (-15 -2062 ($ |#2|)) (-15 -2062 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3425 ((-1 (-1149 |#3|) |#3|) (-640 |#2|) (-640 (-1149 |#3|)))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $ |#2| |#1|)) (-15 -1294 ($ (-1 $) |#2| |#1|))) |%noBranch|))) -((-2049 (((-112) $ $) 7)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) 85)) (-1353 (((-640 $) (-640 |#4|)) 86) (((-640 $) (-640 |#4|) (-112)) 111)) (-2185 (((-640 |#3|) $) 33)) (-1556 (((-112) $) 26)) (-1456 (((-112) $) 17 (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) 101) (((-112) $) 97)) (-1413 ((|#4| |#4| $) 92)) (-2924 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| $) 126)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) 27)) (-3740 (((-112) $ (-767)) 44)) (-1907 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-3684 (($) 45 T CONST)) (-1512 (((-112) $) 22 (|has| |#1| (-555)))) (-1534 (((-112) $ $) 24 (|has| |#1| (-555)))) (-1523 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1545 (((-112) $) 25 (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1466 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) 36)) (-2589 (($ (-640 |#4|)) 35)) (-1897 (((-3 $ "failed") $) 82)) (-1384 ((|#4| |#4| $) 89)) (-1920 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1365 ((|#4| |#4| $) 87)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) 105)) (-1586 (((-112) |#4| $) 136)) (-1563 (((-112) |#4| $) 133)) (-1598 (((-112) |#4| $) 137) (((-112) $) 134)) (-4236 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) 104) (((-112) $) 103)) (-2674 ((|#3| $) 34)) (-3633 (((-112) $ (-767)) 43)) (-1572 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 47)) (-1616 (((-640 |#3|) $) 32)) (-1602 (((-112) |#3| $) 31)) (-3604 (((-112) $ (-767)) 42)) (-1938 (((-1151) $) 9)) (-1520 (((-3 |#4| (-640 $)) |#4| |#4| $) 128)) (-1508 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| |#4| $) 127)) (-1442 (((-3 |#4| "failed") $) 83)) (-1529 (((-640 $) |#4| $) 129)) (-1552 (((-3 (-112) (-640 $)) |#4| $) 132)) (-1542 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1913 (((-640 $) |#4| $) 125) (((-640 $) (-640 |#4|) $) 124) (((-640 $) (-640 |#4|) (-640 $)) 123) (((-640 $) |#4| (-640 $)) 122)) (-3079 (($ |#4| $) 117) (($ (-640 |#4|) $) 116)) (-1514 (((-640 |#4|) $) 107)) (-1447 (((-112) |#4| $) 99) (((-112) $) 95)) (-1395 ((|#4| |#4| $) 90)) (-3449 (((-112) $ $) 110)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) 100) (((-112) $) 96)) (-1405 ((|#4| |#4| $) 91)) (-3249 (((-1113) $) 10)) (-1884 (((-3 |#4| "failed") $) 84)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1323 (((-3 $ "failed") $ |#4|) 78)) (-2884 (($ $ |#4|) 77) (((-640 $) |#4| $) 115) (((-640 $) |#4| (-640 $)) 114) (((-640 $) (-640 |#4|) $) 113) (((-640 $) (-640 |#4|) (-640 $)) 112)) (-3837 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) 38)) (-2820 (((-112) $) 41)) (-2749 (($) 40)) (-1962 (((-767) $) 106)) (-3261 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-2208 (($ $) 39)) (-2802 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 60)) (-1566 (($ $ |#3|) 28)) (-1591 (($ $ |#3|) 30)) (-1373 (($ $) 88)) (-1579 (($ $ |#3|) 29)) (-2062 (((-858) $) 11) (((-640 |#4|) $) 37)) (-1313 (((-767) $) 76 (|has| |#3| (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-1496 (((-640 $) |#4| $) 121) (((-640 $) |#4| (-640 $)) 120) (((-640 $) (-640 |#4|) $) 119) (((-640 $) (-640 |#4|) (-640 $)) 118)) (-3848 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) 81)) (-1574 (((-112) |#4| $) 135)) (-1833 (((-112) |#3| $) 80)) (-2943 (((-112) $ $) 6)) (-1708 (((-767) $) 46 (|has| $ (-6 -4408))))) -(((-1120 |#1| |#2| |#3| |#4|) (-140) (-452) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1120)) -NIL -(-13 (-1102 |t#1| |t#2| |t#3| |t#4|) (-780 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-780 |#1| |#2| |#3| |#4|) . T) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1065 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1201 |#1| |#2| |#3| |#4|) . T) ((-1208) . T)) -((-1558 (((-640 |#2|) |#1|) 15)) (-3479 (((-640 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-640 |#2|) |#1|) 63)) (-3456 (((-640 |#2|) |#2| |#2| |#2|) 45) (((-640 |#2|) |#1|) 61)) (-3433 ((|#2| |#1|) 56)) (-3443 (((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3872 (((-640 |#2|) |#2| |#2|) 42) (((-640 |#2|) |#1|) 60)) (-3469 (((-640 |#2|) |#2| |#2| |#2| |#2|) 46) (((-640 |#2|) |#1|) 62)) (-3520 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-3501 ((|#2| |#2| |#2| |#2|) 53)) (-3490 ((|#2| |#2| |#2|) 52)) (-3511 ((|#2| |#2| |#2| |#2| |#2|) 54))) -(((-1121 |#1| |#2|) (-10 -7 (-15 -1558 ((-640 |#2|) |#1|)) (-15 -3433 (|#2| |#1|)) (-15 -3443 ((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3872 ((-640 |#2|) |#1|)) (-15 -3456 ((-640 |#2|) |#1|)) (-15 -3469 ((-640 |#2|) |#1|)) (-15 -3479 ((-640 |#2|) |#1|)) (-15 -3872 ((-640 |#2|) |#2| |#2|)) (-15 -3456 ((-640 |#2|) |#2| |#2| |#2|)) (-15 -3469 ((-640 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3479 ((-640 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2|)) (-15 -3501 (|#2| |#2| |#2| |#2|)) (-15 -3511 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3520 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1233 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (T -1121)) -((-3520 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-3511 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-3501 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-3490 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-3479 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-3469 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-3456 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-3872 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3)))) (-3479 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-3469 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-3456 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-3872 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) (-3443 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-2 (|:| |solns| (-640 *5)) (|:| |maps| (-640 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1121 *3 *5)) (-4 *3 (-1233 *5)))) (-3433 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2)))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -1558 ((-640 |#2|) |#1|)) (-15 -3433 (|#2| |#1|)) (-15 -3443 ((-2 (|:| |solns| (-640 |#2|)) (|:| |maps| (-640 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3872 ((-640 |#2|) |#1|)) (-15 -3456 ((-640 |#2|) |#1|)) (-15 -3469 ((-640 |#2|) |#1|)) (-15 -3479 ((-640 |#2|) |#1|)) (-15 -3872 ((-640 |#2|) |#2| |#2|)) (-15 -3456 ((-640 |#2|) |#2| |#2| |#2|)) (-15 -3469 ((-640 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3479 ((-640 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3490 (|#2| |#2| |#2|)) (-15 -3501 (|#2| |#2| |#2| |#2|)) (-15 -3511 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3520 (|#2| |#2| |#2| |#2| |#2| |#2|))) -((-3530 (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|))))) 128) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169))) 127) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|)))) 125) (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 123) (((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|)))) 101) (((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169)) 102) (((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|))) 96) (((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169)) 82)) (-3540 (((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 121) (((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169)) 54)) (-3550 (((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169)) 132) (((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169)) 131))) -(((-1122 |#1|) (-10 -7 (-15 -3530 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -3530 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -3530 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -3530 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -3530 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3530 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))))) (-15 -3530 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -3530 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -3540 ((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -3540 ((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3550 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -3550 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169)))) (-13 (-307) (-846) (-147))) (T -1122)) -((-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-3550 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-3540 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-316 *5)))) (-5 *1 (-1122 *5)))) (-3540 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-316 *5))) (-5 *1 (-1122 *5)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-294 (-407 (-948 *5))))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1122 *5)))) (-3530 (*1 *2 *3) (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4)))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1122 *5))))) -(-10 -7 (-15 -3530 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)) (-1169))) (-15 -3530 ((-640 (-294 (-316 |#1|))) (-407 (-948 |#1|)))) (-15 -3530 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -3530 ((-640 (-294 (-316 |#1|))) (-294 (-407 (-948 |#1|))))) (-15 -3530 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3530 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-407 (-948 |#1|))))) (-15 -3530 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -3530 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -3540 ((-640 (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -3540 ((-640 (-640 (-316 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -3550 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -3550 ((-1158 (-640 (-316 |#1|)) (-640 (-294 (-316 |#1|)))) (-407 (-948 |#1|)) (-1169)))) -((-3569 (((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563)) 38)) (-3560 (((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|)))) 49))) -(((-1123 |#1|) (-10 -7 (-15 -3560 ((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))))) (-15 -3569 ((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563)))) (-13 (-555) (-846))) (T -1123)) -((-3569 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1165 (-316 *5)))) (-5 *3 (-1257 (-316 *5))) (-5 *4 (-563)) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-1123 *5)))) (-3560 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1165 (-316 *3)))) (-4 *3 (-13 (-555) (-846))) (-5 *1 (-1123 *3))))) -(-10 -7 (-15 -3560 ((-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))) (-407 (-1165 (-316 |#1|))))) (-15 -3569 ((-407 (-1165 (-316 |#1|))) (-1257 (-316 |#1|)) (-407 (-1165 (-316 |#1|))) (-563)))) -((-1558 (((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169))) 257) (((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169)) 29) (((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169)) 35) (((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 34) (((-640 (-294 (-316 |#1|))) (-316 |#1|)) 30))) -(((-1124 |#1|) (-10 -7 (-15 -1558 ((-640 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1558 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1558 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169))) (-15 -1558 ((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169))) (-15 -1558 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169))))) (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (T -1124)) -((-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1124 *5)) (-5 *3 (-640 (-294 (-316 *5)))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-316 *5)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) (-5 *3 (-294 (-316 *5))))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-294 (-316 *4))))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) (-5 *3 (-316 *4))))) -(-10 -7 (-15 -1558 ((-640 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -1558 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -1558 ((-640 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1169))) (-15 -1558 ((-640 (-294 (-316 |#1|))) (-316 |#1|) (-1169))) (-15 -1558 ((-640 (-640 (-294 (-316 |#1|)))) (-640 (-294 (-316 |#1|))) (-640 (-1169))))) -((-3588 ((|#2| |#2|) 30 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-3578 ((|#2| |#2|) 29 (|has| |#1| (-846))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) -(((-1125 |#1| |#2|) (-10 -7 (-15 -3578 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3588 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -3578 (|#2| |#2|)) (-15 -3588 (|#2| |#2|))) |%noBranch|)) (-1208) (-13 (-601 (-563) |#1|) (-10 -7 (-6 -4408) (-6 -4409)))) (T -1125)) -((-3588 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4408) (-6 -4409)))))) (-3578 (*1 *2 *2) (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4408) (-6 -4409)))))) (-3588 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4408) (-6 -4409)))))) (-3578 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4408) (-6 -4409))))))) -(-10 -7 (-15 -3578 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -3588 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-846)) (PROGN (-15 -3578 (|#2| |#2|)) (-15 -3588 (|#2| |#2|))) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-2604 (((-1157 3 |#1|) $) 142)) (-3669 (((-112) $) 100)) (-3680 (($ $ (-640 (-939 |#1|))) 44) (($ $ (-640 (-640 |#1|))) 103) (($ (-640 (-939 |#1|))) 102) (((-640 (-939 |#1|)) $) 101)) (-3734 (((-112) $) 71)) (-3415 (($ $ (-939 |#1|)) 75) (($ $ (-640 |#1|)) 80) (($ $ (-767)) 82) (($ (-939 |#1|)) 76) (((-939 |#1|) $) 74)) (-1422 (((-2 (|:| -2276 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 140)) (-3782 (((-767) $) 53)) (-3794 (((-767) $) 52)) (-2594 (($ $ (-767) (-939 |#1|)) 67)) (-3647 (((-112) $) 113)) (-3657 (($ $ (-640 (-640 (-939 |#1|))) (-640 (-171)) (-171)) 120) (($ $ (-640 (-640 (-640 |#1|))) (-640 (-171)) (-171)) 122) (($ $ (-640 (-640 (-939 |#1|))) (-112) (-112)) 117) (($ $ (-640 (-640 (-640 |#1|))) (-112) (-112)) 129) (($ (-640 (-640 (-939 |#1|)))) 118) (($ (-640 (-640 (-939 |#1|))) (-112) (-112)) 119) (((-640 (-640 (-939 |#1|))) $) 116)) (-2383 (($ (-640 $)) 56) (($ $ $) 57)) (-3609 (((-640 (-171)) $) 135)) (-3922 (((-640 (-939 |#1|)) $) 132)) (-3619 (((-640 (-640 (-171))) $) 134)) (-3629 (((-640 (-640 (-640 (-939 |#1|)))) $) NIL)) (-3638 (((-640 (-640 (-640 (-767)))) $) 133)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3747 (((-767) $ (-640 (-939 |#1|))) 65)) (-3712 (((-112) $) 83)) (-3724 (($ $ (-640 (-939 |#1|))) 85) (($ $ (-640 (-640 |#1|))) 91) (($ (-640 (-939 |#1|))) 86) (((-640 (-939 |#1|)) $) 84)) (-3808 (($) 48) (($ (-1157 3 |#1|)) 49)) (-2208 (($ $) 63)) (-3759 (((-640 $) $) 62)) (-3945 (($ (-640 $)) 59)) (-3770 (((-640 $) $) 61)) (-2062 (((-858) $) 147)) (-3689 (((-112) $) 93)) (-3700 (($ $ (-640 (-939 |#1|))) 95) (($ $ (-640 (-640 |#1|))) 98) (($ (-640 (-939 |#1|))) 96) (((-640 (-939 |#1|)) $) 94)) (-3599 (($ $) 141)) (-2943 (((-112) $ $) NIL))) -(((-1126 |#1|) (-1127 |#1|) (-1045)) (T -1126)) -NIL -(-1127 |#1|) -((-2049 (((-112) $ $) 7)) (-2604 (((-1157 3 |#1|) $) 13)) (-3669 (((-112) $) 29)) (-3680 (($ $ (-640 (-939 |#1|))) 33) (($ $ (-640 (-640 |#1|))) 32) (($ (-640 (-939 |#1|))) 31) (((-640 (-939 |#1|)) $) 30)) (-3734 (((-112) $) 44)) (-3415 (($ $ (-939 |#1|)) 49) (($ $ (-640 |#1|)) 48) (($ $ (-767)) 47) (($ (-939 |#1|)) 46) (((-939 |#1|) $) 45)) (-1422 (((-2 (|:| -2276 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $) 15)) (-3782 (((-767) $) 58)) (-3794 (((-767) $) 59)) (-2594 (($ $ (-767) (-939 |#1|)) 50)) (-3647 (((-112) $) 21)) (-3657 (($ $ (-640 (-640 (-939 |#1|))) (-640 (-171)) (-171)) 28) (($ $ (-640 (-640 (-640 |#1|))) (-640 (-171)) (-171)) 27) (($ $ (-640 (-640 (-939 |#1|))) (-112) (-112)) 26) (($ $ (-640 (-640 (-640 |#1|))) (-112) (-112)) 25) (($ (-640 (-640 (-939 |#1|)))) 24) (($ (-640 (-640 (-939 |#1|))) (-112) (-112)) 23) (((-640 (-640 (-939 |#1|))) $) 22)) (-2383 (($ (-640 $)) 57) (($ $ $) 56)) (-3609 (((-640 (-171)) $) 16)) (-3922 (((-640 (-939 |#1|)) $) 20)) (-3619 (((-640 (-640 (-171))) $) 17)) (-3629 (((-640 (-640 (-640 (-939 |#1|)))) $) 18)) (-3638 (((-640 (-640 (-640 (-767)))) $) 19)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-3747 (((-767) $ (-640 (-939 |#1|))) 51)) (-3712 (((-112) $) 39)) (-3724 (($ $ (-640 (-939 |#1|))) 43) (($ $ (-640 (-640 |#1|))) 42) (($ (-640 (-939 |#1|))) 41) (((-640 (-939 |#1|)) $) 40)) (-3808 (($) 61) (($ (-1157 3 |#1|)) 60)) (-2208 (($ $) 52)) (-3759 (((-640 $) $) 53)) (-3945 (($ (-640 $)) 55)) (-3770 (((-640 $) $) 54)) (-2062 (((-858) $) 11)) (-3689 (((-112) $) 34)) (-3700 (($ $ (-640 (-939 |#1|))) 38) (($ $ (-640 (-640 |#1|))) 37) (($ (-640 (-939 |#1|))) 36) (((-640 (-939 |#1|)) $) 35)) (-3599 (($ $) 14)) (-2943 (((-112) $ $) 6))) -(((-1127 |#1|) (-140) (-1045)) (T -1127)) -((-2062 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-858)))) (-3808 (*1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-3808 (*1 *1 *2) (-12 (-5 *2 (-1157 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3794 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) (-2383 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-2383 (*1 *1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-3945 (*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3770 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)))) (-3759 (*1 *2 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)))) (-2208 (*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-3747 (*1 *2 *1 *3) (-12 (-5 *3 (-640 (-939 *4))) (-4 *1 (-1127 *4)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-2594 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-3415 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3415 (*1 *1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3415 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) (-3734 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3724 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3724 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3724 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3724 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-3712 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3700 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3700 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-3689 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3680 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3680 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3657 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-640 (-939 *5)))) (-5 *3 (-640 (-171))) (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) (-3657 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-640 (-171))) (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) (-3657 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-3657 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-112)) (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 *3)))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) (-3657 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) (-4 *1 (-1127 *4)))) (-3657 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-939 *3)))))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) (-3638 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-640 (-767))))))) (-3629 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-640 (-939 *3))))))) (-3619 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-171)))))) (-3609 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-171))))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2276 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767)))))) (-3599 (*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-1157 3 *3))))) -(-13 (-1093) (-10 -8 (-15 -3808 ($)) (-15 -3808 ($ (-1157 3 |t#1|))) (-15 -3794 ((-767) $)) (-15 -3782 ((-767) $)) (-15 -2383 ($ (-640 $))) (-15 -2383 ($ $ $)) (-15 -3945 ($ (-640 $))) (-15 -3770 ((-640 $) $)) (-15 -3759 ((-640 $) $)) (-15 -2208 ($ $)) (-15 -3747 ((-767) $ (-640 (-939 |t#1|)))) (-15 -2594 ($ $ (-767) (-939 |t#1|))) (-15 -3415 ($ $ (-939 |t#1|))) (-15 -3415 ($ $ (-640 |t#1|))) (-15 -3415 ($ $ (-767))) (-15 -3415 ($ (-939 |t#1|))) (-15 -3415 ((-939 |t#1|) $)) (-15 -3734 ((-112) $)) (-15 -3724 ($ $ (-640 (-939 |t#1|)))) (-15 -3724 ($ $ (-640 (-640 |t#1|)))) (-15 -3724 ($ (-640 (-939 |t#1|)))) (-15 -3724 ((-640 (-939 |t#1|)) $)) (-15 -3712 ((-112) $)) (-15 -3700 ($ $ (-640 (-939 |t#1|)))) (-15 -3700 ($ $ (-640 (-640 |t#1|)))) (-15 -3700 ($ (-640 (-939 |t#1|)))) (-15 -3700 ((-640 (-939 |t#1|)) $)) (-15 -3689 ((-112) $)) (-15 -3680 ($ $ (-640 (-939 |t#1|)))) (-15 -3680 ($ $ (-640 (-640 |t#1|)))) (-15 -3680 ($ (-640 (-939 |t#1|)))) (-15 -3680 ((-640 (-939 |t#1|)) $)) (-15 -3669 ((-112) $)) (-15 -3657 ($ $ (-640 (-640 (-939 |t#1|))) (-640 (-171)) (-171))) (-15 -3657 ($ $ (-640 (-640 (-640 |t#1|))) (-640 (-171)) (-171))) (-15 -3657 ($ $ (-640 (-640 (-939 |t#1|))) (-112) (-112))) (-15 -3657 ($ $ (-640 (-640 (-640 |t#1|))) (-112) (-112))) (-15 -3657 ($ (-640 (-640 (-939 |t#1|))))) (-15 -3657 ($ (-640 (-640 (-939 |t#1|))) (-112) (-112))) (-15 -3657 ((-640 (-640 (-939 |t#1|))) $)) (-15 -3647 ((-112) $)) (-15 -3922 ((-640 (-939 |t#1|)) $)) (-15 -3638 ((-640 (-640 (-640 (-767)))) $)) (-15 -3629 ((-640 (-640 (-640 (-939 |t#1|)))) $)) (-15 -3619 ((-640 (-640 (-171))) $)) (-15 -3609 ((-640 (-171)) $)) (-15 -1422 ((-2 (|:| -2276 (-767)) (|:| |curves| (-767)) (|:| |polygons| (-767)) (|:| |constructs| (-767))) $)) (-15 -3599 ($ $)) (-15 -2604 ((-1157 3 |t#1|) $)) (-15 -2062 ((-858) $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 178) (($ (-1174)) NIL) (((-1174) $) 7)) (-3778 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-671))) 27) (((-112) $ (|[\|\|]| (-1267))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1108))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-676))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1060))) 59) (((-112) $ (|[\|\|]| (-1268))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-666))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1032))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-966))) 91) (((-112) $ (|[\|\|]| (-1067))) 95) (((-112) $ (|[\|\|]| (-1083))) 99) (((-112) $ (|[\|\|]| (-1089))) 103) (((-112) $ (|[\|\|]| (-623))) 107) (((-112) $ (|[\|\|]| (-1159))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-590))) 127) (((-112) $ (|[\|\|]| (-506))) 133) (((-112) $ (|[\|\|]| (-1151))) 137) (((-112) $ (|[\|\|]| (-563))) 141)) (-2238 (((-524) $) 20) (((-218) $) 24) (((-671) $) 28) (((-1267) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1108) $) 44) (((-96) $) 48) (((-676) $) 52) (((-517) $) 56) (((-1060) $) 60) (((-1268) $) 64) (((-525) $) 68) (((-154) $) 72) (((-666) $) 76) (((-311) $) 80) (((-1032) $) 84) (((-180) $) 88) (((-966) $) 92) (((-1067) $) 96) (((-1083) $) 100) (((-1089) $) 104) (((-623) $) 108) (((-1159) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-590) $) 128) (((-506) $) 134) (((-1151) $) 138) (((-563) $) 142)) (-2943 (((-112) $ $) NIL))) -(((-1128) (-1130)) (T -1128)) -NIL -(-1130) -((-3369 (((-640 (-1174)) (-1151)) 9))) -(((-1129) (-10 -7 (-15 -3369 ((-640 (-1174)) (-1151))))) (T -1129)) -((-3369 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-1129))))) -(-10 -7 (-15 -3369 ((-640 (-1174)) (-1151)))) -((-2049 (((-112) $ $) 7)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-1174)) 16) (((-1174) $) 15)) (-3778 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-671))) 76) (((-112) $ (|[\|\|]| (-1267))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1108))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-676))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1060))) 60) (((-112) $ (|[\|\|]| (-1268))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-666))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1032))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-966))) 44) (((-112) $ (|[\|\|]| (-1067))) 42) (((-112) $ (|[\|\|]| (-1083))) 40) (((-112) $ (|[\|\|]| (-1089))) 38) (((-112) $ (|[\|\|]| (-623))) 36) (((-112) $ (|[\|\|]| (-1159))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-590))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1151))) 22) (((-112) $ (|[\|\|]| (-563))) 20)) (-2238 (((-524) $) 79) (((-218) $) 77) (((-671) $) 75) (((-1267) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1108) $) 67) (((-96) $) 65) (((-676) $) 63) (((-517) $) 61) (((-1060) $) 59) (((-1268) $) 57) (((-525) $) 55) (((-154) $) 53) (((-666) $) 51) (((-311) $) 49) (((-1032) $) 47) (((-180) $) 45) (((-966) $) 43) (((-1067) $) 41) (((-1083) $) 39) (((-1089) $) 37) (((-623) $) 35) (((-1159) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-590) $) 25) (((-506) $) 23) (((-1151) $) 21) (((-563) $) 19)) (-2943 (((-112) $ $) 6))) -(((-1130) (-140)) (T -1130)) -((-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-524)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-218)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-671)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1267)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-138)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-133)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1108)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-96)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-676)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-517)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1060)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1268))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1268)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-525)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-154)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-666)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-311)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1032)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-180)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-966)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1067)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1083)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1089)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-623)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1159)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-156)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-137)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-478)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-590))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-590)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-506)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1151)))) (-3778 (*1 *2 *1 *3) (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)))) (-2238 (*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-563))))) -(-13 (-1076) (-1252) (-10 -8 (-15 -3778 ((-112) $ (|[\|\|]| (-524)))) (-15 -2238 ((-524) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-218)))) (-15 -2238 ((-218) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-671)))) (-15 -2238 ((-671) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1267)))) (-15 -2238 ((-1267) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-138)))) (-15 -2238 ((-138) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-133)))) (-15 -2238 ((-133) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1108)))) (-15 -2238 ((-1108) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-96)))) (-15 -2238 ((-96) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-676)))) (-15 -2238 ((-676) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-517)))) (-15 -2238 ((-517) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1060)))) (-15 -2238 ((-1060) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1268)))) (-15 -2238 ((-1268) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-525)))) (-15 -2238 ((-525) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-154)))) (-15 -2238 ((-154) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-666)))) (-15 -2238 ((-666) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-311)))) (-15 -2238 ((-311) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1032)))) (-15 -2238 ((-1032) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-180)))) (-15 -2238 ((-180) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-966)))) (-15 -2238 ((-966) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1067)))) (-15 -2238 ((-1067) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1083)))) (-15 -2238 ((-1083) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1089)))) (-15 -2238 ((-1089) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-623)))) (-15 -2238 ((-623) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1159)))) (-15 -2238 ((-1159) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-156)))) (-15 -2238 ((-156) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-137)))) (-15 -2238 ((-137) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-478)))) (-15 -2238 ((-478) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-590)))) (-15 -2238 ((-590) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-506)))) (-15 -2238 ((-506) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-1151)))) (-15 -2238 ((-1151) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-563)))) (-15 -2238 ((-563) $)))) -(((-93) . T) ((-102) . T) ((-613 #0=(-1174)) . T) ((-610 (-858)) . T) ((-610 #0#) . T) ((-490 #0#) . T) ((-1093) . T) ((-1076) . T) ((-1252) . T)) -((-3829 (((-1262) (-640 (-858))) 23) (((-1262) (-858)) 22)) (-3818 (((-1262) (-640 (-858))) 21) (((-1262) (-858)) 20)) (-4000 (((-1262) (-640 (-858))) 19) (((-1262) (-858)) 11) (((-1262) (-1151) (-858)) 17))) -(((-1131) (-10 -7 (-15 -4000 ((-1262) (-1151) (-858))) (-15 -4000 ((-1262) (-858))) (-15 -3818 ((-1262) (-858))) (-15 -3829 ((-1262) (-858))) (-15 -4000 ((-1262) (-640 (-858)))) (-15 -3818 ((-1262) (-640 (-858)))) (-15 -3829 ((-1262) (-640 (-858)))))) (T -1131)) -((-3829 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-3818 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131))))) -(-10 -7 (-15 -4000 ((-1262) (-1151) (-858))) (-15 -4000 ((-1262) (-858))) (-15 -3818 ((-1262) (-858))) (-15 -3829 ((-1262) (-858))) (-15 -4000 ((-1262) (-640 (-858)))) (-15 -3818 ((-1262) (-640 (-858)))) (-15 -3829 ((-1262) (-640 (-858))))) -((-3873 (($ $ $) 10)) (-3862 (($ $) 9)) (-3903 (($ $ $) 13)) (-3920 (($ $ $) 15)) (-3893 (($ $ $) 12)) (-3912 (($ $ $) 14)) (-3941 (($ $) 17)) (-3932 (($ $) 16)) (-3841 (($ $) 6)) (-3883 (($ $ $) 11) (($ $) 7)) (-3851 (($ $ $) 8))) -(((-1132) (-140)) (T -1132)) -((-3941 (*1 *1 *1) (-4 *1 (-1132))) (-3932 (*1 *1 *1) (-4 *1 (-1132))) (-3920 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3912 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3903 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3893 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3883 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3873 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3862 (*1 *1 *1) (-4 *1 (-1132))) (-3851 (*1 *1 *1 *1) (-4 *1 (-1132))) (-3883 (*1 *1 *1) (-4 *1 (-1132))) (-3841 (*1 *1 *1) (-4 *1 (-1132)))) -(-13 (-10 -8 (-15 -3841 ($ $)) (-15 -3883 ($ $)) (-15 -3851 ($ $ $)) (-15 -3862 ($ $)) (-15 -3873 ($ $ $)) (-15 -3883 ($ $ $)) (-15 -3893 ($ $ $)) (-15 -3903 ($ $ $)) (-15 -3912 ($ $ $)) (-15 -3920 ($ $ $)) (-15 -3932 ($ $)) (-15 -3941 ($ $)))) -((-2049 (((-112) $ $) 44)) (-3556 ((|#1| $) 17)) (-3950 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2600 (((-112) $) 19)) (-2810 (($ $ |#1|) 30)) (-3980 (($ $ (-112)) 32)) (-3968 (($ $) 33)) (-2798 (($ $ |#2|) 31)) (-1938 (((-1151) $) NIL)) (-3958 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3249 (((-1113) $) NIL)) (-2820 (((-112) $) 16)) (-2749 (($) 13)) (-2208 (($ $) 29)) (-2074 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -1926 |#2|))) 23) (((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -1926 |#2|)))) 26) (((-640 $) |#1| (-640 |#2|)) 28)) (-4306 ((|#2| $) 18)) (-2062 (((-858) $) 53)) (-2943 (((-112) $ $) 42))) -(((-1133 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -2749 ($)) (-15 -2820 ((-112) $)) (-15 -3556 (|#1| $)) (-15 -4306 (|#2| $)) (-15 -2600 ((-112) $)) (-15 -2074 ($ |#1| |#2| (-112))) (-15 -2074 ($ |#1| |#2|)) (-15 -2074 ($ (-2 (|:| |val| |#1|) (|:| -1926 |#2|)))) (-15 -2074 ((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -1926 |#2|))))) (-15 -2074 ((-640 $) |#1| (-640 |#2|))) (-15 -2208 ($ $)) (-15 -2810 ($ $ |#1|)) (-15 -2798 ($ $ |#2|)) (-15 -3980 ($ $ (-112))) (-15 -3968 ($ $)) (-15 -3958 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3950 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1093) (-34)) (-13 (-1093) (-34))) (T -1133)) -((-2749 (*1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-3556 (*1 *2 *1) (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *2 *3)) (-4 *3 (-13 (-1093) (-34))))) (-4306 (*1 *2 *1) (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34))))) (-2600 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-2074 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2074 (*1 *1 *2 *3) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2074 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1926 *4))) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *4)))) (-2074 (*1 *2 *3) (-12 (-5 *3 (-640 (-2 (|:| |val| *4) (|:| -1926 *5)))) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-640 (-1133 *4 *5))) (-5 *1 (-1133 *4 *5)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-640 *5)) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-640 (-1133 *3 *5))) (-5 *1 (-1133 *3 *5)) (-4 *3 (-13 (-1093) (-34))))) (-2208 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2810 (*1 *1 *1 *2) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2798 (*1 *1 *1 *2) (-12 (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34))) (-4 *2 (-13 (-1093) (-34))))) (-3980 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-3968 (*1 *1 *1) (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-3958 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *5 *6)))) (-3950 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34)))))) -(-13 (-1093) (-10 -8 (-15 -2749 ($)) (-15 -2820 ((-112) $)) (-15 -3556 (|#1| $)) (-15 -4306 (|#2| $)) (-15 -2600 ((-112) $)) (-15 -2074 ($ |#1| |#2| (-112))) (-15 -2074 ($ |#1| |#2|)) (-15 -2074 ($ (-2 (|:| |val| |#1|) (|:| -1926 |#2|)))) (-15 -2074 ((-640 $) (-640 (-2 (|:| |val| |#1|) (|:| -1926 |#2|))))) (-15 -2074 ((-640 $) |#1| (-640 |#2|))) (-15 -2208 ($ $)) (-15 -2810 ($ $ |#1|)) (-15 -2798 ($ $ |#2|)) (-15 -3980 ($ $ (-112))) (-15 -3968 ($ $)) (-15 -3958 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3950 ((-112) $ $ (-1 (-112) |#2| |#2|))))) -((-2049 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-3556 (((-1133 |#1| |#2|) $) 27)) (-2871 (($ $) 90)) (-2852 (((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 99)) (-2830 (($ $ $ (-640 (-1133 |#1| |#2|))) 107) (($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 108)) (-3740 (((-112) $ (-767)) NIL)) (-3472 (((-1133 |#1| |#2|) $ (-1133 |#1| |#2|)) 45 (|has| $ (-6 -4409)))) (-2189 (((-1133 |#1| |#2|) $ "value" (-1133 |#1| |#2|)) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 43 (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-3582 (((-640 (-2 (|:| |val| |#1|) (|:| -1926 |#2|))) $) 94)) (-2841 (($ (-1133 |#1| |#2|) $) 41)) (-1417 (($ (-1133 |#1| |#2|) $) 33)) (-4236 (((-640 (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 53)) (-2861 (((-112) (-1133 |#1| |#2|) $) 96)) (-3494 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 (-1133 |#1| |#2|)) $) 57 (|has| $ (-6 -4408)))) (-1949 (((-112) (-1133 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-1133 |#1| |#2|) (-1093))))) (-4139 (($ (-1 (-1133 |#1| |#2|) (-1133 |#1| |#2|)) $) 49 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-1133 |#1| |#2|) (-1133 |#1| |#2|)) $) 48)) (-3604 (((-112) $ (-767)) NIL)) (-3884 (((-640 (-1133 |#1| |#2|)) $) 55)) (-2484 (((-112) $) 44)) (-1938 (((-1151) $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-3249 (((-1113) $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-2880 (((-3 $ "failed") $) 88)) (-3837 (((-112) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-1133 |#1| |#2|)))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-294 (-1133 |#1| |#2|))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-1133 |#1| |#2|) (-1133 |#1| |#2|)) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093)))) (($ $ (-640 (-1133 |#1| |#2|)) (-640 (-1133 |#1| |#2|))) NIL (-12 (|has| (-1133 |#1| |#2|) (-309 (-1133 |#1| |#2|))) (|has| (-1133 |#1| |#2|) (-1093))))) (-3752 (((-112) $ $) 52)) (-2820 (((-112) $) 24)) (-2749 (($) 26)) (-3858 (((-1133 |#1| |#2|) $ "value") NIL)) (-3514 (((-563) $ $) NIL)) (-2181 (((-112) $) 46)) (-3261 (((-767) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408))) (((-767) (-1133 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-1133 |#1| |#2|) (-1093))))) (-2208 (($ $) 51)) (-2074 (($ (-1133 |#1| |#2|)) 10) (($ |#1| |#2| (-640 $)) 13) (($ |#1| |#2| (-640 (-1133 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-640 |#2|)) 18)) (-2422 (((-640 |#2|) $) 95)) (-2062 (((-858) $) 86 (|has| (-1133 |#1| |#2|) (-610 (-858))))) (-2432 (((-640 $) $) 31)) (-3504 (((-112) $ $) NIL (|has| (-1133 |#1| |#2|) (-1093)))) (-3848 (((-112) (-1 (-112) (-1133 |#1| |#2|)) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 69 (|has| (-1133 |#1| |#2|) (-1093)))) (-1708 (((-767) $) 63 (|has| $ (-6 -4408))))) -(((-1134 |#1| |#2|) (-13 (-1006 (-1133 |#1| |#2|)) (-10 -8 (-6 -4409) (-6 -4408) (-15 -2880 ((-3 $ "failed") $)) (-15 -2871 ($ $)) (-15 -2074 ($ (-1133 |#1| |#2|))) (-15 -2074 ($ |#1| |#2| (-640 $))) (-15 -2074 ($ |#1| |#2| (-640 (-1133 |#1| |#2|)))) (-15 -2074 ($ |#1| |#2| |#1| (-640 |#2|))) (-15 -2422 ((-640 |#2|) $)) (-15 -3582 ((-640 (-2 (|:| |val| |#1|) (|:| -1926 |#2|))) $)) (-15 -2861 ((-112) (-1133 |#1| |#2|) $)) (-15 -2852 ((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1417 ($ (-1133 |#1| |#2|) $)) (-15 -2841 ($ (-1133 |#1| |#2|) $)) (-15 -2830 ($ $ $ (-640 (-1133 |#1| |#2|)))) (-15 -2830 ($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1093) (-34)) (-13 (-1093) (-34))) (T -1134)) -((-2880 (*1 *1 *1) (|partial| -12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2871 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2074 (*1 *1 *2) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-2074 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-640 (-1134 *2 *3))) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) (-2074 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-640 (-1133 *2 *3))) (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3)))) (-2074 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-640 *3)) (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-640 *4)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-3582 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))))) (-2861 (*1 *2 *3 *1) (-12 (-5 *3 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)))) (-2852 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1133 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-1417 (*1 *1 *2 *1) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-2841 (*1 *1 *2 *1) (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-2830 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-640 (-1133 *3 *4))) (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) (-2830 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-1133 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) (-5 *1 (-1134 *4 *5))))) -(-13 (-1006 (-1133 |#1| |#2|)) (-10 -8 (-6 -4409) (-6 -4408) (-15 -2880 ((-3 $ "failed") $)) (-15 -2871 ($ $)) (-15 -2074 ($ (-1133 |#1| |#2|))) (-15 -2074 ($ |#1| |#2| (-640 $))) (-15 -2074 ($ |#1| |#2| (-640 (-1133 |#1| |#2|)))) (-15 -2074 ($ |#1| |#2| |#1| (-640 |#2|))) (-15 -2422 ((-640 |#2|) $)) (-15 -3582 ((-640 (-2 (|:| |val| |#1|) (|:| -1926 |#2|))) $)) (-15 -2861 ((-112) (-1133 |#1| |#2|) $)) (-15 -2852 ((-112) (-1133 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -1417 ($ (-1133 |#1| |#2|) $)) (-15 -2841 ($ (-1133 |#1| |#2|) $)) (-15 -2830 ($ $ $ (-640 (-1133 |#1| |#2|)))) (-15 -2830 ($ $ $ (-640 (-1133 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2899 (($ $) NIL)) (-3282 ((|#2| $) NIL)) (-3148 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2889 (($ (-684 |#2|)) 56)) (-3172 (((-112) $) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-1444 (($ |#2|) 14)) (-3684 (($) NIL T CONST)) (-3063 (($ $) 69 (|has| |#2| (-307)))) (-3082 (((-240 |#1| |#2|) $ (-563)) 42)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 |#2| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) ((|#2| $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) 83)) (-3406 (((-767) $) 71 (|has| |#2| (-555)))) (-4085 ((|#2| $ (-563) (-563)) NIL)) (-4236 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-2712 (((-112) $) NIL)) (-3054 (((-767) $) 73 (|has| |#2| (-555)))) (-3042 (((-640 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-555)))) (-3955 (((-767) $) NIL)) (-2552 (($ |#2|) 25)) (-3965 (((-767) $) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-1390 ((|#2| $) 67 (|has| |#2| (-6 (-4410 "*"))))) (-3127 (((-563) $) NIL)) (-3105 (((-563) $) NIL)) (-1572 (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3117 (((-563) $) NIL)) (-3094 (((-563) $) NIL)) (-3840 (($ (-640 (-640 |#2|))) 37)) (-4139 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-1791 (((-640 (-640 |#2|)) $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1755 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-3249 (((-1113) $) NIL)) (-3448 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555)))) (-3837 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ (-563) (-563) |#2|) NIL) ((|#2| $ (-563) (-563)) NIL)) (-1361 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1408 ((|#2| $) NIL)) (-1431 (($ (-640 |#2|)) 50)) (-3162 (((-112) $) NIL)) (-1419 (((-240 |#1| |#2|) $) NIL)) (-1400 ((|#2| $) 65 (|has| |#2| (-6 (-4410 "*"))))) (-3261 (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-2208 (($ $) NIL)) (-2802 (((-536) $) 90 (|has| |#2| (-611 (-536))))) (-3073 (((-240 |#1| |#2|) $ (-563)) 44)) (-2062 (((-858) $) 47) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#2| (-1034 (-407 (-563))))) (($ |#2|) NIL) (((-684 |#2|) $) 52)) (-3192 (((-767)) 23 T CONST)) (-3848 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-3137 (((-112) $) NIL)) (-3790 (($) 16 T CONST)) (-3803 (($) 21 T CONST)) (-4191 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-767)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) 63) (($ $ (-563)) 82 (|has| |#2| (-363)))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1135 |#1| |#2|) (-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-10 -8 (-15 -2552 ($ |#2|)) (-15 -2899 ($ $)) (-15 -2889 ($ (-684 |#2|))) (IF (|has| |#2| (-6 (-4410 "*"))) (-6 -4397) |%noBranch|) (IF (|has| |#2| (-6 (-4410 "*"))) (IF (|has| |#2| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) (-767) (-1045)) (T -1135)) -((-2552 (*1 *1 *2) (-12 (-5 *1 (-1135 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) (-2899 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045)))) (-2889 (*1 *1 *2) (-12 (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1135 *3 *4)) (-14 *3 (-767))))) -(-13 (-1116 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-610 (-684 |#2|)) (-10 -8 (-15 -2552 ($ |#2|)) (-15 -2899 ($ $)) (-15 -2889 ($ (-684 |#2|))) (IF (|has| |#2| (-6 (-4410 "*"))) (-6 -4397) |%noBranch|) (IF (|has| |#2| (-6 (-4410 "*"))) (IF (|has| |#2| (-6 -4405)) (-6 -4405) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-611 (-536))) (-6 (-611 (-536))) |%noBranch|))) -((-2952 (($ $) 19)) (-2908 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-2365 (((-112) $ $) 24)) (-2976 (($ $) 17)) (-3858 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (($ $ $) 31)) (-2062 (($ (-144)) 29) (((-858) $) NIL))) -(((-1136 |#1|) (-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -3858 (|#1| |#1| |#1|)) (-15 -2908 (|#1| |#1| (-141))) (-15 -2908 (|#1| |#1| (-144))) (-15 -2062 (|#1| (-144))) (-15 -2365 ((-112) |#1| |#1|)) (-15 -2952 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -3858 (|#1| |#1| (-1224 (-563)))) (-15 -3858 ((-144) |#1| (-563))) (-15 -3858 ((-144) |#1| (-563) (-144)))) (-1137)) (T -1136)) -NIL -(-10 -8 (-15 -2062 ((-858) |#1|)) (-15 -3858 (|#1| |#1| |#1|)) (-15 -2908 (|#1| |#1| (-141))) (-15 -2908 (|#1| |#1| (-144))) (-15 -2062 (|#1| (-144))) (-15 -2365 ((-112) |#1| |#1|)) (-15 -2952 (|#1| |#1|)) (-15 -2976 (|#1| |#1|)) (-15 -3858 (|#1| |#1| (-1224 (-563)))) (-15 -3858 ((-144) |#1| (-563))) (-15 -3858 ((-144) |#1| (-563) (-144)))) -((-2049 (((-112) $ $) 19 (|has| (-144) (-1093)))) (-2940 (($ $) 120)) (-2952 (($ $) 121)) (-2908 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-2342 (((-112) $ $) 118)) (-2318 (((-112) $ $ (-563)) 117)) (-2919 (((-640 $) $ (-144)) 110) (((-640 $) $ (-141)) 109)) (-2162 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-2146 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4409))))) (-4257 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-3740 (((-112) $ (-767)) 8)) (-2189 (((-144) $ (-563) (-144)) 52 (|has| $ (-6 -4409))) (((-144) $ (-1224 (-563)) (-144)) 58 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-2972 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-3934 (($ $) 90 (|has| $ (-6 -4409)))) (-4294 (($ $) 100)) (-2930 (($ $ (-1224 (-563)) $) 114)) (-1920 (($ $) 78 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ (-144) $) 77 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4408)))) (-2532 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4408)))) (-4150 (((-144) $ (-563) (-144)) 53 (|has| $ (-6 -4409)))) (-4085 (((-144) $ (-563)) 51)) (-2365 (((-112) $ $) 119)) (-2256 (((-563) (-1 (-112) (-144)) $) 97) (((-563) (-144) $) 96 (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 95 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 113) (((-563) (-141) $ (-563)) 112)) (-4236 (((-640 (-144)) $) 30 (|has| $ (-6 -4408)))) (-2552 (($ (-767) (-144)) 69)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-3489 (($ $ $) 87 (|has| (-144) (-846)))) (-2383 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-1572 (((-640 (-144)) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4105 (($ $ $) 86 (|has| (-144) (-846)))) (-2254 (((-112) $ $ (-144)) 115)) (-2434 (((-767) $ $ (-144)) 116)) (-4139 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-2965 (($ $) 122)) (-2976 (($ $) 123)) (-3604 (((-112) $ (-767)) 10)) (-2983 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-1938 (((-1151) $) 22 (|has| (-144) (-1093)))) (-2530 (($ (-144) $ (-563)) 60) (($ $ $ (-563)) 59)) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3249 (((-1113) $) 21 (|has| (-144) (-1093)))) (-1884 (((-144) $) 42 (|has| (-563) (-846)))) (-1828 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-3357 (($ $ (-144)) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-3427 (((-640 (-144)) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 (((-144) $ (-563) (-144)) 50) (((-144) $ (-563)) 49) (($ $ (-1224 (-563))) 63) (($ $ $) 102)) (-4159 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-3261 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4408))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-2155 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 79 (|has| (-144) (-611 (-536))))) (-2074 (($ (-640 (-144))) 70)) (-1951 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-2062 (($ (-144)) 111) (((-858) $) 18 (|has| (-144) (-610 (-858))))) (-3848 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) 84 (|has| (-144) (-846)))) (-2977 (((-112) $ $) 83 (|has| (-144) (-846)))) (-2943 (((-112) $ $) 20 (|has| (-144) (-1093)))) (-2988 (((-112) $ $) 85 (|has| (-144) (-846)))) (-2966 (((-112) $ $) 82 (|has| (-144) (-846)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-1137) (-140)) (T -1137)) -((-2976 (*1 *1 *1) (-4 *1 (-1137))) (-2965 (*1 *1 *1) (-4 *1 (-1137))) (-2952 (*1 *1 *1) (-4 *1 (-1137))) (-2940 (*1 *1 *1) (-4 *1 (-1137))) (-2365 (*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))) (-2342 (*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112)))) (-2318 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-563)) (-5 *2 (-112)))) (-2434 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-767)))) (-2254 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-112)))) (-2930 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1224 (-563))))) (-2256 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)))) (-2256 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)) (-5 *3 (-141)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1137)))) (-2919 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))) (-2919 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))) (-2908 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-2908 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-2983 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-2983 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-2972 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144)))) (-2972 (*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) (-3858 (*1 *1 *1 *1) (-4 *1 (-1137)))) -(-13 (-19 (-144)) (-10 -8 (-15 -2976 ($ $)) (-15 -2965 ($ $)) (-15 -2952 ($ $)) (-15 -2940 ($ $)) (-15 -2365 ((-112) $ $)) (-15 -2342 ((-112) $ $)) (-15 -2318 ((-112) $ $ (-563))) (-15 -2434 ((-767) $ $ (-144))) (-15 -2254 ((-112) $ $ (-144))) (-15 -2930 ($ $ (-1224 (-563)) $)) (-15 -2256 ((-563) $ $ (-563))) (-15 -2256 ((-563) (-141) $ (-563))) (-15 -2062 ($ (-144))) (-15 -2919 ((-640 $) $ (-144))) (-15 -2919 ((-640 $) $ (-141))) (-15 -2908 ($ $ (-144))) (-15 -2908 ($ $ (-141))) (-15 -2983 ($ $ (-144))) (-15 -2983 ($ $ (-141))) (-15 -2972 ($ $ (-144))) (-15 -2972 ($ $ (-141))) (-15 -3858 ($ $ $)))) -(((-34) . T) ((-102) -2811 (|has| (-144) (-1093)) (|has| (-144) (-846))) ((-610 (-858)) -2811 (|has| (-144) (-1093)) (|has| (-144) (-846)) (|has| (-144) (-610 (-858)))) ((-151 #0=(-144)) . T) ((-611 (-536)) |has| (-144) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-646 #0#) . T) ((-19 #0#) . T) ((-846) |has| (-144) (-846)) ((-1093) -2811 (|has| (-144) (-1093)) (|has| (-144) (-846))) ((-1208) . T)) -((-3048 (((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-767)) 112)) (-3016 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767)) 61)) (-2791 (((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-767)) 98)) (-2997 (((-767) (-640 |#4|) (-640 |#5|)) 30)) (-3026 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767)) 63) (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767) (-112)) 65)) (-3038 (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112)) 85)) (-2802 (((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) 90)) (-3007 (((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|) 60)) (-2987 (((-767) (-640 |#4|) (-640 |#5|)) 21))) -(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2987 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -2997 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3007 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3016 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767))) (-15 -3016 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767))) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3038 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -3038 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3048 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-767))) (-15 -2802 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) (-15 -2791 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-767)))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1138)) -((-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -1926 *9)))) (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -1926 *8))) (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) (-5 *1 (-1138 *4 *5 *6 *7 *8)))) (-3048 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-640 *11)) (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -1926 *11)))))) (-5 *6 (-767)) (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -1926 *11)))) (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-5 *1 (-1138 *7 *8 *9 *10 *11)))) (-3038 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-3038 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-3026 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3026 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-3026 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1138 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) (-3016 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3016 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *3 (-1059 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-3007 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-640 *4)) (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2997 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))) -(-10 -7 (-15 -2987 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -2997 ((-767) (-640 |#4|) (-640 |#5|))) (-15 -3007 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3016 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767))) (-15 -3016 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767) (-112))) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5| (-767))) (-15 -3026 ((-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) |#4| |#5|)) (-15 -3038 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112))) (-15 -3038 ((-640 |#5|) (-640 |#4|) (-640 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -3048 ((-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-640 |#4|) (-640 |#5|) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-2 (|:| |done| (-640 |#5|)) (|:| |todo| (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))))) (-767))) (-15 -2802 ((-1151) (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|)))) (-15 -2791 ((-1262) (-640 (-2 (|:| |val| (-640 |#4|)) (|:| -1926 |#5|))) (-767)))) -((-2049 (((-112) $ $) NIL)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) NIL)) (-1353 (((-640 $) (-640 |#4|)) 121) (((-640 $) (-640 |#4|) (-112)) 122) (((-640 $) (-640 |#4|) (-112) (-112)) 120) (((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112)) 123)) (-2185 (((-640 |#3|) $) NIL)) (-1556 (((-112) $) NIL)) (-1456 (((-112) $) NIL (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1413 ((|#4| |#4| $) NIL)) (-2924 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| $) 94)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-1907 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 72)) (-3684 (($) NIL T CONST)) (-1512 (((-112) $) 29 (|has| |#1| (-555)))) (-1534 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1523 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1545 (((-112) $) NIL (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1466 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2589 (($ (-640 |#4|)) NIL)) (-1897 (((-3 $ "failed") $) 45)) (-1384 ((|#4| |#4| $) 75)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1417 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1365 ((|#4| |#4| $) NIL)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) NIL)) (-1586 (((-112) |#4| $) NIL)) (-1563 (((-112) |#4| $) NIL)) (-1598 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3060 (((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112)) 136)) (-4236 (((-640 |#4|) $) 18 (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2674 ((|#3| $) 38)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#4|) $) 19 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-4139 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 23)) (-1616 (((-640 |#3|) $) NIL)) (-1602 (((-112) |#3| $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1520 (((-3 |#4| (-640 $)) |#4| |#4| $) NIL)) (-1508 (((-640 (-2 (|:| |val| |#4|) (|:| -1926 $))) |#4| |#4| $) 114)) (-1442 (((-3 |#4| "failed") $) 42)) (-1529 (((-640 $) |#4| $) 99)) (-1552 (((-3 (-112) (-640 $)) |#4| $) NIL)) (-1542 (((-640 (-2 (|:| |val| (-112)) (|:| -1926 $))) |#4| $) 109) (((-112) |#4| $) 62)) (-1913 (((-640 $) |#4| $) 118) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 119) (((-640 $) |#4| (-640 $)) NIL)) (-3070 (((-640 $) (-640 |#4|) (-112) (-112) (-112)) 131)) (-3079 (($ |#4| $) 85) (($ (-640 |#4|) $) 86) (((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 84)) (-1514 (((-640 |#4|) $) NIL)) (-1447 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1395 ((|#4| |#4| $) NIL)) (-3449 (((-112) $ $) NIL)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1405 ((|#4| |#4| $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-3 |#4| "failed") $) 40)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1323 (((-3 $ "failed") $ |#4|) 57)) (-2884 (($ $ |#4|) NIL) (((-640 $) |#4| $) 101) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) 96)) (-3837 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 17)) (-2749 (($) 14)) (-1962 (((-767) $) NIL)) (-3261 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) 13)) (-2802 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 22)) (-1566 (($ $ |#3|) 52)) (-1591 (($ $ |#3|) 53)) (-1373 (($ $) NIL)) (-1579 (($ $ |#3|) NIL)) (-2062 (((-858) $) 35) (((-640 |#4|) $) 46)) (-1313 (((-767) $) NIL (|has| |#3| (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-1496 (((-640 $) |#4| $) 63) (((-640 $) |#4| (-640 $)) NIL) (((-640 $) (-640 |#4|) $) NIL) (((-640 $) (-640 |#4|) (-640 $)) NIL)) (-3848 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) NIL)) (-1574 (((-112) |#4| $) NIL)) (-1833 (((-112) |#3| $) 71)) (-2943 (((-112) $ $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1139 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3079 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1353 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -1353 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -3070 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -3060 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) (-452) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1139)) -((-3079 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *3))) (-5 *1 (-1139 *5 *6 *7 *3)) (-4 *3 (-1059 *5 *6 *7)))) (-1353 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-1353 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-3070 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) (-3060 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-640 *8)) (|:| |towers| (-640 (-1139 *5 *6 *7 *8))))) (-5 *1 (-1139 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) -(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3079 ((-640 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1353 ((-640 $) (-640 |#4|) (-112) (-112))) (-15 -1353 ((-640 $) (-640 |#4|) (-112) (-112) (-112) (-112))) (-15 -3070 ((-640 $) (-640 |#4|) (-112) (-112) (-112))) (-15 -3060 ((-2 (|:| |val| (-640 |#4|)) (|:| |towers| (-640 $))) (-640 |#4|) (-112) (-112))))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3796 ((|#1| $) 37)) (-1906 (($ (-640 |#1|)) 45)) (-3740 (((-112) $ (-767)) NIL)) (-3684 (($) NIL T CONST)) (-1378 ((|#1| |#1| $) 40)) (-1369 ((|#1| $) 35)) (-4236 (((-640 |#1|) $) 18 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 22)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3835 ((|#1| $) 38)) (-1956 (($ |#1| $) 41)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3847 ((|#1| $) 36)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 32)) (-2749 (($) 43)) (-4359 (((-767) $) 30)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) 27)) (-2062 (((-858) $) 14 (|has| |#1| (-610 (-858))))) (-4034 (($ (-640 |#1|)) NIL)) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 17 (|has| |#1| (-1093)))) (-1708 (((-767) $) 31 (|has| $ (-6 -4408))))) -(((-1140 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -1906 ($ (-640 |#1|))))) (-1208)) (T -1140)) -((-1906 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1140 *3))))) -(-13 (-1114 |#1|) (-10 -8 (-15 -1906 ($ (-640 |#1|))))) -((-2189 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1224 (-563)) |#2|) 54) ((|#2| $ (-563) |#2|) 51)) (-3089 (((-112) $) 11)) (-4139 (($ (-1 |#2| |#2|) $) 49)) (-1884 ((|#2| $) NIL) (($ $ (-767)) 19)) (-3357 (($ $ |#2|) 50)) (-3101 (((-112) $) 10)) (-3858 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1224 (-563))) 37) ((|#2| $ (-563)) 28) ((|#2| $ (-563) |#2|) NIL)) (-3065 (($ $ $) 57) (($ $ |#2|) NIL)) (-1951 (($ $ $) 39) (($ |#2| $) NIL) (($ (-640 $)) 46) (($ $ |#2|) NIL))) -(((-1141 |#1| |#2|) (-10 -8 (-15 -3089 ((-112) |#1|)) (-15 -3101 ((-112) |#1|)) (-15 -2189 (|#2| |#1| (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563))) (-15 -3357 (|#1| |#1| |#2|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -1951 (|#1| (-640 |#1|))) (-15 -3858 (|#1| |#1| (-1224 (-563)))) (-15 -2189 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -2189 (|#2| |#1| "last" |#2|)) (-15 -2189 (|#1| |#1| "rest" |#1|)) (-15 -2189 (|#2| |#1| "first" |#2|)) (-15 -3065 (|#1| |#1| |#2|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3858 (|#2| |#1| "last")) (-15 -3858 (|#1| |#1| "rest")) (-15 -1884 (|#1| |#1| (-767))) (-15 -3858 (|#2| |#1| "first")) (-15 -1884 (|#2| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -2189 (|#2| |#1| "value" |#2|)) (-15 -3858 (|#2| |#1| "value")) (-15 -4139 (|#1| (-1 |#2| |#2|) |#1|))) (-1142 |#2|) (-1208)) (T -1141)) -NIL -(-10 -8 (-15 -3089 ((-112) |#1|)) (-15 -3101 ((-112) |#1|)) (-15 -2189 (|#2| |#1| (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563) |#2|)) (-15 -3858 (|#2| |#1| (-563))) (-15 -3357 (|#1| |#1| |#2|)) (-15 -1951 (|#1| |#1| |#2|)) (-15 -1951 (|#1| (-640 |#1|))) (-15 -3858 (|#1| |#1| (-1224 (-563)))) (-15 -2189 (|#2| |#1| (-1224 (-563)) |#2|)) (-15 -2189 (|#2| |#1| "last" |#2|)) (-15 -2189 (|#1| |#1| "rest" |#1|)) (-15 -2189 (|#2| |#1| "first" |#2|)) (-15 -3065 (|#1| |#1| |#2|)) (-15 -3065 (|#1| |#1| |#1|)) (-15 -3858 (|#2| |#1| "last")) (-15 -3858 (|#1| |#1| "rest")) (-15 -1884 (|#1| |#1| (-767))) (-15 -3858 (|#2| |#1| "first")) (-15 -1884 (|#2| |#1|)) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -2189 (|#2| |#1| "value" |#2|)) (-15 -3858 (|#2| |#1| "value")) (-15 -4139 (|#1| (-1 |#2| |#2|) |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3556 ((|#1| $) 48)) (-3931 ((|#1| $) 65)) (-1588 (($ $) 67)) (-1435 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) 52 (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) 8)) (-3472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-3032 (($ $ $) 56 (|has| $ (-6 -4409)))) (-3021 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-3043 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 117 (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) 86 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4408)))) (-3919 ((|#1| $) 66)) (-3684 (($) 7 T CONST)) (-1897 (($ $) 73) (($ $ (-767)) 71)) (-1920 (($ $) 99 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4408))) (($ |#1| $) 100 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4150 ((|#1| $ (-563) |#1|) 85 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 87)) (-3089 (((-112) $) 83)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 50)) (-3494 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-2552 (($ (-767) |#1|) 108)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 95 (|has| (-563) (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 94 (|has| (-563) (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3604 (((-112) $ (-767)) 10)) (-3884 (((-640 |#1|) $) 45)) (-2484 (((-112) $) 49)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1442 ((|#1| $) 70) (($ $ (-767)) 68)) (-2530 (($ $ $ (-563)) 116) (($ |#1| $ (-563)) 115)) (-3404 (((-640 (-563)) $) 92)) (-3417 (((-112) (-563) $) 91)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 76) (($ $ (-767)) 74)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3357 (($ $ |#1|) 96 (|has| $ (-6 -4409)))) (-3101 (((-112) $) 84)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 90)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1224 (-563))) 112) ((|#1| $ (-563)) 89) ((|#1| $ (-563) |#1|) 88)) (-3514 (((-563) $ $) 44)) (-4159 (($ $ (-1224 (-563))) 114) (($ $ (-563)) 113)) (-2181 (((-112) $) 46)) (-3074 (($ $) 62)) (-3055 (($ $) 59 (|has| $ (-6 -4409)))) (-3083 (((-767) $) 63)) (-3095 (($ $) 64)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-2802 (((-536) $) 98 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 107)) (-3065 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-1951 (($ $ $) 78) (($ |#1| $) 77) (($ (-640 $)) 110) (($ $ |#1|) 109)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 51)) (-3504 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-1142 |#1|) (-140) (-1208)) (T -1142)) -((-3101 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) (-3089 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) -(-13 (-1245 |t#1|) (-646 |t#1|) (-10 -8 (-15 -3101 ((-112) $)) (-15 -3089 ((-112) $)))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T) ((-1245 |#1|) . T)) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1435 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#2| $ |#1| |#2|) NIL)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 |#2| "failed") |#1| $) NIL)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) NIL)) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) NIL)) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 ((|#1| $) NIL (|has| |#1| (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 ((|#1| $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2706 (((-640 |#1|) $) NIL)) (-3435 (((-112) |#1| $) NIL)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3404 (((-640 |#1|) $) NIL)) (-3417 (((-112) |#1| $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1884 ((|#2| $) NIL (|has| |#1| (-846)))) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1143 |#1| |#2| |#3|) (-1184 |#1| |#2|) (-1093) (-1093) |#2|) (T -1143)) -NIL -(-1184 |#1| |#2|) -((-2049 (((-112) $ $) 7)) (-3113 (((-3 $ "failed") $) 13)) (-1938 (((-1151) $) 9)) (-2956 (($) 14 T CONST)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11)) (-2943 (((-112) $ $) 6))) -(((-1144) (-140)) (T -1144)) -((-2956 (*1 *1) (-4 *1 (-1144))) (-3113 (*1 *1 *1) (|partial| -4 *1 (-1144)))) -(-13 (-1093) (-10 -8 (-15 -2956 ($) -2495) (-15 -3113 ((-3 $ "failed") $)))) -(((-102) . T) ((-610 (-858)) . T) ((-1093) . T)) -((-3143 (((-1149 |#1|) (-1149 |#1|)) 17)) (-3124 (((-1149 |#1|) (-1149 |#1|)) 13)) (-3156 (((-1149 |#1|) (-1149 |#1|) (-563) (-563)) 20)) (-3134 (((-1149 |#1|) (-1149 |#1|)) 15))) -(((-1145 |#1|) (-10 -7 (-15 -3124 ((-1149 |#1|) (-1149 |#1|))) (-15 -3134 ((-1149 |#1|) (-1149 |#1|))) (-15 -3143 ((-1149 |#1|) (-1149 |#1|))) (-15 -3156 ((-1149 |#1|) (-1149 |#1|) (-563) (-563)))) (-13 (-555) (-147))) (T -1145)) -((-3156 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1145 *4)))) (-3143 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3)))) (-3134 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3)))) (-3124 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1145 *3))))) -(-10 -7 (-15 -3124 ((-1149 |#1|) (-1149 |#1|))) (-15 -3134 ((-1149 |#1|) (-1149 |#1|))) (-15 -3143 ((-1149 |#1|) (-1149 |#1|))) (-15 -3156 ((-1149 |#1|) (-1149 |#1|) (-563) (-563)))) -((-1951 (((-1149 |#1|) (-1149 (-1149 |#1|))) 15))) -(((-1146 |#1|) (-10 -7 (-15 -1951 ((-1149 |#1|) (-1149 (-1149 |#1|))))) (-1208)) (T -1146)) -((-1951 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1146 *4)) (-4 *4 (-1208))))) -(-10 -7 (-15 -1951 ((-1149 |#1|) (-1149 (-1149 |#1|))))) -((-3409 (((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)) 25)) (-2532 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)) 26)) (-2751 (((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|)) 16))) -(((-1147 |#1| |#2|) (-10 -7 (-15 -2751 ((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|))) (-15 -3409 ((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|))) (-15 -2532 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)))) (-1208) (-1208)) (T -1147)) -((-2532 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-1147 *5 *2)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1149 *6)) (-4 *6 (-1208)) (-4 *3 (-1208)) (-5 *2 (-1149 *3)) (-5 *1 (-1147 *6 *3)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6))))) -(-10 -7 (-15 -2751 ((-1149 |#2|) (-1 |#2| |#1|) (-1149 |#1|))) (-15 -3409 ((-1149 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|))) (-15 -2532 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1149 |#1|)))) -((-2751 (((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|)) 21))) -(((-1148 |#1| |#2| |#3|) (-10 -7 (-15 -2751 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|)))) (-1208) (-1208) (-1208)) (T -1148)) -((-2751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-1149 *7)) (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) (-5 *1 (-1148 *6 *7 *8))))) -(-10 -7 (-15 -2751 ((-1149 |#3|) (-1 |#3| |#1| |#2|) (-1149 |#1|) (-1149 |#2|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) NIL)) (-3931 ((|#1| $) NIL)) (-1588 (($ $) 66)) (-1435 (((-1262) $ (-563) (-563)) 97 (|has| $ (-6 -4409)))) (-3011 (($ $ (-563)) 126 (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-3179 (((-858) $) 55 (|has| |#1| (-1093)))) (-3168 (((-112)) 54 (|has| |#1| (-1093)))) (-3472 ((|#1| $ |#1|) NIL (|has| $ (-6 -4409)))) (-3032 (($ $ $) 114 (|has| $ (-6 -4409))) (($ $ (-563) $) 139)) (-3021 ((|#1| $ |#1|) 123 (|has| $ (-6 -4409)))) (-3043 ((|#1| $ |#1|) 118 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 120 (|has| $ (-6 -4409))) (($ $ "rest" $) 122 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 125 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 111 (|has| $ (-6 -4409))) ((|#1| $ (-563) |#1|) 75 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) 78)) (-3919 ((|#1| $) NIL)) (-3684 (($) NIL T CONST)) (-2922 (($ $) 14)) (-1897 (($ $) 41) (($ $ (-767)) 109)) (-3209 (((-112) (-640 |#1|) $) 132 (|has| |#1| (-1093)))) (-3220 (($ (-640 |#1|)) 128)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) 77)) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-3089 (((-112) $) NIL)) (-4236 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1989 (((-1262) (-563) $) 138 (|has| |#1| (-1093)))) (-2912 (((-767) $) 135)) (-3524 (((-640 $) $) NIL)) (-3494 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2552 (($ (-767) |#1|) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 93 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 83) (($ (-1 |#1| |#1| |#1|) $ $) 87)) (-3604 (((-112) $ (-767)) NIL)) (-3884 (((-640 |#1|) $) NIL)) (-2484 (((-112) $) NIL)) (-2945 (($ $) 112)) (-2954 (((-112) $) 13)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-1442 ((|#1| $) NIL) (($ $ (-767)) NIL)) (-2530 (($ $ $ (-563)) NIL) (($ |#1| $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) 94)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1827 (($ (-1 |#1|)) 141) (($ (-1 |#1| |#1|) |#1|) 142)) (-2932 ((|#1| $) 10)) (-1884 ((|#1| $) 40) (($ $ (-767)) 64)) (-3199 (((-2 (|:| |cycle?| (-112)) (|:| -3090 (-767)) (|:| |period| (-767))) (-767) $) 35)) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-1878 (($ (-1 (-112) |#1|) $) 143)) (-1891 (($ (-1 (-112) |#1|) $) 144)) (-3357 (($ $ |#1|) 88 (|has| $ (-6 -4409)))) (-2884 (($ $ (-563)) 44)) (-3101 (((-112) $) 92)) (-2968 (((-112) $) 12)) (-2979 (((-112) $) 134)) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 30)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) 20)) (-2749 (($) 59)) (-3858 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1224 (-563))) NIL) ((|#1| $ (-563)) 73) ((|#1| $ (-563) |#1|) NIL)) (-3514 (((-563) $ $) 63)) (-4159 (($ $ (-1224 (-563))) NIL) (($ $ (-563)) NIL)) (-3189 (($ (-1 $)) 62)) (-2181 (((-112) $) 89)) (-3074 (($ $) 90)) (-3055 (($ $) 115 (|has| $ (-6 -4409)))) (-3083 (((-767) $) NIL)) (-3095 (($ $) NIL)) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) 58)) (-2802 (((-536) $) NIL (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 72)) (-3151 (($ |#1| $) 113)) (-3065 (($ $ $) 116 (|has| $ (-6 -4409))) (($ $ |#1|) 117 (|has| $ (-6 -4409)))) (-1951 (($ $ $) 99) (($ |#1| $) 60) (($ (-640 $)) 104) (($ $ |#1|) 98)) (-2686 (($ $) 65)) (-2062 (($ (-640 |#1|)) 127) (((-858) $) 56 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) NIL)) (-3504 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 130 (|has| |#1| (-1093)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1149 |#1|) (-13 (-669 |#1|) (-613 (-640 |#1|)) (-10 -8 (-6 -4409) (-15 -3220 ($ (-640 |#1|))) (IF (|has| |#1| (-1093)) (-15 -3209 ((-112) (-640 |#1|) $)) |%noBranch|) (-15 -3199 ((-2 (|:| |cycle?| (-112)) (|:| -3090 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3189 ($ (-1 $))) (-15 -3151 ($ |#1| $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -1989 ((-1262) (-563) $)) (-15 -3179 ((-858) $)) (-15 -3168 ((-112)))) |%noBranch|) (-15 -3032 ($ $ (-563) $)) (-15 -1827 ($ (-1 |#1|))) (-15 -1827 ($ (-1 |#1| |#1|) |#1|)) (-15 -1878 ($ (-1 (-112) |#1|) $)) (-15 -1891 ($ (-1 (-112) |#1|) $)))) (-1208)) (T -1149)) -((-3220 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-3209 (*1 *2 *3 *1) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112)) (-5 *1 (-1149 *4)))) (-3199 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -3090 (-767)) (|:| |period| (-767)))) (-5 *1 (-1149 *4)) (-4 *4 (-1208)) (-5 *3 (-767)))) (-3189 (*1 *1 *2) (-12 (-5 *2 (-1 (-1149 *3))) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))) (-3151 (*1 *1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-1208)))) (-1989 (*1 *2 *3 *1) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1149 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)))) (-3179 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)))) (-3168 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) (-4 *3 (-1208)))) (-3032 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))) (-1827 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-1827 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-1878 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) (-1891 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) -(-13 (-669 |#1|) (-613 (-640 |#1|)) (-10 -8 (-6 -4409) (-15 -3220 ($ (-640 |#1|))) (IF (|has| |#1| (-1093)) (-15 -3209 ((-112) (-640 |#1|) $)) |%noBranch|) (-15 -3199 ((-2 (|:| |cycle?| (-112)) (|:| -3090 (-767)) (|:| |period| (-767))) (-767) $)) (-15 -3189 ($ (-1 $))) (-15 -3151 ($ |#1| $)) (IF (|has| |#1| (-1093)) (PROGN (-15 -1989 ((-1262) (-563) $)) (-15 -3179 ((-858) $)) (-15 -3168 ((-112)))) |%noBranch|) (-15 -3032 ($ $ (-563) $)) (-15 -1827 ($ (-1 |#1|))) (-15 -1827 ($ (-1 |#1| |#1|) |#1|)) (-15 -1878 ($ (-1 (-112) |#1|) $)) (-15 -1891 ($ (-1 (-112) |#1|) $)))) -((-2049 (((-112) $ $) 19)) (-2940 (($ $) 120)) (-2952 (($ $) 121)) (-2908 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-2342 (((-112) $ $) 118)) (-2318 (((-112) $ $ (-563)) 117)) (-2725 (($ (-563)) 127)) (-2919 (((-640 $) $ (-144)) 110) (((-640 $) $ (-141)) 109)) (-2162 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-846)))) (-2146 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| (-144) (-846)) (|has| $ (-6 -4409))))) (-4257 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-846)))) (-3740 (((-112) $ (-767)) 8)) (-2189 (((-144) $ (-563) (-144)) 52 (|has| $ (-6 -4409))) (((-144) $ (-1224 (-563)) (-144)) 58 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-2972 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-3934 (($ $) 90 (|has| $ (-6 -4409)))) (-4294 (($ $) 100)) (-2930 (($ $ (-1224 (-563)) $) 114)) (-1920 (($ $) 78 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ (-144) $) 77 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4408)))) (-2532 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4408)))) (-4150 (((-144) $ (-563) (-144)) 53 (|has| $ (-6 -4409)))) (-4085 (((-144) $ (-563)) 51)) (-2365 (((-112) $ $) 119)) (-2256 (((-563) (-1 (-112) (-144)) $) 97) (((-563) (-144) $) 96 (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) 95 (|has| (-144) (-1093))) (((-563) $ $ (-563)) 113) (((-563) (-141) $ (-563)) 112)) (-4236 (((-640 (-144)) $) 30 (|has| $ (-6 -4408)))) (-2552 (($ (-767) (-144)) 69)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-3489 (($ $ $) 87 (|has| (-144) (-846)))) (-2383 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-846)))) (-1572 (((-640 (-144)) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4105 (($ $ $) 86 (|has| (-144) (-846)))) (-2254 (((-112) $ $ (-144)) 115)) (-2434 (((-767) $ $ (-144)) 116)) (-4139 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-2965 (($ $) 122)) (-2976 (($ $) 123)) (-3604 (((-112) $ (-767)) 10)) (-2983 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-1938 (((-1151) $) 22)) (-2530 (($ (-144) $ (-563)) 60) (($ $ $ (-563)) 59)) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3249 (((-1113) $) 21)) (-1884 (((-144) $) 42 (|has| (-563) (-846)))) (-1828 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-3357 (($ $ (-144)) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-3427 (((-640 (-144)) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 (((-144) $ (-563) (-144)) 50) (((-144) $ (-563)) 49) (($ $ (-1224 (-563))) 63) (($ $ $) 102)) (-4159 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-3261 (((-767) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4408))) (((-767) (-144) $) 28 (-12 (|has| (-144) (-1093)) (|has| $ (-6 -4408))))) (-2155 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 79 (|has| (-144) (-611 (-536))))) (-2074 (($ (-640 (-144))) 70)) (-1951 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-2062 (($ (-144)) 111) (((-858) $) 18)) (-3848 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4408)))) (-2038 (((-1151) $) 131) (((-1151) $ (-112)) 130) (((-1262) (-818) $) 129) (((-1262) (-818) $ (-112)) 128)) (-2998 (((-112) $ $) 84 (|has| (-144) (-846)))) (-2977 (((-112) $ $) 83 (|has| (-144) (-846)))) (-2943 (((-112) $ $) 20)) (-2988 (((-112) $ $) 85 (|has| (-144) (-846)))) (-2966 (((-112) $ $) 82 (|has| (-144) (-846)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-1150) (-140)) (T -1150)) -((-2725 (*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1150))))) -(-13 (-1137) (-1093) (-824) (-10 -8 (-15 -2725 ($ (-563))))) -(((-34) . T) ((-102) . T) ((-610 (-858)) . T) ((-151 #0=(-144)) . T) ((-611 (-536)) |has| (-144) (-611 (-536))) ((-286 #1=(-563) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-373 #0#) . T) ((-489 #0#) . T) ((-601 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))) ((-646 #0#) . T) ((-19 #0#) . T) ((-824) . T) ((-846) |has| (-144) (-846)) ((-1093) . T) ((-1137) . T) ((-1208) . T)) -((-2049 (((-112) $ $) NIL)) (-2940 (($ $) NIL)) (-2952 (($ $) NIL)) (-2908 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2342 (((-112) $ $) NIL)) (-2318 (((-112) $ $ (-563)) NIL)) (-2725 (($ (-563)) 8)) (-2919 (((-640 $) $ (-144)) NIL) (((-640 $) $ (-141)) NIL)) (-2162 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-846)))) (-2146 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| (-144) (-846))))) (-4257 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4409))) (((-144) $ (-1224 (-563)) (-144)) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-2972 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-2930 (($ $ (-1224 (-563)) $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-1417 (($ (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4408))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4408)))) (-4150 (((-144) $ (-563) (-144)) NIL (|has| $ (-6 -4409)))) (-4085 (((-144) $ (-563)) NIL)) (-2365 (((-112) $ $) NIL)) (-2256 (((-563) (-1 (-112) (-144)) $) NIL) (((-563) (-144) $) NIL (|has| (-144) (-1093))) (((-563) (-144) $ (-563)) NIL (|has| (-144) (-1093))) (((-563) $ $ (-563)) NIL) (((-563) (-141) $ (-563)) NIL)) (-4236 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-2552 (($ (-767) (-144)) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| (-144) (-846)))) (-2383 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-846)))) (-1572 (((-640 (-144)) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| (-144) (-846)))) (-2254 (((-112) $ $ (-144)) NIL)) (-2434 (((-767) $ $ (-144)) NIL)) (-4139 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-2965 (($ $) NIL)) (-2976 (($ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-2983 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-1938 (((-1151) $) NIL)) (-2530 (($ (-144) $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-144) $) NIL (|has| (-563) (-846)))) (-1828 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3357 (($ $ (-144)) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093)))) (($ $ (-640 (-144)) (-640 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-3427 (((-640 (-144)) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 (((-144) $ (-563) (-144)) NIL) (((-144) $ (-563)) NIL) (($ $ (-1224 (-563))) NIL) (($ $ $) NIL)) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3261 (((-767) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408))) (((-767) (-144) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-144) (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-144) (-611 (-536))))) (-2074 (($ (-640 (-144))) NIL)) (-1951 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-2062 (($ (-144)) NIL) (((-858) $) NIL)) (-3848 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4408)))) (-2038 (((-1151) $) 19) (((-1151) $ (-112)) 21) (((-1262) (-818) $) 22) (((-1262) (-818) $ (-112)) 23)) (-2998 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2977 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| (-144) (-846)))) (-2966 (((-112) $ $) NIL (|has| (-144) (-846)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1151) (-1150)) (T -1151)) -NIL -(-1150) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL)) (-1435 (((-1262) $ (-1151) (-1151)) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-1151) |#1|) NIL)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 |#1| "failed") (-1151) $) NIL)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093))))) (-2841 (($ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#1| "failed") (-1151) $) NIL)) (-1417 (($ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-1151) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-1151)) NIL)) (-4236 (((-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-1151) $) NIL (|has| (-1151) (-846)))) (-1572 (((-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-1151) $) NIL (|has| (-1151) (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-2706 (((-640 (-1151)) $) NIL)) (-3435 (((-112) (-1151) $) NIL)) (-3835 (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL)) (-3404 (((-640 (-1151)) $) NIL)) (-3417 (((-112) (-1151) $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-1884 ((|#1| $) NIL (|has| (-1151) (-846)))) (-1828 (((-3 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) "failed") (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (($ $ (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL (-12 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-309 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-1151)) NIL) ((|#1| $ (-1151) |#1|) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-610 (-858))) (|has| |#1| (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 (-1151)) (|:| -3704 |#1|)) (-1093)) (|has| |#1| (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1152 |#1|) (-13 (-1184 (-1151) |#1|) (-10 -7 (-6 -4408))) (-1093)) (T -1152)) -NIL -(-13 (-1184 (-1151) |#1|) (-10 -7 (-6 -4408))) -((-3129 (((-1149 |#1|) (-1149 |#1|)) 84)) (-3230 (((-3 (-1149 |#1|) "failed") (-1149 |#1|)) 42)) (-3342 (((-1149 |#1|) (-407 (-563)) (-1149 |#1|)) 135 (|has| |#1| (-38 (-407 (-563)))))) (-3381 (((-1149 |#1|) |#1| (-1149 |#1|)) 141 (|has| |#1| (-363)))) (-3163 (((-1149 |#1|) (-1149 |#1|)) 99)) (-3247 (((-1149 (-563)) (-563)) 63)) (-3331 (((-1149 |#1|) (-1149 (-1149 |#1|))) 118 (|has| |#1| (-38 (-407 (-563)))))) (-3119 (((-1149 |#1|) (-563) (-563) (-1149 |#1|)) 104)) (-1576 (((-1149 |#1|) |#1| (-563)) 53)) (-3270 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 66)) (-3354 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 138 (|has| |#1| (-363)))) (-3319 (((-1149 |#1|) |#1| (-1 (-1149 |#1|))) 117 (|has| |#1| (-38 (-407 (-563)))))) (-3368 (((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|))) 139 (|has| |#1| (-363)))) (-3173 (((-1149 |#1|) (-1149 |#1|)) 98)) (-3184 (((-1149 |#1|) (-1149 |#1|)) 82)) (-3107 (((-1149 |#1|) (-563) (-563) (-1149 |#1|)) 105)) (-3204 (((-1149 |#1|) |#1| (-1149 |#1|)) 114 (|has| |#1| (-38 (-407 (-563)))))) (-3238 (((-1149 (-563)) (-563)) 62)) (-3258 (((-1149 |#1|) |#1|) 65)) (-3138 (((-1149 |#1|) (-1149 |#1|) (-563) (-563)) 101)) (-3291 (((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|)) 72)) (-3448 (((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|)) 40)) (-3150 (((-1149 |#1|) (-1149 |#1|)) 100)) (-1497 (((-1149 |#1|) (-1149 |#1|) |#1|) 77)) (-3280 (((-1149 |#1|) (-1149 |#1|)) 68)) (-3301 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 78)) (-2062 (((-1149 |#1|) |#1|) 73)) (-3309 (((-1149 |#1|) (-1149 (-1149 |#1|))) 89)) (-3050 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 41)) (-3039 (((-1149 |#1|) (-1149 |#1|)) 21) (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 23)) (-3027 (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 17)) (* (((-1149 |#1|) (-1149 |#1|) |#1|) 29) (((-1149 |#1|) |#1| (-1149 |#1|)) 26) (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 27))) -(((-1153 |#1|) (-10 -7 (-15 -3027 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3039 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3039 ((-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -3448 ((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|))) (-15 -3050 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3230 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -1576 ((-1149 |#1|) |#1| (-563))) (-15 -3238 ((-1149 (-563)) (-563))) (-15 -3247 ((-1149 (-563)) (-563))) (-15 -3258 ((-1149 |#1|) |#1|)) (-15 -3270 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3280 ((-1149 |#1|) (-1149 |#1|))) (-15 -3291 ((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|))) (-15 -2062 ((-1149 |#1|) |#1|)) (-15 -1497 ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -3301 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3184 ((-1149 |#1|) (-1149 |#1|))) (-15 -3129 ((-1149 |#1|) (-1149 |#1|))) (-15 -3309 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -3173 ((-1149 |#1|) (-1149 |#1|))) (-15 -3163 ((-1149 |#1|) (-1149 |#1|))) (-15 -3150 ((-1149 |#1|) (-1149 |#1|))) (-15 -3138 ((-1149 |#1|) (-1149 |#1|) (-563) (-563))) (-15 -3119 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (-15 -3107 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 -3319 ((-1149 |#1|) |#1| (-1 (-1149 |#1|)))) (-15 -3331 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -3342 ((-1149 |#1|) (-407 (-563)) (-1149 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3354 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3368 ((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|)))) (-15 -3381 ((-1149 |#1|) |#1| (-1149 |#1|)))) |%noBranch|)) (-1045)) (T -1153)) -((-3381 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3368 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-563))) (-5 *5 (-1 (-1149 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)))) (-3354 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3342 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) (-5 *3 (-407 (-563))) (-5 *1 (-1153 *4)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1149 *3))) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)))) (-3204 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3107 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-3119 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-3138 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-3150 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3163 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3309 (*1 *2 *3) (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) (-4 *4 (-1045)))) (-3129 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3301 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-1497 (*1 *2 *2 *3) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-2062 (*1 *2 *3) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3291 (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *4)) (-5 *3 (-1 *4 (-563))) (-4 *4 (-1045)) (-5 *1 (-1153 *4)))) (-3280 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3270 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3258 (*1 *2 *3) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3247 (*1 *2 *3) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) (-5 *3 (-563)))) (-3238 (*1 *2 *3) (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) (-5 *3 (-563)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) (-3230 (*1 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3050 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3448 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3039 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3039 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) (-3027 (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) -(-10 -7 (-15 -3027 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3039 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3039 ((-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 * ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 * ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -3448 ((-3 (-1149 |#1|) "failed") (-1149 |#1|) (-1149 |#1|))) (-15 -3050 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3230 ((-3 (-1149 |#1|) "failed") (-1149 |#1|))) (-15 -1576 ((-1149 |#1|) |#1| (-563))) (-15 -3238 ((-1149 (-563)) (-563))) (-15 -3247 ((-1149 (-563)) (-563))) (-15 -3258 ((-1149 |#1|) |#1|)) (-15 -3270 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3280 ((-1149 |#1|) (-1149 |#1|))) (-15 -3291 ((-1149 |#1|) (-1 |#1| (-563)) (-1149 |#1|))) (-15 -2062 ((-1149 |#1|) |#1|)) (-15 -1497 ((-1149 |#1|) (-1149 |#1|) |#1|)) (-15 -3301 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3184 ((-1149 |#1|) (-1149 |#1|))) (-15 -3129 ((-1149 |#1|) (-1149 |#1|))) (-15 -3309 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -3173 ((-1149 |#1|) (-1149 |#1|))) (-15 -3163 ((-1149 |#1|) (-1149 |#1|))) (-15 -3150 ((-1149 |#1|) (-1149 |#1|))) (-15 -3138 ((-1149 |#1|) (-1149 |#1|) (-563) (-563))) (-15 -3119 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (-15 -3107 ((-1149 |#1|) (-563) (-563) (-1149 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ((-1149 |#1|) |#1| (-1149 |#1|))) (-15 -3319 ((-1149 |#1|) |#1| (-1 (-1149 |#1|)))) (-15 -3331 ((-1149 |#1|) (-1149 (-1149 |#1|)))) (-15 -3342 ((-1149 |#1|) (-407 (-563)) (-1149 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -3354 ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3368 ((-1149 |#1|) (-1 |#1| (-563)) |#1| (-1 (-1149 |#1|)))) (-15 -3381 ((-1149 |#1|) |#1| (-1149 |#1|)))) |%noBranch|)) -((-3419 (((-1149 |#1|) (-1149 |#1|)) 60)) (-3285 (((-1149 |#1|) (-1149 |#1|)) 42)) (-3395 (((-1149 |#1|) (-1149 |#1|)) 56)) (-3264 (((-1149 |#1|) (-1149 |#1|)) 38)) (-2242 (((-1149 |#1|) (-1149 |#1|)) 63)) (-3305 (((-1149 |#1|) (-1149 |#1|)) 45)) (-2497 (((-1149 |#1|) (-1149 |#1|)) 34)) (-3177 (((-1149 |#1|) (-1149 |#1|)) 29)) (-2252 (((-1149 |#1|) (-1149 |#1|)) 64)) (-3313 (((-1149 |#1|) (-1149 |#1|)) 46)) (-2231 (((-1149 |#1|) (-1149 |#1|)) 61)) (-3295 (((-1149 |#1|) (-1149 |#1|)) 43)) (-3408 (((-1149 |#1|) (-1149 |#1|)) 58)) (-3273 (((-1149 |#1|) (-1149 |#1|)) 40)) (-2285 (((-1149 |#1|) (-1149 |#1|)) 68)) (-3347 (((-1149 |#1|) (-1149 |#1|)) 50)) (-2264 (((-1149 |#1|) (-1149 |#1|)) 66)) (-3325 (((-1149 |#1|) (-1149 |#1|)) 48)) (-2306 (((-1149 |#1|) (-1149 |#1|)) 71)) (-3374 (((-1149 |#1|) (-1149 |#1|)) 53)) (-4205 (((-1149 |#1|) (-1149 |#1|)) 72)) (-3386 (((-1149 |#1|) (-1149 |#1|)) 54)) (-2296 (((-1149 |#1|) (-1149 |#1|)) 70)) (-3361 (((-1149 |#1|) (-1149 |#1|)) 52)) (-2275 (((-1149 |#1|) (-1149 |#1|)) 69)) (-3336 (((-1149 |#1|) (-1149 |#1|)) 51)) (** (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 36))) -(((-1154 |#1|) (-10 -7 (-15 -3177 ((-1149 |#1|) (-1149 |#1|))) (-15 -2497 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3264 ((-1149 |#1|) (-1149 |#1|))) (-15 -3273 ((-1149 |#1|) (-1149 |#1|))) (-15 -3285 ((-1149 |#1|) (-1149 |#1|))) (-15 -3295 ((-1149 |#1|) (-1149 |#1|))) (-15 -3305 ((-1149 |#1|) (-1149 |#1|))) (-15 -3313 ((-1149 |#1|) (-1149 |#1|))) (-15 -3325 ((-1149 |#1|) (-1149 |#1|))) (-15 -3336 ((-1149 |#1|) (-1149 |#1|))) (-15 -3347 ((-1149 |#1|) (-1149 |#1|))) (-15 -3361 ((-1149 |#1|) (-1149 |#1|))) (-15 -3374 ((-1149 |#1|) (-1149 |#1|))) (-15 -3386 ((-1149 |#1|) (-1149 |#1|))) (-15 -3395 ((-1149 |#1|) (-1149 |#1|))) (-15 -3408 ((-1149 |#1|) (-1149 |#1|))) (-15 -3419 ((-1149 |#1|) (-1149 |#1|))) (-15 -2231 ((-1149 |#1|) (-1149 |#1|))) (-15 -2242 ((-1149 |#1|) (-1149 |#1|))) (-15 -2252 ((-1149 |#1|) (-1149 |#1|))) (-15 -2264 ((-1149 |#1|) (-1149 |#1|))) (-15 -2275 ((-1149 |#1|) (-1149 |#1|))) (-15 -2285 ((-1149 |#1|) (-1149 |#1|))) (-15 -2296 ((-1149 |#1|) (-1149 |#1|))) (-15 -2306 ((-1149 |#1|) (-1149 |#1|))) (-15 -4205 ((-1149 |#1|) (-1149 |#1|)))) (-38 (-407 (-563)))) (T -1154)) -((-4205 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3408 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3313 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-2497 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1154 *3))))) -(-10 -7 (-15 -3177 ((-1149 |#1|) (-1149 |#1|))) (-15 -2497 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -3264 ((-1149 |#1|) (-1149 |#1|))) (-15 -3273 ((-1149 |#1|) (-1149 |#1|))) (-15 -3285 ((-1149 |#1|) (-1149 |#1|))) (-15 -3295 ((-1149 |#1|) (-1149 |#1|))) (-15 -3305 ((-1149 |#1|) (-1149 |#1|))) (-15 -3313 ((-1149 |#1|) (-1149 |#1|))) (-15 -3325 ((-1149 |#1|) (-1149 |#1|))) (-15 -3336 ((-1149 |#1|) (-1149 |#1|))) (-15 -3347 ((-1149 |#1|) (-1149 |#1|))) (-15 -3361 ((-1149 |#1|) (-1149 |#1|))) (-15 -3374 ((-1149 |#1|) (-1149 |#1|))) (-15 -3386 ((-1149 |#1|) (-1149 |#1|))) (-15 -3395 ((-1149 |#1|) (-1149 |#1|))) (-15 -3408 ((-1149 |#1|) (-1149 |#1|))) (-15 -3419 ((-1149 |#1|) (-1149 |#1|))) (-15 -2231 ((-1149 |#1|) (-1149 |#1|))) (-15 -2242 ((-1149 |#1|) (-1149 |#1|))) (-15 -2252 ((-1149 |#1|) (-1149 |#1|))) (-15 -2264 ((-1149 |#1|) (-1149 |#1|))) (-15 -2275 ((-1149 |#1|) (-1149 |#1|))) (-15 -2285 ((-1149 |#1|) (-1149 |#1|))) (-15 -2296 ((-1149 |#1|) (-1149 |#1|))) (-15 -2306 ((-1149 |#1|) (-1149 |#1|))) (-15 -4205 ((-1149 |#1|) (-1149 |#1|)))) -((-3419 (((-1149 |#1|) (-1149 |#1|)) 108)) (-3285 (((-1149 |#1|) (-1149 |#1|)) 65)) (-2207 (((-2 (|:| -3395 (-1149 |#1|)) (|:| -3408 (-1149 |#1|))) (-1149 |#1|)) 104)) (-3395 (((-1149 |#1|) (-1149 |#1|)) 105)) (-2197 (((-2 (|:| -3264 (-1149 |#1|)) (|:| -3273 (-1149 |#1|))) (-1149 |#1|)) 54)) (-3264 (((-1149 |#1|) (-1149 |#1|)) 55)) (-2242 (((-1149 |#1|) (-1149 |#1|)) 110)) (-3305 (((-1149 |#1|) (-1149 |#1|)) 72)) (-2497 (((-1149 |#1|) (-1149 |#1|)) 40)) (-3177 (((-1149 |#1|) (-1149 |#1|)) 37)) (-2252 (((-1149 |#1|) (-1149 |#1|)) 111)) (-3313 (((-1149 |#1|) (-1149 |#1|)) 73)) (-2231 (((-1149 |#1|) (-1149 |#1|)) 109)) (-3295 (((-1149 |#1|) (-1149 |#1|)) 68)) (-3408 (((-1149 |#1|) (-1149 |#1|)) 106)) (-3273 (((-1149 |#1|) (-1149 |#1|)) 56)) (-2285 (((-1149 |#1|) (-1149 |#1|)) 119)) (-3347 (((-1149 |#1|) (-1149 |#1|)) 94)) (-2264 (((-1149 |#1|) (-1149 |#1|)) 113)) (-3325 (((-1149 |#1|) (-1149 |#1|)) 90)) (-2306 (((-1149 |#1|) (-1149 |#1|)) 123)) (-3374 (((-1149 |#1|) (-1149 |#1|)) 98)) (-4205 (((-1149 |#1|) (-1149 |#1|)) 125)) (-3386 (((-1149 |#1|) (-1149 |#1|)) 100)) (-2296 (((-1149 |#1|) (-1149 |#1|)) 121)) (-3361 (((-1149 |#1|) (-1149 |#1|)) 96)) (-2275 (((-1149 |#1|) (-1149 |#1|)) 115)) (-3336 (((-1149 |#1|) (-1149 |#1|)) 92)) (** (((-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) 41))) -(((-1155 |#1|) (-10 -7 (-15 -3177 ((-1149 |#1|) (-1149 |#1|))) (-15 -2497 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2197 ((-2 (|:| -3264 (-1149 |#1|)) (|:| -3273 (-1149 |#1|))) (-1149 |#1|))) (-15 -3264 ((-1149 |#1|) (-1149 |#1|))) (-15 -3273 ((-1149 |#1|) (-1149 |#1|))) (-15 -3285 ((-1149 |#1|) (-1149 |#1|))) (-15 -3295 ((-1149 |#1|) (-1149 |#1|))) (-15 -3305 ((-1149 |#1|) (-1149 |#1|))) (-15 -3313 ((-1149 |#1|) (-1149 |#1|))) (-15 -3325 ((-1149 |#1|) (-1149 |#1|))) (-15 -3336 ((-1149 |#1|) (-1149 |#1|))) (-15 -3347 ((-1149 |#1|) (-1149 |#1|))) (-15 -3361 ((-1149 |#1|) (-1149 |#1|))) (-15 -3374 ((-1149 |#1|) (-1149 |#1|))) (-15 -3386 ((-1149 |#1|) (-1149 |#1|))) (-15 -2207 ((-2 (|:| -3395 (-1149 |#1|)) (|:| -3408 (-1149 |#1|))) (-1149 |#1|))) (-15 -3395 ((-1149 |#1|) (-1149 |#1|))) (-15 -3408 ((-1149 |#1|) (-1149 |#1|))) (-15 -3419 ((-1149 |#1|) (-1149 |#1|))) (-15 -2231 ((-1149 |#1|) (-1149 |#1|))) (-15 -2242 ((-1149 |#1|) (-1149 |#1|))) (-15 -2252 ((-1149 |#1|) (-1149 |#1|))) (-15 -2264 ((-1149 |#1|) (-1149 |#1|))) (-15 -2275 ((-1149 |#1|) (-1149 |#1|))) (-15 -2285 ((-1149 |#1|) (-1149 |#1|))) (-15 -2296 ((-1149 |#1|) (-1149 |#1|))) (-15 -2306 ((-1149 |#1|) (-1149 |#1|))) (-15 -4205 ((-1149 |#1|) (-1149 |#1|)))) (-38 (-407 (-563)))) (T -1155)) -((-4205 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2296 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2285 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2275 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2252 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2242 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3408 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3395 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-2 (|:| -3395 (-1149 *4)) (|:| -3408 (-1149 *4)))) (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4)))) (-3386 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3374 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3347 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3325 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3313 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3295 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3285 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3273 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3264 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2197 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-2 (|:| -3264 (-1149 *4)) (|:| -3273 (-1149 *4)))) (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-2497 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1155 *3))))) -(-10 -7 (-15 -3177 ((-1149 |#1|) (-1149 |#1|))) (-15 -2497 ((-1149 |#1|) (-1149 |#1|))) (-15 ** ((-1149 |#1|) (-1149 |#1|) (-1149 |#1|))) (-15 -2197 ((-2 (|:| -3264 (-1149 |#1|)) (|:| -3273 (-1149 |#1|))) (-1149 |#1|))) (-15 -3264 ((-1149 |#1|) (-1149 |#1|))) (-15 -3273 ((-1149 |#1|) (-1149 |#1|))) (-15 -3285 ((-1149 |#1|) (-1149 |#1|))) (-15 -3295 ((-1149 |#1|) (-1149 |#1|))) (-15 -3305 ((-1149 |#1|) (-1149 |#1|))) (-15 -3313 ((-1149 |#1|) (-1149 |#1|))) (-15 -3325 ((-1149 |#1|) (-1149 |#1|))) (-15 -3336 ((-1149 |#1|) (-1149 |#1|))) (-15 -3347 ((-1149 |#1|) (-1149 |#1|))) (-15 -3361 ((-1149 |#1|) (-1149 |#1|))) (-15 -3374 ((-1149 |#1|) (-1149 |#1|))) (-15 -3386 ((-1149 |#1|) (-1149 |#1|))) (-15 -2207 ((-2 (|:| -3395 (-1149 |#1|)) (|:| -3408 (-1149 |#1|))) (-1149 |#1|))) (-15 -3395 ((-1149 |#1|) (-1149 |#1|))) (-15 -3408 ((-1149 |#1|) (-1149 |#1|))) (-15 -3419 ((-1149 |#1|) (-1149 |#1|))) (-15 -2231 ((-1149 |#1|) (-1149 |#1|))) (-15 -2242 ((-1149 |#1|) (-1149 |#1|))) (-15 -2252 ((-1149 |#1|) (-1149 |#1|))) (-15 -2264 ((-1149 |#1|) (-1149 |#1|))) (-15 -2275 ((-1149 |#1|) (-1149 |#1|))) (-15 -2285 ((-1149 |#1|) (-1149 |#1|))) (-15 -2296 ((-1149 |#1|) (-1149 |#1|))) (-15 -2306 ((-1149 |#1|) (-1149 |#1|))) (-15 -4205 ((-1149 |#1|) (-1149 |#1|)))) -((-2217 (((-954 |#2|) |#2| |#2|) 50)) (-2227 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307))))) -(((-1156 |#1| |#2|) (-10 -7 (-15 -2217 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2227 (|#2| |#2| |#1|)) |%noBranch|)) (-555) (-1233 |#1|)) (T -1156)) -((-2227 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1233 *3)))) (-2217 (*1 *2 *3 *3) (-12 (-4 *4 (-555)) (-5 *2 (-954 *3)) (-5 *1 (-1156 *4 *3)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -2217 ((-954 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -2227 (|#2| |#2| |#1|)) |%noBranch|)) -((-2049 (((-112) $ $) NIL)) (-2302 (($ $ (-640 (-767))) 80)) (-2604 (($) 32)) (-2407 (($ $) 50)) (-3916 (((-640 $) $) 59)) (-2475 (((-112) $) 19)) (-2237 (((-640 (-939 |#2|)) $) 87)) (-2248 (($ $) 81)) (-2421 (((-767) $) 46)) (-2552 (($) 31)) (-2334 (($ $ (-640 (-767)) (-939 |#2|)) 73) (($ $ (-640 (-767)) (-767)) 74) (($ $ (-767) (-939 |#2|)) 76)) (-2383 (($ $ $) 56) (($ (-640 $)) 58)) (-4317 (((-767) $) 88)) (-2484 (((-112) $) 15)) (-1938 (((-1151) $) NIL)) (-2465 (((-112) $) 21)) (-3249 (((-1113) $) NIL)) (-2260 (((-171) $) 86)) (-2291 (((-939 |#2|) $) 82)) (-2281 (((-767) $) 83)) (-2270 (((-112) $) 85)) (-2313 (($ $ (-640 (-767)) (-171)) 79)) (-2396 (($ $) 51)) (-2062 (((-858) $) 99)) (-2324 (($ $ (-640 (-767)) (-112)) 78)) (-2432 (((-640 $) $) 11)) (-2444 (($ $ (-767)) 45)) (-2455 (($ $) 42)) (-2347 (($ $ $ (-939 |#2|) (-767)) 69)) (-2359 (($ $ (-939 |#2|)) 68)) (-2371 (($ $ (-640 (-767)) (-939 |#2|)) 65) (($ $ (-640 (-767)) (-767)) 71) (((-767) $ (-939 |#2|)) 72)) (-2943 (((-112) $ $) 93))) -(((-1157 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -2484 ((-112) $)) (-15 -2475 ((-112) $)) (-15 -2465 ((-112) $)) (-15 -2552 ($)) (-15 -2604 ($)) (-15 -2455 ($ $)) (-15 -2444 ($ $ (-767))) (-15 -2432 ((-640 $) $)) (-15 -2421 ((-767) $)) (-15 -2407 ($ $)) (-15 -2396 ($ $)) (-15 -2383 ($ $ $)) (-15 -2383 ($ (-640 $))) (-15 -3916 ((-640 $) $)) (-15 -2371 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -2359 ($ $ (-939 |#2|))) (-15 -2347 ($ $ $ (-939 |#2|) (-767))) (-15 -2334 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -2371 ($ $ (-640 (-767)) (-767))) (-15 -2334 ($ $ (-640 (-767)) (-767))) (-15 -2371 ((-767) $ (-939 |#2|))) (-15 -2334 ($ $ (-767) (-939 |#2|))) (-15 -2324 ($ $ (-640 (-767)) (-112))) (-15 -2313 ($ $ (-640 (-767)) (-171))) (-15 -2302 ($ $ (-640 (-767)))) (-15 -2291 ((-939 |#2|) $)) (-15 -2281 ((-767) $)) (-15 -2270 ((-112) $)) (-15 -2260 ((-171) $)) (-15 -4317 ((-767) $)) (-15 -2248 ($ $)) (-15 -2237 ((-640 (-939 |#2|)) $)))) (-917) (-1045)) (T -1157)) -((-2484 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2475 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2465 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2552 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2604 (*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2455 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2444 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2407 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2396 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2383 (*1 *1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2383 (*1 *1 *2) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-3916 (*1 *2 *1) (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-2359 (*1 *1 *1 *2) (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)))) (-2347 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-2334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-2334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-2371 (*1 *2 *1 *3) (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-2334 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) (-2324 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-112)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-2313 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-640 (-767))) (-5 *3 (-171)) (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)) (-4 *5 (-1045)))) (-2302 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2291 (*1 *2 *1) (-12 (-5 *2 (-939 *4)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2270 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2260 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045)))) (-2248 (*1 *1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) (-2237 (*1 *2 *1) (-12 (-5 *2 (-640 (-939 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) (-4 *4 (-1045))))) -(-13 (-1093) (-10 -8 (-15 -2484 ((-112) $)) (-15 -2475 ((-112) $)) (-15 -2465 ((-112) $)) (-15 -2552 ($)) (-15 -2604 ($)) (-15 -2455 ($ $)) (-15 -2444 ($ $ (-767))) (-15 -2432 ((-640 $) $)) (-15 -2421 ((-767) $)) (-15 -2407 ($ $)) (-15 -2396 ($ $)) (-15 -2383 ($ $ $)) (-15 -2383 ($ (-640 $))) (-15 -3916 ((-640 $) $)) (-15 -2371 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -2359 ($ $ (-939 |#2|))) (-15 -2347 ($ $ $ (-939 |#2|) (-767))) (-15 -2334 ($ $ (-640 (-767)) (-939 |#2|))) (-15 -2371 ($ $ (-640 (-767)) (-767))) (-15 -2334 ($ $ (-640 (-767)) (-767))) (-15 -2371 ((-767) $ (-939 |#2|))) (-15 -2334 ($ $ (-767) (-939 |#2|))) (-15 -2324 ($ $ (-640 (-767)) (-112))) (-15 -2313 ($ $ (-640 (-767)) (-171))) (-15 -2302 ($ $ (-640 (-767)))) (-15 -2291 ((-939 |#2|) $)) (-15 -2281 ((-767) $)) (-15 -2270 ((-112) $)) (-15 -2260 ((-171) $)) (-15 -4317 ((-767) $)) (-15 -2248 ($ $)) (-15 -2237 ((-640 (-939 |#2|)) $)))) -((-2049 (((-112) $ $) NIL)) (-4156 ((|#2| $) 11)) (-4144 ((|#1| $) 10)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2074 (($ |#1| |#2|) 9)) (-2062 (((-858) $) 16)) (-2943 (((-112) $ $) NIL))) -(((-1158 |#1| |#2|) (-13 (-1093) (-10 -8 (-15 -2074 ($ |#1| |#2|)) (-15 -4144 (|#1| $)) (-15 -4156 (|#2| $)))) (-1093) (-1093)) (T -1158)) -((-2074 (*1 *1 *2 *3) (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-4144 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *2 *3)) (-4 *3 (-1093)))) (-4156 (*1 *2 *1) (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1093))))) -(-13 (-1093) (-10 -8 (-15 -2074 ($ |#1| |#2|)) (-15 -4144 (|#1| $)) (-15 -4156 (|#2| $)))) -((-2049 (((-112) $ $) NIL)) (-2223 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-1159) (-13 (-1076) (-10 -8 (-15 -2223 ((-1128) $))))) (T -1159)) -((-2223 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1159))))) -(-13 (-1076) (-10 -8 (-15 -2223 ((-1128) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 11)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2554 (($ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2533 (((-112) $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2893 (($ $ (-563)) NIL) (($ $ (-563) (-563)) 75)) (-2914 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) NIL)) (-3728 (((-1167 |#1| |#2| |#3|) $) 42)) (-3707 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 32)) (-3106 (((-1167 |#1| |#2| |#3|) $) 33)) (-3419 (($ $) 116 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 92 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3395 (($ $) 112 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 88 (|has| |#1| (-38 (-407 (-563)))))) (-2107 (((-563) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3444 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) NIL)) (-2242 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 96 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1169) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-563) "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2589 (((-1167 |#1| |#2| |#3|) $) 140) (((-1169) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-563) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-3717 (($ $) 37) (($ (-563) $) 38)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-1167 |#1| |#2| |#3|)) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4277 (-684 (-1167 |#1| |#2| |#3|))) (|:| |vec| (-1257 (-1167 |#1| |#2| |#3|)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363))))) (-3230 (((-3 $ "failed") $) 54)) (-3694 (((-407 (-948 |#1|)) $ (-563)) 74 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 76 (|has| |#1| (-555)))) (-4301 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2720 (((-112) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2697 (((-112) $) 28)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-882 (-563))) (|has| |#1| (-363))))) (-2903 (((-563) $) NIL) (((-563) $ (-563)) 26)) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-363)))) (-2626 (((-1167 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3113 (((-3 $ "failed") $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))))) (-2731 (((-112) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2947 (($ $ (-917)) NIL)) (-3214 (($ (-1 |#1| (-563)) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-563)) 19) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3489 (($ $ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-4105 (($ $ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2497 (($ $) 81 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3118 (($ (-563) (-1167 |#1| |#2| |#3|)) 36)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-3204 (($ $) 79 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 80 (|has| |#1| (-38 (-407 (-563)))))) (-2956 (($) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3212 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3233 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-563)) 158)) (-3448 (((-3 $ "failed") $ $) 55 (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3177 (($ $) 82 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-514 (-1169) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-294 (-1167 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1167 |#1| |#2| |#3|)) (-640 (-1167 |#1| |#2| |#3|))) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-309 (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ (-563)) NIL) (($ $ $) 61 (|has| (-563) (-1105))) (($ $ (-1167 |#1| |#2| |#3|)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-286 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-1361 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1253 |#2|)) 57) (($ $ (-767)) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 56 (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-4362 (($ $) NIL (|has| |#1| (-363)))) (-2636 (((-1167 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-1962 (((-563) $) 43)) (-2252 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 98 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 118 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 94 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 114 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 90 (|has| |#1| (-38 (-407 (-563)))))) (-2802 (((-536) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2686 (($ $) NIL)) (-2062 (((-858) $) 162) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1167 |#1| |#2| |#3|)) 30) (($ (-1253 |#2|)) 25) (($ (-1169)) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (($ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555)))) (($ (-407 (-563))) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-563))))))) (-1304 ((|#1| $ (-563)) 77)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3219 ((|#1| $) 12)) (-3241 (((-1167 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2285 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 104 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2264 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 100 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 108 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 110 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 106 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 102 (|has| |#1| (-38 (-407 (-563)))))) (-3841 (($ $) NIL (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3790 (($) 21 T CONST)) (-3803 (($) 16 T CONST)) (-4191 (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-2998 (((-112) $ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2977 (((-112) $ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2966 (((-112) $ $) NIL (-2811 (-12 (|has| (-1167 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1167 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1167 |#1| |#2| |#3|) (-1167 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 23)) (** (($ $ (-917)) NIL) (($ $ (-767)) 60) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 137 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1167 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1167 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1160 |#1| |#2| |#3|) (-13 (-1219 |#1| (-1167 |#1| |#2| |#3|)) (-10 -8 (-15 -2062 ($ (-1253 |#2|))) (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1160)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) -(-13 (-1219 |#1| (-1167 |#1| |#2| |#3|)) (-10 -8 (-15 -2062 ($ (-1253 |#2|))) (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) -((-3887 ((|#2| |#2| (-1085 |#2|)) 26) ((|#2| |#2| (-1169)) 28))) -(((-1161 |#1| |#2|) (-10 -7 (-15 -3887 (|#2| |#2| (-1169))) (-15 -3887 (|#2| |#2| (-1085 |#2|)))) (-13 (-555) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-430 |#1|) (-160) (-27) (-1193))) (T -1161)) -((-3887 (*1 *2 *2 *3) (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193))) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1161 *4 *2)))) (-3887 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193)))))) -(-10 -7 (-15 -3887 (|#2| |#2| (-1169))) (-15 -3887 (|#2| |#2| (-1085 |#2|)))) -((-3887 (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|)))) 31) (((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|))) 44) (((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169)) 33) (((-407 (-948 |#1|)) (-948 |#1|) (-1169)) 36))) -(((-1162 |#1|) (-10 -7 (-15 -3887 ((-407 (-948 |#1|)) (-948 |#1|) (-1169))) (-15 -3887 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -3887 ((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|)))) (-15 -3887 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|)))))) (-13 (-555) (-846) (-1034 (-563)))) (T -1162)) -((-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1162 *5)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-1085 (-948 *5))) (-5 *3 (-948 *5)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 *3)) (-5 *1 (-1162 *5)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-407 (-948 *5))))) (-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 (-948 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-948 *5))))) -(-10 -7 (-15 -3887 ((-407 (-948 |#1|)) (-948 |#1|) (-1169))) (-15 -3887 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1169))) (-15 -3887 ((-407 (-948 |#1|)) (-948 |#1|) (-1085 (-948 |#1|)))) (-15 -3887 ((-3 (-407 (-948 |#1|)) (-316 |#1|)) (-407 (-948 |#1|)) (-1085 (-407 (-948 |#1|)))))) -((-2751 (((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)) 13))) -(((-1163 |#1| |#2|) (-10 -7 (-15 -2751 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)))) (-1045) (-1045)) (T -1163)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6))))) -(-10 -7 (-15 -2751 ((-1165 |#2|) (-1 |#2| |#1|) (-1165 |#1|)))) -((-2102 (((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))) 51)) (-2055 (((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))) 52))) -(((-1164 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2055 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|)))) (-15 -2102 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))))) (-789) (-846) (-452) (-945 |#3| |#1| |#2|)) (T -1164)) -((-2102 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7))))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7)))))) -(-10 -7 (-15 -2055 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|)))) (-15 -2102 ((-418 (-1165 (-407 |#4|))) (-1165 (-407 |#4|))))) -((-2049 (((-112) $ $) 169)) (-2741 (((-112) $) 42)) (-2875 (((-1257 |#1|) $ (-767)) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-2856 (($ (-1165 |#1|)) NIL)) (-2021 (((-1165 $) $ (-1075)) 81) (((-1165 |#1|) $) 70)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) 162 (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3952 (($ $ $) 156 (|has| |#1| (-555)))) (-1325 (((-418 (-1165 $)) (-1165 $)) 94 (|has| |#1| (-905)))) (-2924 (($ $) NIL (|has| |#1| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 114 (|has| |#1| (-905)))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4004 (($ $ (-767)) 60)) (-3993 (($ $ (-767)) 62)) (-3916 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2589 ((|#1| $) NIL) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-1075) $) NIL)) (-3962 (($ $ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $ $) 158 (|has| |#1| (-172)))) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) 79)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) NIL) (((-684 |#1|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3985 (($ $ $) 129)) (-3936 (($ $ $) NIL (|has| |#1| (-555)))) (-3926 (((-2 (|:| -2765 |#1|) (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-555)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-2227 (($ $) 163 (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#1| (-905)))) (-3302 (($ $ |#1| (-767) $) 68)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2494 (((-858) $ (-858)) 146)) (-2903 (((-767) $ $) NIL (|has| |#1| (-555)))) (-2712 (((-112) $) 47)) (-1528 (((-767) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| |#1| (-1144)))) (-2175 (($ (-1165 |#1|) (-1075)) 72) (($ (-1165 $) (-1075)) 88)) (-2947 (($ $ (-767)) 50)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) 86) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-1075)) NIL) (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 151)) (-3187 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-3310 (($ (-1 (-767) (-767)) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2866 (((-1165 |#1|) $) NIL)) (-2845 (((-3 (-1075) "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) 75)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-1938 (((-1151) $) NIL)) (-4014 (((-2 (|:| -2896 $) (|:| -1488 $)) $ (-767)) 59)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-1075)) (|:| -2631 (-767))) "failed") $) NIL)) (-3204 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2956 (($) NIL (|has| |#1| (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) 49)) (-3170 ((|#1| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 102 (|has| |#1| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-452))) (($ $ $) 165 (|has| |#1| (-452)))) (-3775 (($ $ (-767) |#1| $) 121)) (-1306 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) 99 (|has| |#1| (-905)))) (-2055 (((-418 $) $) 107 (|has| |#1| (-905)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-3448 (((-3 $ "failed") $ |#1|) 161 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 122 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#1|) NIL) (($ $ (-640 (-1075)) (-640 |#1|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ |#1|) 148) (($ $ $) 149) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-555)))) (-2846 (((-3 $ "failed") $ (-767)) 53)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 170 (|has| |#1| (-363)))) (-3974 (($ $ (-1075)) NIL (|has| |#1| (-172))) ((|#1| $) 154 (|has| |#1| (-172)))) (-1361 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1962 (((-767) $) 77) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) 160 (|has| |#1| (-452))) (($ $ (-1075)) NIL (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-905))))) (-3945 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-555)))) (-2062 (((-858) $) 147) (($ (-563)) NIL) (($ |#1|) 76) (($ (-1075)) NIL) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) 40 (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) 17 T CONST)) (-3803 (($) 19 T CONST)) (-4191 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) 119)) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3050 (($ $ |#1|) 171 (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 89)) (** (($ $ (-917)) 14) (($ $ (-767)) 12)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 39) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 127) (($ $ |#1|) NIL))) -(((-1165 |#1|) (-13 (-1233 |#1|) (-10 -8 (-15 -2494 ((-858) $ (-858))) (-15 -3775 ($ $ (-767) |#1| $)))) (-1045)) (T -1165)) -((-2494 (*1 *2 *1 *2) (-12 (-5 *2 (-858)) (-5 *1 (-1165 *3)) (-4 *3 (-1045)))) (-3775 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1165 *3)) (-4 *3 (-1045))))) -(-13 (-1233 |#1|) (-10 -8 (-15 -2494 ((-858) $ (-858))) (-15 -3775 ($ $ (-767) |#1| $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 11)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-2893 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-2914 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-3419 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-2242 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1167 |#1| |#2| |#3|) "failed") $) 36)) (-2589 (((-1160 |#1| |#2| |#3|) $) NIL) (((-1167 |#1| |#2| |#3|) $) NIL)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2981 (((-407 (-563)) $) 59)) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3128 (($ (-407 (-563)) (-1160 |#1| |#2| |#3|)) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2697 (((-112) $) NIL)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-407 (-563))) 20) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2497 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2970 (((-1160 |#1| |#2| |#3|) $) 41)) (-2957 (((-3 (-1160 |#1| |#2| |#3|) "failed") $) NIL)) (-3118 (((-1160 |#1| |#2| |#3|) $) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-3204 (($ $) 39 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 40 (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-407 (-563))) NIL)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3177 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 38)) (-1962 (((-407 (-563)) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) NIL)) (-2062 (((-858) $) 62) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1160 |#1| |#2| |#3|)) 30) (($ (-1167 |#1| |#2| |#3|)) 31) (($ (-1253 |#2|)) 26) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-1304 ((|#1| $ (-407 (-563))) NIL)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3219 ((|#1| $) 12)) (-2285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 22 T CONST)) (-3803 (($) 16 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 24)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1166 |#1| |#2| |#3|) (-13 (-1240 |#1| (-1160 |#1| |#2| |#3|)) (-1034 (-1167 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1166)) -((-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) -(-13 (-1240 |#1| (-1160 |#1| |#2| |#3|)) (-1034 (-1167 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 130)) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 120)) (-3194 (((-1230 |#2| |#1|) $ (-767)) 68)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-2893 (($ $ (-767)) 84) (($ $ (-767) (-767)) 81)) (-2914 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 106)) (-3419 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 150 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3395 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 119) (($ (-1149 |#1|)) 114)) (-2242 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 154 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) 25)) (-3225 (($ $) 28)) (-3894 (((-948 |#1|) $ (-767)) 80) (((-948 |#1|) $ (-767) (-767)) 82)) (-2697 (((-112) $) 125)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-767) $) 127) (((-767) $ (-767)) 129)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) NIL)) (-3214 (($ (-1 |#1| (-563)) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) 13) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2497 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3204 (($ $) 134 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 135 (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) NIL)) (-2884 (($ $ (-767)) 15)) (-3448 (((-3 $ "failed") $ $) 26 (|has| |#1| (-555)))) (-3177 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-3858 ((|#1| $ (-767)) 123) (($ $ $) 133 (|has| (-767) (-1105)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1253 |#2|)) 31)) (-1962 (((-767) $) NIL)) (-2252 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 156 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 152 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 148 (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) NIL)) (-2062 (((-858) $) 207) (($ (-563)) NIL) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 131 (|has| |#1| (-172))) (($ (-1230 |#2| |#1|)) 54) (($ (-1253 |#2|)) 36)) (-3234 (((-1149 |#1|) $) 102)) (-1304 ((|#1| $ (-767)) 122)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3219 ((|#1| $) 57)) (-2285 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 158 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 166 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-767)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 192 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 164 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 17 T CONST)) (-3803 (($) 20 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) 199)) (-3027 (($ $ $) 35)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 204 (|has| |#1| (-363))) (($ $ $) 139 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 142 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 137) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1167 |#1| |#2| |#3|) (-13 (-1248 |#1|) (-10 -8 (-15 -2062 ($ (-1230 |#2| |#1|))) (-15 -3194 ((-1230 |#2| |#1|) $ (-767))) (-15 -2062 ($ (-1253 |#2|))) (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1167)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) (-3194 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) -(-13 (-1248 |#1|) (-10 -8 (-15 -2062 ($ (-1230 |#2| |#1|))) (-15 -3194 ((-1230 |#2| |#1|) $ (-767))) (-15 -2062 ($ (-1253 |#2|))) (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) -((-2062 (((-858) $) 33) (($ (-1169)) 35)) (-2811 (($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-2799 (($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-2583 (($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-2573 (($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-2562 (($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-2550 (($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-2126 (($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45))) -(((-1168) (-13 (-610 (-858)) (-10 -8 (-15 -2062 ($ (-1169))) (-15 -2583 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2562 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2573 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2550 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2811 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2126 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2799 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2799 ($ $))))) (T -1168)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1168)))) (-2583 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-2562 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-2573 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-2550 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-2811 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-2126 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-2799 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) (-5 *1 (-1168)))) (-2799 (*1 *1 *1) (-5 *1 (-1168)))) -(-13 (-610 (-858)) (-10 -8 (-15 -2062 ($ (-1169))) (-15 -2583 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2562 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2573 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2550 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2811 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2126 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2799 ($ (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2799 ($ $)))) -((-2049 (((-112) $ $) NIL)) (-2514 (($ $ (-640 (-858))) 64)) (-2525 (($ $ (-640 (-858))) 62)) (-2725 (((-1151) $) 103)) (-3333 (((-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) (|:| |args| (-640 (-858)))) $) 109)) (-2536 (((-112) $) 23)) (-3718 (($ $ (-640 (-640 (-858)))) 61) (($ $ (-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) (|:| |args| (-640 (-858))))) 101)) (-3684 (($) 163 T CONST)) (-2546 (((-1262)) 136)) (-2938 (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 71) (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 78)) (-2552 (($) 122) (($ $) 131)) (-3359 (($ $) 102)) (-3489 (($ $ $) NIL)) (-4105 (($ $ $) NIL)) (-2335 (((-640 $) $) 138)) (-1938 (((-1151) $) 114)) (-3249 (((-1113) $) NIL)) (-3858 (($ $ (-640 (-858))) 63)) (-2802 (((-536) $) 48) (((-1169) $) 49) (((-888 (-563)) $) 82) (((-888 (-379)) $) 80)) (-2062 (((-858) $) 55) (($ (-1151)) 50)) (-2505 (($ $ (-640 (-858))) 65)) (-2038 (((-1151) $) 34) (((-1151) $ (-112)) 35) (((-1262) (-818) $) 36) (((-1262) (-818) $ (-112)) 37)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) 51)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) 52))) -(((-1169) (-13 (-846) (-611 (-536)) (-824) (-611 (-1169)) (-613 (-1151)) (-611 (-888 (-563))) (-611 (-888 (-379))) (-882 (-563)) (-882 (-379)) (-10 -8 (-15 -2552 ($)) (-15 -2552 ($ $)) (-15 -2546 ((-1262))) (-15 -3359 ($ $)) (-15 -2536 ((-112) $)) (-15 -3333 ((-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) (|:| |args| (-640 (-858)))) $)) (-15 -3718 ($ $ (-640 (-640 (-858))))) (-15 -3718 ($ $ (-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) (|:| |args| (-640 (-858)))))) (-15 -2525 ($ $ (-640 (-858)))) (-15 -2514 ($ $ (-640 (-858)))) (-15 -2505 ($ $ (-640 (-858)))) (-15 -3858 ($ $ (-640 (-858)))) (-15 -2725 ((-1151) $)) (-15 -2335 ((-640 $) $)) (-15 -3684 ($) -2495)))) (T -1169)) -((-2552 (*1 *1) (-5 *1 (-1169))) (-2552 (*1 *1 *1) (-5 *1 (-1169))) (-2546 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1169)))) (-3359 (*1 *1 *1) (-5 *1 (-1169))) (-2536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169)))) (-3333 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) (|:| |args| (-640 (-858))))) (-5 *1 (-1169)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-1169)))) (-3718 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) (|:| |args| (-640 (-858))))) (-5 *1 (-1169)))) (-2525 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-2514 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-2505 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) (-2725 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1169)))) (-2335 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1169)))) (-3684 (*1 *1) (-5 *1 (-1169)))) -(-13 (-846) (-611 (-536)) (-824) (-611 (-1169)) (-613 (-1151)) (-611 (-888 (-563))) (-611 (-888 (-379))) (-882 (-563)) (-882 (-379)) (-10 -8 (-15 -2552 ($)) (-15 -2552 ($ $)) (-15 -2546 ((-1262))) (-15 -3359 ($ $)) (-15 -2536 ((-112) $)) (-15 -3333 ((-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) (|:| |args| (-640 (-858)))) $)) (-15 -3718 ($ $ (-640 (-640 (-858))))) (-15 -3718 ($ $ (-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) (|:| |args| (-640 (-858)))))) (-15 -2525 ($ $ (-640 (-858)))) (-15 -2514 ($ $ (-640 (-858)))) (-15 -2505 ($ $ (-640 (-858)))) (-15 -3858 ($ $ (-640 (-858)))) (-15 -2725 ((-1151) $)) (-15 -2335 ((-640 $) $)) (-15 -3684 ($) -2495))) -((-2557 (((-1257 |#1|) |#1| (-917)) 18) (((-1257 |#1|) (-640 |#1|)) 25))) -(((-1170 |#1|) (-10 -7 (-15 -2557 ((-1257 |#1|) (-640 |#1|))) (-15 -2557 ((-1257 |#1|) |#1| (-917)))) (-1045)) (T -1170)) -((-2557 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1257 *3)) (-5 *1 (-1170 *3)) (-4 *3 (-1045)))) (-2557 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4)) (-5 *1 (-1170 *4))))) -(-10 -7 (-15 -2557 ((-1257 |#1|) (-640 |#1|))) (-15 -2557 ((-1257 |#1|) |#1| (-917)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| |#1| (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#1| (-1034 (-407 (-563))))) (((-3 |#1| "failed") $) NIL)) (-2589 (((-563) $) NIL (|has| |#1| (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| |#1| (-1034 (-407 (-563))))) ((|#1| $) NIL)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2227 (($ $) NIL (|has| |#1| (-452)))) (-3302 (($ $ |#1| (-967) $) NIL)) (-2712 (((-112) $) 17)) (-1528 (((-767) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-967)) NIL)) (-3187 (((-967) $) NIL)) (-3310 (($ (-1 (-967) (-967)) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#1| $) NIL)) (-3775 (($ $ (-967) |#1| $) NIL (-12 (|has| (-967) (-131)) (|has| |#1| (-555))))) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-555)))) (-1962 (((-967) $) NIL)) (-3166 ((|#1| $) NIL (|has| |#1| (-452)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) NIL) (($ (-407 (-563))) NIL (-2811 (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-1034 (-407 (-563))))))) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ (-967)) NIL)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#1| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-3790 (($) 11 T CONST)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 21)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1171 |#1|) (-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| (-967) (-131)) (-15 -3775 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045)) (T -1171)) -((-3775 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1171 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) -(-13 (-326 |#1| (-967)) (-10 -8 (IF (|has| |#1| (-555)) (IF (|has| (-967) (-131)) (-15 -3775 ($ $ (-967) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) -((-2568 (((-1173) (-1169) $) 25)) (-2670 (($) 29)) (-2590 (((-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-1169) $) 22)) (-2609 (((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3986 "void")) $) 41) (((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) 42) (((-1262) (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) 43)) (-2680 (((-1262) (-1169)) 58)) (-2599 (((-1262) (-1169) $) 55) (((-1262) (-1169)) 56) (((-1262)) 57)) (-2648 (((-1262) (-1169)) 37)) (-2629 (((-1169)) 36)) (-2749 (($) 34)) (-3036 (((-437) (-1169) (-437) (-1169) $) 45) (((-437) (-640 (-1169)) (-437) (-1169) $) 49) (((-437) (-1169) (-437)) 46) (((-437) (-1169) (-437) (-1169)) 50)) (-2639 (((-1169)) 35)) (-2062 (((-858) $) 28)) (-2659 (((-1262)) 30) (((-1262) (-1169)) 33)) (-2579 (((-640 (-1169)) (-1169) $) 24)) (-2618 (((-1262) (-1169) (-640 (-1169)) $) 38) (((-1262) (-1169) (-640 (-1169))) 39) (((-1262) (-640 (-1169))) 40))) -(((-1172) (-13 (-610 (-858)) (-10 -8 (-15 -2670 ($)) (-15 -2659 ((-1262))) (-15 -2659 ((-1262) (-1169))) (-15 -3036 ((-437) (-1169) (-437) (-1169) $)) (-15 -3036 ((-437) (-640 (-1169)) (-437) (-1169) $)) (-15 -3036 ((-437) (-1169) (-437))) (-15 -3036 ((-437) (-1169) (-437) (-1169))) (-15 -2648 ((-1262) (-1169))) (-15 -2639 ((-1169))) (-15 -2629 ((-1169))) (-15 -2618 ((-1262) (-1169) (-640 (-1169)) $)) (-15 -2618 ((-1262) (-1169) (-640 (-1169)))) (-15 -2618 ((-1262) (-640 (-1169)))) (-15 -2609 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3986 "void")) $)) (-15 -2609 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3986 "void")))) (-15 -2609 ((-1262) (-3 (|:| |fst| (-434)) (|:| -3986 "void")))) (-15 -2599 ((-1262) (-1169) $)) (-15 -2599 ((-1262) (-1169))) (-15 -2599 ((-1262))) (-15 -2680 ((-1262) (-1169))) (-15 -2749 ($)) (-15 -2590 ((-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-1169) $)) (-15 -2579 ((-640 (-1169)) (-1169) $)) (-15 -2568 ((-1173) (-1169) $))))) (T -1172)) -((-2670 (*1 *1) (-5 *1 (-1172))) (-2659 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2659 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-3036 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-3036 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *4 (-1169)) (-5 *1 (-1172)))) (-3036 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-3036 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) (-2648 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2639 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))) (-2629 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172)))) (-2618 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2618 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2618 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2609 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2609 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2609 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2599 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2599 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2599 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2680 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) (-2749 (*1 *1) (-5 *1 (-1172))) (-2590 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *1 (-1172)))) (-2579 (*1 *2 *3 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1172)) (-5 *3 (-1169)))) (-2568 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1173)) (-5 *1 (-1172))))) -(-13 (-610 (-858)) (-10 -8 (-15 -2670 ($)) (-15 -2659 ((-1262))) (-15 -2659 ((-1262) (-1169))) (-15 -3036 ((-437) (-1169) (-437) (-1169) $)) (-15 -3036 ((-437) (-640 (-1169)) (-437) (-1169) $)) (-15 -3036 ((-437) (-1169) (-437))) (-15 -3036 ((-437) (-1169) (-437) (-1169))) (-15 -2648 ((-1262) (-1169))) (-15 -2639 ((-1169))) (-15 -2629 ((-1169))) (-15 -2618 ((-1262) (-1169) (-640 (-1169)) $)) (-15 -2618 ((-1262) (-1169) (-640 (-1169)))) (-15 -2618 ((-1262) (-640 (-1169)))) (-15 -2609 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3986 "void")) $)) (-15 -2609 ((-1262) (-1169) (-3 (|:| |fst| (-434)) (|:| -3986 "void")))) (-15 -2609 ((-1262) (-3 (|:| |fst| (-434)) (|:| -3986 "void")))) (-15 -2599 ((-1262) (-1169) $)) (-15 -2599 ((-1262) (-1169))) (-15 -2599 ((-1262))) (-15 -2680 ((-1262) (-1169))) (-15 -2749 ($)) (-15 -2590 ((-3 (|:| |fst| (-434)) (|:| -3986 "void")) (-1169) $)) (-15 -2579 ((-640 (-1169)) (-1169) $)) (-15 -2568 ((-1173) (-1169) $)))) -((-2699 (((-640 (-640 (-3 (|:| -3359 (-1169)) (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $) 66)) (-2717 (((-640 (-3 (|:| -3359 (-1169)) (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $) 47)) (-2842 (($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-437))))) 17)) (-2680 (((-1262) $) 74)) (-2727 (((-640 (-1169)) $) 22)) (-2688 (((-1097) $) 60)) (-2738 (((-437) (-1169) $) 27)) (-2710 (((-640 (-1169)) $) 30)) (-2749 (($) 19)) (-3036 (((-437) (-640 (-1169)) (-437) $) 25) (((-437) (-1169) (-437) $) 24)) (-2062 (((-858) $) 9) (((-1181 (-1169) (-437)) $) 13))) -(((-1173) (-13 (-610 (-858)) (-10 -8 (-15 -2062 ((-1181 (-1169) (-437)) $)) (-15 -2749 ($)) (-15 -3036 ((-437) (-640 (-1169)) (-437) $)) (-15 -3036 ((-437) (-1169) (-437) $)) (-15 -2738 ((-437) (-1169) $)) (-15 -2727 ((-640 (-1169)) $)) (-15 -2717 ((-640 (-3 (|:| -3359 (-1169)) (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $)) (-15 -2710 ((-640 (-1169)) $)) (-15 -2699 ((-640 (-640 (-3 (|:| -3359 (-1169)) (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $)) (-15 -2688 ((-1097) $)) (-15 -2680 ((-1262) $)) (-15 -2842 ($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-437))))))))) (T -1173)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-1181 (-1169) (-437))) (-5 *1 (-1173)))) (-2749 (*1 *1) (-5 *1 (-1173))) (-3036 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *1 (-1173)))) (-3036 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1173)))) (-2738 (*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-437)) (-5 *1 (-1173)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173)))) (-2717 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-640 (-3 (|:| -3359 (-1169)) (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) (-5 *1 (-1173)))) (-2710 (*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173)))) (-2699 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-3 (|:| -3359 (-1169)) (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))))) (-5 *1 (-1173)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1173)))) (-2680 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1173)))) (-2842 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-437))))) (-5 *1 (-1173))))) -(-13 (-610 (-858)) (-10 -8 (-15 -2062 ((-1181 (-1169) (-437)) $)) (-15 -2749 ($)) (-15 -3036 ((-437) (-640 (-1169)) (-437) $)) (-15 -3036 ((-437) (-1169) (-437) $)) (-15 -2738 ((-437) (-1169) $)) (-15 -2727 ((-640 (-1169)) $)) (-15 -2717 ((-640 (-3 (|:| -3359 (-1169)) (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))) (-434) $)) (-15 -2710 ((-640 (-1169)) $)) (-15 -2699 ((-640 (-640 (-3 (|:| -3359 (-1169)) (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) $)) (-15 -2688 ((-1097) $)) (-15 -2680 ((-1262) $)) (-15 -2842 ($ (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-437)))))))) -((-2049 (((-112) $ $) NIL)) (-2671 (((-3 (-563) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-1169) "failed") $) 41) (((-3 (-1151) "failed") $) 47)) (-2589 (((-563) $) 30) (((-225) $) 36) (((-1169) $) 42) (((-1151) $) 48)) (-1536 (((-112) $) 53)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2778 (((-3 (-563) (-225) (-1169) (-1151) $) $) 55)) (-2767 (((-640 $) $) 57)) (-2802 (((-1097) $) 24) (($ (-1097)) 25)) (-2757 (((-112) $) 56)) (-2062 (((-858) $) 23) (($ (-563)) 26) (($ (-225)) 32) (($ (-1169)) 38) (($ (-1151)) 44) (((-536) $) 59) (((-563) $) 31) (((-225) $) 37) (((-1169) $) 43) (((-1151) $) 49)) (-3778 (((-112) $ (|[\|\|]| (-563))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-1169))) 19) (((-112) $ (|[\|\|]| (-1151))) 16)) (-1547 (($ (-1169) (-640 $)) 51) (($ $ (-640 $)) 52)) (-2238 (((-563) $) 27) (((-225) $) 33) (((-1169) $) 39) (((-1151) $) 45)) (-2943 (((-112) $ $) 7))) -(((-1174) (-13 (-1252) (-1093) (-1034 (-563)) (-1034 (-225)) (-1034 (-1169)) (-1034 (-1151)) (-610 (-536)) (-10 -8 (-15 -2802 ((-1097) $)) (-15 -2802 ($ (-1097))) (-15 -2062 ((-563) $)) (-15 -2238 ((-563) $)) (-15 -2062 ((-225) $)) (-15 -2238 ((-225) $)) (-15 -2062 ((-1169) $)) (-15 -2238 ((-1169) $)) (-15 -2062 ((-1151) $)) (-15 -2238 ((-1151) $)) (-15 -1547 ($ (-1169) (-640 $))) (-15 -1547 ($ $ (-640 $))) (-15 -1536 ((-112) $)) (-15 -2778 ((-3 (-563) (-225) (-1169) (-1151) $) $)) (-15 -2767 ((-640 $) $)) (-15 -2757 ((-112) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-563)))) (-15 -3778 ((-112) $ (|[\|\|]| (-225)))) (-15 -3778 ((-112) $ (|[\|\|]| (-1169)))) (-15 -3778 ((-112) $ (|[\|\|]| (-1151))))))) (T -1174)) -((-2802 (*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) (-2802 (*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) (-2238 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) (-1547 (*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-1174))) (-5 *1 (-1174)))) (-1547 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))) (-2778 (*1 *2 *1) (-12 (-5 *2 (-3 (-563) (-225) (-1169) (-1151) (-1174))) (-5 *1 (-1174)))) (-2767 (*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)) (-5 *1 (-1174)))) (-3778 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)) (-5 *1 (-1174))))) -(-13 (-1252) (-1093) (-1034 (-563)) (-1034 (-225)) (-1034 (-1169)) (-1034 (-1151)) (-610 (-536)) (-10 -8 (-15 -2802 ((-1097) $)) (-15 -2802 ($ (-1097))) (-15 -2062 ((-563) $)) (-15 -2238 ((-563) $)) (-15 -2062 ((-225) $)) (-15 -2238 ((-225) $)) (-15 -2062 ((-1169) $)) (-15 -2238 ((-1169) $)) (-15 -2062 ((-1151) $)) (-15 -2238 ((-1151) $)) (-15 -1547 ($ (-1169) (-640 $))) (-15 -1547 ($ $ (-640 $))) (-15 -1536 ((-112) $)) (-15 -2778 ((-3 (-563) (-225) (-1169) (-1151) $) $)) (-15 -2767 ((-640 $) $)) (-15 -2757 ((-112) $)) (-15 -3778 ((-112) $ (|[\|\|]| (-563)))) (-15 -3778 ((-112) $ (|[\|\|]| (-225)))) (-15 -3778 ((-112) $ (|[\|\|]| (-1169)))) (-15 -3778 ((-112) $ (|[\|\|]| (-1151)))))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) 24)) (-3684 (($) 14 T CONST)) (-4301 (($) 29)) (-3489 (($ $ $) NIL) (($) 21 T CONST)) (-4105 (($ $ $) NIL) (($) 22 T CONST)) (-3267 (((-917) $) 26)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) 25)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-1175 |#1|) (-13 (-840) (-10 -8 (-15 -3684 ($) -2495))) (-917)) (T -1175)) -((-3684 (*1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-917))))) -(-13 (-840) (-10 -8 (-15 -3684 ($) -2495))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-2519 ((|#1| $) 44)) (-2969 (((-112) $ (-768)) 8)) (-2818 (($) 7 T CONST)) (-2881 ((|#1| |#1| $) 46)) (-2226 ((|#1| $) 45)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2828 ((|#1| $) 39)) (-2974 (($ |#1| $) 40)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1292 ((|#1| $) 41)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-3728 (((-768) $) 43)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) 42)) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-1115 |#1|) (-140) (-1209)) (T -1115)) +((-2881 (*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-2226 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-2519 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4411) (-15 -2881 (|t#1| |t#1| $)) (-15 -2226 (|t#1| $)) (-15 -2519 (|t#1| $)) (-15 -3728 ((-768) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-3809 ((|#3| $) 87)) (-2111 (((-3 (-564) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 |#3| "failed") $) 50)) (-2239 (((-564) $) NIL) (((-407 (-564)) $) NIL) ((|#3| $) 47)) (-3039 (((-685 (-564)) (-685 $)) NIL) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL) (((-2 (|:| -2069 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 $) (-1259 $)) 84) (((-685 |#3|) (-685 $)) 76)) (-4117 (($ $ (-1 |#3| |#3|)) 28) (($ $ (-1 |#3| |#3|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170)) NIL) (($ $ (-768)) NIL) (($ $) NIL)) (-2865 ((|#3| $) 89)) (-1696 ((|#4| $) 43)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ |#3|) 25)) (** (($ $ (-918)) NIL) (($ $ (-768)) 24) (($ $ (-564)) 95))) +(((-1116 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -2865 (|#3| |#1|)) (-15 -3809 (|#3| |#1|)) (-15 -1696 (|#4| |#1|)) (-15 -3039 ((-685 |#3|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -3742 (|#1| |#3|)) (-15 -2111 ((-3 |#3| "failed") |#1|)) (-15 -2239 (|#3| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3742 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -3742 ((-859) |#1|))) (-1117 |#2| |#3| |#4| |#5|) (-768) (-1046) (-238 |#2| |#3|) (-238 |#2| |#3|)) (T -1116)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-564))) (-15 -2865 (|#3| |#1|)) (-15 -3809 (|#3| |#1|)) (-15 -1696 (|#4| |#1|)) (-15 -3039 ((-685 |#3|) (-685 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 |#3|)) (|:| |vec| (-1259 |#3|))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 |#1|) (-1259 |#1|))) (-15 -3039 ((-685 (-564)) (-685 |#1|))) (-15 -3742 (|#1| |#3|)) (-15 -2111 ((-3 |#3| "failed") |#1|)) (-15 -2239 (|#3| |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|) (-768))) (-15 -4117 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3742 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3809 ((|#2| $) 71)) (-2335 (((-112) $) 111)) (-3239 (((-3 $ "failed") $ $) 19)) (-1695 (((-112) $) 109)) (-2969 (((-112) $ (-768)) 101)) (-2294 (($ |#2|) 74)) (-2818 (($) 17 T CONST)) (-2903 (($ $) 128 (|has| |#2| (-307)))) (-4236 ((|#3| $ (-564)) 123)) (-2111 (((-3 (-564) "failed") $) 86 (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) 83 (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) 80)) (-2239 (((-564) $) 85 (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) 82 (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) 81)) (-3039 (((-685 (-564)) (-685 $)) 78 (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 77 (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 76) (((-685 |#2|) (-685 $)) 75)) (-3951 (((-3 $ "failed") $) 33)) (-1544 (((-768) $) 129 (|has| |#2| (-556)))) (-2540 ((|#2| $ (-564) (-564)) 121)) (-3616 (((-641 |#2|) $) 94 (|has| $ (-6 -4411)))) (-3840 (((-112) $) 31)) (-3735 (((-768) $) 130 (|has| |#2| (-556)))) (-1973 (((-641 |#4|) $) 131 (|has| |#2| (-556)))) (-2659 (((-768) $) 117)) (-2671 (((-768) $) 118)) (-2275 (((-112) $ (-768)) 102)) (-3786 ((|#2| $) 66 (|has| |#2| (-6 (-4413 "*"))))) (-1305 (((-564) $) 113)) (-1392 (((-564) $) 115)) (-1386 (((-641 |#2|) $) 93 (|has| $ (-6 -4411)))) (-2431 (((-112) |#2| $) 91 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-4212 (((-564) $) 114)) (-2739 (((-564) $) 116)) (-1915 (($ (-641 (-641 |#2|))) 108)) (-2606 (($ (-1 |#2| |#2|) $) 98 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#2| |#2| |#2|) $ $) 125) (($ (-1 |#2| |#2|) $) 99)) (-3299 (((-641 (-641 |#2|)) $) 119)) (-1500 (((-112) $ (-768)) 103)) (-2217 (((-1152) $) 9)) (-4110 (((-3 $ "failed") $) 65 (|has| |#2| (-363)))) (-3864 (((-1114) $) 10)) (-1321 (((-3 $ "failed") $ |#2|) 126 (|has| |#2| (-556)))) (-3736 (((-112) (-1 (-112) |#2|) $) 96 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#2|))) 90 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 89 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 88 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 87 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) 107)) (-4003 (((-112) $) 104)) (-3434 (($) 105)) (-4382 ((|#2| $ (-564) (-564) |#2|) 122) ((|#2| $ (-564) (-564)) 120)) (-4117 (($ $ (-1 |#2| |#2|)) 52) (($ $ (-1 |#2| |#2|) (-768)) 51) (($ $ (-641 (-1170)) (-641 (-768))) 44 (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) 43 (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) 42 (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) 41 (|has| |#2| (-897 (-1170)))) (($ $ (-768)) 39 (|has| |#2| (-233))) (($ $) 37 (|has| |#2| (-233)))) (-2865 ((|#2| $) 70)) (-3545 (($ (-641 |#2|)) 73)) (-2041 (((-112) $) 110)) (-1696 ((|#3| $) 72)) (-3337 ((|#2| $) 67 (|has| |#2| (-6 (-4413 "*"))))) (-3873 (((-768) (-1 (-112) |#2|) $) 95 (|has| $ (-6 -4411))) (((-768) |#2| $) 92 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 106)) (-1346 ((|#4| $ (-564)) 124)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 84 (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) 79)) (-3270 (((-768)) 28 T CONST)) (-1417 (((-112) (-1 (-112) |#2|) $) 97 (|has| $ (-6 -4411)))) (-3938 (((-112) $) 112)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-768)) 49) (($ $ (-641 (-1170)) (-641 (-768))) 48 (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) 47 (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) 46 (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) 45 (|has| |#2| (-897 (-1170)))) (($ $ (-768)) 40 (|has| |#2| (-233))) (($ $) 38 (|has| |#2| (-233)))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#2|) 127 (|has| |#2| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 64 (|has| |#2| (-363)))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#2|) 133) (($ |#2| $) 132) ((|#4| $ |#4|) 69) ((|#3| |#3| $) 68)) (-2641 (((-768) $) 100 (|has| $ (-6 -4411))))) +(((-1117 |#1| |#2| |#3| |#4|) (-140) (-768) (-1046) (-238 |t#1| |t#2|) (-238 |t#1| |t#2|)) (T -1117)) +((-2294 (*1 *1 *2) (-12 (-4 *2 (-1046)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)))) (-3545 (*1 *1 *2) (-12 (-5 *2 (-641 *4)) (-4 *4 (-1046)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)))) (-1696 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (-3809 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))) (-2865 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (-4 *2 (-1046)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *2 (-238 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *2 (-238 *3 *4)) (-4 *5 (-238 *3 *4)))) (-3337 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) (-4110 (*1 *1 *1) (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363))))) +(-13 (-231 |t#2|) (-111 |t#2| |t#2|) (-1049 |t#1| |t#1| |t#2| |t#3| |t#4|) (-411 |t#2|) (-377 |t#2|) (-10 -8 (IF (|has| |t#2| (-172)) (-6 (-714 |t#2|)) |%noBranch|) (-15 -2294 ($ |t#2|)) (-15 -3545 ($ (-641 |t#2|))) (-15 -1696 (|t#3| $)) (-15 -3809 (|t#2| $)) (-15 -2865 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4413 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3337 (|t#2| $)) (-15 -3786 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-363)) (PROGN (-15 -4110 ((-3 $ "failed") $)) (-15 ** ($ $ (-564)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4413 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 #0=(-407 (-564))) |has| |#2| (-1035 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-231 |#2|) . T) ((-233) |has| |#2| (-233)) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-377 |#2|) . T) ((-411 |#2|) . T) ((-489 |#2|) . T) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-644 |#2|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#2| (-637 (-564))) ((-637 |#2|) . T) ((-714 |#2|) -4030 (|has| |#2| (-172)) (|has| |#2| (-6 (-4413 "*")))) ((-723) . T) ((-897 (-1170)) |has| |#2| (-897 (-1170))) ((-1049 |#1| |#1| |#2| |#3| |#4|) . T) ((-1035 #0#) |has| |#2| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#2| (-1035 (-564))) ((-1035 |#2|) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1209) . T)) +((-1587 ((|#4| |#4|) 82)) (-3979 ((|#4| |#4|) 77)) (-3848 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|))) |#4| |#3|) 92)) (-2144 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 81)) (-2508 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 79))) +(((-1118 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3979 (|#4| |#4|)) (-15 -2508 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1587 (|#4| |#4|)) (-15 -2144 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3848 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|))) |#4| |#3|))) (-307) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1118)) +((-3848 (*1 *2 *3 *4) (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) (-2144 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-1587 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-2508 (*1 *2 *3) (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(-10 -7 (-15 -3979 (|#4| |#4|)) (-15 -2508 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1587 (|#4| |#4|)) (-15 -2144 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3848 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -4265 (-641 |#3|))) |#4| |#3|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 18)) (-4269 (((-641 |#2|) $) 176)) (-4097 (((-1166 $) $ |#2|) 62) (((-1166 |#1|) $) 51)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 116 (|has| |#1| (-556)))) (-1948 (($ $) 118 (|has| |#1| (-556)))) (-1832 (((-112) $) 120 (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 |#2|)) 215)) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) 170) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 |#2| "failed") $) NIL)) (-2239 ((|#1| $) 168) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) ((|#2| $) NIL)) (-2448 (($ $ $ |#2|) NIL (|has| |#1| (-172)))) (-1348 (($ $) 219)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) 90)) (-1989 (($ $) NIL (|has| |#1| (-452))) (($ $ |#2|) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-1866 (($ $ |#1| (-531 |#2|) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#1| (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#1| (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-3840 (((-112) $) 20)) (-2918 (((-768) $) 30)) (-4257 (($ (-1166 |#1|) |#2|) 56) (($ (-1166 $) |#2|) 73)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) 41)) (-4245 (($ |#1| (-531 |#2|)) 80) (($ $ |#2| (-768)) 60) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ |#2|) NIL)) (-3469 (((-531 |#2|) $) 207) (((-768) $ |#2|) 208) (((-641 (-768)) $ (-641 |#2|)) 209)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-531 |#2|) (-531 |#2|)) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) 128)) (-1306 (((-3 |#2| "failed") $) 179)) (-1309 (($ $) 218)) (-1320 ((|#1| $) 45)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2217 (((-1152) $) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| |#2|) (|:| -2515 (-768))) "failed") $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) 42)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 148 (|has| |#1| (-452)))) (-2577 (($ (-641 $)) 153 (|has| |#1| (-452))) (($ $ $) 138 (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#1| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-906)))) (-1321 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ |#2| |#1|) 182) (($ $ (-641 |#2|) (-641 |#1|)) 197) (($ $ |#2| $) 181) (($ $ (-641 |#2|) (-641 $)) 196)) (-4284 (($ $ |#2|) NIL (|has| |#1| (-172)))) (-4117 (($ $ |#2|) 217) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2266 (((-531 |#2|) $) 203) (((-768) $ |#2|) 198) (((-641 (-768)) $ (-641 |#2|)) 201)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| |#1| (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| |#1| (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| |#1| (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4329 ((|#1| $) 134 (|has| |#1| (-452))) (($ $ |#2|) 137 (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-3742 (((-859) $) 159) (($ (-564)) 84) (($ |#1|) 85) (($ |#2|) 33) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-3110 (((-641 |#1|) $) 162)) (-2856 ((|#1| $ (-531 |#2|)) 82) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) 87 T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) 123 (|has| |#1| (-556)))) (-4311 (($) 12 T CONST)) (-4321 (($) 14 T CONST)) (-2124 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) 106)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) 132 (|has| |#1| (-363)))) (-1790 (($ $) 93) (($ $ $) 104)) (-1780 (($ $ $) 57)) (** (($ $ (-918)) 110) (($ $ (-768)) 109)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 96) (($ $ $) 74) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 99) (($ $ |#1|) NIL))) +(((-1119 |#1| |#2|) (-946 |#1| (-531 |#2|) |#2|) (-1046) (-847)) (T -1119)) +NIL +(-946 |#1| (-531 |#2|) |#2|) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 |#2|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2451 (($ $) 151 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2428 (($ $) 147 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2473 (($ $) 155 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3217 (((-949 |#1|) $ (-768)) NIL) (((-949 |#1|) $ (-768) (-768)) NIL)) (-1988 (((-112) $) NIL)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-768) $ |#2|) NIL) (((-768) $ |#2| (-768)) NIL)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2005 (((-112) $) NIL)) (-4245 (($ $ (-641 |#2|) (-641 (-531 |#2|))) NIL) (($ $ |#2| (-531 |#2|)) NIL) (($ |#1| (-531 |#2|)) NIL) (($ $ |#2| (-768)) 62) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2192 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3128 (($ $ |#2|) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ |#2| |#1|) 174 (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) NIL)) (-4195 (($ (-1 $) |#2| |#1|) 173 (|has| |#1| (-38 (-407 (-564)))))) (-3004 (($ $ (-768)) 16)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4118 (($ $) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (($ $ |#2| $) 105) (($ $ (-641 |#2|) (-641 $)) 98) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-4117 (($ $ |#2|) 108) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-2266 (((-531 |#2|) $) NIL)) (-3650 (((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|))) 86)) (-2484 (($ $) 157 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 153 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 149 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 18)) (-3742 (((-859) $) 198) (($ (-564)) NIL) (($ |#1|) 45 (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#2|) 69) (($ |#3|) 67)) (-2856 ((|#1| $ (-531 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL) ((|#3| $ (-768)) 43)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2521 (($ $) 163 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) 159 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 167 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-4065 (($ $) 169 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 165 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 161 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 52 T CONST)) (-4321 (($) 61 T CONST)) (-2124 (($ $ |#2|) NIL) (($ $ (-641 |#2|)) NIL) (($ $ |#2| (-768)) NIL) (($ $ (-641 |#2|) (-641 (-768))) NIL)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#1|) 200 (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 65)) (** (($ $ (-918)) NIL) (($ $ (-768)) 76) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 111 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 64) (($ $ (-407 (-564))) 116 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 114 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 48) (($ $ |#1|) 49) (($ |#3| $) 47))) +(((-1120 |#1| |#2| |#3|) (-13 (-737 |#1| |#2|) (-10 -8 (-15 -2856 (|#3| $ (-768))) (-15 -3742 ($ |#2|)) (-15 -3742 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3650 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $ |#2| |#1|)) (-15 -4195 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1046) (-847) (-946 |#1| (-531 |#2|) |#2|)) (T -1120)) +((-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *2 (-946 *4 (-531 *5) *5)) (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-847)))) (-3742 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-3742 (*1 *1 *2) (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) (-4 *2 (-946 *3 (-531 *4) *4)))) (-3650 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-847)) (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1046)) (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7)))) (-3128 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) (-4195 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *1 (-1120 *4 *3 *5)) (-4 *5 (-946 *4 (-531 *3) *3))))) +(-13 (-737 |#1| |#2|) (-10 -8 (-15 -2856 (|#3| $ (-768))) (-15 -3742 ($ |#2|)) (-15 -3742 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3650 ((-1 (-1150 |#3|) |#3|) (-641 |#2|) (-641 (-1150 |#3|)))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $ |#2| |#1|)) (-15 -4195 ($ (-1 $) |#2| |#1|))) |%noBranch|))) +((-3732 (((-112) $ $) 7)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) 85)) (-1454 (((-641 $) (-641 |#4|)) 86) (((-641 $) (-641 |#4|) (-112)) 111)) (-4269 (((-641 |#3|) $) 33)) (-3547 (((-112) $) 26)) (-4281 (((-112) $) 17 (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) 101) (((-112) $) 97)) (-2244 ((|#4| |#4| $) 92)) (-2249 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| $) 126)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) 27)) (-2969 (((-112) $ (-768)) 44)) (-3548 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-2818 (($) 45 T CONST)) (-4076 (((-112) $) 22 (|has| |#1| (-556)))) (-2072 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2494 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3791 (((-112) $) 25 (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2868 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) 36)) (-2239 (($ (-641 |#4|)) 35)) (-1977 (((-3 $ "failed") $) 82)) (-4263 ((|#4| |#4| $) 89)) (-1996 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2920 ((|#4| |#4| $) 87)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) 105)) (-3254 (((-112) |#4| $) 136)) (-2954 (((-112) |#4| $) 133)) (-2078 (((-112) |#4| $) 137) (((-112) $) 134)) (-3616 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) 104) (((-112) $) 103)) (-3782 ((|#3| $) 34)) (-2275 (((-112) $ (-768)) 43)) (-1386 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 47)) (-3483 (((-641 |#3|) $) 32)) (-1410 (((-112) |#3| $) 31)) (-1500 (((-112) $ (-768)) 42)) (-2217 (((-1152) $) 9)) (-3530 (((-3 |#4| (-641 $)) |#4| |#4| $) 128)) (-2643 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| |#4| $) 127)) (-2389 (((-3 |#4| "failed") $) 83)) (-2999 (((-641 $) |#4| $) 129)) (-3213 (((-3 (-112) (-641 $)) |#4| $) 132)) (-1614 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 $))) |#4| $) 131) (((-112) |#4| $) 130)) (-1353 (((-641 $) |#4| $) 125) (((-641 $) (-641 |#4|) $) 124) (((-641 $) (-641 |#4|) (-641 $)) 123) (((-641 $) |#4| (-641 $)) 122)) (-3901 (($ |#4| $) 117) (($ (-641 |#4|) $) 116)) (-4258 (((-641 |#4|) $) 107)) (-1591 (((-112) |#4| $) 99) (((-112) $) 95)) (-4266 ((|#4| |#4| $) 90)) (-4179 (((-112) $ $) 110)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) 100) (((-112) $) 96)) (-2601 ((|#4| |#4| $) 91)) (-3864 (((-1114) $) 10)) (-1966 (((-3 |#4| "failed") $) 84)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3465 (((-3 $ "failed") $ |#4|) 78)) (-3004 (($ $ |#4|) 77) (((-641 $) |#4| $) 115) (((-641 $) |#4| (-641 $)) 114) (((-641 $) (-641 |#4|) $) 113) (((-641 $) (-641 |#4|) (-641 $)) 112)) (-3736 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) 38)) (-4003 (((-112) $) 41)) (-3434 (($) 40)) (-2266 (((-768) $) 106)) (-3873 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-3896 (($ $) 39)) (-2235 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 60)) (-2031 (($ $ |#3|) 28)) (-2401 (($ $ |#3|) 30)) (-2158 (($ $) 88)) (-2624 (($ $ |#3|) 29)) (-3742 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1849 (((-768) $) 76 (|has| |#3| (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-4020 (((-641 $) |#4| $) 121) (((-641 $) |#4| (-641 $)) 120) (((-641 $) (-641 |#4|) $) 119) (((-641 $) (-641 |#4|) (-641 $)) 118)) (-1417 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) 81)) (-3485 (((-112) |#4| $) 135)) (-2755 (((-112) |#3| $) 80)) (-1705 (((-112) $ $) 6)) (-2641 (((-768) $) 46 (|has| $ (-6 -4411))))) +(((-1121 |#1| |#2| |#3| |#4|) (-140) (-452) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1121)) +NIL +(-13 (-1103 |t#1| |t#2| |t#3| |t#4|) (-781 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-781 |#1| |#2| |#3| |#4|) . T) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1066 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1103 |#1| |#2| |#3| |#4|) . T) ((-1202 |#1| |#2| |#3| |#4|) . T) ((-1209) . T)) +((-2443 (((-641 |#2|) |#1|) 15)) (-3290 (((-641 |#2|) |#2| |#2| |#2| |#2| |#2|) 47) (((-641 |#2|) |#1|) 63)) (-3626 (((-641 |#2|) |#2| |#2| |#2|) 45) (((-641 |#2|) |#1|) 61)) (-2034 ((|#2| |#1|) 56)) (-3762 (((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20)) (-3194 (((-641 |#2|) |#2| |#2|) 42) (((-641 |#2|) |#1|) 60)) (-3733 (((-641 |#2|) |#2| |#2| |#2| |#2|) 46) (((-641 |#2|) |#1|) 62)) (-3522 ((|#2| |#2| |#2| |#2| |#2| |#2|) 55)) (-4388 ((|#2| |#2| |#2| |#2|) 53)) (-2875 ((|#2| |#2| |#2|) 52)) (-3963 ((|#2| |#2| |#2| |#2| |#2|) 54))) +(((-1122 |#1| |#2|) (-10 -7 (-15 -2443 ((-641 |#2|) |#1|)) (-15 -2034 (|#2| |#1|)) (-15 -3762 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3194 ((-641 |#2|) |#1|)) (-15 -3626 ((-641 |#2|) |#1|)) (-15 -3733 ((-641 |#2|) |#1|)) (-15 -3290 ((-641 |#2|) |#1|)) (-15 -3194 ((-641 |#2|) |#2| |#2|)) (-15 -3626 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -3733 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3290 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2875 (|#2| |#2| |#2|)) (-15 -4388 (|#2| |#2| |#2| |#2|)) (-15 -3963 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3522 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1235 |#2|) (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (T -1122)) +((-3522 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3963 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-4388 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2875 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-3290 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3733 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3626 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3194 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3)))) (-3290 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3733 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3626 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3194 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) (-3762 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-2 (|:| |solns| (-641 *5)) (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5)))) (-2034 (*1 *2 *3) (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2)))) (-2443 (*1 *2 *3) (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -2443 ((-641 |#2|) |#1|)) (-15 -2034 (|#2| |#1|)) (-15 -3762 ((-2 (|:| |solns| (-641 |#2|)) (|:| |maps| (-641 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3194 ((-641 |#2|) |#1|)) (-15 -3626 ((-641 |#2|) |#1|)) (-15 -3733 ((-641 |#2|) |#1|)) (-15 -3290 ((-641 |#2|) |#1|)) (-15 -3194 ((-641 |#2|) |#2| |#2|)) (-15 -3626 ((-641 |#2|) |#2| |#2| |#2|)) (-15 -3733 ((-641 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3290 ((-641 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2875 (|#2| |#2| |#2|)) (-15 -4388 (|#2| |#2| |#2| |#2|)) (-15 -3963 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3522 (|#2| |#2| |#2| |#2| |#2| |#2|))) +((-2485 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|))))) 128) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170))) 127) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|)))) 125) (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 123) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|)))) 101) (((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170)) 102) (((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|))) 96) (((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170)) 82)) (-1361 (((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 121) (((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170)) 54)) (-3448 (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)) 132) (((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170)) 131))) +(((-1123 |#1|) (-10 -7 (-15 -2485 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -2485 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)))) (-15 -2485 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2485 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))))) (-15 -2485 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2485 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))))) (-15 -2485 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -2485 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1361 ((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -1361 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3448 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -3448 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)))) (-13 (-307) (-847) (-147))) (T -1123)) +((-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-3448 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) (-5 *1 (-1123 *5)))) (-1361 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-316 *5))) (-5 *1 (-1123 *5)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-294 (-407 (-949 *5))))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1123 *5))))) +(-10 -7 (-15 -2485 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)) (-1170))) (-15 -2485 ((-641 (-294 (-316 |#1|))) (-407 (-949 |#1|)))) (-15 -2485 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2485 ((-641 (-294 (-316 |#1|))) (-294 (-407 (-949 |#1|))))) (-15 -2485 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2485 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-407 (-949 |#1|))))) (-15 -2485 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -2485 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -1361 ((-641 (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -1361 ((-641 (-641 (-316 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -3448 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -3448 ((-1159 (-641 (-316 |#1|)) (-641 (-294 (-316 |#1|)))) (-407 (-949 |#1|)) (-1170)))) +((-3494 (((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)) 38)) (-3819 (((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|)))) 49))) +(((-1124 |#1|) (-10 -7 (-15 -3819 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -3494 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) (-13 (-556) (-847))) (T -1124)) +((-3494 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) (-5 *4 (-564)) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-1124 *5)))) (-3819 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-847))) (-5 *1 (-1124 *3))))) +(-10 -7 (-15 -3819 ((-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))) (-407 (-1166 (-316 |#1|))))) (-15 -3494 ((-407 (-1166 (-316 |#1|))) (-1259 (-316 |#1|)) (-407 (-1166 (-316 |#1|))) (-564)))) +((-2443 (((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))) 257) (((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170)) 29) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170)) 35) (((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|))) 34) (((-641 (-294 (-316 |#1|))) (-316 |#1|)) 30))) +(((-1125 |#1|) (-10 -7 (-15 -2443 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -2443 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -2443 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -2443 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -2443 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (T -1125)) +((-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) (-5 *3 (-641 (-294 (-316 *5)))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-316 *5)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) (-5 *3 (-294 (-316 *5))))) (-2443 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-294 (-316 *4))))) (-2443 (*1 *2 *3) (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) (-5 *3 (-316 *4))))) +(-10 -7 (-15 -2443 ((-641 (-294 (-316 |#1|))) (-316 |#1|))) (-15 -2443 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)))) (-15 -2443 ((-641 (-294 (-316 |#1|))) (-294 (-316 |#1|)) (-1170))) (-15 -2443 ((-641 (-294 (-316 |#1|))) (-316 |#1|) (-1170))) (-15 -2443 ((-641 (-641 (-294 (-316 |#1|)))) (-641 (-294 (-316 |#1|))) (-641 (-1170))))) +((-2576 ((|#2| |#2|) 30 (|has| |#1| (-847))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 27)) (-1855 ((|#2| |#2|) 29 (|has| |#1| (-847))) ((|#2| |#2| (-1 (-112) |#1| |#1|)) 22))) +(((-1126 |#1| |#2|) (-10 -7 (-15 -1855 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2576 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-847)) (PROGN (-15 -1855 (|#2| |#2|)) (-15 -2576 (|#2| |#2|))) |%noBranch|)) (-1209) (-13 (-602 (-564) |#1|) (-10 -7 (-6 -4411) (-6 -4412)))) (T -1126)) +((-2576 (*1 *2 *2) (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4411) (-6 -4412)))))) (-1855 (*1 *2 *2) (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4411) (-6 -4412)))))) (-2576 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4411) (-6 -4412)))))) (-1855 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4411) (-6 -4412))))))) +(-10 -7 (-15 -1855 (|#2| |#2| (-1 (-112) |#1| |#1|))) (-15 -2576 (|#2| |#2| (-1 (-112) |#1| |#1|))) (IF (|has| |#1| (-847)) (PROGN (-15 -1855 (|#2| |#2|)) (-15 -2576 (|#2| |#2|))) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-3388 (((-1158 3 |#1|) $) 142)) (-3730 (((-112) $) 100)) (-3590 (($ $ (-641 (-940 |#1|))) 44) (($ $ (-641 (-641 |#1|))) 103) (($ (-641 (-940 |#1|))) 102) (((-641 (-940 |#1|)) $) 101)) (-2403 (((-112) $) 71)) (-2713 (($ $ (-940 |#1|)) 75) (($ $ (-641 |#1|)) 80) (($ $ (-768)) 82) (($ (-940 |#1|)) 76) (((-940 |#1|) $) 74)) (-3226 (((-2 (|:| -3132 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $) 140)) (-4113 (((-768) $) 53)) (-2660 (((-768) $) 52)) (-3757 (($ $ (-768) (-940 |#1|)) 67)) (-3095 (((-112) $) 113)) (-1834 (($ $ (-641 (-641 (-940 |#1|))) (-641 (-171)) (-171)) 120) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 122) (($ $ (-641 (-641 (-940 |#1|))) (-112) (-112)) 117) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 129) (($ (-641 (-641 (-940 |#1|)))) 118) (($ (-641 (-641 (-940 |#1|))) (-112) (-112)) 119) (((-641 (-641 (-940 |#1|))) $) 116)) (-2164 (($ (-641 $)) 56) (($ $ $) 57)) (-3845 (((-641 (-171)) $) 135)) (-3007 (((-641 (-940 |#1|)) $) 132)) (-3511 (((-641 (-641 (-171))) $) 134)) (-1917 (((-641 (-641 (-641 (-940 |#1|)))) $) NIL)) (-1661 (((-641 (-641 (-641 (-768)))) $) 133)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2310 (((-768) $ (-641 (-940 |#1|))) 65)) (-2104 (((-112) $) 83)) (-3910 (($ $ (-641 (-940 |#1|))) 85) (($ $ (-641 (-641 |#1|))) 91) (($ (-641 (-940 |#1|))) 86) (((-641 (-940 |#1|)) $) 84)) (-4251 (($) 48) (($ (-1158 3 |#1|)) 49)) (-3896 (($ $) 63)) (-4123 (((-641 $) $) 62)) (-1526 (($ (-641 $)) 59)) (-2712 (((-641 $) $) 61)) (-3742 (((-859) $) 147)) (-2206 (((-112) $) 93)) (-4053 (($ $ (-641 (-940 |#1|))) 95) (($ $ (-641 (-641 |#1|))) 98) (($ (-641 (-940 |#1|))) 96) (((-641 (-940 |#1|)) $) 94)) (-2210 (($ $) 141)) (-1705 (((-112) $ $) NIL))) +(((-1127 |#1|) (-1128 |#1|) (-1046)) (T -1127)) +NIL +(-1128 |#1|) +((-3732 (((-112) $ $) 7)) (-3388 (((-1158 3 |#1|) $) 13)) (-3730 (((-112) $) 29)) (-3590 (($ $ (-641 (-940 |#1|))) 33) (($ $ (-641 (-641 |#1|))) 32) (($ (-641 (-940 |#1|))) 31) (((-641 (-940 |#1|)) $) 30)) (-2403 (((-112) $) 44)) (-2713 (($ $ (-940 |#1|)) 49) (($ $ (-641 |#1|)) 48) (($ $ (-768)) 47) (($ (-940 |#1|)) 46) (((-940 |#1|) $) 45)) (-3226 (((-2 (|:| -3132 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $) 15)) (-4113 (((-768) $) 58)) (-2660 (((-768) $) 59)) (-3757 (($ $ (-768) (-940 |#1|)) 50)) (-3095 (((-112) $) 21)) (-1834 (($ $ (-641 (-641 (-940 |#1|))) (-641 (-171)) (-171)) 28) (($ $ (-641 (-641 (-641 |#1|))) (-641 (-171)) (-171)) 27) (($ $ (-641 (-641 (-940 |#1|))) (-112) (-112)) 26) (($ $ (-641 (-641 (-641 |#1|))) (-112) (-112)) 25) (($ (-641 (-641 (-940 |#1|)))) 24) (($ (-641 (-641 (-940 |#1|))) (-112) (-112)) 23) (((-641 (-641 (-940 |#1|))) $) 22)) (-2164 (($ (-641 $)) 57) (($ $ $) 56)) (-3845 (((-641 (-171)) $) 16)) (-3007 (((-641 (-940 |#1|)) $) 20)) (-3511 (((-641 (-641 (-171))) $) 17)) (-1917 (((-641 (-641 (-641 (-940 |#1|)))) $) 18)) (-1661 (((-641 (-641 (-641 (-768)))) $) 19)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-2310 (((-768) $ (-641 (-940 |#1|))) 51)) (-2104 (((-112) $) 39)) (-3910 (($ $ (-641 (-940 |#1|))) 43) (($ $ (-641 (-641 |#1|))) 42) (($ (-641 (-940 |#1|))) 41) (((-641 (-940 |#1|)) $) 40)) (-4251 (($) 61) (($ (-1158 3 |#1|)) 60)) (-3896 (($ $) 52)) (-4123 (((-641 $) $) 53)) (-1526 (($ (-641 $)) 55)) (-2712 (((-641 $) $) 54)) (-3742 (((-859) $) 11)) (-2206 (((-112) $) 34)) (-4053 (($ $ (-641 (-940 |#1|))) 38) (($ $ (-641 (-641 |#1|))) 37) (($ (-641 (-940 |#1|))) 36) (((-641 (-940 |#1|)) $) 35)) (-2210 (($ $) 14)) (-1705 (((-112) $ $) 6))) +(((-1128 |#1|) (-140) (-1046)) (T -1128)) +((-3742 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-859)))) (-4251 (*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-4251 (*1 *1 *2) (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2660 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2164 (*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-1526 (*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2712 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-4123 (*1 *2 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)))) (-3896 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-2310 (*1 *2 *1 *3) (-12 (-5 *3 (-641 (-940 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1046)) (-5 *2 (-768)))) (-3757 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-940 *4)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-2713 (*1 *1 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-2713 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-940 *3)))) (-2403 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3910 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3910 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-2104 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-4053 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-4053 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-4053 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3590 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) (-3590 (*1 *1 *2) (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-3730 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-1834 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-940 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) (-1834 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) (-1834 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-1834 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 *3)))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) (-1834 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *4 (-1046)) (-4 *1 (-1128 *4)))) (-1834 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-940 *3)))))) (-3095 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112)))) (-3007 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) (-1661 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-641 (-768))))))) (-1917 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-641 (-940 *3))))))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-171)))))) (-3845 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-171))))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -3132 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768)))))) (-2210 (*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-1158 3 *3))))) +(-13 (-1094) (-10 -8 (-15 -4251 ($)) (-15 -4251 ($ (-1158 3 |t#1|))) (-15 -2660 ((-768) $)) (-15 -4113 ((-768) $)) (-15 -2164 ($ (-641 $))) (-15 -2164 ($ $ $)) (-15 -1526 ($ (-641 $))) (-15 -2712 ((-641 $) $)) (-15 -4123 ((-641 $) $)) (-15 -3896 ($ $)) (-15 -2310 ((-768) $ (-641 (-940 |t#1|)))) (-15 -3757 ($ $ (-768) (-940 |t#1|))) (-15 -2713 ($ $ (-940 |t#1|))) (-15 -2713 ($ $ (-641 |t#1|))) (-15 -2713 ($ $ (-768))) (-15 -2713 ($ (-940 |t#1|))) (-15 -2713 ((-940 |t#1|) $)) (-15 -2403 ((-112) $)) (-15 -3910 ($ $ (-641 (-940 |t#1|)))) (-15 -3910 ($ $ (-641 (-641 |t#1|)))) (-15 -3910 ($ (-641 (-940 |t#1|)))) (-15 -3910 ((-641 (-940 |t#1|)) $)) (-15 -2104 ((-112) $)) (-15 -4053 ($ $ (-641 (-940 |t#1|)))) (-15 -4053 ($ $ (-641 (-641 |t#1|)))) (-15 -4053 ($ (-641 (-940 |t#1|)))) (-15 -4053 ((-641 (-940 |t#1|)) $)) (-15 -2206 ((-112) $)) (-15 -3590 ($ $ (-641 (-940 |t#1|)))) (-15 -3590 ($ $ (-641 (-641 |t#1|)))) (-15 -3590 ($ (-641 (-940 |t#1|)))) (-15 -3590 ((-641 (-940 |t#1|)) $)) (-15 -3730 ((-112) $)) (-15 -1834 ($ $ (-641 (-641 (-940 |t#1|))) (-641 (-171)) (-171))) (-15 -1834 ($ $ (-641 (-641 (-641 |t#1|))) (-641 (-171)) (-171))) (-15 -1834 ($ $ (-641 (-641 (-940 |t#1|))) (-112) (-112))) (-15 -1834 ($ $ (-641 (-641 (-641 |t#1|))) (-112) (-112))) (-15 -1834 ($ (-641 (-641 (-940 |t#1|))))) (-15 -1834 ($ (-641 (-641 (-940 |t#1|))) (-112) (-112))) (-15 -1834 ((-641 (-641 (-940 |t#1|))) $)) (-15 -3095 ((-112) $)) (-15 -3007 ((-641 (-940 |t#1|)) $)) (-15 -1661 ((-641 (-641 (-641 (-768)))) $)) (-15 -1917 ((-641 (-641 (-641 (-940 |t#1|)))) $)) (-15 -3511 ((-641 (-641 (-171))) $)) (-15 -3845 ((-641 (-171)) $)) (-15 -3226 ((-2 (|:| -3132 (-768)) (|:| |curves| (-768)) (|:| |polygons| (-768)) (|:| |constructs| (-768))) $)) (-15 -2210 ($ $)) (-15 -3388 ((-1158 3 |t#1|) $)) (-15 -3742 ((-859) $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 178) (($ (-1175)) NIL) (((-1175) $) 7)) (-4300 (((-112) $ (|[\|\|]| (-524))) 19) (((-112) $ (|[\|\|]| (-218))) 23) (((-112) $ (|[\|\|]| (-672))) 27) (((-112) $ (|[\|\|]| (-1269))) 31) (((-112) $ (|[\|\|]| (-138))) 35) (((-112) $ (|[\|\|]| (-133))) 39) (((-112) $ (|[\|\|]| (-1109))) 43) (((-112) $ (|[\|\|]| (-96))) 47) (((-112) $ (|[\|\|]| (-677))) 51) (((-112) $ (|[\|\|]| (-517))) 55) (((-112) $ (|[\|\|]| (-1061))) 59) (((-112) $ (|[\|\|]| (-1270))) 63) (((-112) $ (|[\|\|]| (-525))) 67) (((-112) $ (|[\|\|]| (-154))) 71) (((-112) $ (|[\|\|]| (-667))) 75) (((-112) $ (|[\|\|]| (-311))) 79) (((-112) $ (|[\|\|]| (-1033))) 83) (((-112) $ (|[\|\|]| (-180))) 87) (((-112) $ (|[\|\|]| (-967))) 91) (((-112) $ (|[\|\|]| (-1068))) 95) (((-112) $ (|[\|\|]| (-1084))) 99) (((-112) $ (|[\|\|]| (-1090))) 103) (((-112) $ (|[\|\|]| (-624))) 107) (((-112) $ (|[\|\|]| (-1160))) 111) (((-112) $ (|[\|\|]| (-156))) 115) (((-112) $ (|[\|\|]| (-137))) 119) (((-112) $ (|[\|\|]| (-478))) 123) (((-112) $ (|[\|\|]| (-591))) 127) (((-112) $ (|[\|\|]| (-506))) 133) (((-112) $ (|[\|\|]| (-1152))) 137) (((-112) $ (|[\|\|]| (-564))) 141)) (-3927 (((-524) $) 20) (((-218) $) 24) (((-672) $) 28) (((-1269) $) 32) (((-138) $) 36) (((-133) $) 40) (((-1109) $) 44) (((-96) $) 48) (((-677) $) 52) (((-517) $) 56) (((-1061) $) 60) (((-1270) $) 64) (((-525) $) 68) (((-154) $) 72) (((-667) $) 76) (((-311) $) 80) (((-1033) $) 84) (((-180) $) 88) (((-967) $) 92) (((-1068) $) 96) (((-1084) $) 100) (((-1090) $) 104) (((-624) $) 108) (((-1160) $) 112) (((-156) $) 116) (((-137) $) 120) (((-478) $) 124) (((-591) $) 128) (((-506) $) 134) (((-1152) $) 138) (((-564) $) 142)) (-1705 (((-112) $ $) NIL))) +(((-1129) (-1131)) (T -1129)) +NIL +(-1131) +((-1381 (((-641 (-1175)) (-1152)) 9))) +(((-1130) (-10 -7 (-15 -1381 ((-641 (-1175)) (-1152))))) (T -1130)) +((-1381 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130))))) +(-10 -7 (-15 -1381 ((-641 (-1175)) (-1152)))) +((-3732 (((-112) $ $) 7)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-1175)) 16) (((-1175) $) 15)) (-4300 (((-112) $ (|[\|\|]| (-524))) 80) (((-112) $ (|[\|\|]| (-218))) 78) (((-112) $ (|[\|\|]| (-672))) 76) (((-112) $ (|[\|\|]| (-1269))) 74) (((-112) $ (|[\|\|]| (-138))) 72) (((-112) $ (|[\|\|]| (-133))) 70) (((-112) $ (|[\|\|]| (-1109))) 68) (((-112) $ (|[\|\|]| (-96))) 66) (((-112) $ (|[\|\|]| (-677))) 64) (((-112) $ (|[\|\|]| (-517))) 62) (((-112) $ (|[\|\|]| (-1061))) 60) (((-112) $ (|[\|\|]| (-1270))) 58) (((-112) $ (|[\|\|]| (-525))) 56) (((-112) $ (|[\|\|]| (-154))) 54) (((-112) $ (|[\|\|]| (-667))) 52) (((-112) $ (|[\|\|]| (-311))) 50) (((-112) $ (|[\|\|]| (-1033))) 48) (((-112) $ (|[\|\|]| (-180))) 46) (((-112) $ (|[\|\|]| (-967))) 44) (((-112) $ (|[\|\|]| (-1068))) 42) (((-112) $ (|[\|\|]| (-1084))) 40) (((-112) $ (|[\|\|]| (-1090))) 38) (((-112) $ (|[\|\|]| (-624))) 36) (((-112) $ (|[\|\|]| (-1160))) 34) (((-112) $ (|[\|\|]| (-156))) 32) (((-112) $ (|[\|\|]| (-137))) 30) (((-112) $ (|[\|\|]| (-478))) 28) (((-112) $ (|[\|\|]| (-591))) 26) (((-112) $ (|[\|\|]| (-506))) 24) (((-112) $ (|[\|\|]| (-1152))) 22) (((-112) $ (|[\|\|]| (-564))) 20)) (-3927 (((-524) $) 79) (((-218) $) 77) (((-672) $) 75) (((-1269) $) 73) (((-138) $) 71) (((-133) $) 69) (((-1109) $) 67) (((-96) $) 65) (((-677) $) 63) (((-517) $) 61) (((-1061) $) 59) (((-1270) $) 57) (((-525) $) 55) (((-154) $) 53) (((-667) $) 51) (((-311) $) 49) (((-1033) $) 47) (((-180) $) 45) (((-967) $) 43) (((-1068) $) 41) (((-1084) $) 39) (((-1090) $) 37) (((-624) $) 35) (((-1160) $) 33) (((-156) $) 31) (((-137) $) 29) (((-478) $) 27) (((-591) $) 25) (((-506) $) 23) (((-1152) $) 21) (((-564) $) 19)) (-1705 (((-112) $ $) 6))) +(((-1131) (-140)) (T -1131)) +((-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1061)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1033)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-967))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-967)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1068)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) (-4300 (*1 *2 *1 *3) (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) (-3927 (*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564))))) +(-13 (-1077) (-1254) (-10 -8 (-15 -4300 ((-112) $ (|[\|\|]| (-524)))) (-15 -3927 ((-524) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-218)))) (-15 -3927 ((-218) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-672)))) (-15 -3927 ((-672) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1269)))) (-15 -3927 ((-1269) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-138)))) (-15 -3927 ((-138) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-133)))) (-15 -3927 ((-133) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1109)))) (-15 -3927 ((-1109) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-96)))) (-15 -3927 ((-96) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-677)))) (-15 -3927 ((-677) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-517)))) (-15 -3927 ((-517) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1061)))) (-15 -3927 ((-1061) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1270)))) (-15 -3927 ((-1270) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-525)))) (-15 -3927 ((-525) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-154)))) (-15 -3927 ((-154) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-667)))) (-15 -3927 ((-667) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-311)))) (-15 -3927 ((-311) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1033)))) (-15 -3927 ((-1033) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-180)))) (-15 -3927 ((-180) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-967)))) (-15 -3927 ((-967) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1068)))) (-15 -3927 ((-1068) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1084)))) (-15 -3927 ((-1084) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1090)))) (-15 -3927 ((-1090) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-624)))) (-15 -3927 ((-624) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1160)))) (-15 -3927 ((-1160) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-156)))) (-15 -3927 ((-156) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-137)))) (-15 -3927 ((-137) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-478)))) (-15 -3927 ((-478) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-591)))) (-15 -3927 ((-591) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-506)))) (-15 -3927 ((-506) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-1152)))) (-15 -3927 ((-1152) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-564)))) (-15 -3927 ((-564) $)))) +(((-93) . T) ((-102) . T) ((-614 #0=(-1175)) . T) ((-611 (-859)) . T) ((-611 #0#) . T) ((-490 #0#) . T) ((-1094) . T) ((-1077) . T) ((-1254) . T)) +((-3591 (((-1264) (-641 (-859))) 23) (((-1264) (-859)) 22)) (-3934 (((-1264) (-641 (-859))) 21) (((-1264) (-859)) 20)) (-2150 (((-1264) (-641 (-859))) 19) (((-1264) (-859)) 11) (((-1264) (-1152) (-859)) 17))) +(((-1132) (-10 -7 (-15 -2150 ((-1264) (-1152) (-859))) (-15 -2150 ((-1264) (-859))) (-15 -3934 ((-1264) (-859))) (-15 -3591 ((-1264) (-859))) (-15 -2150 ((-1264) (-641 (-859)))) (-15 -3934 ((-1264) (-641 (-859)))) (-15 -3591 ((-1264) (-641 (-859)))))) (T -1132)) +((-3591 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3591 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-2150 (*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) (-2150 (*1 *2 *3 *4) (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132))))) +(-10 -7 (-15 -2150 ((-1264) (-1152) (-859))) (-15 -2150 ((-1264) (-859))) (-15 -3934 ((-1264) (-859))) (-15 -3591 ((-1264) (-859))) (-15 -2150 ((-1264) (-641 (-859)))) (-15 -3934 ((-1264) (-641 (-859)))) (-15 -3591 ((-1264) (-641 (-859))))) +((-3122 (($ $ $) 10)) (-1496 (($ $) 9)) (-1852 (($ $ $) 13)) (-4103 (($ $ $) 15)) (-2195 (($ $ $) 12)) (-1566 (($ $ $) 14)) (-2241 (($ $) 17)) (-2597 (($ $) 16)) (-2792 (($ $) 6)) (-2770 (($ $ $) 11) (($ $) 7)) (-2397 (($ $ $) 8))) +(((-1133) (-140)) (T -1133)) +((-2241 (*1 *1 *1) (-4 *1 (-1133))) (-2597 (*1 *1 *1) (-4 *1 (-1133))) (-4103 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1566 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1852 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2195 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2770 (*1 *1 *1 *1) (-4 *1 (-1133))) (-3122 (*1 *1 *1 *1) (-4 *1 (-1133))) (-1496 (*1 *1 *1) (-4 *1 (-1133))) (-2397 (*1 *1 *1 *1) (-4 *1 (-1133))) (-2770 (*1 *1 *1) (-4 *1 (-1133))) (-2792 (*1 *1 *1) (-4 *1 (-1133)))) +(-13 (-10 -8 (-15 -2792 ($ $)) (-15 -2770 ($ $)) (-15 -2397 ($ $ $)) (-15 -1496 ($ $)) (-15 -3122 ($ $ $)) (-15 -2770 ($ $ $)) (-15 -2195 ($ $ $)) (-15 -1852 ($ $ $)) (-15 -1566 ($ $ $)) (-15 -4103 ($ $ $)) (-15 -2597 ($ $)) (-15 -2241 ($ $)))) +((-3732 (((-112) $ $) 44)) (-3426 ((|#1| $) 17)) (-3921 (((-112) $ $ (-1 (-112) |#2| |#2|)) 39)) (-2240 (((-112) $) 19)) (-4344 (($ $ |#1|) 30)) (-3682 (($ $ (-112)) 32)) (-1889 (($ $) 33)) (-1511 (($ $ |#2|) 31)) (-2217 (((-1152) $) NIL)) (-3413 (((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|)) 38)) (-3864 (((-1114) $) NIL)) (-4003 (((-112) $) 16)) (-3434 (($) 13)) (-3896 (($ $) 29)) (-3753 (($ |#1| |#2| (-112)) 20) (($ |#1| |#2|) 21) (($ (-2 (|:| |val| |#1|) (|:| -2084 |#2|))) 23) (((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2084 |#2|)))) 26) (((-641 $) |#1| (-641 |#2|)) 28)) (-4052 ((|#2| $) 18)) (-3742 (((-859) $) 53)) (-1705 (((-112) $ $) 42))) +(((-1134 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3434 ($)) (-15 -4003 ((-112) $)) (-15 -3426 (|#1| $)) (-15 -4052 (|#2| $)) (-15 -2240 ((-112) $)) (-15 -3753 ($ |#1| |#2| (-112))) (-15 -3753 ($ |#1| |#2|)) (-15 -3753 ($ (-2 (|:| |val| |#1|) (|:| -2084 |#2|)))) (-15 -3753 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2084 |#2|))))) (-15 -3753 ((-641 $) |#1| (-641 |#2|))) (-15 -3896 ($ $)) (-15 -4344 ($ $ |#1|)) (-15 -1511 ($ $ |#2|)) (-15 -3682 ($ $ (-112))) (-15 -1889 ($ $)) (-15 -3413 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3921 ((-112) $ $ (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1134)) +((-3434 (*1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3426 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) (-4 *3 (-13 (-1094) (-34))))) (-4052 (*1 *2 *1) (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))))) (-2240 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3753 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3753 (*1 *1 *2 *3) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2084 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *4)))) (-3753 (*1 *2 *3) (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -2084 *5)))) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5)))) (-3753 (*1 *2 *3 *4) (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5)) (-4 *3 (-13 (-1094) (-34))))) (-3896 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-4344 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-1511 (*1 *1 *1 *2) (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) (-4 *2 (-13 (-1094) (-34))))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-1889 (*1 *1 *1) (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3413 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *5 *6)))) (-3921 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))))) +(-13 (-1094) (-10 -8 (-15 -3434 ($)) (-15 -4003 ((-112) $)) (-15 -3426 (|#1| $)) (-15 -4052 (|#2| $)) (-15 -2240 ((-112) $)) (-15 -3753 ($ |#1| |#2| (-112))) (-15 -3753 ($ |#1| |#2|)) (-15 -3753 ($ (-2 (|:| |val| |#1|) (|:| -2084 |#2|)))) (-15 -3753 ((-641 $) (-641 (-2 (|:| |val| |#1|) (|:| -2084 |#2|))))) (-15 -3753 ((-641 $) |#1| (-641 |#2|))) (-15 -3896 ($ $)) (-15 -4344 ($ $ |#1|)) (-15 -1511 ($ $ |#2|)) (-15 -3682 ($ $ (-112))) (-15 -1889 ($ $)) (-15 -3413 ((-112) $ $ (-1 (-112) |#1| |#1|) (-1 (-112) |#2| |#2|))) (-15 -3921 ((-112) $ $ (-1 (-112) |#2| |#2|))))) +((-3732 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3426 (((-1134 |#1| |#2|) $) 27)) (-2008 (($ $) 90)) (-3818 (((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|)) 99)) (-3684 (($ $ $ (-641 (-1134 |#1| |#2|))) 107) (($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|)) 108)) (-2969 (((-112) $ (-768)) NIL)) (-3976 (((-1134 |#1| |#2|) $ (-1134 |#1| |#2|)) 45 (|has| $ (-6 -4412)))) (-3877 (((-1134 |#1| |#2|) $ "value" (-1134 |#1| |#2|)) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 43 (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-2610 (((-641 (-2 (|:| |val| |#1|) (|:| -2084 |#2|))) $) 94)) (-2154 (($ (-1134 |#1| |#2|) $) 41)) (-2366 (($ (-1134 |#1| |#2|) $) 33)) (-3616 (((-641 (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 53)) (-3542 (((-112) (-1134 |#1| |#2|) $) 96)) (-1940 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 (-1134 |#1| |#2|)) $) 57 (|has| $ (-6 -4411)))) (-2431 (((-112) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-1134 |#1| |#2|) (-1094))))) (-2606 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 49 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-1134 |#1| |#2|) (-1134 |#1| |#2|)) $) 48)) (-1500 (((-112) $ (-768)) NIL)) (-2333 (((-641 (-1134 |#1| |#2|)) $) 55)) (-1881 (((-112) $) 44)) (-2217 (((-1152) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3864 (((-1114) $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-3789 (((-3 $ "failed") $) 88)) (-3736 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-1134 |#1| |#2|)))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-294 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-1134 |#1| |#2|) (-1134 |#1| |#2|)) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094)))) (($ $ (-641 (-1134 |#1| |#2|)) (-641 (-1134 |#1| |#2|))) NIL (-12 (|has| (-1134 |#1| |#2|) (-309 (-1134 |#1| |#2|))) (|has| (-1134 |#1| |#2|) (-1094))))) (-1717 (((-112) $ $) 52)) (-4003 (((-112) $) 24)) (-3434 (($) 26)) (-4382 (((-1134 |#1| |#2|) $ "value") NIL)) (-4209 (((-564) $ $) NIL)) (-3572 (((-112) $) 46)) (-3873 (((-768) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4411))) (((-768) (-1134 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-1134 |#1| |#2|) (-1094))))) (-3896 (($ $) 51)) (-3753 (($ (-1134 |#1| |#2|)) 10) (($ |#1| |#2| (-641 $)) 13) (($ |#1| |#2| (-641 (-1134 |#1| |#2|))) 15) (($ |#1| |#2| |#1| (-641 |#2|)) 18)) (-1374 (((-641 |#2|) $) 95)) (-3742 (((-859) $) 86 (|has| (-1134 |#1| |#2|) (-611 (-859))))) (-3167 (((-641 $) $) 31)) (-1584 (((-112) $ $) NIL (|has| (-1134 |#1| |#2|) (-1094)))) (-1417 (((-112) (-1 (-112) (-1134 |#1| |#2|)) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 69 (|has| (-1134 |#1| |#2|) (-1094)))) (-2641 (((-768) $) 63 (|has| $ (-6 -4411))))) +(((-1135 |#1| |#2|) (-13 (-1007 (-1134 |#1| |#2|)) (-10 -8 (-6 -4412) (-6 -4411) (-15 -3789 ((-3 $ "failed") $)) (-15 -2008 ($ $)) (-15 -3753 ($ (-1134 |#1| |#2|))) (-15 -3753 ($ |#1| |#2| (-641 $))) (-15 -3753 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -3753 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -1374 ((-641 |#2|) $)) (-15 -2610 ((-641 (-2 (|:| |val| |#1|) (|:| -2084 |#2|))) $)) (-15 -3542 ((-112) (-1134 |#1| |#2|) $)) (-15 -3818 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2366 ($ (-1134 |#1| |#2|) $)) (-15 -2154 ($ (-1134 |#1| |#2|) $)) (-15 -3684 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -3684 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) (-13 (-1094) (-34)) (-13 (-1094) (-34))) (T -1135)) +((-3789 (*1 *1 *1) (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-2008 (*1 *1 *1) (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3753 (*1 *1 *2) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-3753 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) (-3753 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)))) (-3753 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-2610 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))))) (-3542 (*1 *2 *3 *1) (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5)))) (-3818 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *5 *6)))) (-2366 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-2154 (*1 *1 *2 *1) (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-3684 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) (-3684 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) (-5 *1 (-1135 *4 *5))))) +(-13 (-1007 (-1134 |#1| |#2|)) (-10 -8 (-6 -4412) (-6 -4411) (-15 -3789 ((-3 $ "failed") $)) (-15 -2008 ($ $)) (-15 -3753 ($ (-1134 |#1| |#2|))) (-15 -3753 ($ |#1| |#2| (-641 $))) (-15 -3753 ($ |#1| |#2| (-641 (-1134 |#1| |#2|)))) (-15 -3753 ($ |#1| |#2| |#1| (-641 |#2|))) (-15 -1374 ((-641 |#2|) $)) (-15 -2610 ((-641 (-2 (|:| |val| |#1|) (|:| -2084 |#2|))) $)) (-15 -3542 ((-112) (-1134 |#1| |#2|) $)) (-15 -3818 ((-112) (-1134 |#1| |#2|) $ (-1 (-112) |#2| |#2|))) (-15 -2366 ($ (-1134 |#1| |#2|) $)) (-15 -2154 ($ (-1134 |#1| |#2|) $)) (-15 -3684 ($ $ $ (-641 (-1134 |#1| |#2|)))) (-15 -3684 ($ $ $ (-641 (-1134 |#1| |#2|)) (-1 (-112) |#2| |#2|))))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-2284 (($ $) NIL)) (-3809 ((|#2| $) NIL)) (-2335 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2343 (($ (-685 |#2|)) 56)) (-1695 (((-112) $) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-2294 (($ |#2|) 14)) (-2818 (($) NIL T CONST)) (-2903 (($ $) 69 (|has| |#2| (-307)))) (-4236 (((-240 |#1| |#2|) $ (-564)) 42)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 |#2| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) ((|#2| $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) 83)) (-1544 (((-768) $) 71 (|has| |#2| (-556)))) (-2540 ((|#2| $ (-564) (-564)) NIL)) (-3616 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-3840 (((-112) $) NIL)) (-3735 (((-768) $) 73 (|has| |#2| (-556)))) (-1973 (((-641 (-240 |#1| |#2|)) $) 77 (|has| |#2| (-556)))) (-2659 (((-768) $) NIL)) (-3619 (($ |#2|) 25)) (-2671 (((-768) $) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-3786 ((|#2| $) 67 (|has| |#2| (-6 (-4413 "*"))))) (-1305 (((-564) $) NIL)) (-1392 (((-564) $) NIL)) (-1386 (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-4212 (((-564) $) NIL)) (-2739 (((-564) $) NIL)) (-1915 (($ (-641 (-641 |#2|))) 37)) (-2606 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3299 (((-641 (-641 |#2|)) $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-4110 (((-3 $ "failed") $) 80 (|has| |#2| (-363)))) (-3864 (((-1114) $) NIL)) (-1321 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556)))) (-3736 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ (-564) (-564) |#2|) NIL) ((|#2| $ (-564) (-564)) NIL)) (-4117 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-2865 ((|#2| $) NIL)) (-3545 (($ (-641 |#2|)) 50)) (-2041 (((-112) $) NIL)) (-1696 (((-240 |#1| |#2|) $) NIL)) (-3337 ((|#2| $) 65 (|has| |#2| (-6 (-4413 "*"))))) (-3873 (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3896 (($ $) NIL)) (-2235 (((-536) $) 90 (|has| |#2| (-612 (-536))))) (-1346 (((-240 |#1| |#2|) $ (-564)) 44)) (-3742 (((-859) $) 47) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#2| (-1035 (-407 (-564))))) (($ |#2|) NIL) (((-685 |#2|) $) 52)) (-3270 (((-768)) 23 T CONST)) (-1417 (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-3938 (((-112) $) NIL)) (-4311 (($) 16 T CONST)) (-4321 (($) 21 T CONST)) (-2124 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-768)) NIL (|has| |#2| (-233))) (($ $) NIL (|has| |#2| (-233)))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) 63) (($ $ (-564)) 82 (|has| |#2| (-363)))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-240 |#1| |#2|) $ (-240 |#1| |#2|)) 59) (((-240 |#1| |#2|) (-240 |#1| |#2|) $) 61)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1136 |#1| |#2|) (-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -3619 ($ |#2|)) (-15 -2284 ($ $)) (-15 -2343 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4413 "*"))) (-6 -4400) |%noBranch|) (IF (|has| |#2| (-6 (-4413 "*"))) (IF (|has| |#2| (-6 -4408)) (-6 -4408) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) (-768) (-1046)) (T -1136)) +((-3619 (*1 *1 *2) (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-768)) (-4 *2 (-1046)))) (-2284 (*1 *1 *1) (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-768)) (-4 *3 (-1046)))) (-2343 (*1 *1 *2) (-12 (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1136 *3 *4)) (-14 *3 (-768))))) +(-13 (-1117 |#1| |#2| (-240 |#1| |#2|) (-240 |#1| |#2|)) (-611 (-685 |#2|)) (-10 -8 (-15 -3619 ($ |#2|)) (-15 -2284 ($ $)) (-15 -2343 ($ (-685 |#2|))) (IF (|has| |#2| (-6 (-4413 "*"))) (-6 -4400) |%noBranch|) (IF (|has| |#2| (-6 (-4413 "*"))) (IF (|has| |#2| (-6 -4408)) (-6 -4408) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-612 (-536))) (-6 (-612 (-536))) |%noBranch|))) +((-1853 (($ $) 19)) (-4006 (($ $ (-144)) 10) (($ $ (-141)) 14)) (-1419 (((-112) $ $) 24)) (-3286 (($ $) 17)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) 31)) (-3742 (($ (-144)) 29) (((-859) $) NIL))) +(((-1137 |#1|) (-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#1| (-141))) (-15 -4006 (|#1| |#1| (-144))) (-15 -3742 (|#1| (-144))) (-15 -1419 ((-112) |#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3286 (|#1| |#1|)) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -4382 ((-144) |#1| (-564))) (-15 -4382 ((-144) |#1| (-564) (-144)))) (-1138)) (T -1137)) +NIL +(-10 -8 (-15 -3742 ((-859) |#1|)) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4006 (|#1| |#1| (-141))) (-15 -4006 (|#1| |#1| (-144))) (-15 -3742 (|#1| (-144))) (-15 -1419 ((-112) |#1| |#1|)) (-15 -1853 (|#1| |#1|)) (-15 -3286 (|#1| |#1|)) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -4382 ((-144) |#1| (-564))) (-15 -4382 ((-144) |#1| (-564) (-144)))) +((-3732 (((-112) $ $) 19 (|has| (-144) (-1094)))) (-3315 (($ $) 120)) (-1853 (($ $) 121)) (-4006 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-1398 (((-112) $ $) 118)) (-1375 (((-112) $ $ (-564)) 117)) (-3651 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-1445 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-847)))) (-2402 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| (-144) (-847)) (|has| $ (-6 -4412))))) (-2777 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-847)))) (-2969 (((-112) $ (-768)) 8)) (-3877 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4412))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-2803 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-2797 (($ $) 90 (|has| $ (-6 -4412)))) (-1856 (($ $) 100)) (-1648 (($ $ (-1226 (-564)) $) 114)) (-1996 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4411)))) (-1699 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4411)))) (-2619 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4412)))) (-2540 (((-144) $ (-564)) 51)) (-1419 (((-112) $ $) 119)) (-3305 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-3616 (((-641 (-144)) $) 30 (|has| $ (-6 -4411)))) (-3619 (($ (-768) (-144)) 69)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-2799 (($ $ $) 87 (|has| (-144) (-847)))) (-2164 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-847)))) (-1386 (((-641 (-144)) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2848 (($ $ $) 86 (|has| (-144) (-847)))) (-2070 (((-112) $ $ (-144)) 115)) (-1387 (((-768) $ $ (-144)) 116)) (-2606 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-1686 (($ $) 122)) (-3286 (($ $) 123)) (-1500 (((-112) $ (-768)) 10)) (-2812 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-2217 (((-1152) $) 22 (|has| (-144) (-1094)))) (-2308 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-3864 (((-1114) $) 21 (|has| (-144) (-1094)))) (-1966 (((-144) $) 42 (|has| (-564) (-847)))) (-3582 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-3099 (($ $ (-144)) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2572 (((-641 (-144)) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-2004 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3873 (((-768) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4411))) (((-768) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-1999 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-3753 (($ (-641 (-144))) 70)) (-1802 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3742 (($ (-144)) 111) (((-859) $) 18 (|has| (-144) (-611 (-859))))) (-1417 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) 84 (|has| (-144) (-847)))) (-1731 (((-112) $ $) 83 (|has| (-144) (-847)))) (-1705 (((-112) $ $) 20 (|has| (-144) (-1094)))) (-1741 (((-112) $ $) 85 (|has| (-144) (-847)))) (-1723 (((-112) $ $) 82 (|has| (-144) (-847)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-1138) (-140)) (T -1138)) +((-3286 (*1 *1 *1) (-4 *1 (-1138))) (-1686 (*1 *1 *1) (-4 *1 (-1138))) (-1853 (*1 *1 *1) (-4 *1 (-1138))) (-3315 (*1 *1 *1) (-4 *1 (-1138))) (-1419 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-1398 (*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112)))) (-1375 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112)))) (-1387 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-768)))) (-2070 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112)))) (-1648 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564))))) (-3305 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)))) (-3305 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138)))) (-3651 (*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-3651 (*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) (-4006 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-4006 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-2812 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-2812 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-2803 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144)))) (-2803 (*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) (-4382 (*1 *1 *1 *1) (-4 *1 (-1138)))) +(-13 (-19 (-144)) (-10 -8 (-15 -3286 ($ $)) (-15 -1686 ($ $)) (-15 -1853 ($ $)) (-15 -3315 ($ $)) (-15 -1419 ((-112) $ $)) (-15 -1398 ((-112) $ $)) (-15 -1375 ((-112) $ $ (-564))) (-15 -1387 ((-768) $ $ (-144))) (-15 -2070 ((-112) $ $ (-144))) (-15 -1648 ($ $ (-1226 (-564)) $)) (-15 -3305 ((-564) $ $ (-564))) (-15 -3305 ((-564) (-141) $ (-564))) (-15 -3742 ($ (-144))) (-15 -3651 ((-641 $) $ (-144))) (-15 -3651 ((-641 $) $ (-141))) (-15 -4006 ($ $ (-144))) (-15 -4006 ($ $ (-141))) (-15 -2812 ($ $ (-144))) (-15 -2812 ($ $ (-141))) (-15 -2803 ($ $ (-144))) (-15 -2803 ($ $ (-141))) (-15 -4382 ($ $ $)))) +(((-34) . T) ((-102) -4030 (|has| (-144) (-1094)) (|has| (-144) (-847))) ((-611 (-859)) -4030 (|has| (-144) (-1094)) (|has| (-144) (-847)) (|has| (-144) (-611 (-859)))) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-847) |has| (-144) (-847)) ((-1094) -4030 (|has| (-144) (-1094)) (|has| (-144) (-847))) ((-1209) . T)) +((-1535 (((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-768)) 112)) (-4318 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|) 62) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768)) 61)) (-3801 (((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-768)) 98)) (-2894 (((-768) (-641 |#4|) (-641 |#5|)) 30)) (-4165 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|) 64) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768)) 63) (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768) (-112)) 65)) (-2795 (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112)) 84) (((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112)) 85)) (-2235 (((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) 90)) (-2470 (((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|) 60)) (-2965 (((-768) (-641 |#4|) (-641 |#5|)) 21))) +(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2965 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2894 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2470 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -4318 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768))) (-15 -4318 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768))) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -2795 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2795 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1535 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-768))) (-15 -2235 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) (-15 -3801 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-768)))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|) (-1103 |#1| |#2| |#3| |#4|)) (T -1139)) +((-3801 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2084 *9)))) (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2084 *8))) (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) (-5 *1 (-1139 *4 *5 *6 *7 *8)))) (-1535 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-641 *11)) (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2084 *11)))))) (-5 *6 (-768)) (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2084 *11)))) (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-5 *1 (-1139 *7 *8 *9 *10 *11)))) (-2795 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2795 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-4165 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-4165 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-4165 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) (-4318 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-4318 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *3 (-1060 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) (-2470 (*1 *2 *3 *4) (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-641 *4)) (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3)))) (-2894 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) (-2965 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) +(-10 -7 (-15 -2965 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2894 ((-768) (-641 |#4|) (-641 |#5|))) (-15 -2470 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -4318 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768))) (-15 -4318 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768) (-112))) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5| (-768))) (-15 -4165 ((-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) |#4| |#5|)) (-15 -2795 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112))) (-15 -2795 ((-641 |#5|) (-641 |#4|) (-641 |#5|) (-112) (-112) (-112) (-112) (-112))) (-15 -1535 ((-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-641 |#4|) (-641 |#5|) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-2 (|:| |done| (-641 |#5|)) (|:| |todo| (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))))) (-768))) (-15 -2235 ((-1152) (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|)))) (-15 -3801 ((-1264) (-641 (-2 (|:| |val| (-641 |#4|)) (|:| -2084 |#5|))) (-768)))) +((-3732 (((-112) $ $) NIL)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) NIL)) (-1454 (((-641 $) (-641 |#4|)) 121) (((-641 $) (-641 |#4|) (-112)) 122) (((-641 $) (-641 |#4|) (-112) (-112)) 120) (((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112)) 123)) (-4269 (((-641 |#3|) $) NIL)) (-3547 (((-112) $) NIL)) (-4281 (((-112) $) NIL (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2244 ((|#4| |#4| $) NIL)) (-2249 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| $) 94)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3548 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 72)) (-2818 (($) NIL T CONST)) (-4076 (((-112) $) 29 (|has| |#1| (-556)))) (-2072 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2494 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3791 (((-112) $) NIL (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-2868 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2239 (($ (-641 |#4|)) NIL)) (-1977 (((-3 $ "failed") $) 45)) (-4263 ((|#4| |#4| $) 75)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2366 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2920 ((|#4| |#4| $) NIL)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) NIL)) (-3254 (((-112) |#4| $) NIL)) (-2954 (((-112) |#4| $) NIL)) (-2078 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2633 (((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112)) 136)) (-3616 (((-641 |#4|) $) 18 (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3782 ((|#3| $) 38)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#4|) $) 19 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 27 (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2606 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 23)) (-3483 (((-641 |#3|) $) NIL)) (-1410 (((-112) |#3| $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-3530 (((-3 |#4| (-641 $)) |#4| |#4| $) NIL)) (-2643 (((-641 (-2 (|:| |val| |#4|) (|:| -2084 $))) |#4| |#4| $) 114)) (-2389 (((-3 |#4| "failed") $) 42)) (-2999 (((-641 $) |#4| $) 99)) (-3213 (((-3 (-112) (-641 $)) |#4| $) NIL)) (-1614 (((-641 (-2 (|:| |val| (-112)) (|:| -2084 $))) |#4| $) 109) (((-112) |#4| $) 62)) (-1353 (((-641 $) |#4| $) 118) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 119) (((-641 $) |#4| (-641 $)) NIL)) (-2197 (((-641 $) (-641 |#4|) (-112) (-112) (-112)) 131)) (-3901 (($ |#4| $) 85) (($ (-641 |#4|) $) 86) (((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112)) 84)) (-4258 (((-641 |#4|) $) NIL)) (-1591 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4266 ((|#4| |#4| $) NIL)) (-4179 (((-112) $ $) NIL)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2601 ((|#4| |#4| $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-3 |#4| "failed") $) 40)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3465 (((-3 $ "failed") $ |#4|) 57)) (-3004 (($ $ |#4|) NIL) (((-641 $) |#4| $) 101) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) 96)) (-3736 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 17)) (-3434 (($) 14)) (-2266 (((-768) $) NIL)) (-3873 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) 13)) (-2235 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 22)) (-2031 (($ $ |#3|) 52)) (-2401 (($ $ |#3|) 53)) (-2158 (($ $) NIL)) (-2624 (($ $ |#3|) NIL)) (-3742 (((-859) $) 35) (((-641 |#4|) $) 46)) (-1849 (((-768) $) NIL (|has| |#3| (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-4020 (((-641 $) |#4| $) 63) (((-641 $) |#4| (-641 $)) NIL) (((-641 $) (-641 |#4|) $) NIL) (((-641 $) (-641 |#4|) (-641 $)) NIL)) (-1417 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) NIL)) (-3485 (((-112) |#4| $) NIL)) (-2755 (((-112) |#3| $) 71)) (-1705 (((-112) $ $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1140 |#1| |#2| |#3| |#4|) (-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3901 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1454 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -1454 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2197 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2633 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) (-452) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1140)) +((-3901 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) (-4 *3 (-1060 *5 *6 *7)))) (-1454 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-1454 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2197 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) (-2633 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-641 *8)) (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(-13 (-1103 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3901 ((-641 $) |#4| $ (-112) (-112) (-112) (-112) (-112))) (-15 -1454 ((-641 $) (-641 |#4|) (-112) (-112))) (-15 -1454 ((-641 $) (-641 |#4|) (-112) (-112) (-112) (-112))) (-15 -2197 ((-641 $) (-641 |#4|) (-112) (-112) (-112))) (-15 -2633 ((-2 (|:| |val| (-641 |#4|)) (|:| |towers| (-641 $))) (-641 |#4|) (-112) (-112))))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2519 ((|#1| $) 37)) (-2735 (($ (-641 |#1|)) 45)) (-2969 (((-112) $ (-768)) NIL)) (-2818 (($) NIL T CONST)) (-2881 ((|#1| |#1| $) 40)) (-2226 ((|#1| $) 35)) (-3616 (((-641 |#1|) $) 18 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 22)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2828 ((|#1| $) 38)) (-2974 (($ |#1| $) 41)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1292 ((|#1| $) 36)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 32)) (-3434 (($) 43)) (-3728 (((-768) $) 30)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) 27)) (-3742 (((-859) $) 14 (|has| |#1| (-611 (-859))))) (-3745 (($ (-641 |#1|)) NIL)) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 17 (|has| |#1| (-1094)))) (-2641 (((-768) $) 31 (|has| $ (-6 -4411))))) +(((-1141 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -2735 ($ (-641 |#1|))))) (-1209)) (T -1141)) +((-2735 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3))))) +(-13 (-1115 |#1|) (-10 -8 (-15 -2735 ($ (-641 |#1|))))) +((-3877 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1226 (-564)) |#2|) 54) ((|#2| $ (-564) |#2|) 51)) (-2378 (((-112) $) 11)) (-2606 (($ (-1 |#2| |#2|) $) 49)) (-1966 ((|#2| $) NIL) (($ $ (-768)) 19)) (-3099 (($ $ |#2|) 50)) (-2174 (((-112) $) 10)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1226 (-564))) 37) ((|#2| $ (-564)) 28) ((|#2| $ (-564) |#2|) NIL)) (-1807 (($ $ $) 57) (($ $ |#2|) NIL)) (-1802 (($ $ $) 39) (($ |#2| $) NIL) (($ (-641 $)) 46) (($ $ |#2|) NIL))) +(((-1142 |#1| |#2|) (-10 -8 (-15 -2378 ((-112) |#1|)) (-15 -2174 ((-112) |#1|)) (-15 -3877 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -3099 (|#1| |#1| |#2|)) (-15 -1802 (|#1| |#1| |#2|)) (-15 -1802 (|#1| (-641 |#1|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -3877 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3877 (|#2| |#1| "last" |#2|)) (-15 -3877 (|#1| |#1| "rest" |#1|)) (-15 -3877 (|#2| |#1| "first" |#2|)) (-15 -1807 (|#1| |#1| |#2|)) (-15 -1807 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| "last")) (-15 -4382 (|#1| |#1| "rest")) (-15 -1966 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -1966 (|#2| |#1|)) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#1|)) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -4382 (|#2| |#1| "value")) (-15 -2606 (|#1| (-1 |#2| |#2|) |#1|))) (-1143 |#2|) (-1209)) (T -1142)) +NIL +(-10 -8 (-15 -2378 ((-112) |#1|)) (-15 -2174 ((-112) |#1|)) (-15 -3877 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564) |#2|)) (-15 -4382 (|#2| |#1| (-564))) (-15 -3099 (|#1| |#1| |#2|)) (-15 -1802 (|#1| |#1| |#2|)) (-15 -1802 (|#1| (-641 |#1|))) (-15 -4382 (|#1| |#1| (-1226 (-564)))) (-15 -3877 (|#2| |#1| (-1226 (-564)) |#2|)) (-15 -3877 (|#2| |#1| "last" |#2|)) (-15 -3877 (|#1| |#1| "rest" |#1|)) (-15 -3877 (|#2| |#1| "first" |#2|)) (-15 -1807 (|#1| |#1| |#2|)) (-15 -1807 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| "last")) (-15 -4382 (|#1| |#1| "rest")) (-15 -1966 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "first")) (-15 -1966 (|#2| |#1|)) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#1|)) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -4382 (|#2| |#1| "value")) (-15 -2606 (|#1| (-1 |#2| |#2|) |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3426 ((|#1| $) 48)) (-2910 ((|#1| $) 65)) (-3813 (($ $) 67)) (-2645 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) 52 (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) 8)) (-3976 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-3417 (($ $ $) 56 (|has| $ (-6 -4412)))) (-1716 ((|#1| $ |#1|) 54 (|has| $ (-6 -4412)))) (-2094 ((|#1| $ |#1|) 58 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4412))) (($ $ "rest" $) 55 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 117 (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) 86 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) 102 (|has| $ (-6 -4411)))) (-2899 ((|#1| $) 66)) (-2818 (($) 7 T CONST)) (-1977 (($ $) 73) (($ $ (-768)) 71)) (-1996 (($ $) 99 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ (-1 (-112) |#1|) $) 103 (|has| $ (-6 -4411))) (($ |#1| $) 100 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2619 ((|#1| $ (-564) |#1|) 85 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 87)) (-2378 (((-112) $) 83)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 50)) (-1940 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-3619 (($ (-768) |#1|) 108)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 95 (|has| (-564) (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 94 (|has| (-564) (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-1500 (((-112) $ (-768)) 10)) (-2333 (((-641 |#1|) $) 45)) (-1881 (((-112) $) 49)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2389 ((|#1| $) 70) (($ $ (-768)) 68)) (-2308 (($ $ $ (-564)) 116) (($ |#1| $ (-564)) 115)) (-2312 (((-641 (-564)) $) 92)) (-4062 (((-112) (-564) $) 91)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 76) (($ $ (-768)) 74)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 106)) (-3099 (($ $ |#1|) 96 (|has| $ (-6 -4412)))) (-2174 (((-112) $) 84)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 93 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 90)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1226 (-564))) 112) ((|#1| $ (-564)) 89) ((|#1| $ (-564) |#1|) 88)) (-4209 (((-564) $ $) 44)) (-2004 (($ $ (-1226 (-564))) 114) (($ $ (-564)) 113)) (-3572 (((-112) $) 46)) (-1459 (($ $) 62)) (-3838 (($ $) 59 (|has| $ (-6 -4412)))) (-3108 (((-768) $) 63)) (-2857 (($ $) 64)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-2235 (((-536) $) 98 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 107)) (-1807 (($ $ $) 61 (|has| $ (-6 -4412))) (($ $ |#1|) 60 (|has| $ (-6 -4412)))) (-1802 (($ $ $) 78) (($ |#1| $) 77) (($ (-641 $)) 110) (($ $ |#1|) 109)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 51)) (-1584 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-1143 |#1|) (-140) (-1209)) (T -1143)) +((-2174 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) (-2378 (*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(-13 (-1247 |t#1|) (-647 |t#1|) (-10 -8 (-15 -2174 ((-112) $)) (-15 -2378 ((-112) $)))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T) ((-1247 |#1|) . T)) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-2645 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#2| $ |#1| |#2|) NIL)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 |#2| "failed") |#1| $) NIL)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) NIL)) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) NIL)) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 ((|#1| $) NIL (|has| |#1| (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 ((|#1| $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1823 (((-641 |#1|) $) NIL)) (-2219 (((-112) |#1| $) NIL)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2312 (((-641 |#1|) $) NIL)) (-4062 (((-112) |#1| $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1966 ((|#2| $) NIL (|has| |#1| (-847)))) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1144 |#1| |#2| |#3|) (-1185 |#1| |#2|) (-1094) (-1094) |#2|) (T -1144)) +NIL +(-1185 |#1| |#2|) +((-3732 (((-112) $ $) 7)) (-3907 (((-3 $ "failed") $) 13)) (-2217 (((-1152) $) 9)) (-3258 (($) 14 T CONST)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11)) (-1705 (((-112) $ $) 6))) +(((-1145) (-140)) (T -1145)) +((-3258 (*1 *1) (-4 *1 (-1145))) (-3907 (*1 *1 *1) (|partial| -4 *1 (-1145)))) +(-13 (-1094) (-10 -8 (-15 -3258 ($) -2091) (-15 -3907 ((-3 $ "failed") $)))) +(((-102) . T) ((-611 (-859)) . T) ((-1094) . T)) +((-3229 (((-1150 |#1|) (-1150 |#1|)) 17)) (-2186 (((-1150 |#1|) (-1150 |#1|)) 13)) (-2917 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 20)) (-3685 (((-1150 |#1|) (-1150 |#1|)) 15))) +(((-1146 |#1|) (-10 -7 (-15 -2186 ((-1150 |#1|) (-1150 |#1|))) (-15 -3685 ((-1150 |#1|) (-1150 |#1|))) (-15 -3229 ((-1150 |#1|) (-1150 |#1|))) (-15 -2917 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) (-13 (-556) (-147))) (T -1146)) +((-2917 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1146 *4)))) (-3229 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-3685 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3)))) (-2186 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1146 *3))))) +(-10 -7 (-15 -2186 ((-1150 |#1|) (-1150 |#1|))) (-15 -3685 ((-1150 |#1|) (-1150 |#1|))) (-15 -3229 ((-1150 |#1|) (-1150 |#1|))) (-15 -2917 ((-1150 |#1|) (-1150 |#1|) (-564) (-564)))) +((-1802 (((-1150 |#1|) (-1150 (-1150 |#1|))) 15))) +(((-1147 |#1|) (-10 -7 (-15 -1802 ((-1150 |#1|) (-1150 (-1150 |#1|))))) (-1209)) (T -1147)) +((-1802 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4)) (-4 *4 (-1209))))) +(-10 -7 (-15 -1802 ((-1150 |#1|) (-1150 (-1150 |#1|))))) +((-1525 (((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 25)) (-1699 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)) 26)) (-2187 (((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|)) 16))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -2187 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -1525 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -1699 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) (-1209) (-1209)) (T -1148)) +((-1699 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209)) (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6))))) +(-10 -7 (-15 -2187 ((-1150 |#2|) (-1 |#2| |#1|) (-1150 |#1|))) (-15 -1525 ((-1150 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|))) (-15 -1699 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1150 |#1|)))) +((-2187 (((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)) 21))) +(((-1149 |#1| |#2| |#3|) (-10 -7 (-15 -2187 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) (-1209) (-1209) (-1209)) (T -1149)) +((-2187 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-1150 *7)) (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) (-5 *1 (-1149 *6 *7 *8))))) +(-10 -7 (-15 -2187 ((-1150 |#3|) (-1 |#3| |#1| |#2|) (-1150 |#1|) (-1150 |#2|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) NIL)) (-2910 ((|#1| $) NIL)) (-3813 (($ $) 66)) (-2645 (((-1264) $ (-564) (-564)) 97 (|has| $ (-6 -4412)))) (-1817 (($ $ (-564)) 126 (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-4101 (((-859) $) 55 (|has| |#1| (-1094)))) (-1411 (((-112)) 54 (|has| |#1| (-1094)))) (-3976 ((|#1| $ |#1|) NIL (|has| $ (-6 -4412)))) (-3417 (($ $ $) 114 (|has| $ (-6 -4412))) (($ $ (-564) $) 139)) (-1716 ((|#1| $ |#1|) 123 (|has| $ (-6 -4412)))) (-2094 ((|#1| $ |#1|) 118 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 120 (|has| $ (-6 -4412))) (($ $ "rest" $) 122 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 125 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 111 (|has| $ (-6 -4412))) ((|#1| $ (-564) |#1|) 75 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) 78)) (-2899 ((|#1| $) NIL)) (-2818 (($) NIL T CONST)) (-2531 (($ $) 14)) (-1977 (($ $) 41) (($ $ (-768)) 109)) (-2131 (((-112) (-641 |#1|) $) 132 (|has| |#1| (-1094)))) (-4261 (($ (-641 |#1|)) 128)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) 77)) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-2378 (((-112) $) NIL)) (-3616 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2170 (((-1264) (-564) $) 138 (|has| |#1| (-1094)))) (-4205 (((-768) $) 135)) (-2488 (((-641 $) $) NIL)) (-1940 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3619 (($ (-768) |#1|) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 93 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 83) (($ (-1 |#1| |#1| |#1|) $ $) 87)) (-1500 (((-112) $ (-768)) NIL)) (-2333 (((-641 |#1|) $) NIL)) (-1881 (((-112) $) NIL)) (-3551 (($ $) 112)) (-2042 (((-112) $) 13)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2389 ((|#1| $) NIL) (($ $ (-768)) NIL)) (-2308 (($ $ $ (-564)) NIL) (($ |#1| $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) 94)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3472 (($ (-1 |#1|)) 141) (($ (-1 |#1| |#1|) |#1|) 142)) (-3756 ((|#1| $) 10)) (-1966 ((|#1| $) 40) (($ $ (-768)) 64)) (-2664 (((-2 (|:| |cycle?| (-112)) (|:| -4037 (-768)) (|:| |period| (-768))) (-768) $) 35)) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3525 (($ (-1 (-112) |#1|) $) 143)) (-3537 (($ (-1 (-112) |#1|) $) 144)) (-3099 (($ $ |#1|) 88 (|has| $ (-6 -4412)))) (-3004 (($ $ (-564)) 44)) (-2174 (((-112) $) 92)) (-3781 (((-112) $) 12)) (-3523 (((-112) $) 134)) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 30)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) 20)) (-3434 (($) 59)) (-4382 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1226 (-564))) NIL) ((|#1| $ (-564)) 73) ((|#1| $ (-564) |#1|) NIL)) (-4209 (((-564) $ $) 63)) (-2004 (($ $ (-1226 (-564))) NIL) (($ $ (-564)) NIL)) (-4196 (($ (-1 $)) 62)) (-3572 (((-112) $) 89)) (-1459 (($ $) 90)) (-3838 (($ $) 115 (|has| $ (-6 -4412)))) (-3108 (((-768) $) NIL)) (-2857 (($ $) NIL)) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) 58)) (-2235 (((-536) $) NIL (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 72)) (-2987 (($ |#1| $) 113)) (-1807 (($ $ $) 116 (|has| $ (-6 -4412))) (($ $ |#1|) 117 (|has| $ (-6 -4412)))) (-1802 (($ $ $) 99) (($ |#1| $) 60) (($ (-641 $)) 104) (($ $ |#1|) 98)) (-2356 (($ $) 65)) (-3742 (($ (-641 |#1|)) 127) (((-859) $) 56 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) NIL)) (-1584 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 130 (|has| |#1| (-1094)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1150 |#1|) (-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4412) (-15 -4261 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -2131 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -2664 ((-2 (|:| |cycle?| (-112)) (|:| -4037 (-768)) (|:| |period| (-768))) (-768) $)) (-15 -4196 ($ (-1 $))) (-15 -2987 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -2170 ((-1264) (-564) $)) (-15 -4101 ((-859) $)) (-15 -1411 ((-112)))) |%noBranch|) (-15 -3417 ($ $ (-564) $)) (-15 -3472 ($ (-1 |#1|))) (-15 -3472 ($ (-1 |#1| |#1|) |#1|)) (-15 -3525 ($ (-1 (-112) |#1|) $)) (-15 -3537 ($ (-1 (-112) |#1|) $)))) (-1209)) (T -1150)) +((-4261 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-2131 (*1 *2 *3 *1) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) (-5 *1 (-1150 *4)))) (-2664 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-112)) (|:| -4037 (-768)) (|:| |period| (-768)))) (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-768)))) (-4196 (*1 *1 *2) (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-2987 (*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209)))) (-2170 (*1 *2 *3 *1) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)))) (-4101 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-1411 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) (-4 *3 (-1209)))) (-3417 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) (-3472 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-3472 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) (-3537 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(-13 (-670 |#1|) (-614 (-641 |#1|)) (-10 -8 (-6 -4412) (-15 -4261 ($ (-641 |#1|))) (IF (|has| |#1| (-1094)) (-15 -2131 ((-112) (-641 |#1|) $)) |%noBranch|) (-15 -2664 ((-2 (|:| |cycle?| (-112)) (|:| -4037 (-768)) (|:| |period| (-768))) (-768) $)) (-15 -4196 ($ (-1 $))) (-15 -2987 ($ |#1| $)) (IF (|has| |#1| (-1094)) (PROGN (-15 -2170 ((-1264) (-564) $)) (-15 -4101 ((-859) $)) (-15 -1411 ((-112)))) |%noBranch|) (-15 -3417 ($ $ (-564) $)) (-15 -3472 ($ (-1 |#1|))) (-15 -3472 ($ (-1 |#1| |#1|) |#1|)) (-15 -3525 ($ (-1 (-112) |#1|) $)) (-15 -3537 ($ (-1 (-112) |#1|) $)))) +((-3732 (((-112) $ $) 19)) (-3315 (($ $) 120)) (-1853 (($ $) 121)) (-4006 (($ $ (-144)) 108) (($ $ (-141)) 107)) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-1398 (((-112) $ $) 118)) (-1375 (((-112) $ $ (-564)) 117)) (-3961 (($ (-564)) 127)) (-3651 (((-641 $) $ (-144)) 110) (((-641 $) $ (-141)) 109)) (-1445 (((-112) (-1 (-112) (-144) (-144)) $) 98) (((-112) $) 92 (|has| (-144) (-847)))) (-2402 (($ (-1 (-112) (-144) (-144)) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| (-144) (-847)) (|has| $ (-6 -4412))))) (-2777 (($ (-1 (-112) (-144) (-144)) $) 99) (($ $) 93 (|has| (-144) (-847)))) (-2969 (((-112) $ (-768)) 8)) (-3877 (((-144) $ (-564) (-144)) 52 (|has| $ (-6 -4412))) (((-144) $ (-1226 (-564)) (-144)) 58 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) (-144)) $) 75 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-2803 (($ $ (-144)) 104) (($ $ (-141)) 103)) (-2797 (($ $) 90 (|has| $ (-6 -4412)))) (-1856 (($ $) 100)) (-1648 (($ $ (-1226 (-564)) $) 114)) (-1996 (($ $) 78 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ (-144) $) 77 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-144)) $) 74 (|has| $ (-6 -4411)))) (-1699 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) 76 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) 73 (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $) 72 (|has| $ (-6 -4411)))) (-2619 (((-144) $ (-564) (-144)) 53 (|has| $ (-6 -4412)))) (-2540 (((-144) $ (-564)) 51)) (-1419 (((-112) $ $) 119)) (-3305 (((-564) (-1 (-112) (-144)) $) 97) (((-564) (-144) $) 96 (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) 95 (|has| (-144) (-1094))) (((-564) $ $ (-564)) 113) (((-564) (-141) $ (-564)) 112)) (-3616 (((-641 (-144)) $) 30 (|has| $ (-6 -4411)))) (-3619 (($ (-768) (-144)) 69)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-2799 (($ $ $) 87 (|has| (-144) (-847)))) (-2164 (($ (-1 (-112) (-144) (-144)) $ $) 101) (($ $ $) 94 (|has| (-144) (-847)))) (-1386 (((-641 (-144)) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) (-144) $) 27 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2848 (($ $ $) 86 (|has| (-144) (-847)))) (-2070 (((-112) $ $ (-144)) 115)) (-1387 (((-768) $ $ (-144)) 116)) (-2606 (($ (-1 (-144) (-144)) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-144) (-144)) $) 35) (($ (-1 (-144) (-144) (-144)) $ $) 64)) (-1686 (($ $) 122)) (-3286 (($ $) 123)) (-1500 (((-112) $ (-768)) 10)) (-2812 (($ $ (-144)) 106) (($ $ (-141)) 105)) (-2217 (((-1152) $) 22)) (-2308 (($ (-144) $ (-564)) 60) (($ $ $ (-564)) 59)) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-3864 (((-1114) $) 21)) (-1966 (((-144) $) 42 (|has| (-564) (-847)))) (-3582 (((-3 (-144) "failed") (-1 (-112) (-144)) $) 71)) (-3099 (($ $ (-144)) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) (-144)) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-144)))) 26 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) 25 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) 24 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) 23 (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) (-144) $) 45 (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2572 (((-641 (-144)) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 (((-144) $ (-564) (-144)) 50) (((-144) $ (-564)) 49) (($ $ (-1226 (-564))) 63) (($ $ $) 102)) (-2004 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3873 (((-768) (-1 (-112) (-144)) $) 31 (|has| $ (-6 -4411))) (((-768) (-144) $) 28 (-12 (|has| (-144) (-1094)) (|has| $ (-6 -4411))))) (-1999 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 79 (|has| (-144) (-612 (-536))))) (-3753 (($ (-641 (-144))) 70)) (-1802 (($ $ (-144)) 68) (($ (-144) $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3742 (($ (-144)) 111) (((-859) $) 18)) (-1417 (((-112) (-1 (-112) (-144)) $) 33 (|has| $ (-6 -4411)))) (-2412 (((-1152) $) 131) (((-1152) $ (-112)) 130) (((-1264) (-819) $) 129) (((-1264) (-819) $ (-112)) 128)) (-1751 (((-112) $ $) 84 (|has| (-144) (-847)))) (-1731 (((-112) $ $) 83 (|has| (-144) (-847)))) (-1705 (((-112) $ $) 20)) (-1741 (((-112) $ $) 85 (|has| (-144) (-847)))) (-1723 (((-112) $ $) 82 (|has| (-144) (-847)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-1151) (-140)) (T -1151)) +((-3961 (*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151))))) +(-13 (-1138) (-1094) (-825) (-10 -8 (-15 -3961 ($ (-564))))) +(((-34) . T) ((-102) . T) ((-611 (-859)) . T) ((-151 #0=(-144)) . T) ((-612 (-536)) |has| (-144) (-612 (-536))) ((-286 #1=(-564) #0#) . T) ((-288 #1# #0#) . T) ((-309 #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-373 #0#) . T) ((-489 #0#) . T) ((-602 #1# #0#) . T) ((-514 #0# #0#) -12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))) ((-647 #0#) . T) ((-19 #0#) . T) ((-825) . T) ((-847) |has| (-144) (-847)) ((-1094) . T) ((-1138) . T) ((-1209) . T)) +((-3732 (((-112) $ $) NIL)) (-3315 (($ $) NIL)) (-1853 (($ $) NIL)) (-4006 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1398 (((-112) $ $) NIL)) (-1375 (((-112) $ $ (-564)) NIL)) (-3961 (($ (-564)) 8)) (-3651 (((-641 $) $ (-144)) NIL) (((-641 $) $ (-141)) NIL)) (-1445 (((-112) (-1 (-112) (-144) (-144)) $) NIL) (((-112) $) NIL (|has| (-144) (-847)))) (-2402 (($ (-1 (-112) (-144) (-144)) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| (-144) (-847))))) (-2777 (($ (-1 (-112) (-144) (-144)) $) NIL) (($ $) NIL (|has| (-144) (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4412))) (((-144) $ (-1226 (-564)) (-144)) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2803 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1648 (($ $ (-1226 (-564)) $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2366 (($ (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (($ (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-144) (-1 (-144) (-144) (-144)) $ (-144) (-144)) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094)))) (((-144) (-1 (-144) (-144) (-144)) $ (-144)) NIL (|has| $ (-6 -4411))) (((-144) (-1 (-144) (-144) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2619 (((-144) $ (-564) (-144)) NIL (|has| $ (-6 -4412)))) (-2540 (((-144) $ (-564)) NIL)) (-1419 (((-112) $ $) NIL)) (-3305 (((-564) (-1 (-112) (-144)) $) NIL) (((-564) (-144) $) NIL (|has| (-144) (-1094))) (((-564) (-144) $ (-564)) NIL (|has| (-144) (-1094))) (((-564) $ $ (-564)) NIL) (((-564) (-141) $ (-564)) NIL)) (-3616 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-3619 (($ (-768) (-144)) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| (-144) (-847)))) (-2164 (($ (-1 (-112) (-144) (-144)) $ $) NIL) (($ $ $) NIL (|has| (-144) (-847)))) (-1386 (((-641 (-144)) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| (-144) (-847)))) (-2070 (((-112) $ $ (-144)) NIL)) (-1387 (((-768) $ $ (-144)) NIL)) (-2606 (($ (-1 (-144) (-144)) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-144) (-144)) $) NIL) (($ (-1 (-144) (-144) (-144)) $ $) NIL)) (-1686 (($ $) NIL)) (-3286 (($ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2812 (($ $ (-144)) NIL) (($ $ (-141)) NIL)) (-2217 (((-1152) $) NIL)) (-2308 (($ (-144) $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-144) $) NIL (|has| (-564) (-847)))) (-3582 (((-3 (-144) "failed") (-1 (-112) (-144)) $) NIL)) (-3099 (($ $ (-144)) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-144)))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-294 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-144) (-144)) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094)))) (($ $ (-641 (-144)) (-641 (-144))) NIL (-12 (|has| (-144) (-309 (-144))) (|has| (-144) (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-2572 (((-641 (-144)) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 (((-144) $ (-564) (-144)) NIL) (((-144) $ (-564)) NIL) (($ $ (-1226 (-564))) NIL) (($ $ $) NIL)) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3873 (((-768) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411))) (((-768) (-144) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-144) (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-144) (-612 (-536))))) (-3753 (($ (-641 (-144))) NIL)) (-1802 (($ $ (-144)) NIL) (($ (-144) $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3742 (($ (-144)) NIL) (((-859) $) NIL)) (-1417 (((-112) (-1 (-112) (-144)) $) NIL (|has| $ (-6 -4411)))) (-2412 (((-1152) $) 19) (((-1152) $ (-112)) 21) (((-1264) (-819) $) 22) (((-1264) (-819) $ (-112)) 23)) (-1751 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1731 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| (-144) (-847)))) (-1723 (((-112) $ $) NIL (|has| (-144) (-847)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1152) (-1151)) (T -1152)) +NIL +(-1151) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL)) (-2645 (((-1264) $ (-1152) (-1152)) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-1152) |#1|) NIL)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 |#1| "failed") (-1152) $) NIL)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094))))) (-2154 (($ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#1| "failed") (-1152) $) NIL)) (-2366 (($ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-1152) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-1152)) NIL)) (-3616 (((-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-1152) $) NIL (|has| (-1152) (-847)))) (-1386 (((-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-1152) $) NIL (|has| (-1152) (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-1823 (((-641 (-1152)) $) NIL)) (-2219 (((-112) (-1152) $) NIL)) (-2828 (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL)) (-2312 (((-641 (-1152)) $) NIL)) (-4062 (((-112) (-1152) $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-1966 ((|#1| $) NIL (|has| (-1152) (-847)))) (-3582 (((-3 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) "failed") (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (($ $ (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL (-12 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-309 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-1152)) NIL) ((|#1| $ (-1152) |#1|) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-611 (-859))) (|has| |#1| (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 (-1152)) (|:| -2423 |#1|)) (-1094)) (|has| |#1| (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1153 |#1|) (-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4411))) (-1094)) (T -1153)) +NIL +(-13 (-1185 (-1152) |#1|) (-10 -7 (-6 -4411))) +((-1404 (((-1150 |#1|) (-1150 |#1|)) 84)) (-3951 (((-3 (-1150 |#1|) "failed") (-1150 |#1|)) 42)) (-4262 (((-1150 |#1|) (-407 (-564)) (-1150 |#1|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-1703 (((-1150 |#1|) |#1| (-1150 |#1|)) 141 (|has| |#1| (-363)))) (-2119 (((-1150 |#1|) (-1150 |#1|)) 99)) (-1892 (((-1150 (-564)) (-564)) 63)) (-2424 (((-1150 |#1|) (-1150 (-1150 |#1|))) 118 (|has| |#1| (-38 (-407 (-564)))))) (-3092 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 104)) (-2414 (((-1150 |#1|) |#1| (-564)) 53)) (-2175 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 66)) (-4109 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 138 (|has| |#1| (-363)))) (-2853 (((-1150 |#1|) |#1| (-1 (-1150 |#1|))) 117 (|has| |#1| (-38 (-407 (-564)))))) (-1815 (((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|))) 139 (|has| |#1| (-363)))) (-3672 (((-1150 |#1|) (-1150 |#1|)) 98)) (-3188 (((-1150 |#1|) (-1150 |#1|)) 82)) (-1510 (((-1150 |#1|) (-564) (-564) (-1150 |#1|)) 105)) (-3128 (((-1150 |#1|) |#1| (-1150 |#1|)) 114 (|has| |#1| (-38 (-407 (-564)))))) (-3555 (((-1150 (-564)) (-564)) 62)) (-1822 (((-1150 |#1|) |#1|) 65)) (-4004 (((-1150 |#1|) (-1150 |#1|) (-564) (-564)) 101)) (-3347 (((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|)) 72)) (-1321 (((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|)) 40)) (-2425 (((-1150 |#1|) (-1150 |#1|)) 100)) (-2416 (((-1150 |#1|) (-1150 |#1|) |#1|) 77)) (-1812 (((-1150 |#1|) (-1150 |#1|)) 68)) (-2975 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 78)) (-3742 (((-1150 |#1|) |#1|) 73)) (-4372 (((-1150 |#1|) (-1150 (-1150 |#1|))) 89)) (-1799 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41)) (-1790 (((-1150 |#1|) (-1150 |#1|)) 21) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 23)) (-1780 (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 17)) (* (((-1150 |#1|) (-1150 |#1|) |#1|) 29) (((-1150 |#1|) |#1| (-1150 |#1|)) 26) (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 27))) +(((-1154 |#1|) (-10 -7 (-15 -1780 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1790 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1790 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1321 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -1799 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3951 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -2414 ((-1150 |#1|) |#1| (-564))) (-15 -3555 ((-1150 (-564)) (-564))) (-15 -1892 ((-1150 (-564)) (-564))) (-15 -1822 ((-1150 |#1|) |#1|)) (-15 -2175 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1812 ((-1150 |#1|) (-1150 |#1|))) (-15 -3347 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -3742 ((-1150 |#1|) |#1|)) (-15 -2416 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -2975 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3188 ((-1150 |#1|) (-1150 |#1|))) (-15 -1404 ((-1150 |#1|) (-1150 |#1|))) (-15 -4372 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -3672 ((-1150 |#1|) (-1150 |#1|))) (-15 -2119 ((-1150 |#1|) (-1150 |#1|))) (-15 -2425 ((-1150 |#1|) (-1150 |#1|))) (-15 -4004 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -3092 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -1510 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -2853 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -2424 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -4262 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4109 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1815 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -1703 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) (-1046)) (T -1154)) +((-1703 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1815 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)))) (-4109 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-4262 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1046)) (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4)))) (-2424 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046)))) (-2853 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))) (-3128 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1510 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-3092 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-4004 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-2425 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2119 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3672 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-4372 (*1 *2 *3) (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) (-4 *4 (-1046)))) (-1404 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3188 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2975 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2416 (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-3742 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-3347 (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1046)) (-5 *1 (-1154 *4)))) (-1812 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-2175 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1822 (*1 *2 *3) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-1892 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) (-5 *3 (-564)))) (-3555 (*1 *2 *3) (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) (-5 *3 (-564)))) (-2414 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) (-3951 (*1 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1799 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1321 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1790 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1790 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) (-1780 (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) +(-10 -7 (-15 -1780 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1790 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1790 ((-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 * ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 * ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -1321 ((-3 (-1150 |#1|) "failed") (-1150 |#1|) (-1150 |#1|))) (-15 -1799 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3951 ((-3 (-1150 |#1|) "failed") (-1150 |#1|))) (-15 -2414 ((-1150 |#1|) |#1| (-564))) (-15 -3555 ((-1150 (-564)) (-564))) (-15 -1892 ((-1150 (-564)) (-564))) (-15 -1822 ((-1150 |#1|) |#1|)) (-15 -2175 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1812 ((-1150 |#1|) (-1150 |#1|))) (-15 -3347 ((-1150 |#1|) (-1 |#1| (-564)) (-1150 |#1|))) (-15 -3742 ((-1150 |#1|) |#1|)) (-15 -2416 ((-1150 |#1|) (-1150 |#1|) |#1|)) (-15 -2975 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -3188 ((-1150 |#1|) (-1150 |#1|))) (-15 -1404 ((-1150 |#1|) (-1150 |#1|))) (-15 -4372 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -3672 ((-1150 |#1|) (-1150 |#1|))) (-15 -2119 ((-1150 |#1|) (-1150 |#1|))) (-15 -2425 ((-1150 |#1|) (-1150 |#1|))) (-15 -4004 ((-1150 |#1|) (-1150 |#1|) (-564) (-564))) (-15 -3092 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (-15 -1510 ((-1150 |#1|) (-564) (-564) (-1150 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ((-1150 |#1|) |#1| (-1150 |#1|))) (-15 -2853 ((-1150 |#1|) |#1| (-1 (-1150 |#1|)))) (-15 -2424 ((-1150 |#1|) (-1150 (-1150 |#1|)))) (-15 -4262 ((-1150 |#1|) (-407 (-564)) (-1150 |#1|)))) |%noBranch|) (IF (|has| |#1| (-363)) (PROGN (-15 -4109 ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -1815 ((-1150 |#1|) (-1 |#1| (-564)) |#1| (-1 (-1150 |#1|)))) (-15 -1703 ((-1150 |#1|) |#1| (-1150 |#1|)))) |%noBranch|)) +((-2451 (((-1150 |#1|) (-1150 |#1|)) 60)) (-2319 (((-1150 |#1|) (-1150 |#1|)) 42)) (-2428 (((-1150 |#1|) (-1150 |#1|)) 56)) (-2297 (((-1150 |#1|) (-1150 |#1|)) 38)) (-2473 (((-1150 |#1|) (-1150 |#1|)) 63)) (-2339 (((-1150 |#1|) (-1150 |#1|)) 45)) (-2192 (((-1150 |#1|) (-1150 |#1|)) 34)) (-4118 (((-1150 |#1|) (-1150 |#1|)) 29)) (-2484 (((-1150 |#1|) (-1150 |#1|)) 64)) (-2348 (((-1150 |#1|) (-1150 |#1|)) 46)) (-2462 (((-1150 |#1|) (-1150 |#1|)) 61)) (-2328 (((-1150 |#1|) (-1150 |#1|)) 43)) (-2438 (((-1150 |#1|) (-1150 |#1|)) 58)) (-2309 (((-1150 |#1|) (-1150 |#1|)) 40)) (-2521 (((-1150 |#1|) (-1150 |#1|)) 68)) (-2379 (((-1150 |#1|) (-1150 |#1|)) 50)) (-2495 (((-1150 |#1|) (-1150 |#1|)) 66)) (-2358 (((-1150 |#1|) (-1150 |#1|)) 48)) (-2548 (((-1150 |#1|) (-1150 |#1|)) 71)) (-2404 (((-1150 |#1|) (-1150 |#1|)) 53)) (-4065 (((-1150 |#1|) (-1150 |#1|)) 72)) (-2415 (((-1150 |#1|) (-1150 |#1|)) 54)) (-2534 (((-1150 |#1|) (-1150 |#1|)) 70)) (-2391 (((-1150 |#1|) (-1150 |#1|)) 52)) (-2507 (((-1150 |#1|) (-1150 |#1|)) 69)) (-2367 (((-1150 |#1|) (-1150 |#1|)) 51)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 36))) +(((-1155 |#1|) (-10 -7 (-15 -4118 ((-1150 |#1|) (-1150 |#1|))) (-15 -2192 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2297 ((-1150 |#1|) (-1150 |#1|))) (-15 -2309 ((-1150 |#1|) (-1150 |#1|))) (-15 -2319 ((-1150 |#1|) (-1150 |#1|))) (-15 -2328 ((-1150 |#1|) (-1150 |#1|))) (-15 -2339 ((-1150 |#1|) (-1150 |#1|))) (-15 -2348 ((-1150 |#1|) (-1150 |#1|))) (-15 -2358 ((-1150 |#1|) (-1150 |#1|))) (-15 -2367 ((-1150 |#1|) (-1150 |#1|))) (-15 -2379 ((-1150 |#1|) (-1150 |#1|))) (-15 -2391 ((-1150 |#1|) (-1150 |#1|))) (-15 -2404 ((-1150 |#1|) (-1150 |#1|))) (-15 -2415 ((-1150 |#1|) (-1150 |#1|))) (-15 -2428 ((-1150 |#1|) (-1150 |#1|))) (-15 -2438 ((-1150 |#1|) (-1150 |#1|))) (-15 -2451 ((-1150 |#1|) (-1150 |#1|))) (-15 -2462 ((-1150 |#1|) (-1150 |#1|))) (-15 -2473 ((-1150 |#1|) (-1150 |#1|))) (-15 -2484 ((-1150 |#1|) (-1150 |#1|))) (-15 -2495 ((-1150 |#1|) (-1150 |#1|))) (-15 -2507 ((-1150 |#1|) (-1150 |#1|))) (-15 -2521 ((-1150 |#1|) (-1150 |#1|))) (-15 -2534 ((-1150 |#1|) (-1150 |#1|))) (-15 -2548 ((-1150 |#1|) (-1150 |#1|))) (-15 -4065 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1155)) +((-4065 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2548 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2534 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2521 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2507 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2495 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2473 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2438 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2309 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1155 *3))))) +(-10 -7 (-15 -4118 ((-1150 |#1|) (-1150 |#1|))) (-15 -2192 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -2297 ((-1150 |#1|) (-1150 |#1|))) (-15 -2309 ((-1150 |#1|) (-1150 |#1|))) (-15 -2319 ((-1150 |#1|) (-1150 |#1|))) (-15 -2328 ((-1150 |#1|) (-1150 |#1|))) (-15 -2339 ((-1150 |#1|) (-1150 |#1|))) (-15 -2348 ((-1150 |#1|) (-1150 |#1|))) (-15 -2358 ((-1150 |#1|) (-1150 |#1|))) (-15 -2367 ((-1150 |#1|) (-1150 |#1|))) (-15 -2379 ((-1150 |#1|) (-1150 |#1|))) (-15 -2391 ((-1150 |#1|) (-1150 |#1|))) (-15 -2404 ((-1150 |#1|) (-1150 |#1|))) (-15 -2415 ((-1150 |#1|) (-1150 |#1|))) (-15 -2428 ((-1150 |#1|) (-1150 |#1|))) (-15 -2438 ((-1150 |#1|) (-1150 |#1|))) (-15 -2451 ((-1150 |#1|) (-1150 |#1|))) (-15 -2462 ((-1150 |#1|) (-1150 |#1|))) (-15 -2473 ((-1150 |#1|) (-1150 |#1|))) (-15 -2484 ((-1150 |#1|) (-1150 |#1|))) (-15 -2495 ((-1150 |#1|) (-1150 |#1|))) (-15 -2507 ((-1150 |#1|) (-1150 |#1|))) (-15 -2521 ((-1150 |#1|) (-1150 |#1|))) (-15 -2534 ((-1150 |#1|) (-1150 |#1|))) (-15 -2548 ((-1150 |#1|) (-1150 |#1|))) (-15 -4065 ((-1150 |#1|) (-1150 |#1|)))) +((-2451 (((-1150 |#1|) (-1150 |#1|)) 108)) (-2319 (((-1150 |#1|) (-1150 |#1|)) 65)) (-3998 (((-2 (|:| -2428 (-1150 |#1|)) (|:| -2438 (-1150 |#1|))) (-1150 |#1|)) 104)) (-2428 (((-1150 |#1|) (-1150 |#1|)) 105)) (-4385 (((-2 (|:| -2297 (-1150 |#1|)) (|:| -2309 (-1150 |#1|))) (-1150 |#1|)) 54)) (-2297 (((-1150 |#1|) (-1150 |#1|)) 55)) (-2473 (((-1150 |#1|) (-1150 |#1|)) 110)) (-2339 (((-1150 |#1|) (-1150 |#1|)) 72)) (-2192 (((-1150 |#1|) (-1150 |#1|)) 40)) (-4118 (((-1150 |#1|) (-1150 |#1|)) 37)) (-2484 (((-1150 |#1|) (-1150 |#1|)) 111)) (-2348 (((-1150 |#1|) (-1150 |#1|)) 73)) (-2462 (((-1150 |#1|) (-1150 |#1|)) 109)) (-2328 (((-1150 |#1|) (-1150 |#1|)) 68)) (-2438 (((-1150 |#1|) (-1150 |#1|)) 106)) (-2309 (((-1150 |#1|) (-1150 |#1|)) 56)) (-2521 (((-1150 |#1|) (-1150 |#1|)) 119)) (-2379 (((-1150 |#1|) (-1150 |#1|)) 94)) (-2495 (((-1150 |#1|) (-1150 |#1|)) 113)) (-2358 (((-1150 |#1|) (-1150 |#1|)) 90)) (-2548 (((-1150 |#1|) (-1150 |#1|)) 123)) (-2404 (((-1150 |#1|) (-1150 |#1|)) 98)) (-4065 (((-1150 |#1|) (-1150 |#1|)) 125)) (-2415 (((-1150 |#1|) (-1150 |#1|)) 100)) (-2534 (((-1150 |#1|) (-1150 |#1|)) 121)) (-2391 (((-1150 |#1|) (-1150 |#1|)) 96)) (-2507 (((-1150 |#1|) (-1150 |#1|)) 115)) (-2367 (((-1150 |#1|) (-1150 |#1|)) 92)) (** (((-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) 41))) +(((-1156 |#1|) (-10 -7 (-15 -4118 ((-1150 |#1|) (-1150 |#1|))) (-15 -2192 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -4385 ((-2 (|:| -2297 (-1150 |#1|)) (|:| -2309 (-1150 |#1|))) (-1150 |#1|))) (-15 -2297 ((-1150 |#1|) (-1150 |#1|))) (-15 -2309 ((-1150 |#1|) (-1150 |#1|))) (-15 -2319 ((-1150 |#1|) (-1150 |#1|))) (-15 -2328 ((-1150 |#1|) (-1150 |#1|))) (-15 -2339 ((-1150 |#1|) (-1150 |#1|))) (-15 -2348 ((-1150 |#1|) (-1150 |#1|))) (-15 -2358 ((-1150 |#1|) (-1150 |#1|))) (-15 -2367 ((-1150 |#1|) (-1150 |#1|))) (-15 -2379 ((-1150 |#1|) (-1150 |#1|))) (-15 -2391 ((-1150 |#1|) (-1150 |#1|))) (-15 -2404 ((-1150 |#1|) (-1150 |#1|))) (-15 -2415 ((-1150 |#1|) (-1150 |#1|))) (-15 -3998 ((-2 (|:| -2428 (-1150 |#1|)) (|:| -2438 (-1150 |#1|))) (-1150 |#1|))) (-15 -2428 ((-1150 |#1|) (-1150 |#1|))) (-15 -2438 ((-1150 |#1|) (-1150 |#1|))) (-15 -2451 ((-1150 |#1|) (-1150 |#1|))) (-15 -2462 ((-1150 |#1|) (-1150 |#1|))) (-15 -2473 ((-1150 |#1|) (-1150 |#1|))) (-15 -2484 ((-1150 |#1|) (-1150 |#1|))) (-15 -2495 ((-1150 |#1|) (-1150 |#1|))) (-15 -2507 ((-1150 |#1|) (-1150 |#1|))) (-15 -2521 ((-1150 |#1|) (-1150 |#1|))) (-15 -2534 ((-1150 |#1|) (-1150 |#1|))) (-15 -2548 ((-1150 |#1|) (-1150 |#1|))) (-15 -4065 ((-1150 |#1|) (-1150 |#1|)))) (-38 (-407 (-564)))) (T -1156)) +((-4065 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2548 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2534 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2521 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2507 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2495 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2484 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2473 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2462 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2451 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2438 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2428 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-3998 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -2428 (-1150 *4)) (|:| -2438 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (-2415 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2358 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2348 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2339 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2328 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2319 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2309 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-4385 (*1 *2 *3) (-12 (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-2 (|:| -2297 (-1150 *4)) (|:| -2309 (-1150 *4)))) (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3)))) (-4118 (*1 *2 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1156 *3))))) +(-10 -7 (-15 -4118 ((-1150 |#1|) (-1150 |#1|))) (-15 -2192 ((-1150 |#1|) (-1150 |#1|))) (-15 ** ((-1150 |#1|) (-1150 |#1|) (-1150 |#1|))) (-15 -4385 ((-2 (|:| -2297 (-1150 |#1|)) (|:| -2309 (-1150 |#1|))) (-1150 |#1|))) (-15 -2297 ((-1150 |#1|) (-1150 |#1|))) (-15 -2309 ((-1150 |#1|) (-1150 |#1|))) (-15 -2319 ((-1150 |#1|) (-1150 |#1|))) (-15 -2328 ((-1150 |#1|) (-1150 |#1|))) (-15 -2339 ((-1150 |#1|) (-1150 |#1|))) (-15 -2348 ((-1150 |#1|) (-1150 |#1|))) (-15 -2358 ((-1150 |#1|) (-1150 |#1|))) (-15 -2367 ((-1150 |#1|) (-1150 |#1|))) (-15 -2379 ((-1150 |#1|) (-1150 |#1|))) (-15 -2391 ((-1150 |#1|) (-1150 |#1|))) (-15 -2404 ((-1150 |#1|) (-1150 |#1|))) (-15 -2415 ((-1150 |#1|) (-1150 |#1|))) (-15 -3998 ((-2 (|:| -2428 (-1150 |#1|)) (|:| -2438 (-1150 |#1|))) (-1150 |#1|))) (-15 -2428 ((-1150 |#1|) (-1150 |#1|))) (-15 -2438 ((-1150 |#1|) (-1150 |#1|))) (-15 -2451 ((-1150 |#1|) (-1150 |#1|))) (-15 -2462 ((-1150 |#1|) (-1150 |#1|))) (-15 -2473 ((-1150 |#1|) (-1150 |#1|))) (-15 -2484 ((-1150 |#1|) (-1150 |#1|))) (-15 -2495 ((-1150 |#1|) (-1150 |#1|))) (-15 -2507 ((-1150 |#1|) (-1150 |#1|))) (-15 -2521 ((-1150 |#1|) (-1150 |#1|))) (-15 -2534 ((-1150 |#1|) (-1150 |#1|))) (-15 -2548 ((-1150 |#1|) (-1150 |#1|))) (-15 -4065 ((-1150 |#1|) (-1150 |#1|)))) +((-3516 (((-955 |#2|) |#2| |#2|) 50)) (-1989 ((|#2| |#2| |#1|) 19 (|has| |#1| (-307))))) +(((-1157 |#1| |#2|) (-10 -7 (-15 -3516 ((-955 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -1989 (|#2| |#2| |#1|)) |%noBranch|)) (-556) (-1235 |#1|)) (T -1157)) +((-1989 (*1 *2 *2 *3) (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) (-4 *2 (-1235 *3)))) (-3516 (*1 *2 *3 *3) (-12 (-4 *4 (-556)) (-5 *2 (-955 *3)) (-5 *1 (-1157 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -3516 ((-955 |#2|) |#2| |#2|)) (IF (|has| |#1| (-307)) (-15 -1989 (|#2| |#2| |#1|)) |%noBranch|)) +((-3732 (((-112) $ $) NIL)) (-3303 (($ $ (-641 (-768))) 80)) (-3388 (($) 32)) (-3534 (($ $) 50)) (-3823 (((-641 $) $) 59)) (-2247 (((-112) $) 19)) (-3770 (((-641 (-940 |#2|)) $) 87)) (-3634 (($ $) 81)) (-2718 (((-768) $) 46)) (-3619 (($) 31)) (-3263 (($ $ (-641 (-768)) (-940 |#2|)) 73) (($ $ (-641 (-768)) (-768)) 74) (($ $ (-768) (-940 |#2|)) 76)) (-2164 (($ $ $) 56) (($ (-641 $)) 58)) (-2117 (((-768) $) 88)) (-1881 (((-112) $) 15)) (-2217 (((-1152) $) NIL)) (-2719 (((-112) $) 21)) (-3864 (((-1114) $) NIL)) (-2258 (((-171) $) 86)) (-1629 (((-940 |#2|) $) 82)) (-1916 (((-768) $) 83)) (-3977 (((-112) $) 85)) (-1836 (($ $ (-641 (-768)) (-171)) 79)) (-3884 (($ $) 51)) (-3742 (((-859) $) 99)) (-1667 (($ $ (-641 (-768)) (-112)) 78)) (-3167 (((-641 $) $) 11)) (-1323 (($ $ (-768)) 45)) (-2961 (($ $) 42)) (-1545 (($ $ $ (-940 |#2|) (-768)) 69)) (-4149 (($ $ (-940 |#2|)) 68)) (-2480 (($ $ (-641 (-768)) (-940 |#2|)) 65) (($ $ (-641 (-768)) (-768)) 71) (((-768) $ (-940 |#2|)) 72)) (-1705 (((-112) $ $) 93))) +(((-1158 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -1881 ((-112) $)) (-15 -2247 ((-112) $)) (-15 -2719 ((-112) $)) (-15 -3619 ($)) (-15 -3388 ($)) (-15 -2961 ($ $)) (-15 -1323 ($ $ (-768))) (-15 -3167 ((-641 $) $)) (-15 -2718 ((-768) $)) (-15 -3534 ($ $)) (-15 -3884 ($ $)) (-15 -2164 ($ $ $)) (-15 -2164 ($ (-641 $))) (-15 -3823 ((-641 $) $)) (-15 -2480 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -4149 ($ $ (-940 |#2|))) (-15 -1545 ($ $ $ (-940 |#2|) (-768))) (-15 -3263 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2480 ($ $ (-641 (-768)) (-768))) (-15 -3263 ($ $ (-641 (-768)) (-768))) (-15 -2480 ((-768) $ (-940 |#2|))) (-15 -3263 ($ $ (-768) (-940 |#2|))) (-15 -1667 ($ $ (-641 (-768)) (-112))) (-15 -1836 ($ $ (-641 (-768)) (-171))) (-15 -3303 ($ $ (-641 (-768)))) (-15 -1629 ((-940 |#2|) $)) (-15 -1916 ((-768) $)) (-15 -3977 ((-112) $)) (-15 -2258 ((-171) $)) (-15 -2117 ((-768) $)) (-15 -3634 ($ $)) (-15 -3770 ((-641 (-940 |#2|)) $)))) (-918) (-1046)) (T -1158)) +((-1881 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2719 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3619 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3388 (*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2961 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3167 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3534 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3884 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2164 (*1 *1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2480 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-4149 (*1 *1 *1 *2) (-12 (-5 *2 (-940 *4)) (-4 *4 (-1046)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)))) (-1545 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-940 *5)) (-5 *3 (-768)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-3263 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-2480 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-3263 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-2480 (*1 *2 *1 *3) (-12 (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *2 (-768)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-3263 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) (-1667 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-1836 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-641 (-768))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)) (-4 *5 (-1046)))) (-3303 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-940 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-1916 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3977 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2258 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046)))) (-3634 (*1 *1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) (-3770 (*1 *2 *1) (-12 (-5 *2 (-641 (-940 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) (-4 *4 (-1046))))) +(-13 (-1094) (-10 -8 (-15 -1881 ((-112) $)) (-15 -2247 ((-112) $)) (-15 -2719 ((-112) $)) (-15 -3619 ($)) (-15 -3388 ($)) (-15 -2961 ($ $)) (-15 -1323 ($ $ (-768))) (-15 -3167 ((-641 $) $)) (-15 -2718 ((-768) $)) (-15 -3534 ($ $)) (-15 -3884 ($ $)) (-15 -2164 ($ $ $)) (-15 -2164 ($ (-641 $))) (-15 -3823 ((-641 $) $)) (-15 -2480 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -4149 ($ $ (-940 |#2|))) (-15 -1545 ($ $ $ (-940 |#2|) (-768))) (-15 -3263 ($ $ (-641 (-768)) (-940 |#2|))) (-15 -2480 ($ $ (-641 (-768)) (-768))) (-15 -3263 ($ $ (-641 (-768)) (-768))) (-15 -2480 ((-768) $ (-940 |#2|))) (-15 -3263 ($ $ (-768) (-940 |#2|))) (-15 -1667 ($ $ (-641 (-768)) (-112))) (-15 -1836 ($ $ (-641 (-768)) (-171))) (-15 -3303 ($ $ (-641 (-768)))) (-15 -1629 ((-940 |#2|) $)) (-15 -1916 ((-768) $)) (-15 -3977 ((-112) $)) (-15 -2258 ((-171) $)) (-15 -2117 ((-768) $)) (-15 -3634 ($ $)) (-15 -3770 ((-641 (-940 |#2|)) $)))) +((-3732 (((-112) $ $) NIL)) (-3076 ((|#2| $) 11)) (-3065 ((|#1| $) 10)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3753 (($ |#1| |#2|) 9)) (-3742 (((-859) $) 16)) (-1705 (((-112) $ $) NIL))) +(((-1159 |#1| |#2|) (-13 (-1094) (-10 -8 (-15 -3753 ($ |#1| |#2|)) (-15 -3065 (|#1| $)) (-15 -3076 (|#2| $)))) (-1094) (-1094)) (T -1159)) +((-3753 (*1 *1 *2 *3) (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3065 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094)))) (-3076 (*1 *2 *1) (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094))))) +(-13 (-1094) (-10 -8 (-15 -3753 ($ |#1| |#2|)) (-15 -3065 (|#1| $)) (-15 -3076 (|#2| $)))) +((-3732 (((-112) $ $) NIL)) (-2510 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-1160) (-13 (-1077) (-10 -8 (-15 -2510 ((-1129) $))))) (T -1160)) +((-2510 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160))))) +(-13 (-1077) (-10 -8 (-15 -2510 ((-1129) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 11)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1948 (($ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1832 (((-112) $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2892 (($ $ (-564)) NIL) (($ $ (-564) (-564)) 75)) (-3157 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-3120 (((-1168 |#1| |#2| |#3|) $) 42)) (-3375 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 32)) (-4325 (((-1168 |#1| |#2| |#3|) $) 33)) (-2451 (($ $) 116 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 92 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2428 (($ $) 112 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 88 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2751 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-2473 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 96 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 34) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-2239 (((-1168 |#1| |#2| |#3|) $) 140) (((-1170) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-1480 (($ $) 37) (($ (-564) $) 38)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-1168 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2069 (-685 (-1168 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1168 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-3951 (((-3 $ "failed") $) 54)) (-1660 (((-407 (-949 |#1|)) $ (-564)) 74 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 76 (|has| |#1| (-556)))) (-2821 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-3308 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-1988 (((-112) $) 28)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-883 (-564))) (|has| |#1| (-363))))) (-1619 (((-564) $) NIL) (((-564) $ (-564)) 26)) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL (|has| |#1| (-363)))) (-1625 (((-1168 |#1| |#2| |#3|) $) 44 (|has| |#1| (-363)))) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-3 $ "failed") $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2839 (((-112) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2472 (($ $ (-918)) NIL)) (-3028 (($ (-1 |#1| (-564)) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-564)) 19) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2799 (($ $ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2848 (($ $ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2192 (($ $) 81 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4338 (($ (-564) (-1168 |#1| |#2| |#3|)) 36)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-3128 (($ $) 79 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 80 (|has| |#1| (-38 (-407 (-564)))))) (-3258 (($) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1941 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3014 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-3004 (($ $ (-564)) 158)) (-1321 (((-3 $ "failed") $ $) 55 (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4118 (($ $) 82 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-514 (-1170) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1168 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1168 |#1| |#2| |#3|)) (-641 (-1168 |#1| |#2| |#3|))) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-309 (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) NIL) (($ $ $) 61 (|has| (-564) (-1106))) (($ $ (-1168 |#1| |#2| |#3|)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-286 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4117 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 57) (($ $ (-768)) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 56 (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-2090 (($ $) NIL (|has| |#1| (-363)))) (-1634 (((-1168 |#1| |#2| |#3|) $) 46 (|has| |#1| (-363)))) (-2266 (((-564) $) 43)) (-2484 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 98 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 118 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 94 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 114 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 90 (|has| |#1| (-38 (-407 (-564)))))) (-2235 (((-536) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2356 (($ $) NIL)) (-3742 (((-859) $) 162) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1168 |#1| |#2| |#3|)) 30) (($ (-1255 |#2|)) 25) (($ (-1170)) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-2856 ((|#1| $ (-564)) 77)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-2212 ((|#1| $) 12)) (-2551 (((-1168 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2521 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 104 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2495 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 100 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 108 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 110 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 106 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 102 (|has| |#1| (-38 (-407 (-564)))))) (-2792 (($ $) NIL (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-4311 (($) 21 T CONST)) (-4321 (($) 16 T CONST)) (-2124 (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1751 (((-112) $ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1731 (((-112) $ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1723 (((-112) $ $) NIL (-4030 (-12 (|has| (-1168 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1168 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 49 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) (-1168 |#1| |#2| |#3|)) 50 (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 23)) (** (($ $ (-918)) NIL) (($ $ (-768)) 60) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) 83 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 137 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 35) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1168 |#1| |#2| |#3|)) 48 (|has| |#1| (-363))) (($ (-1168 |#1| |#2| |#3|) $) 47 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1161 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -3742 ($ (-1255 |#2|))) (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1161)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) +(-13 (-1221 |#1| (-1168 |#1| |#2| |#3|)) (-10 -8 (-15 -3742 ($ (-1255 |#2|))) (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) +((-2958 ((|#2| |#2| (-1086 |#2|)) 26) ((|#2| |#2| (-1170)) 28))) +(((-1162 |#1| |#2|) (-10 -7 (-15 -2958 (|#2| |#2| (-1170))) (-15 -2958 (|#2| |#2| (-1086 |#2|)))) (-13 (-556) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-430 |#1|) (-160) (-27) (-1194))) (T -1162)) +((-2958 (*1 *2 *2 *3) (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)))) (-2958 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194)))))) +(-10 -7 (-15 -2958 (|#2| |#2| (-1170))) (-15 -2958 (|#2| |#2| (-1086 |#2|)))) +((-2958 (((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))) 31) (((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|))) 44) (((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170)) 33) (((-407 (-949 |#1|)) (-949 |#1|) (-1170)) 36))) +(((-1163 |#1|) (-10 -7 (-15 -2958 ((-407 (-949 |#1|)) (-949 |#1|) (-1170))) (-15 -2958 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -2958 ((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|)))) (-15 -2958 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))))) (-13 (-556) (-847) (-1035 (-564)))) (T -1163)) +((-2958 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 *3 (-316 *5))) (-5 *1 (-1163 *5)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *4 (-1086 (-949 *5))) (-5 *3 (-949 *5)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 *3)) (-5 *1 (-1163 *5)))) (-2958 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 (-407 (-949 *5)) (-316 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-407 (-949 *5))))) (-2958 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 (-949 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-949 *5))))) +(-10 -7 (-15 -2958 ((-407 (-949 |#1|)) (-949 |#1|) (-1170))) (-15 -2958 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1170))) (-15 -2958 ((-407 (-949 |#1|)) (-949 |#1|) (-1086 (-949 |#1|)))) (-15 -2958 ((-3 (-407 (-949 |#1|)) (-316 |#1|)) (-407 (-949 |#1|)) (-1086 (-407 (-949 |#1|)))))) +((-2187 (((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)) 13))) +(((-1164 |#1| |#2|) (-10 -7 (-15 -2187 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) (-1046) (-1046)) (T -1164)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6))))) +(-10 -7 (-15 -2187 ((-1166 |#2|) (-1 |#2| |#1|) (-1166 |#1|)))) +((-3048 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 51)) (-4127 (((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))) 52))) +(((-1165 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4127 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -3048 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) (-790) (-847) (-452) (-946 |#3| |#1| |#2|)) (T -1165)) +((-3048 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) (-4127 (*1 *2 *3) (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7)))))) +(-10 -7 (-15 -4127 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|)))) (-15 -3048 ((-418 (-1166 (-407 |#4|))) (-1166 (-407 |#4|))))) +((-3732 (((-112) $ $) 169)) (-4173 (((-112) $) 42)) (-1312 (((-1259 |#1|) $ (-768)) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-4218 (($ (-1166 |#1|)) NIL)) (-4097 (((-1166 $) $ (-1076)) 81) (((-1166 |#1|) $) 70)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) 162 (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-4107 (($ $ $) 156 (|has| |#1| (-556)))) (-3679 (((-418 (-1166 $)) (-1166 $)) 94 (|has| |#1| (-906)))) (-2249 (($ $) NIL (|has| |#1| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 114 (|has| |#1| (-906)))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-4359 (($ $ (-768)) 60)) (-2477 (($ $ (-768)) 62)) (-3823 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-452)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#1| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2239 ((|#1| $) NIL) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-1076) $) NIL)) (-2448 (($ $ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $ $) 158 (|has| |#1| (-172)))) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) 79)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) NIL) (((-685 |#1|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-4132 (($ $ $) 129)) (-2995 (($ $ $) NIL (|has| |#1| (-556)))) (-3370 (((-2 (|:| -1762 |#1|) (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-556)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-1989 (($ $) 163 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#1| (-906)))) (-1866 (($ $ |#1| (-768) $) 68)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1596 (((-859) $ (-859)) 146)) (-1619 (((-768) $ $) NIL (|has| |#1| (-556)))) (-3840 (((-112) $) 47)) (-2918 (((-768) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| |#1| (-1145)))) (-4257 (($ (-1166 |#1|) (-1076)) 72) (($ (-1166 $) (-1076)) 88)) (-2472 (($ $ (-768)) 50)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) 86) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-1076)) NIL) (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 151)) (-3469 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-1396 (($ (-1 (-768) (-768)) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2574 (((-1166 |#1|) $) NIL)) (-1306 (((-3 (-1076) "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) 75)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) NIL (|has| |#1| (-452)))) (-2217 (((-1152) $) NIL)) (-4115 (((-2 (|:| -1935 $) (|:| -1363 $)) $ (-768)) 59)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-1076)) (|:| -2515 (-768))) "failed") $) NIL)) (-3128 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3258 (($) NIL (|has| |#1| (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) 49)) (-1296 ((|#1| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 102 (|has| |#1| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-452))) (($ $ $) 165 (|has| |#1| (-452)))) (-3637 (($ $ (-768) |#1| $) 121)) (-2259 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) 99 (|has| |#1| (-906)))) (-4127 (((-418 $) $) 107 (|has| |#1| (-906)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-1321 (((-3 $ "failed") $ |#1|) 161 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 122 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#1|) NIL) (($ $ (-641 (-1076)) (-641 |#1|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) 148) (($ $ $) 149) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) NIL (|has| |#1| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#1| (-556)))) (-1430 (((-3 $ "failed") $ (-768)) 53)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 170 (|has| |#1| (-363)))) (-4284 (($ $ (-1076)) NIL (|has| |#1| (-172))) ((|#1| $) 154 (|has| |#1| (-172)))) (-4117 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2266 (((-768) $) 77) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) 160 (|has| |#1| (-452))) (($ $ (-1076)) NIL (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#1| (-906))))) (-1526 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#1| (-556)))) (-3742 (((-859) $) 147) (($ (-564)) NIL) (($ |#1|) 76) (($ (-1076)) NIL) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) 40 (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) 17 T CONST)) (-4321 (($) 19 T CONST)) (-2124 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) 119)) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1799 (($ $ |#1|) 171 (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 89)) (** (($ $ (-918)) 14) (($ $ (-768)) 12)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 39) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 127) (($ $ |#1|) NIL))) +(((-1166 |#1|) (-13 (-1235 |#1|) (-10 -8 (-15 -1596 ((-859) $ (-859))) (-15 -3637 ($ $ (-768) |#1| $)))) (-1046)) (T -1166)) +((-1596 (*1 *2 *1 *2) (-12 (-5 *2 (-859)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))) (-3637 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1166 *3)) (-4 *3 (-1046))))) +(-13 (-1235 |#1|) (-10 -8 (-15 -1596 ((-859) $ (-859))) (-15 -3637 ($ $ (-768) |#1| $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 11)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2892 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-3157 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1168 |#1| |#2| |#3|) "failed") $) 36)) (-2239 (((-1161 |#1| |#2| |#3|) $) NIL) (((-1168 |#1| |#2| |#3|) $) NIL)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2421 (((-407 (-564)) $) 59)) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-4350 (($ (-407 (-564)) (-1161 |#1| |#2| |#3|)) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-1988 (((-112) $) NIL)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-407 (-564))) 20) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3984 (((-1161 |#1| |#2| |#3|) $) 41)) (-2255 (((-3 (-1161 |#1| |#2| |#3|) "failed") $) NIL)) (-4338 (((-1161 |#1| |#2| |#3|) $) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-3128 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-3004 (($ $ (-407 (-564))) NIL)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4118 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-2266 (((-407 (-564)) $) NIL)) (-2484 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) NIL)) (-3742 (((-859) $) 62) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1161 |#1| |#2| |#3|)) 30) (($ (-1168 |#1| |#2| |#3|)) 31) (($ (-1255 |#2|)) 26) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2856 ((|#1| $ (-407 (-564))) NIL)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2212 ((|#1| $) 12)) (-2521 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 22 T CONST)) (-4321 (($) 16 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 24)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1167 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1035 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1167)) +((-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) +(-13 (-1242 |#1| (-1161 |#1| |#2| |#3|)) (-1035 (-1168 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 130)) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 120)) (-3389 (((-1232 |#2| |#1|) $ (-768)) 68)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2892 (($ $ (-768)) 84) (($ $ (-768) (-768)) 81)) (-3157 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 106)) (-2451 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 150 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2428 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 119) (($ (-1150 |#1|)) 114)) (-2473 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 154 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) 25)) (-1572 (($ $) 28)) (-3217 (((-949 |#1|) $ (-768)) 80) (((-949 |#1|) $ (-768) (-768)) 82)) (-1988 (((-112) $) 125)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-768) $) 127) (((-768) $ (-768)) 129)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) NIL)) (-3028 (($ (-1 |#1| (-564)) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) 13) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2192 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3128 (($ $) 134 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 135 (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) NIL)) (-3004 (($ $ (-768)) 15)) (-1321 (((-3 $ "failed") $ $) 26 (|has| |#1| (-556)))) (-4118 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 123) (($ $ $) 133 (|has| (-768) (-1106)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 29 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $ (-1255 |#2|)) 31)) (-2266 (((-768) $) NIL)) (-2484 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 156 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 152 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 148 (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) NIL)) (-3742 (((-859) $) 207) (($ (-564)) NIL) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 131 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 54) (($ (-1255 |#2|)) 36)) (-3110 (((-1150 |#1|) $) 102)) (-2856 ((|#1| $ (-768)) 122)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2212 ((|#1| $) 57)) (-2521 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 158 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-768)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 17 T CONST)) (-4321 (($) 20 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) 199)) (-1780 (($ $ $) 35)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#1|) 204 (|has| |#1| (-363))) (($ $ $) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 142 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 137) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1168 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -3742 ($ (-1232 |#2| |#1|))) (-15 -3389 ((-1232 |#2| |#1|) $ (-768))) (-15 -3742 ($ (-1255 |#2|))) (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1168)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) (-3389 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) +(-13 (-1250 |#1|) (-10 -8 (-15 -3742 ($ (-1232 |#2| |#1|))) (-15 -3389 ((-1232 |#2| |#1|) $ (-768))) (-15 -3742 ($ (-1255 |#2|))) (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) +((-3742 (((-859) $) 33) (($ (-1170)) 35)) (-4030 (($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 46)) (-4019 (($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 39) (($ $) 40)) (-2246 (($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 41)) (-2233 (($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 43)) (-2223 (($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 42)) (-2213 (($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 44)) (-3317 (($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 47)) (-12 (($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $))) 45))) +(((-1169) (-13 (-611 (-859)) (-10 -8 (-15 -3742 ($ (-1170))) (-15 -2246 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2223 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2233 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2213 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4030 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3317 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4019 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4019 ($ $))))) (T -1169)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) (-2246 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2223 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2233 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-2213 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4030 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-3317 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) (-5 *1 (-1169)))) (-4019 (*1 *1 *1) (-5 *1 (-1169)))) +(-13 (-611 (-859)) (-10 -8 (-15 -3742 ($ (-1170))) (-15 -2246 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2223 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2233 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -2213 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4030 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -3317 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)) (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4019 ($ (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) (|:| CF (-316 (-169 (-379)))) (|:| |switch| $)))) (-15 -4019 ($ $)))) +((-3732 (((-112) $ $) NIL)) (-2747 (($ $ (-641 (-859))) 64)) (-2373 (($ $ (-641 (-859))) 62)) (-3961 (((-1152) $) 103)) (-2408 (((-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) (|:| |args| (-641 (-859)))) $) 109)) (-4067 (((-112) $) 23)) (-4014 (($ $ (-641 (-641 (-859)))) 61) (($ $ (-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) (|:| |args| (-641 (-859))))) 101)) (-2818 (($) 163 T CONST)) (-2386 (((-1264)) 136)) (-3075 (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 71) (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 78)) (-3619 (($) 122) (($ $) 131)) (-4324 (($ $) 102)) (-2799 (($ $ $) NIL)) (-2848 (($ $ $) NIL)) (-1858 (((-641 $) $) 138)) (-2217 (((-1152) $) 114)) (-3864 (((-1114) $) NIL)) (-4382 (($ $ (-641 (-859))) 63)) (-2235 (((-536) $) 48) (((-1170) $) 49) (((-889 (-564)) $) 82) (((-889 (-379)) $) 80)) (-3742 (((-859) $) 55) (($ (-1152)) 50)) (-3081 (($ $ (-641 (-859))) 65)) (-2412 (((-1152) $) 34) (((-1152) $ (-112)) 35) (((-1264) (-819) $) 36) (((-1264) (-819) $ (-112)) 37)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) 51)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) 52))) +(((-1170) (-13 (-847) (-612 (-536)) (-825) (-612 (-1170)) (-614 (-1152)) (-612 (-889 (-564))) (-612 (-889 (-379))) (-883 (-564)) (-883 (-379)) (-10 -8 (-15 -3619 ($)) (-15 -3619 ($ $)) (-15 -2386 ((-1264))) (-15 -4324 ($ $)) (-15 -4067 ((-112) $)) (-15 -2408 ((-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) (|:| |args| (-641 (-859)))) $)) (-15 -4014 ($ $ (-641 (-641 (-859))))) (-15 -4014 ($ $ (-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) (|:| |args| (-641 (-859)))))) (-15 -2373 ($ $ (-641 (-859)))) (-15 -2747 ($ $ (-641 (-859)))) (-15 -3081 ($ $ (-641 (-859)))) (-15 -4382 ($ $ (-641 (-859)))) (-15 -3961 ((-1152) $)) (-15 -1858 ((-641 $) $)) (-15 -2818 ($) -2091)))) (T -1170)) +((-3619 (*1 *1) (-5 *1 (-1170))) (-3619 (*1 *1 *1) (-5 *1 (-1170))) (-2386 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170)))) (-4324 (*1 *1 *1) (-5 *1 (-1170))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170)))) (-2408 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) (|:| |args| (-641 (-859))))) (-5 *1 (-1170)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-1170)))) (-4014 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) (|:| |args| (-641 (-859))))) (-5 *1 (-1170)))) (-2373 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-2747 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170)))) (-1858 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170)))) (-2818 (*1 *1) (-5 *1 (-1170)))) +(-13 (-847) (-612 (-536)) (-825) (-612 (-1170)) (-614 (-1152)) (-612 (-889 (-564))) (-612 (-889 (-379))) (-883 (-564)) (-883 (-379)) (-10 -8 (-15 -3619 ($)) (-15 -3619 ($ $)) (-15 -2386 ((-1264))) (-15 -4324 ($ $)) (-15 -4067 ((-112) $)) (-15 -2408 ((-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) (|:| |args| (-641 (-859)))) $)) (-15 -4014 ($ $ (-641 (-641 (-859))))) (-15 -4014 ($ $ (-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) (|:| |args| (-641 (-859)))))) (-15 -2373 ($ $ (-641 (-859)))) (-15 -2747 ($ $ (-641 (-859)))) (-15 -3081 ($ $ (-641 (-859)))) (-15 -4382 ($ $ (-641 (-859)))) (-15 -3961 ((-1152) $)) (-15 -1858 ((-641 $) $)) (-15 -2818 ($) -2091))) +((-2262 (((-1259 |#1|) |#1| (-918)) 18) (((-1259 |#1|) (-641 |#1|)) 25))) +(((-1171 |#1|) (-10 -7 (-15 -2262 ((-1259 |#1|) (-641 |#1|))) (-15 -2262 ((-1259 |#1|) |#1| (-918)))) (-1046)) (T -1171)) +((-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) (-4 *3 (-1046)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)) (-5 *1 (-1171 *4))))) +(-10 -7 (-15 -2262 ((-1259 |#1|) (-641 |#1|))) (-15 -2262 ((-1259 |#1|) |#1| (-918)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| |#1| (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#1| (-1035 (-407 (-564))))) (((-3 |#1| "failed") $) NIL)) (-2239 (((-564) $) NIL (|has| |#1| (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| |#1| (-1035 (-407 (-564))))) ((|#1| $) NIL)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1989 (($ $) NIL (|has| |#1| (-452)))) (-1866 (($ $ |#1| (-968) $) NIL)) (-3840 (((-112) $) 17)) (-2918 (((-768) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-968)) NIL)) (-3469 (((-968) $) NIL)) (-1396 (($ (-1 (-968) (-968)) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#1| $) NIL)) (-3637 (($ $ (-968) |#1| $) NIL (-12 (|has| (-968) (-131)) (|has| |#1| (-556))))) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-556)))) (-2266 (((-968) $) NIL)) (-4329 ((|#1| $) NIL (|has| |#1| (-452)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) NIL) (($ (-407 (-564))) NIL (-4030 (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-1035 (-407 (-564))))))) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ (-968)) NIL)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#1| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-4311 (($) 11 T CONST)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 21)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 22) (($ $ |#1|) NIL) (($ |#1| $) 16) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1172 |#1|) (-13 (-326 |#1| (-968)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-968) (-131)) (-15 -3637 ($ $ (-968) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) (-1046)) (T -1172)) +((-3637 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-968)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) +(-13 (-326 |#1| (-968)) (-10 -8 (IF (|has| |#1| (-556)) (IF (|has| (-968) (-131)) (-15 -3637 ($ $ (-968) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) +((-4070 (((-1174) (-1170) $) 25)) (-1658 (($) 29)) (-1449 (((-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-1170) $) 22)) (-2115 (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -2966 "void")) $) 41) (((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) 42) (((-1264) (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) 43)) (-3053 (((-1264) (-1170)) 58)) (-4237 (((-1264) (-1170) $) 55) (((-1264) (-1170)) 56) (((-1264)) 57)) (-1820 (((-1264) (-1170)) 37)) (-3607 (((-1170)) 36)) (-3434 (($) 34)) (-2112 (((-437) (-1170) (-437) (-1170) $) 45) (((-437) (-641 (-1170)) (-437) (-1170) $) 49) (((-437) (-1170) (-437)) 46) (((-437) (-1170) (-437) (-1170)) 50)) (-2080 (((-1170)) 35)) (-3742 (((-859) $) 28)) (-3459 (((-1264)) 30) (((-1264) (-1170)) 33)) (-2689 (((-641 (-1170)) (-1170) $) 24)) (-3794 (((-1264) (-1170) (-641 (-1170)) $) 38) (((-1264) (-1170) (-641 (-1170))) 39) (((-1264) (-641 (-1170))) 40))) +(((-1173) (-13 (-611 (-859)) (-10 -8 (-15 -1658 ($)) (-15 -3459 ((-1264))) (-15 -3459 ((-1264) (-1170))) (-15 -2112 ((-437) (-1170) (-437) (-1170) $)) (-15 -2112 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -2112 ((-437) (-1170) (-437))) (-15 -2112 ((-437) (-1170) (-437) (-1170))) (-15 -1820 ((-1264) (-1170))) (-15 -2080 ((-1170))) (-15 -3607 ((-1170))) (-15 -3794 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -3794 ((-1264) (-1170) (-641 (-1170)))) (-15 -3794 ((-1264) (-641 (-1170)))) (-15 -2115 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -2966 "void")) $)) (-15 -2115 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -2966 "void")))) (-15 -2115 ((-1264) (-3 (|:| |fst| (-434)) (|:| -2966 "void")))) (-15 -4237 ((-1264) (-1170) $)) (-15 -4237 ((-1264) (-1170))) (-15 -4237 ((-1264))) (-15 -3053 ((-1264) (-1170))) (-15 -3434 ($)) (-15 -1449 ((-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-1170) $)) (-15 -2689 ((-641 (-1170)) (-1170) $)) (-15 -4070 ((-1174) (-1170) $))))) (T -1173)) +((-1658 (*1 *1) (-5 *1 (-1173))) (-3459 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2112 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-2112 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) (-5 *1 (-1173)))) (-2112 (*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-2112 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) (-1820 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2080 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-3607 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173)))) (-3794 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3794 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2115 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2115 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-5 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-2115 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4237 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4237 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-4237 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) (-3434 (*1 *1) (-5 *1 (-1173))) (-1449 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *1 (-1173)))) (-2689 (*1 *2 *3 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170)))) (-4070 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173))))) +(-13 (-611 (-859)) (-10 -8 (-15 -1658 ($)) (-15 -3459 ((-1264))) (-15 -3459 ((-1264) (-1170))) (-15 -2112 ((-437) (-1170) (-437) (-1170) $)) (-15 -2112 ((-437) (-641 (-1170)) (-437) (-1170) $)) (-15 -2112 ((-437) (-1170) (-437))) (-15 -2112 ((-437) (-1170) (-437) (-1170))) (-15 -1820 ((-1264) (-1170))) (-15 -2080 ((-1170))) (-15 -3607 ((-1170))) (-15 -3794 ((-1264) (-1170) (-641 (-1170)) $)) (-15 -3794 ((-1264) (-1170) (-641 (-1170)))) (-15 -3794 ((-1264) (-641 (-1170)))) (-15 -2115 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -2966 "void")) $)) (-15 -2115 ((-1264) (-1170) (-3 (|:| |fst| (-434)) (|:| -2966 "void")))) (-15 -2115 ((-1264) (-3 (|:| |fst| (-434)) (|:| -2966 "void")))) (-15 -4237 ((-1264) (-1170) $)) (-15 -4237 ((-1264) (-1170))) (-15 -4237 ((-1264))) (-15 -3053 ((-1264) (-1170))) (-15 -3434 ($)) (-15 -1449 ((-3 (|:| |fst| (-434)) (|:| -2966 "void")) (-1170) $)) (-15 -2689 ((-641 (-1170)) (-1170) $)) (-15 -4070 ((-1174) (-1170) $)))) +((-2138 (((-641 (-641 (-3 (|:| -4324 (-1170)) (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $) 66)) (-3016 (((-641 (-3 (|:| -4324 (-1170)) (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $) 47)) (-3323 (($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-437))))) 17)) (-3053 (((-1264) $) 74)) (-2553 (((-641 (-1170)) $) 22)) (-2544 (((-1098) $) 60)) (-2911 (((-437) (-1170) $) 27)) (-3690 (((-641 (-1170)) $) 30)) (-3434 (($) 19)) (-2112 (((-437) (-641 (-1170)) (-437) $) 25) (((-437) (-1170) (-437) $) 24)) (-3742 (((-859) $) 9) (((-1182 (-1170) (-437)) $) 13))) +(((-1174) (-13 (-611 (-859)) (-10 -8 (-15 -3742 ((-1182 (-1170) (-437)) $)) (-15 -3434 ($)) (-15 -2112 ((-437) (-641 (-1170)) (-437) $)) (-15 -2112 ((-437) (-1170) (-437) $)) (-15 -2911 ((-437) (-1170) $)) (-15 -2553 ((-641 (-1170)) $)) (-15 -3016 ((-641 (-3 (|:| -4324 (-1170)) (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $)) (-15 -3690 ((-641 (-1170)) $)) (-15 -2138 ((-641 (-641 (-3 (|:| -4324 (-1170)) (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $)) (-15 -2544 ((-1098) $)) (-15 -3053 ((-1264) $)) (-15 -3323 ($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-437))))))))) (T -1174)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174)))) (-3434 (*1 *1) (-5 *1 (-1174))) (-2112 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174)))) (-2112 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) (-2911 (*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174)))) (-2553 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-3016 (*1 *2 *3 *1) (-12 (-5 *3 (-434)) (-5 *2 (-641 (-3 (|:| -4324 (-1170)) (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) (-5 *1 (-1174)))) (-3690 (*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-3 (|:| -4324 (-1170)) (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))))) (-5 *1 (-1174)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-437))))) (-5 *1 (-1174))))) +(-13 (-611 (-859)) (-10 -8 (-15 -3742 ((-1182 (-1170) (-437)) $)) (-15 -3434 ($)) (-15 -2112 ((-437) (-641 (-1170)) (-437) $)) (-15 -2112 ((-437) (-1170) (-437) $)) (-15 -2911 ((-437) (-1170) $)) (-15 -2553 ((-641 (-1170)) $)) (-15 -3016 ((-641 (-3 (|:| -4324 (-1170)) (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))) (-434) $)) (-15 -3690 ((-641 (-1170)) $)) (-15 -2138 ((-641 (-641 (-3 (|:| -4324 (-1170)) (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) $)) (-15 -2544 ((-1098) $)) (-15 -3053 ((-1264) $)) (-15 -3323 ($ (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-437)))))))) +((-3732 (((-112) $ $) NIL)) (-2111 (((-3 (-564) "failed") $) 29) (((-3 (-225) "failed") $) 35) (((-3 (-1170) "failed") $) 41) (((-3 (-1152) "failed") $) 47)) (-2239 (((-564) $) 30) (((-225) $) 36) (((-1170) $) 42) (((-1152) $) 48)) (-2254 (((-112) $) 53)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2360 (((-3 (-564) (-225) (-1170) (-1152) $) $) 55)) (-3971 (((-641 $) $) 57)) (-2235 (((-1098) $) 24) (($ (-1098)) 25)) (-4282 (((-112) $) 56)) (-3742 (((-859) $) 23) (($ (-564)) 26) (($ (-225)) 32) (($ (-1170)) 38) (($ (-1152)) 44) (((-536) $) 59) (((-564) $) 31) (((-225) $) 37) (((-1170) $) 43) (((-1152) $) 49)) (-4300 (((-112) $ (|[\|\|]| (-564))) 10) (((-112) $ (|[\|\|]| (-225))) 13) (((-112) $ (|[\|\|]| (-1170))) 19) (((-112) $ (|[\|\|]| (-1152))) 16)) (-3964 (($ (-1170) (-641 $)) 51) (($ $ (-641 $)) 52)) (-3927 (((-564) $) 27) (((-225) $) 33) (((-1170) $) 39) (((-1152) $) 45)) (-1705 (((-112) $ $) 7))) +(((-1175) (-13 (-1254) (-1094) (-1035 (-564)) (-1035 (-225)) (-1035 (-1170)) (-1035 (-1152)) (-611 (-536)) (-10 -8 (-15 -2235 ((-1098) $)) (-15 -2235 ($ (-1098))) (-15 -3742 ((-564) $)) (-15 -3927 ((-564) $)) (-15 -3742 ((-225) $)) (-15 -3927 ((-225) $)) (-15 -3742 ((-1170) $)) (-15 -3927 ((-1170) $)) (-15 -3742 ((-1152) $)) (-15 -3927 ((-1152) $)) (-15 -3964 ($ (-1170) (-641 $))) (-15 -3964 ($ $ (-641 $))) (-15 -2254 ((-112) $)) (-15 -2360 ((-3 (-564) (-225) (-1170) (-1152) $) $)) (-15 -3971 ((-641 $) $)) (-15 -4282 ((-112) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-564)))) (-15 -4300 ((-112) $ (|[\|\|]| (-225)))) (-15 -4300 ((-112) $ (|[\|\|]| (-1170)))) (-15 -4300 ((-112) $ (|[\|\|]| (-1152))))))) (T -1175)) +((-2235 (*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1175)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1175)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) (-3964 (*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-2254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-2360 (*1 *2 *1) (-12 (-5 *2 (-3 (-564) (-225) (-1170) (-1152) (-1175))) (-5 *1 (-1175)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-1175)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175))))) +(-13 (-1254) (-1094) (-1035 (-564)) (-1035 (-225)) (-1035 (-1170)) (-1035 (-1152)) (-611 (-536)) (-10 -8 (-15 -2235 ((-1098) $)) (-15 -2235 ($ (-1098))) (-15 -3742 ((-564) $)) (-15 -3927 ((-564) $)) (-15 -3742 ((-225) $)) (-15 -3927 ((-225) $)) (-15 -3742 ((-1170) $)) (-15 -3927 ((-1170) $)) (-15 -3742 ((-1152) $)) (-15 -3927 ((-1152) $)) (-15 -3964 ($ (-1170) (-641 $))) (-15 -3964 ($ $ (-641 $))) (-15 -2254 ((-112) $)) (-15 -2360 ((-3 (-564) (-225) (-1170) (-1152) $) $)) (-15 -3971 ((-641 $) $)) (-15 -4282 ((-112) $)) (-15 -4300 ((-112) $ (|[\|\|]| (-564)))) (-15 -4300 ((-112) $ (|[\|\|]| (-225)))) (-15 -4300 ((-112) $ (|[\|\|]| (-1170)))) (-15 -4300 ((-112) $ (|[\|\|]| (-1152)))))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) 24)) (-2818 (($) 14 T CONST)) (-2821 (($) 29)) (-2799 (($ $ $) NIL) (($) 21 T CONST)) (-2848 (($ $ $) NIL) (($) 22 T CONST)) (-1906 (((-918) $) 26)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) 25)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-1176 |#1|) (-13 (-841) (-10 -8 (-15 -2818 ($) -2091))) (-918)) (T -1176)) +((-2818 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-918))))) +(-13 (-841) (-10 -8 (-15 -2818 ($) -2091))) ((|Integer|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) 21 T CONST)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) 14 T CONST)) (-4105 (($ $ $) NIL) (($) 20 T CONST)) (-3267 (((-917) $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-4314 (($ $ $) 23)) (-4304 (($ $ $) 22)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-1176 |#1|) (-13 (-840) (-10 -8 (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495))) (-917)) (T -1176)) -((-4304 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) (-4314 (*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) (-3684 (*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917))))) -(-13 (-840) (-10 -8 (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) 21 T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) 14 T CONST)) (-2848 (($ $ $) NIL) (($) 20 T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4074 (($ $ $) 23)) (-4066 (($ $ $) 22)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-1177 |#1|) (-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091))) (-918)) (T -1177)) +((-4066 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) (-4074 (*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) (-2818 (*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918))))) +(-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091))) ((|NonNegativeInteger|) (COND ((< @1 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-1568 (((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 70)) (-1558 (((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|)))) 84) (((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|))) 80) (((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169)) 85) (((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169)) 79) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|))))) 112) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|)))) 111) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169))) 113) (((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169))) 110))) -(((-1177 |#1|) (-10 -7 (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -1558 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -1558 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -1558 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -1558 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -1568 ((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))))) (-555)) (T -1177)) -((-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-948 *5)))) (-5 *1 (-1177 *5)))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) (-5 *1 (-1177 *4)) (-5 *3 (-294 (-407 (-948 *4)))))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) (-5 *1 (-1177 *4)) (-5 *3 (-407 (-948 *4))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) (-5 *3 (-294 (-407 (-948 *5)))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-1169)) (-4 *5 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) (-5 *3 (-407 (-948 *5))))) (-1558 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4)) (-5 *3 (-640 (-294 (-407 (-948 *4))))))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5)) (-5 *3 (-640 (-294 (-407 (-948 *5))))))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5))))) -(-10 -7 (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))) (-640 (-1169)))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))) (-640 (-1169)))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-407 (-948 |#1|))))) (-15 -1558 ((-640 (-640 (-294 (-407 (-948 |#1|))))) (-640 (-294 (-407 (-948 |#1|)))))) (-15 -1558 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)) (-1169))) (-15 -1558 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))) (-1169))) (-15 -1558 ((-640 (-294 (-407 (-948 |#1|)))) (-407 (-948 |#1|)))) (-15 -1558 ((-640 (-294 (-407 (-948 |#1|)))) (-294 (-407 (-948 |#1|))))) (-15 -1568 ((-640 (-640 (-948 |#1|))) (-640 (-407 (-948 |#1|))) (-640 (-1169))))) -((-1618 (((-1151)) 7)) (-1581 (((-1151)) 11 T CONST)) (-4234 (((-1262) (-1151)) 13)) (-1604 (((-1151)) 8 T CONST)) (-1593 (((-130)) 10 T CONST))) -(((-1178) (-13 (-1208) (-10 -7 (-15 -1618 ((-1151))) (-15 -1604 ((-1151)) -2495) (-15 -1593 ((-130)) -2495) (-15 -1581 ((-1151)) -2495) (-15 -4234 ((-1262) (-1151)))))) (T -1178)) -((-1618 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-1604 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-1593 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1178)))) (-1581 (*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178)))) (-4234 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1178))))) -(-13 (-1208) (-10 -7 (-15 -1618 ((-1151))) (-15 -1604 ((-1151)) -2495) (-15 -1593 ((-130)) -2495) (-15 -1581 ((-1151)) -2495) (-15 -4234 ((-1262) (-1151))))) -((-1666 (((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|)))) 55)) (-1702 (((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|))) 38)) (-1714 (((-1180 (-640 |#1|)) (-640 |#1|)) 49)) (-1742 (((-640 (-640 |#1|)) (-640 |#1|)) 45)) (-2004 (((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|)))) 52)) (-1766 (((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|)))) 51)) (-1728 (((-640 (-640 |#1|)) (-640 (-640 |#1|))) 43)) (-1755 (((-640 |#1|) (-640 |#1|)) 46)) (-1654 (((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|)))) 32)) (-1642 (((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|)))) 29)) (-1630 (((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|))) 24)) (-1677 (((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|)))) 57)) (-1690 (((-640 (-640 |#1|)) (-1180 (-640 |#1|))) 59))) -(((-1179 |#1|) (-10 -7 (-15 -1630 ((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|)))) (-15 -1642 ((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -1654 ((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -1666 ((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -1677 ((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -1690 ((-640 (-640 |#1|)) (-1180 (-640 |#1|)))) (-15 -1702 ((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)))) (-15 -1714 ((-1180 (-640 |#1|)) (-640 |#1|))) (-15 -1728 ((-640 (-640 |#1|)) (-640 (-640 |#1|)))) (-15 -1742 ((-640 (-640 |#1|)) (-640 |#1|))) (-15 -1755 ((-640 |#1|) (-640 |#1|))) (-15 -1766 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))))) (-15 -2004 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|)))))) (-846)) (T -1179)) -((-2004 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-2 (|:| |f1| (-640 *4)) (|:| |f2| (-640 (-640 (-640 *4)))) (|:| |f3| (-640 (-640 *4))) (|:| |f4| (-640 (-640 (-640 *4)))))) (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 (-640 *4)))))) (-1766 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-846)) (-5 *3 (-640 *6)) (-5 *5 (-640 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-640 *5)) (|:| |f3| *5) (|:| |f4| (-640 *5)))) (-5 *1 (-1179 *6)) (-5 *4 (-640 *5)))) (-1755 (*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-1179 *3)))) (-1742 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)) (-5 *3 (-640 *4)))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-846)) (-5 *1 (-1179 *3)))) (-1714 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-1180 (-640 *4))) (-5 *1 (-1179 *4)) (-5 *3 (-640 *4)))) (-1702 (*1 *2 *3) (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 (-640 *4)))) (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 *4))))) (-1690 (*1 *2 *3) (-12 (-5 *3 (-1180 (-640 *4))) (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)) (-4 *4 (-846)))) (-1666 (*1 *2 *2 *3) (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) (-4 *4 (-846)) (-5 *1 (-1179 *4)))) (-1654 (*1 *2 *3 *2) (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *1 (-1179 *4)))) (-1642 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-640 *5)) (-4 *5 (-846)) (-5 *1 (-1179 *5)))) (-1630 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-640 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-640 *4)))) (-5 *1 (-1179 *6)) (-5 *5 (-640 *4))))) -(-10 -7 (-15 -1630 ((-2 (|:| |fs| (-112)) (|:| |sd| (-640 |#1|)) (|:| |td| (-640 (-640 |#1|)))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 |#1|)))) (-15 -1642 ((-640 (-640 (-640 |#1|))) (-1 (-112) |#1| |#1|) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -1654 ((-640 (-640 (-640 |#1|))) (-640 |#1|) (-640 (-640 (-640 |#1|))))) (-15 -1666 ((-640 (-640 |#1|)) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -1677 ((-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))))) (-15 -1690 ((-640 (-640 |#1|)) (-1180 (-640 |#1|)))) (-15 -1702 ((-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)))) (-15 -1714 ((-1180 (-640 |#1|)) (-640 |#1|))) (-15 -1728 ((-640 (-640 |#1|)) (-640 (-640 |#1|)))) (-15 -1742 ((-640 (-640 |#1|)) (-640 |#1|))) (-15 -1755 ((-640 |#1|) (-640 |#1|))) (-15 -1766 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 |#1|) (-640 (-640 (-640 |#1|))) (-640 (-640 |#1|)) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))) (-640 (-640 (-640 |#1|))))) (-15 -2004 ((-2 (|:| |f1| (-640 |#1|)) (|:| |f2| (-640 (-640 (-640 |#1|)))) (|:| |f3| (-640 (-640 |#1|))) (|:| |f4| (-640 (-640 (-640 |#1|))))) (-640 (-640 (-640 |#1|)))))) -((-1779 (($ (-640 (-640 |#1|))) 10)) (-1791 (((-640 (-640 |#1|)) $) 11)) (-2062 (((-858) $) 38))) -(((-1180 |#1|) (-10 -8 (-15 -1779 ($ (-640 (-640 |#1|)))) (-15 -1791 ((-640 (-640 |#1|)) $)) (-15 -2062 ((-858) $))) (-1093)) (T -1180)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))) (-1791 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 *3))) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))) (-1779 (*1 *1 *2) (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-1180 *3))))) -(-10 -8 (-15 -1779 ($ (-640 (-640 |#1|)))) (-15 -1791 ((-640 (-640 |#1|)) $)) (-15 -2062 ((-858) $))) -((-2049 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2541 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-1435 (((-1262) $ |#1| |#1|) NIL (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#2| $ |#1| |#2|) NIL)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-3742 (((-3 |#2| "failed") |#1| $) NIL)) (-3684 (($) NIL T CONST)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) NIL)) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) NIL)) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) NIL)) (-3371 ((|#1| $) NIL (|has| |#1| (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-640 |#2|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3383 ((|#1| $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-2706 (((-640 |#1|) $) NIL)) (-3435 (((-112) |#1| $) NIL)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3404 (((-640 |#1|) $) NIL)) (-3417 (((-112) |#1| $) NIL)) (-3249 (((-1113) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1884 ((|#2| $) NIL (|has| |#1| (-846)))) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL)) (-3357 (($ $ |#2|) NIL (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-3139 (($) NIL) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) NIL (-12 (|has| $ (-6 -4408)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (((-767) |#2| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093)))) (((-767) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-2062 (((-858) $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858))) (|has| |#2| (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) NIL)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) NIL (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) NIL (-2811 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| |#2| (-1093))))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1181 |#1| |#2|) (-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) (-1093) (-1093)) (T -1181)) -NIL -(-13 (-1184 |#1| |#2|) (-10 -7 (-6 -4408))) -((-1802 ((|#1| (-640 |#1|)) 49)) (-1825 ((|#1| |#1| (-563)) 24)) (-1813 (((-1165 |#1|) |#1| (-917)) 20))) -(((-1182 |#1|) (-10 -7 (-15 -1802 (|#1| (-640 |#1|))) (-15 -1813 ((-1165 |#1|) |#1| (-917))) (-15 -1825 (|#1| |#1| (-563)))) (-363)) (T -1182)) -((-1825 (*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-1182 *2)) (-4 *2 (-363)))) (-1813 (*1 *2 *3 *4) (-12 (-5 *4 (-917)) (-5 *2 (-1165 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-363)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-363))))) -(-10 -7 (-15 -1802 (|#1| (-640 |#1|))) (-15 -1813 ((-1165 |#1|) |#1| (-917))) (-15 -1825 (|#1| |#1| (-563)))) -((-2541 (($) 10) (($ (-640 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)))) 14)) (-2841 (($ (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-4236 (((-640 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) $) 39) (((-640 |#3|) $) 41)) (-4139 (($ (-1 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2751 (($ (-1 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3835 (((-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) $) 60)) (-1956 (($ (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) $) 16)) (-3404 (((-640 |#2|) $) 19)) (-3417 (((-112) |#2| $) 65)) (-1828 (((-3 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) "failed") (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) $) 64)) (-3847 (((-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) $) 69)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 72)) (-3427 (((-640 |#3|) $) 43)) (-3858 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) $) NIL) (((-767) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) $) NIL) (((-767) |#3| $) NIL) (((-767) (-1 (-112) |#3|) $) 78)) (-2062 (((-858) $) 27)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-2943 (((-112) $ $) 51))) -(((-1183 |#1| |#2| |#3|) (-10 -8 (-15 -2943 ((-112) |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2751 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2541 (|#1| (-640 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))))) (-15 -2541 (|#1|)) (-15 -2751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4139 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3261 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -4236 ((-640 |#3|) |#1|)) (-15 -3261 ((-767) |#3| |#1|)) (-15 -3858 (|#3| |#1| |#2| |#3|)) (-15 -3858 (|#3| |#1| |#2|)) (-15 -3427 ((-640 |#3|) |#1|)) (-15 -3417 ((-112) |#2| |#1|)) (-15 -3404 ((-640 |#2|) |#1|)) (-15 -2841 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2841 (|#1| (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -2841 (|#1| (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -1828 ((-3 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) "failed") (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -3835 ((-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -1956 (|#1| (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -3847 ((-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -3261 ((-767) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -4236 ((-640 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -3261 ((-767) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -3837 ((-112) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -3848 ((-112) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -4139 (|#1| (-1 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -2751 (|#1| (-1 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|))) (-1184 |#2| |#3|) (-1093) (-1093)) (T -1183)) -NIL -(-10 -8 (-15 -2943 ((-112) |#1| |#1|)) (-15 -2062 ((-858) |#1|)) (-15 -2751 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2541 (|#1| (-640 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))))) (-15 -2541 (|#1|)) (-15 -2751 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4139 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3848 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3837 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3261 ((-767) (-1 (-112) |#3|) |#1|)) (-15 -4236 ((-640 |#3|) |#1|)) (-15 -3261 ((-767) |#3| |#1|)) (-15 -3858 (|#3| |#1| |#2| |#3|)) (-15 -3858 (|#3| |#1| |#2|)) (-15 -3427 ((-640 |#3|) |#1|)) (-15 -3417 ((-112) |#2| |#1|)) (-15 -3404 ((-640 |#2|) |#1|)) (-15 -2841 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2841 (|#1| (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -2841 (|#1| (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -1828 ((-3 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) "failed") (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -3835 ((-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -1956 (|#1| (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -3847 ((-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -3261 ((-767) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) |#1|)) (-15 -4236 ((-640 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -3261 ((-767) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -3837 ((-112) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -3848 ((-112) (-1 (-112) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -4139 (|#1| (-1 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|)) (-15 -2751 (|#1| (-1 (-2 (|:| -3320 |#2|) (|:| -3704 |#3|)) (-2 (|:| -3320 |#2|) (|:| -3704 |#3|))) |#1|))) -((-2049 (((-112) $ $) 19 (-2811 (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2541 (($) 72) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 71)) (-1435 (((-1262) $ |#1| |#1|) 99 (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#2| $ |#1| |#2|) 73)) (-1736 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 45 (|has| $ (-6 -4408)))) (-1907 (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 55 (|has| $ (-6 -4408)))) (-3742 (((-3 |#2| "failed") |#1| $) 61)) (-3684 (($) 7 T CONST)) (-1920 (($ $) 58 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408))))) (-2841 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 47 (|has| $ (-6 -4408))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 46 (|has| $ (-6 -4408))) (((-3 |#2| "failed") |#1| $) 62)) (-1417 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 54 (|has| $ (-6 -4408)))) (-2532 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 56 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 53 (|has| $ (-6 -4408))) (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 52 (|has| $ (-6 -4408)))) (-4150 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4409)))) (-4085 ((|#2| $ |#1|) 88)) (-4236 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 30 (|has| $ (-6 -4408))) (((-640 |#2|) $) 79 (|has| $ (-6 -4408)))) (-3633 (((-112) $ (-767)) 9)) (-3371 ((|#1| $) 96 (|has| |#1| (-846)))) (-1572 (((-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 29 (|has| $ (-6 -4408))) (((-640 |#2|) $) 80 (|has| $ (-6 -4408)))) (-1949 (((-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408))))) (-3383 ((|#1| $) 95 (|has| |#1| (-846)))) (-4139 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 34 (|has| $ (-6 -4409))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4409)))) (-2751 (($ (-1 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3604 (((-112) $ (-767)) 10)) (-1938 (((-1151) $) 22 (-2811 (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-2706 (((-640 |#1|) $) 63)) (-3435 (((-112) |#1| $) 64)) (-3835 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 39)) (-1956 (($ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 40)) (-3404 (((-640 |#1|) $) 93)) (-3417 (((-112) |#1| $) 92)) (-3249 (((-1113) $) 21 (-2811 (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-1884 ((|#2| $) 97 (|has| |#1| (-846)))) (-1828 (((-3 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) "failed") (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 51)) (-3357 (($ $ |#2|) 98 (|has| $ (-6 -4409)))) (-3847 (((-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 41)) (-3837 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 32 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))))) 26 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-294 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 25 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) 24 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 23 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)))) (($ $ (-640 |#2|) (-640 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093)))) (($ $ (-640 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4408)) (|has| |#2| (-1093))))) (-3427 (((-640 |#2|) $) 91)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-3139 (($) 49) (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 48)) (-3261 (((-767) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 31 (|has| $ (-6 -4408))) (((-767) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| $ (-6 -4408)))) (((-767) |#2| $) 81 (-12 (|has| |#2| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4408)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 59 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))))) (-2074 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 50)) (-2062 (((-858) $) 18 (-2811 (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858)))))) (-4034 (($ (-640 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) 42)) (-3848 (((-112) (-1 (-112) (-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) $) 33 (|has| $ (-6 -4408))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (-2811 (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-1184 |#1| |#2|) (-140) (-1093) (-1093)) (T -1184)) -((-2189 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) (-2541 (*1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) (-2541 (*1 *1 *2) (-12 (-5 *2 (-640 (-2 (|:| -3320 *3) (|:| -3704 *4)))) (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *1 (-1184 *3 *4)))) (-2751 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))))) -(-13 (-607 |t#1| |t#2|) (-601 |t#1| |t#2|) (-10 -8 (-15 -2189 (|t#2| $ |t#1| |t#2|)) (-15 -2541 ($)) (-15 -2541 ($ (-640 (-2 (|:| -3320 |t#1|) (|:| -3704 |t#2|))))) (-15 -2751 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 #0=(-2 (|:| -3320 |#1|) (|:| -3704 |#2|))) . T) ((-102) -2811 (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) ((-610 (-858)) -2811 (|has| |#2| (-1093)) (|has| |#2| (-610 (-858))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-610 (-858)))) ((-151 #0#) . T) ((-611 (-536)) |has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-611 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-601 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-309 (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)))) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1093))) ((-607 |#1| |#2|) . T) ((-1093) -2811 (|has| |#2| (-1093)) (|has| (-2 (|:| -3320 |#1|) (|:| -3704 |#2|)) (-1093))) ((-1208) . T)) -((-1905 (((-112)) 29)) (-1862 (((-1262) (-1151)) 31)) (-1919 (((-112)) 41)) (-1876 (((-1262)) 39)) (-1849 (((-1262) (-1151) (-1151)) 30)) (-1932 (((-112)) 42)) (-1956 (((-1262) |#1| |#2|) 53)) (-1838 (((-1262)) 27)) (-1944 (((-3 |#2| "failed") |#1|) 51)) (-1890 (((-1262)) 40))) -(((-1185 |#1| |#2|) (-10 -7 (-15 -1838 ((-1262))) (-15 -1849 ((-1262) (-1151) (-1151))) (-15 -1862 ((-1262) (-1151))) (-15 -1876 ((-1262))) (-15 -1890 ((-1262))) (-15 -1905 ((-112))) (-15 -1919 ((-112))) (-15 -1932 ((-112))) (-15 -1944 ((-3 |#2| "failed") |#1|)) (-15 -1956 ((-1262) |#1| |#2|))) (-1093) (-1093)) (T -1185)) -((-1956 (*1 *2 *3 *4) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1944 (*1 *2 *3) (|partial| -12 (-4 *2 (-1093)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1093)))) (-1932 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1919 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1905 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1890 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1876 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) (-1862 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)))) (-1849 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)))) (-1838 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093))))) -(-10 -7 (-15 -1838 ((-1262))) (-15 -1849 ((-1262) (-1151) (-1151))) (-15 -1862 ((-1262) (-1151))) (-15 -1876 ((-1262))) (-15 -1890 ((-1262))) (-15 -1905 ((-112))) (-15 -1919 ((-112))) (-15 -1932 ((-112))) (-15 -1944 ((-3 |#2| "failed") |#1|)) (-15 -1956 ((-1262) |#1| |#2|))) -((-1978 (((-1151) (-1151)) 22)) (-1967 (((-52) (-1151)) 25))) -(((-1186) (-10 -7 (-15 -1967 ((-52) (-1151))) (-15 -1978 ((-1151) (-1151))))) (T -1186)) -((-1978 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1186)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-1186))))) -(-10 -7 (-15 -1967 ((-52) (-1151))) (-15 -1978 ((-1151) (-1151)))) -((-2062 (((-1188) |#1|) 11))) -(((-1187 |#1|) (-10 -7 (-15 -2062 ((-1188) |#1|))) (-1093)) (T -1187)) -((-2062 (*1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *1 (-1187 *3)) (-4 *3 (-1093))))) -(-10 -7 (-15 -2062 ((-1188) |#1|))) -((-2049 (((-112) $ $) NIL)) (-3753 (((-640 (-1151)) $) 39)) (-2003 (((-640 (-1151)) $ (-640 (-1151))) 42)) (-1992 (((-640 (-1151)) $ (-640 (-1151))) 41)) (-2015 (((-640 (-1151)) $ (-640 (-1151))) 43)) (-2027 (((-640 (-1151)) $) 38)) (-2552 (($) 26)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2039 (((-640 (-1151)) $) 40)) (-3051 (((-1262) $ (-563)) 35) (((-1262) $) 36)) (-2802 (($ (-858) (-563)) 32) (($ (-858) (-563) (-858)) NIL)) (-2062 (((-858) $) 53) (($ (-858)) 31)) (-2943 (((-112) $ $) NIL))) -(((-1188) (-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2802 ($ (-858) (-563))) (-15 -2802 ($ (-858) (-563) (-858))) (-15 -3051 ((-1262) $ (-563))) (-15 -3051 ((-1262) $)) (-15 -2039 ((-640 (-1151)) $)) (-15 -3753 ((-640 (-1151)) $)) (-15 -2552 ($)) (-15 -2027 ((-640 (-1151)) $)) (-15 -2015 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2003 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -1992 ((-640 (-1151)) $ (-640 (-1151))))))) (T -1188)) -((-2802 (*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) (-2802 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) (-3051 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1188)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1188)))) (-2039 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-3753 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-2552 (*1 *1) (-5 *1 (-1188))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-2015 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-2003 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188)))) (-1992 (*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) -(-13 (-1093) (-613 (-858)) (-10 -8 (-15 -2802 ($ (-858) (-563))) (-15 -2802 ($ (-858) (-563) (-858))) (-15 -3051 ((-1262) $ (-563))) (-15 -3051 ((-1262) $)) (-15 -2039 ((-640 (-1151)) $)) (-15 -3753 ((-640 (-1151)) $)) (-15 -2552 ($)) (-15 -2027 ((-640 (-1151)) $)) (-15 -2015 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -2003 ((-640 (-1151)) $ (-640 (-1151)))) (-15 -1992 ((-640 (-1151)) $ (-640 (-1151)))))) -((-2049 (((-112) $ $) NIL)) (-2096 (((-1151) $ (-1151)) 17) (((-1151) $) 16)) (-2989 (((-1151) $ (-1151)) 15)) (-3029 (($ $ (-1151)) NIL)) (-2073 (((-3 (-1151) "failed") $) 11)) (-2086 (((-1151) $) 8)) (-2061 (((-3 (-1151) "failed") $) 12)) (-2999 (((-1151) $) 9)) (-1934 (($ (-388)) NIL) (($ (-388) (-1151)) NIL)) (-3359 (((-388) $) NIL)) (-1938 (((-1151) $) NIL)) (-3008 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2048 (((-112) $) 21)) (-2062 (((-858) $) NIL)) (-3018 (($ $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-1189) (-13 (-364 (-388) (-1151)) (-10 -8 (-15 -2096 ((-1151) $ (-1151))) (-15 -2096 ((-1151) $)) (-15 -2086 ((-1151) $)) (-15 -2073 ((-3 (-1151) "failed") $)) (-15 -2061 ((-3 (-1151) "failed") $)) (-15 -2048 ((-112) $))))) (T -1189)) -((-2096 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2096 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2086 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2073 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2061 (*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189))))) -(-13 (-364 (-388) (-1151)) (-10 -8 (-15 -2096 ((-1151) $ (-1151))) (-15 -2096 ((-1151) $)) (-15 -2086 ((-1151) $)) (-15 -2073 ((-3 (-1151) "failed") $)) (-15 -2061 ((-3 (-1151) "failed") $)) (-15 -2048 ((-112) $)))) -((-2107 (((-3 (-563) "failed") |#1|) 19)) (-2116 (((-3 (-563) "failed") |#1|) 14)) (-2125 (((-563) (-1151)) 33))) -(((-1190 |#1|) (-10 -7 (-15 -2107 ((-3 (-563) "failed") |#1|)) (-15 -2116 ((-3 (-563) "failed") |#1|)) (-15 -2125 ((-563) (-1151)))) (-1045)) (T -1190)) -((-2125 (*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-1190 *4)) (-4 *4 (-1045)))) (-2116 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045)))) (-2107 (*1 *2 *3) (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045))))) -(-10 -7 (-15 -2107 ((-3 (-563) "failed") |#1|)) (-15 -2116 ((-3 (-563) "failed") |#1|)) (-15 -2125 ((-563) (-1151)))) -((-2137 (((-1126 (-225))) 9))) -(((-1191) (-10 -7 (-15 -2137 ((-1126 (-225)))))) (T -1191)) -((-2137 (*1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1191))))) -(-10 -7 (-15 -2137 ((-1126 (-225))))) -((-2656 (($) 12)) (-2285 (($ $) 36)) (-2264 (($ $) 34)) (-3325 (($ $) 26)) (-2306 (($ $) 18)) (-4205 (($ $) 16)) (-2296 (($ $) 20)) (-3361 (($ $) 31)) (-2275 (($ $) 35)) (-3336 (($ $) 30))) -(((-1192 |#1|) (-10 -8 (-15 -2656 (|#1|)) (-15 -2285 (|#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -4205 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -3336 (|#1| |#1|))) (-1193)) (T -1192)) -NIL -(-10 -8 (-15 -2656 (|#1|)) (-15 -2285 (|#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -4205 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -3336 (|#1| |#1|))) -((-3419 (($ $) 26)) (-3285 (($ $) 11)) (-3395 (($ $) 27)) (-3264 (($ $) 10)) (-2242 (($ $) 28)) (-3305 (($ $) 9)) (-2656 (($) 16)) (-2497 (($ $) 19)) (-3177 (($ $) 18)) (-2252 (($ $) 29)) (-3313 (($ $) 8)) (-2231 (($ $) 30)) (-3295 (($ $) 7)) (-3408 (($ $) 31)) (-3273 (($ $) 6)) (-2285 (($ $) 20)) (-3347 (($ $) 32)) (-2264 (($ $) 21)) (-3325 (($ $) 33)) (-2306 (($ $) 22)) (-3374 (($ $) 34)) (-4205 (($ $) 23)) (-3386 (($ $) 35)) (-2296 (($ $) 24)) (-3361 (($ $) 36)) (-2275 (($ $) 25)) (-3336 (($ $) 37)) (** (($ $ $) 17))) -(((-1193) (-140)) (T -1193)) -((-2656 (*1 *1) (-4 *1 (-1193)))) -(-13 (-1196) (-95) (-493) (-35) (-284) (-10 -8 (-15 -2656 ($)))) -(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1196) . T)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3556 ((|#1| $) 19)) (-1678 (($ |#1| (-640 $)) 28) (($ (-640 |#1|)) 35) (($ |#1|) 30)) (-3740 (((-112) $ (-767)) 70)) (-3472 ((|#1| $ |#1|) 14 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 13 (|has| $ (-6 -4409)))) (-3684 (($) NIL T CONST)) (-4236 (((-640 |#1|) $) 74 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 62)) (-3494 (((-112) $ $) 48 (|has| |#1| (-1093)))) (-3633 (((-112) $ (-767)) 60)) (-1572 (((-640 |#1|) $) 75 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-4139 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 27)) (-3604 (((-112) $ (-767)) 59)) (-3884 (((-640 |#1|) $) 53)) (-2484 (((-112) $) 51)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3837 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 104)) (-2820 (((-112) $) 9)) (-2749 (($) 10)) (-3858 ((|#1| $ "value") NIL)) (-3514 (((-563) $ $) 47)) (-2145 (((-640 $) $) 87)) (-2154 (((-112) $ $) 107)) (-2161 (((-640 $) $) 102)) (-2170 (($ $) 103)) (-2181 (((-112) $) 82)) (-3261 (((-767) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4408))) (((-767) |#1| $) 17 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2208 (($ $) 86)) (-2062 (((-858) $) 89 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 12)) (-3504 (((-112) $ $) 39 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 71 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 37 (|has| |#1| (-1093)))) (-1708 (((-767) $) 57 (|has| $ (-6 -4408))))) -(((-1194 |#1|) (-13 (-1006 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -1678 ($ |#1| (-640 $))) (-15 -1678 ($ (-640 |#1|))) (-15 -1678 ($ |#1|)) (-15 -2181 ((-112) $)) (-15 -2170 ($ $)) (-15 -2161 ((-640 $) $)) (-15 -2154 ((-112) $ $)) (-15 -2145 ((-640 $) $)))) (-1093)) (T -1194)) -((-2181 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-1678 (*1 *1 *2 *3) (-12 (-5 *3 (-640 (-1194 *2))) (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-1678 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-1194 *3)))) (-1678 (*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-2170 (*1 *1 *1) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) (-2161 (*1 *2 *1) (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-2154 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093)))) (-2145 (*1 *2 *1) (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) -(-13 (-1006 |#1|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -1678 ($ |#1| (-640 $))) (-15 -1678 ($ (-640 |#1|))) (-15 -1678 ($ |#1|)) (-15 -2181 ((-112) $)) (-15 -2170 ($ $)) (-15 -2161 ((-640 $) $)) (-15 -2154 ((-112) $ $)) (-15 -2145 ((-640 $) $)))) -((-3285 (($ $) 15)) (-3305 (($ $) 12)) (-3313 (($ $) 10)) (-3295 (($ $) 17))) -(((-1195 |#1|) (-10 -8 (-15 -3295 (|#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3305 (|#1| |#1|)) (-15 -3285 (|#1| |#1|))) (-1196)) (T -1195)) -NIL -(-10 -8 (-15 -3295 (|#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3305 (|#1| |#1|)) (-15 -3285 (|#1| |#1|))) -((-3285 (($ $) 11)) (-3264 (($ $) 10)) (-3305 (($ $) 9)) (-3313 (($ $) 8)) (-3295 (($ $) 7)) (-3273 (($ $) 6))) -(((-1196) (-140)) (T -1196)) -((-3285 (*1 *1 *1) (-4 *1 (-1196))) (-3264 (*1 *1 *1) (-4 *1 (-1196))) (-3305 (*1 *1 *1) (-4 *1 (-1196))) (-3313 (*1 *1 *1) (-4 *1 (-1196))) (-3295 (*1 *1 *1) (-4 *1 (-1196))) (-3273 (*1 *1 *1) (-4 *1 (-1196)))) -(-13 (-10 -8 (-15 -3273 ($ $)) (-15 -3295 ($ $)) (-15 -3313 ($ $)) (-15 -3305 ($ $)) (-15 -3264 ($ $)) (-15 -3285 ($ $)))) -((-4058 ((|#2| |#2|) 99)) (-4070 (((-112) |#2|) 29)) (-2079 ((|#2| |#2|) 33)) (-2090 ((|#2| |#2|) 35)) (-4033 ((|#2| |#2| (-1169)) 93) ((|#2| |#2|) 94)) (-4080 (((-169 |#2|) |#2|) 31)) (-4045 ((|#2| |#2| (-1169)) 95) ((|#2| |#2|) 96))) -(((-1197 |#1| |#2|) (-10 -7 (-15 -4033 (|#2| |#2|)) (-15 -4033 (|#2| |#2| (-1169))) (-15 -4045 (|#2| |#2|)) (-15 -4045 (|#2| |#2| (-1169))) (-15 -4058 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -4070 ((-112) |#2|)) (-15 -4080 ((-169 |#2|) |#2|))) (-13 (-452) (-846) (-1034 (-563)) (-636 (-563))) (-13 (-27) (-1193) (-430 |#1|))) (T -1197)) -((-4080 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-169 *3)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-4070 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *2 (-112)) (-5 *1 (-1197 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *4))))) (-2090 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-2079 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-4058 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-4045 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-4045 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) (-4033 (*1 *2 *2 *3) (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) (-4033 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) -(-10 -7 (-15 -4033 (|#2| |#2|)) (-15 -4033 (|#2| |#2| (-1169))) (-15 -4045 (|#2| |#2|)) (-15 -4045 (|#2| |#2| (-1169))) (-15 -4058 (|#2| |#2|)) (-15 -2079 (|#2| |#2|)) (-15 -2090 (|#2| |#2|)) (-15 -4070 ((-112) |#2|)) (-15 -4080 ((-169 |#2|) |#2|))) -((-4091 ((|#4| |#4| |#1|) 32)) (-4102 ((|#4| |#4| |#1|) 33))) -(((-1198 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4091 (|#4| |#4| |#1|)) (-15 -4102 (|#4| |#4| |#1|))) (-555) (-373 |#1|) (-373 |#1|) (-682 |#1| |#2| |#3|)) (T -1198)) -((-4102 (*1 *2 *2 *3) (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) (-4091 (*1 *2 *2 *3) (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) -(-10 -7 (-15 -4091 (|#4| |#4| |#1|)) (-15 -4102 (|#4| |#4| |#1|))) -((-4292 ((|#2| |#2|) 148)) (-4316 ((|#2| |#2|) 145)) (-4281 ((|#2| |#2|) 136)) (-4305 ((|#2| |#2|) 133)) (-4271 ((|#2| |#2|) 141)) (-4261 ((|#2| |#2|) 129)) (-4149 ((|#2| |#2|) 44)) (-4137 ((|#2| |#2|) 105)) (-4115 ((|#2| |#2|) 88)) (-4251 ((|#2| |#2|) 143)) (-4241 ((|#2| |#2|) 131)) (-4374 ((|#2| |#2|) 153)) (-4354 ((|#2| |#2|) 151)) (-4364 ((|#2| |#2|) 152)) (-4345 ((|#2| |#2|) 150)) (-4126 ((|#2| |#2|) 163)) (-4383 ((|#2| |#2|) 30 (-12 (|has| |#2| (-611 (-888 |#1|))) (|has| |#2| (-882 |#1|)) (|has| |#1| (-611 (-888 |#1|))) (|has| |#1| (-882 |#1|))))) (-4162 ((|#2| |#2|) 89)) (-4171 ((|#2| |#2|) 154)) (-1864 ((|#2| |#2|) 155)) (-4229 ((|#2| |#2|) 142)) (-4220 ((|#2| |#2|) 130)) (-4211 ((|#2| |#2|) 149)) (-4336 ((|#2| |#2|) 147)) (-4200 ((|#2| |#2|) 137)) (-4326 ((|#2| |#2|) 135)) (-4190 ((|#2| |#2|) 139)) (-4180 ((|#2| |#2|) 127))) -(((-1199 |#1| |#2|) (-10 -7 (-15 -1864 (|#2| |#2|)) (-15 -4115 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4162 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4180 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -4211 (|#2| |#2|)) (-15 -4220 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -4251 (|#2| |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -4271 (|#2| |#2|)) (-15 -4281 (|#2| |#2|)) (-15 -4292 (|#2| |#2|)) (-15 -4305 (|#2| |#2|)) (-15 -4316 (|#2| |#2|)) (-15 -4326 (|#2| |#2|)) (-15 -4336 (|#2| |#2|)) (-15 -4345 (|#2| |#2|)) (-15 -4354 (|#2| |#2|)) (-15 -4364 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-611 (-888 |#1|))) (IF (|has| |#2| (-611 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -4383 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-846) (-452)) (-13 (-430 |#1|) (-1193))) (T -1199)) -((-4383 (*1 *2 *2) (-12 (-4 *3 (-611 (-888 *3))) (-4 *3 (-882 *3)) (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-611 (-888 *3))) (-4 *2 (-882 *3)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4364 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4354 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4345 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4336 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4326 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4316 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4305 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4292 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4281 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4271 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4261 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4251 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4241 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4229 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4220 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4211 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4200 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4190 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4180 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4171 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4162 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4149 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4137 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4126 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-4115 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193))))) (-1864 (*1 *2 *2) (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) (-4 *2 (-13 (-430 *3) (-1193)))))) -(-10 -7 (-15 -1864 (|#2| |#2|)) (-15 -4115 (|#2| |#2|)) (-15 -4126 (|#2| |#2|)) (-15 -4137 (|#2| |#2|)) (-15 -4149 (|#2| |#2|)) (-15 -4162 (|#2| |#2|)) (-15 -4171 (|#2| |#2|)) (-15 -4180 (|#2| |#2|)) (-15 -4190 (|#2| |#2|)) (-15 -4200 (|#2| |#2|)) (-15 -4211 (|#2| |#2|)) (-15 -4220 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -4241 (|#2| |#2|)) (-15 -4251 (|#2| |#2|)) (-15 -4261 (|#2| |#2|)) (-15 -4271 (|#2| |#2|)) (-15 -4281 (|#2| |#2|)) (-15 -4292 (|#2| |#2|)) (-15 -4305 (|#2| |#2|)) (-15 -4316 (|#2| |#2|)) (-15 -4326 (|#2| |#2|)) (-15 -4336 (|#2| |#2|)) (-15 -4345 (|#2| |#2|)) (-15 -4354 (|#2| |#2|)) (-15 -4364 (|#2| |#2|)) (-15 -4374 (|#2| |#2|)) (IF (|has| |#1| (-882 |#1|)) (IF (|has| |#1| (-611 (-888 |#1|))) (IF (|has| |#2| (-611 (-888 |#1|))) (IF (|has| |#2| (-882 |#1|)) (-15 -4383 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) -((-1469 (((-112) |#5| $) 67) (((-112) $) 109)) (-1413 ((|#5| |#5| $) 82)) (-1907 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 126)) (-1426 (((-640 |#5|) (-640 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 80)) (-2671 (((-3 $ "failed") (-640 |#5|)) 134)) (-1897 (((-3 $ "failed") $) 119)) (-1384 ((|#5| |#5| $) 101)) (-1480 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 35)) (-1365 ((|#5| |#5| $) 105)) (-2532 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 76)) (-1502 (((-2 (|:| -3028 (-640 |#5|)) (|:| -1934 (-640 |#5|))) $) 62)) (-1491 (((-112) |#5| $) 65) (((-112) $) 110)) (-2674 ((|#4| $) 115)) (-1442 (((-3 |#5| "failed") $) 117)) (-1514 (((-640 |#5|) $) 54)) (-1447 (((-112) |#5| $) 74) (((-112) $) 114)) (-1395 ((|#5| |#5| $) 88)) (-3449 (((-112) $ $) 28)) (-1458 (((-112) |#5| $) 70) (((-112) $) 112)) (-1405 ((|#5| |#5| $) 85)) (-1884 (((-3 |#5| "failed") $) 116)) (-2884 (($ $ |#5|) 135)) (-1962 (((-767) $) 59)) (-2074 (($ (-640 |#5|)) 132)) (-1566 (($ $ |#4|) 130)) (-1591 (($ $ |#4|) 128)) (-1373 (($ $) 127)) (-2062 (((-858) $) NIL) (((-640 |#5|) $) 120)) (-1313 (((-767) $) 139)) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|)) 48) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 50)) (-1438 (((-112) $ (-1 (-112) |#5| (-640 |#5|))) 107)) (-1333 (((-640 |#4|) $) 122)) (-1833 (((-112) |#4| $) 125)) (-2943 (((-112) $ $) 20))) -(((-1200 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1313 ((-767) |#1|)) (-15 -2884 (|#1| |#1| |#5|)) (-15 -1907 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1833 ((-112) |#4| |#1|)) (-15 -1333 ((-640 |#4|) |#1|)) (-15 -1897 ((-3 |#1| "failed") |#1|)) (-15 -1442 ((-3 |#5| "failed") |#1|)) (-15 -1884 ((-3 |#5| "failed") |#1|)) (-15 -1365 (|#5| |#5| |#1|)) (-15 -1373 (|#1| |#1|)) (-15 -1384 (|#5| |#5| |#1|)) (-15 -1395 (|#5| |#5| |#1|)) (-15 -1405 (|#5| |#5| |#1|)) (-15 -1413 (|#5| |#5| |#1|)) (-15 -1426 ((-640 |#5|) (-640 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2532 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1447 ((-112) |#1|)) (-15 -1458 ((-112) |#1|)) (-15 -1469 ((-112) |#1|)) (-15 -1438 ((-112) |#1| (-1 (-112) |#5| (-640 |#5|)))) (-15 -1447 ((-112) |#5| |#1|)) (-15 -1458 ((-112) |#5| |#1|)) (-15 -1469 ((-112) |#5| |#1|)) (-15 -1480 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1491 ((-112) |#1|)) (-15 -1491 ((-112) |#5| |#1|)) (-15 -1502 ((-2 (|:| -3028 (-640 |#5|)) (|:| -1934 (-640 |#5|))) |#1|)) (-15 -1962 ((-767) |#1|)) (-15 -1514 ((-640 |#5|) |#1|)) (-15 -3438 ((-3 (-2 (|:| |bas| |#1|) (|:| -3796 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3438 ((-3 (-2 (|:| |bas| |#1|) (|:| -3796 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3449 ((-112) |#1| |#1|)) (-15 -1566 (|#1| |#1| |#4|)) (-15 -1591 (|#1| |#1| |#4|)) (-15 -2674 (|#4| |#1|)) (-15 -2671 ((-3 |#1| "failed") (-640 |#5|))) (-15 -2062 ((-640 |#5|) |#1|)) (-15 -2074 (|#1| (-640 |#5|))) (-15 -2532 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2532 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1907 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2532 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) (-1201 |#2| |#3| |#4| |#5|) (-555) (-789) (-846) (-1059 |#2| |#3| |#4|)) (T -1200)) -NIL -(-10 -8 (-15 -1313 ((-767) |#1|)) (-15 -2884 (|#1| |#1| |#5|)) (-15 -1907 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1833 ((-112) |#4| |#1|)) (-15 -1333 ((-640 |#4|) |#1|)) (-15 -1897 ((-3 |#1| "failed") |#1|)) (-15 -1442 ((-3 |#5| "failed") |#1|)) (-15 -1884 ((-3 |#5| "failed") |#1|)) (-15 -1365 (|#5| |#5| |#1|)) (-15 -1373 (|#1| |#1|)) (-15 -1384 (|#5| |#5| |#1|)) (-15 -1395 (|#5| |#5| |#1|)) (-15 -1405 (|#5| |#5| |#1|)) (-15 -1413 (|#5| |#5| |#1|)) (-15 -1426 ((-640 |#5|) (-640 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -2532 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1447 ((-112) |#1|)) (-15 -1458 ((-112) |#1|)) (-15 -1469 ((-112) |#1|)) (-15 -1438 ((-112) |#1| (-1 (-112) |#5| (-640 |#5|)))) (-15 -1447 ((-112) |#5| |#1|)) (-15 -1458 ((-112) |#5| |#1|)) (-15 -1469 ((-112) |#5| |#1|)) (-15 -1480 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1491 ((-112) |#1|)) (-15 -1491 ((-112) |#5| |#1|)) (-15 -1502 ((-2 (|:| -3028 (-640 |#5|)) (|:| -1934 (-640 |#5|))) |#1|)) (-15 -1962 ((-767) |#1|)) (-15 -1514 ((-640 |#5|) |#1|)) (-15 -3438 ((-3 (-2 (|:| |bas| |#1|) (|:| -3796 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -3438 ((-3 (-2 (|:| |bas| |#1|) (|:| -3796 (-640 |#5|))) "failed") (-640 |#5|) (-1 (-112) |#5| |#5|))) (-15 -3449 ((-112) |#1| |#1|)) (-15 -1566 (|#1| |#1| |#4|)) (-15 -1591 (|#1| |#1| |#4|)) (-15 -2674 (|#4| |#1|)) (-15 -2671 ((-3 |#1| "failed") (-640 |#5|))) (-15 -2062 ((-640 |#5|) |#1|)) (-15 -2074 (|#1| (-640 |#5|))) (-15 -2532 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2532 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1907 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -2532 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2062 ((-858) |#1|)) (-15 -2943 ((-112) |#1| |#1|))) -((-2049 (((-112) $ $) 7)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) 85)) (-1353 (((-640 $) (-640 |#4|)) 86)) (-2185 (((-640 |#3|) $) 33)) (-1556 (((-112) $) 26)) (-1456 (((-112) $) 17 (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) 101) (((-112) $) 97)) (-1413 ((|#4| |#4| $) 92)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) 27)) (-3740 (((-112) $ (-767)) 44)) (-1907 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) 79)) (-3684 (($) 45 T CONST)) (-1512 (((-112) $) 22 (|has| |#1| (-555)))) (-1534 (((-112) $ $) 24 (|has| |#1| (-555)))) (-1523 (((-112) $ $) 23 (|has| |#1| (-555)))) (-1545 (((-112) $) 25 (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-1466 (((-640 |#4|) (-640 |#4|) $) 18 (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) 19 (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) 36)) (-2589 (($ (-640 |#4|)) 35)) (-1897 (((-3 $ "failed") $) 82)) (-1384 ((|#4| |#4| $) 89)) (-1920 (($ $) 68 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#4| $) 67 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-1365 ((|#4| |#4| $) 87)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) 105)) (-4236 (((-640 |#4|) $) 52 (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) 104) (((-112) $) 103)) (-2674 ((|#3| $) 34)) (-3633 (((-112) $ (-767)) 43)) (-1572 (((-640 |#4|) $) 53 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) 47)) (-1616 (((-640 |#3|) $) 32)) (-1602 (((-112) |#3| $) 31)) (-3604 (((-112) $ (-767)) 42)) (-1938 (((-1151) $) 9)) (-1442 (((-3 |#4| "failed") $) 83)) (-1514 (((-640 |#4|) $) 107)) (-1447 (((-112) |#4| $) 99) (((-112) $) 95)) (-1395 ((|#4| |#4| $) 90)) (-3449 (((-112) $ $) 110)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) 100) (((-112) $) 96)) (-1405 ((|#4| |#4| $) 91)) (-3249 (((-1113) $) 10)) (-1884 (((-3 |#4| "failed") $) 84)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-1323 (((-3 $ "failed") $ |#4|) 78)) (-2884 (($ $ |#4|) 77)) (-3837 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) 38)) (-2820 (((-112) $) 41)) (-2749 (($) 40)) (-1962 (((-767) $) 106)) (-3261 (((-767) |#4| $) 54 (-12 (|has| |#4| (-1093)) (|has| $ (-6 -4408)))) (((-767) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4408)))) (-2208 (($ $) 39)) (-2802 (((-536) $) 69 (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) 60)) (-1566 (($ $ |#3|) 28)) (-1591 (($ $ |#3|) 30)) (-1373 (($ $) 88)) (-1579 (($ $ |#3|) 29)) (-2062 (((-858) $) 11) (((-640 |#4|) $) 37)) (-1313 (((-767) $) 76 (|has| |#3| (-368)))) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) 98)) (-3848 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) 81)) (-1833 (((-112) |#3| $) 80)) (-2943 (((-112) $ $) 6)) (-1708 (((-767) $) 46 (|has| $ (-6 -4408))))) -(((-1201 |#1| |#2| |#3| |#4|) (-140) (-555) (-789) (-846) (-1059 |t#1| |t#2| |t#3|)) (T -1201)) -((-3449 (*1 *2 *1 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-3438 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3796 (-640 *8)))) (-5 *3 (-640 *8)) (-4 *1 (-1201 *5 *6 *7 *8)))) (-3438 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3796 (-640 *9)))) (-5 *3 (-640 *9)) (-4 *1 (-1201 *6 *7 *8 *9)))) (-1514 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *6)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-2 (|:| -3028 (-640 *6)) (|:| -1934 (-640 *6)))))) (-1491 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1491 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1480 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1201 *5 *6 *7 *3)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)))) (-1469 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1458 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1447 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1438 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-640 *7))) (-4 *1 (-1201 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)))) (-1469 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) (-2532 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1201 *5 *6 *7 *2)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) (-1426 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1201 *5 *6 *7 *8)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)))) (-1413 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1405 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1395 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1384 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1373 (*1 *1 *1) (-12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-1365 (*1 *2 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) (-4 *1 (-1201 *4 *5 *6 *7)))) (-1343 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-640 (-2 (|:| -3028 *1) (|:| -1934 (-640 *7))))) (-5 *3 (-640 *7)) (-4 *1 (-1201 *4 *5 *6 *7)))) (-1884 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1442 (*1 *2 *1) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1897 (*1 *1 *1) (|partial| -12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) (-1833 (*1 *2 *3 *1) (-12 (-4 *1 (-1201 *4 *5 *3 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) (-1907 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1201 *4 *5 *3 *2)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) (-1323 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-2884 (*1 *1 *1 *2) (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) (-1313 (*1 *2 *1) (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-767))))) -(-13 (-972 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4408) (-6 -4409) (-15 -3449 ((-112) $ $)) (-15 -3438 ((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |t#4|))) "failed") (-640 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -3438 ((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |t#4|))) "failed") (-640 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1514 ((-640 |t#4|) $)) (-15 -1962 ((-767) $)) (-15 -1502 ((-2 (|:| -3028 (-640 |t#4|)) (|:| -1934 (-640 |t#4|))) $)) (-15 -1491 ((-112) |t#4| $)) (-15 -1491 ((-112) $)) (-15 -1480 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1469 ((-112) |t#4| $)) (-15 -1458 ((-112) |t#4| $)) (-15 -1447 ((-112) |t#4| $)) (-15 -1438 ((-112) $ (-1 (-112) |t#4| (-640 |t#4|)))) (-15 -1469 ((-112) $)) (-15 -1458 ((-112) $)) (-15 -1447 ((-112) $)) (-15 -2532 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1426 ((-640 |t#4|) (-640 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1413 (|t#4| |t#4| $)) (-15 -1405 (|t#4| |t#4| $)) (-15 -1395 (|t#4| |t#4| $)) (-15 -1384 (|t#4| |t#4| $)) (-15 -1373 ($ $)) (-15 -1365 (|t#4| |t#4| $)) (-15 -1353 ((-640 $) (-640 |t#4|))) (-15 -1343 ((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |t#4|)))) (-640 |t#4|))) (-15 -1884 ((-3 |t#4| "failed") $)) (-15 -1442 ((-3 |t#4| "failed") $)) (-15 -1897 ((-3 $ "failed") $)) (-15 -1333 ((-640 |t#3|) $)) (-15 -1833 ((-112) |t#3| $)) (-15 -1907 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1323 ((-3 $ "failed") $ |t#4|)) (-15 -2884 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -1313 ((-767) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-610 (-640 |#4|)) . T) ((-610 (-858)) . T) ((-151 |#4|) . T) ((-611 (-536)) |has| |#4| (-611 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))) ((-972 |#1| |#2| |#3| |#4|) . T) ((-1093) . T) ((-1208) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-1169)) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-3419 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2242 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3894 (((-948 |#1|) $ (-767)) 19) (((-948 |#1|) $ (-767) (-767)) NIL)) (-2697 (((-112) $) NIL)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-767) $ (-1169)) NIL) (((-767) $ (-1169) (-767)) NIL)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1871 (((-112) $) NIL)) (-2165 (($ $ (-640 (-1169)) (-640 (-531 (-1169)))) NIL) (($ $ (-1169) (-531 (-1169))) NIL) (($ |#1| (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2497 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3204 (($ $ (-1169)) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169) |#1|) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) NIL)) (-1294 (($ (-1 $) (-1169) |#1|) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2884 (($ $ (-767)) NIL)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3177 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1497 (($ $ (-1169) $) NIL) (($ $ (-640 (-1169)) (-640 $)) NIL) (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL)) (-1361 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-1962 (((-531 (-1169)) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-555))) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-1169)) NIL) (($ (-948 |#1|)) NIL)) (-1304 ((|#1| $ (-531 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (((-948 |#1|) $ (-767)) NIL)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-2285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4205 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) NIL T CONST)) (-3803 (($) NIL T CONST)) (-4191 (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) -(((-1202 |#1|) (-13 (-736 |#1| (-1169)) (-10 -8 (-15 -1304 ((-948 |#1|) $ (-767))) (-15 -2062 ($ (-1169))) (-15 -2062 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $ (-1169) |#1|)) (-15 -1294 ($ (-1 $) (-1169) |#1|))) |%noBranch|))) (-1045)) (T -1202)) -((-1304 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1202 *4)) (-4 *4 (-1045)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-1045)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1202 *3)))) (-3204 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)))) (-1294 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1202 *4))) (-5 *3 (-1169)) (-5 *1 (-1202 *4)) (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045))))) -(-13 (-736 |#1| (-1169)) (-10 -8 (-15 -1304 ((-948 |#1|) $ (-767))) (-15 -2062 ($ (-1169))) (-15 -2062 ($ (-948 |#1|))) (IF (|has| |#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $ (-1169) |#1|)) (-15 -1294 ($ (-1 $) (-1169) |#1|))) |%noBranch|))) -((-3515 (($ |#1| (-640 (-640 (-939 (-225)))) (-112)) 18)) (-3505 (((-112) $ (-112)) 17)) (-3496 (((-112) $) 16)) (-3474 (((-640 (-640 (-939 (-225)))) $) 13)) (-3462 ((|#1| $) 8)) (-3484 (((-112) $) 15))) -(((-1203 |#1|) (-10 -8 (-15 -3462 (|#1| $)) (-15 -3474 ((-640 (-640 (-939 (-225)))) $)) (-15 -3484 ((-112) $)) (-15 -3496 ((-112) $)) (-15 -3505 ((-112) $ (-112))) (-15 -3515 ($ |#1| (-640 (-640 (-939 (-225)))) (-112)))) (-970)) (T -1203)) -((-3515 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-112)) (-5 *1 (-1203 *2)) (-4 *2 (-970)))) (-3505 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-1203 *3)) (-4 *3 (-970)))) (-3462 (*1 *2 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-970))))) -(-10 -8 (-15 -3462 (|#1| $)) (-15 -3474 ((-640 (-640 (-939 (-225)))) $)) (-15 -3484 ((-112) $)) (-15 -3496 ((-112) $)) (-15 -3505 ((-112) $ (-112))) (-15 -3515 ($ |#1| (-640 (-640 (-939 (-225)))) (-112)))) -((-3525 (((-939 (-225)) (-939 (-225))) 31)) (-3415 (((-939 (-225)) (-225) (-225) (-225) (-225)) 10)) (-3544 (((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225)))) 59)) (-3396 (((-225) (-939 (-225)) (-939 (-225))) 27)) (-3387 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 28)) (-3534 (((-640 (-640 (-225))) (-563)) 48)) (-3039 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 26)) (-3027 (((-939 (-225)) (-939 (-225)) (-939 (-225))) 24)) (* (((-939 (-225)) (-225) (-939 (-225))) 22))) -(((-1204) (-10 -7 (-15 -3415 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -3027 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3039 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3396 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -3387 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3525 ((-939 (-225)) (-939 (-225)))) (-15 -3534 ((-640 (-640 (-225))) (-563))) (-15 -3544 ((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225))))))) (T -1204)) -((-3544 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-640 (-640 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 (-939 *4))) (-5 *1 (-1204)) (-5 *3 (-939 *4)))) (-3534 (*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-1204)))) (-3525 (*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-3387 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-3396 (*1 *2 *3 *3) (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1204)))) (-3039 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (-3027 (*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1204)))) (-3415 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)) (-5 *3 (-225))))) -(-10 -7 (-15 -3415 ((-939 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-939 (-225)) (-225) (-939 (-225)))) (-15 -3027 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3039 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3396 ((-225) (-939 (-225)) (-939 (-225)))) (-15 -3387 ((-939 (-225)) (-939 (-225)) (-939 (-225)))) (-15 -3525 ((-939 (-225)) (-939 (-225)))) (-15 -3534 ((-640 (-640 (-225))) (-563))) (-15 -3544 ((-640 (-939 (-225))) (-939 (-225)) (-939 (-225)) (-939 (-225)) (-225) (-640 (-640 (-225)))))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1907 ((|#1| $ (-767)) 18)) (-3322 (((-767) $) 13)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-2062 (((-954 |#1|) $) 12) (($ (-954 |#1|)) 11) (((-858) $) 29 (|has| |#1| (-610 (-858))))) (-2943 (((-112) $ $) 22 (|has| |#1| (-1093))))) -(((-1205 |#1|) (-13 (-490 (-954 |#1|)) (-10 -8 (-15 -1907 (|#1| $ (-767))) (-15 -3322 ((-767) $)) (IF (|has| |#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) (-1208)) (T -1205)) -((-1907 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-1205 *2)) (-4 *2 (-1208)))) (-3322 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1205 *3)) (-4 *3 (-1208))))) -(-13 (-490 (-954 |#1|)) (-10 -8 (-15 -1907 (|#1| $ (-767))) (-15 -3322 ((-767) $)) (IF (|has| |#1| (-610 (-858))) (-6 (-610 (-858))) |%noBranch|) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|))) -((-3573 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563)) 96)) (-3554 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|))) 88)) (-3564 (((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|))) 70))) -(((-1206 |#1|) (-10 -7 (-15 -3554 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -3564 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -3573 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563)))) (-349)) (T -1206)) -((-3573 (*1 *2 *3 *4) (-12 (-5 *4 (-563)) (-4 *5 (-349)) (-5 *2 (-418 (-1165 (-1165 *5)))) (-5 *1 (-1206 *5)) (-5 *3 (-1165 (-1165 *5))))) (-3564 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4))))) (-3554 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4)))))) -(-10 -7 (-15 -3554 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -3564 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)))) (-15 -3573 ((-418 (-1165 (-1165 |#1|))) (-1165 (-1165 |#1|)) (-563)))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 9) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-1207) (-1076)) (T -1207)) -NIL -(-1076) -NIL -(((-1208) (-140)) (T -1208)) -NIL -(-13 (-10 -7 (-6 -2960))) -((-3613 (((-112)) 17)) (-3583 (((-1262) (-640 |#1|) (-640 |#1|)) 21) (((-1262) (-640 |#1|)) 22)) (-3633 (((-112) |#1| |#1|) 37 (|has| |#1| (-846)))) (-3604 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-3624 ((|#1| (-640 |#1|)) 38 (|has| |#1| (-846))) ((|#1| (-640 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-3592 (((-2 (|:| -1856 (-640 |#1|)) (|:| -1843 (-640 |#1|)))) 19))) -(((-1209 |#1|) (-10 -7 (-15 -3583 ((-1262) (-640 |#1|))) (-15 -3583 ((-1262) (-640 |#1|) (-640 |#1|))) (-15 -3592 ((-2 (|:| -1856 (-640 |#1|)) (|:| -1843 (-640 |#1|))))) (-15 -3604 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3604 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3624 (|#1| (-640 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3613 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -3624 (|#1| (-640 |#1|))) (-15 -3633 ((-112) |#1| |#1|))) |%noBranch|)) (-1093)) (T -1209)) -((-3633 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-846)) (-4 *3 (-1093)))) (-3624 (*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-846)) (-5 *1 (-1209 *2)))) (-3613 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-3624 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1209 *2)) (-4 *2 (-1093)))) (-3604 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1093)) (-5 *2 (-112)) (-5 *1 (-1209 *3)))) (-3604 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-3592 (*1 *2) (-12 (-5 *2 (-2 (|:| -1856 (-640 *3)) (|:| -1843 (-640 *3)))) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) (-3583 (*1 *2 *3 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) (-5 *1 (-1209 *4)))) (-3583 (*1 *2 *3) (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) (-5 *1 (-1209 *4))))) -(-10 -7 (-15 -3583 ((-1262) (-640 |#1|))) (-15 -3583 ((-1262) (-640 |#1|) (-640 |#1|))) (-15 -3592 ((-2 (|:| -1856 (-640 |#1|)) (|:| -1843 (-640 |#1|))))) (-15 -3604 ((-3 (-112) "failed") |#1| |#1|)) (-15 -3604 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -3624 (|#1| (-640 |#1|) (-1 (-112) |#1| |#1|))) (-15 -3613 ((-112))) (IF (|has| |#1| (-846)) (PROGN (-15 -3624 (|#1| (-640 |#1|))) (-15 -3633 ((-112) |#1| |#1|))) |%noBranch|)) -((-3642 (((-1262) (-640 (-1169)) (-640 (-1169))) 14) (((-1262) (-640 (-1169))) 12)) (-3663 (((-1262)) 16)) (-3651 (((-2 (|:| -1843 (-640 (-1169))) (|:| -1856 (-640 (-1169))))) 20))) -(((-1210) (-10 -7 (-15 -3642 ((-1262) (-640 (-1169)))) (-15 -3642 ((-1262) (-640 (-1169)) (-640 (-1169)))) (-15 -3651 ((-2 (|:| -1843 (-640 (-1169))) (|:| -1856 (-640 (-1169)))))) (-15 -3663 ((-1262))))) (T -1210)) -((-3663 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1210)))) (-3651 (*1 *2) (-12 (-5 *2 (-2 (|:| -1843 (-640 (-1169))) (|:| -1856 (-640 (-1169))))) (-5 *1 (-1210)))) (-3642 (*1 *2 *3 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210))))) -(-10 -7 (-15 -3642 ((-1262) (-640 (-1169)))) (-15 -3642 ((-1262) (-640 (-1169)) (-640 (-1169)))) (-15 -3651 ((-2 (|:| -1843 (-640 (-1169))) (|:| -1856 (-640 (-1169)))))) (-15 -3663 ((-1262)))) -((-2924 (($ $) 17)) (-3675 (((-112) $) 28))) -(((-1211 |#1|) (-10 -8 (-15 -2924 (|#1| |#1|)) (-15 -3675 ((-112) |#1|))) (-1212)) (T -1211)) -NIL -(-10 -8 (-15 -2924 (|#1| |#1|)) (-15 -3675 ((-112) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 52)) (-2102 (((-418 $) $) 53)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-3675 (((-112) $) 54)) (-2712 (((-112) $) 31)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-2055 (((-418 $) $) 51)) (-3448 (((-3 $ "failed") $ $) 43)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44)) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24))) -(((-1212) (-140)) (T -1212)) -((-3675 (*1 *2 *1) (-12 (-4 *1 (-1212)) (-5 *2 (-112)))) (-2102 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212)))) (-2924 (*1 *1 *1) (-4 *1 (-1212))) (-2055 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212))))) -(-13 (-452) (-10 -8 (-15 -3675 ((-112) $)) (-15 -2102 ((-418 $) $)) (-15 -2924 ($ $)) (-15 -2055 ((-418 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-555) . T) ((-643 $) . T) ((-713 $) . T) ((-722) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) NIL T CONST)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-3267 (((-917) $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-4314 (($ $ $) NIL)) (-4304 (($ $ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-1213) (-13 (-840) (-10 -8 (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495)))) (T -1213)) -((-4304 (*1 *1 *1 *1) (-5 *1 (-1213))) (-4314 (*1 *1 *1 *1) (-5 *1 (-1213))) (-3684 (*1 *1) (-5 *1 (-1213)))) -(-13 (-840) (-10 -8 (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495))) +((-2198 (((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 70)) (-2443 (((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|)))) 84) (((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|))) 80) (((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170)) 85) (((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170)) 79) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|))))) 112) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|)))) 111) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170))) 113) (((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170))) 110))) +(((-1178 |#1|) (-10 -7 (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -2443 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -2443 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2443 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)))) (-15 -2443 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))))) (-15 -2198 ((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))))) (-556)) (T -1178)) +((-2198 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-949 *5)))) (-5 *1 (-1178 *5)))) (-2443 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-949 *4)))))) (-2443 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) (-5 *1 (-1178 *4)) (-5 *3 (-407 (-949 *4))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-294 (-407 (-949 *5)))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-1170)) (-4 *5 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) (-5 *3 (-407 (-949 *5))))) (-2443 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-949 *4))))))) (-2443 (*1 *2 *3) (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)))) (-2443 (*1 *2 *3 *4) (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5)) (-5 *3 (-641 (-294 (-407 (-949 *5))))))) (-2443 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5))))) +(-10 -7 (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))) (-641 (-1170)))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))) (-641 (-1170)))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-407 (-949 |#1|))))) (-15 -2443 ((-641 (-641 (-294 (-407 (-949 |#1|))))) (-641 (-294 (-407 (-949 |#1|)))))) (-15 -2443 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)) (-1170))) (-15 -2443 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))) (-1170))) (-15 -2443 ((-641 (-294 (-407 (-949 |#1|)))) (-407 (-949 |#1|)))) (-15 -2443 ((-641 (-294 (-407 (-949 |#1|)))) (-294 (-407 (-949 |#1|))))) (-15 -2198 ((-641 (-641 (-949 |#1|))) (-641 (-407 (-949 |#1|))) (-641 (-1170))))) +((-2441 (((-1152)) 7)) (-2831 (((-1152)) 11 T CONST)) (-2380 (((-1264) (-1152)) 13)) (-1633 (((-1152)) 8 T CONST)) (-2661 (((-130)) 10 T CONST))) +(((-1179) (-13 (-1209) (-10 -7 (-15 -2441 ((-1152))) (-15 -1633 ((-1152)) -2091) (-15 -2661 ((-130)) -2091) (-15 -2831 ((-1152)) -2091) (-15 -2380 ((-1264) (-1152)))))) (T -1179)) +((-2441 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-1633 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2661 (*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179)))) (-2831 (*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179))))) +(-13 (-1209) (-10 -7 (-15 -2441 ((-1152))) (-15 -1633 ((-1152)) -2091) (-15 -2661 ((-130)) -2091) (-15 -2831 ((-1152)) -2091) (-15 -2380 ((-1264) (-1152))))) +((-3387 (((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 55)) (-1344 (((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|))) 38)) (-4125 (((-1181 (-641 |#1|)) (-641 |#1|)) 49)) (-4363 (((-641 (-641 |#1|)) (-641 |#1|)) 45)) (-3008 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))) 52)) (-3208 (((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|)))) 51)) (-2673 (((-641 (-641 |#1|)) (-641 (-641 |#1|))) 43)) (-4110 (((-641 |#1|) (-641 |#1|)) 46)) (-1503 (((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 32)) (-2851 (((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|)))) 29)) (-1580 (((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|))) 24)) (-2100 (((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|)))) 57)) (-4049 (((-641 (-641 |#1|)) (-1181 (-641 |#1|))) 59))) +(((-1180 |#1|) (-10 -7 (-15 -1580 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -2851 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1503 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -3387 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -2100 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -4049 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -1344 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -4125 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -2673 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -4363 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -4110 ((-641 |#1|) (-641 |#1|))) (-15 -3208 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -3008 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) (-847)) (T -1180)) +((-3008 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4)))))) (-3208 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-847)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) (|:| |f4| (-641 *5)))) (-5 *1 (-1180 *6)) (-5 *4 (-641 *5)))) (-4110 (*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-1180 *3)))) (-4363 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-2673 (*1 *2 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-847)) (-5 *1 (-1180 *3)))) (-4125 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) (-5 *3 (-641 *4)))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 (-641 *4)))) (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4))))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)))) (-2100 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) (-4 *4 (-847)))) (-3387 (*1 *2 *2 *3) (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) (-4 *4 (-847)) (-5 *1 (-1180 *4)))) (-1503 (*1 *2 *3 *2) (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *1 (-1180 *4)))) (-2851 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-641 *5)) (-4 *5 (-847)) (-5 *1 (-1180 *5)))) (-1580 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-847)) (-5 *4 (-641 *6)) (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) (-5 *1 (-1180 *6)) (-5 *5 (-641 *4))))) +(-10 -7 (-15 -1580 ((-2 (|:| |fs| (-112)) (|:| |sd| (-641 |#1|)) (|:| |td| (-641 (-641 |#1|)))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 |#1|)))) (-15 -2851 ((-641 (-641 (-641 |#1|))) (-1 (-112) |#1| |#1|) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -1503 ((-641 (-641 (-641 |#1|))) (-641 |#1|) (-641 (-641 (-641 |#1|))))) (-15 -3387 ((-641 (-641 |#1|)) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -2100 ((-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))))) (-15 -4049 ((-641 (-641 |#1|)) (-1181 (-641 |#1|)))) (-15 -1344 ((-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)))) (-15 -4125 ((-1181 (-641 |#1|)) (-641 |#1|))) (-15 -2673 ((-641 (-641 |#1|)) (-641 (-641 |#1|)))) (-15 -4363 ((-641 (-641 |#1|)) (-641 |#1|))) (-15 -4110 ((-641 |#1|) (-641 |#1|))) (-15 -3208 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 |#1|) (-641 (-641 (-641 |#1|))) (-641 (-641 |#1|)) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))) (-641 (-641 (-641 |#1|))))) (-15 -3008 ((-2 (|:| |f1| (-641 |#1|)) (|:| |f2| (-641 (-641 (-641 |#1|)))) (|:| |f3| (-641 (-641 |#1|))) (|:| |f4| (-641 (-641 (-641 |#1|))))) (-641 (-641 (-641 |#1|)))))) +((-3471 (($ (-641 (-641 |#1|))) 10)) (-3299 (((-641 (-641 |#1|)) $) 11)) (-3742 (((-859) $) 38))) +(((-1181 |#1|) (-10 -8 (-15 -3471 ($ (-641 (-641 |#1|)))) (-15 -3299 ((-641 (-641 |#1|)) $)) (-15 -3742 ((-859) $))) (-1094)) (T -1181)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3))))) +(-10 -8 (-15 -3471 ($ (-641 (-641 |#1|)))) (-15 -3299 ((-641 (-641 |#1|)) $)) (-15 -3742 ((-859) $))) +((-3732 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-3608 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-2645 (((-1264) $ |#1| |#1|) NIL (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#2| $ |#1| |#2|) NIL)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-3638 (((-3 |#2| "failed") |#1| $) NIL)) (-2818 (($) NIL T CONST)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) NIL)) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) NIL)) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) NIL)) (-2029 ((|#1| $) NIL (|has| |#1| (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-641 |#2|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-3774 ((|#1| $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1823 (((-641 |#1|) $) NIL)) (-2219 (((-112) |#1| $) NIL)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-2312 (((-641 |#1|) $) NIL)) (-4062 (((-112) |#1| $) NIL)) (-3864 (((-1114) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-1966 ((|#2| $) NIL (|has| |#1| (-847)))) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL)) (-3099 (($ $ |#2|) NIL (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-4085 (($) NIL) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) NIL (-12 (|has| $ (-6 -4411)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (((-768) |#2| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094)))) (((-768) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-3742 (((-859) $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859))) (|has| |#2| (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) NIL)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) NIL (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) NIL (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) NIL (-4030 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| |#2| (-1094))))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1182 |#1| |#2|) (-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) (-1094) (-1094)) (T -1182)) +NIL +(-13 (-1185 |#1| |#2|) (-10 -7 (-6 -4411))) +((-3903 ((|#1| (-641 |#1|)) 49)) (-3477 ((|#1| |#1| (-564)) 24)) (-2475 (((-1166 |#1|) |#1| (-918)) 20))) +(((-1183 |#1|) (-10 -7 (-15 -3903 (|#1| (-641 |#1|))) (-15 -2475 ((-1166 |#1|) |#1| (-918))) (-15 -3477 (|#1| |#1| (-564)))) (-363)) (T -1183)) +((-3477 (*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363)))) (-2475 (*1 *2 *3 *4) (-12 (-5 *4 (-918)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) (-4 *3 (-363)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363))))) +(-10 -7 (-15 -3903 (|#1| (-641 |#1|))) (-15 -2475 ((-1166 |#1|) |#1| (-918))) (-15 -3477 (|#1| |#1| (-564)))) +((-3608 (($) 10) (($ (-641 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)))) 14)) (-2154 (($ (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) $) 67) (($ (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3616 (((-641 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) $) 39) (((-641 |#3|) $) 41)) (-2606 (($ (-1 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) $) 57) (($ (-1 |#3| |#3|) $) 33)) (-2187 (($ (-1 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-2828 (((-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) $) 60)) (-2974 (($ (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) $) 16)) (-2312 (((-641 |#2|) $) 19)) (-4062 (((-112) |#2| $) 65)) (-3582 (((-3 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) "failed") (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) $) 64)) (-1292 (((-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) $) 69)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 72)) (-2572 (((-641 |#3|) $) 43)) (-4382 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) $) NIL) (((-768) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) $) NIL) (((-768) |#3| $) NIL) (((-768) (-1 (-112) |#3|) $) 78)) (-3742 (((-859) $) 27)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) $) NIL) (((-112) (-1 (-112) |#3|) $) 71)) (-1705 (((-112) $ $) 51))) +(((-1184 |#1| |#2| |#3|) (-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -2187 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3608 (|#1| (-641 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))))) (-15 -3608 (|#1|)) (-15 -2187 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2606 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3873 ((-768) (-1 (-112) |#3|) |#1|)) (-15 -3616 ((-641 |#3|) |#1|)) (-15 -3873 ((-768) |#3| |#1|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -2572 ((-641 |#3|) |#1|)) (-15 -4062 ((-112) |#2| |#1|)) (-15 -2312 ((-641 |#2|) |#1|)) (-15 -2154 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2154 (|#1| (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -2154 (|#1| (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -3582 ((-3 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) "failed") (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -2828 ((-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -2974 (|#1| (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -1292 ((-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -3873 ((-768) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -3616 ((-641 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -3873 ((-768) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -3736 ((-112) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -1417 ((-112) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -2606 (|#1| (-1 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -2187 (|#1| (-1 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|))) (-1185 |#2| |#3|) (-1094) (-1094)) (T -1184)) +NIL +(-10 -8 (-15 -1705 ((-112) |#1| |#1|)) (-15 -3742 ((-859) |#1|)) (-15 -2187 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3608 (|#1| (-641 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))))) (-15 -3608 (|#1|)) (-15 -2187 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2606 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1417 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3736 ((-112) (-1 (-112) |#3|) |#1|)) (-15 -3873 ((-768) (-1 (-112) |#3|) |#1|)) (-15 -3616 ((-641 |#3|) |#1|)) (-15 -3873 ((-768) |#3| |#1|)) (-15 -4382 (|#3| |#1| |#2| |#3|)) (-15 -4382 (|#3| |#1| |#2|)) (-15 -2572 ((-641 |#3|) |#1|)) (-15 -4062 ((-112) |#2| |#1|)) (-15 -2312 ((-641 |#2|) |#1|)) (-15 -2154 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2154 (|#1| (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -2154 (|#1| (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -3582 ((-3 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) "failed") (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -2828 ((-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -2974 (|#1| (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -1292 ((-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -3873 ((-768) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) |#1|)) (-15 -3616 ((-641 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -3873 ((-768) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -3736 ((-112) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -1417 ((-112) (-1 (-112) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -2606 (|#1| (-1 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|)) (-15 -2187 (|#1| (-1 (-2 (|:| -1327 |#2|) (|:| -2423 |#3|)) (-2 (|:| -1327 |#2|) (|:| -2423 |#3|))) |#1|))) +((-3732 (((-112) $ $) 19 (-4030 (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-3608 (($) 72) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 71)) (-2645 (((-1264) $ |#1| |#1|) 99 (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#2| $ |#1| |#2|) 73)) (-2068 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 45 (|has| $ (-6 -4411)))) (-3548 (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 55 (|has| $ (-6 -4411)))) (-3638 (((-3 |#2| "failed") |#1| $) 61)) (-2818 (($) 7 T CONST)) (-1996 (($ $) 58 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411))))) (-2154 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 47 (|has| $ (-6 -4411))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 46 (|has| $ (-6 -4411))) (((-3 |#2| "failed") |#1| $) 62)) (-2366 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 57 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 54 (|has| $ (-6 -4411)))) (-1699 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 56 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 53 (|has| $ (-6 -4411))) (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 52 (|has| $ (-6 -4411)))) (-2619 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4412)))) (-2540 ((|#2| $ |#1|) 88)) (-3616 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 30 (|has| $ (-6 -4411))) (((-641 |#2|) $) 79 (|has| $ (-6 -4411)))) (-2275 (((-112) $ (-768)) 9)) (-2029 ((|#1| $) 96 (|has| |#1| (-847)))) (-1386 (((-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 29 (|has| $ (-6 -4411))) (((-641 |#2|) $) 80 (|has| $ (-6 -4411)))) (-2431 (((-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 27 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-112) |#2| $) 82 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411))))) (-3774 ((|#1| $) 95 (|has| |#1| (-847)))) (-2606 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 34 (|has| $ (-6 -4412))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4412)))) (-2187 (($ (-1 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-1500 (((-112) $ (-768)) 10)) (-2217 (((-1152) $) 22 (-4030 (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-1823 (((-641 |#1|) $) 63)) (-2219 (((-112) |#1| $) 64)) (-2828 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 39)) (-2974 (($ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 40)) (-2312 (((-641 |#1|) $) 93)) (-4062 (((-112) |#1| $) 92)) (-3864 (((-1114) $) 21 (-4030 (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-1966 ((|#2| $) 97 (|has| |#1| (-847)))) (-3582 (((-3 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) "failed") (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 51)) (-3099 (($ $ |#2|) 98 (|has| $ (-6 -4412)))) (-1292 (((-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 41)) (-3736 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 32 (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) 77 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))))) 26 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-294 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 25 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) 24 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 23 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)))) (($ $ (-641 |#2|) (-641 |#2|)) 86 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-294 |#2|)) 84 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094)))) (($ $ (-641 (-294 |#2|))) 83 (-12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#2| $) 94 (-12 (|has| $ (-6 -4411)) (|has| |#2| (-1094))))) (-2572 (((-641 |#2|) $) 91)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-4085 (($) 49) (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 48)) (-3873 (((-768) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 31 (|has| $ (-6 -4411))) (((-768) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| $ (-6 -4411)))) (((-768) |#2| $) 81 (-12 (|has| |#2| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#2|) $) 78 (|has| $ (-6 -4411)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 59 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))))) (-3753 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 50)) (-3742 (((-859) $) 18 (-4030 (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859)))))) (-3745 (($ (-641 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) 42)) (-1417 (((-112) (-1 (-112) (-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) $) 33 (|has| $ (-6 -4411))) (((-112) (-1 (-112) |#2|) $) 76 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (-4030 (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-1185 |#1| |#2|) (-140) (-1094) (-1094)) (T -1185)) +((-3877 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) (-3608 (*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) (-3608 (*1 *1 *2) (-12 (-5 *2 (-641 (-2 (|:| -1327 *3) (|:| -2423 *4)))) (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4)))) (-2187 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))) +(-13 (-608 |t#1| |t#2|) (-602 |t#1| |t#2|) (-10 -8 (-15 -3877 (|t#2| $ |t#1| |t#2|)) (-15 -3608 ($)) (-15 -3608 ($ (-641 (-2 (|:| -1327 |t#1|) (|:| -2423 |t#2|))))) (-15 -2187 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 #0=(-2 (|:| -1327 |#1|) (|:| -2423 |#2|))) . T) ((-102) -4030 (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) ((-611 (-859)) -4030 (|has| |#2| (-1094)) (|has| |#2| (-611 (-859))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-611 (-859)))) ((-151 #0#) . T) ((-612 (-536)) |has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-612 (-536))) ((-229 #0#) . T) ((-235 #0#) . T) ((-286 |#1| |#2|) . T) ((-288 |#1| |#2|) . T) ((-309 #0#) -12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) ((-309 |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-489 #0#) . T) ((-489 |#2|) . T) ((-602 |#1| |#2|) . T) ((-514 #0# #0#) -12 (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-309 (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)))) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) ((-514 |#2| |#2|) -12 (|has| |#2| (-309 |#2|)) (|has| |#2| (-1094))) ((-608 |#1| |#2|) . T) ((-1094) -4030 (|has| |#2| (-1094)) (|has| (-2 (|:| -1327 |#1|) (|:| -2423 |#2|)) (-1094))) ((-1209) . T)) +((-2033 (((-112)) 29)) (-2490 (((-1264) (-1152)) 31)) (-3935 (((-112)) 41)) (-1347 (((-1264)) 39)) (-3835 (((-1264) (-1152) (-1152)) 30)) (-2807 (((-112)) 42)) (-2974 (((-1264) |#1| |#2|) 53)) (-2035 (((-1264)) 27)) (-1739 (((-3 |#2| "failed") |#1|) 51)) (-3084 (((-1264)) 40))) +(((-1186 |#1| |#2|) (-10 -7 (-15 -2035 ((-1264))) (-15 -3835 ((-1264) (-1152) (-1152))) (-15 -2490 ((-1264) (-1152))) (-15 -1347 ((-1264))) (-15 -3084 ((-1264))) (-15 -2033 ((-112))) (-15 -3935 ((-112))) (-15 -2807 ((-112))) (-15 -1739 ((-3 |#2| "failed") |#1|)) (-15 -2974 ((-1264) |#1| |#2|))) (-1094) (-1094)) (T -1186)) +((-2974 (*1 *2 *3 *4) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1739 (*1 *2 *3) (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094)))) (-2807 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3935 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2033 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-3084 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-1347 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) (-2490 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-3835 (*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)))) (-2035 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094))))) +(-10 -7 (-15 -2035 ((-1264))) (-15 -3835 ((-1264) (-1152) (-1152))) (-15 -2490 ((-1264) (-1152))) (-15 -1347 ((-1264))) (-15 -3084 ((-1264))) (-15 -2033 ((-112))) (-15 -3935 ((-112))) (-15 -2807 ((-112))) (-15 -1739 ((-3 |#2| "failed") |#1|)) (-15 -2974 ((-1264) |#1| |#2|))) +((-3586 (((-1152) (-1152)) 22)) (-1669 (((-52) (-1152)) 25))) +(((-1187) (-10 -7 (-15 -1669 ((-52) (-1152))) (-15 -3586 ((-1152) (-1152))))) (T -1187)) +((-3586 (*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187)))) (-1669 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187))))) +(-10 -7 (-15 -1669 ((-52) (-1152))) (-15 -3586 ((-1152) (-1152)))) +((-3742 (((-1189) |#1|) 11))) +(((-1188 |#1|) (-10 -7 (-15 -3742 ((-1189) |#1|))) (-1094)) (T -1188)) +((-3742 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094))))) +(-10 -7 (-15 -3742 ((-1189) |#1|))) +((-3732 (((-112) $ $) NIL)) (-2847 (((-641 (-1152)) $) 39)) (-4223 (((-641 (-1152)) $ (-641 (-1152))) 42)) (-2290 (((-641 (-1152)) $ (-641 (-1152))) 41)) (-1393 (((-641 (-1152)) $ (-641 (-1152))) 43)) (-4095 (((-641 (-1152)) $) 38)) (-3619 (($) 26)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2517 (((-641 (-1152)) $) 40)) (-3589 (((-1264) $ (-564)) 35) (((-1264) $) 36)) (-2235 (($ (-859) (-564)) 32) (($ (-859) (-564) (-859)) NIL)) (-3742 (((-859) $) 53) (($ (-859)) 31)) (-1705 (((-112) $ $) NIL))) +(((-1189) (-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2235 ($ (-859) (-564))) (-15 -2235 ($ (-859) (-564) (-859))) (-15 -3589 ((-1264) $ (-564))) (-15 -3589 ((-1264) $)) (-15 -2517 ((-641 (-1152)) $)) (-15 -2847 ((-641 (-1152)) $)) (-15 -3619 ($)) (-15 -4095 ((-641 (-1152)) $)) (-15 -1393 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4223 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2290 ((-641 (-1152)) $ (-641 (-1152))))))) (T -1189)) +((-2235 (*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-2235 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) (-3589 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189)))) (-3589 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) (-2517 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2847 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-3619 (*1 *1) (-5 *1 (-1189))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-1393 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-4223 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189)))) (-2290 (*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(-13 (-1094) (-614 (-859)) (-10 -8 (-15 -2235 ($ (-859) (-564))) (-15 -2235 ($ (-859) (-564) (-859))) (-15 -3589 ((-1264) $ (-564))) (-15 -3589 ((-1264) $)) (-15 -2517 ((-641 (-1152)) $)) (-15 -2847 ((-641 (-1152)) $)) (-15 -3619 ($)) (-15 -4095 ((-641 (-1152)) $)) (-15 -1393 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -4223 ((-641 (-1152)) $ (-641 (-1152)))) (-15 -2290 ((-641 (-1152)) $ (-641 (-1152)))))) +((-3732 (((-112) $ $) NIL)) (-4280 (((-1152) $ (-1152)) 17) (((-1152) $) 16)) (-2956 (((-1152) $ (-1152)) 15)) (-3024 (($ $ (-1152)) NIL)) (-3368 (((-3 (-1152) "failed") $) 11)) (-3717 (((-1152) $) 8)) (-3751 (((-3 (-1152) "failed") $) 12)) (-2984 (((-1152) $) 9)) (-1702 (($ (-388)) NIL) (($ (-388) (-1152)) NIL)) (-4324 (((-388) $) NIL)) (-2217 (((-1152) $) NIL)) (-2615 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2107 (((-112) $) 21)) (-3742 (((-859) $) NIL)) (-1322 (($ $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-1190) (-13 (-364 (-388) (-1152)) (-10 -8 (-15 -4280 ((-1152) $ (-1152))) (-15 -4280 ((-1152) $)) (-15 -3717 ((-1152) $)) (-15 -3368 ((-3 (-1152) "failed") $)) (-15 -3751 ((-3 (-1152) "failed") $)) (-15 -2107 ((-112) $))))) (T -1190)) +((-4280 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3717 (*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3368 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-3751 (*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) +(-13 (-364 (-388) (-1152)) (-10 -8 (-15 -4280 ((-1152) $ (-1152))) (-15 -4280 ((-1152) $)) (-15 -3717 ((-1152) $)) (-15 -3368 ((-3 (-1152) "failed") $)) (-15 -3751 ((-3 (-1152) "failed") $)) (-15 -2107 ((-112) $)))) +((-3265 (((-3 (-564) "failed") |#1|) 19)) (-3654 (((-3 (-564) "failed") |#1|) 14)) (-3222 (((-564) (-1152)) 33))) +(((-1191 |#1|) (-10 -7 (-15 -3265 ((-3 (-564) "failed") |#1|)) (-15 -3654 ((-3 (-564) "failed") |#1|)) (-15 -3222 ((-564) (-1152)))) (-1046)) (T -1191)) +((-3222 (*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) (-4 *4 (-1046)))) (-3654 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046)))) (-3265 (*1 *2 *3) (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046))))) +(-10 -7 (-15 -3265 ((-3 (-564) "failed") |#1|)) (-15 -3654 ((-3 (-564) "failed") |#1|)) (-15 -3222 ((-564) (-1152)))) +((-1756 (((-1127 (-225))) 9))) +(((-1192) (-10 -7 (-15 -1756 ((-1127 (-225)))))) (T -1192)) +((-1756 (*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192))))) +(-10 -7 (-15 -1756 ((-1127 (-225))))) +((-1655 (($) 12)) (-2521 (($ $) 36)) (-2495 (($ $) 34)) (-2358 (($ $) 26)) (-2548 (($ $) 18)) (-4065 (($ $) 16)) (-2534 (($ $) 20)) (-2391 (($ $) 31)) (-2507 (($ $) 35)) (-2367 (($ $) 30))) +(((-1193 |#1|) (-10 -8 (-15 -1655 (|#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -2548 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -2534 (|#1| |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2367 (|#1| |#1|))) (-1194)) (T -1193)) +NIL +(-10 -8 (-15 -1655 (|#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -2548 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -2534 (|#1| |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2367 (|#1| |#1|))) +((-2451 (($ $) 26)) (-2319 (($ $) 11)) (-2428 (($ $) 27)) (-2297 (($ $) 10)) (-2473 (($ $) 28)) (-2339 (($ $) 9)) (-1655 (($) 16)) (-2192 (($ $) 19)) (-4118 (($ $) 18)) (-2484 (($ $) 29)) (-2348 (($ $) 8)) (-2462 (($ $) 30)) (-2328 (($ $) 7)) (-2438 (($ $) 31)) (-2309 (($ $) 6)) (-2521 (($ $) 20)) (-2379 (($ $) 32)) (-2495 (($ $) 21)) (-2358 (($ $) 33)) (-2548 (($ $) 22)) (-2404 (($ $) 34)) (-4065 (($ $) 23)) (-2415 (($ $) 35)) (-2534 (($ $) 24)) (-2391 (($ $) 36)) (-2507 (($ $) 25)) (-2367 (($ $) 37)) (** (($ $ $) 17))) +(((-1194) (-140)) (T -1194)) +((-1655 (*1 *1) (-4 *1 (-1194)))) +(-13 (-1197) (-95) (-493) (-35) (-284) (-10 -8 (-15 -1655 ($)))) +(((-35) . T) ((-95) . T) ((-284) . T) ((-493) . T) ((-1197) . T)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3426 ((|#1| $) 19)) (-2599 (($ |#1| (-641 $)) 28) (($ (-641 |#1|)) 35) (($ |#1|) 30)) (-2969 (((-112) $ (-768)) 70)) (-3976 ((|#1| $ |#1|) 14 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 13 (|has| $ (-6 -4412)))) (-2818 (($) NIL T CONST)) (-3616 (((-641 |#1|) $) 74 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 62)) (-1940 (((-112) $ $) 48 (|has| |#1| (-1094)))) (-2275 (((-112) $ (-768)) 60)) (-1386 (((-641 |#1|) $) 75 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 73 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2606 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 27)) (-1500 (((-112) $ (-768)) 59)) (-2333 (((-641 |#1|) $) 53)) (-1881 (((-112) $) 51)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3736 (((-112) (-1 (-112) |#1|) $) 72 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 104)) (-4003 (((-112) $) 9)) (-3434 (($) 10)) (-4382 ((|#1| $ "value") NIL)) (-4209 (((-564) $ $) 47)) (-3629 (((-641 $) $) 87)) (-1922 (((-112) $ $) 107)) (-1341 (((-641 $) $) 102)) (-3983 (($ $) 103)) (-3572 (((-112) $) 82)) (-3873 (((-768) (-1 (-112) |#1|) $) 25 (|has| $ (-6 -4411))) (((-768) |#1| $) 17 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3896 (($ $) 86)) (-3742 (((-859) $) 89 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 12)) (-1584 (((-112) $ $) 39 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 71 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 37 (|has| |#1| (-1094)))) (-2641 (((-768) $) 57 (|has| $ (-6 -4411))))) +(((-1195 |#1|) (-13 (-1007 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -2599 ($ |#1| (-641 $))) (-15 -2599 ($ (-641 |#1|))) (-15 -2599 ($ |#1|)) (-15 -3572 ((-112) $)) (-15 -3983 ($ $)) (-15 -1341 ((-641 $) $)) (-15 -1922 ((-112) $ $)) (-15 -3629 ((-641 $) $)))) (-1094)) (T -1195)) +((-3572 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-2599 (*1 *1 *2 *3) (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-2599 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) (-2599 (*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-3983 (*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-1922 (*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) +(-13 (-1007 |#1|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -2599 ($ |#1| (-641 $))) (-15 -2599 ($ (-641 |#1|))) (-15 -2599 ($ |#1|)) (-15 -3572 ((-112) $)) (-15 -3983 ($ $)) (-15 -1341 ((-641 $) $)) (-15 -1922 ((-112) $ $)) (-15 -3629 ((-641 $) $)))) +((-2319 (($ $) 15)) (-2339 (($ $) 12)) (-2348 (($ $) 10)) (-2328 (($ $) 17))) +(((-1196 |#1|) (-10 -8 (-15 -2328 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2319 (|#1| |#1|))) (-1197)) (T -1196)) +NIL +(-10 -8 (-15 -2328 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2319 (|#1| |#1|))) +((-2319 (($ $) 11)) (-2297 (($ $) 10)) (-2339 (($ $) 9)) (-2348 (($ $) 8)) (-2328 (($ $) 7)) (-2309 (($ $) 6))) +(((-1197) (-140)) (T -1197)) +((-2319 (*1 *1 *1) (-4 *1 (-1197))) (-2297 (*1 *1 *1) (-4 *1 (-1197))) (-2339 (*1 *1 *1) (-4 *1 (-1197))) (-2348 (*1 *1 *1) (-4 *1 (-1197))) (-2328 (*1 *1 *1) (-4 *1 (-1197))) (-2309 (*1 *1 *1) (-4 *1 (-1197)))) +(-13 (-10 -8 (-15 -2309 ($ $)) (-15 -2328 ($ $)) (-15 -2348 ($ $)) (-15 -2339 ($ $)) (-15 -2297 ($ $)) (-15 -2319 ($ $)))) +((-1366 ((|#2| |#2|) 99)) (-3177 (((-112) |#2|) 29)) (-4151 ((|#2| |#2|) 33)) (-4161 ((|#2| |#2|) 35)) (-1749 ((|#2| |#2| (-1170)) 93) ((|#2| |#2|) 94)) (-2976 (((-169 |#2|) |#2|) 31)) (-3668 ((|#2| |#2| (-1170)) 95) ((|#2| |#2|) 96))) +(((-1198 |#1| |#2|) (-10 -7 (-15 -1749 (|#2| |#2|)) (-15 -1749 (|#2| |#2| (-1170))) (-15 -3668 (|#2| |#2|)) (-15 -3668 (|#2| |#2| (-1170))) (-15 -1366 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -3177 ((-112) |#2|)) (-15 -2976 ((-169 |#2|) |#2|))) (-13 (-452) (-847) (-1035 (-564)) (-637 (-564))) (-13 (-27) (-1194) (-430 |#1|))) (T -1198)) +((-2976 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-3177 (*1 *2 *3) (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *4))))) (-4161 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-4151 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-1366 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-3668 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-3668 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) (-1749 (*1 *2 *2 *3) (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) (-1749 (*1 *2 *2) (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(-10 -7 (-15 -1749 (|#2| |#2|)) (-15 -1749 (|#2| |#2| (-1170))) (-15 -3668 (|#2| |#2|)) (-15 -3668 (|#2| |#2| (-1170))) (-15 -1366 (|#2| |#2|)) (-15 -4151 (|#2| |#2|)) (-15 -4161 (|#2| |#2|)) (-15 -3177 ((-112) |#2|)) (-15 -2976 ((-169 |#2|) |#2|))) +((-3010 ((|#4| |#4| |#1|) 32)) (-2704 ((|#4| |#4| |#1|) 33))) +(((-1199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3010 (|#4| |#4| |#1|)) (-15 -2704 (|#4| |#4| |#1|))) (-556) (-373 |#1|) (-373 |#1|) (-683 |#1| |#2| |#3|)) (T -1199)) +((-2704 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) (-3010 (*1 *2 *2 *3) (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(-10 -7 (-15 -3010 (|#4| |#4| |#1|)) (-15 -2704 (|#4| |#4| |#1|))) +((-3068 ((|#2| |#2|) 148)) (-1670 ((|#2| |#2|) 145)) (-1389 ((|#2| |#2|) 136)) (-2951 ((|#2| |#2|) 133)) (-2629 ((|#2| |#2|) 141)) (-4077 ((|#2| |#2|) 129)) (-2013 ((|#2| |#2|) 44)) (-3646 ((|#2| |#2|) 105)) (-4307 ((|#2| |#2|) 88)) (-2384 ((|#2| |#2|) 143)) (-2647 ((|#2| |#2|) 131)) (-4036 ((|#2| |#2|) 153)) (-2532 ((|#2| |#2|) 151)) (-2320 ((|#2| |#2|) 152)) (-4028 ((|#2| |#2|) 150)) (-3973 ((|#2| |#2|) 163)) (-2479 ((|#2| |#2|) 30 (-12 (|has| |#2| (-612 (-889 |#1|))) (|has| |#2| (-883 |#1|)) (|has| |#1| (-612 (-889 |#1|))) (|has| |#1| (-883 |#1|))))) (-2749 ((|#2| |#2|) 89)) (-1338 ((|#2| |#2|) 154)) (-3512 ((|#2| |#2|) 155)) (-4146 ((|#2| |#2|) 142)) (-1412 ((|#2| |#2|) 130)) (-1701 ((|#2| |#2|) 149)) (-2790 ((|#2| |#2|) 147)) (-2102 ((|#2| |#2|) 137)) (-3207 ((|#2| |#2|) 135)) (-2509 ((|#2| |#2|) 139)) (-4119 ((|#2| |#2|) 127))) +(((-1200 |#1| |#2|) (-10 -7 (-15 -3512 (|#2| |#2|)) (-15 -4307 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -2749 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -4146 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -2629 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -3068 (|#2| |#2|)) (-15 -2951 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (IF (|has| |#1| (-883 |#1|)) (IF (|has| |#1| (-612 (-889 |#1|))) (IF (|has| |#2| (-612 (-889 |#1|))) (IF (|has| |#2| (-883 |#1|)) (-15 -2479 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-847) (-452)) (-13 (-430 |#1|) (-1194))) (T -1200)) +((-2479 (*1 *2 *2) (-12 (-4 *3 (-612 (-889 *3))) (-4 *3 (-883 *3)) (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-612 (-889 *3))) (-4 *2 (-883 *3)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4036 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2320 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2532 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4028 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2790 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3207 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2951 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3068 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1389 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2629 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4077 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2384 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2647 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4146 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1412 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1701 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2102 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2509 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4119 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-1338 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2749 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3646 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3973 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-4307 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194))))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) (-4 *2 (-13 (-430 *3) (-1194)))))) +(-10 -7 (-15 -3512 (|#2| |#2|)) (-15 -4307 (|#2| |#2|)) (-15 -3973 (|#2| |#2|)) (-15 -3646 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -2749 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -4119 (|#2| |#2|)) (-15 -2509 (|#2| |#2|)) (-15 -2102 (|#2| |#2|)) (-15 -1701 (|#2| |#2|)) (-15 -1412 (|#2| |#2|)) (-15 -4146 (|#2| |#2|)) (-15 -2647 (|#2| |#2|)) (-15 -2384 (|#2| |#2|)) (-15 -4077 (|#2| |#2|)) (-15 -2629 (|#2| |#2|)) (-15 -1389 (|#2| |#2|)) (-15 -3068 (|#2| |#2|)) (-15 -2951 (|#2| |#2|)) (-15 -1670 (|#2| |#2|)) (-15 -3207 (|#2| |#2|)) (-15 -2790 (|#2| |#2|)) (-15 -4028 (|#2| |#2|)) (-15 -2532 (|#2| |#2|)) (-15 -2320 (|#2| |#2|)) (-15 -4036 (|#2| |#2|)) (IF (|has| |#1| (-883 |#1|)) (IF (|has| |#1| (-612 (-889 |#1|))) (IF (|has| |#2| (-612 (-889 |#1|))) (IF (|has| |#2| (-883 |#1|)) (-15 -2479 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) +((-1968 (((-112) |#5| $) 67) (((-112) $) 109)) (-2244 ((|#5| |#5| $) 82)) (-3548 (($ (-1 (-112) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 126)) (-4144 (((-641 |#5|) (-641 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 80)) (-2111 (((-3 $ "failed") (-641 |#5|)) 134)) (-1977 (((-3 $ "failed") $) 119)) (-4263 ((|#5| |#5| $) 101)) (-3116 (((-112) |#5| $ (-1 (-112) |#5| |#5|)) 35)) (-2920 ((|#5| |#5| $) 105)) (-1699 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|)) 76)) (-3318 (((-2 (|:| -3566 (-641 |#5|)) (|:| -1702 (-641 |#5|))) $) 62)) (-1641 (((-112) |#5| $) 65) (((-112) $) 110)) (-3782 ((|#4| $) 115)) (-2389 (((-3 |#5| "failed") $) 117)) (-4258 (((-641 |#5|) $) 54)) (-1591 (((-112) |#5| $) 74) (((-112) $) 114)) (-4266 ((|#5| |#5| $) 88)) (-4179 (((-112) $ $) 28)) (-3244 (((-112) |#5| $) 70) (((-112) $) 112)) (-2601 ((|#5| |#5| $) 85)) (-1966 (((-3 |#5| "failed") $) 116)) (-3004 (($ $ |#5|) 135)) (-2266 (((-768) $) 59)) (-3753 (($ (-641 |#5|)) 132)) (-2031 (($ $ |#4|) 130)) (-2401 (($ $ |#4|) 128)) (-2158 (($ $) 127)) (-3742 (((-859) $) NIL) (((-641 |#5|) $) 120)) (-1849 (((-768) $) 139)) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|)) 48) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|)) 50)) (-1839 (((-112) $ (-1 (-112) |#5| (-641 |#5|))) 107)) (-4126 (((-641 |#4|) $) 122)) (-2755 (((-112) |#4| $) 125)) (-1705 (((-112) $ $) 20))) +(((-1201 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1849 ((-768) |#1|)) (-15 -3004 (|#1| |#1| |#5|)) (-15 -3548 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2755 ((-112) |#4| |#1|)) (-15 -4126 ((-641 |#4|) |#1|)) (-15 -1977 ((-3 |#1| "failed") |#1|)) (-15 -2389 ((-3 |#5| "failed") |#1|)) (-15 -1966 ((-3 |#5| "failed") |#1|)) (-15 -2920 (|#5| |#5| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -4263 (|#5| |#5| |#1|)) (-15 -4266 (|#5| |#5| |#1|)) (-15 -2601 (|#5| |#5| |#1|)) (-15 -2244 (|#5| |#5| |#1|)) (-15 -4144 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1699 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1591 ((-112) |#1|)) (-15 -3244 ((-112) |#1|)) (-15 -1968 ((-112) |#1|)) (-15 -1839 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -1591 ((-112) |#5| |#1|)) (-15 -3244 ((-112) |#5| |#1|)) (-15 -1968 ((-112) |#5| |#1|)) (-15 -3116 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1641 ((-112) |#1|)) (-15 -1641 ((-112) |#5| |#1|)) (-15 -3318 ((-2 (|:| -3566 (-641 |#5|)) (|:| -1702 (-641 |#5|))) |#1|)) (-15 -2266 ((-768) |#1|)) (-15 -4258 ((-641 |#5|) |#1|)) (-15 -1342 ((-3 (-2 (|:| |bas| |#1|) (|:| -2519 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1342 ((-3 (-2 (|:| |bas| |#1|) (|:| -2519 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4179 ((-112) |#1| |#1|)) (-15 -2031 (|#1| |#1| |#4|)) (-15 -2401 (|#1| |#1| |#4|)) (-15 -3782 (|#4| |#1|)) (-15 -2111 ((-3 |#1| "failed") (-641 |#5|))) (-15 -3742 ((-641 |#5|) |#1|)) (-15 -3753 (|#1| (-641 |#5|))) (-15 -1699 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1699 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3548 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1699 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) (-1202 |#2| |#3| |#4| |#5|) (-556) (-790) (-847) (-1060 |#2| |#3| |#4|)) (T -1201)) +NIL +(-10 -8 (-15 -1849 ((-768) |#1|)) (-15 -3004 (|#1| |#1| |#5|)) (-15 -3548 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2755 ((-112) |#4| |#1|)) (-15 -4126 ((-641 |#4|) |#1|)) (-15 -1977 ((-3 |#1| "failed") |#1|)) (-15 -2389 ((-3 |#5| "failed") |#1|)) (-15 -1966 ((-3 |#5| "failed") |#1|)) (-15 -2920 (|#5| |#5| |#1|)) (-15 -2158 (|#1| |#1|)) (-15 -4263 (|#5| |#5| |#1|)) (-15 -4266 (|#5| |#5| |#1|)) (-15 -2601 (|#5| |#5| |#1|)) (-15 -2244 (|#5| |#5| |#1|)) (-15 -4144 ((-641 |#5|) (-641 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1699 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-112) |#5| |#5|))) (-15 -1591 ((-112) |#1|)) (-15 -3244 ((-112) |#1|)) (-15 -1968 ((-112) |#1|)) (-15 -1839 ((-112) |#1| (-1 (-112) |#5| (-641 |#5|)))) (-15 -1591 ((-112) |#5| |#1|)) (-15 -3244 ((-112) |#5| |#1|)) (-15 -1968 ((-112) |#5| |#1|)) (-15 -3116 ((-112) |#5| |#1| (-1 (-112) |#5| |#5|))) (-15 -1641 ((-112) |#1|)) (-15 -1641 ((-112) |#5| |#1|)) (-15 -3318 ((-2 (|:| -3566 (-641 |#5|)) (|:| -1702 (-641 |#5|))) |#1|)) (-15 -2266 ((-768) |#1|)) (-15 -4258 ((-641 |#5|) |#1|)) (-15 -1342 ((-3 (-2 (|:| |bas| |#1|) (|:| -2519 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5|) (-1 (-112) |#5| |#5|))) (-15 -1342 ((-3 (-2 (|:| |bas| |#1|) (|:| -2519 (-641 |#5|))) "failed") (-641 |#5|) (-1 (-112) |#5| |#5|))) (-15 -4179 ((-112) |#1| |#1|)) (-15 -2031 (|#1| |#1| |#4|)) (-15 -2401 (|#1| |#1| |#4|)) (-15 -3782 (|#4| |#1|)) (-15 -2111 ((-3 |#1| "failed") (-641 |#5|))) (-15 -3742 ((-641 |#5|) |#1|)) (-15 -3753 (|#1| (-641 |#5|))) (-15 -1699 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1699 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3548 (|#1| (-1 (-112) |#5|) |#1|)) (-15 -1699 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3742 ((-859) |#1|)) (-15 -1705 ((-112) |#1| |#1|))) +((-3732 (((-112) $ $) 7)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) 85)) (-1454 (((-641 $) (-641 |#4|)) 86)) (-4269 (((-641 |#3|) $) 33)) (-3547 (((-112) $) 26)) (-4281 (((-112) $) 17 (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) 101) (((-112) $) 97)) (-2244 ((|#4| |#4| $) 92)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) 27)) (-2969 (((-112) $ (-768)) 44)) (-3548 (($ (-1 (-112) |#4|) $) 65 (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) 79)) (-2818 (($) 45 T CONST)) (-4076 (((-112) $) 22 (|has| |#1| (-556)))) (-2072 (((-112) $ $) 24 (|has| |#1| (-556)))) (-2494 (((-112) $ $) 23 (|has| |#1| (-556)))) (-3791 (((-112) $) 25 (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 93)) (-2868 (((-641 |#4|) (-641 |#4|) $) 18 (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) 19 (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) 36)) (-2239 (($ (-641 |#4|)) 35)) (-1977 (((-3 $ "failed") $) 82)) (-4263 ((|#4| |#4| $) 89)) (-1996 (($ $) 68 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#4| $) 67 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#4|) $) 64 (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) 102)) (-2920 ((|#4| |#4| $) 87)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 94)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) 105)) (-3616 (((-641 |#4|) $) 52 (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) 104) (((-112) $) 103)) (-3782 ((|#3| $) 34)) (-2275 (((-112) $ (-768)) 43)) (-1386 (((-641 |#4|) $) 53 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) 55 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) 47)) (-3483 (((-641 |#3|) $) 32)) (-1410 (((-112) |#3| $) 31)) (-1500 (((-112) $ (-768)) 42)) (-2217 (((-1152) $) 9)) (-2389 (((-3 |#4| "failed") $) 83)) (-4258 (((-641 |#4|) $) 107)) (-1591 (((-112) |#4| $) 99) (((-112) $) 95)) (-4266 ((|#4| |#4| $) 90)) (-4179 (((-112) $ $) 110)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) 100) (((-112) $) 96)) (-2601 ((|#4| |#4| $) 91)) (-3864 (((-1114) $) 10)) (-1966 (((-3 |#4| "failed") $) 84)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) 61)) (-3465 (((-3 $ "failed") $ |#4|) 78)) (-3004 (($ $ |#4|) 77)) (-3736 (((-112) (-1 (-112) |#4|) $) 50 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) 59 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) 57 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) 56 (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) 38)) (-4003 (((-112) $) 41)) (-3434 (($) 40)) (-2266 (((-768) $) 106)) (-3873 (((-768) |#4| $) 54 (-12 (|has| |#4| (-1094)) (|has| $ (-6 -4411)))) (((-768) (-1 (-112) |#4|) $) 51 (|has| $ (-6 -4411)))) (-3896 (($ $) 39)) (-2235 (((-536) $) 69 (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) 60)) (-2031 (($ $ |#3|) 28)) (-2401 (($ $ |#3|) 30)) (-2158 (($ $) 88)) (-2624 (($ $ |#3|) 29)) (-3742 (((-859) $) 11) (((-641 |#4|) $) 37)) (-1849 (((-768) $) 76 (|has| |#3| (-368)))) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) 108)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) 98)) (-1417 (((-112) (-1 (-112) |#4|) $) 49 (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) 81)) (-2755 (((-112) |#3| $) 80)) (-1705 (((-112) $ $) 6)) (-2641 (((-768) $) 46 (|has| $ (-6 -4411))))) +(((-1202 |#1| |#2| |#3| |#4|) (-140) (-556) (-790) (-847) (-1060 |t#1| |t#2| |t#3|)) (T -1202)) +((-4179 (*1 *2 *1 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1342 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2519 (-641 *8)))) (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8)))) (-1342 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2519 (-641 *9)))) (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) (-4258 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *6)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-768)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-2 (|:| -3566 (-641 *6)) (|:| -1702 (-641 *6)))))) (-1641 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1641 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3116 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)))) (-1968 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-3244 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1591 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1839 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)))) (-1968 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-3244 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1591 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) (-1699 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *2 (-1060 *5 *6 *7)))) (-4144 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)))) (-2244 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2601 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-4266 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-4263 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2158 (*1 *1 *1) (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) (-2920 (*1 *2 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-1454 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-3104 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-641 (-2 (|:| -3566 *1) (|:| -1702 (-641 *7))))) (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7)))) (-1966 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-2389 (*1 *2 *1) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-1977 (*1 *1 *1) (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) (-2755 (*1 *2 *3 *1) (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) (-3548 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *3 (-847)) (-4 *2 (-1060 *4 *5 *3)))) (-3465 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-3004 (*1 *1 *1 *2) (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *5 (-368)) (-5 *2 (-768))))) +(-13 (-973 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4411) (-6 -4412) (-15 -4179 ((-112) $ $)) (-15 -1342 ((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -1342 ((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |t#4|))) "failed") (-641 |t#4|) (-1 (-112) |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4258 ((-641 |t#4|) $)) (-15 -2266 ((-768) $)) (-15 -3318 ((-2 (|:| -3566 (-641 |t#4|)) (|:| -1702 (-641 |t#4|))) $)) (-15 -1641 ((-112) |t#4| $)) (-15 -1641 ((-112) $)) (-15 -3116 ((-112) |t#4| $ (-1 (-112) |t#4| |t#4|))) (-15 -1968 ((-112) |t#4| $)) (-15 -3244 ((-112) |t#4| $)) (-15 -1591 ((-112) |t#4| $)) (-15 -1839 ((-112) $ (-1 (-112) |t#4| (-641 |t#4|)))) (-15 -1968 ((-112) $)) (-15 -3244 ((-112) $)) (-15 -1591 ((-112) $)) (-15 -1699 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -4144 ((-641 |t#4|) (-641 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-112) |t#4| |t#4|))) (-15 -2244 (|t#4| |t#4| $)) (-15 -2601 (|t#4| |t#4| $)) (-15 -4266 (|t#4| |t#4| $)) (-15 -4263 (|t#4| |t#4| $)) (-15 -2158 ($ $)) (-15 -2920 (|t#4| |t#4| $)) (-15 -1454 ((-641 $) (-641 |t#4|))) (-15 -3104 ((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |t#4|)))) (-641 |t#4|))) (-15 -1966 ((-3 |t#4| "failed") $)) (-15 -2389 ((-3 |t#4| "failed") $)) (-15 -1977 ((-3 $ "failed") $)) (-15 -4126 ((-641 |t#3|) $)) (-15 -2755 ((-112) |t#3| $)) (-15 -3548 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3465 ((-3 $ "failed") $ |t#4|)) (-15 -3004 ($ $ |t#4|)) (IF (|has| |t#3| (-368)) (-15 -1849 ((-768) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-611 (-641 |#4|)) . T) ((-611 (-859)) . T) ((-151 |#4|) . T) ((-612 (-536)) |has| |#4| (-612 (-536))) ((-309 |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-489 |#4|) . T) ((-514 |#4| |#4|) -12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))) ((-973 |#1| |#2| |#3| |#4|) . T) ((-1094) . T) ((-1209) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-1170)) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2451 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2473 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-3217 (((-949 |#1|) $ (-768)) 19) (((-949 |#1|) $ (-768) (-768)) NIL)) (-1988 (((-112) $) NIL)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-768) $ (-1170)) NIL) (((-768) $ (-1170) (-768)) NIL)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2005 (((-112) $) NIL)) (-4245 (($ $ (-641 (-1170)) (-641 (-531 (-1170)))) NIL) (($ $ (-1170) (-531 (-1170))) NIL) (($ |#1| (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3128 (($ $ (-1170)) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) NIL)) (-4195 (($ (-1 $) (-1170) |#1|) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3004 (($ $ (-768)) NIL)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4118 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2416 (($ $ (-1170) $) NIL) (($ $ (-641 (-1170)) (-641 $)) NIL) (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL)) (-4117 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-2266 (((-531 (-1170)) $) NIL)) (-2484 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ $) NIL (|has| |#1| (-556))) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-1170)) NIL) (($ (-949 |#1|)) NIL)) (-2856 ((|#1| $ (-531 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (((-949 |#1|) $ (-768)) NIL)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2521 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4065 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) NIL T CONST)) (-4321 (($) NIL T CONST)) (-2124 (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) NIL) (($ $ |#1|) NIL))) +(((-1203 |#1|) (-13 (-737 |#1| (-1170)) (-10 -8 (-15 -2856 ((-949 |#1|) $ (-768))) (-15 -3742 ($ (-1170))) (-15 -3742 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $ (-1170) |#1|)) (-15 -4195 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) (-1046)) (T -1203)) +((-2856 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-949 *4)) (-5 *1 (-1203 *4)) (-4 *4 (-1046)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1046)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-5 *1 (-1203 *3)))) (-3128 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)))) (-4195 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046))))) +(-13 (-737 |#1| (-1170)) (-10 -8 (-15 -2856 ((-949 |#1|) $ (-768))) (-15 -3742 ($ (-1170))) (-15 -3742 ($ (-949 |#1|))) (IF (|has| |#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $ (-1170) |#1|)) (-15 -4195 ($ (-1 $) (-1170) |#1|))) |%noBranch|))) +((-3046 (($ |#1| (-641 (-641 (-940 (-225)))) (-112)) 18)) (-1665 (((-112) $ (-112)) 17)) (-2017 (((-112) $) 16)) (-4064 (((-641 (-641 (-940 (-225)))) $) 13)) (-1369 ((|#1| $) 8)) (-2387 (((-112) $) 15))) +(((-1204 |#1|) (-10 -8 (-15 -1369 (|#1| $)) (-15 -4064 ((-641 (-641 (-940 (-225)))) $)) (-15 -2387 ((-112) $)) (-15 -2017 ((-112) $)) (-15 -1665 ((-112) $ (-112))) (-15 -3046 ($ |#1| (-641 (-641 (-940 (-225)))) (-112)))) (-971)) (T -1204)) +((-3046 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-112)) (-5 *1 (-1204 *2)) (-4 *2 (-971)))) (-1665 (*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-2017 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-4064 (*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-1204 *3)) (-4 *3 (-971)))) (-1369 (*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-971))))) +(-10 -8 (-15 -1369 (|#1| $)) (-15 -4064 ((-641 (-641 (-940 (-225)))) $)) (-15 -2387 ((-112) $)) (-15 -2017 ((-112) $)) (-15 -1665 ((-112) $ (-112))) (-15 -3046 ($ |#1| (-641 (-641 (-940 (-225)))) (-112)))) +((-2595 (((-940 (-225)) (-940 (-225))) 31)) (-2713 (((-940 (-225)) (-225) (-225) (-225) (-225)) 10)) (-2019 (((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225)))) 59)) (-2952 (((-225) (-940 (-225)) (-940 (-225))) 27)) (-3987 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 28)) (-2949 (((-641 (-641 (-225))) (-564)) 48)) (-1790 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 26)) (-1780 (((-940 (-225)) (-940 (-225)) (-940 (-225))) 24)) (* (((-940 (-225)) (-225) (-940 (-225))) 22))) +(((-1205) (-10 -7 (-15 -2713 ((-940 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-940 (-225)) (-225) (-940 (-225)))) (-15 -1780 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1790 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -2952 ((-225) (-940 (-225)) (-940 (-225)))) (-15 -3987 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -2595 ((-940 (-225)) (-940 (-225)))) (-15 -2949 ((-641 (-641 (-225))) (-564))) (-15 -2019 ((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225))))))) (T -1205)) +((-2019 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 (-940 *4))) (-5 *1 (-1205)) (-5 *3 (-940 *4)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205)))) (-2595 (*1 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-3987 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-2952 (*1 *2 *3 *3) (-12 (-5 *3 (-940 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) (-1790 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (-1780 (*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-940 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) (-2713 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)) (-5 *3 (-225))))) +(-10 -7 (-15 -2713 ((-940 (-225)) (-225) (-225) (-225) (-225))) (-15 * ((-940 (-225)) (-225) (-940 (-225)))) (-15 -1780 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -1790 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -2952 ((-225) (-940 (-225)) (-940 (-225)))) (-15 -3987 ((-940 (-225)) (-940 (-225)) (-940 (-225)))) (-15 -2595 ((-940 (-225)) (-940 (-225)))) (-15 -2949 ((-641 (-641 (-225))) (-564))) (-15 -2019 ((-641 (-940 (-225))) (-940 (-225)) (-940 (-225)) (-940 (-225)) (-225) (-641 (-641 (-225)))))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-3548 ((|#1| $ (-768)) 18)) (-2395 (((-768) $) 13)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3742 (((-955 |#1|) $) 12) (($ (-955 |#1|)) 11) (((-859) $) 29 (|has| |#1| (-611 (-859))))) (-1705 (((-112) $ $) 22 (|has| |#1| (-1094))))) +(((-1206 |#1|) (-13 (-490 (-955 |#1|)) (-10 -8 (-15 -3548 (|#1| $ (-768))) (-15 -2395 ((-768) $)) (IF (|has| |#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) (-1209)) (T -1206)) +((-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-1206 *2)) (-4 *2 (-1209)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1206 *3)) (-4 *3 (-1209))))) +(-13 (-490 (-955 |#1|)) (-10 -8 (-15 -3548 (|#1| $ (-768))) (-15 -2395 ((-768) $)) (IF (|has| |#1| (-611 (-859))) (-6 (-611 (-859))) |%noBranch|) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|))) +((-2620 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)) 96)) (-1431 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 88)) (-2972 (((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|))) 70))) +(((-1207 |#1|) (-10 -7 (-15 -1431 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2972 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2620 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) (-349)) (T -1207)) +((-2620 (*1 *2 *3 *4) (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5))))) (-2972 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4))))) (-1431 (*1 *2 *3) (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) +(-10 -7 (-15 -1431 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2972 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)))) (-15 -2620 ((-418 (-1166 (-1166 |#1|))) (-1166 (-1166 |#1|)) (-564)))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 9) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-1208) (-1077)) (T -1208)) +NIL +(-1077) +NIL +(((-1209) (-140)) (T -1209)) +NIL +(-13 (-10 -7 (-6 -2276))) +((-4233 (((-112)) 17)) (-2159 (((-1264) (-641 |#1|) (-641 |#1|)) 21) (((-1264) (-641 |#1|)) 22)) (-2275 (((-112) |#1| |#1|) 37 (|has| |#1| (-847)))) (-1500 (((-112) |#1| |#1| (-1 (-112) |#1| |#1|)) 29) (((-3 (-112) "failed") |#1| |#1|) 27)) (-2635 ((|#1| (-641 |#1|)) 38 (|has| |#1| (-847))) ((|#1| (-641 |#1|) (-1 (-112) |#1| |#1|)) 32)) (-2989 (((-2 (|:| -3163 (-641 |#1|)) (|:| -1380 (-641 |#1|)))) 19))) +(((-1210 |#1|) (-10 -7 (-15 -2159 ((-1264) (-641 |#1|))) (-15 -2159 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -2989 ((-2 (|:| -3163 (-641 |#1|)) (|:| -1380 (-641 |#1|))))) (-15 -1500 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1500 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2635 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4233 ((-112))) (IF (|has| |#1| (-847)) (PROGN (-15 -2635 (|#1| (-641 |#1|))) (-15 -2275 ((-112) |#1| |#1|))) |%noBranch|)) (-1094)) (T -1210)) +((-2275 (*1 *2 *3 *3) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-847)) (-4 *3 (-1094)))) (-2635 (*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-847)) (-5 *1 (-1210 *2)))) (-4233 (*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-2635 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) (-4 *2 (-1094)))) (-1500 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) (-5 *1 (-1210 *3)))) (-1500 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-2989 (*1 *2) (-12 (-5 *2 (-2 (|:| -3163 (-641 *3)) (|:| -1380 (-641 *3)))) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) (-2159 (*1 *2 *3 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) (-5 *1 (-1210 *4))))) +(-10 -7 (-15 -2159 ((-1264) (-641 |#1|))) (-15 -2159 ((-1264) (-641 |#1|) (-641 |#1|))) (-15 -2989 ((-2 (|:| -3163 (-641 |#1|)) (|:| -1380 (-641 |#1|))))) (-15 -1500 ((-3 (-112) "failed") |#1| |#1|)) (-15 -1500 ((-112) |#1| |#1| (-1 (-112) |#1| |#1|))) (-15 -2635 (|#1| (-641 |#1|) (-1 (-112) |#1| |#1|))) (-15 -4233 ((-112))) (IF (|has| |#1| (-847)) (PROGN (-15 -2635 (|#1| (-641 |#1|))) (-15 -2275 ((-112) |#1| |#1|))) |%noBranch|)) +((-3959 (((-1264) (-641 (-1170)) (-641 (-1170))) 14) (((-1264) (-641 (-1170))) 12)) (-2269 (((-1264)) 16)) (-3595 (((-2 (|:| -1380 (-641 (-1170))) (|:| -3163 (-641 (-1170))))) 20))) +(((-1211) (-10 -7 (-15 -3959 ((-1264) (-641 (-1170)))) (-15 -3959 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -3595 ((-2 (|:| -1380 (-641 (-1170))) (|:| -3163 (-641 (-1170)))))) (-15 -2269 ((-1264))))) (T -1211)) +((-2269 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211)))) (-3595 (*1 *2) (-12 (-5 *2 (-2 (|:| -1380 (-641 (-1170))) (|:| -3163 (-641 (-1170))))) (-5 *1 (-1211)))) (-3959 (*1 *2 *3 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))) +(-10 -7 (-15 -3959 ((-1264) (-641 (-1170)))) (-15 -3959 ((-1264) (-641 (-1170)) (-641 (-1170)))) (-15 -3595 ((-2 (|:| -1380 (-641 (-1170))) (|:| -3163 (-641 (-1170)))))) (-15 -2269 ((-1264)))) +((-2249 (($ $) 17)) (-4188 (((-112) $) 28))) +(((-1212 |#1|) (-10 -8 (-15 -2249 (|#1| |#1|)) (-15 -4188 ((-112) |#1|))) (-1213)) (T -1212)) +NIL +(-10 -8 (-15 -2249 (|#1| |#1|)) (-15 -4188 ((-112) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 52)) (-3048 (((-418 $) $) 53)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-4188 (((-112) $) 54)) (-3840 (((-112) $) 31)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4127 (((-418 $) $) 51)) (-1321 (((-3 $ "failed") $ $) 43)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44)) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24))) +(((-1213) (-140)) (T -1213)) +((-4188 (*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) (-2249 (*1 *1 *1) (-4 *1 (-1213))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213))))) +(-13 (-452) (-10 -8 (-15 -4188 ((-112) $)) (-15 -3048 ((-418 $) $)) (-15 -2249 ($ $)) (-15 -4127 ((-418 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-290) . T) ((-452) . T) ((-556) . T) ((-644 $) . T) ((-714 $) . T) ((-723) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4074 (($ $ $) NIL)) (-4066 (($ $ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-1214) (-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091)))) (T -1214)) +((-4066 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4074 (*1 *1 *1 *1) (-5 *1 (-1214))) (-2818 (*1 *1) (-5 *1 (-1214)))) +(-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091))) ((|NonNegativeInteger|) (COND ((< 16 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) NIL T CONST)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-3267 (((-917) $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-4314 (($ $ $) NIL)) (-4304 (($ $ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-1214) (-13 (-840) (-10 -8 (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495)))) (T -1214)) -((-4304 (*1 *1 *1 *1) (-5 *1 (-1214))) (-4314 (*1 *1 *1 *1) (-5 *1 (-1214))) (-3684 (*1 *1) (-5 *1 (-1214)))) -(-13 (-840) (-10 -8 (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4074 (($ $ $) NIL)) (-4066 (($ $ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-1215) (-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091)))) (T -1215)) +((-4066 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4074 (*1 *1 *1 *1) (-5 *1 (-1215))) (-2818 (*1 *1) (-5 *1 (-1215)))) +(-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091))) ((|NonNegativeInteger|) (COND ((< 32 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2049 (((-112) $ $) NIL)) (-2433 (((-767)) NIL)) (-3684 (($) NIL T CONST)) (-4301 (($) NIL)) (-3489 (($ $ $) NIL) (($) NIL T CONST)) (-4105 (($ $ $) NIL) (($) NIL T CONST)) (-3267 (((-917) $) NIL)) (-1938 (((-1151) $) NIL)) (-3491 (($ (-917)) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) NIL)) (-4314 (($ $ $) NIL)) (-4304 (($ $ $) NIL)) (-2998 (((-112) $ $) NIL)) (-2977 (((-112) $ $) NIL)) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL)) (-2966 (((-112) $ $) NIL))) -(((-1215) (-13 (-840) (-10 -8 (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495)))) (T -1215)) -((-4304 (*1 *1 *1 *1) (-5 *1 (-1215))) (-4314 (*1 *1 *1 *1) (-5 *1 (-1215))) (-3684 (*1 *1) (-5 *1 (-1215)))) -(-13 (-840) (-10 -8 (-15 -4304 ($ $ $)) (-15 -4314 ($ $ $)) (-15 -3684 ($) -2495))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4074 (($ $ $) NIL)) (-4066 (($ $ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-1216) (-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091)))) (T -1216)) +((-4066 (*1 *1 *1 *1) (-5 *1 (-1216))) (-4074 (*1 *1 *1 *1) (-5 *1 (-1216))) (-2818 (*1 *1) (-5 *1 (-1216)))) +(-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091))) +((|NonNegativeInteger|) (COND ((< 64 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) +((-3732 (((-112) $ $) NIL)) (-1938 (((-768)) NIL)) (-2818 (($) NIL T CONST)) (-2821 (($) NIL)) (-2799 (($ $ $) NIL) (($) NIL T CONST)) (-2848 (($ $ $) NIL) (($) NIL T CONST)) (-1906 (((-918) $) NIL)) (-2217 (((-1152) $) NIL)) (-1495 (($ (-918)) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) NIL)) (-4074 (($ $ $) NIL)) (-4066 (($ $ $) NIL)) (-1751 (((-112) $ $) NIL)) (-1731 (((-112) $ $) NIL)) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL)) (-1723 (((-112) $ $) NIL))) +(((-1217) (-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091)))) (T -1217)) +((-4066 (*1 *1 *1 *1) (-5 *1 (-1217))) (-4074 (*1 *1 *1 *1) (-5 *1 (-1217))) (-2818 (*1 *1) (-5 *1 (-1217)))) +(-13 (-841) (-10 -8 (-15 -4066 ($ $ $)) (-15 -4074 ($ $ $)) (-15 -2818 ($) -2091))) ((|NonNegativeInteger|) (COND ((< 8 (INTEGER-LENGTH |#1|)) (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) -((-2751 (((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|)) 23))) -(((-1216 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2751 ((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|)))) (-1045) (-1045) (-1169) (-1169) |#1| |#2|) (T -1216)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1221 *6 *8 *10)) (-5 *1 (-1216 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1169))))) -(-10 -7 (-15 -2751 ((-1221 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1221 |#1| |#3| |#5|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 (-1075)) $) 77)) (-4040 (((-1169) $) 106)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-2893 (($ $ (-563)) 101) (($ $ (-563) (-563)) 100)) (-2914 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 108)) (-3419 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 165 (|has| |#1| (-363)))) (-2102 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2067 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-4332 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3395 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 176)) (-2242 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) 17 T CONST)) (-3495 (($ $ $) 160 (|has| |#1| (-363)))) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-3694 (((-407 (-948 |#1|)) $ (-563)) 174 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 173 (|has| |#1| (-555)))) (-3473 (($ $ $) 159 (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-3675 (((-112) $) 167 (|has| |#1| (-363)))) (-2697 (((-112) $) 76)) (-2656 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-563) $) 103) (((-563) $ (-563)) 102)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) 104)) (-3214 (($ (-1 |#1| (-563)) $) 175)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-1871 (((-112) $) 65)) (-2165 (($ |#1| (-563)) 64) (($ $ (-1075) (-563)) 79) (($ $ (-640 (-1075)) (-640 (-563))) 78)) (-2751 (($ (-1 |#1| |#1|) $) 66)) (-2497 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1607 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-1938 (((-1151) $) 9)) (-3149 (($ $) 168 (|has| |#1| (-363)))) (-3204 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-2811 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-1647 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2055 (((-418 $) $) 164 (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 161 (|has| |#1| (-363)))) (-2884 (($ $ (-563)) 98)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3177 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-563)))))) (-4322 (((-767) $) 157 (|has| |#1| (-363)))) (-3858 ((|#1| $ (-563)) 107) (($ $ $) 84 (|has| (-563) (-1105)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 158 (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-1962 (((-563) $) 67)) (-2252 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 75)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-1304 ((|#1| $ (-563)) 62)) (-4376 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3219 ((|#1| $) 105)) (-2285 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2264 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-563)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-563) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-1217 |#1|) (-140) (-1045)) (T -1217)) -((-3444 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1217 *3)))) (-3214 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1217 *3)) (-4 *3 (-1045)))) (-3694 (*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) (-5 *2 (-407 (-948 *4))))) (-3694 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) (-5 *2 (-407 (-948 *4))))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-3204 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2185 ((-640 *2) *3))) (|has| *3 (-15 -3204 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))) -(-13 (-1235 |t#1| (-563)) (-10 -8 (-15 -3444 ($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |t#1|))))) (-15 -3214 ($ (-1 |t#1| (-563)) $)) (IF (|has| |t#1| (-555)) (PROGN (-15 -3694 ((-407 (-948 |t#1|)) $ (-563))) (-15 -3694 ((-407 (-948 |t#1|)) $ (-563) (-563)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $)) (IF (|has| |t#1| (-15 -3204 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2185 ((-640 (-1169)) |t#1|))) (-15 -3204 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -3204 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-563)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-563) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-563) (-1105)) ((-290) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T)) -((-2741 (((-112) $) 12)) (-2671 (((-3 |#3| "failed") $) 17) (((-3 (-1169) "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL)) (-2589 ((|#3| $) 14) (((-1169) $) NIL) (((-407 (-563)) $) NIL) (((-563) $) NIL))) -(((-1218 |#1| |#2| |#3|) (-10 -8 (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-1169) "failed") |#1|)) (-15 -2589 ((-1169) |#1|)) (-15 -2671 ((-3 |#3| "failed") |#1|)) (-15 -2589 (|#3| |#1|)) (-15 -2741 ((-112) |#1|))) (-1219 |#2| |#3|) (-1045) (-1248 |#2|)) (T -1218)) -NIL -(-10 -8 (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2671 ((-3 (-1169) "failed") |#1|)) (-15 -2589 ((-1169) |#1|)) (-15 -2671 ((-3 |#3| "failed") |#1|)) (-15 -2589 (|#3| |#1|)) (-15 -2741 ((-112) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-3223 ((|#2| $) 231 (-3743 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2185 (((-640 (-1075)) $) 77)) (-4040 (((-1169) $) 106)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-2893 (($ $ (-563)) 101) (($ $ (-563) (-563)) 100)) (-2914 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 108)) (-3728 ((|#2| $) 267)) (-3707 (((-3 |#2| "failed") $) 263)) (-3106 ((|#2| $) 264)) (-3419 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) 19)) (-1325 (((-418 (-1165 $)) (-1165 $)) 240 (-3743 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2924 (($ $) 165 (|has| |#1| (-363)))) (-2102 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2067 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 237 (-3743 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-4332 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3395 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-2107 (((-563) $) 249 (-3743 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3444 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 176)) (-2242 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#2| "failed") $) 270) (((-3 (-563) "failed") $) 260 (-3743 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) 258 (-3743 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-1169) "failed") $) 242 (-3743 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2589 ((|#2| $) 271) (((-563) $) 259 (-3743 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-407 (-563)) $) 257 (-3743 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-1169) $) 241 (-3743 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-3717 (($ $) 266) (($ (-563) $) 265)) (-3495 (($ $ $) 160 (|has| |#1| (-363)))) (-3213 (($ $) 63)) (-3853 (((-684 |#2|) (-684 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 219 (-3743 (|has| |#2| (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) 218 (-3743 (|has| |#2| (-636 (-563))) (|has| |#1| (-363))))) (-3230 (((-3 $ "failed") $) 33)) (-3694 (((-407 (-948 |#1|)) $ (-563)) 174 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 173 (|has| |#1| (-555)))) (-4301 (($) 233 (-3743 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3473 (($ $ $) 159 (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-3675 (((-112) $) 167 (|has| |#1| (-363)))) (-2720 (((-112) $) 247 (-3743 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2697 (((-112) $) 76)) (-2656 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 225 (-3743 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 224 (-3743 (|has| |#2| (-882 (-563))) (|has| |#1| (-363))))) (-2903 (((-563) $) 103) (((-563) $ (-563)) 102)) (-2712 (((-112) $) 31)) (-4372 (($ $) 229 (|has| |#1| (-363)))) (-2626 ((|#2| $) 227 (|has| |#1| (-363)))) (-1403 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-3113 (((-3 $ "failed") $) 261 (-3743 (|has| |#2| (-1144)) (|has| |#1| (-363))))) (-2731 (((-112) $) 248 (-3743 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2947 (($ $ (-917)) 104)) (-3214 (($ (-1 |#1| (-563)) $) 175)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-1871 (((-112) $) 65)) (-2165 (($ |#1| (-563)) 64) (($ $ (-1075) (-563)) 79) (($ $ (-640 (-1075)) (-640 (-563))) 78)) (-3489 (($ $ $) 251 (-3743 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-4105 (($ $ $) 252 (-3743 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2751 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-2497 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1607 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3118 (($ (-563) |#2|) 268)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 168 (|has| |#1| (-363)))) (-3204 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-2811 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-2956 (($) 262 (-3743 (|has| |#2| (-1144)) (|has| |#1| (-363))) CONST)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-1647 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-3212 (($ $) 232 (-3743 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3233 ((|#2| $) 235 (-3743 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1306 (((-418 (-1165 $)) (-1165 $)) 238 (-3743 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1315 (((-418 (-1165 $)) (-1165 $)) 239 (-3743 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2055 (((-418 $) $) 164 (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 161 (|has| |#1| (-363)))) (-2884 (($ $ (-563)) 98)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3177 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) |#2|) 212 (-3743 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 |#2|)) 211 (-3743 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-294 |#2|))) 210 (-3743 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 209 (-3743 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-3743 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-640 |#2|) (-640 |#2|)) 207 (-3743 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-4322 (((-767) $) 157 (|has| |#1| (-363)))) (-3858 ((|#1| $ (-563)) 107) (($ $ $) 84 (|has| (-563) (-1105))) (($ $ |#2|) 206 (-3743 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 158 (|has| |#1| (-363)))) (-1361 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 216 (|has| |#1| (-363))) (($ $ (-767)) 87 (-2811 (-3743 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 85 (-2811 (-3743 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) 92 (-2811 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169) (-767)) 91 (-2811 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-640 (-1169))) 90 (-2811 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169)) 89 (-2811 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))))) (-4362 (($ $) 230 (|has| |#1| (-363)))) (-2636 ((|#2| $) 228 (|has| |#1| (-363)))) (-1962 (((-563) $) 67)) (-2252 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2802 (((-225) $) 246 (-3743 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) 245 (-3743 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) 244 (-3743 (|has| |#2| (-611 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) 223 (-3743 (|has| |#2| (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) 222 (-3743 (|has| |#2| (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 236 (-3743 (-3743 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#1| (-363))))) (-2686 (($ $) 75)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1169)) 243 (-3743 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363)))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-1304 ((|#1| $ (-563)) 62)) (-4376 (((-3 $ "failed") $) 51 (-2811 (-3743 (-2811 (|has| |#2| (-145)) (-3743 (|has| $ (-145)) (|has| |#2| (-905)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3192 (((-767)) 28 T CONST)) (-3219 ((|#1| $) 105)) (-3241 ((|#2| $) 234 (-3743 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2285 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2264 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-563)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-3841 (($ $) 250 (-3743 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) 214 (|has| |#1| (-363))) (($ $ (-767)) 88 (-2811 (-3743 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 86 (-2811 (-3743 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) 96 (-2811 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169) (-767)) 95 (-2811 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-640 (-1169))) 94 (-2811 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))))) (($ $ (-1169)) 93 (-2811 (-3743 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))))) (-2998 (((-112) $ $) 254 (-3743 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2977 (((-112) $ $) 255 (-3743 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 253 (-3743 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2966 (((-112) $ $) 256 (-3743 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-1219 |#1| |#2|) (-140) (-1045) (-1248 |t#1|)) (T -1219)) -((-1962 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3)) (-5 *2 (-563)))) (-3118 (*1 *1 *2 *3) (-12 (-5 *2 (-563)) (-4 *4 (-1045)) (-4 *1 (-1219 *4 *3)) (-4 *3 (-1248 *4)))) (-3728 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))) (-3717 (*1 *1 *1) (-12 (-4 *1 (-1219 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1248 *2)))) (-3717 (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3)))) (-3106 (*1 *2 *1) (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3)))) (-3707 (*1 *2 *1) (|partial| -12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3))))) -(-13 (-1217 |t#1|) (-1034 |t#2|) (-613 |t#2|) (-10 -8 (-15 -3118 ($ (-563) |t#2|)) (-15 -1962 ((-563) $)) (-15 -3728 (|t#2| $)) (-15 -3717 ($ $)) (-15 -3717 ($ (-563) $)) (-15 -3106 (|t#2| $)) (-15 -3707 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-988 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-563)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -2811 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -2811 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-613 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 #2=(-1169)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) ((-613 |#1|) |has| |#1| (-172)) ((-613 |#2|) . T) ((-613 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-611 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-611 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-611 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-611 (-888 (-563))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -2811 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-563) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-563) (-1105)) ((-290) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-514 (-1169) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1169) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-555) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 |#2|) |has| |#1| (-363)) ((-643 $) . T) ((-636 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-636 (-563)))) ((-636 |#2|) |has| |#1| (-363)) ((-713 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 |#2|) |has| |#1| (-363)) ((-713 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-787) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-790) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-816) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-844) -12 (|has| |#1| (-363)) (|has| |#2| (-816))) ((-846) -2811 (-12 (|has| |#1| (-363)) (|has| |#2| (-846))) (-12 (|has| |#1| (-363)) (|has| |#2| (-816)))) ((-896 (-1169)) -2811 (-12 (|has| |#1| (-363)) (|has| |#2| (-896 (-1169)))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))) ((-882 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-379)))) ((-882 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-882 (-563)))) ((-880 |#2|) |has| |#1| (-363)) ((-905) -12 (|has| |#1| (-363)) (|has| |#2| (-905))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-988 |#2|) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1018) -12 (|has| |#1| (-363)) (|has| |#2| (-1018))) ((-1034 (-407 (-563))) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) ((-1034 (-563)) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-563)))) ((-1034 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1034 (-1169)))) ((-1034 |#2|) . T) ((-1051 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 |#2|) |has| |#1| (-363)) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) -12 (|has| |#1| (-363)) (|has| |#2| (-1144))) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1208) |has| |#1| (-363)) ((-1212) |has| |#1| (-363)) ((-1217 |#1|) . T) ((-1235 |#1| #0#) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 79)) (-3223 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 98)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-2893 (($ $ (-563)) 107) (($ $ (-563) (-563)) 109)) (-2914 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) 51)) (-3728 ((|#2| $) 11)) (-3707 (((-3 |#2| "failed") $) 35)) (-3106 ((|#2| $) 36)) (-3419 (($ $) 204 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3395 (($ $) 200 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-2107 (((-563) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3444 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) 59)) (-2242 (($ $) 208 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) 155) (((-3 (-563) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-1169) "failed") $) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-2589 ((|#2| $) 154) (((-563) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| |#2| (-1034 (-563))) (|has| |#1| (-363)))) (((-1169) $) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363))))) (-3717 (($ $) 65) (($ (-563) $) 28)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) NIL)) (-3853 (((-684 |#2|) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| |#2| (-636 (-563))) (|has| |#1| (-363))))) (-3230 (((-3 $ "failed") $) 86)) (-3694 (((-407 (-948 |#1|)) $ (-563)) 122 (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) 124 (|has| |#1| (-555)))) (-4301 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2720 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2697 (((-112) $) 72)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| |#2| (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| |#2| (-882 (-563))) (|has| |#1| (-363))))) (-2903 (((-563) $) 103) (((-563) $ (-563)) 105)) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-363)))) (-2626 ((|#2| $) 163 (|has| |#1| (-363)))) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3113 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1144)) (|has| |#1| (-363))))) (-2731 (((-112) $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-2947 (($ $ (-917)) 146)) (-3214 (($ (-1 |#1| (-563)) $) 142)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-563)) 20) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3489 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-4105 (($ $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2751 (($ (-1 |#1| |#1|) $) 139) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-2497 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3118 (($ (-563) |#2|) 10)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 157 (|has| |#1| (-363)))) (-3204 (($ $) 226 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 231 (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-2956 (($) NIL (-12 (|has| |#2| (-1144)) (|has| |#1| (-363))) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3212 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3233 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-563)) 136)) (-3448 (((-3 $ "failed") $ $) 126 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3177 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) |#2|) NIL (-12 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 |#2|)) NIL (-12 (|has| |#2| (-514 (-1169) |#2|)) (|has| |#1| (-363)))) (($ $ (-640 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-640 |#2|) (-640 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ (-563)) 101) (($ $ $) 88 (|has| (-563) (-1105))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-1361 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2811 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 147 (-2811 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-2811 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-2811 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-2811 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) 151 (-2811 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-4362 (($ $) NIL (|has| |#1| (-363)))) (-2636 ((|#2| $) 164 (|has| |#1| (-363)))) (-1962 (((-563) $) 12)) (-2252 (($ $) 210 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 206 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 202 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-2802 (((-225) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1018)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-611 (-536))) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| |#2| (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| |#2| (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))))) (-2686 (($ $) 134)) (-2062 (((-858) $) 264) (($ (-563)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1169)) NIL (-12 (|has| |#2| (-1034 (-1169))) (|has| |#1| (-363)))) (($ (-407 (-563))) 167 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-1304 ((|#1| $ (-563)) 83)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-905)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3192 (((-767)) 153 T CONST)) (-3219 ((|#1| $) 100)) (-3241 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2285 (($ $) 216 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 192 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) 212 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 220 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 196 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-563)) 132 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 222 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 198 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 218 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 194 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 214 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-3841 (($ $) NIL (-12 (|has| |#2| (-816)) (|has| |#1| (-363))))) (-3790 (($) 13 T CONST)) (-3803 (($) 18 T CONST)) (-4191 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2811 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-2811 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-2811 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-2811 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-2811 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| |#2| (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-2998 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2977 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2943 (((-112) $ $) 71)) (-2988 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-2966 (((-112) $ $) NIL (-12 (|has| |#2| (-846)) (|has| |#1| (-363))))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 161 (|has| |#1| (-363))) (($ |#2| |#2|) 162 (|has| |#1| (-363)))) (-3039 (($ $) 225) (($ $ $) 76)) (-3027 (($ $ $) 74)) (** (($ $ (-917)) NIL) (($ $ (-767)) 82) (($ $ (-563)) 158 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 170 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 77) (($ $ |#1|) NIL) (($ |#1| $) 150) (($ $ |#2|) 160 (|has| |#1| (-363))) (($ |#2| $) 159 (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1220 |#1| |#2|) (-1219 |#1| |#2|) (-1045) (-1248 |#1|)) (T -1220)) -NIL -(-1219 |#1| |#2|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-3223 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 10)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2554 (($ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2533 (((-112) $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2893 (($ $ (-563)) NIL) (($ $ (-563) (-563)) NIL)) (-2914 (((-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|))) $) NIL)) (-3728 (((-1249 |#1| |#2| |#3|) $) NIL)) (-3707 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) NIL)) (-3106 (((-1249 |#1| |#2| |#3|) $) NIL)) (-3419 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2107 (((-563) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3444 (($ (-1149 (-2 (|:| |k| (-563)) (|:| |c| |#1|)))) NIL)) (-2242 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-1249 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1169) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-3 (-407 (-563)) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-3 (-563) "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-2589 (((-1249 |#1| |#2| |#3|) $) NIL) (((-1169) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (((-407 (-563)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363)))) (((-563) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))))) (-3717 (($ $) NIL) (($ (-563) $) NIL)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-1249 |#1| |#2| |#3|)) (-684 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4277 (-684 (-1249 |#1| |#2| |#3|))) (|:| |vec| (-1257 (-1249 |#1| |#2| |#3|)))) (-684 $) (-1257 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363)))) (((-684 (-563)) (-684 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-636 (-563))) (|has| |#1| (-363))))) (-3230 (((-3 $ "failed") $) NIL)) (-3694 (((-407 (-948 |#1|)) $ (-563)) NIL (|has| |#1| (-555))) (((-407 (-948 |#1|)) $ (-563) (-563)) NIL (|has| |#1| (-555)))) (-4301 (($) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2720 (((-112) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2697 (((-112) $) NIL)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-882 (-379))) (|has| |#1| (-363)))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-882 (-563))) (|has| |#1| (-363))))) (-2903 (((-563) $) NIL) (((-563) $ (-563)) NIL)) (-2712 (((-112) $) NIL)) (-4372 (($ $) NIL (|has| |#1| (-363)))) (-2626 (((-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3113 (((-3 $ "failed") $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))))) (-2731 (((-112) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-2947 (($ $ (-917)) NIL)) (-3214 (($ (-1 |#1| (-563)) $) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-563)) 18) (($ $ (-1075) (-563)) NIL) (($ $ (-640 (-1075)) (-640 (-563))) NIL)) (-3489 (($ $ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-4105 (($ $ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2497 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3118 (($ (-563) (-1249 |#1| |#2| |#3|)) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-3204 (($ $) 27 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 28 (|has| |#1| (-38 (-407 (-563)))))) (-2956 (($) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1144)) (|has| |#1| (-363))) CONST)) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3212 (($ $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3233 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-563)) NIL)) (-3448 (((-3 $ "failed") $ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3177 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-563))))) (($ $ (-1169) (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1169)) (-640 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-514 (-1169) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-294 (-1249 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-640 (-1249 |#1| |#2| |#3|)) (-640 (-1249 |#1| |#2| |#3|))) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-309 (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ (-563)) NIL) (($ $ $) NIL (|has| (-563) (-1105))) (($ $ (-1249 |#1| |#2| |#3|)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-286 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-1361 (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-1253 |#2|)) 26) (($ $ (-767)) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) 25 (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-4362 (($ $) NIL (|has| |#1| (-363)))) (-2636 (((-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-1962 (((-563) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2802 (((-536) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1018)) (|has| |#1| (-363)))) (((-888 (-379)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-888 (-379)))) (|has| |#1| (-363)))) (((-888 (-563)) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-611 (-888 (-563)))) (|has| |#1| (-363))))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))))) (-2686 (($ $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1249 |#1| |#2| |#3|)) NIL) (($ (-1253 |#2|)) 24) (($ (-1169)) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-1169))) (|has| |#1| (-363)))) (($ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555)))) (($ (-407 (-563))) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-1034 (-563))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-563))))))) (-1304 ((|#1| $ (-563)) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3219 ((|#1| $) 11)) (-3241 (((-1249 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-905)) (|has| |#1| (-363))) (|has| |#1| (-555))))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-563)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-563)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3841 (($ $) NIL (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))))) (-3790 (($) 20 T CONST)) (-3803 (($) 15 T CONST)) (-4191 (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) (-767)) NIL (|has| |#1| (-363))) (($ $ (-767)) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-563) |#1|))))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169) (-767)) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-640 (-1169))) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169)))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-896 (-1169))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-563) |#1|))) (|has| |#1| (-896 (-1169))))))) (-2998 (((-112) $ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2977 (((-112) $ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-2966 (((-112) $ $) NIL (-2811 (-12 (|has| (-1249 |#1| |#2| |#3|) (-816)) (|has| |#1| (-363))) (-12 (|has| (-1249 |#1| |#2| |#3|) (-846)) (|has| |#1| (-363)))))) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1249 |#1| |#2| |#3|) (-1249 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 22)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1249 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1249 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1221 |#1| |#2| |#3|) (-13 (-1219 |#1| (-1249 |#1| |#2| |#3|)) (-10 -8 (-15 -2062 ($ (-1253 |#2|))) (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1221)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) -(-13 (-1219 |#1| (-1249 |#1| |#2| |#3|)) (-10 -8 (-15 -2062 ($ (-1253 |#2|))) (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) -((-3751 (((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112)) 13)) (-3739 (((-418 |#1|) |#1|) 26)) (-2055 (((-418 |#1|) |#1|) 24))) -(((-1222 |#1|) (-10 -7 (-15 -2055 ((-418 |#1|) |#1|)) (-15 -3739 ((-418 |#1|) |#1|)) (-15 -3751 ((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112)))) (-1233 (-563))) (T -1222)) -((-3751 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| *3) (|:| -2581 (-563))))))) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))) (-3739 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563))))) (-2055 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563)))))) -(-10 -7 (-15 -2055 ((-418 |#1|) |#1|)) (-15 -3739 ((-418 |#1|) |#1|)) (-15 -3751 ((-2 (|:| |contp| (-563)) (|:| -2524 (-640 (-2 (|:| |irr| |#1|) (|:| -2581 (-563)))))) |#1| (-112)))) -((-2751 (((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|)) 23 (|has| |#1| (-844))) (((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|)) 17))) -(((-1223 |#1| |#2|) (-10 -7 (-15 -2751 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (IF (|has| |#1| (-844)) (-15 -2751 ((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) |%noBranch|)) (-1208) (-1208)) (T -1223)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-844)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1223 *5 *6)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1224 *6)) (-5 *1 (-1223 *5 *6))))) -(-10 -7 (-15 -2751 ((-1224 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) (IF (|has| |#1| (-844)) (-15 -2751 ((-1149 |#2|) (-1 |#2| |#1|) (-1224 |#1|))) |%noBranch|)) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-3111 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2751 (((-1149 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-844)))) (-1856 ((|#1| $) 15)) (-3276 ((|#1| $) 12)) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-3398 (((-563) $) 19)) (-1843 ((|#1| $) 18)) (-3411 ((|#1| $) 13)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-3763 (((-112) $) 17)) (-1864 (((-1149 |#1|) $) 41 (|has| |#1| (-844))) (((-1149 |#1|) (-640 $)) 40 (|has| |#1| (-844)))) (-2802 (($ |#1|) 26)) (-2062 (($ (-1087 |#1|)) 25) (((-858) $) 37 (|has| |#1| (-1093)))) (-1866 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-2732 (($ $ (-563)) 14)) (-2943 (((-112) $ $) 30 (|has| |#1| (-1093))))) -(((-1224 |#1|) (-13 (-1086 |#1|) (-10 -8 (-15 -1866 ($ |#1|)) (-15 -3111 ($ |#1|)) (-15 -2062 ($ (-1087 |#1|))) (-15 -3763 ((-112) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-1149 |#1|))) |%noBranch|))) (-1208)) (T -1224)) -((-1866 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208)))) (-3111 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1087 *3)) (-4 *3 (-1208)) (-5 *1 (-1224 *3)))) (-3763 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1208))))) -(-13 (-1086 |#1|) (-10 -8 (-15 -1866 ($ |#1|)) (-15 -3111 ($ |#1|)) (-15 -2062 ($ (-1087 |#1|))) (-15 -3763 ((-112) $)) (IF (|has| |#1| (-1093)) (-6 (-1093)) |%noBranch|) (IF (|has| |#1| (-844)) (-6 (-1088 |#1| (-1149 |#1|))) |%noBranch|))) -((-2751 (((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|)) 15))) -(((-1225 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 ((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|)))) (-1169) (-1045) (-1169) (-1045)) (T -1225)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1230 *5 *6)) (-14 *5 (-1169)) (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1230 *7 *8)) (-5 *1 (-1225 *5 *6 *7 *8)) (-14 *7 (-1169))))) -(-10 -7 (-15 -2751 ((-1230 |#3| |#4|) (-1 |#4| |#2|) (-1230 |#1| |#2|)))) -((-3812 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3787 ((|#1| |#3|) 13)) (-3800 ((|#3| |#3|) 19))) -(((-1226 |#1| |#2| |#3|) (-10 -7 (-15 -3787 (|#1| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3812 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-555) (-988 |#1|) (-1233 |#2|)) (T -1226)) -((-3812 (*1 *2 *3) (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1226 *4 *5 *3)) (-4 *3 (-1233 *5)))) (-3800 (*1 *2 *2) (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-1226 *3 *4 *2)) (-4 *2 (-1233 *4)))) (-3787 (*1 *2 *3) (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-1226 *2 *4 *3)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -3787 (|#1| |#3|)) (-15 -3800 (|#3| |#3|)) (-15 -3812 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) -((-3833 (((-3 |#2| "failed") |#2| (-767) |#1|) 37)) (-3823 (((-3 |#2| "failed") |#2| (-767)) 38)) (-3855 (((-3 (-2 (|:| -2654 |#2|) (|:| -2665 |#2|)) "failed") |#2|) 51)) (-3866 (((-640 |#2|) |#2|) 53)) (-3845 (((-3 |#2| "failed") |#2| |#2|) 47))) -(((-1227 |#1| |#2|) (-10 -7 (-15 -3823 ((-3 |#2| "failed") |#2| (-767))) (-15 -3833 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -3845 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3855 ((-3 (-2 (|:| -2654 |#2|) (|:| -2665 |#2|)) "failed") |#2|)) (-15 -3866 ((-640 |#2|) |#2|))) (-13 (-555) (-147)) (-1233 |#1|)) (T -1227)) -((-3866 (*1 *2 *3) (-12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-640 *3)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4)))) (-3855 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-2 (|:| -2654 *3) (|:| -2665 *3))) (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4)))) (-3845 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-1233 *3)))) (-3833 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4)))) (-3823 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4))))) -(-10 -7 (-15 -3823 ((-3 |#2| "failed") |#2| (-767))) (-15 -3833 ((-3 |#2| "failed") |#2| (-767) |#1|)) (-15 -3845 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3855 ((-3 (-2 (|:| -2654 |#2|) (|:| -2665 |#2|)) "failed") |#2|)) (-15 -3866 ((-640 |#2|) |#2|))) -((-3878 (((-3 (-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) "failed") |#2| |#2|) 29))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -3878 ((-3 (-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) "failed") |#2| |#2|))) (-555) (-1233 |#1|)) (T -1228)) -((-3878 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-1228 *4 *3)) (-4 *3 (-1233 *4))))) -(-10 -7 (-15 -3878 ((-3 (-2 (|:| -2896 |#2|) (|:| -1488 |#2|)) "failed") |#2| |#2|))) -((-3888 ((|#2| |#2| |#2|) 22)) (-3898 ((|#2| |#2| |#2|) 36)) (-3907 ((|#2| |#2| |#2| (-767) (-767)) 44))) -(((-1229 |#1| |#2|) (-10 -7 (-15 -3888 (|#2| |#2| |#2|)) (-15 -3898 (|#2| |#2| |#2|)) (-15 -3907 (|#2| |#2| |#2| (-767) (-767)))) (-1045) (-1233 |#1|)) (T -1229)) -((-3907 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1233 *4)))) (-3898 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3)))) (-3888 (*1 *2 *2 *2) (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3))))) -(-10 -7 (-15 -3888 (|#2| |#2| |#2|)) (-15 -3898 (|#2| |#2| |#2|)) (-15 -3907 (|#2| |#2| |#2| (-767) (-767)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2875 (((-1257 |#2|) $ (-767)) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-2856 (($ (-1165 |#2|)) NIL)) (-2021 (((-1165 $) $ (-1075)) NIL) (((-1165 |#2|) $) NIL)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#2| (-555)))) (-2554 (($ $) NIL (|has| |#2| (-555)))) (-2533 (((-112) $) NIL (|has| |#2| (-555)))) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-1075))) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3952 (($ $ $) NIL (|has| |#2| (-555)))) (-1325 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2924 (($ $) NIL (|has| |#2| (-452)))) (-2102 (((-418 $) $) NIL (|has| |#2| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-4332 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4004 (($ $ (-767)) NIL)) (-3993 (($ $ (-767)) NIL)) (-3916 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-563)) "failed") $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) NIL (|has| |#2| (-1034 (-563)))) (((-3 (-1075) "failed") $) NIL)) (-2589 ((|#2| $) NIL) (((-407 (-563)) $) NIL (|has| |#2| (-1034 (-407 (-563))))) (((-563) $) NIL (|has| |#2| (-1034 (-563)))) (((-1075) $) NIL)) (-3962 (($ $ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-3495 (($ $ $) NIL (|has| |#2| (-363)))) (-3213 (($ $) NIL)) (-3853 (((-684 (-563)) (-684 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) NIL (|has| |#2| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#2|)) (|:| |vec| (-1257 |#2|))) (-684 $) (-1257 $)) NIL) (((-684 |#2|) (-684 $)) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3473 (($ $ $) NIL (|has| |#2| (-363)))) (-3985 (($ $ $) NIL)) (-3936 (($ $ $) NIL (|has| |#2| (-555)))) (-3926 (((-2 (|:| -2765 |#2|) (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#2| (-555)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#2| (-363)))) (-2227 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1075)) NIL (|has| |#2| (-452)))) (-3203 (((-640 $) $) NIL)) (-3675 (((-112) $) NIL (|has| |#2| (-905)))) (-3302 (($ $ |#2| (-767) $) NIL)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) NIL (-12 (|has| (-1075) (-882 (-379))) (|has| |#2| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) NIL (-12 (|has| (-1075) (-882 (-563))) (|has| |#2| (-882 (-563)))))) (-2903 (((-767) $ $) NIL (|has| |#2| (-555)))) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-3113 (((-3 $ "failed") $) NIL (|has| |#2| (-1144)))) (-2175 (($ (-1165 |#2|) (-1075)) NIL) (($ (-1165 $) (-1075)) NIL)) (-2947 (($ $ (-767)) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-2165 (($ |#2| (-767)) 18) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-1075)) NIL) (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL)) (-3187 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-3489 (($ $ $) NIL (|has| |#2| (-846)))) (-4105 (($ $ $) NIL (|has| |#2| (-846)))) (-3310 (($ (-1 (-767) (-767)) $) NIL)) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-2866 (((-1165 |#2|) $) NIL)) (-2845 (((-3 (-1075) "failed") $) NIL)) (-3183 (($ $) NIL)) (-3193 ((|#2| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-1938 (((-1151) $) NIL)) (-4014 (((-2 (|:| -2896 $) (|:| -1488 $)) $ (-767)) NIL)) (-3218 (((-3 (-640 $) "failed") $) NIL)) (-3207 (((-3 (-640 $) "failed") $) NIL)) (-3228 (((-3 (-2 (|:| |var| (-1075)) (|:| -2631 (-767))) "failed") $) NIL)) (-3204 (($ $) NIL (|has| |#2| (-38 (-407 (-563)))))) (-2956 (($) NIL (|has| |#2| (-1144)) CONST)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 ((|#2| $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#2| (-452)))) (-1647 (($ (-640 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3775 (($ $ (-767) |#2| $) NIL)) (-1306 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) NIL (|has| |#2| (-905)))) (-2055 (((-418 $) $) NIL (|has| |#2| (-905)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#2| (-363)))) (-3448 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-555))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#2| (-363)))) (-1497 (($ $ (-640 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#2|) NIL) (($ $ (-640 (-1075)) (-640 |#2|)) NIL) (($ $ (-1075) $) NIL) (($ $ (-640 (-1075)) (-640 $)) NIL)) (-4322 (((-767) $) NIL (|has| |#2| (-363)))) (-3858 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-555))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-555)))) (-2846 (((-3 $ "failed") $ (-767)) NIL)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#2| (-363)))) (-3974 (($ $ (-1075)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-1361 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1962 (((-767) $) NIL) (((-767) $ (-1075)) NIL) (((-640 (-767)) $ (-640 (-1075))) NIL)) (-2802 (((-888 (-379)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#2| (-611 (-888 (-379)))))) (((-888 (-563)) $) NIL (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#2| (-611 (-888 (-563)))))) (((-536) $) NIL (-12 (|has| (-1075) (-611 (-536))) (|has| |#2| (-611 (-536)))))) (-3166 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1075)) NIL (|has| |#2| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-905))))) (-3945 (((-3 $ "failed") $ $) NIL (|has| |#2| (-555))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-555)))) (-2062 (((-858) $) 13) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-1075)) NIL) (($ (-1253 |#1|)) 20) (($ (-407 (-563))) NIL (-2811 (|has| |#2| (-38 (-407 (-563)))) (|has| |#2| (-1034 (-407 (-563)))))) (($ $) NIL (|has| |#2| (-555)))) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ (-767)) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-4376 (((-3 $ "failed") $) NIL (-2811 (-12 (|has| $ (-145)) (|has| |#2| (-905))) (|has| |#2| (-145))))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| |#2| (-172)))) (-2543 (((-112) $ $) NIL (|has| |#2| (-555)))) (-3790 (($) NIL T CONST)) (-3803 (($) 14 T CONST)) (-4191 (($ $ (-1075)) NIL) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) NIL) (($ $ (-1169)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1169) (-767)) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) NIL (|has| |#2| (-896 (-1169)))) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2998 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2943 (((-112) $ $) NIL)) (-2988 (((-112) $ $) NIL (|has| |#2| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#2| (-846)))) (-3050 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-407 (-563))) NIL (|has| |#2| (-38 (-407 (-563))))) (($ (-407 (-563)) $) NIL (|has| |#2| (-38 (-407 (-563))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) -(((-1230 |#1| |#2|) (-13 (-1233 |#2|) (-613 (-1253 |#1|)) (-10 -8 (-15 -3775 ($ $ (-767) |#2| $)))) (-1169) (-1045)) (T -1230)) -((-3775 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1230 *4 *3)) (-14 *4 (-1169)) (-4 *3 (-1045))))) -(-13 (-1233 |#2|) (-613 (-1253 |#1|)) (-10 -8 (-15 -3775 ($ $ (-767) |#2| $)))) -((-2751 ((|#4| (-1 |#3| |#1|) |#2|) 22))) -(((-1231 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#4| (-1 |#3| |#1|) |#2|))) (-1045) (-1233 |#1|) (-1045) (-1233 |#3|)) (T -1231)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1233 *6)) (-5 *1 (-1231 *5 *4 *6 *2)) (-4 *4 (-1233 *5))))) -(-10 -7 (-15 -2751 (|#4| (-1 |#3| |#1|) |#2|))) -((-2875 (((-1257 |#2|) $ (-767)) 129)) (-2185 (((-640 (-1075)) $) 16)) (-2856 (($ (-1165 |#2|)) 80)) (-3176 (((-767) $) NIL) (((-767) $ (-640 (-1075))) 21)) (-1325 (((-418 (-1165 $)) (-1165 $)) 205)) (-2924 (($ $) 195)) (-2102 (((-418 $) $) 193)) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 95)) (-4004 (($ $ (-767)) 84)) (-3993 (($ $ (-767)) 86)) (-3916 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 146)) (-2671 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-563)) "failed") $) NIL) (((-3 (-563) "failed") $) NIL) (((-3 (-1075) "failed") $) NIL)) (-2589 ((|#2| $) 130) (((-407 (-563)) $) NIL) (((-563) $) NIL) (((-1075) $) NIL)) (-3936 (($ $ $) 172)) (-3926 (((-2 (|:| -2765 |#2|) (|:| -2896 $) (|:| -1488 $)) $ $) 174)) (-2903 (((-767) $ $) 190)) (-3113 (((-3 $ "failed") $) 139)) (-2165 (($ |#2| (-767)) NIL) (($ $ (-1075) (-767)) 59) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-3187 (((-767) $) NIL) (((-767) $ (-1075)) 54) (((-640 (-767)) $ (-640 (-1075))) 55)) (-2866 (((-1165 |#2|) $) 72)) (-2845 (((-3 (-1075) "failed") $) 52)) (-4014 (((-2 (|:| -2896 $) (|:| -1488 $)) $ (-767)) 83)) (-3204 (($ $) 218)) (-2956 (($) 134)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 202)) (-1306 (((-418 (-1165 $)) (-1165 $)) 101)) (-1315 (((-418 (-1165 $)) (-1165 $)) 99)) (-2055 (((-418 $) $) 120)) (-1497 (($ $ (-640 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-640 $) (-640 $)) NIL) (($ $ (-1075) |#2|) 39) (($ $ (-640 (-1075)) (-640 |#2|)) 36) (($ $ (-1075) $) 32) (($ $ (-640 (-1075)) (-640 $)) 30)) (-4322 (((-767) $) 208)) (-3858 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 166) ((|#2| (-407 $) |#2|) 207) (((-407 $) $ (-407 $)) 189)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 212)) (-1361 (($ $ (-1075)) 159) (($ $ (-640 (-1075))) NIL) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL) (($ $ (-767)) NIL) (($ $) 157) (($ $ (-1169)) NIL) (($ $ (-640 (-1169))) NIL) (($ $ (-1169) (-767)) NIL) (($ $ (-640 (-1169)) (-640 (-767))) NIL) (($ $ (-1 |#2| |#2|) (-767)) NIL) (($ $ (-1 |#2| |#2|)) 156) (($ $ (-1 |#2| |#2|) $) 151)) (-1962 (((-767) $) NIL) (((-767) $ (-1075)) 17) (((-640 (-767)) $ (-640 (-1075))) 23)) (-3166 ((|#2| $) NIL) (($ $ (-1075)) 141)) (-3945 (((-3 $ "failed") $ $) 182) (((-3 (-407 $) "failed") (-407 $) $) 178)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#2|) NIL) (($ (-1075)) 64) (($ (-407 (-563))) NIL) (($ $) NIL))) -(((-1232 |#1| |#2|) (-10 -8 (-15 -2062 (|#1| |#1|)) (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2956 (|#1|)) (-15 -3113 ((-3 |#1| "failed") |#1|)) (-15 -3858 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -4322 ((-767) |#1|)) (-15 -2588 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -3858 (|#2| (-407 |#1|) |#2|)) (-15 -3916 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3926 ((-2 (|:| -2765 |#2|) (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -3936 (|#1| |#1| |#1|)) (-15 -3945 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -3945 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2903 ((-767) |#1| |#1|)) (-15 -3858 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3993 (|#1| |#1| (-767))) (-15 -4004 (|#1| |#1| (-767))) (-15 -4014 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| (-767))) (-15 -2856 (|#1| (-1165 |#2|))) (-15 -2866 ((-1165 |#2|) |#1|)) (-15 -2875 ((-1257 |#2|) |#1| (-767))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -3858 (|#1| |#1| |#1|)) (-15 -3858 (|#2| |#1| |#2|)) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -1325 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1315 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1306 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1297 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3166 (|#1| |#1| (-1075))) (-15 -2185 ((-640 (-1075)) |#1|)) (-15 -3176 ((-767) |#1| (-640 (-1075)))) (-15 -3176 ((-767) |#1|)) (-15 -2165 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -2165 (|#1| |#1| (-1075) (-767))) (-15 -3187 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -3187 ((-767) |#1| (-1075))) (-15 -2845 ((-3 (-1075) "failed") |#1|)) (-15 -1962 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -1962 ((-767) |#1| (-1075))) (-15 -2062 (|#1| (-1075))) (-15 -2671 ((-3 (-1075) "failed") |#1|)) (-15 -2589 ((-1075) |#1|)) (-15 -1497 (|#1| |#1| (-640 (-1075)) (-640 |#1|))) (-15 -1497 (|#1| |#1| (-1075) |#1|)) (-15 -1497 (|#1| |#1| (-640 (-1075)) (-640 |#2|))) (-15 -1497 (|#1| |#1| (-1075) |#2|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1962 ((-767) |#1|)) (-15 -2165 (|#1| |#2| (-767))) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -3187 ((-767) |#1|)) (-15 -3166 (|#2| |#1|)) (-15 -1361 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1075) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1075)))) (-15 -1361 (|#1| |#1| (-1075))) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) (-1233 |#2|) (-1045)) (T -1232)) -NIL -(-10 -8 (-15 -2062 (|#1| |#1|)) (-15 -1335 ((-1165 |#1|) (-1165 |#1|) (-1165 |#1|))) (-15 -2102 ((-418 |#1|) |#1|)) (-15 -2924 (|#1| |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2956 (|#1|)) (-15 -3113 ((-3 |#1| "failed") |#1|)) (-15 -3858 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -4322 ((-767) |#1|)) (-15 -2588 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -3204 (|#1| |#1|)) (-15 -3858 (|#2| (-407 |#1|) |#2|)) (-15 -3916 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3926 ((-2 (|:| -2765 |#2|) (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| |#1|)) (-15 -3936 (|#1| |#1| |#1|)) (-15 -3945 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -3945 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2903 ((-767) |#1| |#1|)) (-15 -3858 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3993 (|#1| |#1| (-767))) (-15 -4004 (|#1| |#1| (-767))) (-15 -4014 ((-2 (|:| -2896 |#1|) (|:| -1488 |#1|)) |#1| (-767))) (-15 -2856 (|#1| (-1165 |#2|))) (-15 -2866 ((-1165 |#2|) |#1|)) (-15 -2875 ((-1257 |#2|) |#1| (-767))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1361 (|#1| |#1| (-1 |#2| |#2|) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1169) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1169)))) (-15 -1361 (|#1| |#1| (-1169))) (-15 -1361 (|#1| |#1|)) (-15 -1361 (|#1| |#1| (-767))) (-15 -3858 (|#1| |#1| |#1|)) (-15 -3858 (|#2| |#1| |#2|)) (-15 -2055 ((-418 |#1|) |#1|)) (-15 -1325 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1315 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1306 ((-418 (-1165 |#1|)) (-1165 |#1|))) (-15 -1297 ((-3 (-640 (-1165 |#1|)) "failed") (-640 (-1165 |#1|)) (-1165 |#1|))) (-15 -3166 (|#1| |#1| (-1075))) (-15 -2185 ((-640 (-1075)) |#1|)) (-15 -3176 ((-767) |#1| (-640 (-1075)))) (-15 -3176 ((-767) |#1|)) (-15 -2165 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -2165 (|#1| |#1| (-1075) (-767))) (-15 -3187 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -3187 ((-767) |#1| (-1075))) (-15 -2845 ((-3 (-1075) "failed") |#1|)) (-15 -1962 ((-640 (-767)) |#1| (-640 (-1075)))) (-15 -1962 ((-767) |#1| (-1075))) (-15 -2062 (|#1| (-1075))) (-15 -2671 ((-3 (-1075) "failed") |#1|)) (-15 -2589 ((-1075) |#1|)) (-15 -1497 (|#1| |#1| (-640 (-1075)) (-640 |#1|))) (-15 -1497 (|#1| |#1| (-1075) |#1|)) (-15 -1497 (|#1| |#1| (-640 (-1075)) (-640 |#2|))) (-15 -1497 (|#1| |#1| (-1075) |#2|)) (-15 -1497 (|#1| |#1| (-640 |#1|) (-640 |#1|))) (-15 -1497 (|#1| |#1| |#1| |#1|)) (-15 -1497 (|#1| |#1| (-294 |#1|))) (-15 -1497 (|#1| |#1| (-640 (-294 |#1|)))) (-15 -1962 ((-767) |#1|)) (-15 -2165 (|#1| |#2| (-767))) (-15 -2671 ((-3 (-563) "failed") |#1|)) (-15 -2589 ((-563) |#1|)) (-15 -2671 ((-3 (-407 (-563)) "failed") |#1|)) (-15 -2589 ((-407 (-563)) |#1|)) (-15 -2589 (|#2| |#1|)) (-15 -2671 ((-3 |#2| "failed") |#1|)) (-15 -2062 (|#1| |#2|)) (-15 -3187 ((-767) |#1|)) (-15 -3166 (|#2| |#1|)) (-15 -1361 (|#1| |#1| (-640 (-1075)) (-640 (-767)))) (-15 -1361 (|#1| |#1| (-1075) (-767))) (-15 -1361 (|#1| |#1| (-640 (-1075)))) (-15 -1361 (|#1| |#1| (-1075))) (-15 -2062 (|#1| (-563))) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2875 (((-1257 |#1|) $ (-767)) 238)) (-2185 (((-640 (-1075)) $) 110)) (-2856 (($ (-1165 |#1|)) 236)) (-2021 (((-1165 $) $ (-1075)) 125) (((-1165 |#1|) $) 124)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 87 (|has| |#1| (-555)))) (-2554 (($ $) 88 (|has| |#1| (-555)))) (-2533 (((-112) $) 90 (|has| |#1| (-555)))) (-3176 (((-767) $) 112) (((-767) $ (-640 (-1075))) 111)) (-1482 (((-3 $ "failed") $ $) 19)) (-3952 (($ $ $) 223 (|has| |#1| (-555)))) (-1325 (((-418 (-1165 $)) (-1165 $)) 100 (|has| |#1| (-905)))) (-2924 (($ $) 98 (|has| |#1| (-452)))) (-2102 (((-418 $) $) 97 (|has| |#1| (-452)))) (-1297 (((-3 (-640 (-1165 $)) "failed") (-640 (-1165 $)) (-1165 $)) 103 (|has| |#1| (-905)))) (-4332 (((-112) $ $) 208 (|has| |#1| (-363)))) (-4004 (($ $ (-767)) 231)) (-3993 (($ $ (-767)) 230)) (-3916 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-563)) "failed") $) 161 (|has| |#1| (-1034 (-407 (-563))))) (((-3 (-563) "failed") $) 159 (|has| |#1| (-1034 (-563)))) (((-3 (-1075) "failed") $) 136)) (-2589 ((|#1| $) 163) (((-407 (-563)) $) 162 (|has| |#1| (-1034 (-407 (-563))))) (((-563) $) 160 (|has| |#1| (-1034 (-563)))) (((-1075) $) 137)) (-3962 (($ $ $ (-1075)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-3495 (($ $ $) 212 (|has| |#1| (-363)))) (-3213 (($ $) 154)) (-3853 (((-684 (-563)) (-684 $)) 134 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 (-563))) (|:| |vec| (-1257 (-563)))) (-684 $) (-1257 $)) 133 (|has| |#1| (-636 (-563)))) (((-2 (|:| -4277 (-684 |#1|)) (|:| |vec| (-1257 |#1|))) (-684 $) (-1257 $)) 132) (((-684 |#1|) (-684 $)) 131)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 211 (|has| |#1| (-363)))) (-3985 (($ $ $) 229)) (-3936 (($ $ $) 220 (|has| |#1| (-555)))) (-3926 (((-2 (|:| -2765 |#1|) (|:| -2896 $) (|:| -1488 $)) $ $) 219 (|has| |#1| (-555)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 206 (|has| |#1| (-363)))) (-2227 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1075)) 105 (|has| |#1| (-452)))) (-3203 (((-640 $) $) 109)) (-3675 (((-112) $) 96 (|has| |#1| (-905)))) (-3302 (($ $ |#1| (-767) $) 172)) (-2938 (((-885 (-379) $) $ (-888 (-379)) (-885 (-379) $)) 84 (-12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379))))) (((-885 (-563) $) $ (-888 (-563)) (-885 (-563) $)) 83 (-12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))))) (-2903 (((-767) $ $) 224 (|has| |#1| (-555)))) (-2712 (((-112) $) 31)) (-1528 (((-767) $) 169)) (-3113 (((-3 $ "failed") $) 204 (|has| |#1| (-1144)))) (-2175 (($ (-1165 |#1|) (-1075)) 117) (($ (-1165 $) (-1075)) 116)) (-2947 (($ $ (-767)) 235)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 215 (|has| |#1| (-363)))) (-3197 (((-640 $) $) 126)) (-1871 (((-112) $) 152)) (-2165 (($ |#1| (-767)) 153) (($ $ (-1075) (-767)) 119) (($ $ (-640 (-1075)) (-640 (-767))) 118)) (-2836 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $ (-1075)) 120) (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 233)) (-3187 (((-767) $) 170) (((-767) $ (-1075)) 122) (((-640 (-767)) $ (-640 (-1075))) 121)) (-3489 (($ $ $) 79 (|has| |#1| (-846)))) (-4105 (($ $ $) 78 (|has| |#1| (-846)))) (-3310 (($ (-1 (-767) (-767)) $) 171)) (-2751 (($ (-1 |#1| |#1|) $) 151)) (-2866 (((-1165 |#1|) $) 237)) (-2845 (((-3 (-1075) "failed") $) 123)) (-3183 (($ $) 149)) (-3193 ((|#1| $) 148)) (-1607 (($ (-640 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-1938 (((-1151) $) 9)) (-4014 (((-2 (|:| -2896 $) (|:| -1488 $)) $ (-767)) 232)) (-3218 (((-3 (-640 $) "failed") $) 114)) (-3207 (((-3 (-640 $) "failed") $) 115)) (-3228 (((-3 (-2 (|:| |var| (-1075)) (|:| -2631 (-767))) "failed") $) 113)) (-3204 (($ $) 216 (|has| |#1| (-38 (-407 (-563)))))) (-2956 (($) 203 (|has| |#1| (-1144)) CONST)) (-3249 (((-1113) $) 10)) (-3160 (((-112) $) 166)) (-3170 ((|#1| $) 167)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 95 (|has| |#1| (-452)))) (-1647 (($ (-640 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-1306 (((-418 (-1165 $)) (-1165 $)) 102 (|has| |#1| (-905)))) (-1315 (((-418 (-1165 $)) (-1165 $)) 101 (|has| |#1| (-905)))) (-2055 (((-418 $) $) 99 (|has| |#1| (-905)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 213 (|has| |#1| (-363)))) (-3448 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-555))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 207 (|has| |#1| (-363)))) (-1497 (($ $ (-640 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-640 $) (-640 $)) 142) (($ $ (-1075) |#1|) 141) (($ $ (-640 (-1075)) (-640 |#1|)) 140) (($ $ (-1075) $) 139) (($ $ (-640 (-1075)) (-640 $)) 138)) (-4322 (((-767) $) 209 (|has| |#1| (-363)))) (-3858 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-555))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-555)))) (-2846 (((-3 $ "failed") $ (-767)) 234)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 210 (|has| |#1| (-363)))) (-3974 (($ $ (-1075)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-1361 (($ $ (-1075)) 42) (($ $ (-640 (-1075))) 41) (($ $ (-1075) (-767)) 40) (($ $ (-640 (-1075)) (-640 (-767))) 39) (($ $ (-767)) 253) (($ $) 251) (($ $ (-1169)) 250 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 249 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 248 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 247 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-1962 (((-767) $) 150) (((-767) $ (-1075)) 130) (((-640 (-767)) $ (-640 (-1075))) 129)) (-2802 (((-888 (-379)) $) 82 (-12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379)))))) (((-888 (-563)) $) 81 (-12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563)))))) (((-536) $) 80 (-12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))))) (-3166 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1075)) 106 (|has| |#1| (-452)))) (-4386 (((-3 (-1257 $) "failed") (-684 $)) 104 (-3743 (|has| $ (-145)) (|has| |#1| (-905))))) (-3945 (((-3 $ "failed") $ $) 222 (|has| |#1| (-555))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-555)))) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 165) (($ (-1075)) 135) (($ (-407 (-563))) 72 (-2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563)))))) (($ $) 85 (|has| |#1| (-555)))) (-3234 (((-640 |#1|) $) 168)) (-1304 ((|#1| $ (-767)) 155) (($ $ (-1075) (-767)) 128) (($ $ (-640 (-1075)) (-640 (-767))) 127)) (-4376 (((-3 $ "failed") $) 73 (-2811 (-3743 (|has| $ (-145)) (|has| |#1| (-905))) (|has| |#1| (-145))))) (-3192 (((-767)) 28 T CONST)) (-3292 (($ $ $ (-767)) 173 (|has| |#1| (-172)))) (-2543 (((-112) $ $) 89 (|has| |#1| (-555)))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-1075)) 38) (($ $ (-640 (-1075))) 37) (($ $ (-1075) (-767)) 36) (($ $ (-640 (-1075)) (-640 (-767))) 35) (($ $ (-767)) 254) (($ $) 252) (($ $ (-1169)) 246 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169))) 245 (|has| |#1| (-896 (-1169)))) (($ $ (-1169) (-767)) 244 (|has| |#1| (-896 (-1169)))) (($ $ (-640 (-1169)) (-640 (-767))) 243 (|has| |#1| (-896 (-1169)))) (($ $ (-1 |#1| |#1|) (-767)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-2998 (((-112) $ $) 76 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 75 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 6)) (-2988 (((-112) $ $) 77 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 74 (|has| |#1| (-846)))) (-3050 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563))))) (($ (-407 (-563)) $) 157 (|has| |#1| (-38 (-407 (-563))))) (($ |#1| $) 147) (($ $ |#1|) 146))) -(((-1233 |#1|) (-140) (-1045)) (T -1233)) -((-2875 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1233 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4)))) (-2866 (*1 *2 *1) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-5 *2 (-1165 *3)))) (-2856 (*1 *1 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1045)) (-4 *1 (-1233 *3)))) (-2947 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-2846 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-2836 (*1 *2 *1 *1) (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-1233 *3)))) (-4014 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-1233 *4)))) (-4004 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-3993 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-3985 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)))) (-1361 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) (-3974 (*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-3962 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172)))) (-3858 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)))) (-2903 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)) (-5 *2 (-767)))) (-3952 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-3945 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-3945 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)))) (-3936 (*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) (-3926 (*1 *2 *1 *1) (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2765 *3) (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-1233 *3)))) (-3916 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1233 *3)))) (-3858 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563))))))) -(-13 (-945 |t#1| (-767) (-1075)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -2875 ((-1257 |t#1|) $ (-767))) (-15 -2866 ((-1165 |t#1|) $)) (-15 -2856 ($ (-1165 |t#1|))) (-15 -2947 ($ $ (-767))) (-15 -2846 ((-3 $ "failed") $ (-767))) (-15 -2836 ((-2 (|:| -2896 $) (|:| -1488 $)) $ $)) (-15 -4014 ((-2 (|:| -2896 $) (|:| -1488 $)) $ (-767))) (-15 -4004 ($ $ (-767))) (-15 -3993 ($ $ (-767))) (-15 -3985 ($ $ $)) (-15 -1361 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1144)) (-6 (-1144)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -3974 (|t#1| $)) (-15 -3962 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-555)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -3858 ((-407 $) (-407 $) (-407 $))) (-15 -2903 ((-767) $ $)) (-15 -3952 ($ $ $)) (-15 -3945 ((-3 $ "failed") $ $)) (-15 -3945 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -3936 ($ $ $)) (-15 -3926 ((-2 (|:| -2765 |t#1|) (|:| -2896 $) (|:| -1488 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -3916 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4404) (-15 -3858 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (-15 -3204 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -2811 (|has| |#1| (-1034 (-407 (-563)))) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 #2=(-1075)) . T) ((-613 |#1|) . T) ((-613 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-611 (-536)) -12 (|has| (-1075) (-611 (-536))) (|has| |#1| (-611 (-536)))) ((-611 (-888 (-379))) -12 (|has| (-1075) (-611 (-888 (-379)))) (|has| |#1| (-611 (-888 (-379))))) ((-611 (-888 (-563))) -12 (|has| (-1075) (-611 (-888 (-563)))) (|has| |#1| (-611 (-888 (-563))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-555)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -2811 (|has| |#1| (-905)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-555) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-636 (-563)) |has| |#1| (-636 (-563))) ((-636 |#1|) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-722) . T) ((-846) |has| |#1| (-846)) ((-896 #2#) . T) ((-896 (-1169)) |has| |#1| (-896 (-1169))) ((-882 (-379)) -12 (|has| (-1075) (-882 (-379))) (|has| |#1| (-882 (-379)))) ((-882 (-563)) -12 (|has| (-1075) (-882 (-563))) (|has| |#1| (-882 (-563)))) ((-945 |#1| #0# #2#) . T) ((-905) |has| |#1| (-905)) ((-916) |has| |#1| (-363)) ((-1034 (-407 (-563))) |has| |#1| (-1034 (-407 (-563)))) ((-1034 (-563)) |has| |#1| (-1034 (-563))) ((-1034 #2#) . T) ((-1034 |#1|) . T) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-905)) (|has| |#1| (-555)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1144) |has| |#1| (-1144)) ((-1212) |has| |#1| (-905))) -((-2185 (((-640 (-1075)) $) 34)) (-3213 (($ $) 31)) (-2165 (($ |#2| |#3|) NIL) (($ $ (-1075) |#3|) 28) (($ $ (-640 (-1075)) (-640 |#3|)) 27)) (-3183 (($ $) 14)) (-3193 ((|#2| $) 12)) (-1962 ((|#3| $) 10))) -(((-1234 |#1| |#2| |#3|) (-10 -8 (-15 -2185 ((-640 (-1075)) |#1|)) (-15 -2165 (|#1| |#1| (-640 (-1075)) (-640 |#3|))) (-15 -2165 (|#1| |#1| (-1075) |#3|)) (-15 -3213 (|#1| |#1|)) (-15 -2165 (|#1| |#2| |#3|)) (-15 -1962 (|#3| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3193 (|#2| |#1|))) (-1235 |#2| |#3|) (-1045) (-788)) (T -1234)) -NIL -(-10 -8 (-15 -2185 ((-640 (-1075)) |#1|)) (-15 -2165 (|#1| |#1| (-640 (-1075)) (-640 |#3|))) (-15 -2165 (|#1| |#1| (-1075) |#3|)) (-15 -3213 (|#1| |#1|)) (-15 -2165 (|#1| |#2| |#3|)) (-15 -1962 (|#3| |#1|)) (-15 -3183 (|#1| |#1|)) (-15 -3193 (|#2| |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 (-1075)) $) 77)) (-4040 (((-1169) $) 106)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-2893 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-2914 (((-1149 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-2697 (((-112) $) 76)) (-2903 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-2712 (((-112) $) 31)) (-2947 (($ $ (-917)) 104)) (-1871 (((-112) $) 65)) (-2165 (($ |#1| |#2|) 64) (($ $ (-1075) |#2|) 79) (($ $ (-640 (-1075)) (-640 |#2|)) 78)) (-2751 (($ (-1 |#1| |#1|) $) 66)) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2884 (($ $ |#2|) 98)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-1497 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-3858 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1105)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1962 ((|#2| $) 67)) (-2686 (($ $) 75)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-1304 ((|#1| $ |#2|) 62)) (-4376 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3219 ((|#1| $) 105)) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-1775 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-1235 |#1| |#2|) (-140) (-1045) (-788)) (T -1235)) -((-2914 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1149 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3858 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (-5 *2 (-1169)))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) (-2947 (*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2903 (*1 *2 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2893 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-2893 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1775 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2062 (*2 (-1169)))) (-4 *2 (-1045)))) (-2884 (*1 *1 *1 *2) (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) (-1497 (*1 *2 *1 *3) (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1149 *3))))) -(-13 (-969 |t#1| |t#2| (-1075)) (-10 -8 (-15 -2914 ((-1149 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3858 (|t#1| $ |t#2|)) (-15 -4040 ((-1169) $)) (-15 -3219 (|t#1| $)) (-15 -2947 ($ $ (-917))) (-15 -2903 (|t#2| $)) (-15 -2903 (|t#2| $ |t#2|)) (-15 -2893 ($ $ |t#2|)) (-15 -2893 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2062 (|t#1| (-1169)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1775 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2884 ($ $ |t#2|)) (IF (|has| |t#2| (-1105)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-896 (-1169))) (-6 (-896 (-1169))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -1497 ((-1149 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #0#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1105)) ((-290) |has| |#1| (-555)) ((-555) |has| |#1| (-555)) ((-643 #0#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| |#2| (-1075)) . T) ((-1051 #0#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2924 ((|#2| |#2|) 12)) (-2102 (((-418 |#2|) |#2|) 14)) (-2934 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563)))) 30))) -(((-1236 |#1| |#2|) (-10 -7 (-15 -2102 ((-418 |#2|) |#2|)) (-15 -2924 (|#2| |#2|)) (-15 -2934 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563)))))) (-555) (-13 (-1233 |#1|) (-555) (-10 -8 (-15 -1647 ($ $ $))))) (T -1236)) -((-2934 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-563)))) (-4 *4 (-13 (-1233 *3) (-555) (-10 -8 (-15 -1647 ($ $ $))))) (-4 *3 (-555)) (-5 *1 (-1236 *3 *4)))) (-2924 (*1 *2 *2) (-12 (-4 *3 (-555)) (-5 *1 (-1236 *3 *2)) (-4 *2 (-13 (-1233 *3) (-555) (-10 -8 (-15 -1647 ($ $ $))))))) (-2102 (*1 *2 *3) (-12 (-4 *4 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-1236 *4 *3)) (-4 *3 (-13 (-1233 *4) (-555) (-10 -8 (-15 -1647 ($ $ $)))))))) -(-10 -7 (-15 -2102 ((-418 |#2|) |#2|)) (-15 -2924 (|#2| |#2|)) (-15 -2934 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-563)))))) -((-2751 (((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|)) 24))) -(((-1237 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2751 ((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|)))) (-1045) (-1045) (-1169) (-1169) |#1| |#2|) (T -1237)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5 *7 *9)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1242 *6 *8 *10)) (-5 *1 (-1237 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1169))))) -(-10 -7 (-15 -2751 ((-1242 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1242 |#1| |#3| |#5|)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 (-1075)) $) 77)) (-4040 (((-1169) $) 106)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-2893 (($ $ (-407 (-563))) 101) (($ $ (-407 (-563)) (-407 (-563))) 100)) (-2914 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 108)) (-3419 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 165 (|has| |#1| (-363)))) (-2102 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2067 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-4332 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3395 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 174)) (-2242 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) 17 T CONST)) (-3495 (($ $ $) 160 (|has| |#1| (-363)))) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 159 (|has| |#1| (-363)))) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-3675 (((-112) $) 167 (|has| |#1| (-363)))) (-2697 (((-112) $) 76)) (-2656 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-407 (-563)) $) 103) (((-407 (-563)) $ (-407 (-563))) 102)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) 104) (($ $ (-407 (-563))) 173)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-1871 (((-112) $) 65)) (-2165 (($ |#1| (-407 (-563))) 64) (($ $ (-1075) (-407 (-563))) 79) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) 78)) (-2751 (($ (-1 |#1| |#1|) $) 66)) (-2497 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1607 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-1938 (((-1151) $) 9)) (-3149 (($ $) 168 (|has| |#1| (-363)))) (-3204 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-2811 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-1647 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2055 (((-418 $) $) 164 (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 161 (|has| |#1| (-363)))) (-2884 (($ $ (-407 (-563))) 98)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3177 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-4322 (((-767) $) 157 (|has| |#1| (-363)))) (-3858 ((|#1| $ (-407 (-563))) 107) (($ $ $) 84 (|has| (-407 (-563)) (-1105)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 158 (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1962 (((-407 (-563)) $) 67)) (-2252 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 75)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-1304 ((|#1| $ (-407 (-563))) 62)) (-4376 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3219 ((|#1| $) 105)) (-2285 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2264 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-407 (-563))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-1238 |#1|) (-140) (-1045)) (T -1238)) -((-3444 (*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))) (-4 *4 (-1045)) (-4 *1 (-1238 *4)))) (-2947 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1238 *3)) (-4 *3 (-1045)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-3204 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2185 ((-640 *2) *3))) (|has| *3 (-15 -3204 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))) -(-13 (-1235 |t#1| (-407 (-563))) (-10 -8 (-15 -3444 ($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |t#1|))))) (-15 -2947 ($ $ (-407 (-563)))) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $)) (IF (|has| |t#1| (-15 -3204 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2185 ((-640 (-1169)) |t#1|))) (-15 -3204 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -3204 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-563))) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-407 (-563)) (-1105)) ((-290) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T)) -((-2741 (((-112) $) 12)) (-2671 (((-3 |#3| "failed") $) 17)) (-2589 ((|#3| $) 14))) -(((-1239 |#1| |#2| |#3|) (-10 -8 (-15 -2671 ((-3 |#3| "failed") |#1|)) (-15 -2589 (|#3| |#1|)) (-15 -2741 ((-112) |#1|))) (-1240 |#2| |#3|) (-1045) (-1217 |#2|)) (T -1239)) -NIL -(-10 -8 (-15 -2671 ((-3 |#3| "failed") |#1|)) (-15 -2589 (|#3| |#1|)) (-15 -2741 ((-112) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 (-1075)) $) 77)) (-4040 (((-1169) $) 106)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-2893 (($ $ (-407 (-563))) 101) (($ $ (-407 (-563)) (-407 (-563))) 100)) (-2914 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 108)) (-3419 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 165 (|has| |#1| (-363)))) (-2102 (((-418 $) $) 166 (|has| |#1| (-363)))) (-2067 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-4332 (((-112) $ $) 156 (|has| |#1| (-363)))) (-3395 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 174)) (-2242 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#2| "failed") $) 185)) (-2589 ((|#2| $) 186)) (-3495 (($ $ $) 160 (|has| |#1| (-363)))) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-2981 (((-407 (-563)) $) 182)) (-3473 (($ $ $) 159 (|has| |#1| (-363)))) (-3128 (($ (-407 (-563)) |#2|) 183)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 154 (|has| |#1| (-363)))) (-3675 (((-112) $) 167 (|has| |#1| (-363)))) (-2697 (((-112) $) 76)) (-2656 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-407 (-563)) $) 103) (((-407 (-563)) $ (-407 (-563))) 102)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) 104) (($ $ (-407 (-563))) 173)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 163 (|has| |#1| (-363)))) (-1871 (((-112) $) 65)) (-2165 (($ |#1| (-407 (-563))) 64) (($ $ (-1075) (-407 (-563))) 79) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) 78)) (-2751 (($ (-1 |#1| |#1|) $) 66)) (-2497 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1607 (($ (-640 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2970 ((|#2| $) 181)) (-2957 (((-3 |#2| "failed") $) 179)) (-3118 ((|#2| $) 180)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 168 (|has| |#1| (-363)))) (-3204 (($ $) 172 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 171 (-2811 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 153 (|has| |#1| (-363)))) (-1647 (($ (-640 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-2055 (((-418 $) $) 164 (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 161 (|has| |#1| (-363)))) (-2884 (($ $ (-407 (-563))) 98)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 155 (|has| |#1| (-363)))) (-3177 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-4322 (((-767) $) 157 (|has| |#1| (-363)))) (-3858 ((|#1| $ (-407 (-563))) 107) (($ $ $) 84 (|has| (-407 (-563)) (-1105)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 158 (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1962 (((-407 (-563)) $) 67)) (-2252 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 75)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555)))) (-1304 ((|#1| $ (-407 (-563))) 62)) (-4376 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3219 ((|#1| $) 105)) (-2285 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2264 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-407 (-563))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-1240 |#1| |#2|) (-140) (-1045) (-1217 |t#1|)) (T -1240)) -((-1962 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) (-5 *2 (-407 (-563))))) (-3128 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-4 *4 (-1045)) (-4 *1 (-1240 *4 *3)) (-4 *3 (-1217 *4)))) (-2981 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) (-5 *2 (-407 (-563))))) (-2970 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))) (-3118 (*1 *2 *1) (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3)))) (-2957 (*1 *2 *1) (|partial| -12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3))))) -(-13 (-1238 |t#1|) (-1034 |t#2|) (-613 |t#2|) (-10 -8 (-15 -3128 ($ (-407 (-563)) |t#2|)) (-15 -2981 ((-407 (-563)) $)) (-15 -2970 (|t#2| $)) (-15 -1962 ((-407 (-563)) $)) (-15 -3118 (|t#2| $)) (-15 -2957 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-563))) . T) ((-25) . T) ((-38 #1=(-407 (-563))) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 |#2|) . T) ((-613 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-407 (-563)) (-1105)) ((-290) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-643 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363))) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-916) |has| |#1| (-363)) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1034 |#2|) . T) ((-1051 #1#) -2811 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-563))))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1212) |has| |#1| (-363)) ((-1235 |#1| #0#) . T) ((-1238 |#1|) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 104)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-2893 (($ $ (-407 (-563))) 116) (($ $ (-407 (-563)) (-407 (-563))) 118)) (-2914 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) 54)) (-3419 (($ $) 192 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 168 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3395 (($ $) 188 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 164 (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) 65)) (-2242 (($ $) 196 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 172 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) NIL)) (-2589 ((|#2| $) NIL)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) 85)) (-2981 (((-407 (-563)) $) 13)) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3128 (($ (-407 (-563)) |#2|) 11)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2697 (((-112) $) 74)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-407 (-563)) $) 113) (((-407 (-563)) $ (-407 (-563))) 114)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) 130) (($ $ (-407 (-563))) 128)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-407 (-563))) 33) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) 125)) (-2497 (($ $) 162 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2970 ((|#2| $) 12)) (-2957 (((-3 |#2| "failed") $) 44)) (-3118 ((|#2| $) 45)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) 101 (|has| |#1| (-363)))) (-3204 (($ $) 146 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 151 (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193)))))) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-407 (-563))) 122)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3177 (($ $) 160 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ (-407 (-563))) 108) (($ $ $) 94 (|has| (-407 (-563)) (-1105)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-1962 (((-407 (-563)) $) 16)) (-2252 (($ $) 198 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 174 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 194 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 170 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 190 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 166 (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 120)) (-2062 (((-858) $) NIL) (($ (-563)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-563))) 139 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-1304 ((|#1| $ (-407 (-563))) 107)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) 127 T CONST)) (-3219 ((|#1| $) 106)) (-2285 (($ $) 204 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 180 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) 200 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 176 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 208 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 184 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-407 (-563))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 210 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 186 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 206 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 182 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 202 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 178 (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 21 T CONST)) (-3803 (($) 17 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-2943 (((-112) $ $) 72)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-3039 (($ $) 142) (($ $ $) 78)) (-3027 (($ $ $) 76)) (** (($ $ (-917)) NIL) (($ $ (-767)) 82) (($ $ (-563)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 158 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1241 |#1| |#2|) (-1240 |#1| |#2|) (-1045) (-1217 |#1|)) (T -1241)) -NIL -(-1240 |#1| |#2|) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 11)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) NIL (|has| |#1| (-555)))) (-2893 (($ $ (-407 (-563))) NIL) (($ $ (-407 (-563)) (-407 (-563))) NIL)) (-2914 (((-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|))) $) NIL)) (-3419 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2924 (($ $) NIL (|has| |#1| (-363)))) (-2102 (((-418 $) $) NIL (|has| |#1| (-363)))) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-4332 (((-112) $ $) NIL (|has| |#1| (-363)))) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-767) (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#1|)))) NIL)) (-2242 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-1221 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1249 |#1| |#2| |#3|) "failed") $) 22)) (-2589 (((-1221 |#1| |#2| |#3|) $) NIL) (((-1249 |#1| |#2| |#3|) $) NIL)) (-3495 (($ $ $) NIL (|has| |#1| (-363)))) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-2981 (((-407 (-563)) $) 69)) (-3473 (($ $ $) NIL (|has| |#1| (-363)))) (-3128 (($ (-407 (-563)) (-1221 |#1| |#2| |#3|)) NIL)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) NIL (|has| |#1| (-363)))) (-3675 (((-112) $) NIL (|has| |#1| (-363)))) (-2697 (((-112) $) NIL)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-407 (-563)) $) NIL) (((-407 (-563)) $ (-407 (-563))) NIL)) (-2712 (((-112) $) NIL)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) NIL) (($ $ (-407 (-563))) NIL)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-407 (-563))) 30) (($ $ (-1075) (-407 (-563))) NIL) (($ $ (-640 (-1075)) (-640 (-407 (-563)))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2497 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1607 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2970 (((-1221 |#1| |#2| |#3|) $) 72)) (-2957 (((-3 (-1221 |#1| |#2| |#3|) "failed") $) NIL)) (-3118 (((-1221 |#1| |#2| |#3|) $) NIL)) (-1938 (((-1151) $) NIL)) (-3149 (($ $) NIL (|has| |#1| (-363)))) (-3204 (($ $) 39 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) NIL (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 40 (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) NIL)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) NIL (|has| |#1| (-363)))) (-1647 (($ (-640 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-2055 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4311 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) NIL (|has| |#1| (-363)))) (-2884 (($ $ (-407 (-563))) NIL)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3586 (((-3 (-640 $) "failed") (-640 $) $) NIL (|has| |#1| (-363)))) (-3177 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))))) (-4322 (((-767) $) NIL (|has| |#1| (-363)))) (-3858 ((|#1| $ (-407 (-563))) NIL) (($ $ $) NIL (|has| (-407 (-563)) (-1105)))) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) NIL (|has| |#1| (-363)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $ (-1253 |#2|)) 38)) (-1962 (((-407 (-563)) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) NIL)) (-2062 (((-858) $) 108) (($ (-563)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1221 |#1| |#2| |#3|)) 16) (($ (-1249 |#1| |#2| |#3|)) 17) (($ (-1253 |#2|)) 36) (($ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555)))) (-1304 ((|#1| $ (-407 (-563))) NIL)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3219 ((|#1| $) 12)) (-2285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-407 (-563))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-563))))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 32 T CONST)) (-3803 (($) 26 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-563)) |#1|))))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 34)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ (-563)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1242 |#1| |#2| |#3|) (-13 (-1240 |#1| (-1221 |#1| |#2| |#3|)) (-1034 (-1249 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1242)) -((-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) -(-13 (-1240 |#1| (-1221 |#1| |#2| |#3|)) (-1034 (-1249 |#1| |#2| |#3|)) (-613 (-1253 |#2|)) (-10 -8 (-15 -1361 ($ $ (-1253 |#2|))) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 37)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL)) (-2554 (($ $) NIL)) (-2533 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 (-563) "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-563)))) (((-3 (-407 (-563)) "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))) (((-3 (-1242 |#2| |#3| |#4|) "failed") $) 22)) (-2589 (((-563) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-563)))) (((-407 (-563)) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))) (((-1242 |#2| |#3| |#4|) $) NIL)) (-3213 (($ $) 41)) (-3230 (((-3 $ "failed") $) 27)) (-2227 (($ $) NIL (|has| (-1242 |#2| |#3| |#4|) (-452)))) (-3302 (($ $ (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) 11)) (-1871 (((-112) $) NIL)) (-2165 (($ (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-3187 (((-319 |#2| |#3| |#4|) $) NIL)) (-3310 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-2751 (($ (-1 (-1242 |#2| |#3| |#4|) (-1242 |#2| |#3| |#4|)) $) NIL)) (-3002 (((-3 (-839 |#2|) "failed") $) 90)) (-3183 (($ $) NIL)) (-3193 (((-1242 |#2| |#3| |#4|) $) 20)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3160 (((-112) $) NIL)) (-3170 (((-1242 |#2| |#3| |#4|) $) NIL)) (-3448 (((-3 $ "failed") $ (-1242 |#2| |#3| |#4|)) NIL (|has| (-1242 |#2| |#3| |#4|) (-555))) (((-3 $ "failed") $ $) NIL)) (-2992 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $) 72)) (-1962 (((-319 |#2| |#3| |#4|) $) 17)) (-3166 (((-1242 |#2| |#3| |#4|) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-452)))) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ (-1242 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-563))) NIL (-2811 (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563)))) (|has| (-1242 |#2| |#3| |#4|) (-1034 (-407 (-563))))))) (-3234 (((-640 (-1242 |#2| |#3| |#4|)) $) NIL)) (-1304 (((-1242 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-4376 (((-3 $ "failed") $) NIL (|has| (-1242 |#2| |#3| |#4|) (-145)))) (-3192 (((-767)) NIL T CONST)) (-3292 (($ $ $ (-767)) NIL (|has| (-1242 |#2| |#3| |#4|) (-172)))) (-2543 (((-112) $ $) NIL)) (-3790 (($) 78 T CONST)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ (-1242 |#2| |#3| |#4|)) NIL (|has| (-1242 |#2| |#3| |#4|) (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ (-1242 |#2| |#3| |#4|)) NIL) (($ (-1242 |#2| |#3| |#4|) $) NIL) (($ (-407 (-563)) $) NIL (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| (-1242 |#2| |#3| |#4|) (-38 (-407 (-563))))))) -(((-1243 |#1| |#2| |#3| |#4|) (-13 (-326 (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-555) (-10 -8 (-15 -3002 ((-3 (-839 |#2|) "failed") $)) (-15 -2992 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $)))) (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452)) (-13 (-27) (-1193) (-430 |#1|)) (-1169) |#2|) (T -1243)) -((-3002 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-839 *4)) (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4))) (-2992 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))))) (|:| |%type| (-1151)))) (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) (-14 *6 *4)))) -(-13 (-326 (-1242 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-555) (-10 -8 (-15 -3002 ((-3 (-839 |#2|) "failed") $)) (-15 -2992 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1242 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| |#2|)))))) (|:| |%type| (-1151))) "failed") $)))) -((-3556 ((|#2| $) 33)) (-3931 ((|#2| $) 18)) (-1588 (($ $) 51)) (-3011 (($ $ (-563)) 83)) (-3740 (((-112) $ (-767)) 45)) (-3472 ((|#2| $ |#2|) 81)) (-3021 ((|#2| $ |#2|) 77)) (-2189 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 70) (($ $ "rest" $) 74) ((|#2| $ "last" |#2|) 72)) (-3482 (($ $ (-640 $)) 80)) (-3919 ((|#2| $) 17)) (-1897 (($ $) NIL) (($ $ (-767)) 58)) (-3524 (((-640 $) $) 30)) (-3494 (((-112) $ $) 68)) (-3633 (((-112) $ (-767)) 44)) (-3604 (((-112) $ (-767)) 42)) (-2484 (((-112) $) 32)) (-1442 ((|#2| $) 24) (($ $ (-767)) 63)) (-3858 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2181 (((-112) $) 22)) (-3074 (($ $) 54)) (-3055 (($ $) 84)) (-3083 (((-767) $) 57)) (-3095 (($ $) 56)) (-1951 (($ $ $) 76) (($ |#2| $) NIL)) (-2432 (((-640 $) $) 31)) (-2943 (((-112) $ $) 66)) (-1708 (((-767) $) 50))) -(((-1244 |#1| |#2|) (-10 -8 (-15 -3011 (|#1| |#1| (-563))) (-15 -2189 (|#2| |#1| "last" |#2|)) (-15 -3021 (|#2| |#1| |#2|)) (-15 -2189 (|#1| |#1| "rest" |#1|)) (-15 -2189 (|#2| |#1| "first" |#2|)) (-15 -3055 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3083 ((-767) |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3931 (|#2| |#1|)) (-15 -3919 (|#2| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-767))) (-15 -3858 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -1897 (|#1| |#1| (-767))) (-15 -3858 (|#1| |#1| "rest")) (-15 -1897 (|#1| |#1|)) (-15 -3858 (|#2| |#1| "first")) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -3472 (|#2| |#1| |#2|)) (-15 -2189 (|#2| |#1| "value" |#2|)) (-15 -3482 (|#1| |#1| (-640 |#1|))) (-15 -3494 ((-112) |#1| |#1|)) (-15 -2181 ((-112) |#1|)) (-15 -3858 (|#2| |#1| "value")) (-15 -3556 (|#2| |#1|)) (-15 -2484 ((-112) |#1|)) (-15 -3524 ((-640 |#1|) |#1|)) (-15 -2432 ((-640 |#1|) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -1708 ((-767) |#1|)) (-15 -3740 ((-112) |#1| (-767))) (-15 -3633 ((-112) |#1| (-767))) (-15 -3604 ((-112) |#1| (-767)))) (-1245 |#2|) (-1208)) (T -1244)) -NIL -(-10 -8 (-15 -3011 (|#1| |#1| (-563))) (-15 -2189 (|#2| |#1| "last" |#2|)) (-15 -3021 (|#2| |#1| |#2|)) (-15 -2189 (|#1| |#1| "rest" |#1|)) (-15 -2189 (|#2| |#1| "first" |#2|)) (-15 -3055 (|#1| |#1|)) (-15 -3074 (|#1| |#1|)) (-15 -3083 ((-767) |#1|)) (-15 -3095 (|#1| |#1|)) (-15 -3931 (|#2| |#1|)) (-15 -3919 (|#2| |#1|)) (-15 -1588 (|#1| |#1|)) (-15 -1442 (|#1| |#1| (-767))) (-15 -3858 (|#2| |#1| "last")) (-15 -1442 (|#2| |#1|)) (-15 -1897 (|#1| |#1| (-767))) (-15 -3858 (|#1| |#1| "rest")) (-15 -1897 (|#1| |#1|)) (-15 -3858 (|#2| |#1| "first")) (-15 -1951 (|#1| |#2| |#1|)) (-15 -1951 (|#1| |#1| |#1|)) (-15 -3472 (|#2| |#1| |#2|)) (-15 -2189 (|#2| |#1| "value" |#2|)) (-15 -3482 (|#1| |#1| (-640 |#1|))) (-15 -3494 ((-112) |#1| |#1|)) (-15 -2181 ((-112) |#1|)) (-15 -3858 (|#2| |#1| "value")) (-15 -3556 (|#2| |#1|)) (-15 -2484 ((-112) |#1|)) (-15 -3524 ((-640 |#1|) |#1|)) (-15 -2432 ((-640 |#1|) |#1|)) (-15 -2943 ((-112) |#1| |#1|)) (-15 -1708 ((-767) |#1|)) (-15 -3740 ((-112) |#1| (-767))) (-15 -3633 ((-112) |#1| (-767))) (-15 -3604 ((-112) |#1| (-767)))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-3556 ((|#1| $) 48)) (-3931 ((|#1| $) 65)) (-1588 (($ $) 67)) (-3011 (($ $ (-563)) 52 (|has| $ (-6 -4409)))) (-3740 (((-112) $ (-767)) 8)) (-3472 ((|#1| $ |#1|) 39 (|has| $ (-6 -4409)))) (-3032 (($ $ $) 56 (|has| $ (-6 -4409)))) (-3021 ((|#1| $ |#1|) 54 (|has| $ (-6 -4409)))) (-3043 ((|#1| $ |#1|) 58 (|has| $ (-6 -4409)))) (-2189 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4409))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4409))) (($ $ "rest" $) 55 (|has| $ (-6 -4409))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4409)))) (-3482 (($ $ (-640 $)) 41 (|has| $ (-6 -4409)))) (-3919 ((|#1| $) 66)) (-3684 (($) 7 T CONST)) (-1897 (($ $) 73) (($ $ (-767)) 71)) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3524 (((-640 $) $) 50)) (-3494 (((-112) $ $) 42 (|has| |#1| (-1093)))) (-3633 (((-112) $ (-767)) 9)) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35)) (-3604 (((-112) $ (-767)) 10)) (-3884 (((-640 |#1|) $) 45)) (-2484 (((-112) $) 49)) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-1442 ((|#1| $) 70) (($ $ (-767)) 68)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 76) (($ $ (-767)) 74)) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-3514 (((-563) $ $) 44)) (-2181 (((-112) $) 46)) (-3074 (($ $) 62)) (-3055 (($ $) 59 (|has| $ (-6 -4409)))) (-3083 (((-767) $) 63)) (-3095 (($ $) 64)) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2208 (($ $) 13)) (-3065 (($ $ $) 61 (|has| $ (-6 -4409))) (($ $ |#1|) 60 (|has| $ (-6 -4409)))) (-1951 (($ $ $) 78) (($ |#1| $) 77)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-2432 (((-640 $) $) 51)) (-3504 (((-112) $ $) 43 (|has| |#1| (-1093)))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-1245 |#1|) (-140) (-1208)) (T -1245)) -((-1951 (*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1951 (*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1884 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1884 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-1897 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3858 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-1897 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-1442 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-1442 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-1588 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3919 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3931 (*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3095 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) (-3074 (*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3065 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3065 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3055 (*1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3043 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2189 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3032 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2189 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) (-3021 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-2189 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) (-3011 (*1 *1 *1 *2) (-12 (-5 *2 (-563)) (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3)) (-4 *3 (-1208))))) -(-13 (-1006 |t#1|) (-10 -8 (-15 -1951 ($ $ $)) (-15 -1951 ($ |t#1| $)) (-15 -1884 (|t#1| $)) (-15 -3858 (|t#1| $ "first")) (-15 -1884 ($ $ (-767))) (-15 -1897 ($ $)) (-15 -3858 ($ $ "rest")) (-15 -1897 ($ $ (-767))) (-15 -1442 (|t#1| $)) (-15 -3858 (|t#1| $ "last")) (-15 -1442 ($ $ (-767))) (-15 -1588 ($ $)) (-15 -3919 (|t#1| $)) (-15 -3931 (|t#1| $)) (-15 -3095 ($ $)) (-15 -3083 ((-767) $)) (-15 -3074 ($ $)) (IF (|has| $ (-6 -4409)) (PROGN (-15 -3065 ($ $ $)) (-15 -3065 ($ $ |t#1|)) (-15 -3055 ($ $)) (-15 -3043 (|t#1| $ |t#1|)) (-15 -2189 (|t#1| $ "first" |t#1|)) (-15 -3032 ($ $ $)) (-15 -2189 ($ $ "rest" $)) (-15 -3021 (|t#1| $ |t#1|)) (-15 -2189 (|t#1| $ "last" |t#1|)) (-15 -3011 ($ $ (-563)))) |%noBranch|))) -(((-34) . T) ((-102) |has| |#1| (-1093)) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-610 (-858)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-1006 |#1|) . T) ((-1093) |has| |#1| (-1093)) ((-1208) . T)) -((-2751 ((|#4| (-1 |#2| |#1|) |#3|) 17))) -(((-1246 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2751 (|#4| (-1 |#2| |#1|) |#3|))) (-1045) (-1045) (-1248 |#1|) (-1248 |#2|)) (T -1246)) -((-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) (-4 *2 (-1248 *6)) (-5 *1 (-1246 *5 *6 *4 *2)) (-4 *4 (-1248 *5))))) -(-10 -7 (-15 -2751 (|#4| (-1 |#2| |#1|) |#3|))) -((-2741 (((-112) $) 17)) (-3419 (($ $) 105)) (-3285 (($ $) 81)) (-3395 (($ $) 101)) (-3264 (($ $) 77)) (-2242 (($ $) 109)) (-3305 (($ $) 85)) (-2497 (($ $) 75)) (-3177 (($ $) 73)) (-2252 (($ $) 111)) (-3313 (($ $) 87)) (-2231 (($ $) 107)) (-3295 (($ $) 83)) (-3408 (($ $) 103)) (-3273 (($ $) 79)) (-2062 (((-858) $) 61) (($ (-563)) NIL) (($ (-407 (-563))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2285 (($ $) 117)) (-3347 (($ $) 93)) (-2264 (($ $) 113)) (-3325 (($ $) 89)) (-2306 (($ $) 121)) (-3374 (($ $) 97)) (-4205 (($ $) 123)) (-3386 (($ $) 99)) (-2296 (($ $) 119)) (-3361 (($ $) 95)) (-2275 (($ $) 115)) (-3336 (($ $) 91)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-407 (-563))) 71))) -(((-1247 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -3285 (|#1| |#1|)) (-15 -3264 (|#1| |#1|)) (-15 -3305 (|#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3336 (|#1| |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -3386 (|#1| |#1|)) (-15 -3374 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3347 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3419 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -4205 (|#1| |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -2497 (|#1| |#1|)) (-15 -3177 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -2741 ((-112) |#1|)) (-15 -2062 ((-858) |#1|))) (-1248 |#2|) (-1045)) (T -1247)) -NIL -(-10 -8 (-15 ** (|#1| |#1| (-407 (-563)))) (-15 -3285 (|#1| |#1|)) (-15 -3264 (|#1| |#1|)) (-15 -3305 (|#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3273 (|#1| |#1|)) (-15 -3336 (|#1| |#1|)) (-15 -3361 (|#1| |#1|)) (-15 -3386 (|#1| |#1|)) (-15 -3374 (|#1| |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -3347 (|#1| |#1|)) (-15 -3408 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2252 (|#1| |#1|)) (-15 -2242 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3419 (|#1| |#1|)) (-15 -2275 (|#1| |#1|)) (-15 -2296 (|#1| |#1|)) (-15 -4205 (|#1| |#1|)) (-15 -2306 (|#1| |#1|)) (-15 -2264 (|#1| |#1|)) (-15 -2285 (|#1| |#1|)) (-15 -2497 (|#1| |#1|)) (-15 -3177 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2062 (|#1| |#2|)) (-15 -2062 (|#1| |#1|)) (-15 -2062 (|#1| (-407 (-563)))) (-15 -2062 (|#1| (-563))) (-15 ** (|#1| |#1| (-767))) (-15 ** (|#1| |#1| (-917))) (-15 -2741 ((-112) |#1|)) (-15 -2062 ((-858) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2185 (((-640 (-1075)) $) 77)) (-4040 (((-1169) $) 106)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 54 (|has| |#1| (-555)))) (-2554 (($ $) 55 (|has| |#1| (-555)))) (-2533 (((-112) $) 57 (|has| |#1| (-555)))) (-2893 (($ $ (-767)) 101) (($ $ (-767) (-767)) 100)) (-2914 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 108)) (-3419 (($ $) 138 (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) 121 (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) 19)) (-2067 (($ $) 120 (|has| |#1| (-38 (-407 (-563)))))) (-3395 (($ $) 137 (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) 122 (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 158) (($ (-1149 |#1|)) 156)) (-2242 (($ $) 136 (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) 123 (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) 17 T CONST)) (-3213 (($ $) 63)) (-3230 (((-3 $ "failed") $) 33)) (-3225 (($ $) 155)) (-3894 (((-948 |#1|) $ (-767)) 153) (((-948 |#1|) $ (-767) (-767)) 152)) (-2697 (((-112) $) 76)) (-2656 (($) 148 (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-767) $) 103) (((-767) $ (-767)) 102)) (-2712 (((-112) $) 31)) (-1403 (($ $ (-563)) 119 (|has| |#1| (-38 (-407 (-563)))))) (-2947 (($ $ (-917)) 104)) (-3214 (($ (-1 |#1| (-563)) $) 154)) (-1871 (((-112) $) 65)) (-2165 (($ |#1| (-767)) 64) (($ $ (-1075) (-767)) 79) (($ $ (-640 (-1075)) (-640 (-767))) 78)) (-2751 (($ (-1 |#1| |#1|) $) 66)) (-2497 (($ $) 145 (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) 68)) (-3193 ((|#1| $) 69)) (-1938 (((-1151) $) 9)) (-3204 (($ $) 150 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 149 (-2811 (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-955)) (|has| |#1| (-1193)) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-38 (-407 (-563)))))))) (-3249 (((-1113) $) 10)) (-2884 (($ $ (-767)) 98)) (-3448 (((-3 $ "failed") $ $) 53 (|has| |#1| (-555)))) (-3177 (($ $) 146 (|has| |#1| (-38 (-407 (-563)))))) (-1497 (((-1149 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-3858 ((|#1| $ (-767)) 107) (($ $ $) 84 (|has| (-767) (-1105)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) 92 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) 91 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-640 (-1169))) 90 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 89 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 87 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-1962 (((-767) $) 67)) (-2252 (($ $) 135 (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) 124 (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) 134 (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) 125 (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) 133 (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) 126 (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 75)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ (-407 (-563))) 60 (|has| |#1| (-38 (-407 (-563))))) (($ $) 52 (|has| |#1| (-555))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3234 (((-1149 |#1|) $) 157)) (-1304 ((|#1| $ (-767)) 62)) (-4376 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3192 (((-767)) 28 T CONST)) (-3219 ((|#1| $) 105)) (-2285 (($ $) 144 (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) 132 (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) 56 (|has| |#1| (-555)))) (-2264 (($ $) 143 (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) 131 (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) 142 (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) 130 (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-767)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) 141 (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) 129 (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) 140 (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) 128 (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) 139 (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) 127 (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) 96 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169) (-767)) 95 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-640 (-1169))) 94 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-1169)) 93 (-12 (|has| |#1| (-896 (-1169))) (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (($ $ (-767)) 88 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 118 (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-563)) $) 59 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) 58 (|has| |#1| (-38 (-407 (-563))))))) -(((-1248 |#1|) (-140) (-1045)) (T -1248)) -((-3444 (*1 *1 *2) (-12 (-5 *2 (-1149 (-2 (|:| |k| (-767)) (|:| |c| *3)))) (-4 *3 (-1045)) (-4 *1 (-1248 *3)))) (-3234 (*1 *2 *1) (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-5 *2 (-1149 *3)))) (-3444 (*1 *1 *2) (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-4 *1 (-1248 *3)))) (-3225 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)))) (-3214 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1248 *3)) (-4 *3 (-1045)))) (-3894 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (-3894 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) (-5 *2 (-948 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) (-3204 (*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) (-3204 (*1 *1 *1 *2) (-2811 (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) (-4 *3 (-38 (-407 (-563)))))) (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-12 (|has| *3 (-15 -2185 ((-640 *2) *3))) (|has| *3 (-15 -3204 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563))))))))) -(-13 (-1235 |t#1| (-767)) (-10 -8 (-15 -3444 ($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |t#1|))))) (-15 -3234 ((-1149 |t#1|) $)) (-15 -3444 ($ (-1149 |t#1|))) (-15 -3225 ($ $)) (-15 -3214 ($ (-1 |t#1| (-563)) $)) (-15 -3894 ((-948 |t#1|) $ (-767))) (-15 -3894 ((-948 |t#1|) $ (-767) (-767))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-563)))) (PROGN (-15 -3204 ($ $)) (IF (|has| |t#1| (-15 -3204 (|t#1| |t#1| (-1169)))) (IF (|has| |t#1| (-15 -2185 ((-640 (-1169)) |t#1|))) (-15 -3204 ($ $ (-1169))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1193)) (IF (|has| |t#1| (-955)) (IF (|has| |t#1| (-29 (-563))) (-15 -3204 ($ $ (-1169))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-998)) (-6 (-1193))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-767)) . T) ((-25) . T) ((-38 #1=(-407 (-563))) |has| |#1| (-38 (-407 (-563)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-555)) ((-35) |has| |#1| (-38 (-407 (-563)))) ((-95) |has| |#1| (-38 (-407 (-563)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-563)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-613 #1#) |has| |#1| (-38 (-407 (-563)))) ((-613 (-563)) . T) ((-613 |#1|) |has| |#1| (-172)) ((-613 $) |has| |#1| (-555)) ((-610 (-858)) . T) ((-172) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-767) |#1|))) ((-284) |has| |#1| (-38 (-407 (-563)))) ((-286 $ $) |has| (-767) (-1105)) ((-290) |has| |#1| (-555)) ((-493) |has| |#1| (-38 (-407 (-563)))) ((-555) |has| |#1| (-555)) ((-643 #1#) |has| |#1| (-38 (-407 (-563)))) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #1#) |has| |#1| (-38 (-407 (-563)))) ((-713 |#1|) |has| |#1| (-172)) ((-713 $) |has| |#1| (-555)) ((-722) . T) ((-896 (-1169)) -12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169)))) ((-969 |#1| #0# (-1075)) . T) ((-998) |has| |#1| (-38 (-407 (-563)))) ((-1051 #1#) |has| |#1| (-38 (-407 (-563)))) ((-1051 |#1|) . T) ((-1051 $) -2811 (|has| |#1| (-555)) (|has| |#1| (-172))) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1193) |has| |#1| (-38 (-407 (-563)))) ((-1196) |has| |#1| (-38 (-407 (-563)))) ((-1235 |#1| #0#) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-2185 (((-640 (-1075)) $) NIL)) (-4040 (((-1169) $) 92)) (-3194 (((-1230 |#2| |#1|) $ (-767)) 74)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) NIL (|has| |#1| (-555)))) (-2554 (($ $) NIL (|has| |#1| (-555)))) (-2533 (((-112) $) 143 (|has| |#1| (-555)))) (-2893 (($ $ (-767)) 129) (($ $ (-767) (-767)) 131)) (-2914 (((-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|))) $) 43)) (-3419 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1482 (((-3 $ "failed") $ $) NIL)) (-2067 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3395 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3444 (($ (-1149 (-2 (|:| |k| (-767)) (|:| |c| |#1|)))) 53) (($ (-1149 |#1|)) NIL)) (-2242 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3305 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3684 (($) NIL T CONST)) (-3129 (($ $) 135)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-3225 (($ $) 141)) (-3894 (((-948 |#1|) $ (-767)) 64) (((-948 |#1|) $ (-767) (-767)) 66)) (-2697 (((-112) $) NIL)) (-2656 (($) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2903 (((-767) $) NIL) (((-767) $ (-767)) NIL)) (-2712 (((-112) $) NIL)) (-3163 (($ $) 119)) (-1403 (($ $ (-563)) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3119 (($ (-563) (-563) $) 137)) (-2947 (($ $ (-917)) 140)) (-3214 (($ (-1 |#1| (-563)) $) 113)) (-1871 (((-112) $) NIL)) (-2165 (($ |#1| (-767)) 16) (($ $ (-1075) (-767)) NIL) (($ $ (-640 (-1075)) (-640 (-767))) NIL)) (-2751 (($ (-1 |#1| |#1|) $) 100)) (-2497 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3183 (($ $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3173 (($ $) 117)) (-3184 (($ $) 115)) (-3107 (($ (-563) (-563) $) 139)) (-3204 (($ $) 151 (|has| |#1| (-38 (-407 (-563))))) (($ $ (-1169)) 157 (-2811 (-12 (|has| |#1| (-15 -3204 (|#1| |#1| (-1169)))) (|has| |#1| (-15 -2185 ((-640 (-1169)) |#1|))) (|has| |#1| (-38 (-407 (-563))))) (-12 (|has| |#1| (-29 (-563))) (|has| |#1| (-38 (-407 (-563)))) (|has| |#1| (-955)) (|has| |#1| (-1193))))) (($ $ (-1253 |#2|)) 152 (|has| |#1| (-38 (-407 (-563)))))) (-3249 (((-1113) $) NIL)) (-3138 (($ $ (-563) (-563)) 123)) (-2884 (($ $ (-767)) 125)) (-3448 (((-3 $ "failed") $ $) NIL (|has| |#1| (-555)))) (-3177 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3150 (($ $) 121)) (-1497 (((-1149 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-767)))))) (-3858 ((|#1| $ (-767)) 97) (($ $ $) 133 (|has| (-767) (-1105)))) (-1361 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) 110 (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $ (-1253 |#2|)) 105)) (-1962 (((-767) $) NIL)) (-2252 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3313 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2231 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3295 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3408 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3273 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2686 (($ $) 127)) (-2062 (((-858) $) NIL) (($ (-563)) 26) (($ (-407 (-563))) 149 (|has| |#1| (-38 (-407 (-563))))) (($ $) NIL (|has| |#1| (-555))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1230 |#2| |#1|)) 83) (($ (-1253 |#2|)) 22)) (-3234 (((-1149 |#1|) $) NIL)) (-1304 ((|#1| $ (-767)) 96)) (-4376 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3192 (((-767)) NIL T CONST)) (-3219 ((|#1| $) 93)) (-2285 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3347 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2543 (((-112) $ $) NIL (|has| |#1| (-555)))) (-2264 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3325 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2306 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3374 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-1775 ((|#1| $ (-767)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-767)))) (|has| |#1| (-15 -2062 (|#1| (-1169))))))) (-4205 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3386 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2296 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3361 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-2275 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3336 (($ $) NIL (|has| |#1| (-38 (-407 (-563)))))) (-3790 (($) 18 T CONST)) (-3803 (($) 13 T CONST)) (-4191 (($ $ (-640 (-1169)) (-640 (-767))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169) (-767)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-640 (-1169))) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-1169)) NIL (-12 (|has| |#1| (-15 * (|#1| (-767) |#1|))) (|has| |#1| (-896 (-1169))))) (($ $ (-767)) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-767) |#1|))))) (-2943 (((-112) $ $) NIL)) (-3050 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) 109)) (-3027 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL) (($ $ |#1|) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563)))))) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-407 (-563)) $) NIL (|has| |#1| (-38 (-407 (-563))))) (($ $ (-407 (-563))) NIL (|has| |#1| (-38 (-407 (-563))))))) -(((-1249 |#1| |#2| |#3|) (-13 (-1248 |#1|) (-10 -8 (-15 -2062 ($ (-1230 |#2| |#1|))) (-15 -3194 ((-1230 |#2| |#1|) $ (-767))) (-15 -2062 ($ (-1253 |#2|))) (-15 -1361 ($ $ (-1253 |#2|))) (-15 -3184 ($ $)) (-15 -3173 ($ $)) (-15 -3163 ($ $)) (-15 -3150 ($ $)) (-15 -3138 ($ $ (-563) (-563))) (-15 -3129 ($ $)) (-15 -3119 ($ (-563) (-563) $)) (-15 -3107 ($ (-563) (-563) $)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) (-1045) (-1169) |#1|) (T -1249)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-1249 *3 *4 *5)))) (-3194 (*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1249 *4 *5 *6)) (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-1361 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *5 *3))) (-3184 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-3173 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-3163 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-3150 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-3138 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-3129 (*1 *1 *1) (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) (-14 *4 *2))) (-3119 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-3107 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) (-14 *5 *3))) (-3204 (*1 *1 *1 *2) (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) -(-13 (-1248 |#1|) (-10 -8 (-15 -2062 ($ (-1230 |#2| |#1|))) (-15 -3194 ((-1230 |#2| |#1|) $ (-767))) (-15 -2062 ($ (-1253 |#2|))) (-15 -1361 ($ $ (-1253 |#2|))) (-15 -3184 ($ $)) (-15 -3173 ($ $)) (-15 -3163 ($ $)) (-15 -3150 ($ $)) (-15 -3138 ($ $ (-563) (-563))) (-15 -3129 ($ $)) (-15 -3119 ($ (-563) (-563) $)) (-15 -3107 ($ (-563) (-563) $)) (IF (|has| |#1| (-38 (-407 (-563)))) (-15 -3204 ($ $ (-1253 |#2|))) |%noBranch|))) -((-3265 (((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|))) 24)) (-3253 (((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3242 (((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|)) 13)) (-3296 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-3286 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3306 ((|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|)) 60)) (-3314 (((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|)))) 66)) (-3274 ((|#2| |#2| |#2|) 43))) -(((-1250 |#1| |#2|) (-10 -7 (-15 -3242 ((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|))) (-15 -3253 ((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3265 ((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|)))) (-15 -3274 (|#2| |#2| |#2|)) (-15 -3286 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3296 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3306 (|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|))) (-15 -3314 ((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|)))))) (-38 (-407 (-563))) (-1248 |#1|)) (T -1250)) -((-3314 (*1 *2 *3 *4) (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 (-1 *6 (-640 *6)))) (-4 *5 (-38 (-407 (-563)))) (-4 *6 (-1248 *5)) (-5 *2 (-640 *6)) (-5 *1 (-1250 *5 *6)))) (-3306 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-640 *2))) (-5 *4 (-640 *5)) (-4 *5 (-38 (-407 (-563)))) (-4 *2 (-1248 *5)) (-5 *1 (-1250 *5 *2)))) (-3296 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) (-4 *4 (-38 (-407 (-563)))))) (-3286 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) (-4 *4 (-38 (-407 (-563)))))) (-3274 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1250 *3 *2)) (-4 *2 (-1248 *3)))) (-3265 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-640 *5))) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-640 (-1149 *4)))) (-5 *1 (-1250 *4 *5)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1248 *4)) (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5))))) -(-10 -7 (-15 -3242 ((-1 (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2|))) (-15 -3253 ((-1 (-1149 |#1|) (-1149 |#1|) (-1149 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3265 ((-1 (-1149 |#1|) (-640 (-1149 |#1|))) (-1 |#2| (-640 |#2|)))) (-15 -3274 (|#2| |#2| |#2|)) (-15 -3286 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3296 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3306 (|#2| (-1 |#2| (-640 |#2|)) (-640 |#1|))) (-15 -3314 ((-640 |#2|) (-640 |#1|) (-640 (-1 |#2| (-640 |#2|)))))) -((-3337 ((|#2| |#4| (-767)) 34)) (-3326 ((|#4| |#2|) 29)) (-3362 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-555)))) (-3348 (((-1 |#4| (-640 |#4|)) |#3|) 46))) -(((-1251 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3326 (|#4| |#2|)) (-15 -3337 (|#2| |#4| (-767))) (-15 -3348 ((-1 |#4| (-640 |#4|)) |#3|)) (IF (|has| |#1| (-555)) (-15 -3362 (|#4| (-407 |#2|))) |%noBranch|)) (-1045) (-1233 |#1|) (-651 |#2|) (-1248 |#1|)) (T -1251)) -((-3362 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-555)) (-4 *4 (-1045)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *5 *6 *2)) (-4 *6 (-651 *5)))) (-3348 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *5 (-1233 *4)) (-5 *2 (-1 *6 (-640 *6))) (-5 *1 (-1251 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1248 *4)))) (-3337 (*1 *2 *3 *4) (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-1251 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1248 *5)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-1045)) (-4 *3 (-1233 *4)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *3 *5 *2)) (-4 *5 (-651 *3))))) -(-10 -7 (-15 -3326 (|#4| |#2|)) (-15 -3337 (|#2| |#4| (-767))) (-15 -3348 ((-1 |#4| (-640 |#4|)) |#3|)) (IF (|has| |#1| (-555)) (-15 -3362 (|#4| (-407 |#2|))) |%noBranch|)) -NIL -(((-1252) (-140)) (T -1252)) -NIL -(-13 (-10 -7 (-6 -2960))) -((-2049 (((-112) $ $) NIL)) (-4040 (((-1169)) 12)) (-1938 (((-1151) $) 18)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 11) (((-1169) $) 8)) (-2943 (((-112) $ $) 15))) -(((-1253 |#1|) (-13 (-1093) (-610 (-1169)) (-10 -8 (-15 -2062 ((-1169) $)) (-15 -4040 ((-1169))))) (-1169)) (T -1253)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))) (-4040 (*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2)))) -(-13 (-1093) (-610 (-1169)) (-10 -8 (-15 -2062 ((-1169) $)) (-15 -4040 ((-1169))))) -((-1696 (($ (-767)) 19)) (-3804 (((-684 |#2|) $ $) 41)) (-3375 ((|#2| $) 51)) (-3322 ((|#2| $) 50)) (-3396 ((|#2| $ $) 36)) (-3387 (($ $ $) 47)) (-3039 (($ $) 23) (($ $ $) 29)) (-3027 (($ $ $) 15)) (* (($ (-563) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) -(((-1254 |#1| |#2|) (-10 -8 (-15 -3375 (|#2| |#1|)) (-15 -3322 (|#2| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -3804 ((-684 |#2|) |#1| |#1|)) (-15 -3396 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -1696 (|#1| (-767))) (-15 -3027 (|#1| |#1| |#1|))) (-1255 |#2|) (-1208)) (T -1254)) -NIL -(-10 -8 (-15 -3375 (|#2| |#1|)) (-15 -3322 (|#2| |#1|)) (-15 -3387 (|#1| |#1| |#1|)) (-15 -3804 ((-684 |#2|) |#1| |#1|)) (-15 -3396 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-563) |#1|)) (-15 -3039 (|#1| |#1| |#1|)) (-15 -3039 (|#1| |#1|)) (-15 -1696 (|#1| (-767))) (-15 -3027 (|#1| |#1| |#1|))) -((-2049 (((-112) $ $) 19 (|has| |#1| (-1093)))) (-1696 (($ (-767)) 112 (|has| |#1| (-23)))) (-1435 (((-1262) $ (-563) (-563)) 40 (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4409))) (($ $) 88 (-12 (|has| |#1| (-846)) (|has| $ (-6 -4409))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) 8)) (-2189 ((|#1| $ (-563) |#1|) 52 (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) 58 (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4408)))) (-3684 (($) 7 T CONST)) (-3934 (($ $) 90 (|has| $ (-6 -4409)))) (-4294 (($ $) 100)) (-1920 (($ $) 78 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-1417 (($ |#1| $) 77 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) 53 (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) 51)) (-2256 (((-563) (-1 (-112) |#1|) $) 97) (((-563) |#1| $) 96 (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) 95 (|has| |#1| (-1093)))) (-4236 (((-640 |#1|) $) 30 (|has| $ (-6 -4408)))) (-3804 (((-684 |#1|) $ $) 105 (|has| |#1| (-1045)))) (-2552 (($ (-767) |#1|) 69)) (-3633 (((-112) $ (-767)) 9)) (-3371 (((-563) $) 43 (|has| (-563) (-846)))) (-3489 (($ $ $) 87 (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) 29 (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-3383 (((-563) $) 44 (|has| (-563) (-846)))) (-4105 (($ $ $) 86 (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3375 ((|#1| $) 102 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-3604 (((-112) $ (-767)) 10)) (-3322 ((|#1| $) 103 (-12 (|has| |#1| (-1045)) (|has| |#1| (-998))))) (-1938 (((-1151) $) 22 (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) 60) (($ $ $ (-563)) 59)) (-3404 (((-640 (-563)) $) 46)) (-3417 (((-112) (-563) $) 47)) (-3249 (((-1113) $) 21 (|has| |#1| (-1093)))) (-1884 ((|#1| $) 42 (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3357 (($ $ |#1|) 41 (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) 14)) (-3392 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) 48)) (-2820 (((-112) $) 11)) (-2749 (($) 12)) (-3858 ((|#1| $ (-563) |#1|) 50) ((|#1| $ (-563)) 49) (($ $ (-1224 (-563))) 63)) (-3396 ((|#1| $ $) 106 (|has| |#1| (-1045)))) (-4159 (($ $ (-563)) 62) (($ $ (-1224 (-563))) 61)) (-3387 (($ $ $) 104 (|has| |#1| (-1045)))) (-3261 (((-767) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4408))) (((-767) |#1| $) 28 (-12 (|has| |#1| (-1093)) (|has| $ (-6 -4408))))) (-2155 (($ $ $ (-563)) 91 (|has| $ (-6 -4409)))) (-2208 (($ $) 13)) (-2802 (((-536) $) 79 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 70)) (-1951 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-640 $)) 65)) (-2062 (((-858) $) 18 (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) 84 (|has| |#1| (-846)))) (-2977 (((-112) $ $) 83 (|has| |#1| (-846)))) (-2943 (((-112) $ $) 20 (|has| |#1| (-1093)))) (-2988 (((-112) $ $) 85 (|has| |#1| (-846)))) (-2966 (((-112) $ $) 82 (|has| |#1| (-846)))) (-3039 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-3027 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-563) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-722))) (($ $ |#1|) 107 (|has| |#1| (-722)))) (-1708 (((-767) $) 6 (|has| $ (-6 -4408))))) -(((-1255 |#1|) (-140) (-1208)) (T -1255)) -((-3027 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-25)))) (-1696 (*1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1255 *3)) (-4 *3 (-23)) (-4 *3 (-1208)))) (-3039 (*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))) (-3039 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) (-3396 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (-3804 (*1 *2 *1 *1) (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-1045)) (-5 *2 (-684 *3)))) (-3387 (*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) (-3322 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) (-4 *2 (-1045)))) (-3375 (*1 *2 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) (-4 *2 (-1045))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -3027 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1696 ($ (-767))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -3039 ($ $)) (-15 -3039 ($ $ $)) (-15 * ($ (-563) $))) |%noBranch|) (IF (|has| |t#1| (-722)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3396 (|t#1| $ $)) (-15 -3804 ((-684 |t#1|) $ $)) (-15 -3387 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-998)) (IF (|has| |t#1| (-1045)) (PROGN (-15 -3322 (|t#1| $)) (-15 -3375 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-610 (-858)) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846)) (|has| |#1| (-610 (-858)))) ((-151 |#1|) . T) ((-611 (-536)) |has| |#1| (-611 (-536))) ((-286 #0=(-563) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-601 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))) ((-646 |#1|) . T) ((-19 |#1|) . T) ((-846) |has| |#1| (-846)) ((-1093) -2811 (|has| |#1| (-1093)) (|has| |#1| (-846))) ((-1208) . T)) -((-3409 (((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|) 13)) (-2532 ((|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|) 15)) (-2751 (((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|)) 30) (((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|)) 18))) -(((-1256 |#1| |#2|) (-10 -7 (-15 -3409 ((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2532 (|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2751 ((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|))) (-15 -2751 ((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|)))) (-1208) (-1208)) (T -1256)) -((-2751 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6)))) (-2751 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6)))) (-2532 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) (-4 *2 (-1208)) (-5 *1 (-1256 *5 *2)))) (-3409 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1257 *6)) (-4 *6 (-1208)) (-4 *5 (-1208)) (-5 *2 (-1257 *5)) (-5 *1 (-1256 *6 *5))))) -(-10 -7 (-15 -3409 ((-1257 |#2|) (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2532 (|#2| (-1 |#2| |#1| |#2|) (-1257 |#1|) |#2|)) (-15 -2751 ((-1257 |#2|) (-1 |#2| |#1|) (-1257 |#1|))) (-15 -2751 ((-3 (-1257 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1257 |#1|)))) -((-2049 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-1696 (($ (-767)) NIL (|has| |#1| (-23)))) (-1329 (($ (-640 |#1|)) 11)) (-1435 (((-1262) $ (-563) (-563)) NIL (|has| $ (-6 -4409)))) (-2162 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-846)))) (-2146 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4409))) (($ $) NIL (-12 (|has| $ (-6 -4409)) (|has| |#1| (-846))))) (-4257 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-846)))) (-3740 (((-112) $ (-767)) NIL)) (-2189 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409))) ((|#1| $ (-1224 (-563)) |#1|) NIL (|has| $ (-6 -4409)))) (-1907 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-3684 (($) NIL T CONST)) (-3934 (($ $) NIL (|has| $ (-6 -4409)))) (-4294 (($ $) NIL)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-1417 (($ |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2532 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4408))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4408)))) (-4150 ((|#1| $ (-563) |#1|) NIL (|has| $ (-6 -4409)))) (-4085 ((|#1| $ (-563)) NIL)) (-2256 (((-563) (-1 (-112) |#1|) $) NIL) (((-563) |#1| $) NIL (|has| |#1| (-1093))) (((-563) |#1| $ (-563)) NIL (|has| |#1| (-1093)))) (-4236 (((-640 |#1|) $) 15 (|has| $ (-6 -4408)))) (-3804 (((-684 |#1|) $ $) NIL (|has| |#1| (-1045)))) (-2552 (($ (-767) |#1|) NIL)) (-3633 (((-112) $ (-767)) NIL)) (-3371 (((-563) $) NIL (|has| (-563) (-846)))) (-3489 (($ $ $) NIL (|has| |#1| (-846)))) (-2383 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-846)))) (-1572 (((-640 |#1|) $) NIL (|has| $ (-6 -4408)))) (-1949 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3383 (((-563) $) NIL (|has| (-563) (-846)))) (-4105 (($ $ $) NIL (|has| |#1| (-846)))) (-4139 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3375 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-3604 (((-112) $ (-767)) NIL)) (-3322 ((|#1| $) NIL (-12 (|has| |#1| (-998)) (|has| |#1| (-1045))))) (-1938 (((-1151) $) NIL (|has| |#1| (-1093)))) (-2530 (($ |#1| $ (-563)) NIL) (($ $ $ (-563)) NIL)) (-3404 (((-640 (-563)) $) NIL)) (-3417 (((-112) (-563) $) NIL)) (-3249 (((-1113) $) NIL (|has| |#1| (-1093)))) (-1884 ((|#1| $) NIL (|has| (-563) (-846)))) (-1828 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3357 (($ $ |#1|) NIL (|has| $ (-6 -4409)))) (-3837 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093)))) (($ $ (-640 |#1|) (-640 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1093))))) (-3752 (((-112) $ $) NIL)) (-3392 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-3427 (((-640 |#1|) $) NIL)) (-2820 (((-112) $) NIL)) (-2749 (($) NIL)) (-3858 ((|#1| $ (-563) |#1|) NIL) ((|#1| $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3396 ((|#1| $ $) NIL (|has| |#1| (-1045)))) (-4159 (($ $ (-563)) NIL) (($ $ (-1224 (-563))) NIL)) (-3387 (($ $ $) NIL (|has| |#1| (-1045)))) (-3261 (((-767) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408))) (((-767) |#1| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#1| (-1093))))) (-2155 (($ $ $ (-563)) NIL (|has| $ (-6 -4409)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) 19 (|has| |#1| (-611 (-536))))) (-2074 (($ (-640 |#1|)) 10)) (-1951 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-640 $)) NIL)) (-2062 (((-858) $) NIL (|has| |#1| (-610 (-858))))) (-3848 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4408)))) (-2998 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2977 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2943 (((-112) $ $) NIL (|has| |#1| (-1093)))) (-2988 (((-112) $ $) NIL (|has| |#1| (-846)))) (-2966 (((-112) $ $) NIL (|has| |#1| (-846)))) (-3039 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-3027 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-563) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-722))) (($ $ |#1|) NIL (|has| |#1| (-722)))) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1257 |#1|) (-13 (-1255 |#1|) (-10 -8 (-15 -1329 ($ (-640 |#1|))))) (-1208)) (T -1257)) -((-1329 (*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1257 *3))))) -(-13 (-1255 |#1|) (-10 -8 (-15 -1329 ($ (-640 |#1|))))) -((-2049 (((-112) $ $) NIL)) (-3614 (((-1151) $ (-1151)) 109) (((-1151) $ (-1151) (-1151)) 107) (((-1151) $ (-1151) (-640 (-1151))) 106)) (-2354 (($) 69)) (-2203 (((-1262) $ (-468) (-917)) 54)) (-1386 (((-1262) $ (-917) (-1151)) 91) (((-1262) $ (-917) (-870)) 92)) (-1743 (((-1262) $ (-917) (-379) (-379)) 57)) (-1538 (((-1262) $ (-1151)) 86)) (-3259 (((-1262) $ (-917) (-1151)) 96)) (-2243 (((-1262) $ (-917) (-379) (-379)) 58)) (-2574 (((-1262) $ (-917) (-917)) 55)) (-3593 (((-1262) $) 87)) (-2265 (((-1262) $ (-917) (-1151)) 95)) (-2297 (((-1262) $ (-468) (-917)) 40)) (-2276 (((-1262) $ (-917) (-1151)) 94)) (-2695 (((-640 (-263)) $) 29) (($ $ (-640 (-263))) 30)) (-2584 (((-1262) $ (-767) (-767)) 52)) (-2341 (($ $) 71) (($ (-468) (-640 (-263))) 72)) (-1938 (((-1151) $) NIL)) (-3320 (((-563) $) 47)) (-3249 (((-1113) $) NIL)) (-2307 (((-1257 (-3 (-468) "undefined")) $) 46)) (-2317 (((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2276 (-563)) (|:| -2253 (-563)) (|:| |spline| (-563)) (|:| -2529 (-563)) (|:| |axesColor| (-870)) (|:| -1386 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $) 45)) (-2329 (((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563)) 85)) (-2364 (((-640 (-939 (-225))) $) NIL)) (-2286 (((-468) $ (-917)) 42)) (-2563 (((-1262) $ (-767) (-767) (-917) (-917)) 50)) (-2540 (((-1262) $ (-1151)) 97)) (-2253 (((-1262) $ (-917) (-1151)) 93)) (-2062 (((-858) $) 104)) (-3028 (((-1262) $) 98)) (-2529 (((-1262) $ (-917) (-1151)) 89) (((-1262) $ (-917) (-870)) 90)) (-2943 (((-112) $ $) NIL))) -(((-1258) (-13 (-1093) (-10 -8 (-15 -2364 ((-640 (-939 (-225))) $)) (-15 -2354 ($)) (-15 -2341 ($ $)) (-15 -2695 ((-640 (-263)) $)) (-15 -2695 ($ $ (-640 (-263)))) (-15 -2341 ($ (-468) (-640 (-263)))) (-15 -2329 ((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563))) (-15 -2317 ((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2276 (-563)) (|:| -2253 (-563)) (|:| |spline| (-563)) (|:| -2529 (-563)) (|:| |axesColor| (-870)) (|:| -1386 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $)) (-15 -2307 ((-1257 (-3 (-468) "undefined")) $)) (-15 -1538 ((-1262) $ (-1151))) (-15 -2297 ((-1262) $ (-468) (-917))) (-15 -2286 ((-468) $ (-917))) (-15 -2529 ((-1262) $ (-917) (-1151))) (-15 -2529 ((-1262) $ (-917) (-870))) (-15 -1386 ((-1262) $ (-917) (-1151))) (-15 -1386 ((-1262) $ (-917) (-870))) (-15 -2276 ((-1262) $ (-917) (-1151))) (-15 -2265 ((-1262) $ (-917) (-1151))) (-15 -2253 ((-1262) $ (-917) (-1151))) (-15 -2540 ((-1262) $ (-1151))) (-15 -3028 ((-1262) $)) (-15 -2563 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -2243 ((-1262) $ (-917) (-379) (-379))) (-15 -1743 ((-1262) $ (-917) (-379) (-379))) (-15 -3259 ((-1262) $ (-917) (-1151))) (-15 -2584 ((-1262) $ (-767) (-767))) (-15 -2203 ((-1262) $ (-468) (-917))) (-15 -2574 ((-1262) $ (-917) (-917))) (-15 -3614 ((-1151) $ (-1151))) (-15 -3614 ((-1151) $ (-1151) (-1151))) (-15 -3614 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -3593 ((-1262) $)) (-15 -3320 ((-563) $)) (-15 -2062 ((-858) $))))) (T -1258)) -((-2062 (*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1258)))) (-2364 (*1 *2 *1) (-12 (-5 *2 (-640 (-939 (-225)))) (-5 *1 (-1258)))) (-2354 (*1 *1) (-5 *1 (-1258))) (-2341 (*1 *1 *1) (-5 *1 (-1258))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) (-2695 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) (-2341 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-640 (-263))) (-5 *1 (-1258)))) (-2329 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-563)) (-5 *6 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2317 (*1 *2 *1) (-12 (-5 *2 (-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2276 (-563)) (|:| -2253 (-563)) (|:| |spline| (-563)) (|:| -2529 (-563)) (|:| |axesColor| (-870)) (|:| -1386 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563))))) (-5 *1 (-1258)))) (-2307 (*1 *2 *1) (-12 (-5 *2 (-1257 (-3 (-468) "undefined"))) (-5 *1 (-1258)))) (-1538 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2297 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1258)))) (-2529 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2529 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1386 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1386 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2276 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2265 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2253 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2540 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2563 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2243 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-1743 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3259 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2584 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2203 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-2574 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3614 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3614 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1258)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1258))))) -(-13 (-1093) (-10 -8 (-15 -2364 ((-640 (-939 (-225))) $)) (-15 -2354 ($)) (-15 -2341 ($ $)) (-15 -2695 ((-640 (-263)) $)) (-15 -2695 ($ $ (-640 (-263)))) (-15 -2341 ($ (-468) (-640 (-263)))) (-15 -2329 ((-1262) $ (-917) (-225) (-225) (-225) (-225) (-563) (-563) (-563) (-563) (-870) (-563) (-870) (-563))) (-15 -2317 ((-1257 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2276 (-563)) (|:| -2253 (-563)) (|:| |spline| (-563)) (|:| -2529 (-563)) (|:| |axesColor| (-870)) (|:| -1386 (-563)) (|:| |unitsColor| (-870)) (|:| |showing| (-563)))) $)) (-15 -2307 ((-1257 (-3 (-468) "undefined")) $)) (-15 -1538 ((-1262) $ (-1151))) (-15 -2297 ((-1262) $ (-468) (-917))) (-15 -2286 ((-468) $ (-917))) (-15 -2529 ((-1262) $ (-917) (-1151))) (-15 -2529 ((-1262) $ (-917) (-870))) (-15 -1386 ((-1262) $ (-917) (-1151))) (-15 -1386 ((-1262) $ (-917) (-870))) (-15 -2276 ((-1262) $ (-917) (-1151))) (-15 -2265 ((-1262) $ (-917) (-1151))) (-15 -2253 ((-1262) $ (-917) (-1151))) (-15 -2540 ((-1262) $ (-1151))) (-15 -3028 ((-1262) $)) (-15 -2563 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -2243 ((-1262) $ (-917) (-379) (-379))) (-15 -1743 ((-1262) $ (-917) (-379) (-379))) (-15 -3259 ((-1262) $ (-917) (-1151))) (-15 -2584 ((-1262) $ (-767) (-767))) (-15 -2203 ((-1262) $ (-468) (-917))) (-15 -2574 ((-1262) $ (-917) (-917))) (-15 -3614 ((-1151) $ (-1151))) (-15 -3614 ((-1151) $ (-1151) (-1151))) (-15 -3614 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -3593 ((-1262) $)) (-15 -3320 ((-563) $)) (-15 -2062 ((-858) $)))) -((-2049 (((-112) $ $) NIL)) (-2479 (((-1262) $ (-379)) 172) (((-1262) $ (-379) (-379) (-379)) 173)) (-3614 (((-1151) $ (-1151)) 180) (((-1151) $ (-1151) (-1151)) 178) (((-1151) $ (-1151) (-640 (-1151))) 177)) (-2622 (($) 67)) (-2551 (((-1262) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1262) $ (-563) (-563) (-379) (-379) (-379)) 147) (((-1262) $ (-379) (-379)) 148) (((-1262) $ (-379) (-379) (-379)) 155)) (-2652 (((-379)) 125) (((-379) (-379)) 126)) (-2675 (((-379)) 120) (((-379) (-379)) 122)) (-2663 (((-379)) 123) (((-379) (-379)) 124)) (-2633 (((-379)) 129) (((-379) (-379)) 130)) (-2643 (((-379)) 127) (((-379) (-379)) 128)) (-1743 (((-1262) $ (-379) (-379)) 174)) (-1538 (((-1262) $ (-1151)) 156)) (-2604 (((-1126 (-225)) $) 68) (($ $ (-1126 (-225))) 69)) (-2438 (((-1262) $ (-1151)) 188)) (-2426 (((-1262) $ (-1151)) 189)) (-2489 (((-1262) $ (-379) (-379)) 154) (((-1262) $ (-563) (-563)) 171)) (-2574 (((-1262) $ (-917) (-917)) 163)) (-3593 (((-1262) $) 140)) (-2470 (((-1262) $ (-1151)) 187)) (-2509 (((-1262) $ (-1151)) 137)) (-2695 (((-640 (-263)) $) 70) (($ $ (-640 (-263))) 71)) (-2584 (((-1262) $ (-767) (-767)) 162)) (-2594 (((-1262) $ (-767) (-939 (-225))) 194)) (-2613 (($ $) 73) (($ (-1126 (-225)) (-1151)) 74) (($ (-1126 (-225)) (-640 (-263))) 75)) (-2402 (((-1262) $ (-379) (-379) (-379)) 134)) (-1938 (((-1151) $) NIL)) (-3320 (((-563) $) 131)) (-2388 (((-1262) $ (-379)) 175)) (-2449 (((-1262) $ (-379)) 192)) (-3249 (((-1113) $) NIL)) (-2460 (((-1262) $ (-379)) 191)) (-2500 (((-1262) $ (-1151)) 139)) (-2563 (((-1262) $ (-767) (-767) (-917) (-917)) 161)) (-2518 (((-1262) $ (-1151)) 136)) (-2540 (((-1262) $ (-1151)) 138)) (-2376 (((-1262) $ (-157) (-157)) 160)) (-2062 (((-858) $) 169)) (-3028 (((-1262) $) 141)) (-2415 (((-1262) $ (-1151)) 190)) (-2529 (((-1262) $ (-1151)) 135)) (-2943 (((-112) $ $) NIL))) -(((-1259) (-13 (-1093) (-10 -8 (-15 -2675 ((-379))) (-15 -2675 ((-379) (-379))) (-15 -2663 ((-379))) (-15 -2663 ((-379) (-379))) (-15 -2652 ((-379))) (-15 -2652 ((-379) (-379))) (-15 -2643 ((-379))) (-15 -2643 ((-379) (-379))) (-15 -2633 ((-379))) (-15 -2633 ((-379) (-379))) (-15 -2622 ($)) (-15 -2613 ($ $)) (-15 -2613 ($ (-1126 (-225)) (-1151))) (-15 -2613 ($ (-1126 (-225)) (-640 (-263)))) (-15 -2604 ((-1126 (-225)) $)) (-15 -2604 ($ $ (-1126 (-225)))) (-15 -2594 ((-1262) $ (-767) (-939 (-225)))) (-15 -2695 ((-640 (-263)) $)) (-15 -2695 ($ $ (-640 (-263)))) (-15 -2584 ((-1262) $ (-767) (-767))) (-15 -2574 ((-1262) $ (-917) (-917))) (-15 -1538 ((-1262) $ (-1151))) (-15 -2563 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -2551 ((-1262) $ (-379) (-379) (-379) (-379) (-379))) (-15 -2551 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2551 ((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2551 ((-1262) $ (-563) (-563) (-379) (-379) (-379))) (-15 -2551 ((-1262) $ (-379) (-379))) (-15 -2551 ((-1262) $ (-379) (-379) (-379))) (-15 -2540 ((-1262) $ (-1151))) (-15 -2529 ((-1262) $ (-1151))) (-15 -2518 ((-1262) $ (-1151))) (-15 -2509 ((-1262) $ (-1151))) (-15 -2500 ((-1262) $ (-1151))) (-15 -2489 ((-1262) $ (-379) (-379))) (-15 -2489 ((-1262) $ (-563) (-563))) (-15 -2479 ((-1262) $ (-379))) (-15 -2479 ((-1262) $ (-379) (-379) (-379))) (-15 -1743 ((-1262) $ (-379) (-379))) (-15 -2470 ((-1262) $ (-1151))) (-15 -2460 ((-1262) $ (-379))) (-15 -2449 ((-1262) $ (-379))) (-15 -2438 ((-1262) $ (-1151))) (-15 -2426 ((-1262) $ (-1151))) (-15 -2415 ((-1262) $ (-1151))) (-15 -2402 ((-1262) $ (-379) (-379) (-379))) (-15 -2388 ((-1262) $ (-379))) (-15 -3593 ((-1262) $)) (-15 -2376 ((-1262) $ (-157) (-157))) (-15 -3614 ((-1151) $ (-1151))) (-15 -3614 ((-1151) $ (-1151) (-1151))) (-15 -3614 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -3028 ((-1262) $)) (-15 -3320 ((-563) $))))) (T -1259)) -((-2675 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2675 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2663 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2663 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2652 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2652 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2643 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2643 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2633 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2633 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) (-2622 (*1 *1) (-5 *1 (-1259))) (-2613 (*1 *1 *1) (-5 *1 (-1259))) (-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1151)) (-5 *1 (-1259)))) (-2613 (*1 *1 *2 *3) (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-640 (-263))) (-5 *1 (-1259)))) (-2604 (*1 *2 *1) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))) (-2604 (*1 *1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))) (-2594 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))) (-2695 (*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))) (-2584 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2574 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1538 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2563 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2551 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2551 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1259)))) (-2551 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2551 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-563)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2551 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2551 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2540 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2529 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2518 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2509 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2500 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2489 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2489 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2479 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2479 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-1743 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2470 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2460 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2449 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2438 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2426 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2415 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2402 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2388 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3593 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))) (-2376 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3614 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) (-3614 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) (-3614 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1259)))) (-3028 (*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1259))))) -(-13 (-1093) (-10 -8 (-15 -2675 ((-379))) (-15 -2675 ((-379) (-379))) (-15 -2663 ((-379))) (-15 -2663 ((-379) (-379))) (-15 -2652 ((-379))) (-15 -2652 ((-379) (-379))) (-15 -2643 ((-379))) (-15 -2643 ((-379) (-379))) (-15 -2633 ((-379))) (-15 -2633 ((-379) (-379))) (-15 -2622 ($)) (-15 -2613 ($ $)) (-15 -2613 ($ (-1126 (-225)) (-1151))) (-15 -2613 ($ (-1126 (-225)) (-640 (-263)))) (-15 -2604 ((-1126 (-225)) $)) (-15 -2604 ($ $ (-1126 (-225)))) (-15 -2594 ((-1262) $ (-767) (-939 (-225)))) (-15 -2695 ((-640 (-263)) $)) (-15 -2695 ($ $ (-640 (-263)))) (-15 -2584 ((-1262) $ (-767) (-767))) (-15 -2574 ((-1262) $ (-917) (-917))) (-15 -1538 ((-1262) $ (-1151))) (-15 -2563 ((-1262) $ (-767) (-767) (-917) (-917))) (-15 -2551 ((-1262) $ (-379) (-379) (-379) (-379) (-379))) (-15 -2551 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2551 ((-1262) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2551 ((-1262) $ (-563) (-563) (-379) (-379) (-379))) (-15 -2551 ((-1262) $ (-379) (-379))) (-15 -2551 ((-1262) $ (-379) (-379) (-379))) (-15 -2540 ((-1262) $ (-1151))) (-15 -2529 ((-1262) $ (-1151))) (-15 -2518 ((-1262) $ (-1151))) (-15 -2509 ((-1262) $ (-1151))) (-15 -2500 ((-1262) $ (-1151))) (-15 -2489 ((-1262) $ (-379) (-379))) (-15 -2489 ((-1262) $ (-563) (-563))) (-15 -2479 ((-1262) $ (-379))) (-15 -2479 ((-1262) $ (-379) (-379) (-379))) (-15 -1743 ((-1262) $ (-379) (-379))) (-15 -2470 ((-1262) $ (-1151))) (-15 -2460 ((-1262) $ (-379))) (-15 -2449 ((-1262) $ (-379))) (-15 -2438 ((-1262) $ (-1151))) (-15 -2426 ((-1262) $ (-1151))) (-15 -2415 ((-1262) $ (-1151))) (-15 -2402 ((-1262) $ (-379) (-379) (-379))) (-15 -2388 ((-1262) $ (-379))) (-15 -3593 ((-1262) $)) (-15 -2376 ((-1262) $ (-157) (-157))) (-15 -3614 ((-1151) $ (-1151))) (-15 -3614 ((-1151) $ (-1151) (-1151))) (-15 -3614 ((-1151) $ (-1151) (-640 (-1151)))) (-15 -3028 ((-1262) $)) (-15 -3320 ((-563) $)))) -((-2761 (((-640 (-1151)) (-640 (-1151))) 104) (((-640 (-1151))) 96)) (-2772 (((-640 (-1151))) 94)) (-2742 (((-640 (-917)) (-640 (-917))) 69) (((-640 (-917))) 64)) (-2733 (((-640 (-767)) (-640 (-767))) 61) (((-640 (-767))) 55)) (-2752 (((-1262)) 71)) (-2792 (((-917) (-917)) 87) (((-917)) 86)) (-2782 (((-917) (-917)) 85) (((-917)) 84)) (-2714 (((-870) (-870)) 81) (((-870)) 80)) (-2815 (((-225)) 91) (((-225) (-379)) 93)) (-2805 (((-917)) 88) (((-917) (-917)) 89)) (-2721 (((-917) (-917)) 83) (((-917)) 82)) (-2683 (((-870) (-870)) 75) (((-870)) 73)) (-2692 (((-870) (-870)) 77) (((-870)) 76)) (-2703 (((-870) (-870)) 79) (((-870)) 78))) -(((-1260) (-10 -7 (-15 -2683 ((-870))) (-15 -2683 ((-870) (-870))) (-15 -2692 ((-870))) (-15 -2692 ((-870) (-870))) (-15 -2703 ((-870))) (-15 -2703 ((-870) (-870))) (-15 -2714 ((-870))) (-15 -2714 ((-870) (-870))) (-15 -2721 ((-917))) (-15 -2721 ((-917) (-917))) (-15 -2733 ((-640 (-767)))) (-15 -2733 ((-640 (-767)) (-640 (-767)))) (-15 -2742 ((-640 (-917)))) (-15 -2742 ((-640 (-917)) (-640 (-917)))) (-15 -2752 ((-1262))) (-15 -2761 ((-640 (-1151)))) (-15 -2761 ((-640 (-1151)) (-640 (-1151)))) (-15 -2772 ((-640 (-1151)))) (-15 -2782 ((-917))) (-15 -2792 ((-917))) (-15 -2782 ((-917) (-917))) (-15 -2792 ((-917) (-917))) (-15 -2805 ((-917) (-917))) (-15 -2805 ((-917))) (-15 -2815 ((-225) (-379))) (-15 -2815 ((-225))))) (T -1260)) -((-2815 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1260)))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1260)))) (-2805 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2805 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2792 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2792 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2782 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2772 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-2761 (*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-2761 (*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) (-2752 (*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1260)))) (-2742 (*1 *2 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))) (-2742 (*1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))) (-2733 (*1 *2 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))) (-2733 (*1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))) (-2721 (*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2721 (*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) (-2714 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-2714 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-2703 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-2703 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-2692 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-2692 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-2683 (*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) (-2683 (*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) -(-10 -7 (-15 -2683 ((-870))) (-15 -2683 ((-870) (-870))) (-15 -2692 ((-870))) (-15 -2692 ((-870) (-870))) (-15 -2703 ((-870))) (-15 -2703 ((-870) (-870))) (-15 -2714 ((-870))) (-15 -2714 ((-870) (-870))) (-15 -2721 ((-917))) (-15 -2721 ((-917) (-917))) (-15 -2733 ((-640 (-767)))) (-15 -2733 ((-640 (-767)) (-640 (-767)))) (-15 -2742 ((-640 (-917)))) (-15 -2742 ((-640 (-917)) (-640 (-917)))) (-15 -2752 ((-1262))) (-15 -2761 ((-640 (-1151)))) (-15 -2761 ((-640 (-1151)) (-640 (-1151)))) (-15 -2772 ((-640 (-1151)))) (-15 -2782 ((-917))) (-15 -2792 ((-917))) (-15 -2782 ((-917) (-917))) (-15 -2792 ((-917) (-917))) (-15 -2805 ((-917) (-917))) (-15 -2805 ((-917))) (-15 -2815 ((-225) (-379))) (-15 -2815 ((-225)))) -((-3420 (((-468) (-640 (-640 (-939 (-225)))) (-640 (-263))) 22) (((-468) (-640 (-640 (-939 (-225))))) 21) (((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263))) 20)) (-2232 (((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263))) 33) (((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263))) 32)) (-2062 (((-1258) (-468)) 48))) -(((-1261) (-10 -7 (-15 -3420 ((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -3420 ((-468) (-640 (-640 (-939 (-225)))))) (-15 -3420 ((-468) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -2232 ((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -2232 ((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -2062 ((-1258) (-468))))) (T -1261)) -((-2062 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-2232 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-2232 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-1261)))) (-3420 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-468)) (-5 *1 (-1261)))) (-3420 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261))))) -(-10 -7 (-15 -3420 ((-468) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -3420 ((-468) (-640 (-640 (-939 (-225)))))) (-15 -3420 ((-468) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -2232 ((-1258) (-640 (-640 (-939 (-225)))) (-870) (-870) (-917) (-640 (-263)))) (-15 -2232 ((-1258) (-640 (-640 (-939 (-225)))) (-640 (-263)))) (-15 -2062 ((-1258) (-468)))) -((-3986 (($) 7)) (-2062 (((-858) $) 10))) -(((-1262) (-13 (-610 (-858)) (-10 -8 (-15 -3986 ($))))) (T -1262)) -((-3986 (*1 *1) (-5 *1 (-1262)))) -(-13 (-610 (-858)) (-10 -8 (-15 -3986 ($)))) -((-3050 (($ $ |#2|) 10))) -(((-1263 |#1| |#2|) (-10 -8 (-15 -3050 (|#1| |#1| |#2|))) (-1264 |#2|) (-363)) (T -1263)) -NIL -(-10 -8 (-15 -3050 (|#1| |#1| |#2|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1575 (((-134)) 28)) (-2062 (((-858) $) 11)) (-3790 (($) 18 T CONST)) (-2943 (((-112) $ $) 6)) (-3050 (($ $ |#1|) 29)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) -(((-1264 |#1|) (-140) (-363)) (T -1264)) -((-3050 (*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-363)))) (-1575 (*1 *2) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) -(-13 (-713 |t#1|) (-10 -8 (-15 -3050 ($ $ |t#1|)) (-15 -1575 ((-134))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-713 |#1|) . T) ((-1051 |#1|) . T) ((-1093) . T)) -((-1637 (((-640 (-1202 |#1|)) (-1169) (-1202 |#1|)) 83)) (-1612 (((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|))) 63)) (-1649 (((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|))) 74)) (-1587 (((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767)) 65)) (-1624 (((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169)) 32)) (-1599 (((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767)) 64))) -(((-1265 |#1|) (-10 -7 (-15 -1587 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -1599 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -1612 ((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|)))) (-15 -1624 ((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169))) (-15 -1637 ((-640 (-1202 |#1|)) (-1169) (-1202 |#1|))) (-15 -1649 ((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|))))) (-363)) (T -1265)) -((-1649 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1202 *6)) (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1265 *6)) (-5 *5 (-1149 *4)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-640 (-1202 *5))) (-5 *1 (-1265 *5)) (-5 *4 (-1202 *5)))) (-1624 (*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1 (-1165 (-948 *4)) (-948 *4))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))) (-1612 (*1 *2 *3 *4) (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-1149 (-1149 (-948 *5)))) (-5 *1 (-1265 *5)) (-5 *4 (-1149 (-948 *5))))) (-1599 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) (-5 *1 (-1265 *4)) (-4 *4 (-363)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) (-5 *1 (-1265 *4)) (-4 *4 (-363))))) -(-10 -7 (-15 -1587 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -1599 ((-1 (-1149 (-948 |#1|)) (-1149 (-948 |#1|))) (-767))) (-15 -1612 ((-1149 (-1149 (-948 |#1|))) (-1169) (-1149 (-948 |#1|)))) (-15 -1624 ((-1 (-1165 (-948 |#1|)) (-948 |#1|)) (-1169))) (-15 -1637 ((-640 (-1202 |#1|)) (-1169) (-1202 |#1|))) (-15 -1649 ((-1 (-1149 (-1202 |#1|)) (-1149 (-1202 |#1|))) (-767) (-1202 |#1|) (-1149 (-1202 |#1|))))) -((-1672 (((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|) 85)) (-1661 (((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|)))) 84))) -(((-1266 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1661 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -1672 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|))) (-349) (-1233 |#1|) (-1233 |#2|) (-409 |#2| |#3|)) (T -1266)) -((-1672 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) (-5 *2 (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-684 *3)))) (-5 *1 (-1266 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-1661 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) (-5 *2 (-2 (|:| -3288 (-684 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-684 *4)))) (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) -(-10 -7 (-15 -1661 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))))) (-15 -1672 ((-2 (|:| -3288 (-684 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-684 |#2|))) |#2|))) -((-2049 (((-112) $ $) NIL)) (-1684 (((-1128) $) 11)) (-1697 (((-1128) $) 9)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 19) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-1267) (-13 (-1076) (-10 -8 (-15 -1697 ((-1128) $)) (-15 -1684 ((-1128) $))))) (T -1267)) -((-1697 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267)))) (-1684 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267))))) -(-13 (-1076) (-10 -8 (-15 -1697 ((-1128) $)) (-15 -1684 ((-1128) $)))) -((-2049 (((-112) $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-4306 (((-1128) $) 9)) (-2062 (((-858) $) 17) (($ (-1174)) NIL) (((-1174) $) NIL)) (-2943 (((-112) $ $) NIL))) -(((-1268) (-13 (-1076) (-10 -8 (-15 -4306 ((-1128) $))))) (T -1268)) -((-4306 (*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1268))))) -(-13 (-1076) (-10 -8 (-15 -4306 ((-1128) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 56)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) NIL)) (-2712 (((-112) $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-2062 (((-858) $) 79) (($ (-563)) NIL) (($ |#4|) 63) ((|#4| $) 68) (($ |#1|) NIL (|has| |#1| (-172)))) (-3192 (((-767)) NIL T CONST)) (-1709 (((-1262) (-767)) 16)) (-3790 (($) 37 T CONST)) (-3803 (($) 82 T CONST)) (-2943 (((-112) $ $) 85)) (-3050 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-3039 (($ $) 87) (($ $ $) NIL)) (-3027 (($ $ $) 61)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 89) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) -(((-1269 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3050 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1709 ((-1262) (-767))))) (-1045) (-846) (-789) (-945 |#1| |#3| |#2|) (-640 |#2|) (-640 (-767)) (-767)) (T -1269)) -((-3050 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) (-4 *4 (-789)) (-14 *6 (-640 *3)) (-5 *1 (-1269 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3)) (-14 *7 (-640 (-767))) (-14 *8 (-767)))) (-1709 (*1 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) (-14 *8 (-640 *5)) (-5 *2 (-1262)) (-5 *1 (-1269 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5)) (-14 *9 (-640 *3)) (-14 *10 *3)))) -(-13 (-1045) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -3050 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1709 ((-1262) (-767))))) -((-2049 (((-112) $ $) NIL)) (-1343 (((-640 (-2 (|:| -3028 $) (|:| -1934 (-640 |#4|)))) (-640 |#4|)) NIL)) (-1353 (((-640 $) (-640 |#4|)) 95)) (-2185 (((-640 |#3|) $) NIL)) (-1556 (((-112) $) NIL)) (-1456 (((-112) $) NIL (|has| |#1| (-555)))) (-1469 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1413 ((|#4| |#4| $) NIL)) (-4257 (((-2 (|:| |under| $) (|:| -3233 $) (|:| |upper| $)) $ |#3|) NIL)) (-3740 (((-112) $ (-767)) NIL)) (-1907 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408))) (((-3 |#4| "failed") $ |#3|) NIL)) (-3684 (($) NIL T CONST)) (-1512 (((-112) $) NIL (|has| |#1| (-555)))) (-1534 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1523 (((-112) $ $) NIL (|has| |#1| (-555)))) (-1545 (((-112) $) NIL (|has| |#1| (-555)))) (-1426 (((-640 |#4|) (-640 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 30)) (-1466 (((-640 |#4|) (-640 |#4|) $) 27 (|has| |#1| (-555)))) (-1477 (((-640 |#4|) (-640 |#4|) $) NIL (|has| |#1| (-555)))) (-2671 (((-3 $ "failed") (-640 |#4|)) NIL)) (-2589 (($ (-640 |#4|)) NIL)) (-1897 (((-3 $ "failed") $) 77)) (-1384 ((|#4| |#4| $) 82)) (-1920 (($ $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1417 (($ |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1488 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-1480 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-1365 ((|#4| |#4| $) NIL)) (-2532 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4408))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4408))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1502 (((-2 (|:| -3028 (-640 |#4|)) (|:| -1934 (-640 |#4|))) $) NIL)) (-4236 (((-640 |#4|) $) NIL (|has| $ (-6 -4408)))) (-1491 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2674 ((|#3| $) 83)) (-3633 (((-112) $ (-767)) NIL)) (-1572 (((-640 |#4|) $) 31 (|has| $ (-6 -4408)))) (-1949 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093))))) (-1750 (((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 34) (((-3 $ "failed") (-640 |#4|)) 37)) (-4139 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4409)))) (-2751 (($ (-1 |#4| |#4|) $) NIL)) (-1616 (((-640 |#3|) $) NIL)) (-1602 (((-112) |#3| $) NIL)) (-3604 (((-112) $ (-767)) NIL)) (-1938 (((-1151) $) NIL)) (-1442 (((-3 |#4| "failed") $) NIL)) (-1514 (((-640 |#4|) $) 53)) (-1447 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1395 ((|#4| |#4| $) 81)) (-3449 (((-112) $ $) 92)) (-1500 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-555)))) (-1458 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-1405 ((|#4| |#4| $) NIL)) (-3249 (((-1113) $) NIL)) (-1884 (((-3 |#4| "failed") $) 76)) (-1828 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-1323 (((-3 $ "failed") $ |#4|) NIL)) (-2884 (($ $ |#4|) NIL)) (-3837 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1497 (($ $ (-640 |#4|) (-640 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093)))) (($ $ (-640 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1093))))) (-3752 (((-112) $ $) NIL)) (-2820 (((-112) $) 74)) (-2749 (($) 45)) (-1962 (((-767) $) NIL)) (-3261 (((-767) |#4| $) NIL (-12 (|has| $ (-6 -4408)) (|has| |#4| (-1093)))) (((-767) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-2208 (($ $) NIL)) (-2802 (((-536) $) NIL (|has| |#4| (-611 (-536))))) (-2074 (($ (-640 |#4|)) NIL)) (-1566 (($ $ |#3|) NIL)) (-1591 (($ $ |#3|) NIL)) (-1373 (($ $) NIL)) (-1579 (($ $ |#3|) NIL)) (-2062 (((-858) $) NIL) (((-640 |#4|) $) 62)) (-1313 (((-767) $) NIL (|has| |#3| (-368)))) (-1735 (((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43) (((-3 $ "failed") (-640 |#4|)) 44)) (-1721 (((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72) (((-640 $) (-640 |#4|)) 73)) (-3438 (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4| |#4|)) 26) (((-3 (-2 (|:| |bas| $) (|:| -3796 (-640 |#4|))) "failed") (-640 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1438 (((-112) $ (-1 (-112) |#4| (-640 |#4|))) NIL)) (-3848 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4408)))) (-1333 (((-640 |#3|) $) NIL)) (-1833 (((-112) |#3| $) NIL)) (-2943 (((-112) $ $) NIL)) (-1708 (((-767) $) NIL (|has| $ (-6 -4408))))) -(((-1270 |#1| |#2| |#3| |#4|) (-13 (-1201 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1750 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1750 ((-3 $ "failed") (-640 |#4|))) (-15 -1735 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1735 ((-3 $ "failed") (-640 |#4|))) (-15 -1721 ((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1721 ((-640 $) (-640 |#4|))))) (-555) (-789) (-846) (-1059 |#1| |#2| |#3|)) (T -1270)) -((-1750 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))) (-1750 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6)))) (-1735 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8)))) (-1735 (*1 *1 *2) (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1270 *3 *4 *5 *6)))) (-1721 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-640 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-640 (-1270 *6 *7 *8 *9))) (-5 *1 (-1270 *6 *7 *8 *9)))) (-1721 (*1 *2 *3) (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-1270 *4 *5 *6 *7))) (-5 *1 (-1270 *4 *5 *6 *7))))) -(-13 (-1201 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1750 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1750 ((-3 $ "failed") (-640 |#4|))) (-15 -1735 ((-3 $ "failed") (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1735 ((-3 $ "failed") (-640 |#4|))) (-15 -1721 ((-640 $) (-640 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1721 ((-640 $) (-640 |#4|))))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1482 (((-3 $ "failed") $ $) 19)) (-3684 (($) 17 T CONST)) (-3230 (((-3 $ "failed") $) 33)) (-2712 (((-112) $) 31)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#1|) 39)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) -(((-1271 |#1|) (-140) (-1045)) (T -1271)) -NIL -(-13 (-1045) (-111 |t#1| |t#1|) (-613 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-610 (-858)) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 |#1|) |has| |#1| (-172)) ((-722) . T) ((-1051 |#1|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T)) -((-2049 (((-112) $ $) 66)) (-2741 (((-112) $) NIL)) (-1347 (((-640 |#1|) $) 52)) (-1950 (($ $ (-767)) 46)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1844 (($ $ (-767)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-3684 (($) NIL T CONST)) (-1885 (($ $ $) 69) (($ $ (-815 |#1|)) 55) (($ $ |#1|) 59)) (-2671 (((-3 (-815 |#1|) "failed") $) NIL)) (-2589 (((-815 |#1|) $) NIL)) (-3213 (($ $) 39)) (-3230 (((-3 $ "failed") $) NIL)) (-1986 (((-112) $) NIL)) (-1973 (($ $) NIL)) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-1576 (($ (-815 |#1|) |#2|) 38)) (-1857 (($ $) 40)) (-1914 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 12)) (-2010 (((-815 |#1|) $) NIL)) (-2022 (((-815 |#1|) $) 41)) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-1899 (($ $ $) 68) (($ $ (-815 |#1|)) 57) (($ $ |#1|) 61)) (-2325 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3183 (((-815 |#1|) $) 35)) (-3193 ((|#2| $) 37)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1962 (((-767) $) 43)) (-1998 (((-112) $) 47)) (-2495 ((|#2| $) NIL)) (-2062 (((-858) $) NIL) (($ (-815 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-563)) NIL)) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ (-815 |#1|)) NIL)) (-2765 ((|#2| $ $) 75) ((|#2| $ (-815 |#1|)) NIL)) (-3192 (((-767)) NIL T CONST)) (-3790 (($) 13 T CONST)) (-3803 (($) 19 T CONST)) (-4025 (((-640 (-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2943 (((-112) $ $) 44)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 28)) (** (($ $ (-767)) NIL) (($ $ (-917)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 67) (($ |#2| (-815 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) -(((-1272 |#1| |#2|) (-13 (-382 |#2| (-815 |#1|)) (-1278 |#1| |#2|)) (-846) (-1045)) (T -1272)) -NIL -(-13 (-382 |#2| (-815 |#1|)) (-1278 |#1| |#2|)) -((-2497 ((|#3| |#3| (-767)) 30)) (-3177 ((|#3| |#3| (-767)) 36)) (-1761 ((|#3| |#3| |#3| (-767)) 37))) -(((-1273 |#1| |#2| |#3|) (-10 -7 (-15 -3177 (|#3| |#3| (-767))) (-15 -2497 (|#3| |#3| (-767))) (-15 -1761 (|#3| |#3| |#3| (-767)))) (-13 (-1045) (-713 (-407 (-563)))) (-846) (-1278 |#2| |#1|)) (T -1273)) -((-1761 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) (-2497 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) (-3177 (*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4))))) -(-10 -7 (-15 -3177 (|#3| |#3| (-767))) (-15 -2497 (|#3| |#3| (-767))) (-15 -1761 (|#3| |#3| |#3| (-767)))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1347 (((-640 |#1|) $) 41)) (-1482 (((-3 $ "failed") $ $) 19)) (-1844 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-3684 (($) 17 T CONST)) (-1885 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-2671 (((-3 (-815 |#1|) "failed") $) 65)) (-2589 (((-815 |#1|) $) 66)) (-3230 (((-3 $ "failed") $) 33)) (-1986 (((-112) $) 46)) (-1973 (($ $) 45)) (-2712 (((-112) $) 31)) (-1871 (((-112) $) 51)) (-1576 (($ (-815 |#1|) |#2|) 52)) (-1857 (($ $) 50)) (-1914 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-2010 (((-815 |#1|) $) 62)) (-2751 (($ (-1 |#2| |#2|) $) 42)) (-1899 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1998 (((-112) $) 48)) (-2495 ((|#2| $) 47)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-2765 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1274 |#1| |#2|) (-140) (-846) (-1045)) (T -1274)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-2010 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-1914 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4))))) (-2765 (*1 *2 *1 *3) (-12 (-5 *3 (-815 *4)) (-4 *1 (-1274 *4 *2)) (-4 *4 (-846)) (-4 *2 (-1045)))) (-2765 (*1 *2 *1 *1) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-1899 (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-1899 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1885 (*1 *1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1885 (*1 *1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-1885 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1576 (*1 *1 *2 *3) (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1274 *4 *3)) (-4 *3 (-1045)))) (-1871 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-1857 (*1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-2062 (*1 *1 *2) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1998 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-2495 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-112)))) (-1973 (*1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) (-1844 (*1 *1 *1 *1) (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) (-4 *3 (-172)))) (-1844 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-4 *4 (-172)))) (-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-1347 (*1 *2 *1) (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-640 *3))))) -(-13 (-1045) (-1271 |t#2|) (-1034 (-815 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2010 ((-815 |t#1|) $)) (-15 -1914 ((-2 (|:| |k| (-815 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2765 (|t#2| $ (-815 |t#1|))) (-15 -2765 (|t#2| $ $)) (-15 -1899 ($ $ |t#1|)) (-15 -1899 ($ $ (-815 |t#1|))) (-15 -1899 ($ $ $)) (-15 -1885 ($ $ |t#1|)) (-15 -1885 ($ $ (-815 |t#1|))) (-15 -1885 ($ $ $)) (-15 -1576 ($ (-815 |t#1|) |t#2|)) (-15 -1871 ((-112) $)) (-15 -1857 ($ $)) (-15 -2062 ($ |t#1|)) (-15 -1998 ((-112) $)) (-15 -2495 (|t#2| $)) (-15 -1986 ((-112) $)) (-15 -1973 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1844 ($ $ $)) (-15 -1844 ($ $ (-767)))) |%noBranch|) (-15 -2751 ($ (-1 |t#2| |t#2|) $)) (-15 -1347 ((-640 |t#1|) $)) (IF (|has| |t#2| (-6 -4401)) (-6 -4401) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 #0=(-815 |#1|)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-643 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1271 |#2|) . T)) -((-1819 (((-112) $) 14)) (-1833 (((-112) $) 13)) (-1772 (($ $) 18) (($ $ (-767)) 20))) -(((-1275 |#1| |#2|) (-10 -8 (-15 -1772 (|#1| |#1| (-767))) (-15 -1772 (|#1| |#1|)) (-15 -1819 ((-112) |#1|)) (-15 -1833 ((-112) |#1|))) (-1276 |#2|) (-363)) (T -1275)) -NIL -(-10 -8 (-15 -1772 (|#1| |#1| (-767))) (-15 -1772 (|#1| |#1|)) (-15 -1819 ((-112) |#1|)) (-15 -1833 ((-112) |#1|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-2565 (((-2 (|:| -2570 $) (|:| -4395 $) (|:| |associate| $)) $) 42)) (-2554 (($ $) 41)) (-2533 (((-112) $) 39)) (-1819 (((-112) $) 95)) (-1785 (((-767)) 91)) (-1482 (((-3 $ "failed") $ $) 19)) (-2924 (($ $) 74)) (-2102 (((-418 $) $) 73)) (-4332 (((-112) $ $) 60)) (-3684 (($) 17 T CONST)) (-2671 (((-3 |#1| "failed") $) 102)) (-2589 ((|#1| $) 103)) (-3495 (($ $ $) 56)) (-3230 (((-3 $ "failed") $) 33)) (-3473 (($ $ $) 57)) (-3597 (((-2 (|:| -2765 (-640 $)) (|:| -1738 $)) (-640 $)) 52)) (-2506 (($ $ (-767)) 88 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3675 (((-112) $) 72)) (-2903 (((-829 (-917)) $) 85 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-2712 (((-112) $) 31)) (-4299 (((-3 (-640 $) "failed") (-640 $) $) 53)) (-1607 (($ $ $) 47) (($ (-640 $)) 46)) (-1938 (((-1151) $) 9)) (-3149 (($ $) 71)) (-1808 (((-112) $) 94)) (-3249 (((-1113) $) 10)) (-1335 (((-1165 $) (-1165 $) (-1165 $)) 45)) (-1647 (($ $ $) 49) (($ (-640 $)) 48)) (-2055 (((-418 $) $) 75)) (-1797 (((-829 (-917))) 92)) (-4311 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1738 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-3448 (((-3 $ "failed") $ $) 43)) (-3586 (((-3 (-640 $) "failed") (-640 $) $) 51)) (-4322 (((-767) $) 59)) (-2588 (((-2 (|:| -2896 $) (|:| -1488 $)) $ $) 58)) (-2515 (((-3 (-767) "failed") $ $) 86 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-1575 (((-134)) 100)) (-1962 (((-829 (-917)) $) 93)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ $) 44) (($ (-407 (-563))) 67) (($ |#1|) 101)) (-4376 (((-3 $ "failed") $) 84 (-2811 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3192 (((-767)) 28 T CONST)) (-2543 (((-112) $ $) 40)) (-1833 (((-112) $) 96)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-1772 (($ $) 90 (|has| |#1| (-368))) (($ $ (-767)) 89 (|has| |#1| (-368)))) (-2943 (((-112) $ $) 6)) (-3050 (($ $ $) 66) (($ $ |#1|) 99)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32) (($ $ (-563)) 70)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ $ (-407 (-563))) 69) (($ (-407 (-563)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) -(((-1276 |#1|) (-140) (-363)) (T -1276)) -((-1833 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1819 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1808 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-1797 (*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) (-1785 (*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-767)))) (-1772 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-1772 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-4 *3 (-368))))) -(-13 (-363) (-1034 |t#1|) (-1264 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -1833 ((-112) $)) (-15 -1819 ((-112) $)) (-15 -1808 ((-112) $)) (-15 -1962 ((-829 (-917)) $)) (-15 -1797 ((-829 (-917)))) (-15 -1785 ((-767))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -1772 ($ $)) (-15 -1772 ($ $ (-767)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-563))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -2811 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-613 #0#) . T) ((-613 (-563)) . T) ((-613 |#1|) . T) ((-613 $) . T) ((-610 (-858)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -2811 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-555) . T) ((-643 #0#) . T) ((-643 |#1|) . T) ((-643 $) . T) ((-713 #0#) . T) ((-713 |#1|) . T) ((-713 $) . T) ((-722) . T) ((-916) . T) ((-1034 |#1|) . T) ((-1051 #0#) . T) ((-1051 |#1|) . T) ((-1051 $) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1212) . T) ((-1264 |#1|) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1347 (((-640 |#1|) $) 98)) (-1950 (($ $ (-767)) 102)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1844 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-767)) NIL (|has| |#2| (-172)))) (-3684 (($) NIL T CONST)) (-1885 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-2671 (((-3 (-815 |#1|) "failed") $) NIL) (((-3 (-889 |#1|) "failed") $) NIL)) (-2589 (((-815 |#1|) $) NIL) (((-889 |#1|) $) NIL)) (-3213 (($ $) 101)) (-3230 (((-3 $ "failed") $) NIL)) (-1986 (((-112) $) 90)) (-1973 (($ $) 93)) (-1927 (($ $ $ (-767)) 103)) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-1576 (($ (-815 |#1|) |#2|) NIL) (($ (-889 |#1|) |#2|) 28)) (-1857 (($ $) 120)) (-1914 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2010 (((-815 |#1|) $) NIL)) (-2022 (((-815 |#1|) $) NIL)) (-2751 (($ (-1 |#2| |#2|) $) NIL)) (-1899 (($ $ |#1|) NIL) (($ $ (-815 |#1|)) NIL) (($ $ $) NIL)) (-2497 (($ $ (-767)) 113 (|has| |#2| (-713 (-407 (-563)))))) (-2325 (((-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3183 (((-889 |#1|) $) 83)) (-3193 ((|#2| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-3177 (($ $ (-767)) 110 (|has| |#2| (-713 (-407 (-563)))))) (-1962 (((-767) $) 99)) (-1998 (((-112) $) 84)) (-2495 ((|#2| $) 88)) (-2062 (((-858) $) 69) (($ (-563)) NIL) (($ |#2|) 59) (($ (-815 |#1|)) NIL) (($ |#1|) 71) (($ (-889 |#1|)) NIL) (($ (-659 |#1| |#2|)) 47) (((-1272 |#1| |#2|) $) 76) (((-1281 |#1| |#2|) $) 81)) (-3234 (((-640 |#2|) $) NIL)) (-1304 ((|#2| $ (-889 |#1|)) NIL)) (-2765 ((|#2| $ (-815 |#1|)) NIL) ((|#2| $ $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3790 (($) 21 T CONST)) (-3803 (($) 27 T CONST)) (-4025 (((-640 (-2 (|:| |k| (-889 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1939 (((-3 (-659 |#1| |#2|) "failed") $) 119)) (-2943 (((-112) $ $) 77)) (-3039 (($ $) 112) (($ $ $) 111)) (-3027 (($ $ $) 20)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 48) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-889 |#1|)) NIL))) -(((-1277 |#1| |#2|) (-13 (-1278 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -2062 ($ (-659 |#1| |#2|))) (-15 -2062 ((-1272 |#1| |#2|) $)) (-15 -2062 ((-1281 |#1| |#2|) $)) (-15 -1939 ((-3 (-659 |#1| |#2|) "failed") $)) (-15 -1927 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-563)))) (PROGN (-15 -3177 ($ $ (-767))) (-15 -2497 ($ $ (-767)))) |%noBranch|))) (-846) (-172)) (T -1277)) -((-2062 (*1 *1 *2) (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) (-5 *1 (-1277 *3 *4)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-2062 (*1 *2 *1) (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1939 (*1 *2 *1) (|partial| -12 (-5 *2 (-659 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-1927 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)))) (-3177 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172)))) (-2497 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172))))) -(-13 (-1278 |#1| |#2|) (-382 |#2| (-889 |#1|)) (-10 -8 (-15 -2062 ($ (-659 |#1| |#2|))) (-15 -2062 ((-1272 |#1| |#2|) $)) (-15 -2062 ((-1281 |#1| |#2|) $)) (-15 -1939 ((-3 (-659 |#1| |#2|) "failed") $)) (-15 -1927 ($ $ $ (-767))) (IF (|has| |#2| (-713 (-407 (-563)))) (PROGN (-15 -3177 ($ $ (-767))) (-15 -2497 ($ $ (-767)))) |%noBranch|))) -((-2049 (((-112) $ $) 7)) (-2741 (((-112) $) 16)) (-1347 (((-640 |#1|) $) 41)) (-1950 (($ $ (-767)) 74)) (-1482 (((-3 $ "failed") $ $) 19)) (-1844 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-767)) 43 (|has| |#2| (-172)))) (-3684 (($) 17 T CONST)) (-1885 (($ $ |#1|) 55) (($ $ (-815 |#1|)) 54) (($ $ $) 53)) (-2671 (((-3 (-815 |#1|) "failed") $) 65)) (-2589 (((-815 |#1|) $) 66)) (-3230 (((-3 $ "failed") $) 33)) (-1986 (((-112) $) 46)) (-1973 (($ $) 45)) (-2712 (((-112) $) 31)) (-1871 (((-112) $) 51)) (-1576 (($ (-815 |#1|) |#2|) 52)) (-1857 (($ $) 50)) (-1914 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) 61)) (-2010 (((-815 |#1|) $) 62)) (-2022 (((-815 |#1|) $) 76)) (-2751 (($ (-1 |#2| |#2|) $) 42)) (-1899 (($ $ |#1|) 58) (($ $ (-815 |#1|)) 57) (($ $ $) 56)) (-1938 (((-1151) $) 9)) (-3249 (((-1113) $) 10)) (-1962 (((-767) $) 75)) (-1998 (((-112) $) 48)) (-2495 ((|#2| $) 47)) (-2062 (((-858) $) 11) (($ (-563)) 29) (($ |#2|) 69) (($ (-815 |#1|)) 64) (($ |#1|) 49)) (-2765 ((|#2| $ (-815 |#1|)) 60) ((|#2| $ $) 59)) (-3192 (((-767)) 28 T CONST)) (-3790 (($) 18 T CONST)) (-3803 (($) 30 T CONST)) (-2943 (((-112) $ $) 6)) (-3039 (($ $) 22) (($ $ $) 21)) (-3027 (($ $ $) 14)) (** (($ $ (-917)) 25) (($ $ (-767)) 32)) (* (($ (-917) $) 13) (($ (-767) $) 15) (($ (-563) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) -(((-1278 |#1| |#2|) (-140) (-846) (-1045)) (T -1278)) -((-2022 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-815 *3)))) (-1962 (*1 *2 *1) (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *2 (-767)))) (-1950 (*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) -(-13 (-1274 |t#1| |t#2|) (-10 -8 (-15 -2022 ((-815 |t#1|) $)) (-15 -1962 ((-767) $)) (-15 -1950 ($ $ (-767))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-613 (-563)) . T) ((-613 #0=(-815 |#1|)) . T) ((-613 |#2|) . T) ((-610 (-858)) . T) ((-643 |#2|) . T) ((-643 $) . T) ((-713 |#2|) |has| |#2| (-172)) ((-722) . T) ((-1034 #0#) . T) ((-1051 |#2|) . T) ((-1045) . T) ((-1052) . T) ((-1105) . T) ((-1093) . T) ((-1271 |#2|) . T) ((-1274 |#1| |#2|) . T)) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1347 (((-640 (-1169)) $) NIL)) (-2044 (($ (-1272 (-1169) |#1|)) NIL)) (-1950 (($ $ (-767)) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1844 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-767)) NIL (|has| |#1| (-172)))) (-3684 (($) NIL T CONST)) (-1885 (($ $ (-1169)) NIL) (($ $ (-815 (-1169))) NIL) (($ $ $) NIL)) (-2671 (((-3 (-815 (-1169)) "failed") $) NIL)) (-2589 (((-815 (-1169)) $) NIL)) (-3230 (((-3 $ "failed") $) NIL)) (-1986 (((-112) $) NIL)) (-1973 (($ $) NIL)) (-2712 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-1576 (($ (-815 (-1169)) |#1|) NIL)) (-1857 (($ $) NIL)) (-1914 (((-2 (|:| |k| (-815 (-1169))) (|:| |c| |#1|)) $) NIL)) (-2010 (((-815 (-1169)) $) NIL)) (-2022 (((-815 (-1169)) $) NIL)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-1899 (($ $ (-1169)) NIL) (($ $ (-815 (-1169))) NIL) (($ $ $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1864 (((-1272 (-1169) |#1|) $) NIL)) (-1962 (((-767) $) NIL)) (-1998 (((-112) $) NIL)) (-2495 ((|#1| $) NIL)) (-2062 (((-858) $) NIL) (($ (-563)) NIL) (($ |#1|) NIL) (($ (-815 (-1169))) NIL) (($ (-1169)) NIL)) (-2765 ((|#1| $ (-815 (-1169))) NIL) ((|#1| $ $) NIL)) (-3192 (((-767)) NIL T CONST)) (-3790 (($) NIL T CONST)) (-2033 (((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $) NIL)) (-3803 (($) NIL T CONST)) (-2943 (((-112) $ $) NIL)) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) NIL)) (** (($ $ (-917)) NIL) (($ $ (-767)) NIL)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1169) $) NIL))) -(((-1279 |#1|) (-13 (-1278 (-1169) |#1|) (-10 -8 (-15 -1864 ((-1272 (-1169) |#1|) $)) (-15 -2044 ($ (-1272 (-1169) |#1|))) (-15 -2033 ((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $)))) (-1045)) (T -1279)) -((-1864 (*1 *2 *1) (-12 (-5 *2 (-1272 (-1169) *3)) (-5 *1 (-1279 *3)) (-4 *3 (-1045)))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-1272 (-1169) *3)) (-4 *3 (-1045)) (-5 *1 (-1279 *3)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| (-1169)) (|:| |c| (-1279 *3))))) (-5 *1 (-1279 *3)) (-4 *3 (-1045))))) -(-13 (-1278 (-1169) |#1|) (-10 -8 (-15 -1864 ((-1272 (-1169) |#1|) $)) (-15 -2044 ($ (-1272 (-1169) |#1|))) (-15 -2033 ((-640 (-2 (|:| |k| (-1169)) (|:| |c| $))) $)))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) NIL)) (-1482 (((-3 $ "failed") $ $) NIL)) (-3684 (($) NIL T CONST)) (-2671 (((-3 |#2| "failed") $) NIL)) (-2589 ((|#2| $) NIL)) (-3213 (($ $) NIL)) (-3230 (((-3 $ "failed") $) 40)) (-1986 (((-112) $) 35)) (-1973 (($ $) 36)) (-2712 (((-112) $) NIL)) (-1528 (((-767) $) NIL)) (-3197 (((-640 $) $) NIL)) (-1871 (((-112) $) NIL)) (-1576 (($ |#2| |#1|) NIL)) (-2010 ((|#2| $) 24)) (-2022 ((|#2| $) 22)) (-2751 (($ (-1 |#1| |#1|) $) NIL)) (-2325 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-3183 ((|#2| $) NIL)) (-3193 ((|#1| $) NIL)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1998 (((-112) $) 32)) (-2495 ((|#1| $) 33)) (-2062 (((-858) $) 63) (($ (-563)) 44) (($ |#1|) 39) (($ |#2|) NIL)) (-3234 (((-640 |#1|) $) NIL)) (-1304 ((|#1| $ |#2|) NIL)) (-2765 ((|#1| $ |#2|) 28)) (-3192 (((-767)) 14 T CONST)) (-3790 (($) 29 T CONST)) (-3803 (($) 11 T CONST)) (-4025 (((-640 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2943 (((-112) $ $) 30)) (-3050 (($ $ |#1|) 65 (|has| |#1| (-363)))) (-3039 (($ $) NIL) (($ $ $) NIL)) (-3027 (($ $ $) 48)) (** (($ $ (-917)) NIL) (($ $ (-767)) 50)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) NIL) (($ $ $) 49) (($ |#1| $) 45) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-1708 (((-767) $) 16))) -(((-1280 |#1| |#2|) (-13 (-1045) (-1271 |#1|) (-382 |#1| |#2|) (-613 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1708 ((-767) $)) (-15 -2022 (|#2| $)) (-15 -2010 (|#2| $)) (-15 -3213 ($ $)) (-15 -2765 (|#1| $ |#2|)) (-15 -1998 ((-112) $)) (-15 -2495 (|#1| $)) (-15 -1986 ((-112) $)) (-15 -1973 ($ $)) (-15 -2751 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -3050 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) (-1045) (-842)) (T -1280)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-3213 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-2751 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1280 *3 *4)) (-4 *4 (-842)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2022 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))) (-2010 (*1 *2 *1) (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045)))) (-2765 (*1 *2 *1 *3) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))) (-1998 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-2495 (*1 *2 *1) (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-842)))) (-1973 (*1 *1 *1) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842)))) (-3050 (*1 *1 *1 *2) (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-842))))) -(-13 (-1045) (-1271 |#1|) (-382 |#1| |#2|) (-613 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1708 ((-767) $)) (-15 -2022 (|#2| $)) (-15 -2010 (|#2| $)) (-15 -3213 ($ $)) (-15 -2765 (|#1| $ |#2|)) (-15 -1998 ((-112) $)) (-15 -2495 (|#1| $)) (-15 -1986 ((-112) $)) (-15 -1973 ($ $)) (-15 -2751 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -3050 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4401)) (-6 -4401) |%noBranch|) (IF (|has| |#1| (-6 -4405)) (-6 -4405) |%noBranch|) (IF (|has| |#1| (-6 -4406)) (-6 -4406) |%noBranch|))) -((-2049 (((-112) $ $) 27)) (-2741 (((-112) $) NIL)) (-1347 (((-640 |#1|) $) 131)) (-2044 (($ (-1272 |#1| |#2|)) 50)) (-1950 (($ $ (-767)) 38)) (-1482 (((-3 $ "failed") $ $) NIL)) (-1844 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-767)) 52 (|has| |#2| (-172)))) (-3684 (($) NIL T CONST)) (-1885 (($ $ |#1|) 113) (($ $ (-815 |#1|)) 114) (($ $ $) 26)) (-2671 (((-3 (-815 |#1|) "failed") $) NIL)) (-2589 (((-815 |#1|) $) NIL)) (-3230 (((-3 $ "failed") $) 121)) (-1986 (((-112) $) 116)) (-1973 (($ $) 117)) (-2712 (((-112) $) NIL)) (-1871 (((-112) $) NIL)) (-1576 (($ (-815 |#1|) |#2|) 20)) (-1857 (($ $) NIL)) (-1914 (((-2 (|:| |k| (-815 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2010 (((-815 |#1|) $) 122)) (-2022 (((-815 |#1|) $) 125)) (-2751 (($ (-1 |#2| |#2|) $) 130)) (-1899 (($ $ |#1|) 111) (($ $ (-815 |#1|)) 112) (($ $ $) 62)) (-1938 (((-1151) $) NIL)) (-3249 (((-1113) $) NIL)) (-1864 (((-1272 |#1| |#2|) $) 93)) (-1962 (((-767) $) 128)) (-1998 (((-112) $) 80)) (-2495 ((|#2| $) 32)) (-2062 (((-858) $) 72) (($ (-563)) 86) (($ |#2|) 84) (($ (-815 |#1|)) 18) (($ |#1|) 83)) (-2765 ((|#2| $ (-815 |#1|)) 115) ((|#2| $ $) 28)) (-3192 (((-767)) 119 T CONST)) (-3790 (($) 15 T CONST)) (-2033 (((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-3803 (($) 33 T CONST)) (-2943 (((-112) $ $) 14)) (-3039 (($ $) 97) (($ $ $) 100)) (-3027 (($ $ $) 61)) (** (($ $ (-917)) NIL) (($ $ (-767)) 55)) (* (($ (-917) $) NIL) (($ (-767) $) 53) (($ (-563) $) 105) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 91))) -(((-1281 |#1| |#2|) (-13 (-1278 |#1| |#2|) (-10 -8 (-15 -1864 ((-1272 |#1| |#2|) $)) (-15 -2044 ($ (-1272 |#1| |#2|))) (-15 -2033 ((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-846) (-1045)) (T -1281)) -((-1864 (*1 *2 *1) (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)))) (-2044 (*1 *1 *2) (-12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) (-5 *1 (-1281 *3 *4)))) (-2033 (*1 *2 *1) (-12 (-5 *2 (-640 (-2 (|:| |k| *3) (|:| |c| (-1281 *3 *4))))) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) -(-13 (-1278 |#1| |#2|) (-10 -8 (-15 -1864 ((-1272 |#1| |#2|) $)) (-15 -2044 ($ (-1272 |#1| |#2|))) (-15 -2033 ((-640 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) -((-4367 (((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563)) 20) (((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|))) 13))) -(((-1282 |#1|) (-10 -7 (-15 -4367 ((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|)))) (-15 -4367 ((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563)))) (-1208)) (T -1282)) -((-4367 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-640 (-1149 *5)) (-640 (-1149 *5)))) (-5 *4 (-563)) (-5 *2 (-640 (-1149 *5))) (-5 *1 (-1282 *5)) (-4 *5 (-1208)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-1 (-1149 *4) (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1282 *4)) (-4 *4 (-1208))))) -(-10 -7 (-15 -4367 ((-1149 |#1|) (-1 (-1149 |#1|) (-1149 |#1|)))) (-15 -4367 ((-640 (-1149 |#1|)) (-1 (-640 (-1149 |#1|)) (-640 (-1149 |#1|))) (-563)))) -((-2068 (((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|))) 173) (((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112)) 172) (((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112)) 171) (((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112)) 170) (((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-1042 |#1| |#2|)) 155)) (-2056 (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|))) 84) (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112)) 83) (((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112)) 82)) (-2102 (((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|)) 72)) (-2080 (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|))) 139) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112)) 138) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112)) 137) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112)) 136) (((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 131)) (-2091 (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|))) 144) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112)) 143) (((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112)) 142) (((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|)) 141)) (-2802 (((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) 110) (((-1165 (-1020 (-407 |#1|))) (-1165 |#1|)) 101) (((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|))) 108) (((-948 (-1020 (-407 |#1|))) (-948 |#1|)) 106) (((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|))) 32))) -(((-1283 |#1| |#2| |#3|) (-10 -7 (-15 -2056 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2056 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112))) (-15 -2056 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -2091 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2091 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2091 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2091 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -2102 ((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -2802 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -2802 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -2802 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -2802 ((-1165 (-1020 (-407 |#1|))) (-1165 |#1|))) (-15 -2802 ((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) (-13 (-844) (-307) (-147) (-1018)) (-640 (-1169)) (-640 (-1169))) (T -1283)) -((-2802 (*1 *2 *3) (-12 (-5 *3 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-776 *4 (-860 *6)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-1165 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-1165 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *6))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2802 (*1 *2 *3) (-12 (-5 *3 (-776 *4 (-860 *5))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2091 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2091 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2091 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2080 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2080 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2080 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -2303 (-1165 *4)) (|:| -1818 (-640 (-948 *4)))))) (-5 *1 (-1283 *4 *5 *6)) (-5 *3 (-640 (-948 *4))) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2068 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2068 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2068 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2068 (*1 *2 *3) (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-2 (|:| -2303 (-1165 *4)) (|:| -1818 (-640 (-948 *4)))))) (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) (-2056 (*1 *2 *3) (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *4 *5))) (-5 *1 (-1283 *4 *5 *6)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) (-2056 (*1 *2 *3 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) (-2056 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169)))))) -(-10 -7 (-15 -2056 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2056 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)) (-112))) (-15 -2056 ((-640 (-1042 |#1| |#2|)) (-640 (-948 |#1|)))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-1042 |#1| |#2|))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)) (-112))) (-15 -2068 ((-640 (-2 (|:| -2303 (-1165 |#1|)) (|:| -1818 (-640 (-948 |#1|))))) (-640 (-948 |#1|)))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112) (-112))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2080 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -2091 ((-640 (-640 (-1020 (-407 |#1|)))) (-1042 |#1| |#2|))) (-15 -2091 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112) (-112))) (-15 -2091 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)) (-112))) (-15 -2091 ((-640 (-640 (-1020 (-407 |#1|)))) (-640 (-948 |#1|)))) (-15 -2102 ((-640 (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))) (-1042 |#1| |#2|))) (-15 -2802 ((-776 |#1| (-860 |#3|)) (-776 |#1| (-860 |#2|)))) (-15 -2802 ((-948 (-1020 (-407 |#1|))) (-948 |#1|))) (-15 -2802 ((-948 (-1020 (-407 |#1|))) (-776 |#1| (-860 |#3|)))) (-15 -2802 ((-1165 (-1020 (-407 |#1|))) (-1165 |#1|))) (-15 -2802 ((-640 (-776 |#1| (-860 |#3|))) (-1139 |#1| (-531 (-860 |#3|)) (-860 |#3|) (-776 |#1| (-860 |#3|)))))) -((-2132 (((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|) 21)) (-2111 (((-112) (-1257 |#1|)) 12)) (-2122 (((-3 (-1257 (-563)) "failed") (-1257 |#1|)) 16))) -(((-1284 |#1|) (-10 -7 (-15 -2111 ((-112) (-1257 |#1|))) (-15 -2122 ((-3 (-1257 (-563)) "failed") (-1257 |#1|))) (-15 -2132 ((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|))) (-636 (-563))) (T -1284)) -((-2132 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-1257 (-407 (-563)))) (-5 *1 (-1284 *4)))) (-2122 (*1 *2 *3) (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-1257 (-563))) (-5 *1 (-1284 *4)))) (-2111 (*1 *2 *3) (-12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-112)) (-5 *1 (-1284 *4))))) -(-10 -7 (-15 -2111 ((-112) (-1257 |#1|))) (-15 -2122 ((-3 (-1257 (-563)) "failed") (-1257 |#1|))) (-15 -2132 ((-3 (-1257 (-407 (-563))) "failed") (-1257 |#1|) |#1|))) -((-2049 (((-112) $ $) NIL)) (-2741 (((-112) $) 11)) (-1482 (((-3 $ "failed") $ $) NIL)) (-2433 (((-767)) 8)) (-3684 (($) NIL T CONST)) (-3230 (((-3 $ "failed") $) 58)) (-4301 (($) 49)) (-2712 (((-112) $) 57)) (-3113 (((-3 $ "failed") $) 40)) (-3267 (((-917) $) 15)) (-1938 (((-1151) $) NIL)) (-2956 (($) 32 T CONST)) (-3491 (($ (-917)) 50)) (-3249 (((-1113) $) NIL)) (-2802 (((-563) $) 13)) (-2062 (((-858) $) 27) (($ (-563)) 24)) (-3192 (((-767)) 9 T CONST)) (-3790 (($) 29 T CONST)) (-3803 (($) 31 T CONST)) (-2943 (((-112) $ $) 38)) (-3039 (($ $) 52) (($ $ $) 47)) (-3027 (($ $ $) 35)) (** (($ $ (-917)) NIL) (($ $ (-767)) 54)) (* (($ (-917) $) NIL) (($ (-767) $) NIL) (($ (-563) $) 44) (($ $ $) 43))) -(((-1285 |#1|) (-13 (-172) (-368) (-611 (-563)) (-1144)) (-917)) (T -1285)) -NIL -(-13 (-172) (-368) (-611 (-563)) (-1144)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3198329 3198334 3198339 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3198314 3198319 3198324 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3198299 3198304 3198309 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3198284 3198289 3198294 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1285 3197453 3198159 3198236 "ZMOD" 3198241 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1284 3196563 3196727 3196936 "ZLINDEP" 3197285 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1283 3185863 3187631 3189603 "ZDSOLVE" 3194693 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1282 3185109 3185250 3185439 "YSTREAM" 3185709 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1281 3182910 3184410 3184614 "XRPOLY" 3184952 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1280 3179490 3180781 3181356 "XPR" 3182382 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1279 3177238 3178821 3179025 "XPOLY" 3179321 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1278 3175021 3176363 3176418 "XPOLYC" 3176706 NIL XPOLYC (NIL T T) -9 NIL 3176819 NIL) (-1277 3171424 3173538 3173926 "XPBWPOLY" 3174679 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1276 3167327 3169587 3169629 "XF" 3170250 NIL XF (NIL T) -9 NIL 3170650 NIL) (-1275 3166948 3167036 3167205 "XF-" 3167210 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1274 3162274 3163537 3163592 "XFALG" 3165764 NIL XFALG (NIL T T) -9 NIL 3166553 NIL) (-1273 3161407 3161511 3161716 "XEXPPKG" 3162166 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1272 3159543 3161257 3161353 "XDPOLY" 3161358 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1271 3158480 3159054 3159097 "XALG" 3159102 NIL XALG (NIL T) -9 NIL 3159213 NIL) (-1270 3151949 3156457 3156951 "WUTSET" 3158072 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1269 3150232 3151001 3151324 "WP" 3151760 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1268 3149861 3150054 3150124 "WHILEAST" 3150184 T WHILEAST (NIL) -8 NIL NIL NIL) (-1267 3149360 3149578 3149672 "WHEREAST" 3149789 T WHEREAST (NIL) -8 NIL NIL NIL) (-1266 3148246 3148444 3148739 "WFFINTBS" 3149157 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1265 3146150 3146577 3147039 "WEIER" 3147818 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1264 3145297 3145721 3145763 "VSPACE" 3145899 NIL VSPACE (NIL T) -9 NIL 3145973 NIL) (-1263 3145135 3145162 3145253 "VSPACE-" 3145258 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1262 3144943 3144986 3145054 "VOID" 3145089 T VOID (NIL) -8 NIL NIL NIL) (-1261 3143079 3143438 3143844 "VIEW" 3144559 T VIEW (NIL) -7 NIL NIL NIL) (-1260 3139503 3140142 3140879 "VIEWDEF" 3142364 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1259 3128834 3131051 3133224 "VIEW3D" 3137352 T VIEW3D (NIL) -8 NIL NIL NIL) (-1258 3121112 3122745 3124324 "VIEW2D" 3127277 T VIEW2D (NIL) -8 NIL NIL NIL) (-1257 3116514 3120882 3120974 "VECTOR" 3121055 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1256 3115091 3115350 3115668 "VECTOR2" 3116244 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1255 3108618 3112875 3112918 "VECTCAT" 3113911 NIL VECTCAT (NIL T) -9 NIL 3114497 NIL) (-1254 3107632 3107886 3108276 "VECTCAT-" 3108281 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1253 3107113 3107283 3107403 "VARIABLE" 3107547 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1252 3107046 3107051 3107081 "UTYPE" 3107086 T UTYPE (NIL) -9 NIL NIL NIL) (-1251 3105876 3106030 3106292 "UTSODETL" 3106872 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1250 3103316 3103776 3104300 "UTSODE" 3105417 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1249 3095180 3100942 3101431 "UTS" 3102885 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1248 3086415 3091747 3091790 "UTSCAT" 3092902 NIL UTSCAT (NIL T) -9 NIL 3093659 NIL) (-1247 3083763 3084485 3085474 "UTSCAT-" 3085479 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1246 3083390 3083433 3083566 "UTS2" 3083714 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1245 3077663 3080228 3080271 "URAGG" 3082341 NIL URAGG (NIL T) -9 NIL 3083064 NIL) (-1244 3074602 3075465 3076588 "URAGG-" 3076593 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1243 3070318 3073216 3073688 "UPXSSING" 3074266 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1242 3062411 3069565 3069838 "UPXS" 3070103 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1241 3055511 3062315 3062387 "UPXSCONS" 3062392 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1240 3045748 3052506 3052568 "UPXSCCA" 3053142 NIL UPXSCCA (NIL T T) -9 NIL 3053375 NIL) (-1239 3045386 3045471 3045645 "UPXSCCA-" 3045650 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1238 3035476 3042007 3042050 "UPXSCAT" 3042698 NIL UPXSCAT (NIL T) -9 NIL 3043306 NIL) (-1237 3034906 3034985 3035164 "UPXS2" 3035391 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1236 3033560 3033813 3034164 "UPSQFREE" 3034649 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1235 3027340 3030362 3030417 "UPSCAT" 3031578 NIL UPSCAT (NIL T T) -9 NIL 3032352 NIL) (-1234 3026544 3026751 3027078 "UPSCAT-" 3027083 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1233 3012386 3020392 3020435 "UPOLYC" 3022536 NIL UPOLYC (NIL T) -9 NIL 3023757 NIL) (-1232 3003714 3006140 3009287 "UPOLYC-" 3009292 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1231 3003341 3003384 3003517 "UPOLYC2" 3003665 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1230 2994907 3003024 3003153 "UP" 3003260 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1229 2994246 2994353 2994517 "UPMP" 2994796 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1228 2993799 2993880 2994019 "UPDIVP" 2994159 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1227 2992367 2992616 2992932 "UPDECOMP" 2993548 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1226 2991602 2991714 2991899 "UPCDEN" 2992251 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1225 2991121 2991190 2991339 "UP2" 2991527 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1224 2989636 2990325 2990602 "UNISEG" 2990879 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1223 2988851 2988978 2989183 "UNISEG2" 2989479 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1222 2987911 2988091 2988317 "UNIFACT" 2988667 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1221 2971870 2987088 2987339 "ULS" 2987718 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1220 2959896 2971774 2971846 "ULSCONS" 2971851 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1219 2942504 2954454 2954516 "ULSCCAT" 2955154 NIL ULSCCAT (NIL T T) -9 NIL 2955442 NIL) (-1218 2941554 2941799 2942187 "ULSCCAT-" 2942192 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1217 2931421 2937866 2937909 "ULSCAT" 2938772 NIL ULSCAT (NIL T) -9 NIL 2939502 NIL) (-1216 2930851 2930930 2931109 "ULS2" 2931336 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1215 2929968 2930451 2930558 "UINT8" 2930669 T UINT8 (NIL) -8 NIL NIL 2930754) (-1214 2929084 2929567 2929674 "UINT32" 2929785 T UINT32 (NIL) -8 NIL NIL 2929870) (-1213 2928200 2928683 2928790 "UINT16" 2928901 T UINT16 (NIL) -8 NIL NIL 2928986) (-1212 2926595 2927526 2927556 "UFD" 2927768 T UFD (NIL) -9 NIL 2927882 NIL) (-1211 2926389 2926435 2926530 "UFD-" 2926535 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1210 2925471 2925654 2925870 "UDVO" 2926195 T UDVO (NIL) -7 NIL NIL NIL) (-1209 2923287 2923696 2924167 "UDPO" 2925035 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1208 2923220 2923225 2923255 "TYPE" 2923260 T TYPE (NIL) -9 NIL NIL NIL) (-1207 2923007 2923175 2923206 "TYPEAST" 2923211 T TYPEAST (NIL) -8 NIL NIL NIL) (-1206 2921978 2922180 2922420 "TWOFACT" 2922801 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1205 2921049 2921387 2921622 "TUPLE" 2921778 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1204 2918740 2919259 2919798 "TUBETOOL" 2920532 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1203 2917589 2917794 2918035 "TUBE" 2918533 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1202 2912345 2916561 2916844 "TS" 2917341 NIL TS (NIL T) -8 NIL NIL NIL) (-1201 2901012 2905104 2905201 "TSETCAT" 2910470 NIL TSETCAT (NIL T T T T) -9 NIL 2912001 NIL) (-1200 2895744 2897344 2899235 "TSETCAT-" 2899240 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1199 2890006 2890853 2891795 "TRMANIP" 2894880 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1198 2889447 2889510 2889673 "TRIMAT" 2889938 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1197 2887243 2887480 2887844 "TRIGMNIP" 2889196 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1196 2886763 2886876 2886906 "TRIGCAT" 2887119 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1195 2886432 2886511 2886652 "TRIGCAT-" 2886657 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1194 2883325 2885290 2885571 "TREE" 2886186 NIL TREE (NIL T) -8 NIL NIL NIL) (-1193 2882599 2883127 2883157 "TRANFUN" 2883192 T TRANFUN (NIL) -9 NIL 2883258 NIL) (-1192 2881878 2882069 2882349 "TRANFUN-" 2882354 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1191 2881682 2881714 2881775 "TOPSP" 2881839 T TOPSP (NIL) -7 NIL NIL NIL) (-1190 2881030 2881145 2881299 "TOOLSIGN" 2881563 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1189 2879691 2880207 2880446 "TEXTFILE" 2880813 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1188 2877630 2878144 2878573 "TEX" 2879284 T TEX (NIL) -8 NIL NIL NIL) (-1187 2877411 2877442 2877514 "TEX1" 2877593 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1186 2877059 2877122 2877212 "TEMUTL" 2877343 T TEMUTL (NIL) -7 NIL NIL NIL) (-1185 2875213 2875493 2875818 "TBCMPPK" 2876782 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1184 2867101 2873373 2873429 "TBAGG" 2873829 NIL TBAGG (NIL T T) -9 NIL 2874040 NIL) (-1183 2862171 2863659 2865413 "TBAGG-" 2865418 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1182 2861555 2861662 2861807 "TANEXP" 2862060 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1181 2855056 2861412 2861505 "TABLE" 2861510 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1180 2854468 2854567 2854705 "TABLEAU" 2854953 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1179 2849076 2850296 2851544 "TABLBUMP" 2853254 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1178 2848298 2848445 2848626 "SYSTEM" 2848917 T SYSTEM (NIL) -8 NIL NIL NIL) (-1177 2844757 2845456 2846239 "SYSSOLP" 2847549 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1176 2843791 2844269 2844388 "SYSNNI" 2844574 NIL SYSNNI (NIL NIL) -8 NIL NIL 2844659) (-1175 2843088 2843520 2843599 "SYSINT" 2843659 NIL SYSINT (NIL NIL) -8 NIL NIL 2843704) (-1174 2839422 2840349 2841065 "SYNTAX" 2842394 T SYNTAX (NIL) -8 NIL NIL NIL) (-1173 2836580 2837182 2837814 "SYMTAB" 2838812 T SYMTAB (NIL) -8 NIL NIL NIL) (-1172 2831829 2832731 2833714 "SYMS" 2835619 T SYMS (NIL) -8 NIL NIL NIL) (-1171 2829091 2831287 2831517 "SYMPOLY" 2831634 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1170 2828608 2828683 2828806 "SYMFUNC" 2829003 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1169 2824654 2825920 2826733 "SYMBOL" 2827817 T SYMBOL (NIL) -8 NIL NIL NIL) (-1168 2818193 2819882 2821602 "SWITCH" 2822956 T SWITCH (NIL) -8 NIL NIL NIL) (-1167 2811454 2817014 2817317 "SUTS" 2817948 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2803547 2810701 2810974 "SUPXS" 2811239 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1165 2795062 2803165 2803291 "SUP" 2803456 NIL SUP (NIL T) -8 NIL NIL NIL) (-1164 2794221 2794348 2794565 "SUPFRACF" 2794930 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1163 2793842 2793901 2794014 "SUP2" 2794156 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1162 2792255 2792529 2792892 "SUMRF" 2793541 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1161 2791569 2791635 2791834 "SUMFS" 2792176 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1160 2775563 2790746 2790997 "SULS" 2791376 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1159 2775192 2775385 2775455 "SUCHTAST" 2775515 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1158 2774514 2774717 2774857 "SUCH" 2775100 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1157 2768408 2769420 2770379 "SUBSPACE" 2773602 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1156 2767838 2767928 2768092 "SUBRESP" 2768296 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1155 2761203 2762503 2763814 "STTF" 2766574 NIL STTF (NIL T) -7 NIL NIL NIL) (-1154 2755376 2756496 2757643 "STTFNC" 2760103 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1153 2746687 2748558 2750352 "STTAYLOR" 2753617 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1152 2739931 2746551 2746634 "STRTBL" 2746639 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1151 2735322 2739886 2739917 "STRING" 2739922 T STRING (NIL) -8 NIL NIL NIL) (-1150 2730210 2734695 2734725 "STRICAT" 2734784 T STRICAT (NIL) -9 NIL 2734846 NIL) (-1149 2723013 2727829 2728440 "STREAM" 2729634 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1148 2722523 2722600 2722744 "STREAM3" 2722930 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1147 2721505 2721688 2721923 "STREAM2" 2722336 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1146 2721193 2721245 2721338 "STREAM1" 2721447 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1145 2720209 2720390 2720621 "STINPROD" 2721009 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1144 2719787 2719971 2720001 "STEP" 2720081 T STEP (NIL) -9 NIL 2720159 NIL) (-1143 2713330 2719686 2719763 "STBL" 2719768 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1142 2708504 2712551 2712594 "STAGG" 2712747 NIL STAGG (NIL T) -9 NIL 2712836 NIL) (-1141 2706206 2706808 2707680 "STAGG-" 2707685 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1140 2704401 2705976 2706068 "STACK" 2706149 NIL STACK (NIL T) -8 NIL NIL NIL) (-1139 2697124 2702542 2702998 "SREGSET" 2704031 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1138 2689549 2690918 2692431 "SRDCMPK" 2695730 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1137 2682516 2686989 2687019 "SRAGG" 2688322 T SRAGG (NIL) -9 NIL 2688930 NIL) (-1136 2681533 2681788 2682167 "SRAGG-" 2682172 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1135 2676020 2680480 2680901 "SQMATRIX" 2681159 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1134 2669767 2672738 2673465 "SPLTREE" 2675365 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1133 2665757 2666423 2667069 "SPLNODE" 2669193 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1132 2664804 2665037 2665067 "SPFCAT" 2665511 T SPFCAT (NIL) -9 NIL NIL NIL) (-1131 2663541 2663751 2664015 "SPECOUT" 2664562 T SPECOUT (NIL) -7 NIL NIL NIL) (-1130 2655193 2656937 2656967 "SPADXPT" 2661359 T SPADXPT (NIL) -9 NIL 2663393 NIL) (-1129 2654954 2654994 2655063 "SPADPRSR" 2655146 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1128 2653136 2654909 2654940 "SPADAST" 2654945 T SPADAST (NIL) -8 NIL NIL NIL) (-1127 2645107 2646854 2646897 "SPACEC" 2651270 NIL SPACEC (NIL T) -9 NIL 2653086 NIL) (-1126 2643264 2645039 2645088 "SPACE3" 2645093 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1125 2642016 2642187 2642478 "SORTPAK" 2643069 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1124 2640066 2640369 2640788 "SOLVETRA" 2641680 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1123 2639077 2639299 2639573 "SOLVESER" 2639839 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1122 2634288 2635178 2636180 "SOLVERAD" 2638129 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1121 2630103 2630712 2631441 "SOLVEFOR" 2633655 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1120 2624400 2629452 2629549 "SNTSCAT" 2629554 NIL SNTSCAT (NIL T T T T) -9 NIL 2629624 NIL) (-1119 2618533 2622723 2623114 "SMTS" 2624090 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1118 2612973 2618421 2618498 "SMP" 2618503 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1117 2611132 2611433 2611831 "SMITH" 2612670 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1116 2604019 2608183 2608286 "SMATCAT" 2609637 NIL SMATCAT (NIL NIL T T T) -9 NIL 2610187 NIL) (-1115 2600959 2601782 2602960 "SMATCAT-" 2602965 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1114 2598672 2600195 2600238 "SKAGG" 2600499 NIL SKAGG (NIL T) -9 NIL 2600634 NIL) (-1113 2595007 2598088 2598283 "SINT" 2598470 T SINT (NIL) -8 NIL NIL 2598643) (-1112 2594779 2594817 2594883 "SIMPAN" 2594963 T SIMPAN (NIL) -7 NIL NIL NIL) (-1111 2594085 2594314 2594454 "SIG" 2594661 T SIG (NIL) -8 NIL NIL NIL) (-1110 2592923 2593144 2593419 "SIGNRF" 2593844 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1109 2591728 2591879 2592170 "SIGNEF" 2592752 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1108 2591061 2591311 2591435 "SIGAST" 2591626 T SIGAST (NIL) -8 NIL NIL NIL) (-1107 2588751 2589205 2589711 "SHP" 2590602 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1106 2582651 2588652 2588728 "SHDP" 2588733 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1105 2582250 2582416 2582446 "SGROUP" 2582539 T SGROUP (NIL) -9 NIL 2582601 NIL) (-1104 2582108 2582134 2582207 "SGROUP-" 2582212 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1103 2578943 2579641 2580364 "SGCF" 2581407 T SGCF (NIL) -7 NIL NIL NIL) (-1102 2573338 2578390 2578487 "SFRTCAT" 2578492 NIL SFRTCAT (NIL T T T T) -9 NIL 2578531 NIL) (-1101 2566759 2567777 2568913 "SFRGCD" 2572321 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1100 2559886 2560958 2562144 "SFQCMPK" 2565692 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1099 2559508 2559597 2559707 "SFORT" 2559827 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1098 2558653 2559348 2559469 "SEXOF" 2559474 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1097 2557787 2558534 2558602 "SEX" 2558607 T SEX (NIL) -8 NIL NIL NIL) (-1096 2553326 2554015 2554110 "SEXCAT" 2557047 NIL SEXCAT (NIL T T T T T) -9 NIL 2557625 NIL) (-1095 2550506 2553260 2553308 "SET" 2553313 NIL SET (NIL T) -8 NIL NIL NIL) (-1094 2548757 2549219 2549524 "SETMN" 2550247 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1093 2548363 2548489 2548519 "SETCAT" 2548636 T SETCAT (NIL) -9 NIL 2548721 NIL) (-1092 2548143 2548195 2548294 "SETCAT-" 2548299 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1091 2544530 2546604 2546647 "SETAGG" 2547517 NIL SETAGG (NIL T) -9 NIL 2547857 NIL) (-1090 2543988 2544104 2544341 "SETAGG-" 2544346 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1089 2543458 2543684 2543785 "SEQAST" 2543909 T SEQAST (NIL) -8 NIL NIL NIL) (-1088 2542657 2542951 2543012 "SEGXCAT" 2543298 NIL SEGXCAT (NIL T T) -9 NIL 2543418 NIL) (-1087 2541711 2542323 2542505 "SEG" 2542510 NIL SEG (NIL T) -8 NIL NIL NIL) (-1086 2540690 2540904 2540947 "SEGCAT" 2541469 NIL SEGCAT (NIL T) -9 NIL 2541690 NIL) (-1085 2539739 2540069 2540269 "SEGBIND" 2540525 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1084 2539360 2539419 2539532 "SEGBIND2" 2539674 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1083 2538960 2539161 2539238 "SEGAST" 2539305 T SEGAST (NIL) -8 NIL NIL NIL) (-1082 2538179 2538305 2538509 "SEG2" 2538804 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1081 2537616 2538114 2538161 "SDVAR" 2538166 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1080 2529898 2537386 2537516 "SDPOL" 2537521 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1079 2528491 2528757 2529076 "SCPKG" 2529613 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1078 2527627 2527807 2528007 "SCOPE" 2528313 T SCOPE (NIL) -8 NIL NIL NIL) (-1077 2526847 2526981 2527160 "SCACHE" 2527482 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1076 2526519 2526679 2526709 "SASTCAT" 2526714 T SASTCAT (NIL) -9 NIL 2526727 NIL) (-1075 2526033 2526354 2526430 "SAOS" 2526465 T SAOS (NIL) -8 NIL NIL NIL) (-1074 2525598 2525633 2525806 "SAERFFC" 2525992 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1073 2519564 2525495 2525575 "SAE" 2525580 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1072 2519157 2519192 2519351 "SAEFACT" 2519523 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1071 2517478 2517792 2518193 "RURPK" 2518823 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1070 2516114 2516393 2516705 "RULESET" 2517312 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1069 2513301 2513804 2514269 "RULE" 2515795 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1068 2512940 2513095 2513178 "RULECOLD" 2513253 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1067 2512438 2512657 2512751 "RSTRCAST" 2512868 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1066 2507286 2508081 2509001 "RSETGCD" 2511637 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1065 2496543 2501595 2501692 "RSETCAT" 2505811 NIL RSETCAT (NIL T T T T) -9 NIL 2506908 NIL) (-1064 2494470 2495009 2495833 "RSETCAT-" 2495838 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1063 2486855 2488232 2489752 "RSDCMPK" 2493069 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1062 2484860 2485301 2485375 "RRCC" 2486461 NIL RRCC (NIL T T) -9 NIL 2486805 NIL) (-1061 2484211 2484385 2484664 "RRCC-" 2484669 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1060 2483681 2483907 2484008 "RPTAST" 2484132 T RPTAST (NIL) -8 NIL NIL NIL) (-1059 2457679 2467274 2467341 "RPOLCAT" 2478005 NIL RPOLCAT (NIL T T T) -9 NIL 2481164 NIL) (-1058 2449177 2451517 2454639 "RPOLCAT-" 2454644 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1057 2440224 2447388 2447870 "ROUTINE" 2448717 T ROUTINE (NIL) -8 NIL NIL NIL) (-1056 2437049 2439850 2439990 "ROMAN" 2440106 T ROMAN (NIL) -8 NIL NIL NIL) (-1055 2435320 2435909 2436169 "ROIRC" 2436854 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1054 2431705 2433956 2433986 "RNS" 2434290 T RNS (NIL) -9 NIL 2434563 NIL) (-1053 2430214 2430597 2431131 "RNS-" 2431206 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1052 2429663 2430045 2430075 "RNG" 2430080 T RNG (NIL) -9 NIL 2430101 NIL) (-1051 2429055 2429417 2429460 "RMODULE" 2429522 NIL RMODULE (NIL T) -9 NIL 2429564 NIL) (-1050 2427891 2427985 2428321 "RMCAT2" 2428956 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1049 2424768 2427237 2427534 "RMATRIX" 2427653 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1048 2417710 2419944 2420059 "RMATCAT" 2423418 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2424400 NIL) (-1047 2417085 2417232 2417539 "RMATCAT-" 2417544 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1046 2416652 2416727 2416855 "RINTERP" 2417004 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1045 2415771 2416299 2416329 "RING" 2416385 T RING (NIL) -9 NIL 2416477 NIL) (-1044 2415563 2415607 2415704 "RING-" 2415709 NIL RING- (NIL T) -8 NIL NIL NIL) (-1043 2414404 2414641 2414899 "RIDIST" 2415327 T RIDIST (NIL) -7 NIL NIL NIL) (-1042 2405720 2413872 2414078 "RGCHAIN" 2414252 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1041 2405096 2405476 2405517 "RGBCSPC" 2405575 NIL RGBCSPC (NIL T) -9 NIL 2405627 NIL) (-1040 2404280 2404635 2404676 "RGBCMDL" 2404908 NIL RGBCMDL (NIL T) -9 NIL 2405022 NIL) (-1039 2401274 2401888 2402558 "RF" 2403644 NIL RF (NIL T) -7 NIL NIL NIL) (-1038 2400920 2400983 2401086 "RFFACTOR" 2401205 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1037 2400645 2400680 2400777 "RFFACT" 2400879 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1036 2398762 2399126 2399508 "RFDIST" 2400285 T RFDIST (NIL) -7 NIL NIL NIL) (-1035 2398215 2398307 2398470 "RETSOL" 2398664 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1034 2397851 2397931 2397974 "RETRACT" 2398107 NIL RETRACT (NIL T) -9 NIL 2398194 NIL) (-1033 2397700 2397725 2397812 "RETRACT-" 2397817 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1032 2397329 2397522 2397592 "RETAST" 2397652 T RETAST (NIL) -8 NIL NIL NIL) (-1031 2390183 2396982 2397109 "RESULT" 2397224 T RESULT (NIL) -8 NIL NIL NIL) (-1030 2388801 2389452 2389651 "RESRING" 2390086 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1029 2388437 2388486 2388584 "RESLATC" 2388738 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1028 2388142 2388177 2388284 "REPSQ" 2388396 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1027 2385564 2386144 2386746 "REP" 2387562 T REP (NIL) -7 NIL NIL NIL) (-1026 2385261 2385296 2385407 "REPDB" 2385523 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1025 2379161 2380550 2381773 "REP2" 2384073 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1024 2375538 2376219 2377027 "REP1" 2378388 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1023 2368261 2373679 2374135 "REGSET" 2375168 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1022 2367074 2367409 2367659 "REF" 2368046 NIL REF (NIL T) -8 NIL NIL NIL) (-1021 2366451 2366554 2366721 "REDORDER" 2366958 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1020 2362446 2365664 2365891 "RECLOS" 2366279 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1019 2361498 2361679 2361894 "REALSOLV" 2362253 T REALSOLV (NIL) -7 NIL NIL NIL) (-1018 2361344 2361385 2361415 "REAL" 2361420 T REAL (NIL) -9 NIL 2361455 NIL) (-1017 2357827 2358629 2359513 "REAL0Q" 2360509 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1016 2353428 2354416 2355477 "REAL0" 2356808 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1015 2352926 2353145 2353239 "RDUCEAST" 2353356 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1014 2352331 2352403 2352610 "RDIV" 2352848 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1013 2351399 2351573 2351786 "RDIST" 2352153 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1012 2349996 2350283 2350655 "RDETRS" 2351107 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1011 2347808 2348262 2348800 "RDETR" 2349538 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1010 2346419 2346697 2347101 "RDEEFS" 2347524 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1009 2344914 2345220 2345652 "RDEEF" 2346107 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1008 2339167 2342050 2342080 "RCFIELD" 2343375 T RCFIELD (NIL) -9 NIL 2344105 NIL) (-1007 2337231 2337735 2338431 "RCFIELD-" 2338506 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1006 2333547 2335332 2335375 "RCAGG" 2336459 NIL RCAGG (NIL T) -9 NIL 2336924 NIL) (-1005 2333175 2333269 2333432 "RCAGG-" 2333437 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1004 2332510 2332622 2332787 "RATRET" 2333059 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1003 2332063 2332130 2332251 "RATFACT" 2332438 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1002 2331371 2331491 2331643 "RANDSRC" 2331933 T RANDSRC (NIL) -7 NIL NIL NIL) (-1001 2331105 2331149 2331222 "RADUTIL" 2331320 T RADUTIL (NIL) -7 NIL NIL NIL) (-1000 2324248 2329938 2330248 "RADIX" 2330829 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-999 2315896 2324092 2324220 "RADFF" 2324225 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-998 2315548 2315623 2315651 "RADCAT" 2315808 T RADCAT (NIL) -9 NIL NIL NIL) (-997 2315333 2315381 2315478 "RADCAT-" 2315483 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-996 2313484 2315108 2315197 "QUEUE" 2315277 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-995 2310052 2313421 2313466 "QUAT" 2313471 NIL QUAT (NIL T) -8 NIL NIL NIL) (-994 2309690 2309733 2309860 "QUATCT2" 2310003 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-993 2303429 2306739 2306779 "QUATCAT" 2307559 NIL QUATCAT (NIL T) -9 NIL 2308325 NIL) (-992 2299573 2300610 2301997 "QUATCAT-" 2302091 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-991 2297093 2298657 2298698 "QUAGG" 2299073 NIL QUAGG (NIL T) -9 NIL 2299248 NIL) (-990 2296725 2296918 2296986 "QQUTAST" 2297045 T QQUTAST (NIL) -8 NIL NIL NIL) (-989 2295650 2296123 2296295 "QFORM" 2296597 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-988 2286854 2292067 2292107 "QFCAT" 2292765 NIL QFCAT (NIL T) -9 NIL 2293766 NIL) (-987 2282426 2283627 2285218 "QFCAT-" 2285312 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-986 2282064 2282107 2282234 "QFCAT2" 2282377 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-985 2281524 2281634 2281764 "QEQUAT" 2281954 T QEQUAT (NIL) -8 NIL NIL NIL) (-984 2274671 2275743 2276927 "QCMPACK" 2280457 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-983 2272247 2272668 2273096 "QALGSET" 2274326 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-982 2271492 2271666 2271898 "QALGSET2" 2272067 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-981 2270182 2270406 2270723 "PWFFINTB" 2271265 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-980 2268364 2268532 2268886 "PUSHVAR" 2269996 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-979 2264282 2265336 2265377 "PTRANFN" 2267261 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-978 2262684 2262975 2263297 "PTPACK" 2263993 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-977 2262316 2262373 2262482 "PTFUNC2" 2262621 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-976 2256843 2261188 2261229 "PTCAT" 2261525 NIL PTCAT (NIL T) -9 NIL 2261678 NIL) (-975 2256501 2256536 2256660 "PSQFR" 2256802 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-974 2255096 2255394 2255728 "PSEUDLIN" 2256199 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-973 2241859 2244230 2246554 "PSETPK" 2252856 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-972 2234903 2237617 2237713 "PSETCAT" 2240734 NIL PSETCAT (NIL T T T T) -9 NIL 2241548 NIL) (-971 2232739 2233373 2234194 "PSETCAT-" 2234199 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-970 2232088 2232253 2232281 "PSCURVE" 2232549 T PSCURVE (NIL) -9 NIL 2232716 NIL) (-969 2228436 2229926 2229991 "PSCAT" 2230835 NIL PSCAT (NIL T T T) -9 NIL 2231075 NIL) (-968 2227499 2227715 2228115 "PSCAT-" 2228120 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-967 2226231 2226864 2227069 "PRTITION" 2227314 T PRTITION (NIL) -8 NIL NIL NIL) (-966 2225733 2225952 2226044 "PRTDAST" 2226159 T PRTDAST (NIL) -8 NIL NIL NIL) (-965 2214823 2217037 2219225 "PRS" 2223595 NIL PRS (NIL T T) -7 NIL NIL NIL) (-964 2212681 2214173 2214213 "PRQAGG" 2214396 NIL PRQAGG (NIL T) -9 NIL 2214498 NIL) (-963 2212067 2212296 2212324 "PROPLOG" 2212509 T PROPLOG (NIL) -9 NIL 2212631 NIL) (-962 2209237 2209881 2210345 "PROPFRML" 2211635 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-961 2208697 2208807 2208937 "PROPERTY" 2209127 T PROPERTY (NIL) -8 NIL NIL NIL) (-960 2202782 2206863 2207683 "PRODUCT" 2207923 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-959 2200087 2202240 2202474 "PR" 2202593 NIL PR (NIL T T) -8 NIL NIL NIL) (-958 2199883 2199915 2199974 "PRINT" 2200048 T PRINT (NIL) -7 NIL NIL NIL) (-957 2199223 2199340 2199492 "PRIMES" 2199763 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-956 2197288 2197689 2198155 "PRIMELT" 2198802 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-955 2197017 2197066 2197094 "PRIMCAT" 2197218 T PRIMCAT (NIL) -9 NIL NIL NIL) (-954 2193178 2196955 2197000 "PRIMARR" 2197005 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-953 2192185 2192363 2192591 "PRIMARR2" 2192996 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-952 2191828 2191884 2191995 "PREASSOC" 2192123 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-951 2191303 2191436 2191464 "PPCURVE" 2191669 T PPCURVE (NIL) -9 NIL 2191805 NIL) (-950 2190925 2191098 2191181 "PORTNUM" 2191240 T PORTNUM (NIL) -8 NIL NIL NIL) (-949 2188284 2188683 2189275 "POLYROOT" 2190506 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-948 2182221 2187888 2188048 "POLY" 2188157 NIL POLY (NIL T) -8 NIL NIL NIL) (-947 2181604 2181662 2181896 "POLYLIFT" 2182157 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-946 2177879 2178328 2178957 "POLYCATQ" 2181149 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-945 2164688 2170054 2170119 "POLYCAT" 2173633 NIL POLYCAT (NIL T T T) -9 NIL 2175561 NIL) (-944 2158137 2159999 2162383 "POLYCAT-" 2162388 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-943 2157724 2157792 2157912 "POLY2UP" 2158063 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-942 2157356 2157413 2157522 "POLY2" 2157661 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-941 2156041 2156280 2156556 "POLUTIL" 2157130 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-940 2154396 2154673 2155004 "POLTOPOL" 2155763 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-939 2149913 2154332 2154378 "POINT" 2154383 NIL POINT (NIL T) -8 NIL NIL NIL) (-938 2148100 2148457 2148832 "PNTHEORY" 2149558 T PNTHEORY (NIL) -7 NIL NIL NIL) (-937 2146519 2146816 2147228 "PMTOOLS" 2147798 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-936 2146112 2146190 2146307 "PMSYM" 2146435 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-935 2145622 2145691 2145865 "PMQFCAT" 2146037 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-934 2144977 2145087 2145243 "PMPRED" 2145499 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-933 2144373 2144459 2144620 "PMPREDFS" 2144878 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-932 2143016 2143224 2143609 "PMPLCAT" 2144135 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-931 2142548 2142627 2142779 "PMLSAGG" 2142931 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-930 2142023 2142099 2142280 "PMKERNEL" 2142466 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-929 2141640 2141715 2141828 "PMINS" 2141942 NIL PMINS (NIL T) -7 NIL NIL NIL) (-928 2141068 2141137 2141353 "PMFS" 2141565 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-927 2140296 2140414 2140619 "PMDOWN" 2140945 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-926 2139459 2139618 2139800 "PMASS" 2140134 T PMASS (NIL) -7 NIL NIL NIL) (-925 2138733 2138844 2139007 "PMASSFS" 2139345 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-924 2138388 2138456 2138550 "PLOTTOOL" 2138659 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-923 2132995 2134199 2135347 "PLOT" 2137260 T PLOT (NIL) -8 NIL NIL NIL) (-922 2128799 2129843 2130764 "PLOT3D" 2132094 T PLOT3D (NIL) -8 NIL NIL NIL) (-921 2127711 2127888 2128123 "PLOT1" 2128603 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-920 2103100 2107777 2112628 "PLEQN" 2122977 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-919 2102418 2102540 2102720 "PINTERP" 2102965 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-918 2102111 2102158 2102261 "PINTERPA" 2102365 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-917 2101359 2101880 2101967 "PI" 2102007 T PI (NIL) -8 NIL NIL 2102074) (-916 2099748 2100697 2100725 "PID" 2100907 T PID (NIL) -9 NIL 2101041 NIL) (-915 2099473 2099510 2099598 "PICOERCE" 2099705 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-914 2098793 2098932 2099108 "PGROEB" 2099329 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-913 2094380 2095194 2096099 "PGE" 2097908 T PGE (NIL) -7 NIL NIL NIL) (-912 2092503 2092750 2093116 "PGCD" 2094097 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-911 2091841 2091944 2092105 "PFRPAC" 2092387 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-910 2088509 2090389 2090742 "PFR" 2091520 NIL PFR (NIL T) -8 NIL NIL NIL) (-909 2086898 2087142 2087467 "PFOTOOLS" 2088256 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-908 2085431 2085670 2086021 "PFOQ" 2086655 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-907 2083904 2084116 2084479 "PFO" 2085215 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-906 2080484 2083793 2083862 "PF" 2083867 NIL PF (NIL NIL) -8 NIL NIL NIL) (-905 2077910 2079155 2079183 "PFECAT" 2079768 T PFECAT (NIL) -9 NIL 2080152 NIL) (-904 2077355 2077509 2077723 "PFECAT-" 2077728 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-903 2075958 2076210 2076511 "PFBRU" 2077104 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-902 2073823 2074176 2074608 "PFBR" 2075609 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-901 2069732 2071199 2071875 "PERM" 2073180 NIL PERM (NIL T) -8 NIL NIL NIL) (-900 2064993 2065939 2066809 "PERMGRP" 2068895 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-899 2063125 2064056 2064097 "PERMCAT" 2064543 NIL PERMCAT (NIL T) -9 NIL 2064848 NIL) (-898 2062778 2062819 2062943 "PERMAN" 2063078 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-897 2060314 2062443 2062565 "PENDTREE" 2062689 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-896 2058399 2059141 2059182 "PDRING" 2059839 NIL PDRING (NIL T) -9 NIL 2060125 NIL) (-895 2057502 2057720 2058082 "PDRING-" 2058087 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-894 2054744 2055495 2056163 "PDEPROB" 2056854 T PDEPROB (NIL) -8 NIL NIL NIL) (-893 2052289 2052793 2053348 "PDEPACK" 2054209 T PDEPACK (NIL) -7 NIL NIL NIL) (-892 2051201 2051391 2051642 "PDECOMP" 2052088 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-891 2048806 2049623 2049651 "PDECAT" 2050438 T PDECAT (NIL) -9 NIL 2051151 NIL) (-890 2048557 2048590 2048680 "PCOMP" 2048767 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-889 2046762 2047358 2047655 "PBWLB" 2048286 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-888 2039262 2040835 2042173 "PATTERN" 2045445 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-887 2038894 2038951 2039060 "PATTERN2" 2039199 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-886 2036651 2037039 2037496 "PATTERN1" 2038483 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-885 2034046 2034600 2035081 "PATRES" 2036216 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-884 2033610 2033677 2033809 "PATRES2" 2033973 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-883 2031493 2031898 2032305 "PATMATCH" 2033277 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-882 2031029 2031212 2031253 "PATMAB" 2031360 NIL PATMAB (NIL T) -9 NIL 2031443 NIL) (-881 2029574 2029883 2030141 "PATLRES" 2030834 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-880 2029120 2029243 2029284 "PATAB" 2029289 NIL PATAB (NIL T) -9 NIL 2029461 NIL) (-879 2026601 2027133 2027706 "PARTPERM" 2028567 T PARTPERM (NIL) -7 NIL NIL NIL) (-878 2026222 2026285 2026387 "PARSURF" 2026532 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-877 2025854 2025911 2026020 "PARSU2" 2026159 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-876 2025618 2025658 2025725 "PARSER" 2025807 T PARSER (NIL) -7 NIL NIL NIL) (-875 2025239 2025302 2025404 "PARSCURV" 2025549 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-874 2024871 2024928 2025037 "PARSC2" 2025176 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-873 2024510 2024568 2024665 "PARPCURV" 2024807 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-872 2024142 2024199 2024308 "PARPC2" 2024447 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-871 2023662 2023748 2023867 "PAN2EXPR" 2024043 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-870 2022466 2022783 2023011 "PALETTE" 2023454 T PALETTE (NIL) -8 NIL NIL NIL) (-869 2020934 2021471 2021831 "PAIR" 2022152 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-868 2014831 2020193 2020387 "PADICRC" 2020789 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-867 2008087 2014177 2014361 "PADICRAT" 2014679 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-866 2006429 2008024 2008069 "PADIC" 2008074 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-865 2003631 2005169 2005209 "PADICCT" 2005790 NIL PADICCT (NIL NIL) -9 NIL 2006072 NIL) (-864 2002588 2002788 2003056 "PADEPAC" 2003418 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-863 2001800 2001933 2002139 "PADE" 2002450 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-862 2000214 2001008 2001288 "OWP" 2001604 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-861 1999734 1999920 2000017 "OVERSET" 2000137 T OVERSET (NIL) -8 NIL NIL NIL) (-860 1998807 1999339 1999511 "OVAR" 1999602 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-859 1998071 1998192 1998353 "OUT" 1998666 T OUT (NIL) -7 NIL NIL NIL) (-858 1986969 1989180 1991380 "OUTFORM" 1995891 T OUTFORM (NIL) -8 NIL NIL NIL) (-857 1986305 1986566 1986693 "OUTBFILE" 1986862 T OUTBFILE (NIL) -8 NIL NIL NIL) (-856 1985612 1985777 1985805 "OUTBCON" 1986123 T OUTBCON (NIL) -9 NIL 1986289 NIL) (-855 1985213 1985325 1985482 "OUTBCON-" 1985487 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-854 1984620 1984942 1985031 "OSI" 1985144 T OSI (NIL) -8 NIL NIL NIL) (-853 1984176 1984488 1984516 "OSGROUP" 1984521 T OSGROUP (NIL) -9 NIL 1984543 NIL) (-852 1982921 1983148 1983433 "ORTHPOL" 1983923 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-851 1980499 1982756 1982877 "OREUP" 1982882 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-850 1977929 1980190 1980317 "ORESUP" 1980441 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-849 1975457 1975957 1976518 "OREPCTO" 1977418 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-848 1969273 1971448 1971489 "OREPCAT" 1973837 NIL OREPCAT (NIL T) -9 NIL 1974941 NIL) (-847 1966420 1967202 1968260 "OREPCAT-" 1968265 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-846 1965597 1965869 1965897 "ORDSET" 1966206 T ORDSET (NIL) -9 NIL 1966370 NIL) (-845 1965116 1965238 1965431 "ORDSET-" 1965436 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-844 1963742 1964507 1964535 "ORDRING" 1964737 T ORDRING (NIL) -9 NIL 1964862 NIL) (-843 1963387 1963481 1963625 "ORDRING-" 1963630 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-842 1962793 1963230 1963258 "ORDMON" 1963263 T ORDMON (NIL) -9 NIL 1963284 NIL) (-841 1961955 1962102 1962297 "ORDFUNS" 1962642 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-840 1961319 1961712 1961740 "ORDFIN" 1961805 T ORDFIN (NIL) -9 NIL 1961879 NIL) (-839 1957905 1959905 1960314 "ORDCOMP" 1960943 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-838 1957171 1957298 1957484 "ORDCOMP2" 1957765 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-837 1953779 1954662 1955476 "OPTPROB" 1956377 T OPTPROB (NIL) -8 NIL NIL NIL) (-836 1950581 1951220 1951924 "OPTPACK" 1953095 T OPTPACK (NIL) -7 NIL NIL NIL) (-835 1948294 1949034 1949062 "OPTCAT" 1949881 T OPTCAT (NIL) -9 NIL 1950531 NIL) (-834 1947737 1947971 1948076 "OPSIG" 1948209 T OPSIG (NIL) -8 NIL NIL NIL) (-833 1947505 1947544 1947610 "OPQUERY" 1947691 T OPQUERY (NIL) -7 NIL NIL NIL) (-832 1944663 1945816 1946320 "OP" 1947034 NIL OP (NIL T) -8 NIL NIL NIL) (-831 1944198 1944369 1944410 "OPERCAT" 1944545 NIL OPERCAT (NIL T) -9 NIL 1944613 NIL) (-830 1944044 1944071 1944157 "OPERCAT-" 1944162 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-829 1940883 1942841 1943210 "ONECOMP" 1943708 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-828 1940188 1940303 1940477 "ONECOMP2" 1940755 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-827 1939607 1939713 1939843 "OMSERVER" 1940078 T OMSERVER (NIL) -7 NIL NIL NIL) (-826 1936495 1939047 1939087 "OMSAGG" 1939148 NIL OMSAGG (NIL T) -9 NIL 1939212 NIL) (-825 1935118 1935381 1935663 "OMPKG" 1936233 T OMPKG (NIL) -7 NIL NIL NIL) (-824 1934548 1934651 1934679 "OM" 1934978 T OM (NIL) -9 NIL NIL NIL) (-823 1933122 1934097 1934266 "OMLO" 1934429 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-822 1932047 1932194 1932421 "OMEXPR" 1932948 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-821 1931365 1931593 1931729 "OMERR" 1931931 T OMERR (NIL) -8 NIL NIL NIL) (-820 1930543 1930786 1930946 "OMERRK" 1931225 T OMERRK (NIL) -8 NIL NIL NIL) (-819 1930021 1930220 1930328 "OMENC" 1930455 T OMENC (NIL) -8 NIL NIL NIL) (-818 1923916 1925101 1926272 "OMDEV" 1928870 T OMDEV (NIL) -8 NIL NIL NIL) (-817 1922985 1923156 1923350 "OMCONN" 1923742 T OMCONN (NIL) -8 NIL NIL NIL) (-816 1921598 1922548 1922576 "OINTDOM" 1922581 T OINTDOM (NIL) -9 NIL 1922602 NIL) (-815 1917404 1918588 1919304 "OFMONOID" 1920914 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-814 1916842 1917341 1917386 "ODVAR" 1917391 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-813 1914292 1916587 1916742 "ODR" 1916747 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-812 1906628 1914068 1914194 "ODPOL" 1914199 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-811 1900498 1906500 1906605 "ODP" 1906610 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-810 1899264 1899479 1899754 "ODETOOLS" 1900272 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-809 1896231 1896889 1897605 "ODESYS" 1898597 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-808 1891113 1892021 1893046 "ODERTRIC" 1895306 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-807 1890539 1890621 1890815 "ODERED" 1891025 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-806 1887427 1887975 1888652 "ODERAT" 1889962 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-805 1884384 1884851 1885448 "ODEPRRIC" 1886956 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-804 1882354 1882923 1883409 "ODEPROB" 1883918 T ODEPROB (NIL) -8 NIL NIL NIL) (-803 1878874 1879359 1880006 "ODEPRIM" 1881833 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-802 1878123 1878225 1878485 "ODEPAL" 1878766 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-801 1874285 1875076 1875940 "ODEPACK" 1877279 T ODEPACK (NIL) -7 NIL NIL NIL) (-800 1873318 1873425 1873654 "ODEINT" 1874174 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-799 1867419 1868844 1870291 "ODEIFTBL" 1871891 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-798 1862754 1863540 1864499 "ODEEF" 1866578 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-797 1862089 1862178 1862408 "ODECONST" 1862659 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-796 1860240 1860875 1860903 "ODECAT" 1861508 T ODECAT (NIL) -9 NIL 1862039 NIL) (-795 1857139 1859952 1860071 "OCT" 1860153 NIL OCT (NIL T) -8 NIL NIL NIL) (-794 1856777 1856820 1856947 "OCTCT2" 1857090 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-793 1851543 1853951 1853991 "OC" 1855088 NIL OC (NIL T) -9 NIL 1855946 NIL) (-792 1848770 1849518 1850508 "OC-" 1850602 NIL OC- (NIL T T) -8 NIL NIL NIL) (-791 1848148 1848590 1848618 "OCAMON" 1848623 T OCAMON (NIL) -9 NIL 1848644 NIL) (-790 1847705 1848020 1848048 "OASGP" 1848053 T OASGP (NIL) -9 NIL 1848073 NIL) (-789 1846992 1847455 1847483 "OAMONS" 1847523 T OAMONS (NIL) -9 NIL 1847566 NIL) (-788 1846432 1846839 1846867 "OAMON" 1846872 T OAMON (NIL) -9 NIL 1846892 NIL) (-787 1845736 1846228 1846256 "OAGROUP" 1846261 T OAGROUP (NIL) -9 NIL 1846281 NIL) (-786 1845426 1845476 1845564 "NUMTUBE" 1845680 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-785 1838999 1840517 1842053 "NUMQUAD" 1843910 T NUMQUAD (NIL) -7 NIL NIL NIL) (-784 1834755 1835743 1836768 "NUMODE" 1837994 T NUMODE (NIL) -7 NIL NIL NIL) (-783 1832136 1832990 1833018 "NUMINT" 1833941 T NUMINT (NIL) -9 NIL 1834705 NIL) (-782 1831084 1831281 1831499 "NUMFMT" 1831938 T NUMFMT (NIL) -7 NIL NIL NIL) (-781 1817443 1820388 1822920 "NUMERIC" 1828591 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-780 1811840 1816892 1816987 "NTSCAT" 1816992 NIL NTSCAT (NIL T T T T) -9 NIL 1817031 NIL) (-779 1811034 1811199 1811392 "NTPOLFN" 1811679 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-778 1798866 1807859 1808671 "NSUP" 1810255 NIL NSUP (NIL T) -8 NIL NIL NIL) (-777 1798498 1798555 1798664 "NSUP2" 1798803 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-776 1788481 1798272 1798405 "NSMP" 1798410 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-775 1786913 1787214 1787571 "NREP" 1788169 NIL NREP (NIL T) -7 NIL NIL NIL) (-774 1785504 1785756 1786114 "NPCOEF" 1786656 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-773 1784570 1784685 1784901 "NORMRETR" 1785385 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-772 1782611 1782901 1783310 "NORMPK" 1784278 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-771 1782296 1782324 1782448 "NORMMA" 1782577 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-770 1782123 1782253 1782282 "NONE" 1782287 T NONE (NIL) -8 NIL NIL NIL) (-769 1781912 1781941 1782010 "NONE1" 1782087 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-768 1781395 1781457 1781643 "NODE1" 1781844 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-767 1779665 1780489 1780744 "NNI" 1781091 T NNI (NIL) -8 NIL NIL 1781326) (-766 1778085 1778398 1778762 "NLINSOL" 1779333 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-765 1774353 1775321 1776220 "NIPROB" 1777206 T NIPROB (NIL) -8 NIL NIL NIL) (-764 1773110 1773344 1773646 "NFINTBAS" 1774115 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-763 1772284 1772760 1772801 "NETCLT" 1772973 NIL NETCLT (NIL T) -9 NIL 1773055 NIL) (-762 1770992 1771223 1771504 "NCODIV" 1772052 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-761 1770754 1770791 1770866 "NCNTFRAC" 1770949 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-760 1768934 1769298 1769718 "NCEP" 1770379 NIL NCEP (NIL T) -7 NIL NIL NIL) (-759 1767831 1768578 1768606 "NASRING" 1768716 T NASRING (NIL) -9 NIL 1768796 NIL) (-758 1767626 1767670 1767764 "NASRING-" 1767769 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-757 1766779 1767278 1767306 "NARNG" 1767423 T NARNG (NIL) -9 NIL 1767514 NIL) (-756 1766471 1766538 1766672 "NARNG-" 1766677 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-755 1765350 1765557 1765792 "NAGSP" 1766256 T NAGSP (NIL) -7 NIL NIL NIL) (-754 1756622 1758306 1759979 "NAGS" 1763697 T NAGS (NIL) -7 NIL NIL NIL) (-753 1755170 1755478 1755809 "NAGF07" 1756311 T NAGF07 (NIL) -7 NIL NIL NIL) (-752 1749708 1750999 1752306 "NAGF04" 1753883 T NAGF04 (NIL) -7 NIL NIL NIL) (-751 1742676 1744290 1745923 "NAGF02" 1748095 T NAGF02 (NIL) -7 NIL NIL NIL) (-750 1737900 1739000 1740117 "NAGF01" 1741579 T NAGF01 (NIL) -7 NIL NIL NIL) (-749 1731528 1733094 1734679 "NAGE04" 1736335 T NAGE04 (NIL) -7 NIL NIL NIL) (-748 1722697 1724818 1726948 "NAGE02" 1729418 T NAGE02 (NIL) -7 NIL NIL NIL) (-747 1718650 1719597 1720561 "NAGE01" 1721753 T NAGE01 (NIL) -7 NIL NIL NIL) (-746 1716445 1716979 1717537 "NAGD03" 1718112 T NAGD03 (NIL) -7 NIL NIL NIL) (-745 1708195 1710123 1712077 "NAGD02" 1714511 T NAGD02 (NIL) -7 NIL NIL NIL) (-744 1702006 1703431 1704871 "NAGD01" 1706775 T NAGD01 (NIL) -7 NIL NIL NIL) (-743 1698215 1699037 1699874 "NAGC06" 1701189 T NAGC06 (NIL) -7 NIL NIL NIL) (-742 1696680 1697012 1697368 "NAGC05" 1697879 T NAGC05 (NIL) -7 NIL NIL NIL) (-741 1696056 1696175 1696319 "NAGC02" 1696556 T NAGC02 (NIL) -7 NIL NIL NIL) (-740 1695116 1695673 1695713 "NAALG" 1695792 NIL NAALG (NIL T) -9 NIL 1695853 NIL) (-739 1694951 1694980 1695070 "NAALG-" 1695075 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-738 1688901 1690009 1691196 "MULTSQFR" 1693847 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-737 1688220 1688295 1688479 "MULTFACT" 1688813 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-736 1681305 1685183 1685236 "MTSCAT" 1686306 NIL MTSCAT (NIL T T) -9 NIL 1686820 NIL) (-735 1681017 1681071 1681163 "MTHING" 1681245 NIL MTHING (NIL T) -7 NIL NIL NIL) (-734 1680809 1680842 1680902 "MSYSCMD" 1680977 T MSYSCMD (NIL) -7 NIL NIL NIL) (-733 1676918 1679564 1679884 "MSET" 1680522 NIL MSET (NIL T) -8 NIL NIL NIL) (-732 1674013 1676479 1676520 "MSETAGG" 1676525 NIL MSETAGG (NIL T) -9 NIL 1676559 NIL) (-731 1669881 1671392 1672137 "MRING" 1673313 NIL MRING (NIL T T) -8 NIL NIL NIL) (-730 1669447 1669514 1669645 "MRF2" 1669808 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-729 1669065 1669100 1669244 "MRATFAC" 1669406 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-728 1666677 1666972 1667403 "MPRFF" 1668770 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-727 1660729 1666531 1666628 "MPOLY" 1666633 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-726 1660219 1660254 1660462 "MPCPF" 1660688 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-725 1659733 1659776 1659960 "MPC3" 1660170 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1658928 1659009 1659230 "MPC2" 1659648 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-723 1657229 1657566 1657956 "MONOTOOL" 1658588 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-722 1656480 1656771 1656799 "MONOID" 1657018 T MONOID (NIL) -9 NIL 1657165 NIL) (-721 1656026 1656145 1656326 "MONOID-" 1656331 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-720 1646877 1652793 1652852 "MONOGEN" 1653526 NIL MONOGEN (NIL T T) -9 NIL 1653982 NIL) (-719 1644095 1644830 1645830 "MONOGEN-" 1645949 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-718 1642954 1643374 1643402 "MONADWU" 1643794 T MONADWU (NIL) -9 NIL 1644032 NIL) (-717 1642326 1642485 1642733 "MONADWU-" 1642738 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-716 1641711 1641929 1641957 "MONAD" 1642164 T MONAD (NIL) -9 NIL 1642276 NIL) (-715 1641396 1641474 1641606 "MONAD-" 1641611 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-714 1639712 1640309 1640588 "MOEBIUS" 1641149 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-713 1639104 1639482 1639522 "MODULE" 1639527 NIL MODULE (NIL T) -9 NIL 1639553 NIL) (-712 1638672 1638768 1638958 "MODULE-" 1638963 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-711 1636379 1637036 1637363 "MODRING" 1638496 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-710 1633350 1634484 1635005 "MODOP" 1635908 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-709 1631965 1632417 1632694 "MODMONOM" 1633213 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-708 1621762 1630256 1630670 "MODMON" 1631602 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-707 1618945 1620606 1620882 "MODFIELD" 1621637 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-706 1617949 1618226 1618416 "MMLFORM" 1618775 T MMLFORM (NIL) -8 NIL NIL NIL) (-705 1617475 1617518 1617697 "MMAP" 1617900 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-704 1615684 1616425 1616466 "MLO" 1616889 NIL MLO (NIL T) -9 NIL 1617131 NIL) (-703 1613050 1613566 1614168 "MLIFT" 1615165 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-702 1612441 1612525 1612679 "MKUCFUNC" 1612961 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-701 1612040 1612110 1612233 "MKRECORD" 1612364 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-700 1611087 1611249 1611477 "MKFUNC" 1611851 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-699 1610475 1610579 1610735 "MKFLCFN" 1610970 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-698 1610018 1610385 1610444 "MKCHSET" 1610449 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-697 1609295 1609397 1609582 "MKBCFUNC" 1609911 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-696 1606029 1608849 1608985 "MINT" 1609179 T MINT (NIL) -8 NIL NIL NIL) (-695 1604841 1605084 1605361 "MHROWRED" 1605784 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-694 1600248 1603376 1603781 "MFLOAT" 1604456 T MFLOAT (NIL) -8 NIL NIL NIL) (-693 1599605 1599681 1599852 "MFINFACT" 1600160 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-692 1595920 1596768 1597652 "MESH" 1598741 T MESH (NIL) -7 NIL NIL NIL) (-691 1594310 1594622 1594975 "MDDFACT" 1595607 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-690 1591152 1593469 1593510 "MDAGG" 1593765 NIL MDAGG (NIL T) -9 NIL 1593908 NIL) (-689 1580922 1590445 1590652 "MCMPLX" 1590965 T MCMPLX (NIL) -8 NIL NIL NIL) (-688 1580063 1580209 1580409 "MCDEN" 1580771 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-687 1577953 1578223 1578603 "MCALCFN" 1579793 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-686 1576878 1577118 1577351 "MAYBE" 1577759 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-685 1574490 1575013 1575575 "MATSTOR" 1576349 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-684 1570495 1573862 1574110 "MATRIX" 1574275 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-683 1566259 1566968 1567704 "MATLIN" 1569852 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-682 1556413 1559551 1559628 "MATCAT" 1564508 NIL MATCAT (NIL T T T) -9 NIL 1565925 NIL) (-681 1552769 1553790 1555146 "MATCAT-" 1555151 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-680 1551363 1551516 1551849 "MATCAT2" 1552604 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-679 1549475 1549799 1550183 "MAPPKG3" 1551038 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-678 1548456 1548629 1548851 "MAPPKG2" 1549299 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-677 1546955 1547239 1547566 "MAPPKG1" 1548162 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-676 1546061 1546361 1546538 "MAPPAST" 1546798 T MAPPAST (NIL) -8 NIL NIL NIL) (-675 1545672 1545730 1545853 "MAPHACK3" 1545997 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-674 1545264 1545325 1545439 "MAPHACK2" 1545604 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-673 1544701 1544805 1544947 "MAPHACK1" 1545155 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-672 1542807 1543401 1543705 "MAGMA" 1544429 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-671 1542313 1542531 1542622 "MACROAST" 1542736 T MACROAST (NIL) -8 NIL NIL NIL) (-670 1538779 1540552 1541013 "M3D" 1541885 NIL M3D (NIL T) -8 NIL NIL NIL) (-669 1532933 1537148 1537189 "LZSTAGG" 1537971 NIL LZSTAGG (NIL T) -9 NIL 1538266 NIL) (-668 1528890 1530064 1531521 "LZSTAGG-" 1531526 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-667 1526004 1526781 1527268 "LWORD" 1528435 NIL LWORD (NIL T) -8 NIL NIL NIL) (-666 1525607 1525808 1525883 "LSTAST" 1525949 T LSTAST (NIL) -8 NIL NIL NIL) (-665 1518800 1525378 1525512 "LSQM" 1525517 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-664 1518024 1518163 1518391 "LSPP" 1518655 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-663 1515836 1516137 1516593 "LSMP" 1517713 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-662 1512615 1513289 1514019 "LSMP1" 1515138 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-661 1506540 1511782 1511823 "LSAGG" 1511885 NIL LSAGG (NIL T) -9 NIL 1511963 NIL) (-660 1503235 1504159 1505372 "LSAGG-" 1505377 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-659 1500861 1502379 1502628 "LPOLY" 1503030 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-658 1500443 1500528 1500651 "LPEFRAC" 1500770 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-657 1498790 1499537 1499790 "LO" 1500275 NIL LO (NIL T T T) -8 NIL NIL NIL) (-656 1498442 1498554 1498582 "LOGIC" 1498693 T LOGIC (NIL) -9 NIL 1498774 NIL) (-655 1498304 1498327 1498398 "LOGIC-" 1498403 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-654 1497497 1497637 1497830 "LODOOPS" 1498160 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-653 1494947 1497413 1497479 "LODO" 1497484 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-652 1493485 1493720 1494073 "LODOF" 1494694 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-651 1489833 1492238 1492279 "LODOCAT" 1492717 NIL LODOCAT (NIL T) -9 NIL 1492928 NIL) (-650 1489566 1489624 1489751 "LODOCAT-" 1489756 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-649 1486913 1489407 1489525 "LODO2" 1489530 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-648 1484375 1486850 1486895 "LODO1" 1486900 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-647 1483235 1483400 1483712 "LODEEF" 1484198 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-646 1478521 1481365 1481406 "LNAGG" 1482353 NIL LNAGG (NIL T) -9 NIL 1482797 NIL) (-645 1477668 1477882 1478224 "LNAGG-" 1478229 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-644 1473831 1474593 1475232 "LMOPS" 1477083 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-643 1473226 1473588 1473629 "LMODULE" 1473690 NIL LMODULE (NIL T) -9 NIL 1473732 NIL) (-642 1470472 1472871 1472994 "LMDICT" 1473136 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-641 1470198 1470380 1470440 "LITERAL" 1470445 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-640 1463429 1469144 1469442 "LIST" 1469933 NIL LIST (NIL T) -8 NIL NIL NIL) (-639 1462954 1463028 1463167 "LIST3" 1463349 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-638 1461961 1462139 1462367 "LIST2" 1462772 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-637 1460095 1460407 1460806 "LIST2MAP" 1461608 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-636 1458817 1459461 1459502 "LINEXP" 1459757 NIL LINEXP (NIL T) -9 NIL 1459906 NIL) (-635 1457464 1457724 1458021 "LINDEP" 1458569 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-634 1454231 1454950 1455727 "LIMITRF" 1456719 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-633 1452506 1452802 1453218 "LIMITPS" 1453926 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-632 1446961 1452017 1452245 "LIE" 1452327 NIL LIE (NIL T T) -8 NIL NIL NIL) (-631 1446010 1446453 1446493 "LIECAT" 1446633 NIL LIECAT (NIL T) -9 NIL 1446784 NIL) (-630 1445851 1445878 1445966 "LIECAT-" 1445971 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-629 1438463 1445300 1445465 "LIB" 1445706 T LIB (NIL) -8 NIL NIL NIL) (-628 1434098 1434981 1435916 "LGROBP" 1437580 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-627 1431964 1432238 1432600 "LF" 1433819 NIL LF (NIL T T) -7 NIL NIL NIL) (-626 1430804 1431496 1431524 "LFCAT" 1431731 T LFCAT (NIL) -9 NIL 1431870 NIL) (-625 1427706 1428336 1429024 "LEXTRIPK" 1430168 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-624 1424477 1425276 1425779 "LEXP" 1427286 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-623 1423980 1424198 1424290 "LETAST" 1424405 T LETAST (NIL) -8 NIL NIL NIL) (-622 1422378 1422691 1423092 "LEADCDET" 1423662 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-621 1421568 1421642 1421871 "LAZM3PK" 1422299 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-620 1416512 1419645 1420183 "LAUPOL" 1421080 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-619 1416077 1416121 1416289 "LAPLACE" 1416462 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-618 1414043 1415178 1415429 "LA" 1415910 NIL LA (NIL T T T) -8 NIL NIL NIL) (-617 1413116 1413674 1413715 "LALG" 1413777 NIL LALG (NIL T) -9 NIL 1413836 NIL) (-616 1412830 1412889 1413025 "LALG-" 1413030 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-615 1412665 1412689 1412730 "KVTFROM" 1412792 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-614 1411466 1411882 1412111 "KTVLOGIC" 1412456 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-613 1411301 1411325 1411366 "KRCFROM" 1411428 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-612 1410205 1410392 1410691 "KOVACIC" 1411101 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-611 1410040 1410064 1410105 "KONVERT" 1410167 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-610 1409875 1409899 1409940 "KOERCE" 1410002 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-609 1407609 1408369 1408762 "KERNEL" 1409514 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-608 1407111 1407192 1407322 "KERNEL2" 1407523 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-607 1400962 1405650 1405704 "KDAGG" 1406081 NIL KDAGG (NIL T T) -9 NIL 1406287 NIL) (-606 1400491 1400615 1400820 "KDAGG-" 1400825 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-605 1393666 1400152 1400307 "KAFILE" 1400369 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-604 1388121 1393177 1393405 "JORDAN" 1393487 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-603 1387527 1387770 1387891 "JOINAST" 1388020 T JOINAST (NIL) -8 NIL NIL NIL) (-602 1387373 1387432 1387487 "JAVACODE" 1387492 T JAVACODE (NIL) -8 NIL NIL NIL) (-601 1383672 1385578 1385632 "IXAGG" 1386561 NIL IXAGG (NIL T T) -9 NIL 1387020 NIL) (-600 1382591 1382897 1383316 "IXAGG-" 1383321 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-599 1378171 1382513 1382572 "IVECTOR" 1382577 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-598 1376937 1377174 1377440 "ITUPLE" 1377938 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-597 1375373 1375550 1375856 "ITRIGMNP" 1376759 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-596 1374118 1374322 1374605 "ITFUN3" 1375149 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-595 1373750 1373807 1373916 "ITFUN2" 1374055 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-594 1371579 1372612 1372911 "ITAYLOR" 1373484 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-593 1360551 1365716 1366879 "ISUPS" 1370449 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-592 1359655 1359795 1360031 "ISUMP" 1360398 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-591 1354919 1359456 1359535 "ISTRING" 1359608 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-590 1354422 1354640 1354732 "ISAST" 1354847 T ISAST (NIL) -8 NIL NIL NIL) (-589 1353632 1353713 1353929 "IRURPK" 1354336 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-588 1352568 1352769 1353009 "IRSN" 1353412 T IRSN (NIL) -7 NIL NIL NIL) (-587 1350597 1350952 1351388 "IRRF2F" 1352206 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-586 1350344 1350382 1350458 "IRREDFFX" 1350553 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-585 1348959 1349218 1349517 "IROOT" 1350077 NIL IROOT (NIL T) -7 NIL NIL NIL) (-584 1345590 1346643 1347335 "IR" 1348299 NIL IR (NIL T) -8 NIL NIL NIL) (-583 1343203 1343698 1344264 "IR2" 1345068 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-582 1342275 1342388 1342609 "IR2F" 1343086 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-581 1342066 1342100 1342160 "IPRNTPK" 1342235 T IPRNTPK (NIL) -7 NIL NIL NIL) (-580 1338673 1341955 1342024 "IPF" 1342029 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-579 1337027 1338598 1338655 "IPADIC" 1338660 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-578 1336366 1336587 1336717 "IP4ADDR" 1336917 T IP4ADDR (NIL) -8 NIL NIL NIL) (-577 1335866 1336070 1336180 "IOMODE" 1336276 T IOMODE (NIL) -8 NIL NIL NIL) (-576 1334939 1335463 1335590 "IOBFILE" 1335759 T IOBFILE (NIL) -8 NIL NIL NIL) (-575 1334427 1334843 1334871 "IOBCON" 1334876 T IOBCON (NIL) -9 NIL 1334897 NIL) (-574 1333924 1333982 1334172 "INVLAPLA" 1334363 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-573 1323572 1325926 1328312 "INTTR" 1331588 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-572 1319916 1320658 1321522 "INTTOOLS" 1322757 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-571 1319502 1319593 1319710 "INTSLPE" 1319819 T INTSLPE (NIL) -7 NIL NIL NIL) (-570 1317483 1319425 1319484 "INTRVL" 1319489 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-569 1315085 1315597 1316172 "INTRF" 1316968 NIL INTRF (NIL T) -7 NIL NIL NIL) (-568 1314496 1314593 1314735 "INTRET" 1314983 NIL INTRET (NIL T) -7 NIL NIL NIL) (-567 1312493 1312882 1313352 "INTRAT" 1314104 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-566 1309721 1310304 1310930 "INTPM" 1311978 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-565 1306423 1307023 1307768 "INTPAF" 1309107 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-564 1301602 1302564 1303615 "INTPACK" 1305392 T INTPACK (NIL) -7 NIL NIL NIL) (-563 1298506 1301331 1301458 "INT" 1301495 T INT (NIL) -8 NIL NIL NIL) (-562 1297758 1297910 1298118 "INTHERTR" 1298348 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-561 1297197 1297277 1297465 "INTHERAL" 1297672 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-560 1295043 1295486 1295943 "INTHEORY" 1296760 T INTHEORY (NIL) -7 NIL NIL NIL) (-559 1286351 1287972 1289751 "INTG0" 1293395 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-558 1266924 1271714 1276524 "INTFTBL" 1281561 T INTFTBL (NIL) -8 NIL NIL NIL) (-557 1266173 1266311 1266484 "INTFACT" 1266783 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-556 1263558 1264004 1264568 "INTEF" 1265727 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-555 1262017 1262730 1262758 "INTDOM" 1263059 T INTDOM (NIL) -9 NIL 1263266 NIL) (-554 1261386 1261560 1261802 "INTDOM-" 1261807 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-553 1257873 1259770 1259824 "INTCAT" 1260623 NIL INTCAT (NIL T) -9 NIL 1260943 NIL) (-552 1257345 1257448 1257576 "INTBIT" 1257765 T INTBIT (NIL) -7 NIL NIL NIL) (-551 1256016 1256170 1256484 "INTALG" 1257190 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-550 1255473 1255563 1255733 "INTAF" 1255920 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-549 1248927 1255283 1255423 "INTABL" 1255428 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-548 1248258 1248697 1248762 "INT8" 1248796 T INT8 (NIL) -8 NIL NIL 1248841) (-547 1247588 1248027 1248092 "INT32" 1248126 T INT32 (NIL) -8 NIL NIL 1248171) (-546 1246918 1247357 1247422 "INT16" 1247456 T INT16 (NIL) -8 NIL NIL 1247501) (-545 1241925 1244607 1244635 "INS" 1245569 T INS (NIL) -9 NIL 1246234 NIL) (-544 1239165 1239936 1240910 "INS-" 1240983 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1237940 1238167 1238465 "INPSIGN" 1238918 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1237058 1237175 1237372 "INPRODPF" 1237820 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1235952 1236069 1236306 "INPRODFF" 1236938 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1234952 1235104 1235364 "INNMFACT" 1235788 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1234149 1234246 1234434 "INMODGCD" 1234851 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1232657 1232902 1233226 "INFSP" 1233894 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1231841 1231958 1232141 "INFPROD0" 1232537 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1228722 1229906 1230421 "INFORM" 1231334 T INFORM (NIL) -8 NIL NIL NIL) (-535 1228332 1228392 1228490 "INFORM1" 1228657 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1227855 1227944 1228058 "INFINITY" 1228238 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1227031 1227575 1227676 "INETCLTS" 1227774 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1225647 1225897 1226218 "INEP" 1226779 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1224923 1225544 1225609 "INDE" 1225614 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1224487 1224555 1224672 "INCRMAPS" 1224850 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1223305 1223756 1223962 "INBFILE" 1224301 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1218605 1219541 1220485 "INBFF" 1222393 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1217513 1217782 1217810 "INBCON" 1218323 T INBCON (NIL) -9 NIL 1218589 NIL) (-526 1216765 1216988 1217264 "INBCON-" 1217269 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1216267 1216486 1216578 "INAST" 1216693 T INAST (NIL) -8 NIL NIL NIL) (-524 1215721 1215946 1216052 "IMPTAST" 1216181 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1212215 1215565 1215669 "IMATRIX" 1215674 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1210927 1211050 1211365 "IMATQF" 1212071 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1209147 1209374 1209711 "IMATLIN" 1210683 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1203773 1209071 1209129 "ILIST" 1209134 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1201726 1203633 1203746 "IIARRAY2" 1203751 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1197151 1201637 1201701 "IFF" 1201706 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1196525 1196768 1196884 "IFAST" 1197055 T IFAST (NIL) -8 NIL NIL NIL) (-516 1191568 1195817 1196005 "IFARRAY" 1196382 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1190775 1191472 1191545 "IFAMON" 1191550 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1190359 1190424 1190478 "IEVALAB" 1190685 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1190034 1190102 1190262 "IEVALAB-" 1190267 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1189692 1189948 1190011 "IDPO" 1190016 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1188969 1189581 1189656 "IDPOAMS" 1189661 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1188303 1188858 1188933 "IDPOAM" 1188938 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1187388 1187638 1187691 "IDPC" 1188104 NIL IDPC (NIL T T) -9 NIL 1188253 NIL) (-508 1186884 1187280 1187353 "IDPAM" 1187358 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1186287 1186776 1186849 "IDPAG" 1186854 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1186055 1186202 1186252 "IDENT" 1186257 T IDENT (NIL) -8 NIL NIL NIL) (-505 1182310 1183158 1184053 "IDECOMP" 1185212 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1175174 1176233 1177280 "IDEAL" 1181346 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1174338 1174450 1174649 "ICDEN" 1175058 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1173436 1173818 1173965 "ICARD" 1174211 T ICARD (NIL) -8 NIL NIL NIL) (-501 1171496 1171809 1172214 "IBPTOOLS" 1173113 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1167130 1171116 1171229 "IBITS" 1171415 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1163853 1164429 1165124 "IBATOOL" 1166547 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1161632 1162094 1162627 "IBACHIN" 1163388 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1159509 1161478 1161581 "IARRAY2" 1161586 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1155662 1159435 1159492 "IARRAY1" 1159497 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1149646 1154074 1154555 "IAN" 1155201 T IAN (NIL) -8 NIL NIL NIL) (-494 1149157 1149214 1149387 "IALGFACT" 1149583 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1148685 1148798 1148826 "HYPCAT" 1149033 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1148223 1148340 1148526 "HYPCAT-" 1148531 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1147845 1148018 1148101 "HOSTNAME" 1148160 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1147690 1147727 1147768 "HOMOTOP" 1147773 NIL HOMOTOP (NIL T) -9 NIL 1147806 NIL) (-489 1144369 1145700 1145741 "HOAGG" 1146722 NIL HOAGG (NIL T) -9 NIL 1147401 NIL) (-488 1142963 1143362 1143888 "HOAGG-" 1143893 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1136994 1142558 1142707 "HEXADEC" 1142834 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1135742 1135964 1136227 "HEUGCD" 1136771 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1134845 1135579 1135709 "HELLFDIV" 1135714 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1133072 1134622 1134710 "HEAP" 1134789 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1132362 1132624 1132758 "HEADAST" 1132958 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1126276 1132277 1132339 "HDP" 1132344 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1120019 1125911 1126063 "HDMP" 1126177 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1119343 1119483 1119647 "HB" 1119875 T HB (NIL) -7 NIL NIL NIL) (-479 1112840 1119189 1119293 "HASHTBL" 1119298 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1112343 1112561 1112653 "HASAST" 1112768 T HASAST (NIL) -8 NIL NIL NIL) (-477 1110148 1111965 1112147 "HACKPI" 1112181 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1105843 1110001 1110114 "GTSET" 1110119 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1099369 1105721 1105819 "GSTBL" 1105824 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1091674 1098400 1098665 "GSERIES" 1099160 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1090841 1091232 1091260 "GROUP" 1091463 T GROUP (NIL) -9 NIL 1091597 NIL) (-472 1090207 1090366 1090617 "GROUP-" 1090622 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1088574 1088895 1089282 "GROEBSOL" 1089884 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1087514 1087776 1087827 "GRMOD" 1088356 NIL GRMOD (NIL T T) -9 NIL 1088524 NIL) (-469 1087282 1087318 1087446 "GRMOD-" 1087451 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1082599 1083636 1084636 "GRIMAGE" 1086302 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1081065 1081326 1081650 "GRDEF" 1082295 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1080509 1080625 1080766 "GRAY" 1080944 T GRAY (NIL) -7 NIL NIL NIL) (-465 1079722 1080102 1080153 "GRALG" 1080306 NIL GRALG (NIL T T) -9 NIL 1080399 NIL) (-464 1079383 1079456 1079619 "GRALG-" 1079624 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1076187 1078968 1079146 "GPOLSET" 1079290 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1075541 1075598 1075856 "GOSPER" 1076124 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1071300 1071979 1072505 "GMODPOL" 1075240 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1070305 1070489 1070727 "GHENSEL" 1071112 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1064356 1065199 1066226 "GENUPS" 1069389 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1064053 1064104 1064193 "GENUFACT" 1064299 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1063465 1063542 1063707 "GENPGCD" 1063971 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1062939 1062974 1063187 "GENMFACT" 1063424 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1061505 1061762 1062069 "GENEEZ" 1062682 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1055406 1061116 1061278 "GDMP" 1061428 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1044775 1049177 1050283 "GCNAALG" 1054389 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1043194 1044030 1044058 "GCDDOM" 1044313 T GCDDOM (NIL) -9 NIL 1044470 NIL) (-451 1042664 1042791 1043006 "GCDDOM-" 1043011 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1041336 1041521 1041825 "GB" 1042443 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1029952 1032282 1034674 "GBINTERN" 1039027 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1027789 1028081 1028502 "GBF" 1029627 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1026570 1026735 1027002 "GBEUCLID" 1027605 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1025919 1026044 1026193 "GAUSSFAC" 1026441 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1024286 1024588 1024902 "GALUTIL" 1025638 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1022594 1022868 1023192 "GALPOLYU" 1024013 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1019959 1020249 1020656 "GALFACTU" 1022291 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1011765 1013264 1014872 "GALFACT" 1018391 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1009153 1009811 1009839 "FVFUN" 1010995 T FVFUN (NIL) -9 NIL 1011715 NIL) (-440 1008419 1008601 1008629 "FVC" 1008920 T FVC (NIL) -9 NIL 1009103 NIL) (-439 1008089 1008244 1008312 "FUNDESC" 1008371 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1007731 1007886 1007967 "FUNCTION" 1008041 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1005502 1006053 1006519 "FT" 1007285 T FT (NIL) -8 NIL NIL NIL) (-436 1004320 1004803 1005006 "FTEM" 1005319 T FTEM (NIL) -8 NIL NIL NIL) (-435 1002576 1002865 1003269 "FSUPFACT" 1004011 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1000973 1001262 1001594 "FST" 1002264 T FST (NIL) -8 NIL NIL NIL) (-433 1000144 1000250 1000445 "FSRED" 1000855 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 998822 999078 999432 "FSPRMELT" 999859 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 995907 996345 996844 "FSPECF" 998385 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 977961 986410 986450 "FS" 990298 NIL FS (NIL T) -9 NIL 992587 NIL) (-429 966608 969601 973657 "FS-" 973954 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 966122 966176 966353 "FSINT" 966549 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 964441 965115 965418 "FSERIES" 965901 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 963455 963571 963802 "FSCINT" 964321 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 959689 962399 962440 "FSAGG" 962810 NIL FSAGG (NIL T) -9 NIL 963069 NIL) (-424 957451 958052 958848 "FSAGG-" 958943 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 956493 956636 956863 "FSAGG2" 957304 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 954147 954427 954981 "FS2UPS" 956211 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 953729 953772 953927 "FS2" 954098 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 952586 952757 953066 "FS2EXPXP" 953554 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 952012 952127 952279 "FRUTIL" 952466 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 943452 947507 948865 "FR" 950686 NIL FR (NIL T) -8 NIL NIL NIL) (-417 938527 941170 941210 "FRNAALG" 942606 NIL FRNAALG (NIL T) -9 NIL 943213 NIL) (-416 934200 935276 936551 "FRNAALG-" 937301 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 933838 933881 934008 "FRNAAF2" 934151 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 932245 932692 932987 "FRMOD" 933650 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 930023 930628 930945 "FRIDEAL" 932036 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 929218 929305 929594 "FRIDEAL2" 929930 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 928351 928765 928806 "FRETRCT" 928811 NIL FRETRCT (NIL T) -9 NIL 928987 NIL) (-410 927463 927694 928045 "FRETRCT-" 928050 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 924667 925851 925910 "FRAMALG" 926792 NIL FRAMALG (NIL T T) -9 NIL 927084 NIL) (-408 922801 923256 923886 "FRAMALG-" 924109 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 916749 922276 922552 "FRAC" 922557 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 916385 916442 916549 "FRAC2" 916686 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 916021 916078 916185 "FR2" 916322 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 910686 913546 913574 "FPS" 914693 T FPS (NIL) -9 NIL 915250 NIL) (-403 910135 910244 910408 "FPS-" 910554 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 907581 909224 909252 "FPC" 909477 T FPC (NIL) -9 NIL 909619 NIL) (-401 907374 907414 907511 "FPC-" 907516 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 906252 906862 906903 "FPATMAB" 906908 NIL FPATMAB (NIL T) -9 NIL 907060 NIL) (-399 903952 904428 904854 "FPARFRAC" 905889 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 899345 899844 900526 "FORTRAN" 903384 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 897061 897561 898100 "FORT" 898826 T FORT (NIL) -7 NIL NIL NIL) (-396 894737 895299 895327 "FORTFN" 896387 T FORTFN (NIL) -9 NIL 897011 NIL) (-395 894501 894551 894579 "FORTCAT" 894638 T FORTCAT (NIL) -9 NIL 894700 NIL) (-394 892634 893117 893507 "FORMULA" 894131 T FORMULA (NIL) -8 NIL NIL NIL) (-393 892422 892452 892521 "FORMULA1" 892598 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 891945 891997 892170 "FORDER" 892364 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 891041 891205 891398 "FOP" 891772 T FOP (NIL) -7 NIL NIL NIL) (-390 889649 890321 890495 "FNLA" 890923 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 888404 888793 888821 "FNCAT" 889281 T FNCAT (NIL) -9 NIL 889541 NIL) (-388 887970 888363 888391 "FNAME" 888396 T FNAME (NIL) -8 NIL NIL NIL) (-387 886625 887562 887590 "FMTC" 887595 T FMTC (NIL) -9 NIL 887631 NIL) (-386 882985 884148 884777 "FMONOID" 886029 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 882204 882727 882876 "FM" 882881 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 879628 880274 880302 "FMFUN" 881446 T FMFUN (NIL) -9 NIL 882154 NIL) (-383 878897 879078 879106 "FMC" 879396 T FMC (NIL) -9 NIL 879578 NIL) (-382 876091 876925 876979 "FMCAT" 878174 NIL FMCAT (NIL T T) -9 NIL 878669 NIL) (-381 874984 875857 875957 "FM1" 876036 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 872758 873174 873668 "FLOATRP" 874535 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 866359 870487 871108 "FLOAT" 872157 T FLOAT (NIL) -8 NIL NIL NIL) (-378 863797 864297 864875 "FLOATCP" 865826 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 862598 863410 863451 "FLINEXP" 863456 NIL FLINEXP (NIL T) -9 NIL 863549 NIL) (-376 861752 861987 862315 "FLINEXP-" 862320 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 860828 860972 861196 "FLASORT" 861604 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 858045 858887 858939 "FLALG" 860166 NIL FLALG (NIL T T) -9 NIL 860633 NIL) (-373 851829 855531 855572 "FLAGG" 856834 NIL FLAGG (NIL T) -9 NIL 857486 NIL) (-372 850555 850894 851384 "FLAGG-" 851389 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 849597 849740 849967 "FLAGG2" 850408 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 846564 847546 847605 "FINRALG" 848733 NIL FINRALG (NIL T T) -9 NIL 849241 NIL) (-369 845724 845953 846292 "FINRALG-" 846297 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 845130 845343 845371 "FINITE" 845567 T FINITE (NIL) -9 NIL 845674 NIL) (-367 837588 839749 839789 "FINAALG" 843456 NIL FINAALG (NIL T) -9 NIL 844909 NIL) (-366 832920 833970 835114 "FINAALG-" 836493 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 832315 832675 832778 "FILE" 832850 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 830999 831311 831365 "FILECAT" 832049 NIL FILECAT (NIL T T) -9 NIL 832265 NIL) (-363 828859 830361 830389 "FIELD" 830429 T FIELD (NIL) -9 NIL 830509 NIL) (-362 827479 827864 828375 "FIELD-" 828380 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 825356 826114 826461 "FGROUP" 827165 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 824446 824610 824830 "FGLMICPK" 825188 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 820305 824371 824428 "FFX" 824433 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 819906 819967 820102 "FFSLPE" 820238 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 815895 816678 817474 "FFPOLY" 819142 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 815399 815435 815644 "FFPOLY2" 815853 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 811269 815318 815381 "FFP" 815386 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 806694 811180 811244 "FF" 811249 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 801847 806037 806227 "FFNBX" 806548 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 796803 800982 801240 "FFNBP" 801701 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 791463 796087 796298 "FFNB" 796636 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 790295 790493 790808 "FFINTBAS" 791260 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 786515 788702 788730 "FFIELDC" 789350 T FFIELDC (NIL) -9 NIL 789726 NIL) (-348 785177 785548 786045 "FFIELDC-" 786050 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 784746 784792 784916 "FFHOM" 785119 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 782441 782928 783445 "FFF" 784261 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 778086 782183 782284 "FFCGX" 782384 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 773734 777818 777925 "FFCGP" 778029 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 768944 773461 773569 "FFCG" 773670 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 750769 759815 759901 "FFCAT" 765066 NIL FFCAT (NIL T T T) -9 NIL 766517 NIL) (-341 745967 747014 748328 "FFCAT-" 749558 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 745378 745421 745656 "FFCAT2" 745918 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 734575 738350 739570 "FEXPR" 744230 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 733575 734010 734051 "FEVALAB" 734135 NIL FEVALAB (NIL T) -9 NIL 734396 NIL) (-337 732734 732944 733282 "FEVALAB-" 733287 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 731327 732117 732320 "FDIV" 732633 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 728393 729108 729223 "FDIVCAT" 730791 NIL FDIVCAT (NIL T T T T) -9 NIL 731228 NIL) (-334 728155 728182 728352 "FDIVCAT-" 728357 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 727375 727462 727739 "FDIV2" 728062 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 726061 726320 726609 "FCPAK1" 727106 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 725187 725561 725702 "FCOMP" 725952 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 708916 712337 715875 "FC" 721669 T FC (NIL) -8 NIL NIL NIL) (-329 701487 705480 705520 "FAXF" 707322 NIL FAXF (NIL T) -9 NIL 708014 NIL) (-328 698763 699421 700246 "FAXF-" 700711 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 693863 698139 698315 "FARRAY" 698620 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 689108 691148 691201 "FAMR" 692224 NIL FAMR (NIL T T) -9 NIL 692684 NIL) (-325 687998 688300 688735 "FAMR-" 688740 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 687194 687920 687973 "FAMONOID" 687978 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 685006 685690 685743 "FAMONC" 686684 NIL FAMONC (NIL T T) -9 NIL 687070 NIL) (-322 683698 684760 684897 "FAGROUP" 684902 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 681493 681812 682215 "FACUTIL" 683379 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 680592 680777 680999 "FACTFUNC" 681303 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 672989 679843 680055 "EXPUPXS" 680448 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 670472 671012 671598 "EXPRTUBE" 672423 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 666666 667258 667995 "EXPRODE" 669811 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 652032 665321 665749 "EXPR" 666270 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 646439 647026 647839 "EXPR2UPS" 651330 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 646075 646132 646239 "EXPR2" 646376 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 637472 645207 645504 "EXPEXPAN" 645912 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 637299 637429 637458 "EXIT" 637463 T EXIT (NIL) -8 NIL NIL NIL) (-311 636806 637023 637114 "EXITAST" 637228 T EXITAST (NIL) -8 NIL NIL NIL) (-310 636433 636495 636608 "EVALCYC" 636738 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 635974 636092 636133 "EVALAB" 636303 NIL EVALAB (NIL T) -9 NIL 636407 NIL) (-308 635455 635577 635798 "EVALAB-" 635803 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 632915 634191 634219 "EUCDOM" 634774 T EUCDOM (NIL) -9 NIL 635124 NIL) (-306 631320 631762 632352 "EUCDOM-" 632357 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 618858 621618 624368 "ESTOOLS" 628590 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 618490 618547 618656 "ESTOOLS2" 618795 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 618241 618283 618363 "ESTOOLS1" 618442 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 612146 613874 613902 "ES" 616670 T ES (NIL) -9 NIL 618079 NIL) (-301 607093 608380 610197 "ES-" 610361 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 603467 604228 605008 "ESCONT" 606333 T ESCONT (NIL) -7 NIL NIL NIL) (-299 603212 603244 603326 "ESCONT1" 603429 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 602887 602937 603037 "ES2" 603156 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 602517 602575 602684 "ES1" 602823 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 601733 601862 602038 "ERROR" 602361 T ERROR (NIL) -7 NIL NIL NIL) (-295 595236 601592 601683 "EQTBL" 601688 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 587787 590550 591999 "EQ" 593820 NIL -2126 (NIL T) -8 NIL NIL NIL) (-293 587419 587476 587585 "EQ2" 587724 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 582708 583757 584850 "EP" 586358 NIL EP (NIL T) -7 NIL NIL NIL) (-291 581290 581591 581908 "ENV" 582411 T ENV (NIL) -8 NIL NIL NIL) (-290 580461 580989 581017 "ENTIRER" 581022 T ENTIRER (NIL) -9 NIL 581068 NIL) (-289 576955 578416 578786 "EMR" 580260 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 576099 576284 576338 "ELTAGG" 576718 NIL ELTAGG (NIL T T) -9 NIL 576929 NIL) (-287 575818 575880 576021 "ELTAGG-" 576026 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 575607 575636 575690 "ELTAB" 575774 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 574733 574879 575078 "ELFUTS" 575458 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 574475 574531 574559 "ELEMFUN" 574664 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 574345 574366 574434 "ELEMFUN-" 574439 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 569236 572445 572486 "ELAGG" 573426 NIL ELAGG (NIL T) -9 NIL 573889 NIL) (-281 567521 567955 568618 "ELAGG-" 568623 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 566178 566458 566753 "ELABEXPR" 567246 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 559042 560845 561672 "EFUPXS" 565454 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 552492 554293 555103 "EFULS" 558318 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 549914 550272 550751 "EFSTRUC" 552124 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 538985 540551 542111 "EF" 548429 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 538086 538470 538619 "EAB" 538856 T EAB (NIL) -8 NIL NIL NIL) (-274 537295 538045 538073 "E04UCFA" 538078 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 536504 537254 537282 "E04NAFA" 537287 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 535713 536463 536491 "E04MBFA" 536496 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 534922 535672 535700 "E04JAFA" 535705 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 534133 534881 534909 "E04GCFA" 534914 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 533344 534092 534120 "E04FDFA" 534125 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 532553 533303 533331 "E04DGFA" 533336 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 526726 528078 529442 "E04AGNT" 531209 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 525432 525912 525952 "DVARCAT" 526427 NIL DVARCAT (NIL T) -9 NIL 526626 NIL) (-265 524636 524848 525162 "DVARCAT-" 525167 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 517528 524435 524564 "DSMP" 524569 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 512337 513473 514541 "DROPT" 516480 T DROPT (NIL) -8 NIL NIL NIL) (-262 512002 512061 512159 "DROPT1" 512272 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 507117 508243 509380 "DROPT0" 510885 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 505462 505787 506173 "DRAWPT" 506751 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 500049 500972 502051 "DRAW" 504436 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 499682 499735 499853 "DRAWHACK" 499990 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 498413 498682 498973 "DRAWCX" 499411 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 497928 497997 498148 "DRAWCURV" 498339 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 488396 490358 492473 "DRAWCFUN" 495833 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 485209 487091 487132 "DQAGG" 487761 NIL DQAGG (NIL T) -9 NIL 488034 NIL) (-253 473480 480187 480270 "DPOLCAT" 482122 NIL DPOLCAT (NIL T T T T) -9 NIL 482667 NIL) (-252 468316 469665 471623 "DPOLCAT-" 471628 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 461465 468177 468275 "DPMO" 468280 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 454517 461245 461412 "DPMM" 461417 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 454149 454436 454484 "DOMCTOR" 454489 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 453444 453671 453808 "DOMAIN" 454032 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 447187 453079 453231 "DMP" 453345 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 446787 446843 446987 "DLP" 447125 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 440657 446114 446304 "DLIST" 446629 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 437501 439510 439551 "DLAGG" 440101 NIL DLAGG (NIL T) -9 NIL 440331 NIL) (-243 436306 436944 436972 "DIVRING" 437064 T DIVRING (NIL) -9 NIL 437147 NIL) (-242 435543 435733 436033 "DIVRING-" 436038 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 433645 434002 434408 "DISPLAY" 435157 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 427581 433559 433622 "DIRPROD" 433627 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 426429 426632 426897 "DIRPROD2" 427374 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 415686 421644 421697 "DIRPCAT" 422107 NIL DIRPCAT (NIL NIL T) -9 NIL 422947 NIL) (-237 413012 413654 414535 "DIRPCAT-" 414872 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 412299 412459 412645 "DIOSP" 412846 T DIOSP (NIL) -7 NIL NIL NIL) (-235 409001 411211 411252 "DIOPS" 411686 NIL DIOPS (NIL T) -9 NIL 411915 NIL) (-234 408550 408664 408855 "DIOPS-" 408860 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 407434 408036 408064 "DIFRING" 408251 T DIFRING (NIL) -9 NIL 408361 NIL) (-232 407080 407157 407309 "DIFRING-" 407314 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 404877 406123 406164 "DIFEXT" 406527 NIL DIFEXT (NIL T) -9 NIL 406821 NIL) (-230 403162 403590 404256 "DIFEXT-" 404261 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 400484 402694 402735 "DIAGG" 402740 NIL DIAGG (NIL T) -9 NIL 402760 NIL) (-228 399868 400025 400277 "DIAGG-" 400282 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 395333 398827 399104 "DHMATRIX" 399637 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 390945 391854 392864 "DFSFUN" 394343 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 386050 389876 390188 "DFLOAT" 390653 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 384278 384559 384955 "DFINTTLS" 385758 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 381334 382299 382699 "DERHAM" 383944 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 379183 381109 381198 "DEQUEUE" 381278 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 378398 378531 378727 "DEGRED" 379045 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 374793 375538 376391 "DEFINTRF" 377626 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 372320 372789 373388 "DEFINTEF" 374312 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 371697 371940 372055 "DEFAST" 372225 T DEFAST (NIL) -8 NIL NIL NIL) (-217 365728 371292 371441 "DECIMAL" 371568 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 363238 363698 364204 "DDFACT" 365272 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 362834 362877 363028 "DBLRESP" 363189 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 360733 361067 361427 "DBASE" 362601 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 360002 360213 360359 "DATAARY" 360632 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 359135 359961 359989 "D03FAFA" 359994 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 358269 359094 359122 "D03EEFA" 359127 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 356219 356685 357174 "D03AGNT" 357800 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 355535 356178 356206 "D02EJFA" 356211 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 354851 355494 355522 "D02CJFA" 355527 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 354167 354810 354838 "D02BHFA" 354843 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 353483 354126 354154 "D02BBFA" 354159 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 346680 348269 349875 "D02AGNT" 351897 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 344448 344971 345517 "D01WGTS" 346154 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 343542 344407 344435 "D01TRNS" 344440 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 342637 343501 343529 "D01GBFA" 343534 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 341732 342596 342624 "D01FCFA" 342629 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 340827 341691 341719 "D01ASFA" 341724 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 339922 340786 340814 "D01AQFA" 340819 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 339017 339881 339909 "D01APFA" 339914 T D01APFA (NIL) -8 NIL NIL NIL) (-197 338112 338976 339004 "D01ANFA" 339009 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 337207 338071 338099 "D01AMFA" 338104 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 336302 337166 337194 "D01ALFA" 337199 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 335397 336261 336289 "D01AKFA" 336294 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 334492 335356 335384 "D01AJFA" 335389 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 327787 329340 330901 "D01AGNT" 332951 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 327124 327252 327404 "CYCLOTOM" 327655 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 323859 324572 325299 "CYCLES" 326417 T CYCLES (NIL) -7 NIL NIL NIL) (-189 323171 323305 323476 "CVMP" 323720 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 320942 321200 321576 "CTRIGMNP" 322899 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 320433 320733 320807 "CTOR" 320888 T CTOR (NIL) -8 NIL NIL NIL) (-186 319969 320164 320265 "CTORKIND" 320352 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 319317 319576 319604 "CTORCAT" 319786 T CTORCAT (NIL) -9 NIL 319899 NIL) (-184 318915 319026 319185 "CTORCAT-" 319190 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 318431 318618 318716 "CTORCALL" 318837 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 317805 317904 318057 "CSTTOOLS" 318328 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 313604 314261 315019 "CRFP" 317117 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 313106 313325 313417 "CRCEAST" 313532 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 312153 312338 312566 "CRAPACK" 312910 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 311537 311638 311842 "CPMATCH" 312029 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 311262 311290 311396 "CPIMA" 311503 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 307626 308298 309016 "COORDSYS" 310597 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307010 307139 307289 "CONTOUR" 307496 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 302928 305013 305505 "CONTFRAC" 306550 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 302808 302829 302857 "CONDUIT" 302894 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 301973 302501 302529 "COMRING" 302534 T COMRING (NIL) -9 NIL 302586 NIL) (-171 301054 301331 301515 "COMPPROP" 301809 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 300715 300750 300878 "COMPLPAT" 301013 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 290764 300524 300633 "COMPLEX" 300638 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 290400 290457 290564 "COMPLEX2" 290701 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 290118 290153 290251 "COMPFACT" 290359 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 274272 284500 284540 "COMPCAT" 285544 NIL COMPCAT (NIL T) -9 NIL 286940 NIL) (-165 263783 266711 270338 "COMPCAT-" 270694 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 263512 263540 263643 "COMMUPC" 263749 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 263307 263340 263399 "COMMONOP" 263473 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 262890 263058 263145 "COMM" 263240 T COMM (NIL) -8 NIL NIL NIL) (-161 262493 262694 262769 "COMMAAST" 262835 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 261742 261936 261964 "COMBOPC" 262302 T COMBOPC (NIL) -9 NIL 262477 NIL) (-159 260638 260848 261090 "COMBINAT" 261532 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 256835 257409 258049 "COMBF" 260060 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 255620 255951 256186 "COLOR" 256620 T COLOR (NIL) -8 NIL NIL NIL) (-156 255123 255341 255433 "COLONAST" 255548 T COLONAST (NIL) -8 NIL NIL NIL) (-155 254763 254810 254935 "CMPLXRT" 255070 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 254238 254463 254562 "CLLCTAST" 254684 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 249738 250768 251848 "CLIP" 253178 T CLIP (NIL) -7 NIL NIL NIL) (-152 248111 248844 249083 "CLIF" 249565 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 244333 246257 246298 "CLAGG" 247227 NIL CLAGG (NIL T) -9 NIL 247763 NIL) (-150 242755 243212 243795 "CLAGG-" 243800 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 242299 242384 242524 "CINTSLPE" 242664 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 239800 240271 240819 "CHVAR" 241827 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 239035 239563 239591 "CHARZ" 239596 T CHARZ (NIL) -9 NIL 239611 NIL) (-146 238789 238829 238907 "CHARPOL" 238989 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 237908 238469 238497 "CHARNZ" 238544 T CHARNZ (NIL) -9 NIL 238600 NIL) (-144 235897 236598 236933 "CHAR" 237593 T CHAR (NIL) -8 NIL NIL NIL) (-143 235623 235684 235712 "CFCAT" 235823 T CFCAT (NIL) -9 NIL NIL NIL) (-142 234868 234979 235161 "CDEN" 235507 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 230860 234021 234301 "CCLASS" 234608 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230167 230310 230473 "CATEGORY" 230717 T -10 (NIL) -8 NIL NIL NIL) (-139 229799 230086 230134 "CATCTOR" 230139 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229273 229499 229598 "CATAST" 229720 T CATAST (NIL) -8 NIL NIL NIL) (-137 228776 228994 229086 "CASEAST" 229201 T CASEAST (NIL) -8 NIL NIL NIL) (-136 223812 224805 225558 "CARTEN" 228079 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 222920 223068 223289 "CARTEN2" 223659 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221262 222070 222327 "CARD" 222683 T CARD (NIL) -8 NIL NIL NIL) (-133 220865 221066 221141 "CAPSLAST" 221207 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220237 220565 220593 "CACHSET" 220725 T CACHSET (NIL) -9 NIL 220802 NIL) (-131 219733 220029 220057 "CABMON" 220107 T CABMON (NIL) -9 NIL 220163 NIL) (-130 219233 219437 219547 "BYTEORD" 219643 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 218236 218767 218909 "BYTE" 219072 T BYTE (NIL) -8 NIL NIL 219194) (-128 213636 217741 217913 "BYTEBUF" 218084 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211193 213328 213435 "BTREE" 213562 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208690 210841 210963 "BTOURN" 211103 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206107 208160 208201 "BTCAT" 208269 NIL BTCAT (NIL T) -9 NIL 208346 NIL) (-124 205774 205854 206003 "BTCAT-" 206008 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201066 204917 204945 "BTAGG" 205167 T BTAGG (NIL) -9 NIL 205328 NIL) (-122 200556 200681 200887 "BTAGG-" 200892 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197599 199834 200049 "BSTREE" 200373 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196737 196863 197047 "BRILL" 197455 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193436 195463 195504 "BRAGG" 196153 NIL BRAGG (NIL T) -9 NIL 196411 NIL) (-118 191965 192371 192926 "BRAGG-" 192931 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185221 191311 191495 "BPADICRT" 191813 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183563 185158 185203 "BPADIC" 185208 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183261 183291 183405 "BOUNDZRO" 183527 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178776 179867 180734 "BOP" 182414 T BOP (NIL) -8 NIL NIL NIL) (-113 176397 176841 177361 "BOP1" 178289 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175099 175821 176014 "BOOLEAN" 176224 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174461 174839 174893 "BMODULE" 174898 NIL BMODULE (NIL T T) -9 NIL 174963 NIL) (-110 170289 174259 174332 "BITS" 174408 T BITS (NIL) -8 NIL NIL NIL) (-109 169701 169823 169965 "BINDING" 170167 T BINDING (NIL) -8 NIL NIL NIL) (-108 163735 169298 169446 "BINARY" 169573 T BINARY (NIL) -8 NIL NIL NIL) (-107 161562 162990 163031 "BGAGG" 163291 NIL BGAGG (NIL T) -9 NIL 163428 NIL) (-106 161393 161425 161516 "BGAGG-" 161521 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160491 160777 160982 "BFUNCT" 161208 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159181 159359 159647 "BEZOUT" 160315 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155698 158033 158363 "BBTREE" 158884 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155432 155485 155513 "BASTYPE" 155632 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155285 155313 155386 "BASTYPE-" 155391 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154719 154795 154947 "BALFACT" 155196 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153602 154134 154320 "AUTOMOR" 154564 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153328 153333 153359 "ATTREG" 153364 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151607 152025 152377 "ATTRBUT" 152994 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151242 151435 151501 "ATTRAST" 151559 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150778 150891 150917 "ATRIG" 151118 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150587 150628 150715 "ATRIG-" 150720 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150258 150418 150444 "ASTCAT" 150449 T ASTCAT (NIL) -9 NIL 150479 NIL) (-92 149985 150044 150163 "ASTCAT-" 150168 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148182 149761 149849 "ASTACK" 149928 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146687 146984 147349 "ASSOCEQ" 147864 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145719 146346 146470 "ASP9" 146594 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145482 145667 145706 "ASP8" 145711 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144350 145087 145229 "ASP80" 145371 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143248 143985 144117 "ASP7" 144249 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142202 142925 143043 "ASP78" 143161 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141171 141882 141999 "ASP77" 142116 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140083 140809 140940 "ASP74" 141071 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138983 139718 139850 "ASP73" 139982 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138087 138809 138909 "ASP6" 138914 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137031 137764 137882 "ASP55" 138000 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135980 136705 136824 "ASP50" 136943 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135068 135681 135791 "ASP4" 135901 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134156 134769 134879 "ASP49" 134989 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132940 133695 133863 "ASP42" 134045 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131716 132473 132643 "ASP41" 132827 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130666 131393 131511 "ASP35" 131629 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130431 130614 130653 "ASP34" 130658 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130168 130235 130311 "ASP33" 130386 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129061 129803 129935 "ASP31" 130067 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128826 129009 129048 "ASP30" 129053 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128561 128630 128706 "ASP29" 128781 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128326 128509 128548 "ASP28" 128553 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128091 128274 128313 "ASP27" 128318 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127175 127789 127900 "ASP24" 128011 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126251 126977 127089 "ASP20" 127094 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125339 125952 126062 "ASP1" 126172 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124281 125013 125132 "ASP19" 125251 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124018 124085 124161 "ASP12" 124236 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122870 123617 123761 "ASP10" 123905 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120769 122714 122805 "ARRAY2" 122810 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116583 120417 120531 "ARRAY1" 120686 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115615 115788 116009 "ARRAY12" 116406 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109974 111845 111920 "ARR2CAT" 114550 NIL ARR2CAT (NIL T T T) -9 NIL 115308 NIL) (-56 107408 108152 109106 "ARR2CAT-" 109111 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107000 107235 107314 "ARITY" 107347 T ARITY (NIL) -8 NIL NIL NIL) (-54 105748 105900 106206 "APPRULE" 106836 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105399 105447 105566 "APPLYORE" 105694 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104373 104664 104859 "ANY" 105222 T ANY (NIL) -8 NIL NIL NIL) (-51 103651 103774 103931 "ANY1" 104247 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101208 102088 102415 "ANTISYM" 103375 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100723 100912 101009 "ANON" 101129 T ANON (NIL) -8 NIL NIL NIL) (-48 94847 99262 99716 "AN" 100287 T AN (NIL) -8 NIL NIL NIL) (-47 91095 92457 92508 "AMR" 93256 NIL AMR (NIL T T) -9 NIL 93856 NIL) (-46 90207 90428 90791 "AMR-" 90796 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74757 90124 90185 "ALIST" 90190 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71586 74351 74520 "ALGSC" 74675 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68141 68696 69303 "ALGPKG" 71026 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67418 67519 67703 "ALGMFACT" 68027 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63155 63842 64497 "ALGMANIP" 66941 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54552 62781 62931 "ALGFF" 63088 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53748 53879 54058 "ALGFACT" 54410 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52805 53379 53417 "ALGEBRA" 53422 NIL ALGEBRA (NIL T) -9 NIL 53463 NIL) (-37 52523 52582 52714 "ALGEBRA-" 52719 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34782 50525 50577 "ALAGG" 50713 NIL ALAGG (NIL T T) -9 NIL 50874 NIL) (-35 34318 34431 34457 "AHYP" 34658 T AHYP (NIL) -9 NIL NIL NIL) (-34 33249 33497 33523 "AGG" 34022 T AGG (NIL) -9 NIL 34301 NIL) (-33 32683 32845 33059 "AGG-" 33064 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30359 30782 31200 "AF" 32325 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29866 30084 30174 "ADDAST" 30287 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29134 29393 29549 "ACPLOT" 29728 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18418 26347 26398 "ACFS" 27109 NIL ACFS (NIL T) -9 NIL 27348 NIL) (-28 16432 16922 17697 "ACFS-" 17702 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14599 14625 "ACF" 15504 T ACF (NIL) -9 NIL 15916 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file +((-2187 (((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)) 23))) +(((-1218 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2187 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) (-1046) (-1046) (-1170) (-1170) |#1| |#2|) (T -1218)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170))))) +(-10 -7 (-15 -2187 ((-1223 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1223 |#1| |#3| |#5|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 (-1076)) $) 77)) (-3851 (((-1170) $) 106)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-2892 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-3157 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-2451 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 165 (|has| |#1| (-363)))) (-3048 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4137 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2377 (((-112) $ $) 156 (|has| |#1| (-363)))) (-2428 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-2473 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) 17 T CONST)) (-1373 (($ $ $) 160 (|has| |#1| (-363)))) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1660 (((-407 (-949 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-1350 (($ $ $) 159 (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-4188 (((-112) $) 167 (|has| |#1| (-363)))) (-1988 (((-112) $) 76)) (-1655 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-564) $) 103) (((-564) $ (-564)) 102)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) 104)) (-3028 (($ (-1 |#1| (-564)) $) 175)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2005 (((-112) $) 65)) (-4245 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-2187 (($ (-1 |#1| |#1|) $) 66)) (-2192 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2529 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2217 (((-1152) $) 9)) (-4373 (($ $) 168 (|has| |#1| (-363)))) (-3128 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4030 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2577 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4127 (((-418 $) $) 164 (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 161 (|has| |#1| (-363)))) (-3004 (($ $ (-564)) 98)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4118 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564)))))) (-4061 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 158 (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-2266 (((-564) $) 67)) (-2484 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 75)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-2856 ((|#1| $ (-564)) 62)) (-4253 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-2212 ((|#1| $) 105)) (-2521 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2495 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-564) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1219 |#1|) (-140) (-1046)) (T -1219)) +((-2751 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) (-4 *3 (-1046)) (-4 *1 (-1219 *3)))) (-3028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1046)))) (-1660 (*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) (-5 *2 (-407 (-949 *4))))) (-1660 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) (-5 *2 (-407 (-949 *4))))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3128 (*1 *1 *1 *2) (-4030 (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4269 ((-641 *2) *3))) (|has| *3 (-15 -3128 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) +(-13 (-1237 |t#1| (-564)) (-10 -8 (-15 -2751 ($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |t#1|))))) (-15 -3028 ($ (-1 |t#1| (-564)) $)) (IF (|has| |t#1| (-556)) (PROGN (-15 -1660 ((-407 (-949 |t#1|)) $ (-564))) (-15 -1660 ((-407 (-949 |t#1|)) $ (-564) (-564)))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $)) (IF (|has| |t#1| (-15 -3128 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4269 ((-641 (-1170)) |t#1|))) (-15 -3128 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3128 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-564) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T)) +((-4173 (((-112) $) 12)) (-2111 (((-3 |#3| "failed") $) 17) (((-3 (-1170) "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL)) (-2239 ((|#3| $) 14) (((-1170) $) NIL) (((-407 (-564)) $) NIL) (((-564) $) NIL))) +(((-1220 |#1| |#2| |#3|) (-10 -8 (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-1170) "failed") |#1|)) (-15 -2239 ((-1170) |#1|)) (-15 -2111 ((-3 |#3| "failed") |#1|)) (-15 -2239 (|#3| |#1|)) (-15 -4173 ((-112) |#1|))) (-1221 |#2| |#3|) (-1046) (-1250 |#2|)) (T -1220)) +NIL +(-10 -8 (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2111 ((-3 (-1170) "failed") |#1|)) (-15 -2239 ((-1170) |#1|)) (-15 -2111 ((-3 |#3| "failed") |#1|)) (-15 -2239 (|#3| |#1|)) (-15 -4173 ((-112) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-1473 ((|#2| $) 231 (-4267 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-4269 (((-641 (-1076)) $) 77)) (-3851 (((-1170) $) 106)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-2892 (($ $ (-564)) 101) (($ $ (-564) (-564)) 100)) (-3157 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 108)) (-3120 ((|#2| $) 267)) (-3375 (((-3 |#2| "failed") $) 263)) (-4325 ((|#2| $) 264)) (-2451 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) 19)) (-3679 (((-418 (-1166 $)) (-1166 $)) 240 (-4267 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2249 (($ $) 165 (|has| |#1| (-363)))) (-3048 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4137 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 237 (-4267 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2377 (((-112) $ $) 156 (|has| |#1| (-363)))) (-2428 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (((-564) $) 249 (-4267 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2751 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 176)) (-2473 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#2| "failed") $) 270) (((-3 (-564) "failed") $) 260 (-4267 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) 258 (-4267 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) 242 (-4267 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-2239 ((|#2| $) 271) (((-564) $) 259 (-4267 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) 257 (-4267 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-1170) $) 241 (-4267 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-1480 (($ $) 266) (($ (-564) $) 265)) (-1373 (($ $ $) 160 (|has| |#1| (-363)))) (-1348 (($ $) 63)) (-3039 (((-685 |#2|) (-685 $)) 221 (|has| |#1| (-363))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) 220 (|has| |#1| (-363))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 219 (-4267 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) 218 (-4267 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-3951 (((-3 $ "failed") $) 33)) (-1660 (((-407 (-949 |#1|)) $ (-564)) 174 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 173 (|has| |#1| (-556)))) (-2821 (($) 233 (-4267 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1350 (($ $ $) 159 (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-4188 (((-112) $) 167 (|has| |#1| (-363)))) (-3308 (((-112) $) 247 (-4267 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-1988 (((-112) $) 76)) (-1655 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 225 (-4267 (|has| |#2| (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 224 (-4267 (|has| |#2| (-883 (-564))) (|has| |#1| (-363))))) (-1619 (((-564) $) 103) (((-564) $ (-564)) 102)) (-3840 (((-112) $) 31)) (-3834 (($ $) 229 (|has| |#1| (-363)))) (-1625 ((|#2| $) 227 (|has| |#1| (-363)))) (-2347 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-3 $ "failed") $) 261 (-4267 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2839 (((-112) $) 248 (-4267 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2472 (($ $ (-918)) 104)) (-3028 (($ (-1 |#1| (-564)) $) 175)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2005 (((-112) $) 65)) (-4245 (($ |#1| (-564)) 64) (($ $ (-1076) (-564)) 79) (($ $ (-641 (-1076)) (-641 (-564))) 78)) (-2799 (($ $ $) 251 (-4267 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2848 (($ $ $) 252 (-4267 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2187 (($ (-1 |#1| |#1|) $) 66) (($ (-1 |#2| |#2|) $) 213 (|has| |#1| (-363)))) (-2192 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2529 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-4338 (($ (-564) |#2|) 268)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 168 (|has| |#1| (-363)))) (-3128 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4030 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3258 (($) 262 (-4267 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2577 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-1941 (($ $) 232 (-4267 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3014 ((|#2| $) 235 (-4267 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2259 (((-418 (-1166 $)) (-1166 $)) 238 (-4267 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3941 (((-418 (-1166 $)) (-1166 $)) 239 (-4267 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4127 (((-418 $) $) 164 (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 161 (|has| |#1| (-363)))) (-3004 (($ $ (-564)) 98)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4118 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) 212 (-4267 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) 211 (-4267 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) 210 (-4267 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) 209 (-4267 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) 208 (-4267 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) 207 (-4267 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-4061 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 107) (($ $ $) 84 (|has| (-564) (-1106))) (($ $ |#2|) 206 (-4267 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 158 (|has| |#1| (-363)))) (-4117 (($ $ (-1 |#2| |#2|)) 217 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) 216 (|has| |#1| (-363))) (($ $ (-768)) 87 (-4030 (-4267 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 85 (-4030 (-4267 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) 92 (-4030 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-768)) 91 (-4030 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 90 (-4030 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 89 (-4030 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-2090 (($ $) 230 (|has| |#1| (-363)))) (-1634 ((|#2| $) 228 (|has| |#1| (-363)))) (-2266 (((-564) $) 67)) (-2484 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2235 (((-225) $) 246 (-4267 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-379) $) 245 (-4267 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-536) $) 244 (-4267 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-889 (-379)) $) 223 (-4267 (|has| |#2| (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) 222 (-4267 (|has| |#2| (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 236 (-4267 (-4267 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#1| (-363))))) (-2356 (($ $) 75)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 269) (($ (-1170)) 243 (-4267 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-2856 ((|#1| $ (-564)) 62)) (-4253 (((-3 $ "failed") $) 51 (-4030 (-4267 (-4030 (|has| |#2| (-145)) (-4267 (|has| $ (-145)) (|has| |#2| (-906)))) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3270 (((-768)) 28 T CONST)) (-2212 ((|#1| $) 105)) (-2551 ((|#2| $) 234 (-4267 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2521 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2495 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-564)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-2792 (($ $) 250 (-4267 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-1 |#2| |#2|)) 215 (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) 214 (|has| |#1| (-363))) (($ $ (-768)) 88 (-4030 (-4267 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 86 (-4030 (-4267 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) 96 (-4030 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170) (-768)) 95 (-4030 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-641 (-1170))) 94 (-4030 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))))) (($ $ (-1170)) 93 (-4030 (-4267 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))))) (-1751 (((-112) $ $) 254 (-4267 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1731 (((-112) $ $) 255 (-4267 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 253 (-4267 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1723 (((-112) $ $) 256 (-4267 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363))) (($ |#2| |#2|) 226 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ $ |#2|) 205 (|has| |#1| (-363))) (($ |#2| $) 204 (|has| |#1| (-363))) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1221 |#1| |#2|) (-140) (-1046) (-1250 |t#1|)) (T -1221)) +((-2266 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)) (-5 *2 (-564)))) (-4338 (*1 *1 *2 *3) (-12 (-5 *2 (-564)) (-4 *4 (-1046)) (-4 *1 (-1221 *4 *3)) (-4 *3 (-1250 *4)))) (-3120 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))) (-1480 (*1 *1 *1) (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1250 *2)))) (-1480 (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3)))) (-3375 (*1 *2 *1) (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3))))) +(-13 (-1219 |t#1|) (-1035 |t#2|) (-614 |t#2|) (-10 -8 (-15 -4338 ($ (-564) |t#2|)) (-15 -2266 ((-564) $)) (-15 -3120 (|t#2| $)) (-15 -1480 ($ $)) (-15 -1480 ($ (-564) $)) (-15 -4325 (|t#2| $)) (-15 -3375 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-363)) (-6 (-989 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-564)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 |#2|) |has| |#1| (-363)) ((-38 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-363)) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) -4030 (-12 (|has| |#1| (-363)) (|has| |#2| (-145))) (|has| |#1| (-145))) ((-147) -4030 (-12 (|has| |#1| (-363)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-614 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1170)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-225)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-612 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-612 (-536)) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-612 (-889 (-564))))) ((-231 |#2|) |has| |#1| (-363)) ((-233) -4030 (-12 (|has| |#1| (-363)) (|has| |#2| (-233))) (|has| |#1| (-15 * (|#1| (-564) |#1|)))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 |#2| $) -12 (|has| |#1| (-363)) (|has| |#2| (-286 |#2| |#2|))) ((-286 $ $) |has| (-564) (-1106)) ((-290) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-363) |has| |#1| (-363)) ((-338 |#2|) |has| |#1| (-363)) ((-377 |#2|) |has| |#1| (-363)) ((-400 |#2|) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-514 (-1170) |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-514 (-1170) |#2|))) ((-514 |#2| |#2|) -12 (|has| |#1| (-363)) (|has| |#2| (-309 |#2|))) ((-556) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 |#2|) |has| |#1| (-363)) ((-644 $) . T) ((-637 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-637 (-564)))) ((-637 |#2|) |has| |#1| (-363)) ((-714 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 |#2|) |has| |#1| (-363)) ((-714 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-788) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-789) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-791) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-792) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-817) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-845) -12 (|has| |#1| (-363)) (|has| |#2| (-817))) ((-847) -4030 (-12 (|has| |#1| (-363)) (|has| |#2| (-847))) (-12 (|has| |#1| (-363)) (|has| |#2| (-817)))) ((-897 (-1170)) -4030 (-12 (|has| |#1| (-363)) (|has| |#2| (-897 (-1170)))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))) ((-883 (-379)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-379)))) ((-883 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-883 (-564)))) ((-881 |#2|) |has| |#1| (-363)) ((-906) -12 (|has| |#1| (-363)) (|has| |#2| (-906))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-989 |#2|) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1019) -12 (|has| |#1| (-363)) (|has| |#2| (-1019))) ((-1035 (-407 (-564))) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) ((-1035 (-564)) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-564)))) ((-1035 #2#) -12 (|has| |#1| (-363)) (|has| |#2| (-1035 (-1170)))) ((-1035 |#2|) . T) ((-1052 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 |#2|) |has| |#1| (-363)) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) -12 (|has| |#1| (-363)) (|has| |#2| (-1145))) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1209) |has| |#1| (-363)) ((-1213) |has| |#1| (-363)) ((-1219 |#1|) . T) ((-1237 |#1| #0#) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 79)) (-1473 ((|#2| $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 98)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2892 (($ $ (-564)) 107) (($ $ (-564) (-564)) 109)) (-3157 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) 51)) (-3120 ((|#2| $) 11)) (-3375 (((-3 |#2| "failed") $) 35)) (-4325 ((|#2| $) 36)) (-2451 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2428 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-3265 (((-564) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2751 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) 59)) (-2473 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) 155) (((-3 (-564) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-1170) "failed") $) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-2239 ((|#2| $) 154) (((-564) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| |#2| (-1035 (-564))) (|has| |#1| (-363)))) (((-1170) $) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363))))) (-1480 (($ $) 65) (($ (-564) $) 28)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) NIL)) (-3039 (((-685 |#2|) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| |#2| (-637 (-564))) (|has| |#1| (-363))))) (-3951 (((-3 $ "failed") $) 86)) (-1660 (((-407 (-949 |#1|)) $ (-564)) 122 (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) 124 (|has| |#1| (-556)))) (-2821 (($) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-3308 (((-112) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-1988 (((-112) $) 72)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| |#2| (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| |#2| (-883 (-564))) (|has| |#1| (-363))))) (-1619 (((-564) $) 103) (((-564) $ (-564)) 105)) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL (|has| |#1| (-363)))) (-1625 ((|#2| $) 163 (|has| |#1| (-363)))) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))))) (-2839 (((-112) $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-2472 (($ $ (-918)) 146)) (-3028 (($ (-1 |#1| (-564)) $) 142)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-564)) 20) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2799 (($ $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2848 (($ $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-2187 (($ (-1 |#1| |#1|) $) 139) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-363)))) (-2192 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4338 (($ (-564) |#2|) 10)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 157 (|has| |#1| (-363)))) (-3128 (($ $) 226 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 231 (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-3258 (($) NIL (-12 (|has| |#2| (-1145)) (|has| |#1| (-363))) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1941 (($ $) NIL (-12 (|has| |#2| (-307)) (|has| |#1| (-363))))) (-3014 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| |#2| (-906)) (|has| |#1| (-363))))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-3004 (($ $ (-564)) 136)) (-1321 (((-3 $ "failed") $ $) 126 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4118 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) 95 (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) |#2|) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 |#2|)) NIL (-12 (|has| |#2| (-514 (-1170) |#2|)) (|has| |#1| (-363)))) (($ $ (-641 (-294 |#2|))) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-294 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363)))) (($ $ (-641 |#2|) (-641 |#2|)) NIL (-12 (|has| |#2| (-309 |#2|)) (|has| |#1| (-363))))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) 101) (($ $ $) 88 (|has| (-564) (-1106))) (($ $ |#2|) NIL (-12 (|has| |#2| (-286 |#2| |#2|)) (|has| |#1| (-363))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4117 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4030 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 147 (-4030 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4030 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4030 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4030 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) 151 (-4030 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-2090 (($ $) NIL (|has| |#1| (-363)))) (-1634 ((|#2| $) 164 (|has| |#1| (-363)))) (-2266 (((-564) $) 12)) (-2484 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-2235 (((-225) $) NIL (-12 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| |#2| (-1019)) (|has| |#1| (-363)))) (((-536) $) NIL (-12 (|has| |#2| (-612 (-536))) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| |#2| (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| |#2| (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906)) (|has| |#1| (-363))))) (-2356 (($ $) 134)) (-3742 (((-859) $) 264) (($ (-564)) 24) (($ |#1|) 22 (|has| |#1| (-172))) (($ |#2|) 21) (($ (-1170)) NIL (-12 (|has| |#2| (-1035 (-1170))) (|has| |#1| (-363)))) (($ (-407 (-564))) 167 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2856 ((|#1| $ (-564)) 83)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#2| (-906)) (|has| |#1| (-363))) (-12 (|has| |#2| (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3270 (((-768)) 153 T CONST)) (-2212 ((|#1| $) 100)) (-2551 ((|#2| $) NIL (-12 (|has| |#2| (-545)) (|has| |#1| (-363))))) (-2521 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) 212 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 220 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-564)) 132 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 222 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 218 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 214 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-2792 (($ $) NIL (-12 (|has| |#2| (-817)) (|has| |#1| (-363))))) (-4311 (($) 13 T CONST)) (-4321 (($) 18 T CONST)) (-2124 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-363))) (($ $ (-1 |#2| |#2|) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4030 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4030 (-12 (|has| |#2| (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4030 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4030 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4030 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| |#2| (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1751 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1731 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1705 (((-112) $ $) 71)) (-1741 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1723 (((-112) $ $) NIL (-12 (|has| |#2| (-847)) (|has| |#1| (-363))))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 161 (|has| |#1| (-363))) (($ |#2| |#2|) 162 (|has| |#1| (-363)))) (-1790 (($ $) 225) (($ $ $) 76)) (-1780 (($ $ $) 74)) (** (($ $ (-918)) NIL) (($ $ (-768)) 82) (($ $ (-564)) 158 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 170 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 77) (($ $ |#1|) NIL) (($ |#1| $) 150) (($ $ |#2|) 160 (|has| |#1| (-363))) (($ |#2| $) 159 (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1222 |#1| |#2|) (-1221 |#1| |#2|) (-1046) (-1250 |#1|)) (T -1222)) +NIL +(-1221 |#1| |#2|) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1473 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 10)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1948 (($ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-1832 (((-112) $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2892 (($ $ (-564)) NIL) (($ $ (-564) (-564)) NIL)) (-3157 (((-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|))) $) NIL)) (-3120 (((-1251 |#1| |#2| |#3|) $) NIL)) (-3375 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL)) (-4325 (((-1251 |#1| |#2| |#3|) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3265 (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2751 (($ (-1150 (-2 (|:| |k| (-564)) (|:| |c| |#1|)))) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-1251 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1170) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-3 (-407 (-564)) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-3 (-564) "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-2239 (((-1251 |#1| |#2| |#3|) $) NIL) (((-1170) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (((-407 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363)))) (((-564) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))))) (-1480 (($ $) NIL) (($ (-564) $) NIL)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-1251 |#1| |#2| |#3|)) (-685 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2069 (-685 (-1251 |#1| |#2| |#3|))) (|:| |vec| (-1259 (-1251 |#1| |#2| |#3|)))) (-685 $) (-1259 $)) NIL (|has| |#1| (-363))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363)))) (((-685 (-564)) (-685 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-637 (-564))) (|has| |#1| (-363))))) (-3951 (((-3 $ "failed") $) NIL)) (-1660 (((-407 (-949 |#1|)) $ (-564)) NIL (|has| |#1| (-556))) (((-407 (-949 |#1|)) $ (-564) (-564)) NIL (|has| |#1| (-556)))) (-2821 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-3308 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-1988 (((-112) $) NIL)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-883 (-379))) (|has| |#1| (-363)))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-883 (-564))) (|has| |#1| (-363))))) (-1619 (((-564) $) NIL) (((-564) $ (-564)) NIL)) (-3840 (((-112) $) NIL)) (-3834 (($ $) NIL (|has| |#1| (-363)))) (-1625 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3907 (((-3 $ "failed") $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))))) (-2839 (((-112) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-2472 (($ $ (-918)) NIL)) (-3028 (($ (-1 |#1| (-564)) $) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-564)) 18) (($ $ (-1076) (-564)) NIL) (($ $ (-641 (-1076)) (-641 (-564))) NIL)) (-2799 (($ $ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2848 (($ $ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-363)))) (-2192 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4338 (($ (-564) (-1251 |#1| |#2| |#3|)) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-3128 (($ $) 27 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 28 (|has| |#1| (-38 (-407 (-564)))))) (-3258 (($) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1145)) (|has| |#1| (-363))) CONST)) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1941 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-307)) (|has| |#1| (-363))))) (-3014 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-3004 (($ $ (-564)) NIL)) (-1321 (((-3 $ "failed") $ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4118 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-564))))) (($ $ (-1170) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1170)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-514 (-1170) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-294 (-1251 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-294 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363)))) (($ $ (-641 (-1251 |#1| |#2| |#3|)) (-641 (-1251 |#1| |#2| |#3|))) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-309 (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-564)) NIL) (($ $ $) NIL (|has| (-564) (-1106))) (($ $ (-1251 |#1| |#2| |#3|)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-286 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) (|has| |#1| (-363))))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4117 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-1255 |#2|)) 26) (($ $ (-768)) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) 25 (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-2090 (($ $) NIL (|has| |#1| (-363)))) (-1634 (((-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363)))) (-2266 (((-564) $) NIL)) (-2484 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2235 (((-536) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-536))) (|has| |#1| (-363)))) (((-379) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-225) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1019)) (|has| |#1| (-363)))) (((-889 (-379)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-889 (-379)))) (|has| |#1| (-363)))) (((-889 (-564)) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-612 (-889 (-564)))) (|has| |#1| (-363))))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))))) (-2356 (($ $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1251 |#1| |#2| |#3|)) NIL) (($ (-1255 |#2|)) 24) (($ (-1170)) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-1170))) (|has| |#1| (-363)))) (($ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556)))) (($ (-407 (-564))) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-1035 (-564))) (|has| |#1| (-363))) (|has| |#1| (-38 (-407 (-564))))))) (-2856 ((|#1| $ (-564)) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-145)) (|has| |#1| (-363))) (|has| |#1| (-145))))) (-3270 (((-768)) NIL T CONST)) (-2212 ((|#1| $) 11)) (-2551 (((-1251 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-545)) (|has| |#1| (-363))))) (-2521 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-906)) (|has| |#1| (-363))) (|has| |#1| (-556))))) (-2495 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-564)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-564)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2792 (($ $) NIL (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))))) (-4311 (($) 20 T CONST)) (-4321 (($) 15 T CONST)) (-2124 (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|))) NIL (|has| |#1| (-363))) (($ $ (-1 (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) (-768)) NIL (|has| |#1| (-363))) (($ $ (-768)) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-233)) (|has| |#1| (-363))) (|has| |#1| (-15 * (|#1| (-564) |#1|))))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170) (-768)) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-641 (-1170))) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170)))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-897 (-1170))) (|has| |#1| (-363))) (-12 (|has| |#1| (-15 * (|#1| (-564) |#1|))) (|has| |#1| (-897 (-1170))))))) (-1751 (((-112) $ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1731 (((-112) $ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1723 (((-112) $ $) NIL (-4030 (-12 (|has| (-1251 |#1| |#2| |#3|) (-817)) (|has| |#1| (-363))) (-12 (|has| (-1251 |#1| |#2| |#3|) (-847)) (|has| |#1| (-363)))))) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 22)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1251 |#1| |#2| |#3|)) NIL (|has| |#1| (-363))) (($ (-1251 |#1| |#2| |#3|) $) NIL (|has| |#1| (-363))) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1223 |#1| |#2| |#3|) (-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -3742 ($ (-1255 |#2|))) (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1223)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) +(-13 (-1221 |#1| (-1251 |#1| |#2| |#3|)) (-10 -8 (-15 -3742 ($ (-1255 |#2|))) (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) +((-1626 (((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112)) 13)) (-2877 (((-418 |#1|) |#1|) 26)) (-4127 (((-418 |#1|) |#1|) 24))) +(((-1224 |#1|) (-10 -7 (-15 -4127 ((-418 |#1|) |#1|)) (-15 -2877 ((-418 |#1|) |#1|)) (-15 -1626 ((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112)))) (-1235 (-564))) (T -1224)) +((-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-5 *2 (-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| *3) (|:| -2943 (-564))))))) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-2877 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564))))) (-4127 (*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) +(-10 -7 (-15 -4127 ((-418 |#1|) |#1|)) (-15 -2877 ((-418 |#1|) |#1|)) (-15 -1626 ((-2 (|:| |contp| (-564)) (|:| -2267 (-641 (-2 (|:| |irr| |#1|) (|:| -2943 (-564)))))) |#1| (-112)))) +((-2187 (((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 23 (|has| |#1| (-845))) (((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|)) 17))) +(((-1225 |#1| |#2|) (-10 -7 (-15 -2187 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-845)) (-15 -2187 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) (-1209) (-1209)) (T -1225)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-845)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1225 *5 *6)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6))))) +(-10 -7 (-15 -2187 ((-1226 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) (IF (|has| |#1| (-845)) (-15 -2187 ((-1150 |#2|) (-1 |#2| |#1|) (-1226 |#1|))) |%noBranch|)) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-2177 (($ |#1| |#1|) 11) (($ |#1|) 10)) (-2187 (((-1150 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-845)))) (-3163 ((|#1| $) 15)) (-3419 ((|#1| $) 12)) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-3432 (((-564) $) 19)) (-1380 ((|#1| $) 18)) (-3571 ((|#1| $) 13)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-3334 (((-112) $) 17)) (-3512 (((-1150 |#1|) $) 41 (|has| |#1| (-845))) (((-1150 |#1|) (-641 $)) 40 (|has| |#1| (-845)))) (-2235 (($ |#1|) 26)) (-3742 (($ (-1088 |#1|)) 25) (((-859) $) 37 (|has| |#1| (-1094)))) (-4215 (($ |#1| |#1|) 21) (($ |#1|) 20)) (-1488 (($ $ (-564)) 14)) (-1705 (((-112) $ $) 30 (|has| |#1| (-1094))))) +(((-1226 |#1|) (-13 (-1087 |#1|) (-10 -8 (-15 -4215 ($ |#1|)) (-15 -2177 ($ |#1|)) (-15 -3742 ($ (-1088 |#1|))) (-15 -3334 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) (-1209)) (T -1226)) +((-4215 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-2177 (*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209)))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3)))) (-3334 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209))))) +(-13 (-1087 |#1|) (-10 -8 (-15 -4215 ($ |#1|)) (-15 -2177 ($ |#1|)) (-15 -3742 ($ (-1088 |#1|))) (-15 -3334 ((-112) $)) (IF (|has| |#1| (-1094)) (-6 (-1094)) |%noBranch|) (IF (|has| |#1| (-845)) (-6 (-1089 |#1| (-1150 |#1|))) |%noBranch|))) +((-2187 (((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)) 15))) +(((-1227 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) (-1170) (-1046) (-1170) (-1046)) (T -1227)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170)) (-4 *6 (-1046)) (-4 *8 (-1046)) (-5 *2 (-1232 *7 *8)) (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170))))) +(-10 -7 (-15 -2187 ((-1232 |#3| |#4|) (-1 |#4| |#2|) (-1232 |#1| |#2|)))) +((-1540 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3350 ((|#1| |#3|) 13)) (-1909 ((|#3| |#3|) 19))) +(((-1228 |#1| |#2| |#3|) (-10 -7 (-15 -3350 (|#1| |#3|)) (-15 -1909 (|#3| |#3|)) (-15 -1540 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-556) (-989 |#1|) (-1235 |#2|)) (T -1228)) +((-1540 (*1 *2 *3) (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) (-4 *3 (-1235 *5)))) (-1909 (*1 *2 *2) (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-1228 *3 *4 *2)) (-4 *2 (-1235 *4)))) (-3350 (*1 *2 *3) (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -3350 (|#1| |#3|)) (-15 -1909 (|#3| |#3|)) (-15 -1540 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) +((-2656 (((-3 |#2| "failed") |#2| (-768) |#1|) 37)) (-3025 (((-3 |#2| "failed") |#2| (-768)) 38)) (-3288 (((-3 (-2 (|:| -2413 |#2|) (|:| -2427 |#2|)) "failed") |#2|) 51)) (-3777 (((-641 |#2|) |#2|) 53)) (-4182 (((-3 |#2| "failed") |#2| |#2|) 47))) +(((-1229 |#1| |#2|) (-10 -7 (-15 -3025 ((-3 |#2| "failed") |#2| (-768))) (-15 -2656 ((-3 |#2| "failed") |#2| (-768) |#1|)) (-15 -4182 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3288 ((-3 (-2 (|:| -2413 |#2|) (|:| -2427 |#2|)) "failed") |#2|)) (-15 -3777 ((-641 |#2|) |#2|))) (-13 (-556) (-147)) (-1235 |#1|)) (T -1229)) +((-3777 (*1 *2 *3) (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-3288 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-2 (|:| -2413 *3) (|:| -2427 *3))) (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4)))) (-4182 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1235 *3)))) (-2656 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4)))) (-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4))))) +(-10 -7 (-15 -3025 ((-3 |#2| "failed") |#2| (-768))) (-15 -2656 ((-3 |#2| "failed") |#2| (-768) |#1|)) (-15 -4182 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3288 ((-3 (-2 (|:| -2413 |#2|) (|:| -2427 |#2|)) "failed") |#2|)) (-15 -3777 ((-641 |#2|) |#2|))) +((-2272 (((-3 (-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) "failed") |#2| |#2|) 29))) +(((-1230 |#1| |#2|) (-10 -7 (-15 -2272 ((-3 (-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) "failed") |#2| |#2|))) (-556) (-1235 |#1|)) (T -1230)) +((-2272 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-1230 *4 *3)) (-4 *3 (-1235 *4))))) +(-10 -7 (-15 -2272 ((-3 (-2 (|:| -1935 |#2|) (|:| -1363 |#2|)) "failed") |#2| |#2|))) +((-1846 ((|#2| |#2| |#2|) 22)) (-1426 ((|#2| |#2| |#2|) 36)) (-2194 ((|#2| |#2| |#2| (-768) (-768)) 44))) +(((-1231 |#1| |#2|) (-10 -7 (-15 -1846 (|#2| |#2| |#2|)) (-15 -1426 (|#2| |#2| |#2|)) (-15 -2194 (|#2| |#2| |#2| (-768) (-768)))) (-1046) (-1235 |#1|)) (T -1231)) +((-2194 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-1231 *4 *2)) (-4 *2 (-1235 *4)))) (-1426 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3)))) (-1846 (*1 *2 *2 *2) (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) +(-10 -7 (-15 -1846 (|#2| |#2| |#2|)) (-15 -1426 (|#2| |#2| |#2|)) (-15 -2194 (|#2| |#2| |#2| (-768) (-768)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-1312 (((-1259 |#2|) $ (-768)) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-4218 (($ (-1166 |#2|)) NIL)) (-4097 (((-1166 $) $ (-1076)) NIL) (((-1166 |#2|) $) NIL)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#2| (-556)))) (-1948 (($ $) NIL (|has| |#2| (-556)))) (-1832 (((-112) $) NIL (|has| |#2| (-556)))) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-1076))) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-4107 (($ $ $) NIL (|has| |#2| (-556)))) (-3679 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2249 (($ $) NIL (|has| |#2| (-452)))) (-3048 (((-418 $) $) NIL (|has| |#2| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-2377 (((-112) $ $) NIL (|has| |#2| (-363)))) (-4359 (($ $ (-768)) NIL)) (-2477 (($ $ (-768)) NIL)) (-3823 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-452)))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) NIL) (((-3 (-407 (-564)) "failed") $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) NIL (|has| |#2| (-1035 (-564)))) (((-3 (-1076) "failed") $) NIL)) (-2239 ((|#2| $) NIL) (((-407 (-564)) $) NIL (|has| |#2| (-1035 (-407 (-564))))) (((-564) $) NIL (|has| |#2| (-1035 (-564)))) (((-1076) $) NIL)) (-2448 (($ $ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $ $) NIL (|has| |#2| (-172)))) (-1373 (($ $ $) NIL (|has| |#2| (-363)))) (-1348 (($ $) NIL)) (-3039 (((-685 (-564)) (-685 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) NIL (|has| |#2| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#2|)) (|:| |vec| (-1259 |#2|))) (-685 $) (-1259 $)) NIL) (((-685 |#2|) (-685 $)) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1350 (($ $ $) NIL (|has| |#2| (-363)))) (-4132 (($ $ $) NIL)) (-2995 (($ $ $) NIL (|has| |#2| (-556)))) (-3370 (((-2 (|:| -1762 |#2|) (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#2| (-556)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#2| (-363)))) (-1989 (($ $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-1334 (((-641 $) $) NIL)) (-4188 (((-112) $) NIL (|has| |#2| (-906)))) (-1866 (($ $ |#2| (-768) $) NIL)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) NIL (-12 (|has| (-1076) (-883 (-379))) (|has| |#2| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) NIL (-12 (|has| (-1076) (-883 (-564))) (|has| |#2| (-883 (-564)))))) (-1619 (((-768) $ $) NIL (|has| |#2| (-556)))) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-3907 (((-3 $ "failed") $) NIL (|has| |#2| (-1145)))) (-4257 (($ (-1166 |#2|) (-1076)) NIL) (($ (-1166 $) (-1076)) NIL)) (-2472 (($ $ (-768)) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-4245 (($ |#2| (-768)) 18) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-1076)) NIL) (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL)) (-3469 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2799 (($ $ $) NIL (|has| |#2| (-847)))) (-2848 (($ $ $) NIL (|has| |#2| (-847)))) (-1396 (($ (-1 (-768) (-768)) $) NIL)) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-2574 (((-1166 |#2|) $) NIL)) (-1306 (((-3 (-1076) "failed") $) NIL)) (-1309 (($ $) NIL)) (-1320 ((|#2| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-2217 (((-1152) $) NIL)) (-4115 (((-2 (|:| -1935 $) (|:| -1363 $)) $ (-768)) NIL)) (-3514 (((-3 (-641 $) "failed") $) NIL)) (-4386 (((-3 (-641 $) "failed") $) NIL)) (-3758 (((-3 (-2 (|:| |var| (-1076)) (|:| -2515 (-768))) "failed") $) NIL)) (-3128 (($ $) NIL (|has| |#2| (-38 (-407 (-564)))))) (-3258 (($) NIL (|has| |#2| (-1145)) CONST)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 ((|#2| $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#2| (-452)))) (-2577 (($ (-641 $)) NIL (|has| |#2| (-452))) (($ $ $) NIL (|has| |#2| (-452)))) (-3637 (($ $ (-768) |#2| $) NIL)) (-2259 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) NIL (|has| |#2| (-906)))) (-4127 (((-418 $) $) NIL (|has| |#2| (-906)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#2| (-363)))) (-1321 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-556))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#2| (-363)))) (-2416 (($ $ (-641 (-294 $))) NIL) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) NIL) (($ $ (-641 (-1076)) (-641 |#2|)) NIL) (($ $ (-1076) $) NIL) (($ $ (-641 (-1076)) (-641 $)) NIL)) (-4061 (((-768) $) NIL (|has| |#2| (-363)))) (-4382 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) NIL (|has| |#2| (-556))) ((|#2| (-407 $) |#2|) NIL (|has| |#2| (-363))) (((-407 $) $ (-407 $)) NIL (|has| |#2| (-556)))) (-1430 (((-3 $ "failed") $ (-768)) NIL)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#2| (-363)))) (-4284 (($ $ (-1076)) NIL (|has| |#2| (-172))) ((|#2| $) NIL (|has| |#2| (-172)))) (-4117 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2266 (((-768) $) NIL) (((-768) $ (-1076)) NIL) (((-641 (-768)) $ (-641 (-1076))) NIL)) (-2235 (((-889 (-379)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#2| (-612 (-889 (-379)))))) (((-889 (-564)) $) NIL (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#2| (-612 (-889 (-564)))))) (((-536) $) NIL (-12 (|has| (-1076) (-612 (-536))) (|has| |#2| (-612 (-536)))))) (-4329 ((|#2| $) NIL (|has| |#2| (-452))) (($ $ (-1076)) NIL (|has| |#2| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) NIL (-12 (|has| $ (-145)) (|has| |#2| (-906))))) (-1526 (((-3 $ "failed") $ $) NIL (|has| |#2| (-556))) (((-3 (-407 $) "failed") (-407 $) $) NIL (|has| |#2| (-556)))) (-3742 (((-859) $) 13) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) NIL) (($ (-1255 |#1|)) 20) (($ (-407 (-564))) NIL (-4030 (|has| |#2| (-38 (-407 (-564)))) (|has| |#2| (-1035 (-407 (-564)))))) (($ $) NIL (|has| |#2| (-556)))) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ (-768)) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-4253 (((-3 $ "failed") $) NIL (-4030 (-12 (|has| $ (-145)) (|has| |#2| (-906))) (|has| |#2| (-145))))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| |#2| (-172)))) (-3360 (((-112) $ $) NIL (|has| |#2| (-556)))) (-4311 (($) NIL T CONST)) (-4321 (($) 14 T CONST)) (-2124 (($ $ (-1076)) NIL) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) NIL) (($ $ (-1170)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1170) (-768)) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) NIL (|has| |#2| (-897 (-1170)))) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1751 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1705 (((-112) $ $) NIL)) (-1741 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#2| (-847)))) (-1799 (($ $ |#2|) NIL (|has| |#2| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-407 (-564))) NIL (|has| |#2| (-38 (-407 (-564))))) (($ (-407 (-564)) $) NIL (|has| |#2| (-38 (-407 (-564))))) (($ |#2| $) NIL) (($ $ |#2|) NIL))) +(((-1232 |#1| |#2|) (-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -3637 ($ $ (-768) |#2| $)))) (-1170) (-1046)) (T -1232)) +((-3637 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) (-4 *3 (-1046))))) +(-13 (-1235 |#2|) (-614 (-1255 |#1|)) (-10 -8 (-15 -3637 ($ $ (-768) |#2| $)))) +((-2187 ((|#4| (-1 |#3| |#1|) |#2|) 22))) +(((-1233 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#4| (-1 |#3| |#1|) |#2|))) (-1046) (-1235 |#1|) (-1046) (-1235 |#3|)) (T -1233)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5))))) +(-10 -7 (-15 -2187 (|#4| (-1 |#3| |#1|) |#2|))) +((-1312 (((-1259 |#2|) $ (-768)) 129)) (-4269 (((-641 (-1076)) $) 16)) (-4218 (($ (-1166 |#2|)) 80)) (-3913 (((-768) $) NIL) (((-768) $ (-641 (-1076))) 21)) (-3679 (((-418 (-1166 $)) (-1166 $)) 205)) (-2249 (($ $) 195)) (-3048 (((-418 $) $) 193)) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 95)) (-4359 (($ $ (-768)) 84)) (-2477 (($ $ (-768)) 86)) (-3823 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 146)) (-2111 (((-3 |#2| "failed") $) 132) (((-3 (-407 (-564)) "failed") $) NIL) (((-3 (-564) "failed") $) NIL) (((-3 (-1076) "failed") $) NIL)) (-2239 ((|#2| $) 130) (((-407 (-564)) $) NIL) (((-564) $) NIL) (((-1076) $) NIL)) (-2995 (($ $ $) 172)) (-3370 (((-2 (|:| -1762 |#2|) (|:| -1935 $) (|:| -1363 $)) $ $) 174)) (-1619 (((-768) $ $) 190)) (-3907 (((-3 $ "failed") $) 139)) (-4245 (($ |#2| (-768)) NIL) (($ $ (-1076) (-768)) 59) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-3469 (((-768) $) NIL) (((-768) $ (-1076)) 54) (((-641 (-768)) $ (-641 (-1076))) 55)) (-2574 (((-1166 |#2|) $) 72)) (-1306 (((-3 (-1076) "failed") $) 52)) (-4115 (((-2 (|:| -1935 $) (|:| -1363 $)) $ (-768)) 83)) (-3128 (($ $) 218)) (-3258 (($) 134)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 202)) (-2259 (((-418 (-1166 $)) (-1166 $)) 101)) (-3941 (((-418 (-1166 $)) (-1166 $)) 99)) (-4127 (((-418 $) $) 120)) (-2416 (($ $ (-641 (-294 $))) 51) (($ $ (-294 $)) NIL) (($ $ $ $) NIL) (($ $ (-641 $) (-641 $)) NIL) (($ $ (-1076) |#2|) 39) (($ $ (-641 (-1076)) (-641 |#2|)) 36) (($ $ (-1076) $) 32) (($ $ (-641 (-1076)) (-641 $)) 30)) (-4061 (((-768) $) 208)) (-4382 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-407 $) (-407 $) (-407 $)) 166) ((|#2| (-407 $) |#2|) 207) (((-407 $) $ (-407 $)) 189)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 212)) (-4117 (($ $ (-1076)) 159) (($ $ (-641 (-1076))) NIL) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL) (($ $ (-768)) NIL) (($ $) 157) (($ $ (-1170)) NIL) (($ $ (-641 (-1170))) NIL) (($ $ (-1170) (-768)) NIL) (($ $ (-641 (-1170)) (-641 (-768))) NIL) (($ $ (-1 |#2| |#2|) (-768)) NIL) (($ $ (-1 |#2| |#2|)) 156) (($ $ (-1 |#2| |#2|) $) 151)) (-2266 (((-768) $) NIL) (((-768) $ (-1076)) 17) (((-641 (-768)) $ (-641 (-1076))) 23)) (-4329 ((|#2| $) NIL) (($ $ (-1076)) 141)) (-1526 (((-3 $ "failed") $ $) 182) (((-3 (-407 $) "failed") (-407 $) $) 178)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#2|) NIL) (($ (-1076)) 64) (($ (-407 (-564))) NIL) (($ $) NIL))) +(((-1234 |#1| |#2|) (-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3258 (|#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -4382 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -4061 ((-768) |#1|)) (-15 -1318 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -4382 (|#2| (-407 |#1|) |#2|)) (-15 -3823 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3370 ((-2 (|:| -1762 |#2|) (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -2995 (|#1| |#1| |#1|)) (-15 -1526 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -1526 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1619 ((-768) |#1| |#1|)) (-15 -4382 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2477 (|#1| |#1| (-768))) (-15 -4359 (|#1| |#1| (-768))) (-15 -4115 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| (-768))) (-15 -4218 (|#1| (-1166 |#2|))) (-15 -2574 ((-1166 |#2|) |#1|)) (-15 -1312 ((-1259 |#2|) |#1| (-768))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| |#2|)) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3679 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3941 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2259 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3561 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4329 (|#1| |#1| (-1076))) (-15 -4269 ((-641 (-1076)) |#1|)) (-15 -3913 ((-768) |#1| (-641 (-1076)))) (-15 -3913 ((-768) |#1|)) (-15 -4245 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -4245 (|#1| |#1| (-1076) (-768))) (-15 -3469 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -3469 ((-768) |#1| (-1076))) (-15 -1306 ((-3 (-1076) "failed") |#1|)) (-15 -2266 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -2266 ((-768) |#1| (-1076))) (-15 -3742 (|#1| (-1076))) (-15 -2111 ((-3 (-1076) "failed") |#1|)) (-15 -2239 ((-1076) |#1|)) (-15 -2416 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -2416 (|#1| |#1| (-1076) |#1|)) (-15 -2416 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -2416 (|#1| |#1| (-1076) |#2|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2266 ((-768) |#1|)) (-15 -4245 (|#1| |#2| (-768))) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -3469 ((-768) |#1|)) (-15 -4329 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1076) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1076)))) (-15 -4117 (|#1| |#1| (-1076))) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) (-1235 |#2|) (-1046)) (T -1234)) +NIL +(-10 -8 (-15 -3742 (|#1| |#1|)) (-15 -4349 ((-1166 |#1|) (-1166 |#1|) (-1166 |#1|))) (-15 -3048 ((-418 |#1|) |#1|)) (-15 -2249 (|#1| |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3258 (|#1|)) (-15 -3907 ((-3 |#1| "failed") |#1|)) (-15 -4382 ((-407 |#1|) |#1| (-407 |#1|))) (-15 -4061 ((-768) |#1|)) (-15 -1318 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -3128 (|#1| |#1|)) (-15 -4382 (|#2| (-407 |#1|) |#2|)) (-15 -3823 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3370 ((-2 (|:| -1762 |#2|) (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| |#1|)) (-15 -2995 (|#1| |#1| |#1|)) (-15 -1526 ((-3 (-407 |#1|) "failed") (-407 |#1|) |#1|)) (-15 -1526 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1619 ((-768) |#1| |#1|)) (-15 -4382 ((-407 |#1|) (-407 |#1|) (-407 |#1|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -2477 (|#1| |#1| (-768))) (-15 -4359 (|#1| |#1| (-768))) (-15 -4115 ((-2 (|:| -1935 |#1|) (|:| -1363 |#1|)) |#1| (-768))) (-15 -4218 (|#1| (-1166 |#2|))) (-15 -2574 ((-1166 |#2|) |#1|)) (-15 -1312 ((-1259 |#2|) |#1| (-768))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4117 (|#1| |#1| (-1 |#2| |#2|) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1170) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1170)))) (-15 -4117 (|#1| |#1| (-1170))) (-15 -4117 (|#1| |#1|)) (-15 -4117 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| |#1|)) (-15 -4382 (|#2| |#1| |#2|)) (-15 -4127 ((-418 |#1|) |#1|)) (-15 -3679 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3941 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -2259 ((-418 (-1166 |#1|)) (-1166 |#1|))) (-15 -3561 ((-3 (-641 (-1166 |#1|)) "failed") (-641 (-1166 |#1|)) (-1166 |#1|))) (-15 -4329 (|#1| |#1| (-1076))) (-15 -4269 ((-641 (-1076)) |#1|)) (-15 -3913 ((-768) |#1| (-641 (-1076)))) (-15 -3913 ((-768) |#1|)) (-15 -4245 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -4245 (|#1| |#1| (-1076) (-768))) (-15 -3469 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -3469 ((-768) |#1| (-1076))) (-15 -1306 ((-3 (-1076) "failed") |#1|)) (-15 -2266 ((-641 (-768)) |#1| (-641 (-1076)))) (-15 -2266 ((-768) |#1| (-1076))) (-15 -3742 (|#1| (-1076))) (-15 -2111 ((-3 (-1076) "failed") |#1|)) (-15 -2239 ((-1076) |#1|)) (-15 -2416 (|#1| |#1| (-641 (-1076)) (-641 |#1|))) (-15 -2416 (|#1| |#1| (-1076) |#1|)) (-15 -2416 (|#1| |#1| (-641 (-1076)) (-641 |#2|))) (-15 -2416 (|#1| |#1| (-1076) |#2|)) (-15 -2416 (|#1| |#1| (-641 |#1|) (-641 |#1|))) (-15 -2416 (|#1| |#1| |#1| |#1|)) (-15 -2416 (|#1| |#1| (-294 |#1|))) (-15 -2416 (|#1| |#1| (-641 (-294 |#1|)))) (-15 -2266 ((-768) |#1|)) (-15 -4245 (|#1| |#2| (-768))) (-15 -2111 ((-3 (-564) "failed") |#1|)) (-15 -2239 ((-564) |#1|)) (-15 -2111 ((-3 (-407 (-564)) "failed") |#1|)) (-15 -2239 ((-407 (-564)) |#1|)) (-15 -2239 (|#2| |#1|)) (-15 -2111 ((-3 |#2| "failed") |#1|)) (-15 -3742 (|#1| |#2|)) (-15 -3469 ((-768) |#1|)) (-15 -4329 (|#2| |#1|)) (-15 -4117 (|#1| |#1| (-641 (-1076)) (-641 (-768)))) (-15 -4117 (|#1| |#1| (-1076) (-768))) (-15 -4117 (|#1| |#1| (-641 (-1076)))) (-15 -4117 (|#1| |#1| (-1076))) (-15 -3742 (|#1| (-564))) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-1312 (((-1259 |#1|) $ (-768)) 238)) (-4269 (((-641 (-1076)) $) 110)) (-4218 (($ (-1166 |#1|)) 236)) (-4097 (((-1166 $) $ (-1076)) 125) (((-1166 |#1|) $) 124)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 87 (|has| |#1| (-556)))) (-1948 (($ $) 88 (|has| |#1| (-556)))) (-1832 (((-112) $) 90 (|has| |#1| (-556)))) (-3913 (((-768) $) 112) (((-768) $ (-641 (-1076))) 111)) (-3239 (((-3 $ "failed") $ $) 19)) (-4107 (($ $ $) 223 (|has| |#1| (-556)))) (-3679 (((-418 (-1166 $)) (-1166 $)) 100 (|has| |#1| (-906)))) (-2249 (($ $) 98 (|has| |#1| (-452)))) (-3048 (((-418 $) $) 97 (|has| |#1| (-452)))) (-3561 (((-3 (-641 (-1166 $)) "failed") (-641 (-1166 $)) (-1166 $)) 103 (|has| |#1| (-906)))) (-2377 (((-112) $ $) 208 (|has| |#1| (-363)))) (-4359 (($ $ (-768)) 231)) (-2477 (($ $ (-768)) 230)) (-3823 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 218 (|has| |#1| (-452)))) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#1| "failed") $) 164) (((-3 (-407 (-564)) "failed") $) 161 (|has| |#1| (-1035 (-407 (-564))))) (((-3 (-564) "failed") $) 159 (|has| |#1| (-1035 (-564)))) (((-3 (-1076) "failed") $) 136)) (-2239 ((|#1| $) 163) (((-407 (-564)) $) 162 (|has| |#1| (-1035 (-407 (-564))))) (((-564) $) 160 (|has| |#1| (-1035 (-564)))) (((-1076) $) 137)) (-2448 (($ $ $ (-1076)) 108 (|has| |#1| (-172))) ((|#1| $ $) 226 (|has| |#1| (-172)))) (-1373 (($ $ $) 212 (|has| |#1| (-363)))) (-1348 (($ $) 154)) (-3039 (((-685 (-564)) (-685 $)) 134 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 (-564))) (|:| |vec| (-1259 (-564)))) (-685 $) (-1259 $)) 133 (|has| |#1| (-637 (-564)))) (((-2 (|:| -2069 (-685 |#1|)) (|:| |vec| (-1259 |#1|))) (-685 $) (-1259 $)) 132) (((-685 |#1|) (-685 $)) 131)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 211 (|has| |#1| (-363)))) (-4132 (($ $ $) 229)) (-2995 (($ $ $) 220 (|has| |#1| (-556)))) (-3370 (((-2 (|:| -1762 |#1|) (|:| -1935 $) (|:| -1363 $)) $ $) 219 (|has| |#1| (-556)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 206 (|has| |#1| (-363)))) (-1989 (($ $) 176 (|has| |#1| (-452))) (($ $ (-1076)) 105 (|has| |#1| (-452)))) (-1334 (((-641 $) $) 109)) (-4188 (((-112) $) 96 (|has| |#1| (-906)))) (-1866 (($ $ |#1| (-768) $) 172)) (-3075 (((-886 (-379) $) $ (-889 (-379)) (-886 (-379) $)) 84 (-12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379))))) (((-886 (-564) $) $ (-889 (-564)) (-886 (-564) $)) 83 (-12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))))) (-1619 (((-768) $ $) 224 (|has| |#1| (-556)))) (-3840 (((-112) $) 31)) (-2918 (((-768) $) 169)) (-3907 (((-3 $ "failed") $) 204 (|has| |#1| (-1145)))) (-4257 (($ (-1166 |#1|) (-1076)) 117) (($ (-1166 $) (-1076)) 116)) (-2472 (($ $ (-768)) 235)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 215 (|has| |#1| (-363)))) (-3707 (((-641 $) $) 126)) (-2005 (((-112) $) 152)) (-4245 (($ |#1| (-768)) 153) (($ $ (-1076) (-768)) 119) (($ $ (-641 (-1076)) (-641 (-768))) 118)) (-2905 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $ (-1076)) 120) (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 233)) (-3469 (((-768) $) 170) (((-768) $ (-1076)) 122) (((-641 (-768)) $ (-641 (-1076))) 121)) (-2799 (($ $ $) 79 (|has| |#1| (-847)))) (-2848 (($ $ $) 78 (|has| |#1| (-847)))) (-1396 (($ (-1 (-768) (-768)) $) 171)) (-2187 (($ (-1 |#1| |#1|) $) 151)) (-2574 (((-1166 |#1|) $) 237)) (-1306 (((-3 (-1076) "failed") $) 123)) (-1309 (($ $) 149)) (-1320 ((|#1| $) 148)) (-2529 (($ (-641 $)) 94 (|has| |#1| (-452))) (($ $ $) 93 (|has| |#1| (-452)))) (-2217 (((-1152) $) 9)) (-4115 (((-2 (|:| -1935 $) (|:| -1363 $)) $ (-768)) 232)) (-3514 (((-3 (-641 $) "failed") $) 114)) (-4386 (((-3 (-641 $) "failed") $) 115)) (-3758 (((-3 (-2 (|:| |var| (-1076)) (|:| -2515 (-768))) "failed") $) 113)) (-3128 (($ $) 216 (|has| |#1| (-38 (-407 (-564)))))) (-3258 (($) 203 (|has| |#1| (-1145)) CONST)) (-3864 (((-1114) $) 10)) (-4383 (((-112) $) 166)) (-1296 ((|#1| $) 167)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 95 (|has| |#1| (-452)))) (-2577 (($ (-641 $)) 92 (|has| |#1| (-452))) (($ $ $) 91 (|has| |#1| (-452)))) (-2259 (((-418 (-1166 $)) (-1166 $)) 102 (|has| |#1| (-906)))) (-3941 (((-418 (-1166 $)) (-1166 $)) 101 (|has| |#1| (-906)))) (-4127 (((-418 $) $) 99 (|has| |#1| (-906)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 214 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 213 (|has| |#1| (-363)))) (-1321 (((-3 $ "failed") $ |#1|) 174 (|has| |#1| (-556))) (((-3 $ "failed") $ $) 86 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 207 (|has| |#1| (-363)))) (-2416 (($ $ (-641 (-294 $))) 145) (($ $ (-294 $)) 144) (($ $ $ $) 143) (($ $ (-641 $) (-641 $)) 142) (($ $ (-1076) |#1|) 141) (($ $ (-641 (-1076)) (-641 |#1|)) 140) (($ $ (-1076) $) 139) (($ $ (-641 (-1076)) (-641 $)) 138)) (-4061 (((-768) $) 209 (|has| |#1| (-363)))) (-4382 ((|#1| $ |#1|) 256) (($ $ $) 255) (((-407 $) (-407 $) (-407 $)) 225 (|has| |#1| (-556))) ((|#1| (-407 $) |#1|) 217 (|has| |#1| (-363))) (((-407 $) $ (-407 $)) 205 (|has| |#1| (-556)))) (-1430 (((-3 $ "failed") $ (-768)) 234)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 210 (|has| |#1| (-363)))) (-4284 (($ $ (-1076)) 107 (|has| |#1| (-172))) ((|#1| $) 227 (|has| |#1| (-172)))) (-4117 (($ $ (-1076)) 42) (($ $ (-641 (-1076))) 41) (($ $ (-1076) (-768)) 40) (($ $ (-641 (-1076)) (-641 (-768))) 39) (($ $ (-768)) 253) (($ $) 251) (($ $ (-1170)) 250 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 249 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 248 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 247 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 240) (($ $ (-1 |#1| |#1|)) 239) (($ $ (-1 |#1| |#1|) $) 228)) (-2266 (((-768) $) 150) (((-768) $ (-1076)) 130) (((-641 (-768)) $ (-641 (-1076))) 129)) (-2235 (((-889 (-379)) $) 82 (-12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379)))))) (((-889 (-564)) $) 81 (-12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564)))))) (((-536) $) 80 (-12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))))) (-4329 ((|#1| $) 175 (|has| |#1| (-452))) (($ $ (-1076)) 106 (|has| |#1| (-452)))) (-2723 (((-3 (-1259 $) "failed") (-685 $)) 104 (-4267 (|has| $ (-145)) (|has| |#1| (-906))))) (-1526 (((-3 $ "failed") $ $) 222 (|has| |#1| (-556))) (((-3 (-407 $) "failed") (-407 $) $) 221 (|has| |#1| (-556)))) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 165) (($ (-1076)) 135) (($ (-407 (-564))) 72 (-4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564)))))) (($ $) 85 (|has| |#1| (-556)))) (-3110 (((-641 |#1|) $) 168)) (-2856 ((|#1| $ (-768)) 155) (($ $ (-1076) (-768)) 128) (($ $ (-641 (-1076)) (-641 (-768))) 127)) (-4253 (((-3 $ "failed") $) 73 (-4030 (-4267 (|has| $ (-145)) (|has| |#1| (-906))) (|has| |#1| (-145))))) (-3270 (((-768)) 28 T CONST)) (-3447 (($ $ $ (-768)) 173 (|has| |#1| (-172)))) (-3360 (((-112) $ $) 89 (|has| |#1| (-556)))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-1076)) 38) (($ $ (-641 (-1076))) 37) (($ $ (-1076) (-768)) 36) (($ $ (-641 (-1076)) (-641 (-768))) 35) (($ $ (-768)) 254) (($ $) 252) (($ $ (-1170)) 246 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170))) 245 (|has| |#1| (-897 (-1170)))) (($ $ (-1170) (-768)) 244 (|has| |#1| (-897 (-1170)))) (($ $ (-641 (-1170)) (-641 (-768))) 243 (|has| |#1| (-897 (-1170)))) (($ $ (-1 |#1| |#1|) (-768)) 242) (($ $ (-1 |#1| |#1|)) 241)) (-1751 (((-112) $ $) 76 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 75 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 6)) (-1741 (((-112) $ $) 77 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 74 (|has| |#1| (-847)))) (-1799 (($ $ |#1|) 156 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564))))) (($ (-407 (-564)) $) 157 (|has| |#1| (-38 (-407 (-564))))) (($ |#1| $) 147) (($ $ |#1|) 146))) +(((-1235 |#1|) (-140) (-1046)) (T -1235)) +((-1312 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1235 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)))) (-2574 (*1 *2 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-5 *2 (-1166 *3)))) (-4218 (*1 *1 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1046)) (-4 *1 (-1235 *3)))) (-2472 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-1430 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-2905 (*1 *2 *1 *1) (-12 (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-1235 *3)))) (-4115 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-1235 *4)))) (-4359 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-2477 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)))) (-4117 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) (-4284 (*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))) (-2448 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172)))) (-4382 (*1 *2 *2 *2) (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)))) (-1619 (*1 *2 *1 *1) (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)) (-5 *2 (-768)))) (-4107 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-1526 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-1526 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)))) (-2995 (*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) (-3370 (*1 *2 *1 *1) (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1762 *3) (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-1235 *3)))) (-3823 (*1 *2 *1 *1) (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1235 *3)))) (-4382 (*1 *2 *3 *2) (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564))))))) +(-13 (-946 |t#1| (-768) (-1076)) (-286 |t#1| |t#1|) (-286 $ $) (-233) (-231 |t#1|) (-10 -8 (-15 -1312 ((-1259 |t#1|) $ (-768))) (-15 -2574 ((-1166 |t#1|) $)) (-15 -4218 ($ (-1166 |t#1|))) (-15 -2472 ($ $ (-768))) (-15 -1430 ((-3 $ "failed") $ (-768))) (-15 -2905 ((-2 (|:| -1935 $) (|:| -1363 $)) $ $)) (-15 -4115 ((-2 (|:| -1935 $) (|:| -1363 $)) $ (-768))) (-15 -4359 ($ $ (-768))) (-15 -2477 ($ $ (-768))) (-15 -4132 ($ $ $)) (-15 -4117 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1145)) (-6 (-1145)) |%noBranch|) (IF (|has| |t#1| (-172)) (PROGN (-15 -4284 (|t#1| $)) (-15 -2448 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-556)) (PROGN (-6 (-286 (-407 $) (-407 $))) (-15 -4382 ((-407 $) (-407 $) (-407 $))) (-15 -1619 ((-768) $ $)) (-15 -4107 ($ $ $)) (-15 -1526 ((-3 $ "failed") $ $)) (-15 -1526 ((-3 (-407 $) "failed") (-407 $) $)) (-15 -2995 ($ $ $)) (-15 -3370 ((-2 (|:| -1762 |t#1|) (|:| -1935 $) (|:| -1363 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-452)) (-15 -3823 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-363)) (PROGN (-6 (-307)) (-6 -4407) (-15 -4382 (|t#1| (-407 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (-15 -3128 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-768)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4030 (|has| |#1| (-1035 (-407 (-564)))) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 #2=(-1076)) . T) ((-614 |#1|) . T) ((-614 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-612 (-536)) -12 (|has| (-1076) (-612 (-536))) (|has| |#1| (-612 (-536)))) ((-612 (-889 (-379))) -12 (|has| (-1076) (-612 (-889 (-379)))) (|has| |#1| (-612 (-889 (-379))))) ((-612 (-889 (-564))) -12 (|has| (-1076) (-612 (-889 (-564)))) (|has| |#1| (-612 (-889 (-564))))) ((-231 |#1|) . T) ((-233) . T) ((-286 (-407 $) (-407 $)) |has| |#1| (-556)) ((-286 |#1| |#1|) . T) ((-286 $ $) . T) ((-290) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-309 $) . T) ((-326 |#1| #0#) . T) ((-377 |#1|) . T) ((-411 |#1|) . T) ((-452) -4030 (|has| |#1| (-906)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-514 #2# |#1|) . T) ((-514 #2# $) . T) ((-514 $ $) . T) ((-556) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-637 (-564)) |has| |#1| (-637 (-564))) ((-637 |#1|) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363))) ((-723) . T) ((-847) |has| |#1| (-847)) ((-897 #2#) . T) ((-897 (-1170)) |has| |#1| (-897 (-1170))) ((-883 (-379)) -12 (|has| (-1076) (-883 (-379))) (|has| |#1| (-883 (-379)))) ((-883 (-564)) -12 (|has| (-1076) (-883 (-564))) (|has| |#1| (-883 (-564)))) ((-946 |#1| #0# #2#) . T) ((-906) |has| |#1| (-906)) ((-917) |has| |#1| (-363)) ((-1035 (-407 (-564))) |has| |#1| (-1035 (-407 (-564)))) ((-1035 (-564)) |has| |#1| (-1035 (-564))) ((-1035 #2#) . T) ((-1035 |#1|) . T) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-906)) (|has| |#1| (-556)) (|has| |#1| (-452)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1145) |has| |#1| (-1145)) ((-1213) |has| |#1| (-906))) +((-4269 (((-641 (-1076)) $) 34)) (-1348 (($ $) 31)) (-4245 (($ |#2| |#3|) NIL) (($ $ (-1076) |#3|) 28) (($ $ (-641 (-1076)) (-641 |#3|)) 27)) (-1309 (($ $) 14)) (-1320 ((|#2| $) 12)) (-2266 ((|#3| $) 10))) +(((-1236 |#1| |#2| |#3|) (-10 -8 (-15 -4269 ((-641 (-1076)) |#1|)) (-15 -4245 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -4245 (|#1| |#1| (-1076) |#3|)) (-15 -1348 (|#1| |#1|)) (-15 -4245 (|#1| |#2| |#3|)) (-15 -2266 (|#3| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -1320 (|#2| |#1|))) (-1237 |#2| |#3|) (-1046) (-789)) (T -1236)) +NIL +(-10 -8 (-15 -4269 ((-641 (-1076)) |#1|)) (-15 -4245 (|#1| |#1| (-641 (-1076)) (-641 |#3|))) (-15 -4245 (|#1| |#1| (-1076) |#3|)) (-15 -1348 (|#1| |#1|)) (-15 -4245 (|#1| |#2| |#3|)) (-15 -2266 (|#3| |#1|)) (-15 -1309 (|#1| |#1|)) (-15 -1320 (|#2| |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 (-1076)) $) 77)) (-3851 (((-1170) $) 106)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-2892 (($ $ |#2|) 101) (($ $ |#2| |#2|) 100)) (-3157 (((-1150 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 108)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1988 (((-112) $) 76)) (-1619 ((|#2| $) 103) ((|#2| $ |#2|) 102)) (-3840 (((-112) $) 31)) (-2472 (($ $ (-918)) 104)) (-2005 (((-112) $) 65)) (-4245 (($ |#1| |#2|) 64) (($ $ (-1076) |#2|) 79) (($ $ (-641 (-1076)) (-641 |#2|)) 78)) (-2187 (($ (-1 |#1| |#1|) $) 66)) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3004 (($ $ |#2|) 98)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-2416 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-4382 ((|#1| $ |#2|) 107) (($ $ $) 84 (|has| |#2| (-1106)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2266 ((|#2| $) 67)) (-2356 (($ $) 75)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-2856 ((|#1| $ |#2|) 62)) (-4253 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-2212 ((|#1| $) 105)) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2305 ((|#1| $ |#2|) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1237 |#1| |#2|) (-140) (-1046) (-789)) (T -1237)) +((-3157 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4382 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-3851 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (-5 *2 (-1170)))) (-2212 (*1 *2 *1) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) (-2472 (*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-1619 (*1 *2 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2892 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2892 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3742 (*2 (-1170)))) (-4 *2 (-1046)))) (-3004 (*1 *1 *1 *2) (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) (-2416 (*1 *2 *1 *3) (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3))))) +(-13 (-970 |t#1| |t#2| (-1076)) (-10 -8 (-15 -3157 ((-1150 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4382 (|t#1| $ |t#2|)) (-15 -3851 ((-1170) $)) (-15 -2212 (|t#1| $)) (-15 -2472 ($ $ (-918))) (-15 -1619 (|t#2| $)) (-15 -1619 (|t#2| $ |t#2|)) (-15 -2892 ($ $ |t#2|)) (-15 -2892 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3742 (|t#1| (-1170)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2305 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3004 ($ $ |t#2|)) (IF (|has| |t#2| (-1106)) (-6 (-286 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-233)) (IF (|has| |t#1| (-897 (-1170))) (-6 (-897 (-1170))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2416 ((-1150 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #0#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-286 $ $) |has| |#2| (-1106)) ((-290) |has| |#1| (-556)) ((-556) |has| |#1| (-556)) ((-644 #0#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| |#2| (-1076)) . T) ((-1052 #0#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-2249 ((|#2| |#2|) 12)) (-3048 (((-418 |#2|) |#2|) 14)) (-3978 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))) 30))) +(((-1238 |#1| |#2|) (-10 -7 (-15 -3048 ((-418 |#2|) |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -3978 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) (-556) (-13 (-1235 |#1|) (-556) (-10 -8 (-15 -2577 ($ $ $))))) (T -1238)) +((-3978 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-564)))) (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2577 ($ $ $))))) (-4 *3 (-556)) (-5 *1 (-1238 *3 *4)))) (-2249 (*1 *2 *2) (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2577 ($ $ $))))))) (-3048 (*1 *2 *3) (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2577 ($ $ $)))))))) +(-10 -7 (-15 -3048 ((-418 |#2|) |#2|)) (-15 -2249 (|#2| |#2|)) (-15 -3978 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-564)))))) +((-2187 (((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)) 24))) +(((-1239 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2187 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) (-1046) (-1046) (-1170) (-1170) |#1| |#2|) (T -1239)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1170))))) +(-10 -7 (-15 -2187 ((-1244 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1244 |#1| |#3| |#5|)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 (-1076)) $) 77)) (-3851 (((-1170) $) 106)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-2892 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-3157 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-2451 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 165 (|has| |#1| (-363)))) (-3048 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4137 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2377 (((-112) $ $) 156 (|has| |#1| (-363)))) (-2428 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-2473 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) 17 T CONST)) (-1373 (($ $ $) 160 (|has| |#1| (-363)))) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 159 (|has| |#1| (-363)))) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-4188 (((-112) $) 167 (|has| |#1| (-363)))) (-1988 (((-112) $) 76)) (-1655 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) 104) (($ $ (-407 (-564))) 173)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2005 (((-112) $) 65)) (-4245 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-2187 (($ (-1 |#1| |#1|) $) 66)) (-2192 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2529 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-2217 (((-1152) $) 9)) (-4373 (($ $) 168 (|has| |#1| (-363)))) (-3128 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4030 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2577 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4127 (((-418 $) $) 164 (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 161 (|has| |#1| (-363)))) (-3004 (($ $ (-407 (-564))) 98)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4118 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4061 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 158 (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2266 (((-407 (-564)) $) 67)) (-2484 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 75)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-2856 ((|#1| $ (-407 (-564))) 62)) (-4253 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-2212 ((|#1| $) 105)) (-2521 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2495 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1240 |#1|) (-140) (-1046)) (T -1240)) +((-2751 (*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) (-4 *4 (-1046)) (-4 *1 (-1240 *4)))) (-2472 (*1 *1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1046)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3128 (*1 *1 *1 *2) (-4030 (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4269 ((-641 *2) *3))) (|has| *3 (-15 -3128 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) +(-13 (-1237 |t#1| (-407 (-564))) (-10 -8 (-15 -2751 ($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |t#1|))))) (-15 -2472 ($ $ (-407 (-564)))) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $)) (IF (|has| |t#1| (-15 -3128 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4269 ((-641 (-1170)) |t#1|))) (-15 -3128 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3128 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T)) +((-4173 (((-112) $) 12)) (-2111 (((-3 |#3| "failed") $) 17)) (-2239 ((|#3| $) 14))) +(((-1241 |#1| |#2| |#3|) (-10 -8 (-15 -2111 ((-3 |#3| "failed") |#1|)) (-15 -2239 (|#3| |#1|)) (-15 -4173 ((-112) |#1|))) (-1242 |#2| |#3|) (-1046) (-1219 |#2|)) (T -1241)) +NIL +(-10 -8 (-15 -2111 ((-3 |#3| "failed") |#1|)) (-15 -2239 (|#3| |#1|)) (-15 -4173 ((-112) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 (-1076)) $) 77)) (-3851 (((-1170) $) 106)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-2892 (($ $ (-407 (-564))) 101) (($ $ (-407 (-564)) (-407 (-564))) 100)) (-3157 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 108)) (-2451 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 165 (|has| |#1| (-363)))) (-3048 (((-418 $) $) 166 (|has| |#1| (-363)))) (-4137 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2377 (((-112) $ $) 156 (|has| |#1| (-363)))) (-2428 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 174)) (-2473 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#2| "failed") $) 185)) (-2239 ((|#2| $) 186)) (-1373 (($ $ $) 160 (|has| |#1| (-363)))) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-2421 (((-407 (-564)) $) 182)) (-1350 (($ $ $) 159 (|has| |#1| (-363)))) (-4350 (($ (-407 (-564)) |#2|) 183)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 154 (|has| |#1| (-363)))) (-4188 (((-112) $) 167 (|has| |#1| (-363)))) (-1988 (((-112) $) 76)) (-1655 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-407 (-564)) $) 103) (((-407 (-564)) $ (-407 (-564))) 102)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) 104) (($ $ (-407 (-564))) 173)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 163 (|has| |#1| (-363)))) (-2005 (((-112) $) 65)) (-4245 (($ |#1| (-407 (-564))) 64) (($ $ (-1076) (-407 (-564))) 79) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) 78)) (-2187 (($ (-1 |#1| |#1|) $) 66)) (-2192 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2529 (($ (-641 $)) 152 (|has| |#1| (-363))) (($ $ $) 151 (|has| |#1| (-363)))) (-3984 ((|#2| $) 181)) (-2255 (((-3 |#2| "failed") $) 179)) (-4338 ((|#2| $) 180)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 168 (|has| |#1| (-363)))) (-3128 (($ $) 172 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 171 (-4030 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 153 (|has| |#1| (-363)))) (-2577 (($ (-641 $)) 150 (|has| |#1| (-363))) (($ $ $) 149 (|has| |#1| (-363)))) (-4127 (((-418 $) $) 164 (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 162 (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 161 (|has| |#1| (-363)))) (-3004 (($ $ (-407 (-564))) 98)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 155 (|has| |#1| (-363)))) (-4118 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4061 (((-768) $) 157 (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 107) (($ $ $) 84 (|has| (-407 (-564)) (-1106)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 158 (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2266 (((-407 (-564)) $) 67)) (-2484 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 75)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 50 (|has| |#1| (-172))) (($ |#2|) 184) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556)))) (-2856 ((|#1| $ (-407 (-564))) 62)) (-4253 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-2212 ((|#1| $) 105)) (-2521 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2495 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-407 (-564))) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363))) (($ $ $) 170 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 169 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1242 |#1| |#2|) (-140) (-1046) (-1219 |t#1|)) (T -1242)) +((-2266 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-4350 (*1 *1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1046)) (-4 *1 (-1242 *4 *3)) (-4 *3 (-1219 *4)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) (-5 *2 (-407 (-564))))) (-3984 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3)))) (-2255 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3))))) +(-13 (-1240 |t#1|) (-1035 |t#2|) (-614 |t#2|) (-10 -8 (-15 -4350 ($ (-407 (-564)) |t#2|)) (-15 -2421 ((-407 (-564)) $)) (-15 -3984 (|t#2| $)) (-15 -2266 ((-407 (-564)) $)) (-15 -4338 (|t#2| $)) (-15 -2255 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-407 (-564))) . T) ((-25) . T) ((-38 #1=(-407 (-564))) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 |#2|) . T) ((-614 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) ((-243) |has| |#1| (-363)) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-407 (-564)) (-1106)) ((-290) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-307) |has| |#1| (-363)) ((-363) |has| |#1| (-363)) ((-452) |has| |#1| (-363)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-644 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363))) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-917) |has| |#1| (-363)) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1035 |#2|) . T) ((-1052 #1#) -4030 (|has| |#1| (-363)) (|has| |#1| (-38 (-407 (-564))))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-363)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1213) |has| |#1| (-363)) ((-1237 |#1| #0#) . T) ((-1240 |#1|) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 104)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2892 (($ $ (-407 (-564))) 116) (($ $ (-407 (-564)) (-407 (-564))) 118)) (-3157 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) 54)) (-2451 (($ $) 192 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 168 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2428 (($ $) 188 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 164 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) 65)) (-2473 (($ $) 196 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 172 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) NIL)) (-2239 ((|#2| $) NIL)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) 85)) (-2421 (((-407 (-564)) $) 13)) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-4350 (($ (-407 (-564)) |#2|) 11)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-1988 (((-112) $) 74)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-407 (-564)) $) 113) (((-407 (-564)) $ (-407 (-564))) 114)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) 130) (($ $ (-407 (-564))) 128)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-407 (-564))) 33) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) 125)) (-2192 (($ $) 162 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3984 ((|#2| $) 12)) (-2255 (((-3 |#2| "failed") $) 44)) (-4338 ((|#2| $) 45)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) 101 (|has| |#1| (-363)))) (-3128 (($ $) 146 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 151 (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194)))))) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-3004 (($ $ (-407 (-564))) 122)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4118 (($ $) 160 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) 108) (($ $ $) 94 (|has| (-407 (-564)) (-1106)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 138 (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 134 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-2266 (((-407 (-564)) $) 16)) (-2484 (($ $) 198 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 174 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 194 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 170 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 190 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 166 (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 120)) (-3742 (((-859) $) NIL) (($ (-564)) 37) (($ |#1|) 27 (|has| |#1| (-172))) (($ |#2|) 34) (($ (-407 (-564))) 139 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2856 ((|#1| $ (-407 (-564))) 107)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) 127 T CONST)) (-2212 ((|#1| $) 106)) (-2521 (($ $) 204 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 180 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) 200 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 176 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 208 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 184 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-407 (-564))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 210 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 186 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 206 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 182 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 202 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 178 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 21 T CONST)) (-4321 (($) 17 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1705 (((-112) $ $) 72)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) 100 (|has| |#1| (-363)))) (-1790 (($ $) 142) (($ $ $) 78)) (-1780 (($ $ $) 76)) (** (($ $ (-918)) NIL) (($ $ (-768)) 82) (($ $ (-564)) 157 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 158 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 80) (($ $ |#1|) NIL) (($ |#1| $) 137) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1243 |#1| |#2|) (-1242 |#1| |#2|) (-1046) (-1219 |#1|)) (T -1243)) +NIL +(-1242 |#1| |#2|) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 11)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) NIL (|has| |#1| (-556)))) (-2892 (($ $ (-407 (-564))) NIL) (($ $ (-407 (-564)) (-407 (-564))) NIL)) (-3157 (((-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|))) $) NIL)) (-2451 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-2249 (($ $) NIL (|has| |#1| (-363)))) (-3048 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2377 (((-112) $ $) NIL (|has| |#1| (-363)))) (-2428 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-768) (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#1|)))) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1251 |#1| |#2| |#3|) "failed") $) 22)) (-2239 (((-1223 |#1| |#2| |#3|) $) NIL) (((-1251 |#1| |#2| |#3|) $) NIL)) (-1373 (($ $ $) NIL (|has| |#1| (-363)))) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2421 (((-407 (-564)) $) 69)) (-1350 (($ $ $) NIL (|has| |#1| (-363)))) (-4350 (($ (-407 (-564)) (-1223 |#1| |#2| |#3|)) NIL)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) NIL (|has| |#1| (-363)))) (-4188 (((-112) $) NIL (|has| |#1| (-363)))) (-1988 (((-112) $) NIL)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-407 (-564)) $) NIL) (((-407 (-564)) $ (-407 (-564))) NIL)) (-3840 (((-112) $) NIL)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) NIL) (($ $ (-407 (-564))) NIL)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-407 (-564))) 30) (($ $ (-1076) (-407 (-564))) NIL) (($ $ (-641 (-1076)) (-641 (-407 (-564)))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2192 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2529 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-3984 (((-1223 |#1| |#2| |#3|) $) 72)) (-2255 (((-3 (-1223 |#1| |#2| |#3|) "failed") $) NIL)) (-4338 (((-1223 |#1| |#2| |#3|) $) NIL)) (-2217 (((-1152) $) NIL)) (-4373 (($ $) NIL (|has| |#1| (-363)))) (-3128 (($ $) 39 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) NIL (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 40 (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) NIL)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) NIL (|has| |#1| (-363)))) (-2577 (($ (-641 $)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-4127 (((-418 $) $) NIL (|has| |#1| (-363)))) (-4302 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-363))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) NIL (|has| |#1| (-363)))) (-3004 (($ $ (-407 (-564))) NIL)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-3678 (((-3 (-641 $) "failed") (-641 $) $) NIL (|has| |#1| (-363)))) (-4118 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))))) (-4061 (((-768) $) NIL (|has| |#1| (-363)))) (-4382 ((|#1| $ (-407 (-564))) NIL) (($ $ $) NIL (|has| (-407 (-564)) (-1106)))) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) NIL (|has| |#1| (-363)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $ (-1255 |#2|)) 38)) (-2266 (((-407 (-564)) $) NIL)) (-2484 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) NIL)) (-3742 (((-859) $) 108) (($ (-564)) NIL) (($ |#1|) NIL (|has| |#1| (-172))) (($ (-1223 |#1| |#2| |#3|)) 16) (($ (-1251 |#1| |#2| |#3|)) 17) (($ (-1255 |#2|)) 36) (($ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556)))) (-2856 ((|#1| $ (-407 (-564))) NIL)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2212 ((|#1| $) 12)) (-2521 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-407 (-564))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-407 (-564))))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 32 T CONST)) (-4321 (($) 26 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-407 (-564)) |#1|))))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 34)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ (-564)) NIL (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1244 |#1| |#2| |#3|) (-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1035 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1244)) +((-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) +(-13 (-1242 |#1| (-1223 |#1| |#2| |#3|)) (-1035 (-1251 |#1| |#2| |#3|)) (-614 (-1255 |#2|)) (-10 -8 (-15 -4117 ($ $ (-1255 |#2|))) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 37)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL)) (-1948 (($ $) NIL)) (-1832 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 (-564) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-564)))) (((-3 (-407 (-564)) "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))) (((-3 (-1244 |#2| |#3| |#4|) "failed") $) 22)) (-2239 (((-564) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-564)))) (((-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))) (((-1244 |#2| |#3| |#4|) $) NIL)) (-1348 (($ $) 41)) (-3951 (((-3 $ "failed") $) 27)) (-1989 (($ $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-1866 (($ $ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|) $) NIL)) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) 11)) (-2005 (((-112) $) NIL)) (-4245 (($ (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) 25)) (-3469 (((-319 |#2| |#3| |#4|) $) NIL)) (-1396 (($ (-1 (-319 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) $) NIL)) (-2187 (($ (-1 (-1244 |#2| |#3| |#4|) (-1244 |#2| |#3| |#4|)) $) NIL)) (-3216 (((-3 (-840 |#2|) "failed") $) 90)) (-1309 (($ $) NIL)) (-1320 (((-1244 |#2| |#3| |#4|) $) 20)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4383 (((-112) $) NIL)) (-1296 (((-1244 |#2| |#3| |#4|) $) NIL)) (-1321 (((-3 $ "failed") $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-556))) (((-3 $ "failed") $ $) NIL)) (-3313 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $) 72)) (-2266 (((-319 |#2| |#3| |#4|) $) 17)) (-4329 (((-1244 |#2| |#3| |#4|) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-452)))) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ (-1244 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-407 (-564))) NIL (-4030 (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564)))) (|has| (-1244 |#2| |#3| |#4|) (-1035 (-407 (-564))))))) (-3110 (((-641 (-1244 |#2| |#3| |#4|)) $) NIL)) (-2856 (((-1244 |#2| |#3| |#4|) $ (-319 |#2| |#3| |#4|)) NIL)) (-4253 (((-3 $ "failed") $) NIL (|has| (-1244 |#2| |#3| |#4|) (-145)))) (-3270 (((-768)) NIL T CONST)) (-3447 (($ $ $ (-768)) NIL (|has| (-1244 |#2| |#3| |#4|) (-172)))) (-3360 (((-112) $ $) NIL)) (-4311 (($) 78 T CONST)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ (-1244 |#2| |#3| |#4|)) NIL (|has| (-1244 |#2| |#3| |#4|) (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ (-1244 |#2| |#3| |#4|)) NIL) (($ (-1244 |#2| |#3| |#4|) $) NIL) (($ (-407 (-564)) $) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| (-1244 |#2| |#3| |#4|) (-38 (-407 (-564))))))) +(((-1245 |#1| |#2| |#3| |#4|) (-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -3216 ((-3 (-840 |#2|) "failed") $)) (-15 -3313 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452)) (-13 (-27) (-1194) (-430 |#1|)) (-1170) |#2|) (T -1245)) +((-3216 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-840 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4))) (-3313 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 *4 *5 *6)) (|:| |%expon| (-319 *4 *5 *6)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) (|:| |%type| (-1152)))) (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) (-14 *6 *4)))) +(-13 (-326 (-1244 |#2| |#3| |#4|) (-319 |#2| |#3| |#4|)) (-556) (-10 -8 (-15 -3216 ((-3 (-840 |#2|) "failed") $)) (-15 -3313 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1244 |#2| |#3| |#4|)) (|:| |%expon| (-319 |#2| |#3| |#4|)) (|:| |%expTerms| (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| |#2|)))))) (|:| |%type| (-1152))) "failed") $)))) +((-3426 ((|#2| $) 33)) (-2910 ((|#2| $) 18)) (-3813 (($ $) 51)) (-1817 (($ $ (-564)) 83)) (-2969 (((-112) $ (-768)) 45)) (-3976 ((|#2| $ |#2|) 81)) (-1716 ((|#2| $ |#2|) 77)) (-3877 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 70) (($ $ "rest" $) 74) ((|#2| $ "last" |#2|) 72)) (-2306 (($ $ (-641 $)) 80)) (-2899 ((|#2| $) 17)) (-1977 (($ $) NIL) (($ $ (-768)) 58)) (-2488 (((-641 $) $) 30)) (-1940 (((-112) $ $) 68)) (-2275 (((-112) $ (-768)) 44)) (-1500 (((-112) $ (-768)) 42)) (-1881 (((-112) $) 32)) (-2389 ((|#2| $) 24) (($ $ (-768)) 63)) (-4382 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-3572 (((-112) $) 22)) (-1459 (($ $) 54)) (-3838 (($ $) 84)) (-3108 (((-768) $) 57)) (-2857 (($ $) 56)) (-1802 (($ $ $) 76) (($ |#2| $) NIL)) (-3167 (((-641 $) $) 31)) (-1705 (((-112) $ $) 66)) (-2641 (((-768) $) 50))) +(((-1246 |#1| |#2|) (-10 -8 (-15 -1817 (|#1| |#1| (-564))) (-15 -3877 (|#2| |#1| "last" |#2|)) (-15 -1716 (|#2| |#1| |#2|)) (-15 -3877 (|#1| |#1| "rest" |#1|)) (-15 -3877 (|#2| |#1| "first" |#2|)) (-15 -3838 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -3108 ((-768) |#1|)) (-15 -2857 (|#1| |#1|)) (-15 -2910 (|#2| |#1|)) (-15 -2899 (|#2| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2389 (|#2| |#1|)) (-15 -1977 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -1977 (|#1| |#1|)) (-15 -4382 (|#2| |#1| "first")) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#1|)) (-15 -3976 (|#2| |#1| |#2|)) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -2306 (|#1| |#1| (-641 |#1|))) (-15 -1940 ((-112) |#1| |#1|)) (-15 -3572 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3426 (|#2| |#1|)) (-15 -1881 ((-112) |#1|)) (-15 -2488 ((-641 |#1|) |#1|)) (-15 -3167 ((-641 |#1|) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2641 ((-768) |#1|)) (-15 -2969 ((-112) |#1| (-768))) (-15 -2275 ((-112) |#1| (-768))) (-15 -1500 ((-112) |#1| (-768)))) (-1247 |#2|) (-1209)) (T -1246)) +NIL +(-10 -8 (-15 -1817 (|#1| |#1| (-564))) (-15 -3877 (|#2| |#1| "last" |#2|)) (-15 -1716 (|#2| |#1| |#2|)) (-15 -3877 (|#1| |#1| "rest" |#1|)) (-15 -3877 (|#2| |#1| "first" |#2|)) (-15 -3838 (|#1| |#1|)) (-15 -1459 (|#1| |#1|)) (-15 -3108 ((-768) |#1|)) (-15 -2857 (|#1| |#1|)) (-15 -2910 (|#2| |#1|)) (-15 -2899 (|#2| |#1|)) (-15 -3813 (|#1| |#1|)) (-15 -2389 (|#1| |#1| (-768))) (-15 -4382 (|#2| |#1| "last")) (-15 -2389 (|#2| |#1|)) (-15 -1977 (|#1| |#1| (-768))) (-15 -4382 (|#1| |#1| "rest")) (-15 -1977 (|#1| |#1|)) (-15 -4382 (|#2| |#1| "first")) (-15 -1802 (|#1| |#2| |#1|)) (-15 -1802 (|#1| |#1| |#1|)) (-15 -3976 (|#2| |#1| |#2|)) (-15 -3877 (|#2| |#1| "value" |#2|)) (-15 -2306 (|#1| |#1| (-641 |#1|))) (-15 -1940 ((-112) |#1| |#1|)) (-15 -3572 ((-112) |#1|)) (-15 -4382 (|#2| |#1| "value")) (-15 -3426 (|#2| |#1|)) (-15 -1881 ((-112) |#1|)) (-15 -2488 ((-641 |#1|) |#1|)) (-15 -3167 ((-641 |#1|) |#1|)) (-15 -1705 ((-112) |#1| |#1|)) (-15 -2641 ((-768) |#1|)) (-15 -2969 ((-112) |#1| (-768))) (-15 -2275 ((-112) |#1| (-768))) (-15 -1500 ((-112) |#1| (-768)))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-3426 ((|#1| $) 48)) (-2910 ((|#1| $) 65)) (-3813 (($ $) 67)) (-1817 (($ $ (-564)) 52 (|has| $ (-6 -4412)))) (-2969 (((-112) $ (-768)) 8)) (-3976 ((|#1| $ |#1|) 39 (|has| $ (-6 -4412)))) (-3417 (($ $ $) 56 (|has| $ (-6 -4412)))) (-1716 ((|#1| $ |#1|) 54 (|has| $ (-6 -4412)))) (-2094 ((|#1| $ |#1|) 58 (|has| $ (-6 -4412)))) (-3877 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4412))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4412))) (($ $ "rest" $) 55 (|has| $ (-6 -4412))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4412)))) (-2306 (($ $ (-641 $)) 41 (|has| $ (-6 -4412)))) (-2899 ((|#1| $) 66)) (-2818 (($) 7 T CONST)) (-1977 (($ $) 73) (($ $ (-768)) 71)) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-2488 (((-641 $) $) 50)) (-1940 (((-112) $ $) 42 (|has| |#1| (-1094)))) (-2275 (((-112) $ (-768)) 9)) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35)) (-1500 (((-112) $ (-768)) 10)) (-2333 (((-641 |#1|) $) 45)) (-1881 (((-112) $) 49)) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2389 ((|#1| $) 70) (($ $ (-768)) 68)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 76) (($ $ (-768)) 74)) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-4209 (((-564) $ $) 44)) (-3572 (((-112) $) 46)) (-1459 (($ $) 62)) (-3838 (($ $) 59 (|has| $ (-6 -4412)))) (-3108 (((-768) $) 63)) (-2857 (($ $) 64)) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3896 (($ $) 13)) (-1807 (($ $ $) 61 (|has| $ (-6 -4412))) (($ $ |#1|) 60 (|has| $ (-6 -4412)))) (-1802 (($ $ $) 78) (($ |#1| $) 77)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-3167 (((-641 $) $) 51)) (-1584 (((-112) $ $) 43 (|has| |#1| (-1094)))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-1247 |#1|) (-140) (-1209)) (T -1247)) +((-1802 (*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1802 (*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1966 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1966 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-1977 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-1977 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-2389 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-4382 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2389 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-3813 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2899 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2910 (*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2857 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3108 (*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) (-1459 (*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1807 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1807 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3838 (*1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-2094 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3417 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3877 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) (-1716 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-3877 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) (-1817 (*1 *1 *1 *2) (-12 (-5 *2 (-564)) (|has| *1 (-6 -4412)) (-4 *1 (-1247 *3)) (-4 *3 (-1209))))) +(-13 (-1007 |t#1|) (-10 -8 (-15 -1802 ($ $ $)) (-15 -1802 ($ |t#1| $)) (-15 -1966 (|t#1| $)) (-15 -4382 (|t#1| $ "first")) (-15 -1966 ($ $ (-768))) (-15 -1977 ($ $)) (-15 -4382 ($ $ "rest")) (-15 -1977 ($ $ (-768))) (-15 -2389 (|t#1| $)) (-15 -4382 (|t#1| $ "last")) (-15 -2389 ($ $ (-768))) (-15 -3813 ($ $)) (-15 -2899 (|t#1| $)) (-15 -2910 (|t#1| $)) (-15 -2857 ($ $)) (-15 -3108 ((-768) $)) (-15 -1459 ($ $)) (IF (|has| $ (-6 -4412)) (PROGN (-15 -1807 ($ $ $)) (-15 -1807 ($ $ |t#1|)) (-15 -3838 ($ $)) (-15 -2094 (|t#1| $ |t#1|)) (-15 -3877 (|t#1| $ "first" |t#1|)) (-15 -3417 ($ $ $)) (-15 -3877 ($ $ "rest" $)) (-15 -1716 (|t#1| $ |t#1|)) (-15 -3877 (|t#1| $ "last" |t#1|)) (-15 -1817 ($ $ (-564)))) |%noBranch|))) +(((-34) . T) ((-102) |has| |#1| (-1094)) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-611 (-859)))) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-489 |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-1007 |#1|) . T) ((-1094) |has| |#1| (-1094)) ((-1209) . T)) +((-2187 ((|#4| (-1 |#2| |#1|) |#3|) 17))) +(((-1248 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2187 (|#4| (-1 |#2| |#1|) |#3|))) (-1046) (-1046) (-1250 |#1|) (-1250 |#2|)) (T -1248)) +((-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5))))) +(-10 -7 (-15 -2187 (|#4| (-1 |#2| |#1|) |#3|))) +((-4173 (((-112) $) 17)) (-2451 (($ $) 105)) (-2319 (($ $) 81)) (-2428 (($ $) 101)) (-2297 (($ $) 77)) (-2473 (($ $) 109)) (-2339 (($ $) 85)) (-2192 (($ $) 75)) (-4118 (($ $) 73)) (-2484 (($ $) 111)) (-2348 (($ $) 87)) (-2462 (($ $) 107)) (-2328 (($ $) 83)) (-2438 (($ $) 103)) (-2309 (($ $) 79)) (-3742 (((-859) $) 61) (($ (-564)) NIL) (($ (-407 (-564))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2521 (($ $) 117)) (-2379 (($ $) 93)) (-2495 (($ $) 113)) (-2358 (($ $) 89)) (-2548 (($ $) 121)) (-2404 (($ $) 97)) (-4065 (($ $) 123)) (-2415 (($ $) 99)) (-2534 (($ $) 119)) (-2391 (($ $) 95)) (-2507 (($ $) 115)) (-2367 (($ $) 91)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#2|) 65) (($ $ $) 68) (($ $ (-407 (-564))) 71))) +(((-1249 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2319 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2328 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2534 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -2548 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -4173 ((-112) |#1|)) (-15 -3742 ((-859) |#1|))) (-1250 |#2|) (-1046)) (T -1249)) +NIL +(-10 -8 (-15 ** (|#1| |#1| (-407 (-564)))) (-15 -2319 (|#1| |#1|)) (-15 -2297 (|#1| |#1|)) (-15 -2339 (|#1| |#1|)) (-15 -2348 (|#1| |#1|)) (-15 -2328 (|#1| |#1|)) (-15 -2309 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2415 (|#1| |#1|)) (-15 -2404 (|#1| |#1|)) (-15 -2358 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2438 (|#1| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2484 (|#1| |#1|)) (-15 -2473 (|#1| |#1|)) (-15 -2428 (|#1| |#1|)) (-15 -2451 (|#1| |#1|)) (-15 -2507 (|#1| |#1|)) (-15 -2534 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -2548 (|#1| |#1|)) (-15 -2495 (|#1| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -4118 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3742 (|#1| |#2|)) (-15 -3742 (|#1| |#1|)) (-15 -3742 (|#1| (-407 (-564)))) (-15 -3742 (|#1| (-564))) (-15 ** (|#1| |#1| (-768))) (-15 ** (|#1| |#1| (-918))) (-15 -4173 ((-112) |#1|)) (-15 -3742 ((-859) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-4269 (((-641 (-1076)) $) 77)) (-3851 (((-1170) $) 106)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 54 (|has| |#1| (-556)))) (-1948 (($ $) 55 (|has| |#1| (-556)))) (-1832 (((-112) $) 57 (|has| |#1| (-556)))) (-2892 (($ $ (-768)) 101) (($ $ (-768) (-768)) 100)) (-3157 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 108)) (-2451 (($ $) 138 (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) 121 (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) 19)) (-4137 (($ $) 120 (|has| |#1| (-38 (-407 (-564)))))) (-2428 (($ $) 137 (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) 122 (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 158) (($ (-1150 |#1|)) 156)) (-2473 (($ $) 136 (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) 123 (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) 17 T CONST)) (-1348 (($ $) 63)) (-3951 (((-3 $ "failed") $) 33)) (-1572 (($ $) 155)) (-3217 (((-949 |#1|) $ (-768)) 153) (((-949 |#1|) $ (-768) (-768)) 152)) (-1988 (((-112) $) 76)) (-1655 (($) 148 (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-768) $) 103) (((-768) $ (-768)) 102)) (-3840 (((-112) $) 31)) (-2347 (($ $ (-564)) 119 (|has| |#1| (-38 (-407 (-564)))))) (-2472 (($ $ (-918)) 104)) (-3028 (($ (-1 |#1| (-564)) $) 154)) (-2005 (((-112) $) 65)) (-4245 (($ |#1| (-768)) 64) (($ $ (-1076) (-768)) 79) (($ $ (-641 (-1076)) (-641 (-768))) 78)) (-2187 (($ (-1 |#1| |#1|) $) 66)) (-2192 (($ $) 145 (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) 68)) (-1320 ((|#1| $) 69)) (-2217 (((-1152) $) 9)) (-3128 (($ $) 150 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 149 (-4030 (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-956)) (|has| |#1| (-1194)) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-38 (-407 (-564)))))))) (-3864 (((-1114) $) 10)) (-3004 (($ $ (-768)) 98)) (-1321 (((-3 $ "failed") $ $) 53 (|has| |#1| (-556)))) (-4118 (($ $) 146 (|has| |#1| (-38 (-407 (-564)))))) (-2416 (((-1150 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 107) (($ $ $) 84 (|has| (-768) (-1106)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) 92 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170) (-768)) 91 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-641 (-1170))) 90 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170)) 89 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-768)) 87 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 85 (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-2266 (((-768) $) 67)) (-2484 (($ $) 135 (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) 124 (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) 134 (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) 125 (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) 133 (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) 126 (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 75)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ (-407 (-564))) 60 (|has| |#1| (-38 (-407 (-564))))) (($ $) 52 (|has| |#1| (-556))) (($ |#1|) 50 (|has| |#1| (-172)))) (-3110 (((-1150 |#1|) $) 157)) (-2856 ((|#1| $ (-768)) 62)) (-4253 (((-3 $ "failed") $) 51 (|has| |#1| (-145)))) (-3270 (((-768)) 28 T CONST)) (-2212 ((|#1| $) 105)) (-2521 (($ $) 144 (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) 132 (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) 56 (|has| |#1| (-556)))) (-2495 (($ $) 143 (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) 131 (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) 142 (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) 130 (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-768)) 99 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) 141 (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) 129 (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) 140 (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) 128 (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) 139 (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) 127 (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) 96 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170) (-768)) 95 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-641 (-1170))) 94 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-1170)) 93 (-12 (|has| |#1| (-897 (-1170))) (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (($ $ (-768)) 88 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 86 (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 61 (|has| |#1| (-363)))) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ |#1|) 151 (|has| |#1| (-363))) (($ $ $) 147 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 118 (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 71) (($ |#1| $) 70) (($ (-407 (-564)) $) 59 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) 58 (|has| |#1| (-38 (-407 (-564))))))) +(((-1250 |#1|) (-140) (-1046)) (T -1250)) +((-2751 (*1 *1 *2) (-12 (-5 *2 (-1150 (-2 (|:| |k| (-768)) (|:| |c| *3)))) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) (-3110 (*1 *2 *1) (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-5 *2 (-1150 *3)))) (-2751 (*1 *1 *2) (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) (-1572 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)))) (-3028 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1046)))) (-3217 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) (-5 *2 (-949 *4)))) (-3217 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) (-5 *2 (-949 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) (-3128 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) (-3128 (*1 *1 *1 *2) (-4030 (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) (-4 *3 (-38 (-407 (-564)))))) (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-12 (|has| *3 (-15 -4269 ((-641 *2) *3))) (|has| *3 (-15 -3128 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564))))))))) +(-13 (-1237 |t#1| (-768)) (-10 -8 (-15 -2751 ($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |t#1|))))) (-15 -3110 ((-1150 |t#1|) $)) (-15 -2751 ($ (-1150 |t#1|))) (-15 -1572 ($ $)) (-15 -3028 ($ (-1 |t#1| (-564)) $)) (-15 -3217 ((-949 |t#1|) $ (-768))) (-15 -3217 ((-949 |t#1|) $ (-768) (-768))) (IF (|has| |t#1| (-363)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-407 (-564)))) (PROGN (-15 -3128 ($ $)) (IF (|has| |t#1| (-15 -3128 (|t#1| |t#1| (-1170)))) (IF (|has| |t#1| (-15 -4269 ((-641 (-1170)) |t#1|))) (-15 -3128 ($ $ (-1170))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1194)) (IF (|has| |t#1| (-956)) (IF (|has| |t#1| (-29 (-564))) (-15 -3128 ($ $ (-1170))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-999)) (-6 (-1194))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-768)) . T) ((-25) . T) ((-38 #1=(-407 (-564))) |has| |#1| (-38 (-407 (-564)))) ((-38 |#1|) |has| |#1| (-172)) ((-38 $) |has| |#1| (-556)) ((-35) |has| |#1| (-38 (-407 (-564)))) ((-95) |has| |#1| (-38 (-407 (-564)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-407 (-564)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-131) . T) ((-145) |has| |#1| (-145)) ((-147) |has| |#1| (-147)) ((-614 #1#) |has| |#1| (-38 (-407 (-564)))) ((-614 (-564)) . T) ((-614 |#1|) |has| |#1| (-172)) ((-614 $) |has| |#1| (-556)) ((-611 (-859)) . T) ((-172) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-233) |has| |#1| (-15 * (|#1| (-768) |#1|))) ((-284) |has| |#1| (-38 (-407 (-564)))) ((-286 $ $) |has| (-768) (-1106)) ((-290) |has| |#1| (-556)) ((-493) |has| |#1| (-38 (-407 (-564)))) ((-556) |has| |#1| (-556)) ((-644 #1#) |has| |#1| (-38 (-407 (-564)))) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #1#) |has| |#1| (-38 (-407 (-564)))) ((-714 |#1|) |has| |#1| (-172)) ((-714 $) |has| |#1| (-556)) ((-723) . T) ((-897 (-1170)) -12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170)))) ((-970 |#1| #0# (-1076)) . T) ((-999) |has| |#1| (-38 (-407 (-564)))) ((-1052 #1#) |has| |#1| (-38 (-407 (-564)))) ((-1052 |#1|) . T) ((-1052 $) -4030 (|has| |#1| (-556)) (|has| |#1| (-172))) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1194) |has| |#1| (-38 (-407 (-564)))) ((-1197) |has| |#1| (-38 (-407 (-564)))) ((-1237 |#1| #0#) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-4269 (((-641 (-1076)) $) NIL)) (-3851 (((-1170) $) 92)) (-3389 (((-1232 |#2| |#1|) $ (-768)) 74)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) NIL (|has| |#1| (-556)))) (-1948 (($ $) NIL (|has| |#1| (-556)))) (-1832 (((-112) $) 143 (|has| |#1| (-556)))) (-2892 (($ $ (-768)) 129) (($ $ (-768) (-768)) 131)) (-3157 (((-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|))) $) 43)) (-2451 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2319 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3239 (((-3 $ "failed") $ $) NIL)) (-4137 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2428 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2297 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2751 (($ (-1150 (-2 (|:| |k| (-768)) (|:| |c| |#1|)))) 53) (($ (-1150 |#1|)) NIL)) (-2473 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2339 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2818 (($) NIL T CONST)) (-1404 (($ $) 135)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-1572 (($ $) 141)) (-3217 (((-949 |#1|) $ (-768)) 64) (((-949 |#1|) $ (-768) (-768)) 66)) (-1988 (((-112) $) NIL)) (-1655 (($) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1619 (((-768) $) NIL) (((-768) $ (-768)) NIL)) (-3840 (((-112) $) NIL)) (-2119 (($ $) 119)) (-2347 (($ $ (-564)) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3092 (($ (-564) (-564) $) 137)) (-2472 (($ $ (-918)) 140)) (-3028 (($ (-1 |#1| (-564)) $) 113)) (-2005 (((-112) $) NIL)) (-4245 (($ |#1| (-768)) 16) (($ $ (-1076) (-768)) NIL) (($ $ (-641 (-1076)) (-641 (-768))) NIL)) (-2187 (($ (-1 |#1| |#1|) $) 100)) (-2192 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-1309 (($ $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3672 (($ $) 117)) (-3188 (($ $) 115)) (-1510 (($ (-564) (-564) $) 139)) (-3128 (($ $) 151 (|has| |#1| (-38 (-407 (-564))))) (($ $ (-1170)) 157 (-4030 (-12 (|has| |#1| (-15 -3128 (|#1| |#1| (-1170)))) (|has| |#1| (-15 -4269 ((-641 (-1170)) |#1|))) (|has| |#1| (-38 (-407 (-564))))) (-12 (|has| |#1| (-29 (-564))) (|has| |#1| (-38 (-407 (-564)))) (|has| |#1| (-956)) (|has| |#1| (-1194))))) (($ $ (-1255 |#2|)) 152 (|has| |#1| (-38 (-407 (-564)))))) (-3864 (((-1114) $) NIL)) (-4004 (($ $ (-564) (-564)) 123)) (-3004 (($ $ (-768)) 125)) (-1321 (((-3 $ "failed") $ $) NIL (|has| |#1| (-556)))) (-4118 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2425 (($ $) 121)) (-2416 (((-1150 |#1|) $ |#1|) 102 (|has| |#1| (-15 ** (|#1| |#1| (-768)))))) (-4382 ((|#1| $ (-768)) 97) (($ $ $) 133 (|has| (-768) (-1106)))) (-4117 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) 110 (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) 104 (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $ (-1255 |#2|)) 105)) (-2266 (((-768) $) NIL)) (-2484 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2348 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2462 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2328 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2438 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2309 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2356 (($ $) 127)) (-3742 (((-859) $) NIL) (($ (-564)) 26) (($ (-407 (-564))) 149 (|has| |#1| (-38 (-407 (-564))))) (($ $) NIL (|has| |#1| (-556))) (($ |#1|) 25 (|has| |#1| (-172))) (($ (-1232 |#2| |#1|)) 83) (($ (-1255 |#2|)) 22)) (-3110 (((-1150 |#1|) $) NIL)) (-2856 ((|#1| $ (-768)) 96)) (-4253 (((-3 $ "failed") $) NIL (|has| |#1| (-145)))) (-3270 (((-768)) NIL T CONST)) (-2212 ((|#1| $) 93)) (-2521 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2379 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-3360 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2495 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2358 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2548 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2404 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2305 ((|#1| $ (-768)) 91 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-768)))) (|has| |#1| (-15 -3742 (|#1| (-1170))))))) (-4065 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2415 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2534 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2391 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2507 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-2367 (($ $) NIL (|has| |#1| (-38 (-407 (-564)))))) (-4311 (($) 18 T CONST)) (-4321 (($) 13 T CONST)) (-2124 (($ $ (-641 (-1170)) (-641 (-768))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170) (-768)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-641 (-1170))) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-1170)) NIL (-12 (|has| |#1| (-15 * (|#1| (-768) |#1|))) (|has| |#1| (-897 (-1170))))) (($ $ (-768)) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-768) |#1|))))) (-1705 (((-112) $ $) NIL)) (-1799 (($ $ |#1|) NIL (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) 109)) (-1780 (($ $ $) 20)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL) (($ $ |#1|) 146 (|has| |#1| (-363))) (($ $ $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564)))))) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 108) (($ (-407 (-564)) $) NIL (|has| |#1| (-38 (-407 (-564))))) (($ $ (-407 (-564))) NIL (|has| |#1| (-38 (-407 (-564))))))) +(((-1251 |#1| |#2| |#3|) (-13 (-1250 |#1|) (-10 -8 (-15 -3742 ($ (-1232 |#2| |#1|))) (-15 -3389 ((-1232 |#2| |#1|) $ (-768))) (-15 -3742 ($ (-1255 |#2|))) (-15 -4117 ($ $ (-1255 |#2|))) (-15 -3188 ($ $)) (-15 -3672 ($ $)) (-15 -2119 ($ $)) (-15 -2425 ($ $)) (-15 -4004 ($ $ (-564) (-564))) (-15 -1404 ($ $)) (-15 -3092 ($ (-564) (-564) $)) (-15 -1510 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) (-1046) (-1170) |#1|) (T -1251)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5)))) (-3389 (*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) (-3742 (*1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-4117 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *5 *3))) (-3188 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-3672 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-2119 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-2425 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-4004 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-1404 (*1 *1 *1) (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) (-14 *4 *2))) (-3092 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-1510 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) (-14 *5 *3))) (-3128 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) +(-13 (-1250 |#1|) (-10 -8 (-15 -3742 ($ (-1232 |#2| |#1|))) (-15 -3389 ((-1232 |#2| |#1|) $ (-768))) (-15 -3742 ($ (-1255 |#2|))) (-15 -4117 ($ $ (-1255 |#2|))) (-15 -3188 ($ $)) (-15 -3672 ($ $)) (-15 -2119 ($ $)) (-15 -2425 ($ $)) (-15 -4004 ($ $ (-564) (-564))) (-15 -1404 ($ $)) (-15 -3092 ($ (-564) (-564) $)) (-15 -1510 ($ (-564) (-564) $)) (IF (|has| |#1| (-38 (-407 (-564)))) (-15 -3128 ($ $ (-1255 |#2|))) |%noBranch|))) +((-2940 (((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|))) 24)) (-3439 (((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-2666 (((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|)) 13)) (-2468 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4093 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-2135 ((|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|)) 60)) (-1714 (((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))) 66)) (-1356 ((|#2| |#2| |#2|) 43))) +(((-1252 |#1| |#2|) (-10 -7 (-15 -2666 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -3439 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2940 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -1356 (|#2| |#2| |#2|)) (-15 -4093 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2468 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2135 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -1714 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) (-38 (-407 (-564))) (-1250 |#1|)) (T -1252)) +((-1714 (*1 *2 *3 *4) (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) (-5 *1 (-1252 *5 *6)))) (-2135 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) (-5 *1 (-1252 *5 *2)))) (-2468 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-4093 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) (-4 *4 (-38 (-407 (-564)))))) (-1356 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) (-4 *2 (-1250 *3)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5)))) (-3439 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5)))) (-2666 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5))))) +(-10 -7 (-15 -2666 ((-1 (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2|))) (-15 -3439 ((-1 (-1150 |#1|) (-1150 |#1|) (-1150 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -2940 ((-1 (-1150 |#1|) (-641 (-1150 |#1|))) (-1 |#2| (-641 |#2|)))) (-15 -1356 (|#2| |#2| |#2|)) (-15 -4093 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -2468 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2135 (|#2| (-1 |#2| (-641 |#2|)) (-641 |#1|))) (-15 -1714 ((-641 |#2|) (-641 |#1|) (-641 (-1 |#2| (-641 |#2|)))))) +((-1770 ((|#2| |#4| (-768)) 34)) (-3141 ((|#4| |#2|) 29)) (-3509 ((|#4| (-407 |#2|)) 53 (|has| |#1| (-556)))) (-1552 (((-1 |#4| (-641 |#4|)) |#3|) 46))) +(((-1253 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3141 (|#4| |#2|)) (-15 -1770 (|#2| |#4| (-768))) (-15 -1552 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -3509 (|#4| (-407 |#2|))) |%noBranch|)) (-1046) (-1235 |#1|) (-652 |#2|) (-1250 |#1|)) (T -1253)) +((-3509 (*1 *2 *3) (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) (-4 *4 (-1046)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) (-4 *6 (-652 *5)))) (-1552 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4)))) (-1770 (*1 *2 *3 *4) (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5)))) (-3141 (*1 *2 *3) (-12 (-4 *4 (-1046)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3))))) +(-10 -7 (-15 -3141 (|#4| |#2|)) (-15 -1770 (|#2| |#4| (-768))) (-15 -1552 ((-1 |#4| (-641 |#4|)) |#3|)) (IF (|has| |#1| (-556)) (-15 -3509 (|#4| (-407 |#2|))) |%noBranch|)) +NIL +(((-1254) (-140)) (T -1254)) +NIL +(-13 (-10 -7 (-6 -2276))) +((-3732 (((-112) $ $) NIL)) (-3851 (((-1170)) 12)) (-2217 (((-1152) $) 18)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 11) (((-1170) $) 8)) (-1705 (((-112) $ $) 15))) +(((-1255 |#1|) (-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -3742 ((-1170) $)) (-15 -3851 ((-1170))))) (-1170)) (T -1255)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))) (-3851 (*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))) +(-13 (-1094) (-611 (-1170)) (-10 -8 (-15 -3742 ((-1170) $)) (-15 -3851 ((-1170))))) +((-1515 (($ (-768)) 19)) (-1653 (((-685 |#2|) $ $) 41)) (-2265 ((|#2| $) 51)) (-2395 ((|#2| $) 50)) (-2952 ((|#2| $ $) 36)) (-3987 (($ $ $) 47)) (-1790 (($ $) 23) (($ $ $) 29)) (-1780 (($ $ $) 15)) (* (($ (-564) $) 26) (($ |#2| $) 32) (($ $ |#2|) 31))) +(((-1256 |#1| |#2|) (-10 -8 (-15 -2265 (|#2| |#1|)) (-15 -2395 (|#2| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -1653 ((-685 |#2|) |#1| |#1|)) (-15 -2952 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -1515 (|#1| (-768))) (-15 -1780 (|#1| |#1| |#1|))) (-1257 |#2|) (-1209)) (T -1256)) +NIL +(-10 -8 (-15 -2265 (|#2| |#1|)) (-15 -2395 (|#2| |#1|)) (-15 -3987 (|#1| |#1| |#1|)) (-15 -1653 ((-685 |#2|) |#1| |#1|)) (-15 -2952 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-564) |#1|)) (-15 -1790 (|#1| |#1| |#1|)) (-15 -1790 (|#1| |#1|)) (-15 -1515 (|#1| (-768))) (-15 -1780 (|#1| |#1| |#1|))) +((-3732 (((-112) $ $) 19 (|has| |#1| (-1094)))) (-1515 (($ (-768)) 112 (|has| |#1| (-23)))) (-2645 (((-1264) $ (-564) (-564)) 40 (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) 98) (((-112) $) 92 (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) 89 (|has| $ (-6 -4412))) (($ $) 88 (-12 (|has| |#1| (-847)) (|has| $ (-6 -4412))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) 8)) (-3877 ((|#1| $ (-564) |#1|) 52 (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) 58 (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) 75 (|has| $ (-6 -4411)))) (-2818 (($) 7 T CONST)) (-2797 (($ $) 90 (|has| $ (-6 -4412)))) (-1856 (($ $) 100)) (-1996 (($ $) 78 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-2366 (($ |#1| $) 77 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) (($ (-1 (-112) |#1|) $) 74 (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) 53 (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) 51)) (-3305 (((-564) (-1 (-112) |#1|) $) 97) (((-564) |#1| $) 96 (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) 95 (|has| |#1| (-1094)))) (-3616 (((-641 |#1|) $) 30 (|has| $ (-6 -4411)))) (-1653 (((-685 |#1|) $ $) 105 (|has| |#1| (-1046)))) (-3619 (($ (-768) |#1|) 69)) (-2275 (((-112) $ (-768)) 9)) (-2029 (((-564) $) 43 (|has| (-564) (-847)))) (-2799 (($ $ $) 87 (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) 29 (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) 27 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-3774 (((-564) $) 44 (|has| (-564) (-847)))) (-2848 (($ $ $) 86 (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2265 ((|#1| $) 102 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-1500 (((-112) $ (-768)) 10)) (-2395 ((|#1| $) 103 (-12 (|has| |#1| (-1046)) (|has| |#1| (-999))))) (-2217 (((-1152) $) 22 (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) 60) (($ $ $ (-564)) 59)) (-2312 (((-641 (-564)) $) 46)) (-4062 (((-112) (-564) $) 47)) (-3864 (((-1114) $) 21 (|has| |#1| (-1094)))) (-1966 ((|#1| $) 42 (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) 71)) (-3099 (($ $ |#1|) 41 (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) 32 (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) 26 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) 25 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) 23 (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) 14)) (-2772 (((-112) |#1| $) 45 (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) 48)) (-4003 (((-112) $) 11)) (-3434 (($) 12)) (-4382 ((|#1| $ (-564) |#1|) 50) ((|#1| $ (-564)) 49) (($ $ (-1226 (-564))) 63)) (-2952 ((|#1| $ $) 106 (|has| |#1| (-1046)))) (-2004 (($ $ (-564)) 62) (($ $ (-1226 (-564))) 61)) (-3987 (($ $ $) 104 (|has| |#1| (-1046)))) (-3873 (((-768) (-1 (-112) |#1|) $) 31 (|has| $ (-6 -4411))) (((-768) |#1| $) 28 (-12 (|has| |#1| (-1094)) (|has| $ (-6 -4411))))) (-1999 (($ $ $ (-564)) 91 (|has| $ (-6 -4412)))) (-3896 (($ $) 13)) (-2235 (((-536) $) 79 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 70)) (-1802 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-641 $)) 65)) (-3742 (((-859) $) 18 (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) 33 (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) 84 (|has| |#1| (-847)))) (-1731 (((-112) $ $) 83 (|has| |#1| (-847)))) (-1705 (((-112) $ $) 20 (|has| |#1| (-1094)))) (-1741 (((-112) $ $) 85 (|has| |#1| (-847)))) (-1723 (((-112) $ $) 82 (|has| |#1| (-847)))) (-1790 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-1780 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-564) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-723))) (($ $ |#1|) 107 (|has| |#1| (-723)))) (-2641 (((-768) $) 6 (|has| $ (-6 -4411))))) +(((-1257 |#1|) (-140) (-1209)) (T -1257)) +((-1780 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25)))) (-1515 (*1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209)))) (-1790 (*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (-1790 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) (-2952 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (-1653 (*1 *2 *1 *1) (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1046)) (-5 *2 (-685 *3)))) (-3987 (*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) (-2395 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) (-4 *2 (-1046)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) (-4 *2 (-1046))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -1780 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1515 ($ (-768))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -1790 ($ $)) (-15 -1790 ($ $ $)) (-15 * ($ (-564) $))) |%noBranch|) (IF (|has| |t#1| (-723)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1046)) (PROGN (-15 -2952 (|t#1| $ $)) (-15 -1653 ((-685 |t#1|) $ $)) (-15 -3987 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-999)) (IF (|has| |t#1| (-1046)) (PROGN (-15 -2395 (|t#1| $)) (-15 -2265 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-611 (-859)) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847)) (|has| |#1| (-611 (-859)))) ((-151 |#1|) . T) ((-612 (-536)) |has| |#1| (-612 (-536))) ((-286 #0=(-564) |#1|) . T) ((-288 #0# |#1|) . T) ((-309 |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-373 |#1|) . T) ((-489 |#1|) . T) ((-602 #0# |#1|) . T) ((-514 |#1| |#1|) -12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))) ((-647 |#1|) . T) ((-19 |#1|) . T) ((-847) |has| |#1| (-847)) ((-1094) -4030 (|has| |#1| (-1094)) (|has| |#1| (-847))) ((-1209) . T)) +((-1525 (((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 13)) (-1699 ((|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|) 15)) (-2187 (((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)) 30) (((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|)) 18))) +(((-1258 |#1| |#2|) (-10 -7 (-15 -1525 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -1699 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -2187 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -2187 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) (-1209) (-1209)) (T -1258)) +((-2187 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) (-1699 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2)))) (-1525 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209)) (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5))))) +(-10 -7 (-15 -1525 ((-1259 |#2|) (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -1699 (|#2| (-1 |#2| |#1| |#2|) (-1259 |#1|) |#2|)) (-15 -2187 ((-1259 |#2|) (-1 |#2| |#1|) (-1259 |#1|))) (-15 -2187 ((-3 (-1259 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1259 |#1|)))) +((-3732 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1515 (($ (-768)) NIL (|has| |#1| (-23)))) (-3970 (($ (-641 |#1|)) 11)) (-2645 (((-1264) $ (-564) (-564)) NIL (|has| $ (-6 -4412)))) (-1445 (((-112) (-1 (-112) |#1| |#1|) $) NIL) (((-112) $) NIL (|has| |#1| (-847)))) (-2402 (($ (-1 (-112) |#1| |#1|) $) NIL (|has| $ (-6 -4412))) (($ $) NIL (-12 (|has| $ (-6 -4412)) (|has| |#1| (-847))))) (-2777 (($ (-1 (-112) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-847)))) (-2969 (((-112) $ (-768)) NIL)) (-3877 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412))) ((|#1| $ (-1226 (-564)) |#1|) NIL (|has| $ (-6 -4412)))) (-3548 (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2818 (($) NIL T CONST)) (-2797 (($ $) NIL (|has| $ (-6 -4412)))) (-1856 (($ $) NIL)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2366 (($ |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) (($ (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1699 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4411))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4411)))) (-2619 ((|#1| $ (-564) |#1|) NIL (|has| $ (-6 -4412)))) (-2540 ((|#1| $ (-564)) NIL)) (-3305 (((-564) (-1 (-112) |#1|) $) NIL) (((-564) |#1| $) NIL (|has| |#1| (-1094))) (((-564) |#1| $ (-564)) NIL (|has| |#1| (-1094)))) (-3616 (((-641 |#1|) $) 15 (|has| $ (-6 -4411)))) (-1653 (((-685 |#1|) $ $) NIL (|has| |#1| (-1046)))) (-3619 (($ (-768) |#1|) NIL)) (-2275 (((-112) $ (-768)) NIL)) (-2029 (((-564) $) NIL (|has| (-564) (-847)))) (-2799 (($ $ $) NIL (|has| |#1| (-847)))) (-2164 (($ (-1 (-112) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-847)))) (-1386 (((-641 |#1|) $) NIL (|has| $ (-6 -4411)))) (-2431 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-3774 (((-564) $) NIL (|has| (-564) (-847)))) (-2848 (($ $ $) NIL (|has| |#1| (-847)))) (-2606 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2265 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-1500 (((-112) $ (-768)) NIL)) (-2395 ((|#1| $) NIL (-12 (|has| |#1| (-999)) (|has| |#1| (-1046))))) (-2217 (((-1152) $) NIL (|has| |#1| (-1094)))) (-2308 (($ |#1| $ (-564)) NIL) (($ $ $ (-564)) NIL)) (-2312 (((-641 (-564)) $) NIL)) (-4062 (((-112) (-564) $) NIL)) (-3864 (((-1114) $) NIL (|has| |#1| (-1094)))) (-1966 ((|#1| $) NIL (|has| (-564) (-847)))) (-3582 (((-3 |#1| "failed") (-1 (-112) |#1|) $) NIL)) (-3099 (($ $ |#1|) NIL (|has| $ (-6 -4412)))) (-3736 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 (-294 |#1|))) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-294 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094)))) (($ $ (-641 |#1|) (-641 |#1|)) NIL (-12 (|has| |#1| (-309 |#1|)) (|has| |#1| (-1094))))) (-1717 (((-112) $ $) NIL)) (-2772 (((-112) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-2572 (((-641 |#1|) $) NIL)) (-4003 (((-112) $) NIL)) (-3434 (($) NIL)) (-4382 ((|#1| $ (-564) |#1|) NIL) ((|#1| $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-2952 ((|#1| $ $) NIL (|has| |#1| (-1046)))) (-2004 (($ $ (-564)) NIL) (($ $ (-1226 (-564))) NIL)) (-3987 (($ $ $) NIL (|has| |#1| (-1046)))) (-3873 (((-768) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411))) (((-768) |#1| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#1| (-1094))))) (-1999 (($ $ $ (-564)) NIL (|has| $ (-6 -4412)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) 19 (|has| |#1| (-612 (-536))))) (-3753 (($ (-641 |#1|)) 10)) (-1802 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-641 $)) NIL)) (-3742 (((-859) $) NIL (|has| |#1| (-611 (-859))))) (-1417 (((-112) (-1 (-112) |#1|) $) NIL (|has| $ (-6 -4411)))) (-1751 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1731 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1705 (((-112) $ $) NIL (|has| |#1| (-1094)))) (-1741 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1723 (((-112) $ $) NIL (|has| |#1| (-847)))) (-1790 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-1780 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-564) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-723))) (($ $ |#1|) NIL (|has| |#1| (-723)))) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1259 |#1|) (-13 (-1257 |#1|) (-10 -8 (-15 -3970 ($ (-641 |#1|))))) (-1209)) (T -1259)) +((-3970 (*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3))))) +(-13 (-1257 |#1|) (-10 -8 (-15 -3970 ($ (-641 |#1|))))) +((-3732 (((-112) $ $) NIL)) (-1493 (((-1152) $ (-1152)) 109) (((-1152) $ (-1152) (-1152)) 107) (((-1152) $ (-1152) (-641 (-1152))) 106)) (-3744 (($) 69)) (-3245 (((-1264) $ (-468) (-918)) 54)) (-4371 (((-1264) $ (-918) (-1152)) 91) (((-1264) $ (-918) (-871)) 92)) (-1974 (((-1264) $ (-918) (-379) (-379)) 57)) (-2612 (((-1264) $ (-1152)) 86)) (-3787 (((-1264) $ (-918) (-1152)) 96)) (-4231 (((-1264) $ (-918) (-379) (-379)) 58)) (-3320 (((-1264) $ (-918) (-918)) 55)) (-1472 (((-1264) $) 87)) (-1599 (((-1264) $ (-918) (-1152)) 95)) (-3949 (((-1264) $ (-468) (-918)) 40)) (-3132 (((-1264) $ (-918) (-1152)) 94)) (-3933 (((-641 (-263)) $) 29) (($ $ (-641 (-263))) 30)) (-1994 (((-1264) $ (-768) (-768)) 52)) (-3703 (($ $) 71) (($ (-468) (-641 (-263))) 72)) (-2217 (((-1152) $) NIL)) (-1327 (((-564) $) 47)) (-3864 (((-1114) $) NIL)) (-2450 (((-1259 (-3 (-468) "undefined")) $) 46)) (-2232 (((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3132 (-564)) (|:| -2871 (-564)) (|:| |spline| (-564)) (|:| -1671 (-564)) (|:| |axesColor| (-871)) (|:| -4371 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $) 45)) (-3965 (((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564)) 85)) (-3301 (((-641 (-940 (-225))) $) NIL)) (-2227 (((-468) $ (-918)) 42)) (-1612 (((-1264) $ (-768) (-768) (-918) (-918)) 50)) (-3106 (((-1264) $ (-1152)) 97)) (-2871 (((-1264) $ (-918) (-1152)) 93)) (-3742 (((-859) $) 104)) (-3566 (((-1264) $) 98)) (-1671 (((-1264) $ (-918) (-1152)) 89) (((-1264) $ (-918) (-871)) 90)) (-1705 (((-112) $ $) NIL))) +(((-1260) (-13 (-1094) (-10 -8 (-15 -3301 ((-641 (-940 (-225))) $)) (-15 -3744 ($)) (-15 -3703 ($ $)) (-15 -3933 ((-641 (-263)) $)) (-15 -3933 ($ $ (-641 (-263)))) (-15 -3703 ($ (-468) (-641 (-263)))) (-15 -3965 ((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564))) (-15 -2232 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3132 (-564)) (|:| -2871 (-564)) (|:| |spline| (-564)) (|:| -1671 (-564)) (|:| |axesColor| (-871)) (|:| -4371 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $)) (-15 -2450 ((-1259 (-3 (-468) "undefined")) $)) (-15 -2612 ((-1264) $ (-1152))) (-15 -3949 ((-1264) $ (-468) (-918))) (-15 -2227 ((-468) $ (-918))) (-15 -1671 ((-1264) $ (-918) (-1152))) (-15 -1671 ((-1264) $ (-918) (-871))) (-15 -4371 ((-1264) $ (-918) (-1152))) (-15 -4371 ((-1264) $ (-918) (-871))) (-15 -3132 ((-1264) $ (-918) (-1152))) (-15 -1599 ((-1264) $ (-918) (-1152))) (-15 -2871 ((-1264) $ (-918) (-1152))) (-15 -3106 ((-1264) $ (-1152))) (-15 -3566 ((-1264) $)) (-15 -1612 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -4231 ((-1264) $ (-918) (-379) (-379))) (-15 -1974 ((-1264) $ (-918) (-379) (-379))) (-15 -3787 ((-1264) $ (-918) (-1152))) (-15 -1994 ((-1264) $ (-768) (-768))) (-15 -3245 ((-1264) $ (-468) (-918))) (-15 -3320 ((-1264) $ (-918) (-918))) (-15 -1493 ((-1152) $ (-1152))) (-15 -1493 ((-1152) $ (-1152) (-1152))) (-15 -1493 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -1472 ((-1264) $)) (-15 -1327 ((-564) $)) (-15 -3742 ((-859) $))))) (T -1260)) +((-3742 (*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1260)))) (-3301 (*1 *2 *1) (-12 (-5 *2 (-641 (-940 (-225)))) (-5 *1 (-1260)))) (-3744 (*1 *1) (-5 *1 (-1260))) (-3703 (*1 *1 *1) (-5 *1 (-1260))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) (-3703 (*1 *1 *2 *3) (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) (-3965 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-918)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2232 (*1 *2 *1) (-12 (-5 *2 (-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3132 (-564)) (|:| -2871 (-564)) (|:| |spline| (-564)) (|:| -1671 (-564)) (|:| |axesColor| (-871)) (|:| -4371 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564))))) (-5 *1 (-1260)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3949 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2227 (*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-5 *2 (-468)) (-5 *1 (-1260)))) (-1671 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1671 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4371 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4371 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3132 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1599 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-2871 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1612 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-4231 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1974 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3787 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1994 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3245 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-3320 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1493 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-1493 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) (-1493 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260))))) +(-13 (-1094) (-10 -8 (-15 -3301 ((-641 (-940 (-225))) $)) (-15 -3744 ($)) (-15 -3703 ($ $)) (-15 -3933 ((-641 (-263)) $)) (-15 -3933 ($ $ (-641 (-263)))) (-15 -3703 ($ (-468) (-641 (-263)))) (-15 -3965 ((-1264) $ (-918) (-225) (-225) (-225) (-225) (-564) (-564) (-564) (-564) (-871) (-564) (-871) (-564))) (-15 -2232 ((-1259 (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3132 (-564)) (|:| -2871 (-564)) (|:| |spline| (-564)) (|:| -1671 (-564)) (|:| |axesColor| (-871)) (|:| -4371 (-564)) (|:| |unitsColor| (-871)) (|:| |showing| (-564)))) $)) (-15 -2450 ((-1259 (-3 (-468) "undefined")) $)) (-15 -2612 ((-1264) $ (-1152))) (-15 -3949 ((-1264) $ (-468) (-918))) (-15 -2227 ((-468) $ (-918))) (-15 -1671 ((-1264) $ (-918) (-1152))) (-15 -1671 ((-1264) $ (-918) (-871))) (-15 -4371 ((-1264) $ (-918) (-1152))) (-15 -4371 ((-1264) $ (-918) (-871))) (-15 -3132 ((-1264) $ (-918) (-1152))) (-15 -1599 ((-1264) $ (-918) (-1152))) (-15 -2871 ((-1264) $ (-918) (-1152))) (-15 -3106 ((-1264) $ (-1152))) (-15 -3566 ((-1264) $)) (-15 -1612 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -4231 ((-1264) $ (-918) (-379) (-379))) (-15 -1974 ((-1264) $ (-918) (-379) (-379))) (-15 -3787 ((-1264) $ (-918) (-1152))) (-15 -1994 ((-1264) $ (-768) (-768))) (-15 -3245 ((-1264) $ (-468) (-918))) (-15 -3320 ((-1264) $ (-918) (-918))) (-15 -1493 ((-1152) $ (-1152))) (-15 -1493 ((-1152) $ (-1152) (-1152))) (-15 -1493 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -1472 ((-1264) $)) (-15 -1327 ((-564) $)) (-15 -3742 ((-859) $)))) +((-3732 (((-112) $ $) NIL)) (-2590 (((-1264) $ (-379)) 172) (((-1264) $ (-379) (-379) (-379)) 173)) (-1493 (((-1152) $ (-1152)) 180) (((-1152) $ (-1152) (-1152)) 178) (((-1152) $ (-1152) (-641 (-1152))) 177)) (-4259 (($) 67)) (-2908 (((-1264) $ (-379) (-379) (-379) (-379) (-379)) 144) (((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $) 142) (((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) 143) (((-1264) $ (-564) (-564) (-379) (-379) (-379)) 147) (((-1264) $ (-379) (-379)) 148) (((-1264) $ (-379) (-379) (-379)) 155)) (-4134 (((-379)) 125) (((-379) (-379)) 126)) (-3867 (((-379)) 120) (((-379) (-379)) 122)) (-2598 (((-379)) 123) (((-379) (-379)) 124)) (-2768 (((-379)) 129) (((-379) (-379)) 130)) (-1413 (((-379)) 127) (((-379) (-379)) 128)) (-1974 (((-1264) $ (-379) (-379)) 174)) (-2612 (((-1264) $ (-1152)) 156)) (-3388 (((-1127 (-225)) $) 68) (($ $ (-1127 (-225))) 69)) (-3203 (((-1264) $ (-1152)) 188)) (-3754 (((-1264) $ (-1152)) 189)) (-2222 (((-1264) $ (-379) (-379)) 154) (((-1264) $ (-564) (-564)) 171)) (-3320 (((-1264) $ (-918) (-918)) 163)) (-1472 (((-1264) $) 140)) (-1863 (((-1264) $ (-1152)) 187)) (-3524 (((-1264) $ (-1152)) 137)) (-3933 (((-641 (-263)) $) 70) (($ $ (-641 (-263))) 71)) (-1994 (((-1264) $ (-768) (-768)) 162)) (-3757 (((-1264) $ (-768) (-940 (-225))) 194)) (-1371 (($ $) 73) (($ (-1127 (-225)) (-1152)) 74) (($ (-1127 (-225)) (-641 (-263))) 75)) (-3059 (((-1264) $ (-379) (-379) (-379)) 134)) (-2217 (((-1152) $) NIL)) (-1327 (((-564) $) 131)) (-1390 (((-1264) $ (-379)) 175)) (-3718 (((-1264) $ (-379)) 192)) (-3864 (((-1114) $) NIL)) (-3507 (((-1264) $ (-379)) 191)) (-3855 (((-1264) $ (-1152)) 139)) (-1612 (((-1264) $ (-768) (-768) (-918) (-918)) 161)) (-1927 (((-1264) $ (-1152)) 136)) (-3106 (((-1264) $ (-1152)) 138)) (-2885 (((-1264) $ (-157) (-157)) 160)) (-3742 (((-859) $) 169)) (-3566 (((-1264) $) 141)) (-3329 (((-1264) $ (-1152)) 190)) (-1671 (((-1264) $ (-1152)) 135)) (-1705 (((-112) $ $) NIL))) +(((-1261) (-13 (-1094) (-10 -8 (-15 -3867 ((-379))) (-15 -3867 ((-379) (-379))) (-15 -2598 ((-379))) (-15 -2598 ((-379) (-379))) (-15 -4134 ((-379))) (-15 -4134 ((-379) (-379))) (-15 -1413 ((-379))) (-15 -1413 ((-379) (-379))) (-15 -2768 ((-379))) (-15 -2768 ((-379) (-379))) (-15 -4259 ($)) (-15 -1371 ($ $)) (-15 -1371 ($ (-1127 (-225)) (-1152))) (-15 -1371 ($ (-1127 (-225)) (-641 (-263)))) (-15 -3388 ((-1127 (-225)) $)) (-15 -3388 ($ $ (-1127 (-225)))) (-15 -3757 ((-1264) $ (-768) (-940 (-225)))) (-15 -3933 ((-641 (-263)) $)) (-15 -3933 ($ $ (-641 (-263)))) (-15 -1994 ((-1264) $ (-768) (-768))) (-15 -3320 ((-1264) $ (-918) (-918))) (-15 -2612 ((-1264) $ (-1152))) (-15 -1612 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -2908 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -2908 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2908 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2908 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -2908 ((-1264) $ (-379) (-379))) (-15 -2908 ((-1264) $ (-379) (-379) (-379))) (-15 -3106 ((-1264) $ (-1152))) (-15 -1671 ((-1264) $ (-1152))) (-15 -1927 ((-1264) $ (-1152))) (-15 -3524 ((-1264) $ (-1152))) (-15 -3855 ((-1264) $ (-1152))) (-15 -2222 ((-1264) $ (-379) (-379))) (-15 -2222 ((-1264) $ (-564) (-564))) (-15 -2590 ((-1264) $ (-379))) (-15 -2590 ((-1264) $ (-379) (-379) (-379))) (-15 -1974 ((-1264) $ (-379) (-379))) (-15 -1863 ((-1264) $ (-1152))) (-15 -3507 ((-1264) $ (-379))) (-15 -3718 ((-1264) $ (-379))) (-15 -3203 ((-1264) $ (-1152))) (-15 -3754 ((-1264) $ (-1152))) (-15 -3329 ((-1264) $ (-1152))) (-15 -3059 ((-1264) $ (-379) (-379) (-379))) (-15 -1390 ((-1264) $ (-379))) (-15 -1472 ((-1264) $)) (-15 -2885 ((-1264) $ (-157) (-157))) (-15 -1493 ((-1152) $ (-1152))) (-15 -1493 ((-1152) $ (-1152) (-1152))) (-15 -1493 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3566 ((-1264) $)) (-15 -1327 ((-564) $))))) (T -1261)) +((-3867 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-3867 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2598 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2598 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-4134 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-4134 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1413 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-1413 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2768 (*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) (-4259 (*1 *1) (-5 *1 (-1261))) (-1371 (*1 *1 *1) (-5 *1 (-1261))) (-1371 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) (-1371 (*1 *1 *2 *3) (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) (-3388 (*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-3388 (*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) (-3757 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-768)) (-5 *4 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3933 (*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-3933 (*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) (-1994 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3320 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2612 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1612 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2908 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *1 (-1261)))) (-2908 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2908 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2908 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2908 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3106 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1671 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1927 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3524 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3855 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2222 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2222 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2590 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2590 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1974 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1863 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3507 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3718 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3203 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3754 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3329 (*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-3059 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1390 (*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-2885 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1493 (*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-1493 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) (-1493 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261)))) (-3566 (*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261)))) (-1327 (*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261))))) +(-13 (-1094) (-10 -8 (-15 -3867 ((-379))) (-15 -3867 ((-379) (-379))) (-15 -2598 ((-379))) (-15 -2598 ((-379) (-379))) (-15 -4134 ((-379))) (-15 -4134 ((-379) (-379))) (-15 -1413 ((-379))) (-15 -1413 ((-379) (-379))) (-15 -2768 ((-379))) (-15 -2768 ((-379) (-379))) (-15 -4259 ($)) (-15 -1371 ($ $)) (-15 -1371 ($ (-1127 (-225)) (-1152))) (-15 -1371 ($ (-1127 (-225)) (-641 (-263)))) (-15 -3388 ((-1127 (-225)) $)) (-15 -3388 ($ $ (-1127 (-225)))) (-15 -3757 ((-1264) $ (-768) (-940 (-225)))) (-15 -3933 ((-641 (-263)) $)) (-15 -3933 ($ $ (-641 (-263)))) (-15 -1994 ((-1264) $ (-768) (-768))) (-15 -3320 ((-1264) $ (-918) (-918))) (-15 -2612 ((-1264) $ (-1152))) (-15 -1612 ((-1264) $ (-768) (-768) (-918) (-918))) (-15 -2908 ((-1264) $ (-379) (-379) (-379) (-379) (-379))) (-15 -2908 ((-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))) $)) (-15 -2908 ((-1264) $ (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) (|:| |deltaX| (-225)) (|:| |deltaY| (-225))))) (-15 -2908 ((-1264) $ (-564) (-564) (-379) (-379) (-379))) (-15 -2908 ((-1264) $ (-379) (-379))) (-15 -2908 ((-1264) $ (-379) (-379) (-379))) (-15 -3106 ((-1264) $ (-1152))) (-15 -1671 ((-1264) $ (-1152))) (-15 -1927 ((-1264) $ (-1152))) (-15 -3524 ((-1264) $ (-1152))) (-15 -3855 ((-1264) $ (-1152))) (-15 -2222 ((-1264) $ (-379) (-379))) (-15 -2222 ((-1264) $ (-564) (-564))) (-15 -2590 ((-1264) $ (-379))) (-15 -2590 ((-1264) $ (-379) (-379) (-379))) (-15 -1974 ((-1264) $ (-379) (-379))) (-15 -1863 ((-1264) $ (-1152))) (-15 -3507 ((-1264) $ (-379))) (-15 -3718 ((-1264) $ (-379))) (-15 -3203 ((-1264) $ (-1152))) (-15 -3754 ((-1264) $ (-1152))) (-15 -3329 ((-1264) $ (-1152))) (-15 -3059 ((-1264) $ (-379) (-379) (-379))) (-15 -1390 ((-1264) $ (-379))) (-15 -1472 ((-1264) $)) (-15 -2885 ((-1264) $ (-157) (-157))) (-15 -1493 ((-1152) $ (-1152))) (-15 -1493 ((-1152) $ (-1152) (-1152))) (-15 -1493 ((-1152) $ (-1152) (-641 (-1152)))) (-15 -3566 ((-1264) $)) (-15 -1327 ((-564) $)))) +((-1592 (((-641 (-1152)) (-641 (-1152))) 104) (((-641 (-1152))) 96)) (-3134 (((-641 (-1152))) 94)) (-4292 (((-641 (-918)) (-641 (-918))) 69) (((-641 (-918))) 64)) (-2923 (((-641 (-768)) (-641 (-768))) 61) (((-641 (-768))) 55)) (-3051 (((-1264)) 71)) (-2204 (((-918) (-918)) 87) (((-918)) 86)) (-2783 (((-918) (-918)) 85) (((-918)) 84)) (-4011 (((-871) (-871)) 81) (((-871)) 80)) (-1656 (((-225)) 91) (((-225) (-379)) 93)) (-1942 (((-918)) 88) (((-918) (-918)) 89)) (-3393 (((-918) (-918)) 83) (((-918)) 82)) (-3361 (((-871) (-871)) 75) (((-871)) 73)) (-2938 (((-871) (-871)) 77) (((-871)) 76)) (-1354 (((-871) (-871)) 79) (((-871)) 78))) +(((-1262) (-10 -7 (-15 -3361 ((-871))) (-15 -3361 ((-871) (-871))) (-15 -2938 ((-871))) (-15 -2938 ((-871) (-871))) (-15 -1354 ((-871))) (-15 -1354 ((-871) (-871))) (-15 -4011 ((-871))) (-15 -4011 ((-871) (-871))) (-15 -3393 ((-918))) (-15 -3393 ((-918) (-918))) (-15 -2923 ((-641 (-768)))) (-15 -2923 ((-641 (-768)) (-641 (-768)))) (-15 -4292 ((-641 (-918)))) (-15 -4292 ((-641 (-918)) (-641 (-918)))) (-15 -3051 ((-1264))) (-15 -1592 ((-641 (-1152)))) (-15 -1592 ((-641 (-1152)) (-641 (-1152)))) (-15 -3134 ((-641 (-1152)))) (-15 -2783 ((-918))) (-15 -2204 ((-918))) (-15 -2783 ((-918) (-918))) (-15 -2204 ((-918) (-918))) (-15 -1942 ((-918) (-918))) (-15 -1942 ((-918))) (-15 -1656 ((-225) (-379))) (-15 -1656 ((-225))))) (T -1262)) +((-1656 (*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) (-1942 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-1942 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2204 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2783 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2204 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-2783 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-3134 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-1592 (*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) (-3051 (*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262)))) (-4292 (*1 *2 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) (-4292 (*1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) (-2923 (*1 *2 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) (-2923 (*1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) (-3393 (*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-3393 (*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) (-4011 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-4011 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-1354 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-1354 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2938 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-2938 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3361 (*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) (-3361 (*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) +(-10 -7 (-15 -3361 ((-871))) (-15 -3361 ((-871) (-871))) (-15 -2938 ((-871))) (-15 -2938 ((-871) (-871))) (-15 -1354 ((-871))) (-15 -1354 ((-871) (-871))) (-15 -4011 ((-871))) (-15 -4011 ((-871) (-871))) (-15 -3393 ((-918))) (-15 -3393 ((-918) (-918))) (-15 -2923 ((-641 (-768)))) (-15 -2923 ((-641 (-768)) (-641 (-768)))) (-15 -4292 ((-641 (-918)))) (-15 -4292 ((-641 (-918)) (-641 (-918)))) (-15 -3051 ((-1264))) (-15 -1592 ((-641 (-1152)))) (-15 -1592 ((-641 (-1152)) (-641 (-1152)))) (-15 -3134 ((-641 (-1152)))) (-15 -2783 ((-918))) (-15 -2204 ((-918))) (-15 -2783 ((-918) (-918))) (-15 -2204 ((-918) (-918))) (-15 -1942 ((-918) (-918))) (-15 -1942 ((-918))) (-15 -1656 ((-225) (-379))) (-15 -1656 ((-225)))) +((-3055 (((-468) (-641 (-641 (-940 (-225)))) (-641 (-263))) 22) (((-468) (-641 (-641 (-940 (-225))))) 21) (((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263))) 20)) (-4389 (((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263))) 33) (((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263))) 32)) (-3742 (((-1260) (-468)) 48))) +(((-1263) (-10 -7 (-15 -3055 ((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -3055 ((-468) (-641 (-641 (-940 (-225)))))) (-15 -3055 ((-468) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -4389 ((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -4389 ((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -3742 ((-1260) (-468))))) (T -1263)) +((-3742 (*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-4389 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-4389 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-1263)))) (-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-468)) (-5 *1 (-1263)))) (-3055 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263))))) +(-10 -7 (-15 -3055 ((-468) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -3055 ((-468) (-641 (-641 (-940 (-225)))))) (-15 -3055 ((-468) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -4389 ((-1260) (-641 (-641 (-940 (-225)))) (-871) (-871) (-918) (-641 (-263)))) (-15 -4389 ((-1260) (-641 (-641 (-940 (-225)))) (-641 (-263)))) (-15 -3742 ((-1260) (-468)))) +((-2966 (($) 7)) (-3742 (((-859) $) 10))) +(((-1264) (-13 (-611 (-859)) (-10 -8 (-15 -2966 ($))))) (T -1264)) +((-2966 (*1 *1) (-5 *1 (-1264)))) +(-13 (-611 (-859)) (-10 -8 (-15 -2966 ($)))) +((-1799 (($ $ |#2|) 10))) +(((-1265 |#1| |#2|) (-10 -8 (-15 -1799 (|#1| |#1| |#2|))) (-1266 |#2|) (-363)) (T -1265)) +NIL +(-10 -8 (-15 -1799 (|#1| |#1| |#2|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3603 (((-134)) 28)) (-3742 (((-859) $) 11)) (-4311 (($) 18 T CONST)) (-1705 (((-112) $ $) 6)) (-1799 (($ $ |#1|) 29)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26))) +(((-1266 |#1|) (-140) (-363)) (T -1266)) +((-1799 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) (-3603 (*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) +(-13 (-714 |t#1|) (-10 -8 (-15 -1799 ($ $ |t#1|)) (-15 -3603 ((-134))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-714 |#1|) . T) ((-1052 |#1|) . T) ((-1094) . T)) +((-2362 (((-641 (-1203 |#1|)) (-1170) (-1203 |#1|)) 83)) (-4210 (((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|))) 63)) (-2125 (((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))) 74)) (-3386 (((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768)) 65)) (-2022 (((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170)) 32)) (-2182 (((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768)) 64))) +(((-1267 |#1|) (-10 -7 (-15 -3386 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -2182 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -4210 ((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|)))) (-15 -2022 ((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170))) (-15 -2362 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -2125 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))))) (-363)) (T -1267)) +((-2125 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-768)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) (-5 *5 (-1150 *4)))) (-2362 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-949 *4)) (-949 *4))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-4210 (*1 *2 *3 *4) (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-949 *5)))) (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-949 *5))))) (-2182 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363)))) (-3386 (*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) (-5 *1 (-1267 *4)) (-4 *4 (-363))))) +(-10 -7 (-15 -3386 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -2182 ((-1 (-1150 (-949 |#1|)) (-1150 (-949 |#1|))) (-768))) (-15 -4210 ((-1150 (-1150 (-949 |#1|))) (-1170) (-1150 (-949 |#1|)))) (-15 -2022 ((-1 (-1166 (-949 |#1|)) (-949 |#1|)) (-1170))) (-15 -2362 ((-641 (-1203 |#1|)) (-1170) (-1203 |#1|))) (-15 -2125 ((-1 (-1150 (-1203 |#1|)) (-1150 (-1203 |#1|))) (-768) (-1203 |#1|) (-1150 (-1203 |#1|))))) +((-2791 (((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|) 85)) (-4054 (((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|)))) 84))) +(((-1268 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4054 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -2791 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) (-349) (-1235 |#1|) (-1235 |#2|) (-409 |#2| |#3|)) (T -1268)) +((-2791 (*1 *2 *3) (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) (-5 *2 (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-685 *3)))) (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5)))) (-4054 (*1 *2) (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) (-5 *2 (-2 (|:| -4265 (-685 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-685 *4)))) (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) +(-10 -7 (-15 -4054 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))))) (-15 -2791 ((-2 (|:| -4265 (-685 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-685 |#2|))) |#2|))) +((-3732 (((-112) $ $) NIL)) (-1645 (((-1129) $) 11)) (-2073 (((-1129) $) 9)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 19) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-1269) (-13 (-1077) (-10 -8 (-15 -2073 ((-1129) $)) (-15 -1645 ((-1129) $))))) (T -1269)) +((-2073 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269)))) (-1645 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) +(-13 (-1077) (-10 -8 (-15 -2073 ((-1129) $)) (-15 -1645 ((-1129) $)))) +((-3732 (((-112) $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4052 (((-1129) $) 9)) (-3742 (((-859) $) 17) (($ (-1175)) NIL) (((-1175) $) NIL)) (-1705 (((-112) $ $) NIL))) +(((-1270) (-13 (-1077) (-10 -8 (-15 -4052 ((-1129) $))))) (T -1270)) +((-4052 (*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270))))) +(-13 (-1077) (-10 -8 (-15 -4052 ((-1129) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 56)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) NIL)) (-3840 (((-112) $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3742 (((-859) $) 79) (($ (-564)) NIL) (($ |#4|) 63) ((|#4| $) 68) (($ |#1|) NIL (|has| |#1| (-172)))) (-3270 (((-768)) NIL T CONST)) (-3722 (((-1264) (-768)) 16)) (-4311 (($) 37 T CONST)) (-4321 (($) 82 T CONST)) (-1705 (((-112) $ $) 85)) (-1799 (((-3 $ "failed") $ $) NIL (|has| |#1| (-363)))) (-1790 (($ $) 87) (($ $ $) NIL)) (-1780 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 89) (($ |#1| $) NIL (|has| |#1| (-172))) (($ $ |#1|) NIL (|has| |#1| (-172))))) +(((-1271 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1046) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1799 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3722 ((-1264) (-768))))) (-1046) (-847) (-790) (-946 |#1| |#3| |#2|) (-641 |#2|) (-641 (-768)) (-768)) (T -1271)) +((-1799 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-847)) (-4 *4 (-790)) (-14 *6 (-641 *3)) (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-946 *2 *4 *3)) (-14 *7 (-641 (-768))) (-14 *8 (-768)))) (-3722 (*1 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) (-14 *8 (-641 *5)) (-5 *2 (-1264)) (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5)) (-14 *9 (-641 *3)) (-14 *10 *3)))) +(-13 (-1046) (-490 |#4|) (-10 -8 (IF (|has| |#1| (-172)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-363)) (-15 -1799 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3722 ((-1264) (-768))))) +((-3732 (((-112) $ $) NIL)) (-3104 (((-641 (-2 (|:| -3566 $) (|:| -1702 (-641 |#4|)))) (-641 |#4|)) NIL)) (-1454 (((-641 $) (-641 |#4|)) 95)) (-4269 (((-641 |#3|) $) NIL)) (-3547 (((-112) $) NIL)) (-4281 (((-112) $) NIL (|has| |#1| (-556)))) (-1968 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2244 ((|#4| |#4| $) NIL)) (-2777 (((-2 (|:| |under| $) (|:| -3014 $) (|:| |upper| $)) $ |#3|) NIL)) (-2969 (((-112) $ (-768)) NIL)) (-3548 (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2818 (($) NIL T CONST)) (-4076 (((-112) $) NIL (|has| |#1| (-556)))) (-2072 (((-112) $ $) NIL (|has| |#1| (-556)))) (-2494 (((-112) $ $) NIL (|has| |#1| (-556)))) (-3791 (((-112) $) NIL (|has| |#1| (-556)))) (-4144 (((-641 |#4|) (-641 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) 30)) (-2868 (((-641 |#4|) (-641 |#4|) $) 27 (|has| |#1| (-556)))) (-1910 (((-641 |#4|) (-641 |#4|) $) NIL (|has| |#1| (-556)))) (-2111 (((-3 $ "failed") (-641 |#4|)) NIL)) (-2239 (($ (-641 |#4|)) NIL)) (-1977 (((-3 $ "failed") $) 77)) (-4263 ((|#4| |#4| $) 82)) (-1996 (($ $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-2366 (($ |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (($ (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-1363 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3116 (((-112) |#4| $ (-1 (-112) |#4| |#4|)) NIL)) (-2920 ((|#4| |#4| $) NIL)) (-1699 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4411))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4411))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-3318 (((-2 (|:| -3566 (-641 |#4|)) (|:| -1702 (-641 |#4|))) $) NIL)) (-3616 (((-641 |#4|) $) NIL (|has| $ (-6 -4411)))) (-1641 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-3782 ((|#3| $) 83)) (-2275 (((-112) $ (-768)) NIL)) (-1386 (((-641 |#4|) $) 31 (|has| $ (-6 -4411)))) (-2431 (((-112) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094))))) (-3710 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 34) (((-3 $ "failed") (-641 |#4|)) 37)) (-2606 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4412)))) (-2187 (($ (-1 |#4| |#4|) $) NIL)) (-3483 (((-641 |#3|) $) NIL)) (-1410 (((-112) |#3| $) NIL)) (-1500 (((-112) $ (-768)) NIL)) (-2217 (((-1152) $) NIL)) (-2389 (((-3 |#4| "failed") $) NIL)) (-4258 (((-641 |#4|) $) 53)) (-1591 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-4266 ((|#4| |#4| $) 81)) (-4179 (((-112) $ $) 92)) (-3088 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-556)))) (-3244 (((-112) |#4| $) NIL) (((-112) $) NIL)) (-2601 ((|#4| |#4| $) NIL)) (-3864 (((-1114) $) NIL)) (-1966 (((-3 |#4| "failed") $) 76)) (-3582 (((-3 |#4| "failed") (-1 (-112) |#4|) $) NIL)) (-3465 (((-3 $ "failed") $ |#4|) NIL)) (-3004 (($ $ |#4|) NIL)) (-3736 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-2416 (($ $ (-641 |#4|) (-641 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-294 |#4|)) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094)))) (($ $ (-641 (-294 |#4|))) NIL (-12 (|has| |#4| (-309 |#4|)) (|has| |#4| (-1094))))) (-1717 (((-112) $ $) NIL)) (-4003 (((-112) $) 74)) (-3434 (($) 45)) (-2266 (((-768) $) NIL)) (-3873 (((-768) |#4| $) NIL (-12 (|has| $ (-6 -4411)) (|has| |#4| (-1094)))) (((-768) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-3896 (($ $) NIL)) (-2235 (((-536) $) NIL (|has| |#4| (-612 (-536))))) (-3753 (($ (-641 |#4|)) NIL)) (-2031 (($ $ |#3|) NIL)) (-2401 (($ $ |#3|) NIL)) (-2158 (($ $) NIL)) (-2624 (($ $ |#3|) NIL)) (-3742 (((-859) $) NIL) (((-641 |#4|) $) 62)) (-1849 (((-768) $) NIL (|has| |#3| (-368)))) (-1998 (((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 43) (((-3 $ "failed") (-641 |#4|)) 44)) (-3490 (((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|)) 72) (((-641 $) (-641 |#4|)) 73)) (-1342 (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4| |#4|)) 26) (((-3 (-2 (|:| |bas| $) (|:| -2519 (-641 |#4|))) "failed") (-641 |#4|) (-1 (-112) |#4|) (-1 (-112) |#4| |#4|)) NIL)) (-1839 (((-112) $ (-1 (-112) |#4| (-641 |#4|))) NIL)) (-1417 (((-112) (-1 (-112) |#4|) $) NIL (|has| $ (-6 -4411)))) (-4126 (((-641 |#3|) $) NIL)) (-2755 (((-112) |#3| $) NIL)) (-1705 (((-112) $ $) NIL)) (-2641 (((-768) $) NIL (|has| $ (-6 -4411))))) +(((-1272 |#1| |#2| |#3| |#4|) (-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3710 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3710 ((-3 $ "failed") (-641 |#4|))) (-15 -1998 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1998 ((-3 $ "failed") (-641 |#4|))) (-15 -3490 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3490 ((-641 $) (-641 |#4|))))) (-556) (-790) (-847) (-1060 |#1| |#2| |#3|)) (T -1272)) +((-3710 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-3710 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-1998 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8)))) (-1998 (*1 *1 *2) (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1272 *3 *4 *5 *6)))) (-3490 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) (-5 *1 (-1272 *6 *7 *8 *9)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) (-5 *1 (-1272 *4 *5 *6 *7))))) +(-13 (-1202 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3710 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3710 ((-3 $ "failed") (-641 |#4|))) (-15 -1998 ((-3 $ "failed") (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1998 ((-3 $ "failed") (-641 |#4|))) (-15 -3490 ((-641 $) (-641 |#4|) (-1 (-112) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3490 ((-641 $) (-641 |#4|))))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3239 (((-3 $ "failed") $ $) 19)) (-2818 (($) 17 T CONST)) (-3951 (((-3 $ "failed") $) 33)) (-3840 (((-112) $) 31)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#1|) 39)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ |#1|) 41) (($ |#1| $) 40))) +(((-1273 |#1|) (-140) (-1046)) (T -1273)) +NIL +(-13 (-1046) (-111 |t#1| |t#1|) (-614 |t#1|) (-10 -7 (IF (|has| |t#1| (-172)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-172)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-611 (-859)) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 |#1|) |has| |#1| (-172)) ((-723) . T) ((-1052 |#1|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T)) +((-3732 (((-112) $ $) 66)) (-4173 (((-112) $) NIL)) (-3491 (((-641 |#1|) $) 52)) (-2525 (($ $ (-768)) 46)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1477 (($ $ (-768)) 24 (|has| |#2| (-172))) (($ $ $) 25 (|has| |#2| (-172)))) (-2818 (($) NIL T CONST)) (-2691 (($ $ $) 69) (($ $ (-816 |#1|)) 55) (($ $ |#1|) 59)) (-2111 (((-3 (-816 |#1|) "failed") $) NIL)) (-2239 (((-816 |#1|) $) NIL)) (-1348 (($ $) 39)) (-3951 (((-3 $ "failed") $) NIL)) (-2959 (((-112) $) NIL)) (-4247 (($ $) NIL)) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-2414 (($ (-816 |#1|) |#2|) 38)) (-3275 (($ $) 40)) (-1475 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 12)) (-3559 (((-816 |#1|) $) NIL)) (-3694 (((-816 |#1|) $) 41)) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-2481 (($ $ $) 68) (($ $ (-816 |#1|)) 57) (($ $ |#1|) 61)) (-1754 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1309 (((-816 |#1|) $) 35)) (-1320 ((|#2| $) 37)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-2266 (((-768) $) 43)) (-1804 (((-112) $) 47)) (-2091 ((|#2| $) NIL)) (-3742 (((-859) $) NIL) (($ (-816 |#1|)) 30) (($ |#1|) 31) (($ |#2|) NIL) (($ (-564)) NIL)) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ (-816 |#1|)) NIL)) (-1762 ((|#2| $ $) 75) ((|#2| $ (-816 |#1|)) NIL)) (-3270 (((-768)) NIL T CONST)) (-4311 (($) 13 T CONST)) (-4321 (($) 19 T CONST)) (-2546 (((-641 (-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1705 (((-112) $ $) 44)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 28)) (** (($ $ (-768)) NIL) (($ $ (-918)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ |#2| $) 27) (($ $ |#2|) 67) (($ |#2| (-816 |#1|)) NIL) (($ |#1| $) 33) (($ $ $) NIL))) +(((-1274 |#1| |#2|) (-13 (-382 |#2| (-816 |#1|)) (-1280 |#1| |#2|)) (-847) (-1046)) (T -1274)) +NIL +(-13 (-382 |#2| (-816 |#1|)) (-1280 |#1| |#2|)) +((-2192 ((|#3| |#3| (-768)) 30)) (-4118 ((|#3| |#3| (-768)) 36)) (-3931 ((|#3| |#3| |#3| (-768)) 37))) +(((-1275 |#1| |#2| |#3|) (-10 -7 (-15 -4118 (|#3| |#3| (-768))) (-15 -2192 (|#3| |#3| (-768))) (-15 -3931 (|#3| |#3| |#3| (-768)))) (-13 (-1046) (-714 (-407 (-564)))) (-847) (-1280 |#2| |#1|)) (T -1275)) +((-3931 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-2192 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) (-4118 (*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))) +(-10 -7 (-15 -4118 (|#3| |#3| (-768))) (-15 -2192 (|#3| |#3| (-768))) (-15 -3931 (|#3| |#3| |#3| (-768)))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3491 (((-641 |#1|) $) 41)) (-3239 (((-3 $ "failed") $ $) 19)) (-1477 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-768)) 43 (|has| |#2| (-172)))) (-2818 (($) 17 T CONST)) (-2691 (($ $ |#1|) 55) (($ $ (-816 |#1|)) 54) (($ $ $) 53)) (-2111 (((-3 (-816 |#1|) "failed") $) 65)) (-2239 (((-816 |#1|) $) 66)) (-3951 (((-3 $ "failed") $) 33)) (-2959 (((-112) $) 46)) (-4247 (($ $) 45)) (-3840 (((-112) $) 31)) (-2005 (((-112) $) 51)) (-2414 (($ (-816 |#1|) |#2|) 52)) (-3275 (($ $) 50)) (-1475 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 61)) (-3559 (((-816 |#1|) $) 62)) (-2187 (($ (-1 |#2| |#2|) $) 42)) (-2481 (($ $ |#1|) 58) (($ $ (-816 |#1|)) 57) (($ $ $) 56)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-1804 (((-112) $) 48)) (-2091 ((|#2| $) 47)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-816 |#1|)) 64) (($ |#1|) 49)) (-1762 ((|#2| $ (-816 |#1|)) 60) ((|#2| $ $) 59)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1276 |#1| |#2|) (-140) (-847) (-1046)) (T -1276)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-3559 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-816 *3)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-2 (|:| |k| (-816 *3)) (|:| |c| *4))))) (-1762 (*1 *2 *1 *3) (-12 (-5 *3 (-816 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-847)) (-4 *2 (-1046)))) (-1762 (*1 *2 *1 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (-2481 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2481 (*1 *1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-2481 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2691 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2691 (*1 *1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-2691 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-2414 (*1 *1 *2 *3) (-12 (-5 *2 (-816 *4)) (-4 *4 (-847)) (-4 *1 (-1276 *4 *3)) (-4 *3 (-1046)))) (-2005 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-3275 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-3742 (*1 *1 *2) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-1804 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-2091 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) (-2959 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-112)))) (-4247 (*1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) (-1477 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)) (-4 *3 (-172)))) (-1477 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-4 *4 (-172)))) (-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-3491 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-641 *3))))) +(-13 (-1046) (-1273 |t#2|) (-1035 (-816 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3559 ((-816 |t#1|) $)) (-15 -1475 ((-2 (|:| |k| (-816 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -1762 (|t#2| $ (-816 |t#1|))) (-15 -1762 (|t#2| $ $)) (-15 -2481 ($ $ |t#1|)) (-15 -2481 ($ $ (-816 |t#1|))) (-15 -2481 ($ $ $)) (-15 -2691 ($ $ |t#1|)) (-15 -2691 ($ $ (-816 |t#1|))) (-15 -2691 ($ $ $)) (-15 -2414 ($ (-816 |t#1|) |t#2|)) (-15 -2005 ((-112) $)) (-15 -3275 ($ $)) (-15 -3742 ($ |t#1|)) (-15 -1804 ((-112) $)) (-15 -2091 (|t#2| $)) (-15 -2959 ((-112) $)) (-15 -4247 ($ $)) (IF (|has| |t#2| (-172)) (PROGN (-15 -1477 ($ $ $)) (-15 -1477 ($ $ (-768)))) |%noBranch|) (-15 -2187 ($ (-1 |t#2| |t#2|) $)) (-15 -3491 ((-641 |t#1|) $)) (IF (|has| |t#2| (-6 -4404)) (-6 -4404) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-816 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-714 |#2|) |has| |#2| (-172)) ((-723) . T) ((-1035 #0#) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T)) +((-4217 (((-112) $) 14)) (-2755 (((-112) $) 13)) (-2578 (($ $) 18) (($ $ (-768)) 20))) +(((-1277 |#1| |#2|) (-10 -8 (-15 -2578 (|#1| |#1| (-768))) (-15 -2578 (|#1| |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -2755 ((-112) |#1|))) (-1278 |#2|) (-363)) (T -1277)) +NIL +(-10 -8 (-15 -2578 (|#1| |#1| (-768))) (-15 -2578 (|#1| |#1|)) (-15 -4217 ((-112) |#1|)) (-15 -2755 ((-112) |#1|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3719 (((-2 (|:| -4176 $) (|:| -4398 $) (|:| |associate| $)) $) 42)) (-1948 (($ $) 41)) (-1832 (((-112) $) 39)) (-4217 (((-112) $) 95)) (-3492 (((-768)) 91)) (-3239 (((-3 $ "failed") $ $) 19)) (-2249 (($ $) 74)) (-3048 (((-418 $) $) 73)) (-2377 (((-112) $ $) 60)) (-2818 (($) 17 T CONST)) (-2111 (((-3 |#1| "failed") $) 102)) (-2239 ((|#1| $) 103)) (-1373 (($ $ $) 56)) (-3951 (((-3 $ "failed") $) 33)) (-1350 (($ $ $) 57)) (-2052 (((-2 (|:| -1762 (-641 $)) (|:| -1693 $)) (-641 $)) 52)) (-3176 (($ $ (-768)) 88 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368)))) (($ $) 87 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-4188 (((-112) $) 72)) (-1619 (((-830 (-918)) $) 85 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3840 (((-112) $) 31)) (-2418 (((-3 (-641 $) "failed") (-641 $) $) 53)) (-2529 (($ $ $) 47) (($ (-641 $)) 46)) (-2217 (((-1152) $) 9)) (-4373 (($ $) 71)) (-3259 (((-112) $) 94)) (-3864 (((-1114) $) 10)) (-4349 (((-1166 $) (-1166 $) (-1166 $)) 45)) (-2577 (($ $ $) 49) (($ (-641 $)) 48)) (-4127 (((-418 $) $) 75)) (-1506 (((-830 (-918))) 92)) (-4302 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1693 $)) $ $) 55) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 54)) (-1321 (((-3 $ "failed") $ $) 43)) (-3678 (((-3 (-641 $) "failed") (-641 $) $) 51)) (-4061 (((-768) $) 59)) (-1318 (((-2 (|:| -1935 $) (|:| -1363 $)) $ $) 58)) (-2819 (((-3 (-768) "failed") $ $) 86 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3603 (((-134)) 100)) (-2266 (((-830 (-918)) $) 93)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ $) 44) (($ (-407 (-564))) 67) (($ |#1|) 101)) (-4253 (((-3 $ "failed") $) 84 (-4030 (|has| |#1| (-145)) (|has| |#1| (-368))))) (-3270 (((-768)) 28 T CONST)) (-3360 (((-112) $ $) 40)) (-2755 (((-112) $) 96)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-2578 (($ $) 90 (|has| |#1| (-368))) (($ $ (-768)) 89 (|has| |#1| (-368)))) (-1705 (((-112) $ $) 6)) (-1799 (($ $ $) 66) (($ $ |#1|) 99)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32) (($ $ (-564)) 70)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ $ (-407 (-564))) 69) (($ (-407 (-564)) $) 68) (($ $ |#1|) 98) (($ |#1| $) 97))) +(((-1278 |#1|) (-140) (-363)) (T -1278)) +((-2755 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-4217 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) (-1506 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) (-3492 (*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-768)))) (-2578 (*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368)))) (-2578 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368))))) +(-13 (-363) (-1035 |t#1|) (-1266 |t#1|) (-10 -8 (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-145)) (-6 (-402)) |%noBranch|) (-15 -2755 ((-112) $)) (-15 -4217 ((-112) $)) (-15 -3259 ((-112) $)) (-15 -2266 ((-830 (-918)) $)) (-15 -1506 ((-830 (-918)))) (-15 -3492 ((-768))) (IF (|has| |t#1| (-368)) (PROGN (-6 (-402)) (-15 -2578 ($ $)) (-15 -2578 ($ $ (-768)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-407 (-564))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-131) . T) ((-145) -4030 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-147) |has| |#1| (-147)) ((-614 #0#) . T) ((-614 (-564)) . T) ((-614 |#1|) . T) ((-614 $) . T) ((-611 (-859)) . T) ((-172) . T) ((-243) . T) ((-290) . T) ((-307) . T) ((-363) . T) ((-402) -4030 (|has| |#1| (-368)) (|has| |#1| (-145))) ((-452) . T) ((-556) . T) ((-644 #0#) . T) ((-644 |#1|) . T) ((-644 $) . T) ((-714 #0#) . T) ((-714 |#1|) . T) ((-714 $) . T) ((-723) . T) ((-917) . T) ((-1035 |#1|) . T) ((-1052 #0#) . T) ((-1052 |#1|) . T) ((-1052 $) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1213) . T) ((-1266 |#1|) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3491 (((-641 |#1|) $) 98)) (-2525 (($ $ (-768)) 102)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1477 (($ $ $) NIL (|has| |#2| (-172))) (($ $ (-768)) NIL (|has| |#2| (-172)))) (-2818 (($) NIL T CONST)) (-2691 (($ $ |#1|) NIL) (($ $ (-816 |#1|)) NIL) (($ $ $) NIL)) (-2111 (((-3 (-816 |#1|) "failed") $) NIL) (((-3 (-890 |#1|) "failed") $) NIL)) (-2239 (((-816 |#1|) $) NIL) (((-890 |#1|) $) NIL)) (-1348 (($ $) 101)) (-3951 (((-3 $ "failed") $) NIL)) (-2959 (((-112) $) 90)) (-4247 (($ $) 93)) (-3431 (($ $ $ (-768)) 103)) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-2414 (($ (-816 |#1|) |#2|) NIL) (($ (-890 |#1|) |#2|) 28)) (-3275 (($ $) 120)) (-1475 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3559 (((-816 |#1|) $) NIL)) (-3694 (((-816 |#1|) $) NIL)) (-2187 (($ (-1 |#2| |#2|) $) NIL)) (-2481 (($ $ |#1|) NIL) (($ $ (-816 |#1|)) NIL) (($ $ $) NIL)) (-2192 (($ $ (-768)) 113 (|has| |#2| (-714 (-407 (-564)))))) (-1754 (((-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|)) $) NIL)) (-1309 (((-890 |#1|) $) 83)) (-1320 ((|#2| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-4118 (($ $ (-768)) 110 (|has| |#2| (-714 (-407 (-564)))))) (-2266 (((-768) $) 99)) (-1804 (((-112) $) 84)) (-2091 ((|#2| $) 88)) (-3742 (((-859) $) 69) (($ (-564)) NIL) (($ |#2|) 59) (($ (-816 |#1|)) NIL) (($ |#1|) 71) (($ (-890 |#1|)) NIL) (($ (-660 |#1| |#2|)) 47) (((-1274 |#1| |#2|) $) 76) (((-1283 |#1| |#2|) $) 81)) (-3110 (((-641 |#2|) $) NIL)) (-2856 ((|#2| $ (-890 |#1|)) NIL)) (-1762 ((|#2| $ (-816 |#1|)) NIL) ((|#2| $ $) NIL)) (-3270 (((-768)) NIL T CONST)) (-4311 (($) 21 T CONST)) (-4321 (($) 27 T CONST)) (-2546 (((-641 (-2 (|:| |k| (-890 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2313 (((-3 (-660 |#1| |#2|) "failed") $) 119)) (-1705 (((-112) $ $) 77)) (-1790 (($ $) 112) (($ $ $) 111)) (-1780 (($ $ $) 20)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 48) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-890 |#1|)) NIL))) +(((-1279 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-382 |#2| (-890 |#1|)) (-10 -8 (-15 -3742 ($ (-660 |#1| |#2|))) (-15 -3742 ((-1274 |#1| |#2|) $)) (-15 -3742 ((-1283 |#1| |#2|) $)) (-15 -2313 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -3431 ($ $ $ (-768))) (IF (|has| |#2| (-714 (-407 (-564)))) (PROGN (-15 -4118 ($ $ (-768))) (-15 -2192 ($ $ (-768)))) |%noBranch|))) (-847) (-172)) (T -1279)) +((-3742 (*1 *1 *2) (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) (-5 *1 (-1279 *3 *4)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-2313 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-3431 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)))) (-4118 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172)))) (-2192 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172))))) +(-13 (-1280 |#1| |#2|) (-382 |#2| (-890 |#1|)) (-10 -8 (-15 -3742 ($ (-660 |#1| |#2|))) (-15 -3742 ((-1274 |#1| |#2|) $)) (-15 -3742 ((-1283 |#1| |#2|) $)) (-15 -2313 ((-3 (-660 |#1| |#2|) "failed") $)) (-15 -3431 ($ $ $ (-768))) (IF (|has| |#2| (-714 (-407 (-564)))) (PROGN (-15 -4118 ($ $ (-768))) (-15 -2192 ($ $ (-768)))) |%noBranch|))) +((-3732 (((-112) $ $) 7)) (-4173 (((-112) $) 16)) (-3491 (((-641 |#1|) $) 41)) (-2525 (($ $ (-768)) 74)) (-3239 (((-3 $ "failed") $ $) 19)) (-1477 (($ $ $) 44 (|has| |#2| (-172))) (($ $ (-768)) 43 (|has| |#2| (-172)))) (-2818 (($) 17 T CONST)) (-2691 (($ $ |#1|) 55) (($ $ (-816 |#1|)) 54) (($ $ $) 53)) (-2111 (((-3 (-816 |#1|) "failed") $) 65)) (-2239 (((-816 |#1|) $) 66)) (-3951 (((-3 $ "failed") $) 33)) (-2959 (((-112) $) 46)) (-4247 (($ $) 45)) (-3840 (((-112) $) 31)) (-2005 (((-112) $) 51)) (-2414 (($ (-816 |#1|) |#2|) 52)) (-3275 (($ $) 50)) (-1475 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) 61)) (-3559 (((-816 |#1|) $) 62)) (-3694 (((-816 |#1|) $) 76)) (-2187 (($ (-1 |#2| |#2|) $) 42)) (-2481 (($ $ |#1|) 58) (($ $ (-816 |#1|)) 57) (($ $ $) 56)) (-2217 (((-1152) $) 9)) (-3864 (((-1114) $) 10)) (-2266 (((-768) $) 75)) (-1804 (((-112) $) 48)) (-2091 ((|#2| $) 47)) (-3742 (((-859) $) 11) (($ (-564)) 29) (($ |#2|) 69) (($ (-816 |#1|)) 64) (($ |#1|) 49)) (-1762 ((|#2| $ (-816 |#1|)) 60) ((|#2| $ $) 59)) (-3270 (((-768)) 28 T CONST)) (-4311 (($) 18 T CONST)) (-4321 (($) 30 T CONST)) (-1705 (((-112) $ $) 6)) (-1790 (($ $) 22) (($ $ $) 21)) (-1780 (($ $ $) 14)) (** (($ $ (-918)) 25) (($ $ (-768)) 32)) (* (($ (-918) $) 13) (($ (-768) $) 15) (($ (-564) $) 20) (($ $ $) 24) (($ |#2| $) 68) (($ $ |#2|) 67) (($ |#1| $) 63))) +(((-1280 |#1| |#2|) (-140) (-847) (-1046)) (T -1280)) +((-3694 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-816 *3)))) (-2266 (*1 *2 *1) (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *2 (-768)))) (-2525 (*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))))) +(-13 (-1276 |t#1| |t#2|) (-10 -8 (-15 -3694 ((-816 |t#1|) $)) (-15 -2266 ((-768) $)) (-15 -2525 ($ $ (-768))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-172)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-131) . T) ((-614 (-564)) . T) ((-614 #0=(-816 |#1|)) . T) ((-614 |#2|) . T) ((-611 (-859)) . T) ((-644 |#2|) . T) ((-644 $) . T) ((-714 |#2|) |has| |#2| (-172)) ((-723) . T) ((-1035 #0#) . T) ((-1052 |#2|) . T) ((-1046) . T) ((-1053) . T) ((-1106) . T) ((-1094) . T) ((-1273 |#2|) . T) ((-1276 |#1| |#2|) . T)) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3491 (((-641 (-1170)) $) NIL)) (-1818 (($ (-1274 (-1170) |#1|)) NIL)) (-2525 (($ $ (-768)) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1477 (($ $ $) NIL (|has| |#1| (-172))) (($ $ (-768)) NIL (|has| |#1| (-172)))) (-2818 (($) NIL T CONST)) (-2691 (($ $ (-1170)) NIL) (($ $ (-816 (-1170))) NIL) (($ $ $) NIL)) (-2111 (((-3 (-816 (-1170)) "failed") $) NIL)) (-2239 (((-816 (-1170)) $) NIL)) (-3951 (((-3 $ "failed") $) NIL)) (-2959 (((-112) $) NIL)) (-4247 (($ $) NIL)) (-3840 (((-112) $) NIL)) (-2005 (((-112) $) NIL)) (-2414 (($ (-816 (-1170)) |#1|) NIL)) (-3275 (($ $) NIL)) (-1475 (((-2 (|:| |k| (-816 (-1170))) (|:| |c| |#1|)) $) NIL)) (-3559 (((-816 (-1170)) $) NIL)) (-3694 (((-816 (-1170)) $) NIL)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-2481 (($ $ (-1170)) NIL) (($ $ (-816 (-1170))) NIL) (($ $ $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3512 (((-1274 (-1170) |#1|) $) NIL)) (-2266 (((-768) $) NIL)) (-1804 (((-112) $) NIL)) (-2091 ((|#1| $) NIL)) (-3742 (((-859) $) NIL) (($ (-564)) NIL) (($ |#1|) NIL) (($ (-816 (-1170))) NIL) (($ (-1170)) NIL)) (-1762 ((|#1| $ (-816 (-1170))) NIL) ((|#1| $ $) NIL)) (-3270 (((-768)) NIL T CONST)) (-4311 (($) NIL T CONST)) (-3338 (((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $) NIL)) (-4321 (($) NIL T CONST)) (-1705 (((-112) $ $) NIL)) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) NIL)) (** (($ $ (-918)) NIL) (($ $ (-768)) NIL)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1170) $) NIL))) +(((-1281 |#1|) (-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -3512 ((-1274 (-1170) |#1|) $)) (-15 -1818 ($ (-1274 (-1170) |#1|))) (-15 -3338 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) (-1046)) (T -1281)) +((-3512 (*1 *2 *1) (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1046)))) (-1818 (*1 *1 *2) (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1046)) (-5 *1 (-1281 *3)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) (-5 *1 (-1281 *3)) (-4 *3 (-1046))))) +(-13 (-1280 (-1170) |#1|) (-10 -8 (-15 -3512 ((-1274 (-1170) |#1|) $)) (-15 -1818 ($ (-1274 (-1170) |#1|))) (-15 -3338 ((-641 (-2 (|:| |k| (-1170)) (|:| |c| $))) $)))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) NIL)) (-3239 (((-3 $ "failed") $ $) NIL)) (-2818 (($) NIL T CONST)) (-2111 (((-3 |#2| "failed") $) NIL)) (-2239 ((|#2| $) NIL)) (-1348 (($ $) NIL)) (-3951 (((-3 $ "failed") $) 40)) (-2959 (((-112) $) 35)) (-4247 (($ $) 36)) (-3840 (((-112) $) NIL)) (-2918 (((-768) $) NIL)) (-3707 (((-641 $) $) NIL)) (-2005 (((-112) $) NIL)) (-2414 (($ |#2| |#1|) NIL)) (-3559 ((|#2| $) 24)) (-3694 ((|#2| $) 22)) (-2187 (($ (-1 |#1| |#1|) $) NIL)) (-1754 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-1309 ((|#2| $) NIL)) (-1320 ((|#1| $) NIL)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-1804 (((-112) $) 32)) (-2091 ((|#1| $) 33)) (-3742 (((-859) $) 63) (($ (-564)) 44) (($ |#1|) 39) (($ |#2|) NIL)) (-3110 (((-641 |#1|) $) NIL)) (-2856 ((|#1| $ |#2|) NIL)) (-1762 ((|#1| $ |#2|) 28)) (-3270 (((-768)) 14 T CONST)) (-4311 (($) 29 T CONST)) (-4321 (($) 11 T CONST)) (-2546 (((-641 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-1705 (((-112) $ $) 30)) (-1799 (($ $ |#1|) 65 (|has| |#1| (-363)))) (-1790 (($ $) NIL) (($ $ $) NIL)) (-1780 (($ $ $) 48)) (** (($ $ (-918)) NIL) (($ $ (-768)) 50)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) NIL) (($ $ $) 49) (($ |#1| $) 45) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2641 (((-768) $) 16))) +(((-1282 |#1| |#2|) (-13 (-1046) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2641 ((-768) $)) (-15 -3694 (|#2| $)) (-15 -3559 (|#2| $)) (-15 -1348 ($ $)) (-15 -1762 (|#1| $ |#2|)) (-15 -1804 ((-112) $)) (-15 -2091 (|#1| $)) (-15 -2959 ((-112) $)) (-15 -4247 ($ $)) (-15 -2187 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1799 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) (-1046) (-843)) (T -1282)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-1348 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-2187 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-1282 *3 *4)) (-4 *4 (-843)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-3694 (*1 *2 *1) (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))) (-3559 (*1 *2 *1) (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046)))) (-1762 (*1 *2 *1 *3) (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))) (-1804 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-2091 (*1 *2 *1) (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843)))) (-2959 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-843)))) (-4247 (*1 *1 *1) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843)))) (-1799 (*1 *1 *1 *2) (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-843))))) +(-13 (-1046) (-1273 |#1|) (-382 |#1| |#2|) (-614 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2641 ((-768) $)) (-15 -3694 (|#2| $)) (-15 -3559 (|#2| $)) (-15 -1348 ($ $)) (-15 -1762 (|#1| $ |#2|)) (-15 -1804 ((-112) $)) (-15 -2091 (|#1| $)) (-15 -2959 ((-112) $)) (-15 -4247 ($ $)) (-15 -2187 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-363)) (-15 -1799 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4404)) (-6 -4404) |%noBranch|) (IF (|has| |#1| (-6 -4408)) (-6 -4408) |%noBranch|) (IF (|has| |#1| (-6 -4409)) (-6 -4409) |%noBranch|))) +((-3732 (((-112) $ $) 27)) (-4173 (((-112) $) NIL)) (-3491 (((-641 |#1|) $) 131)) (-1818 (($ (-1274 |#1| |#2|)) 50)) (-2525 (($ $ (-768)) 38)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1477 (($ $ $) 54 (|has| |#2| (-172))) (($ $ (-768)) 52 (|has| |#2| (-172)))) (-2818 (($) NIL T CONST)) (-2691 (($ $ |#1|) 113) (($ $ (-816 |#1|)) 114) (($ $ $) 26)) (-2111 (((-3 (-816 |#1|) "failed") $) NIL)) (-2239 (((-816 |#1|) $) NIL)) (-3951 (((-3 $ "failed") $) 121)) (-2959 (((-112) $) 116)) (-4247 (($ $) 117)) (-3840 (((-112) $) NIL)) (-2005 (((-112) $) NIL)) (-2414 (($ (-816 |#1|) |#2|) 20)) (-3275 (($ $) NIL)) (-1475 (((-2 (|:| |k| (-816 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3559 (((-816 |#1|) $) 122)) (-3694 (((-816 |#1|) $) 125)) (-2187 (($ (-1 |#2| |#2|) $) 130)) (-2481 (($ $ |#1|) 111) (($ $ (-816 |#1|)) 112) (($ $ $) 62)) (-2217 (((-1152) $) NIL)) (-3864 (((-1114) $) NIL)) (-3512 (((-1274 |#1| |#2|) $) 93)) (-2266 (((-768) $) 128)) (-1804 (((-112) $) 80)) (-2091 ((|#2| $) 32)) (-3742 (((-859) $) 72) (($ (-564)) 86) (($ |#2|) 84) (($ (-816 |#1|)) 18) (($ |#1|) 83)) (-1762 ((|#2| $ (-816 |#1|)) 115) ((|#2| $ $) 28)) (-3270 (((-768)) 119 T CONST)) (-4311 (($) 15 T CONST)) (-3338 (((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59)) (-4321 (($) 33 T CONST)) (-1705 (((-112) $ $) 14)) (-1790 (($ $) 97) (($ $ $) 100)) (-1780 (($ $ $) 61)) (** (($ $ (-918)) NIL) (($ $ (-768)) 55)) (* (($ (-918) $) NIL) (($ (-768) $) 53) (($ (-564) $) 105) (($ $ $) 22) (($ |#2| $) 19) (($ $ |#2|) 21) (($ |#1| $) 91))) +(((-1283 |#1| |#2|) (-13 (-1280 |#1| |#2|) (-10 -8 (-15 -3512 ((-1274 |#1| |#2|) $)) (-15 -1818 ($ (-1274 |#1| |#2|))) (-15 -3338 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-847) (-1046)) (T -1283)) +((-3512 (*1 *2 *1) (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)))) (-1818 (*1 *1 *2) (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) (-5 *1 (-1283 *3 *4)))) (-3338 (*1 *2 *1) (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))))) +(-13 (-1280 |#1| |#2|) (-10 -8 (-15 -3512 ((-1274 |#1| |#2|) $)) (-15 -1818 ($ (-1274 |#1| |#2|))) (-15 -3338 ((-641 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) +((-4186 (((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)) 20) (((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|))) 13))) +(((-1284 |#1|) (-10 -7 (-15 -4186 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -4186 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) (-1209)) (T -1284)) +((-4186 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1284 *4)) (-4 *4 (-1209))))) +(-10 -7 (-15 -4186 ((-1150 |#1|) (-1 (-1150 |#1|) (-1150 |#1|)))) (-15 -4186 ((-641 (-1150 |#1|)) (-1 (-641 (-1150 |#1|)) (-641 (-1150 |#1|))) (-564)))) +((-4177 (((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|))) 173) (((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112)) 172) (((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112)) 171) (((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112)) 170) (((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-1043 |#1| |#2|)) 155)) (-1422 (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|))) 84) (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112)) 83) (((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112)) 82)) (-3048 (((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|)) 72)) (-3171 (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|))) 139) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112)) 138) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112)) 137) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112)) 136) (((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|)) 131)) (-2769 (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|))) 144) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112)) 143) (((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112)) 142) (((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|)) 141)) (-2235 (((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) 110) (((-1166 (-1021 (-407 |#1|))) (-1166 |#1|)) 101) (((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|))) 108) (((-949 (-1021 (-407 |#1|))) (-949 |#1|)) 106) (((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|))) 32))) +(((-1285 |#1| |#2| |#3|) (-10 -7 (-15 -1422 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112))) (-15 -1422 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112))) (-15 -1422 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-1043 |#1| |#2|))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -2769 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -2769 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2769 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -2769 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -3048 ((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|))) (-15 -2235 ((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|)))) (-15 -2235 ((-949 (-1021 (-407 |#1|))) (-949 |#1|))) (-15 -2235 ((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|)))) (-15 -2235 ((-1166 (-1021 (-407 |#1|))) (-1166 |#1|))) (-15 -2235 ((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))))) (-13 (-845) (-307) (-147) (-1019)) (-641 (-1170)) (-641 (-1170))) (T -1285)) +((-2235 (*1 *2 *3) (-12 (-5 *3 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6)))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-777 *4 (-861 *6)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-1166 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-777 *4 (-861 *6))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2235 (*1 *2 *3) (-12 (-5 *3 (-777 *4 (-861 *5))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-777 *4 (-861 *6))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3048 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-2769 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2769 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-2769 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-3171 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3171 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3171 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-3171 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-4177 (*1 *2 *3) (-12 (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3400 (-1166 *4)) (|:| -1785 (-641 (-949 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-949 *4))) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-4177 (*1 *2 *3 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4177 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4177 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-4177 (*1 *2 *3) (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-2 (|:| -3400 (-1166 *4)) (|:| -1785 (-641 (-949 *4)))))) (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) (-1422 (*1 *2 *3) (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) (-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) (-1422 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170)))))) +(-10 -7 (-15 -1422 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112) (-112))) (-15 -1422 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)) (-112))) (-15 -1422 ((-641 (-1043 |#1| |#2|)) (-641 (-949 |#1|)))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-1043 |#1| |#2|))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)) (-112))) (-15 -4177 ((-641 (-2 (|:| -3400 (-1166 |#1|)) (|:| -1785 (-641 (-949 |#1|))))) (-641 (-949 |#1|)))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112) (-112))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -3171 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -2769 ((-641 (-641 (-1021 (-407 |#1|)))) (-1043 |#1| |#2|))) (-15 -2769 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112) (-112))) (-15 -2769 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)) (-112))) (-15 -2769 ((-641 (-641 (-1021 (-407 |#1|)))) (-641 (-949 |#1|)))) (-15 -3048 ((-641 (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))) (-1043 |#1| |#2|))) (-15 -2235 ((-777 |#1| (-861 |#3|)) (-777 |#1| (-861 |#2|)))) (-15 -2235 ((-949 (-1021 (-407 |#1|))) (-949 |#1|))) (-15 -2235 ((-949 (-1021 (-407 |#1|))) (-777 |#1| (-861 |#3|)))) (-15 -2235 ((-1166 (-1021 (-407 |#1|))) (-1166 |#1|))) (-15 -2235 ((-641 (-777 |#1| (-861 |#3|))) (-1140 |#1| (-531 (-861 |#3|)) (-861 |#3|) (-777 |#1| (-861 |#3|)))))) +((-2452 (((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|) 21)) (-4361 (((-112) (-1259 |#1|)) 12)) (-4153 (((-3 (-1259 (-564)) "failed") (-1259 |#1|)) 16))) +(((-1286 |#1|) (-10 -7 (-15 -4361 ((-112) (-1259 |#1|))) (-15 -4153 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -2452 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) (-637 (-564))) (T -1286)) +((-2452 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4)))) (-4153 (*1 *2 *3) (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4)))) (-4361 (*1 *2 *3) (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) (-5 *1 (-1286 *4))))) +(-10 -7 (-15 -4361 ((-112) (-1259 |#1|))) (-15 -4153 ((-3 (-1259 (-564)) "failed") (-1259 |#1|))) (-15 -2452 ((-3 (-1259 (-407 (-564))) "failed") (-1259 |#1|) |#1|))) +((-3732 (((-112) $ $) NIL)) (-4173 (((-112) $) 11)) (-3239 (((-3 $ "failed") $ $) NIL)) (-1938 (((-768)) 8)) (-2818 (($) NIL T CONST)) (-3951 (((-3 $ "failed") $) 58)) (-2821 (($) 49)) (-3840 (((-112) $) 57)) (-3907 (((-3 $ "failed") $) 40)) (-1906 (((-918) $) 15)) (-2217 (((-1152) $) NIL)) (-3258 (($) 32 T CONST)) (-1495 (($ (-918)) 50)) (-3864 (((-1114) $) NIL)) (-2235 (((-564) $) 13)) (-3742 (((-859) $) 27) (($ (-564)) 24)) (-3270 (((-768)) 9 T CONST)) (-4311 (($) 29 T CONST)) (-4321 (($) 31 T CONST)) (-1705 (((-112) $ $) 38)) (-1790 (($ $) 52) (($ $ $) 47)) (-1780 (($ $ $) 35)) (** (($ $ (-918)) NIL) (($ $ (-768)) 54)) (* (($ (-918) $) NIL) (($ (-768) $) NIL) (($ (-564) $) 44) (($ $ $) 43))) +(((-1287 |#1|) (-13 (-172) (-368) (-612 (-564)) (-1145)) (-918)) (T -1287)) +NIL +(-13 (-172) (-368) (-612 (-564)) (-1145)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3199841 3199846 3199851 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3199826 3199831 3199836 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3199811 3199816 3199821 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3199796 3199801 3199806 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1287 3198965 3199671 3199748 "ZMOD" 3199753 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1286 3198075 3198239 3198448 "ZLINDEP" 3198797 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1285 3187375 3189143 3191115 "ZDSOLVE" 3196205 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1284 3186621 3186762 3186951 "YSTREAM" 3187221 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1283 3184422 3185922 3186126 "XRPOLY" 3186464 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1282 3181002 3182293 3182868 "XPR" 3183894 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1281 3178750 3180333 3180537 "XPOLY" 3180833 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1280 3176533 3177875 3177930 "XPOLYC" 3178218 NIL XPOLYC (NIL T T) -9 NIL 3178331 NIL) (-1279 3172936 3175050 3175438 "XPBWPOLY" 3176191 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1278 3168839 3171099 3171141 "XF" 3171762 NIL XF (NIL T) -9 NIL 3172162 NIL) (-1277 3168460 3168548 3168717 "XF-" 3168722 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1276 3163786 3165049 3165104 "XFALG" 3167276 NIL XFALG (NIL T T) -9 NIL 3168065 NIL) (-1275 3162919 3163023 3163228 "XEXPPKG" 3163678 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1274 3161055 3162769 3162865 "XDPOLY" 3162870 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1273 3159992 3160566 3160609 "XALG" 3160614 NIL XALG (NIL T) -9 NIL 3160725 NIL) (-1272 3153461 3157969 3158463 "WUTSET" 3159584 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1271 3151744 3152513 3152836 "WP" 3153272 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1270 3151373 3151566 3151636 "WHILEAST" 3151696 T WHILEAST (NIL) -8 NIL NIL NIL) (-1269 3150872 3151090 3151184 "WHEREAST" 3151301 T WHEREAST (NIL) -8 NIL NIL NIL) (-1268 3149758 3149956 3150251 "WFFINTBS" 3150669 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1267 3147662 3148089 3148551 "WEIER" 3149330 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1266 3146809 3147233 3147275 "VSPACE" 3147411 NIL VSPACE (NIL T) -9 NIL 3147485 NIL) (-1265 3146647 3146674 3146765 "VSPACE-" 3146770 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1264 3146455 3146498 3146566 "VOID" 3146601 T VOID (NIL) -8 NIL NIL NIL) (-1263 3144591 3144950 3145356 "VIEW" 3146071 T VIEW (NIL) -7 NIL NIL NIL) (-1262 3141015 3141654 3142391 "VIEWDEF" 3143876 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1261 3130346 3132563 3134736 "VIEW3D" 3138864 T VIEW3D (NIL) -8 NIL NIL NIL) (-1260 3122624 3124257 3125836 "VIEW2D" 3128789 T VIEW2D (NIL) -8 NIL NIL NIL) (-1259 3118026 3122394 3122486 "VECTOR" 3122567 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1258 3116603 3116862 3117180 "VECTOR2" 3117756 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1257 3110130 3114387 3114430 "VECTCAT" 3115423 NIL VECTCAT (NIL T) -9 NIL 3116009 NIL) (-1256 3109144 3109398 3109788 "VECTCAT-" 3109793 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1255 3108625 3108795 3108915 "VARIABLE" 3109059 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1254 3108558 3108563 3108593 "UTYPE" 3108598 T UTYPE (NIL) -9 NIL NIL NIL) (-1253 3107388 3107542 3107804 "UTSODETL" 3108384 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1252 3104828 3105288 3105812 "UTSODE" 3106929 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1251 3096692 3102454 3102943 "UTS" 3104397 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1250 3087927 3093259 3093302 "UTSCAT" 3094414 NIL UTSCAT (NIL T) -9 NIL 3095171 NIL) (-1249 3085275 3085997 3086986 "UTSCAT-" 3086991 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1248 3084902 3084945 3085078 "UTS2" 3085226 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1247 3079175 3081740 3081783 "URAGG" 3083853 NIL URAGG (NIL T) -9 NIL 3084576 NIL) (-1246 3076114 3076977 3078100 "URAGG-" 3078105 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1245 3071830 3074728 3075200 "UPXSSING" 3075778 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1244 3063923 3071077 3071350 "UPXS" 3071615 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1243 3057023 3063827 3063899 "UPXSCONS" 3063904 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1242 3047260 3054018 3054080 "UPXSCCA" 3054654 NIL UPXSCCA (NIL T T) -9 NIL 3054887 NIL) (-1241 3046898 3046983 3047157 "UPXSCCA-" 3047162 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1240 3036988 3043519 3043562 "UPXSCAT" 3044210 NIL UPXSCAT (NIL T) -9 NIL 3044818 NIL) (-1239 3036418 3036497 3036676 "UPXS2" 3036903 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1238 3035072 3035325 3035676 "UPSQFREE" 3036161 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1237 3028852 3031874 3031929 "UPSCAT" 3033090 NIL UPSCAT (NIL T T) -9 NIL 3033864 NIL) (-1236 3028056 3028263 3028590 "UPSCAT-" 3028595 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1235 3013898 3021904 3021947 "UPOLYC" 3024048 NIL UPOLYC (NIL T) -9 NIL 3025269 NIL) (-1234 3005226 3007652 3010799 "UPOLYC-" 3010804 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1233 3004853 3004896 3005029 "UPOLYC2" 3005177 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1232 2996419 3004536 3004665 "UP" 3004772 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1231 2995758 2995865 2996029 "UPMP" 2996308 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1230 2995311 2995392 2995531 "UPDIVP" 2995671 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1229 2993879 2994128 2994444 "UPDECOMP" 2995060 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1228 2993114 2993226 2993411 "UPCDEN" 2993763 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1227 2992633 2992702 2992851 "UP2" 2993039 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1226 2991148 2991837 2992114 "UNISEG" 2992391 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1225 2990363 2990490 2990695 "UNISEG2" 2990991 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1224 2989423 2989603 2989829 "UNIFACT" 2990179 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1223 2973382 2988600 2988851 "ULS" 2989230 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1222 2961408 2973286 2973358 "ULSCONS" 2973363 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1221 2944016 2955966 2956028 "ULSCCAT" 2956666 NIL ULSCCAT (NIL T T) -9 NIL 2956954 NIL) (-1220 2943066 2943311 2943699 "ULSCCAT-" 2943704 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1219 2932933 2939378 2939421 "ULSCAT" 2940284 NIL ULSCAT (NIL T) -9 NIL 2941014 NIL) (-1218 2932363 2932442 2932621 "ULS2" 2932848 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1217 2931480 2931963 2932070 "UINT8" 2932181 T UINT8 (NIL) -8 NIL NIL 2932266) (-1216 2930596 2931079 2931186 "UINT64" 2931297 T UINT64 (NIL) -8 NIL NIL 2931382) (-1215 2929712 2930195 2930302 "UINT32" 2930413 T UINT32 (NIL) -8 NIL NIL 2930498) (-1214 2928828 2929311 2929418 "UINT16" 2929529 T UINT16 (NIL) -8 NIL NIL 2929614) (-1213 2927223 2928154 2928184 "UFD" 2928396 T UFD (NIL) -9 NIL 2928510 NIL) (-1212 2927017 2927063 2927158 "UFD-" 2927163 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1211 2926099 2926282 2926498 "UDVO" 2926823 T UDVO (NIL) -7 NIL NIL NIL) (-1210 2923915 2924324 2924795 "UDPO" 2925663 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1209 2923848 2923853 2923883 "TYPE" 2923888 T TYPE (NIL) -9 NIL NIL NIL) (-1208 2923635 2923803 2923834 "TYPEAST" 2923839 T TYPEAST (NIL) -8 NIL NIL NIL) (-1207 2922606 2922808 2923048 "TWOFACT" 2923429 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1206 2921677 2922015 2922250 "TUPLE" 2922406 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1205 2919368 2919887 2920426 "TUBETOOL" 2921160 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1204 2918217 2918422 2918663 "TUBE" 2919161 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1203 2912973 2917189 2917472 "TS" 2917969 NIL TS (NIL T) -8 NIL NIL NIL) (-1202 2901640 2905732 2905829 "TSETCAT" 2911098 NIL TSETCAT (NIL T T T T) -9 NIL 2912629 NIL) (-1201 2896372 2897972 2899863 "TSETCAT-" 2899868 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1200 2890634 2891481 2892423 "TRMANIP" 2895508 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1199 2890075 2890138 2890301 "TRIMAT" 2890566 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1198 2887871 2888108 2888472 "TRIGMNIP" 2889824 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1197 2887391 2887504 2887534 "TRIGCAT" 2887747 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1196 2887060 2887139 2887280 "TRIGCAT-" 2887285 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1195 2883953 2885918 2886199 "TREE" 2886814 NIL TREE (NIL T) -8 NIL NIL NIL) (-1194 2883227 2883755 2883785 "TRANFUN" 2883820 T TRANFUN (NIL) -9 NIL 2883886 NIL) (-1193 2882506 2882697 2882977 "TRANFUN-" 2882982 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1192 2882310 2882342 2882403 "TOPSP" 2882467 T TOPSP (NIL) -7 NIL NIL NIL) (-1191 2881658 2881773 2881927 "TOOLSIGN" 2882191 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1190 2880319 2880835 2881074 "TEXTFILE" 2881441 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1189 2878258 2878772 2879201 "TEX" 2879912 T TEX (NIL) -8 NIL NIL NIL) (-1188 2878039 2878070 2878142 "TEX1" 2878221 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1187 2877687 2877750 2877840 "TEMUTL" 2877971 T TEMUTL (NIL) -7 NIL NIL NIL) (-1186 2875841 2876121 2876446 "TBCMPPK" 2877410 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1185 2867729 2874001 2874057 "TBAGG" 2874457 NIL TBAGG (NIL T T) -9 NIL 2874668 NIL) (-1184 2862799 2864287 2866041 "TBAGG-" 2866046 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1183 2862183 2862290 2862435 "TANEXP" 2862688 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1182 2855684 2862040 2862133 "TABLE" 2862138 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1181 2855096 2855195 2855333 "TABLEAU" 2855581 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1180 2849704 2850924 2852172 "TABLBUMP" 2853882 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1179 2848926 2849073 2849254 "SYSTEM" 2849545 T SYSTEM (NIL) -8 NIL NIL NIL) (-1178 2845385 2846084 2846867 "SYSSOLP" 2848177 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1177 2844419 2844897 2845016 "SYSNNI" 2845202 NIL SYSNNI (NIL NIL) -8 NIL NIL 2845287) (-1176 2843716 2844148 2844227 "SYSINT" 2844287 NIL SYSINT (NIL NIL) -8 NIL NIL 2844332) (-1175 2840050 2840977 2841693 "SYNTAX" 2843022 T SYNTAX (NIL) -8 NIL NIL NIL) (-1174 2837208 2837810 2838442 "SYMTAB" 2839440 T SYMTAB (NIL) -8 NIL NIL NIL) (-1173 2832457 2833359 2834342 "SYMS" 2836247 T SYMS (NIL) -8 NIL NIL NIL) (-1172 2829719 2831915 2832145 "SYMPOLY" 2832262 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1171 2829236 2829311 2829434 "SYMFUNC" 2829631 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1170 2825282 2826548 2827361 "SYMBOL" 2828445 T SYMBOL (NIL) -8 NIL NIL NIL) (-1169 2818821 2820510 2822230 "SWITCH" 2823584 T SWITCH (NIL) -8 NIL NIL NIL) (-1168 2812082 2817642 2817945 "SUTS" 2818576 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1167 2804175 2811329 2811602 "SUPXS" 2811867 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1166 2795690 2803793 2803919 "SUP" 2804084 NIL SUP (NIL T) -8 NIL NIL NIL) (-1165 2794849 2794976 2795193 "SUPFRACF" 2795558 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1164 2794470 2794529 2794642 "SUP2" 2794784 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1163 2792883 2793157 2793520 "SUMRF" 2794169 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1162 2792197 2792263 2792462 "SUMFS" 2792804 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1161 2776191 2791374 2791625 "SULS" 2792004 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2775820 2776013 2776083 "SUCHTAST" 2776143 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1159 2775142 2775345 2775485 "SUCH" 2775728 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1158 2769036 2770048 2771007 "SUBSPACE" 2774230 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1157 2768466 2768556 2768720 "SUBRESP" 2768924 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1156 2761831 2763131 2764442 "STTF" 2767202 NIL STTF (NIL T) -7 NIL NIL NIL) (-1155 2756004 2757124 2758271 "STTFNC" 2760731 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1154 2747315 2749186 2750980 "STTAYLOR" 2754245 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1153 2740559 2747179 2747262 "STRTBL" 2747267 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1152 2735950 2740514 2740545 "STRING" 2740550 T STRING (NIL) -8 NIL NIL NIL) (-1151 2730838 2735323 2735353 "STRICAT" 2735412 T STRICAT (NIL) -9 NIL 2735474 NIL) (-1150 2723641 2728457 2729068 "STREAM" 2730262 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1149 2723151 2723228 2723372 "STREAM3" 2723558 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1148 2722133 2722316 2722551 "STREAM2" 2722964 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1147 2721821 2721873 2721966 "STREAM1" 2722075 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1146 2720837 2721018 2721249 "STINPROD" 2721637 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1145 2720415 2720599 2720629 "STEP" 2720709 T STEP (NIL) -9 NIL 2720787 NIL) (-1144 2713958 2720314 2720391 "STBL" 2720396 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1143 2709132 2713179 2713222 "STAGG" 2713375 NIL STAGG (NIL T) -9 NIL 2713464 NIL) (-1142 2706834 2707436 2708308 "STAGG-" 2708313 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1141 2705029 2706604 2706696 "STACK" 2706777 NIL STACK (NIL T) -8 NIL NIL NIL) (-1140 2697752 2703170 2703626 "SREGSET" 2704659 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1139 2690177 2691546 2693059 "SRDCMPK" 2696358 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1138 2683144 2687617 2687647 "SRAGG" 2688950 T SRAGG (NIL) -9 NIL 2689558 NIL) (-1137 2682161 2682416 2682795 "SRAGG-" 2682800 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1136 2676648 2681108 2681529 "SQMATRIX" 2681787 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1135 2670395 2673366 2674093 "SPLTREE" 2675993 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1134 2666385 2667051 2667697 "SPLNODE" 2669821 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1133 2665432 2665665 2665695 "SPFCAT" 2666139 T SPFCAT (NIL) -9 NIL NIL NIL) (-1132 2664169 2664379 2664643 "SPECOUT" 2665190 T SPECOUT (NIL) -7 NIL NIL NIL) (-1131 2655821 2657565 2657595 "SPADXPT" 2661987 T SPADXPT (NIL) -9 NIL 2664021 NIL) (-1130 2655582 2655622 2655691 "SPADPRSR" 2655774 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1129 2653764 2655537 2655568 "SPADAST" 2655573 T SPADAST (NIL) -8 NIL NIL NIL) (-1128 2645735 2647482 2647525 "SPACEC" 2651898 NIL SPACEC (NIL T) -9 NIL 2653714 NIL) (-1127 2643892 2645667 2645716 "SPACE3" 2645721 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1126 2642644 2642815 2643106 "SORTPAK" 2643697 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1125 2640694 2640997 2641416 "SOLVETRA" 2642308 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1124 2639705 2639927 2640201 "SOLVESER" 2640467 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1123 2634916 2635806 2636808 "SOLVERAD" 2638757 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1122 2630731 2631340 2632069 "SOLVEFOR" 2634283 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1121 2625028 2630080 2630177 "SNTSCAT" 2630182 NIL SNTSCAT (NIL T T T T) -9 NIL 2630252 NIL) (-1120 2619161 2623351 2623742 "SMTS" 2624718 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1119 2613601 2619049 2619126 "SMP" 2619131 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1118 2611760 2612061 2612459 "SMITH" 2613298 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1117 2604647 2608811 2608914 "SMATCAT" 2610265 NIL SMATCAT (NIL NIL T T T) -9 NIL 2610815 NIL) (-1116 2601587 2602410 2603588 "SMATCAT-" 2603593 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1115 2599300 2600823 2600866 "SKAGG" 2601127 NIL SKAGG (NIL T) -9 NIL 2601262 NIL) (-1114 2595635 2598716 2598911 "SINT" 2599098 T SINT (NIL) -8 NIL NIL 2599271) (-1113 2595407 2595445 2595511 "SIMPAN" 2595591 T SIMPAN (NIL) -7 NIL NIL NIL) (-1112 2594713 2594942 2595082 "SIG" 2595289 T SIG (NIL) -8 NIL NIL NIL) (-1111 2593551 2593772 2594047 "SIGNRF" 2594472 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1110 2592356 2592507 2592798 "SIGNEF" 2593380 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1109 2591689 2591939 2592063 "SIGAST" 2592254 T SIGAST (NIL) -8 NIL NIL NIL) (-1108 2589379 2589833 2590339 "SHP" 2591230 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1107 2583279 2589280 2589356 "SHDP" 2589361 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1106 2582878 2583044 2583074 "SGROUP" 2583167 T SGROUP (NIL) -9 NIL 2583229 NIL) (-1105 2582736 2582762 2582835 "SGROUP-" 2582840 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1104 2579571 2580269 2580992 "SGCF" 2582035 T SGCF (NIL) -7 NIL NIL NIL) (-1103 2573966 2579018 2579115 "SFRTCAT" 2579120 NIL SFRTCAT (NIL T T T T) -9 NIL 2579159 NIL) (-1102 2567387 2568405 2569541 "SFRGCD" 2572949 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1101 2560514 2561586 2562772 "SFQCMPK" 2566320 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1100 2560136 2560225 2560335 "SFORT" 2560455 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1099 2559281 2559976 2560097 "SEXOF" 2560102 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1098 2558415 2559162 2559230 "SEX" 2559235 T SEX (NIL) -8 NIL NIL NIL) (-1097 2553954 2554643 2554738 "SEXCAT" 2557675 NIL SEXCAT (NIL T T T T T) -9 NIL 2558253 NIL) (-1096 2551134 2553888 2553936 "SET" 2553941 NIL SET (NIL T) -8 NIL NIL NIL) (-1095 2549385 2549847 2550152 "SETMN" 2550875 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1094 2548991 2549117 2549147 "SETCAT" 2549264 T SETCAT (NIL) -9 NIL 2549349 NIL) (-1093 2548771 2548823 2548922 "SETCAT-" 2548927 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1092 2545158 2547232 2547275 "SETAGG" 2548145 NIL SETAGG (NIL T) -9 NIL 2548485 NIL) (-1091 2544616 2544732 2544969 "SETAGG-" 2544974 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1090 2544086 2544312 2544413 "SEQAST" 2544537 T SEQAST (NIL) -8 NIL NIL NIL) (-1089 2543285 2543579 2543640 "SEGXCAT" 2543926 NIL SEGXCAT (NIL T T) -9 NIL 2544046 NIL) (-1088 2542339 2542951 2543133 "SEG" 2543138 NIL SEG (NIL T) -8 NIL NIL NIL) (-1087 2541318 2541532 2541575 "SEGCAT" 2542097 NIL SEGCAT (NIL T) -9 NIL 2542318 NIL) (-1086 2540367 2540697 2540897 "SEGBIND" 2541153 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1085 2539988 2540047 2540160 "SEGBIND2" 2540302 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1084 2539588 2539789 2539866 "SEGAST" 2539933 T SEGAST (NIL) -8 NIL NIL NIL) (-1083 2538807 2538933 2539137 "SEG2" 2539432 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1082 2538244 2538742 2538789 "SDVAR" 2538794 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1081 2530526 2538014 2538144 "SDPOL" 2538149 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1080 2529119 2529385 2529704 "SCPKG" 2530241 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1079 2528279 2528452 2528645 "SCOPE" 2528948 T SCOPE (NIL) -8 NIL NIL NIL) (-1078 2527499 2527633 2527812 "SCACHE" 2528134 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1077 2527171 2527331 2527361 "SASTCAT" 2527366 T SASTCAT (NIL) -9 NIL 2527379 NIL) (-1076 2526685 2527006 2527082 "SAOS" 2527117 T SAOS (NIL) -8 NIL NIL NIL) (-1075 2526250 2526285 2526458 "SAERFFC" 2526644 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1074 2520216 2526147 2526227 "SAE" 2526232 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1073 2519809 2519844 2520003 "SAEFACT" 2520175 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1072 2518130 2518444 2518845 "RURPK" 2519475 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1071 2516766 2517045 2517357 "RULESET" 2517964 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1070 2513953 2514456 2514921 "RULE" 2516447 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1069 2513592 2513747 2513830 "RULECOLD" 2513905 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1068 2513090 2513309 2513403 "RSTRCAST" 2513520 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1067 2507938 2508733 2509653 "RSETGCD" 2512289 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1066 2497195 2502247 2502344 "RSETCAT" 2506463 NIL RSETCAT (NIL T T T T) -9 NIL 2507560 NIL) (-1065 2495122 2495661 2496485 "RSETCAT-" 2496490 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1064 2487507 2488884 2490404 "RSDCMPK" 2493721 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1063 2485512 2485953 2486027 "RRCC" 2487113 NIL RRCC (NIL T T) -9 NIL 2487457 NIL) (-1062 2484863 2485037 2485316 "RRCC-" 2485321 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1061 2484333 2484559 2484660 "RPTAST" 2484784 T RPTAST (NIL) -8 NIL NIL NIL) (-1060 2458331 2467926 2467993 "RPOLCAT" 2478657 NIL RPOLCAT (NIL T T T) -9 NIL 2481816 NIL) (-1059 2449829 2452169 2455291 "RPOLCAT-" 2455296 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1058 2440876 2448040 2448522 "ROUTINE" 2449369 T ROUTINE (NIL) -8 NIL NIL NIL) (-1057 2437701 2440502 2440642 "ROMAN" 2440758 T ROMAN (NIL) -8 NIL NIL NIL) (-1056 2435972 2436561 2436821 "ROIRC" 2437506 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1055 2432357 2434608 2434638 "RNS" 2434942 T RNS (NIL) -9 NIL 2435215 NIL) (-1054 2430866 2431249 2431783 "RNS-" 2431858 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1053 2430315 2430697 2430727 "RNG" 2430732 T RNG (NIL) -9 NIL 2430753 NIL) (-1052 2429707 2430069 2430112 "RMODULE" 2430174 NIL RMODULE (NIL T) -9 NIL 2430216 NIL) (-1051 2428543 2428637 2428973 "RMCAT2" 2429608 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1050 2425420 2427889 2428186 "RMATRIX" 2428305 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1049 2418362 2420596 2420711 "RMATCAT" 2424070 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2425052 NIL) (-1048 2417737 2417884 2418191 "RMATCAT-" 2418196 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1047 2417304 2417379 2417507 "RINTERP" 2417656 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1046 2416423 2416951 2416981 "RING" 2417037 T RING (NIL) -9 NIL 2417129 NIL) (-1045 2416215 2416259 2416356 "RING-" 2416361 NIL RING- (NIL T) -8 NIL NIL NIL) (-1044 2415056 2415293 2415551 "RIDIST" 2415979 T RIDIST (NIL) -7 NIL NIL NIL) (-1043 2406372 2414524 2414730 "RGCHAIN" 2414904 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1042 2405748 2406128 2406169 "RGBCSPC" 2406227 NIL RGBCSPC (NIL T) -9 NIL 2406279 NIL) (-1041 2404932 2405287 2405328 "RGBCMDL" 2405560 NIL RGBCMDL (NIL T) -9 NIL 2405674 NIL) (-1040 2401926 2402540 2403210 "RF" 2404296 NIL RF (NIL T) -7 NIL NIL NIL) (-1039 2401572 2401635 2401738 "RFFACTOR" 2401857 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1038 2401297 2401332 2401429 "RFFACT" 2401531 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1037 2399414 2399778 2400160 "RFDIST" 2400937 T RFDIST (NIL) -7 NIL NIL NIL) (-1036 2398867 2398959 2399122 "RETSOL" 2399316 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1035 2398503 2398583 2398626 "RETRACT" 2398759 NIL RETRACT (NIL T) -9 NIL 2398846 NIL) (-1034 2398352 2398377 2398464 "RETRACT-" 2398469 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1033 2397981 2398174 2398244 "RETAST" 2398304 T RETAST (NIL) -8 NIL NIL NIL) (-1032 2390835 2397634 2397761 "RESULT" 2397876 T RESULT (NIL) -8 NIL NIL NIL) (-1031 2389453 2390104 2390303 "RESRING" 2390738 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1030 2389089 2389138 2389236 "RESLATC" 2389390 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1029 2388794 2388829 2388936 "REPSQ" 2389048 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1028 2386216 2386796 2387398 "REP" 2388214 T REP (NIL) -7 NIL NIL NIL) (-1027 2385913 2385948 2386059 "REPDB" 2386175 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1026 2379813 2381202 2382425 "REP2" 2384725 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1025 2376190 2376871 2377679 "REP1" 2379040 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1024 2368913 2374331 2374787 "REGSET" 2375820 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1023 2367726 2368061 2368311 "REF" 2368698 NIL REF (NIL T) -8 NIL NIL NIL) (-1022 2367103 2367206 2367373 "REDORDER" 2367610 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1021 2363098 2366316 2366543 "RECLOS" 2366931 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1020 2362150 2362331 2362546 "REALSOLV" 2362905 T REALSOLV (NIL) -7 NIL NIL NIL) (-1019 2361996 2362037 2362067 "REAL" 2362072 T REAL (NIL) -9 NIL 2362107 NIL) (-1018 2358479 2359281 2360165 "REAL0Q" 2361161 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1017 2354080 2355068 2356129 "REAL0" 2357460 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1016 2353578 2353797 2353891 "RDUCEAST" 2354008 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1015 2352983 2353055 2353262 "RDIV" 2353500 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1014 2352051 2352225 2352438 "RDIST" 2352805 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1013 2350648 2350935 2351307 "RDETRS" 2351759 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1012 2348460 2348914 2349452 "RDETR" 2350190 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1011 2347071 2347349 2347753 "RDEEFS" 2348176 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1010 2345566 2345872 2346304 "RDEEF" 2346759 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1009 2339819 2342702 2342732 "RCFIELD" 2344027 T RCFIELD (NIL) -9 NIL 2344757 NIL) (-1008 2337883 2338387 2339083 "RCFIELD-" 2339158 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1007 2334199 2335984 2336027 "RCAGG" 2337111 NIL RCAGG (NIL T) -9 NIL 2337576 NIL) (-1006 2333827 2333921 2334084 "RCAGG-" 2334089 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1005 2333162 2333274 2333439 "RATRET" 2333711 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1004 2332715 2332782 2332903 "RATFACT" 2333090 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1003 2332023 2332143 2332295 "RANDSRC" 2332585 T RANDSRC (NIL) -7 NIL NIL NIL) (-1002 2331757 2331801 2331874 "RADUTIL" 2331972 T RADUTIL (NIL) -7 NIL NIL NIL) (-1001 2324900 2330590 2330900 "RADIX" 2331481 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1000 2316546 2324742 2324872 "RADFF" 2324877 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-999 2316198 2316273 2316301 "RADCAT" 2316458 T RADCAT (NIL) -9 NIL NIL NIL) (-998 2315983 2316031 2316128 "RADCAT-" 2316133 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-997 2314134 2315758 2315847 "QUEUE" 2315927 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-996 2310702 2314071 2314116 "QUAT" 2314121 NIL QUAT (NIL T) -8 NIL NIL NIL) (-995 2310340 2310383 2310510 "QUATCT2" 2310653 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-994 2304079 2307389 2307429 "QUATCAT" 2308209 NIL QUATCAT (NIL T) -9 NIL 2308975 NIL) (-993 2300223 2301260 2302647 "QUATCAT-" 2302741 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-992 2297743 2299307 2299348 "QUAGG" 2299723 NIL QUAGG (NIL T) -9 NIL 2299898 NIL) (-991 2297375 2297568 2297636 "QQUTAST" 2297695 T QQUTAST (NIL) -8 NIL NIL NIL) (-990 2296300 2296773 2296945 "QFORM" 2297247 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-989 2287504 2292717 2292757 "QFCAT" 2293415 NIL QFCAT (NIL T) -9 NIL 2294416 NIL) (-988 2283076 2284277 2285868 "QFCAT-" 2285962 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-987 2282714 2282757 2282884 "QFCAT2" 2283027 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-986 2282174 2282284 2282414 "QEQUAT" 2282604 T QEQUAT (NIL) -8 NIL NIL NIL) (-985 2275321 2276393 2277577 "QCMPACK" 2281107 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-984 2272897 2273318 2273746 "QALGSET" 2274976 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-983 2272142 2272316 2272548 "QALGSET2" 2272717 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-982 2270832 2271056 2271373 "PWFFINTB" 2271915 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-981 2269014 2269182 2269536 "PUSHVAR" 2270646 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-980 2264932 2265986 2266027 "PTRANFN" 2267911 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-979 2263334 2263625 2263947 "PTPACK" 2264643 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-978 2262966 2263023 2263132 "PTFUNC2" 2263271 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-977 2257493 2261838 2261879 "PTCAT" 2262175 NIL PTCAT (NIL T) -9 NIL 2262328 NIL) (-976 2257151 2257186 2257310 "PSQFR" 2257452 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-975 2255746 2256044 2256378 "PSEUDLIN" 2256849 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-974 2242509 2244880 2247204 "PSETPK" 2253506 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-973 2235553 2238267 2238363 "PSETCAT" 2241384 NIL PSETCAT (NIL T T T T) -9 NIL 2242198 NIL) (-972 2233389 2234023 2234844 "PSETCAT-" 2234849 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-971 2232738 2232903 2232931 "PSCURVE" 2233199 T PSCURVE (NIL) -9 NIL 2233366 NIL) (-970 2229086 2230576 2230641 "PSCAT" 2231485 NIL PSCAT (NIL T T T) -9 NIL 2231725 NIL) (-969 2228149 2228365 2228765 "PSCAT-" 2228770 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-968 2226881 2227514 2227719 "PRTITION" 2227964 T PRTITION (NIL) -8 NIL NIL NIL) (-967 2226383 2226602 2226694 "PRTDAST" 2226809 T PRTDAST (NIL) -8 NIL NIL NIL) (-966 2215473 2217687 2219875 "PRS" 2224245 NIL PRS (NIL T T) -7 NIL NIL NIL) (-965 2213331 2214823 2214863 "PRQAGG" 2215046 NIL PRQAGG (NIL T) -9 NIL 2215148 NIL) (-964 2212717 2212946 2212974 "PROPLOG" 2213159 T PROPLOG (NIL) -9 NIL 2213281 NIL) (-963 2209887 2210531 2210995 "PROPFRML" 2212285 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-962 2209347 2209457 2209587 "PROPERTY" 2209777 T PROPERTY (NIL) -8 NIL NIL NIL) (-961 2203432 2207513 2208333 "PRODUCT" 2208573 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-960 2200737 2202890 2203124 "PR" 2203243 NIL PR (NIL T T) -8 NIL NIL NIL) (-959 2200533 2200565 2200624 "PRINT" 2200698 T PRINT (NIL) -7 NIL NIL NIL) (-958 2199873 2199990 2200142 "PRIMES" 2200413 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-957 2197938 2198339 2198805 "PRIMELT" 2199452 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-956 2197667 2197716 2197744 "PRIMCAT" 2197868 T PRIMCAT (NIL) -9 NIL NIL NIL) (-955 2193828 2197605 2197650 "PRIMARR" 2197655 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-954 2192835 2193013 2193241 "PRIMARR2" 2193646 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-953 2192478 2192534 2192645 "PREASSOC" 2192773 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-952 2191953 2192086 2192114 "PPCURVE" 2192319 T PPCURVE (NIL) -9 NIL 2192455 NIL) (-951 2191575 2191748 2191831 "PORTNUM" 2191890 T PORTNUM (NIL) -8 NIL NIL NIL) (-950 2188934 2189333 2189925 "POLYROOT" 2191156 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-949 2182871 2188538 2188698 "POLY" 2188807 NIL POLY (NIL T) -8 NIL NIL NIL) (-948 2182254 2182312 2182546 "POLYLIFT" 2182807 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-947 2178529 2178978 2179607 "POLYCATQ" 2181799 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-946 2165338 2170704 2170769 "POLYCAT" 2174283 NIL POLYCAT (NIL T T T) -9 NIL 2176211 NIL) (-945 2158787 2160649 2163033 "POLYCAT-" 2163038 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-944 2158374 2158442 2158562 "POLY2UP" 2158713 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-943 2158006 2158063 2158172 "POLY2" 2158311 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-942 2156691 2156930 2157206 "POLUTIL" 2157780 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-941 2155046 2155323 2155654 "POLTOPOL" 2156413 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-940 2150563 2154982 2155028 "POINT" 2155033 NIL POINT (NIL T) -8 NIL NIL NIL) (-939 2148750 2149107 2149482 "PNTHEORY" 2150208 T PNTHEORY (NIL) -7 NIL NIL NIL) (-938 2147169 2147466 2147878 "PMTOOLS" 2148448 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-937 2146762 2146840 2146957 "PMSYM" 2147085 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-936 2146272 2146341 2146515 "PMQFCAT" 2146687 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-935 2145627 2145737 2145893 "PMPRED" 2146149 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-934 2145023 2145109 2145270 "PMPREDFS" 2145528 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-933 2143666 2143874 2144259 "PMPLCAT" 2144785 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-932 2143198 2143277 2143429 "PMLSAGG" 2143581 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-931 2142673 2142749 2142930 "PMKERNEL" 2143116 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-930 2142290 2142365 2142478 "PMINS" 2142592 NIL PMINS (NIL T) -7 NIL NIL NIL) (-929 2141718 2141787 2142003 "PMFS" 2142215 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-928 2140946 2141064 2141269 "PMDOWN" 2141595 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-927 2140109 2140268 2140450 "PMASS" 2140784 T PMASS (NIL) -7 NIL NIL NIL) (-926 2139383 2139494 2139657 "PMASSFS" 2139995 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-925 2139038 2139106 2139200 "PLOTTOOL" 2139309 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-924 2133645 2134849 2135997 "PLOT" 2137910 T PLOT (NIL) -8 NIL NIL NIL) (-923 2129449 2130493 2131414 "PLOT3D" 2132744 T PLOT3D (NIL) -8 NIL NIL NIL) (-922 2128361 2128538 2128773 "PLOT1" 2129253 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-921 2103750 2108427 2113278 "PLEQN" 2123627 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-920 2103068 2103190 2103370 "PINTERP" 2103615 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-919 2102761 2102808 2102911 "PINTERPA" 2103015 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-918 2102009 2102530 2102617 "PI" 2102657 T PI (NIL) -8 NIL NIL 2102724) (-917 2100398 2101347 2101375 "PID" 2101557 T PID (NIL) -9 NIL 2101691 NIL) (-916 2100123 2100160 2100248 "PICOERCE" 2100355 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-915 2099443 2099582 2099758 "PGROEB" 2099979 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-914 2095030 2095844 2096749 "PGE" 2098558 T PGE (NIL) -7 NIL NIL NIL) (-913 2093153 2093400 2093766 "PGCD" 2094747 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-912 2092491 2092594 2092755 "PFRPAC" 2093037 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-911 2089159 2091039 2091392 "PFR" 2092170 NIL PFR (NIL T) -8 NIL NIL NIL) (-910 2087548 2087792 2088117 "PFOTOOLS" 2088906 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-909 2086081 2086320 2086671 "PFOQ" 2087305 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-908 2084554 2084766 2085129 "PFO" 2085865 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-907 2081134 2084443 2084512 "PF" 2084517 NIL PF (NIL NIL) -8 NIL NIL NIL) (-906 2078560 2079805 2079833 "PFECAT" 2080418 T PFECAT (NIL) -9 NIL 2080802 NIL) (-905 2078005 2078159 2078373 "PFECAT-" 2078378 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-904 2076608 2076860 2077161 "PFBRU" 2077754 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-903 2074473 2074826 2075258 "PFBR" 2076259 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-902 2070382 2071849 2072525 "PERM" 2073830 NIL PERM (NIL T) -8 NIL NIL NIL) (-901 2065643 2066589 2067459 "PERMGRP" 2069545 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-900 2063775 2064706 2064747 "PERMCAT" 2065193 NIL PERMCAT (NIL T) -9 NIL 2065498 NIL) (-899 2063428 2063469 2063593 "PERMAN" 2063728 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-898 2060964 2063093 2063215 "PENDTREE" 2063339 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-897 2059049 2059791 2059832 "PDRING" 2060489 NIL PDRING (NIL T) -9 NIL 2060775 NIL) (-896 2058152 2058370 2058732 "PDRING-" 2058737 NIL PDRING- (NIL T T) -8 NIL NIL NIL) (-895 2055394 2056145 2056813 "PDEPROB" 2057504 T PDEPROB (NIL) -8 NIL NIL NIL) (-894 2052939 2053443 2053998 "PDEPACK" 2054859 T PDEPACK (NIL) -7 NIL NIL NIL) (-893 2051851 2052041 2052292 "PDECOMP" 2052738 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-892 2049456 2050273 2050301 "PDECAT" 2051088 T PDECAT (NIL) -9 NIL 2051801 NIL) (-891 2049207 2049240 2049330 "PCOMP" 2049417 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-890 2047412 2048008 2048305 "PBWLB" 2048936 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-889 2039912 2041485 2042823 "PATTERN" 2046095 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-888 2039544 2039601 2039710 "PATTERN2" 2039849 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-887 2037301 2037689 2038146 "PATTERN1" 2039133 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-886 2034696 2035250 2035731 "PATRES" 2036866 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-885 2034260 2034327 2034459 "PATRES2" 2034623 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-884 2032143 2032548 2032955 "PATMATCH" 2033927 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-883 2031679 2031862 2031903 "PATMAB" 2032010 NIL PATMAB (NIL T) -9 NIL 2032093 NIL) (-882 2030224 2030533 2030791 "PATLRES" 2031484 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-881 2029770 2029893 2029934 "PATAB" 2029939 NIL PATAB (NIL T) -9 NIL 2030111 NIL) (-880 2027251 2027783 2028356 "PARTPERM" 2029217 T PARTPERM (NIL) -7 NIL NIL NIL) (-879 2026872 2026935 2027037 "PARSURF" 2027182 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-878 2026504 2026561 2026670 "PARSU2" 2026809 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-877 2026268 2026308 2026375 "PARSER" 2026457 T PARSER (NIL) -7 NIL NIL NIL) (-876 2025889 2025952 2026054 "PARSCURV" 2026199 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-875 2025521 2025578 2025687 "PARSC2" 2025826 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-874 2025160 2025218 2025315 "PARPCURV" 2025457 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-873 2024792 2024849 2024958 "PARPC2" 2025097 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-872 2024312 2024398 2024517 "PAN2EXPR" 2024693 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-871 2023116 2023433 2023661 "PALETTE" 2024104 T PALETTE (NIL) -8 NIL NIL NIL) (-870 2021584 2022121 2022481 "PAIR" 2022802 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-869 2015481 2020843 2021037 "PADICRC" 2021439 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-868 2008737 2014827 2015011 "PADICRAT" 2015329 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-867 2007079 2008674 2008719 "PADIC" 2008724 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-866 2004281 2005819 2005859 "PADICCT" 2006440 NIL PADICCT (NIL NIL) -9 NIL 2006722 NIL) (-865 2003238 2003438 2003706 "PADEPAC" 2004068 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-864 2002450 2002583 2002789 "PADE" 2003100 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-863 2000864 2001658 2001938 "OWP" 2002254 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-862 2000384 2000570 2000667 "OVERSET" 2000787 T OVERSET (NIL) -8 NIL NIL NIL) (-861 1999457 1999989 2000161 "OVAR" 2000252 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-860 1998721 1998842 1999003 "OUT" 1999316 T OUT (NIL) -7 NIL NIL NIL) (-859 1987619 1989830 1992030 "OUTFORM" 1996541 T OUTFORM (NIL) -8 NIL NIL NIL) (-858 1986955 1987216 1987343 "OUTBFILE" 1987512 T OUTBFILE (NIL) -8 NIL NIL NIL) (-857 1986262 1986427 1986455 "OUTBCON" 1986773 T OUTBCON (NIL) -9 NIL 1986939 NIL) (-856 1985863 1985975 1986132 "OUTBCON-" 1986137 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-855 1985270 1985592 1985681 "OSI" 1985794 T OSI (NIL) -8 NIL NIL NIL) (-854 1984826 1985138 1985166 "OSGROUP" 1985171 T OSGROUP (NIL) -9 NIL 1985193 NIL) (-853 1983571 1983798 1984083 "ORTHPOL" 1984573 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-852 1981149 1983406 1983527 "OREUP" 1983532 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-851 1978579 1980840 1980967 "ORESUP" 1981091 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-850 1976107 1976607 1977168 "OREPCTO" 1978068 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-849 1969923 1972098 1972139 "OREPCAT" 1974487 NIL OREPCAT (NIL T) -9 NIL 1975591 NIL) (-848 1967070 1967852 1968910 "OREPCAT-" 1968915 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-847 1966247 1966519 1966547 "ORDSET" 1966856 T ORDSET (NIL) -9 NIL 1967020 NIL) (-846 1965766 1965888 1966081 "ORDSET-" 1966086 NIL ORDSET- (NIL T) -8 NIL NIL NIL) (-845 1964392 1965157 1965185 "ORDRING" 1965387 T ORDRING (NIL) -9 NIL 1965512 NIL) (-844 1964037 1964131 1964275 "ORDRING-" 1964280 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-843 1963443 1963880 1963908 "ORDMON" 1963913 T ORDMON (NIL) -9 NIL 1963934 NIL) (-842 1962605 1962752 1962947 "ORDFUNS" 1963292 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-841 1961969 1962362 1962390 "ORDFIN" 1962455 T ORDFIN (NIL) -9 NIL 1962529 NIL) (-840 1958555 1960555 1960964 "ORDCOMP" 1961593 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-839 1957821 1957948 1958134 "ORDCOMP2" 1958415 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-838 1954429 1955312 1956126 "OPTPROB" 1957027 T OPTPROB (NIL) -8 NIL NIL NIL) (-837 1951231 1951870 1952574 "OPTPACK" 1953745 T OPTPACK (NIL) -7 NIL NIL NIL) (-836 1948944 1949684 1949712 "OPTCAT" 1950531 T OPTCAT (NIL) -9 NIL 1951181 NIL) (-835 1948387 1948621 1948726 "OPSIG" 1948859 T OPSIG (NIL) -8 NIL NIL NIL) (-834 1948155 1948194 1948260 "OPQUERY" 1948341 T OPQUERY (NIL) -7 NIL NIL NIL) (-833 1945313 1946466 1946970 "OP" 1947684 NIL OP (NIL T) -8 NIL NIL NIL) (-832 1944848 1945019 1945060 "OPERCAT" 1945195 NIL OPERCAT (NIL T) -9 NIL 1945263 NIL) (-831 1944694 1944721 1944807 "OPERCAT-" 1944812 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-830 1941533 1943491 1943860 "ONECOMP" 1944358 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-829 1940838 1940953 1941127 "ONECOMP2" 1941405 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-828 1940257 1940363 1940493 "OMSERVER" 1940728 T OMSERVER (NIL) -7 NIL NIL NIL) (-827 1937145 1939697 1939737 "OMSAGG" 1939798 NIL OMSAGG (NIL T) -9 NIL 1939862 NIL) (-826 1935768 1936031 1936313 "OMPKG" 1936883 T OMPKG (NIL) -7 NIL NIL NIL) (-825 1935198 1935301 1935329 "OM" 1935628 T OM (NIL) -9 NIL NIL NIL) (-824 1933772 1934747 1934916 "OMLO" 1935079 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-823 1932697 1932844 1933071 "OMEXPR" 1933598 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-822 1932015 1932243 1932379 "OMERR" 1932581 T OMERR (NIL) -8 NIL NIL NIL) (-821 1931193 1931436 1931596 "OMERRK" 1931875 T OMERRK (NIL) -8 NIL NIL NIL) (-820 1930671 1930870 1930978 "OMENC" 1931105 T OMENC (NIL) -8 NIL NIL NIL) (-819 1924566 1925751 1926922 "OMDEV" 1929520 T OMDEV (NIL) -8 NIL NIL NIL) (-818 1923635 1923806 1924000 "OMCONN" 1924392 T OMCONN (NIL) -8 NIL NIL NIL) (-817 1922248 1923198 1923226 "OINTDOM" 1923231 T OINTDOM (NIL) -9 NIL 1923252 NIL) (-816 1918054 1919238 1919954 "OFMONOID" 1921564 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-815 1917492 1917991 1918036 "ODVAR" 1918041 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-814 1914942 1917237 1917392 "ODR" 1917397 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-813 1907278 1914718 1914844 "ODPOL" 1914849 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-812 1901148 1907150 1907255 "ODP" 1907260 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-811 1899914 1900129 1900404 "ODETOOLS" 1900922 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-810 1896881 1897539 1898255 "ODESYS" 1899247 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-809 1891763 1892671 1893696 "ODERTRIC" 1895956 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-808 1891189 1891271 1891465 "ODERED" 1891675 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-807 1888077 1888625 1889302 "ODERAT" 1890612 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-806 1885034 1885501 1886098 "ODEPRRIC" 1887606 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-805 1883004 1883573 1884059 "ODEPROB" 1884568 T ODEPROB (NIL) -8 NIL NIL NIL) (-804 1879524 1880009 1880656 "ODEPRIM" 1882483 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-803 1878773 1878875 1879135 "ODEPAL" 1879416 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-802 1874935 1875726 1876590 "ODEPACK" 1877929 T ODEPACK (NIL) -7 NIL NIL NIL) (-801 1873968 1874075 1874304 "ODEINT" 1874824 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-800 1868069 1869494 1870941 "ODEIFTBL" 1872541 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-799 1863404 1864190 1865149 "ODEEF" 1867228 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-798 1862739 1862828 1863058 "ODECONST" 1863309 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-797 1860890 1861525 1861553 "ODECAT" 1862158 T ODECAT (NIL) -9 NIL 1862689 NIL) (-796 1857789 1860602 1860721 "OCT" 1860803 NIL OCT (NIL T) -8 NIL NIL NIL) (-795 1857427 1857470 1857597 "OCTCT2" 1857740 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-794 1852193 1854601 1854641 "OC" 1855738 NIL OC (NIL T) -9 NIL 1856596 NIL) (-793 1849420 1850168 1851158 "OC-" 1851252 NIL OC- (NIL T T) -8 NIL NIL NIL) (-792 1848798 1849240 1849268 "OCAMON" 1849273 T OCAMON (NIL) -9 NIL 1849294 NIL) (-791 1848355 1848670 1848698 "OASGP" 1848703 T OASGP (NIL) -9 NIL 1848723 NIL) (-790 1847642 1848105 1848133 "OAMONS" 1848173 T OAMONS (NIL) -9 NIL 1848216 NIL) (-789 1847082 1847489 1847517 "OAMON" 1847522 T OAMON (NIL) -9 NIL 1847542 NIL) (-788 1846386 1846878 1846906 "OAGROUP" 1846911 T OAGROUP (NIL) -9 NIL 1846931 NIL) (-787 1846076 1846126 1846214 "NUMTUBE" 1846330 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-786 1839649 1841167 1842703 "NUMQUAD" 1844560 T NUMQUAD (NIL) -7 NIL NIL NIL) (-785 1835405 1836393 1837418 "NUMODE" 1838644 T NUMODE (NIL) -7 NIL NIL NIL) (-784 1832786 1833640 1833668 "NUMINT" 1834591 T NUMINT (NIL) -9 NIL 1835355 NIL) (-783 1831734 1831931 1832149 "NUMFMT" 1832588 T NUMFMT (NIL) -7 NIL NIL NIL) (-782 1818093 1821038 1823570 "NUMERIC" 1829241 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-781 1812490 1817542 1817637 "NTSCAT" 1817642 NIL NTSCAT (NIL T T T T) -9 NIL 1817681 NIL) (-780 1811684 1811849 1812042 "NTPOLFN" 1812329 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-779 1799516 1808509 1809321 "NSUP" 1810905 NIL NSUP (NIL T) -8 NIL NIL NIL) (-778 1799148 1799205 1799314 "NSUP2" 1799453 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-777 1789131 1798922 1799055 "NSMP" 1799060 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-776 1787563 1787864 1788221 "NREP" 1788819 NIL NREP (NIL T) -7 NIL NIL NIL) (-775 1786154 1786406 1786764 "NPCOEF" 1787306 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-774 1785220 1785335 1785551 "NORMRETR" 1786035 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-773 1783261 1783551 1783960 "NORMPK" 1784928 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-772 1782946 1782974 1783098 "NORMMA" 1783227 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-771 1782773 1782903 1782932 "NONE" 1782937 T NONE (NIL) -8 NIL NIL NIL) (-770 1782562 1782591 1782660 "NONE1" 1782737 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-769 1782045 1782107 1782293 "NODE1" 1782494 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-768 1780315 1781139 1781394 "NNI" 1781741 T NNI (NIL) -8 NIL NIL 1781976) (-767 1778735 1779048 1779412 "NLINSOL" 1779983 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-766 1775003 1775971 1776870 "NIPROB" 1777856 T NIPROB (NIL) -8 NIL NIL NIL) (-765 1773760 1773994 1774296 "NFINTBAS" 1774765 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-764 1772934 1773410 1773451 "NETCLT" 1773623 NIL NETCLT (NIL T) -9 NIL 1773705 NIL) (-763 1771642 1771873 1772154 "NCODIV" 1772702 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-762 1771404 1771441 1771516 "NCNTFRAC" 1771599 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-761 1769584 1769948 1770368 "NCEP" 1771029 NIL NCEP (NIL T) -7 NIL NIL NIL) (-760 1768481 1769228 1769256 "NASRING" 1769366 T NASRING (NIL) -9 NIL 1769446 NIL) (-759 1768276 1768320 1768414 "NASRING-" 1768419 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-758 1767429 1767928 1767956 "NARNG" 1768073 T NARNG (NIL) -9 NIL 1768164 NIL) (-757 1767121 1767188 1767322 "NARNG-" 1767327 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-756 1766000 1766207 1766442 "NAGSP" 1766906 T NAGSP (NIL) -7 NIL NIL NIL) (-755 1757272 1758956 1760629 "NAGS" 1764347 T NAGS (NIL) -7 NIL NIL NIL) (-754 1755820 1756128 1756459 "NAGF07" 1756961 T NAGF07 (NIL) -7 NIL NIL NIL) (-753 1750358 1751649 1752956 "NAGF04" 1754533 T NAGF04 (NIL) -7 NIL NIL NIL) (-752 1743326 1744940 1746573 "NAGF02" 1748745 T NAGF02 (NIL) -7 NIL NIL NIL) (-751 1738550 1739650 1740767 "NAGF01" 1742229 T NAGF01 (NIL) -7 NIL NIL NIL) (-750 1732178 1733744 1735329 "NAGE04" 1736985 T NAGE04 (NIL) -7 NIL NIL NIL) (-749 1723347 1725468 1727598 "NAGE02" 1730068 T NAGE02 (NIL) -7 NIL NIL NIL) (-748 1719300 1720247 1721211 "NAGE01" 1722403 T NAGE01 (NIL) -7 NIL NIL NIL) (-747 1717095 1717629 1718187 "NAGD03" 1718762 T NAGD03 (NIL) -7 NIL NIL NIL) (-746 1708845 1710773 1712727 "NAGD02" 1715161 T NAGD02 (NIL) -7 NIL NIL NIL) (-745 1702656 1704081 1705521 "NAGD01" 1707425 T NAGD01 (NIL) -7 NIL NIL NIL) (-744 1698865 1699687 1700524 "NAGC06" 1701839 T NAGC06 (NIL) -7 NIL NIL NIL) (-743 1697330 1697662 1698018 "NAGC05" 1698529 T NAGC05 (NIL) -7 NIL NIL NIL) (-742 1696706 1696825 1696969 "NAGC02" 1697206 T NAGC02 (NIL) -7 NIL NIL NIL) (-741 1695766 1696323 1696363 "NAALG" 1696442 NIL NAALG (NIL T) -9 NIL 1696503 NIL) (-740 1695601 1695630 1695720 "NAALG-" 1695725 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-739 1689551 1690659 1691846 "MULTSQFR" 1694497 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-738 1688870 1688945 1689129 "MULTFACT" 1689463 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-737 1681955 1685833 1685886 "MTSCAT" 1686956 NIL MTSCAT (NIL T T) -9 NIL 1687470 NIL) (-736 1681667 1681721 1681813 "MTHING" 1681895 NIL MTHING (NIL T) -7 NIL NIL NIL) (-735 1681459 1681492 1681552 "MSYSCMD" 1681627 T MSYSCMD (NIL) -7 NIL NIL NIL) (-734 1677568 1680214 1680534 "MSET" 1681172 NIL MSET (NIL T) -8 NIL NIL NIL) (-733 1674663 1677129 1677170 "MSETAGG" 1677175 NIL MSETAGG (NIL T) -9 NIL 1677209 NIL) (-732 1670531 1672042 1672787 "MRING" 1673963 NIL MRING (NIL T T) -8 NIL NIL NIL) (-731 1670097 1670164 1670295 "MRF2" 1670458 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-730 1669715 1669750 1669894 "MRATFAC" 1670056 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-729 1667327 1667622 1668053 "MPRFF" 1669420 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-728 1661379 1667181 1667278 "MPOLY" 1667283 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-727 1660869 1660904 1661112 "MPCPF" 1661338 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-726 1660383 1660426 1660610 "MPC3" 1660820 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-725 1659578 1659659 1659880 "MPC2" 1660298 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-724 1657879 1658216 1658606 "MONOTOOL" 1659238 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-723 1657130 1657421 1657449 "MONOID" 1657668 T MONOID (NIL) -9 NIL 1657815 NIL) (-722 1656676 1656795 1656976 "MONOID-" 1656981 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-721 1647527 1653443 1653502 "MONOGEN" 1654176 NIL MONOGEN (NIL T T) -9 NIL 1654632 NIL) (-720 1644745 1645480 1646480 "MONOGEN-" 1646599 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-719 1643604 1644024 1644052 "MONADWU" 1644444 T MONADWU (NIL) -9 NIL 1644682 NIL) (-718 1642976 1643135 1643383 "MONADWU-" 1643388 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-717 1642361 1642579 1642607 "MONAD" 1642814 T MONAD (NIL) -9 NIL 1642926 NIL) (-716 1642046 1642124 1642256 "MONAD-" 1642261 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-715 1640362 1640959 1641238 "MOEBIUS" 1641799 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-714 1639754 1640132 1640172 "MODULE" 1640177 NIL MODULE (NIL T) -9 NIL 1640203 NIL) (-713 1639322 1639418 1639608 "MODULE-" 1639613 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-712 1637029 1637686 1638013 "MODRING" 1639146 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-711 1634000 1635134 1635655 "MODOP" 1636558 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-710 1632615 1633067 1633344 "MODMONOM" 1633863 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-709 1622412 1630906 1631320 "MODMON" 1632252 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-708 1619595 1621256 1621532 "MODFIELD" 1622287 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-707 1618599 1618876 1619066 "MMLFORM" 1619425 T MMLFORM (NIL) -8 NIL NIL NIL) (-706 1618125 1618168 1618347 "MMAP" 1618550 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-705 1616334 1617075 1617116 "MLO" 1617539 NIL MLO (NIL T) -9 NIL 1617781 NIL) (-704 1613700 1614216 1614818 "MLIFT" 1615815 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-703 1613091 1613175 1613329 "MKUCFUNC" 1613611 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-702 1612690 1612760 1612883 "MKRECORD" 1613014 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-701 1611737 1611899 1612127 "MKFUNC" 1612501 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-700 1611125 1611229 1611385 "MKFLCFN" 1611620 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-699 1610668 1611035 1611094 "MKCHSET" 1611099 NIL MKCHSET (NIL T) -8 NIL NIL NIL) (-698 1609945 1610047 1610232 "MKBCFUNC" 1610561 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-697 1606679 1609499 1609635 "MINT" 1609829 T MINT (NIL) -8 NIL NIL NIL) (-696 1605491 1605734 1606011 "MHROWRED" 1606434 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-695 1600898 1604026 1604431 "MFLOAT" 1605106 T MFLOAT (NIL) -8 NIL NIL NIL) (-694 1600255 1600331 1600502 "MFINFACT" 1600810 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-693 1596570 1597418 1598302 "MESH" 1599391 T MESH (NIL) -7 NIL NIL NIL) (-692 1594960 1595272 1595625 "MDDFACT" 1596257 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-691 1591802 1594119 1594160 "MDAGG" 1594415 NIL MDAGG (NIL T) -9 NIL 1594558 NIL) (-690 1581572 1591095 1591302 "MCMPLX" 1591615 T MCMPLX (NIL) -8 NIL NIL NIL) (-689 1580713 1580859 1581059 "MCDEN" 1581421 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-688 1578603 1578873 1579253 "MCALCFN" 1580443 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-687 1577528 1577768 1578001 "MAYBE" 1578409 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-686 1575140 1575663 1576225 "MATSTOR" 1576999 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-685 1571145 1574512 1574760 "MATRIX" 1574925 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-684 1566909 1567618 1568354 "MATLIN" 1570502 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-683 1557063 1560201 1560278 "MATCAT" 1565158 NIL MATCAT (NIL T T T) -9 NIL 1566575 NIL) (-682 1553419 1554440 1555796 "MATCAT-" 1555801 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-681 1552013 1552166 1552499 "MATCAT2" 1553254 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-680 1550125 1550449 1550833 "MAPPKG3" 1551688 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-679 1549106 1549279 1549501 "MAPPKG2" 1549949 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-678 1547605 1547889 1548216 "MAPPKG1" 1548812 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-677 1546711 1547011 1547188 "MAPPAST" 1547448 T MAPPAST (NIL) -8 NIL NIL NIL) (-676 1546322 1546380 1546503 "MAPHACK3" 1546647 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-675 1545914 1545975 1546089 "MAPHACK2" 1546254 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-674 1545351 1545455 1545597 "MAPHACK1" 1545805 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-673 1543457 1544051 1544355 "MAGMA" 1545079 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-672 1542963 1543181 1543272 "MACROAST" 1543386 T MACROAST (NIL) -8 NIL NIL NIL) (-671 1539429 1541202 1541663 "M3D" 1542535 NIL M3D (NIL T) -8 NIL NIL NIL) (-670 1533583 1537798 1537839 "LZSTAGG" 1538621 NIL LZSTAGG (NIL T) -9 NIL 1538916 NIL) (-669 1529540 1530714 1532171 "LZSTAGG-" 1532176 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-668 1526654 1527431 1527918 "LWORD" 1529085 NIL LWORD (NIL T) -8 NIL NIL NIL) (-667 1526257 1526458 1526533 "LSTAST" 1526599 T LSTAST (NIL) -8 NIL NIL NIL) (-666 1519450 1526028 1526162 "LSQM" 1526167 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-665 1518674 1518813 1519041 "LSPP" 1519305 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-664 1516486 1516787 1517243 "LSMP" 1518363 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-663 1513265 1513939 1514669 "LSMP1" 1515788 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-662 1507190 1512432 1512473 "LSAGG" 1512535 NIL LSAGG (NIL T) -9 NIL 1512613 NIL) (-661 1503885 1504809 1506022 "LSAGG-" 1506027 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-660 1501511 1503029 1503278 "LPOLY" 1503680 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-659 1501093 1501178 1501301 "LPEFRAC" 1501420 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-658 1499440 1500187 1500440 "LO" 1500925 NIL LO (NIL T T T) -8 NIL NIL NIL) (-657 1499092 1499204 1499232 "LOGIC" 1499343 T LOGIC (NIL) -9 NIL 1499424 NIL) (-656 1498954 1498977 1499048 "LOGIC-" 1499053 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-655 1498147 1498287 1498480 "LODOOPS" 1498810 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-654 1495597 1498063 1498129 "LODO" 1498134 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-653 1494135 1494370 1494723 "LODOF" 1495344 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-652 1490483 1492888 1492929 "LODOCAT" 1493367 NIL LODOCAT (NIL T) -9 NIL 1493578 NIL) (-651 1490216 1490274 1490401 "LODOCAT-" 1490406 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-650 1487563 1490057 1490175 "LODO2" 1490180 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-649 1485025 1487500 1487545 "LODO1" 1487550 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-648 1483885 1484050 1484362 "LODEEF" 1484848 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-647 1479171 1482015 1482056 "LNAGG" 1483003 NIL LNAGG (NIL T) -9 NIL 1483447 NIL) (-646 1478318 1478532 1478874 "LNAGG-" 1478879 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-645 1474481 1475243 1475882 "LMOPS" 1477733 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-644 1473876 1474238 1474279 "LMODULE" 1474340 NIL LMODULE (NIL T) -9 NIL 1474382 NIL) (-643 1471122 1473521 1473644 "LMDICT" 1473786 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-642 1470848 1471030 1471090 "LITERAL" 1471095 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-641 1464079 1469794 1470092 "LIST" 1470583 NIL LIST (NIL T) -8 NIL NIL NIL) (-640 1463604 1463678 1463817 "LIST3" 1463999 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-639 1462611 1462789 1463017 "LIST2" 1463422 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-638 1460745 1461057 1461456 "LIST2MAP" 1462258 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-637 1459467 1460111 1460152 "LINEXP" 1460407 NIL LINEXP (NIL T) -9 NIL 1460556 NIL) (-636 1458114 1458374 1458671 "LINDEP" 1459219 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-635 1454881 1455600 1456377 "LIMITRF" 1457369 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-634 1453156 1453452 1453868 "LIMITPS" 1454576 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-633 1447611 1452667 1452895 "LIE" 1452977 NIL LIE (NIL T T) -8 NIL NIL NIL) (-632 1446660 1447103 1447143 "LIECAT" 1447283 NIL LIECAT (NIL T) -9 NIL 1447434 NIL) (-631 1446501 1446528 1446616 "LIECAT-" 1446621 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-630 1439113 1445950 1446115 "LIB" 1446356 T LIB (NIL) -8 NIL NIL NIL) (-629 1434748 1435631 1436566 "LGROBP" 1438230 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-628 1432614 1432888 1433250 "LF" 1434469 NIL LF (NIL T T) -7 NIL NIL NIL) (-627 1431454 1432146 1432174 "LFCAT" 1432381 T LFCAT (NIL) -9 NIL 1432520 NIL) (-626 1428356 1428986 1429674 "LEXTRIPK" 1430818 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-625 1425127 1425926 1426429 "LEXP" 1427936 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-624 1424630 1424848 1424940 "LETAST" 1425055 T LETAST (NIL) -8 NIL NIL NIL) (-623 1423028 1423341 1423742 "LEADCDET" 1424312 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-622 1422218 1422292 1422521 "LAZM3PK" 1422949 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-621 1417162 1420295 1420833 "LAUPOL" 1421730 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-620 1416727 1416771 1416939 "LAPLACE" 1417112 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-619 1414693 1415828 1416079 "LA" 1416560 NIL LA (NIL T T T) -8 NIL NIL NIL) (-618 1413766 1414324 1414365 "LALG" 1414427 NIL LALG (NIL T) -9 NIL 1414486 NIL) (-617 1413480 1413539 1413675 "LALG-" 1413680 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-616 1413315 1413339 1413380 "KVTFROM" 1413442 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-615 1412115 1412532 1412761 "KTVLOGIC" 1413106 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-614 1411950 1411974 1412015 "KRCFROM" 1412077 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-613 1410854 1411041 1411340 "KOVACIC" 1411750 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-612 1410689 1410713 1410754 "KONVERT" 1410816 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-611 1410524 1410548 1410589 "KOERCE" 1410651 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-610 1408258 1409018 1409411 "KERNEL" 1410163 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-609 1407760 1407841 1407971 "KERNEL2" 1408172 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-608 1401611 1406299 1406353 "KDAGG" 1406730 NIL KDAGG (NIL T T) -9 NIL 1406936 NIL) (-607 1401140 1401264 1401469 "KDAGG-" 1401474 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-606 1394315 1400801 1400956 "KAFILE" 1401018 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-605 1388770 1393826 1394054 "JORDAN" 1394136 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-604 1388176 1388419 1388540 "JOINAST" 1388669 T JOINAST (NIL) -8 NIL NIL NIL) (-603 1388022 1388081 1388136 "JAVACODE" 1388141 T JAVACODE (NIL) -8 NIL NIL NIL) (-602 1384321 1386227 1386281 "IXAGG" 1387210 NIL IXAGG (NIL T T) -9 NIL 1387669 NIL) (-601 1383240 1383546 1383965 "IXAGG-" 1383970 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-600 1378820 1383162 1383221 "IVECTOR" 1383226 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-599 1377586 1377823 1378089 "ITUPLE" 1378587 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-598 1376022 1376199 1376505 "ITRIGMNP" 1377408 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-597 1374767 1374971 1375254 "ITFUN3" 1375798 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-596 1374399 1374456 1374565 "ITFUN2" 1374704 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-595 1372228 1373261 1373560 "ITAYLOR" 1374133 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-594 1361200 1366365 1367528 "ISUPS" 1371098 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-593 1360304 1360444 1360680 "ISUMP" 1361047 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-592 1355568 1360105 1360184 "ISTRING" 1360257 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-591 1355071 1355289 1355381 "ISAST" 1355496 T ISAST (NIL) -8 NIL NIL NIL) (-590 1354281 1354362 1354578 "IRURPK" 1354985 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-589 1353217 1353418 1353658 "IRSN" 1354061 T IRSN (NIL) -7 NIL NIL NIL) (-588 1351246 1351601 1352037 "IRRF2F" 1352855 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-587 1350993 1351031 1351107 "IRREDFFX" 1351202 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-586 1349608 1349867 1350166 "IROOT" 1350726 NIL IROOT (NIL T) -7 NIL NIL NIL) (-585 1346239 1347292 1347984 "IR" 1348948 NIL IR (NIL T) -8 NIL NIL NIL) (-584 1343852 1344347 1344913 "IR2" 1345717 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-583 1342924 1343037 1343258 "IR2F" 1343735 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-582 1342715 1342749 1342809 "IPRNTPK" 1342884 T IPRNTPK (NIL) -7 NIL NIL NIL) (-581 1339322 1342604 1342673 "IPF" 1342678 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-580 1337676 1339247 1339304 "IPADIC" 1339309 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-579 1337015 1337236 1337366 "IP4ADDR" 1337566 T IP4ADDR (NIL) -8 NIL NIL NIL) (-578 1336515 1336719 1336829 "IOMODE" 1336925 T IOMODE (NIL) -8 NIL NIL NIL) (-577 1335588 1336112 1336239 "IOBFILE" 1336408 T IOBFILE (NIL) -8 NIL NIL NIL) (-576 1335076 1335492 1335520 "IOBCON" 1335525 T IOBCON (NIL) -9 NIL 1335546 NIL) (-575 1334573 1334631 1334821 "INVLAPLA" 1335012 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-574 1324221 1326575 1328961 "INTTR" 1332237 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-573 1320565 1321307 1322171 "INTTOOLS" 1323406 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-572 1320151 1320242 1320359 "INTSLPE" 1320468 T INTSLPE (NIL) -7 NIL NIL NIL) (-571 1318132 1320074 1320133 "INTRVL" 1320138 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-570 1315734 1316246 1316821 "INTRF" 1317617 NIL INTRF (NIL T) -7 NIL NIL NIL) (-569 1315145 1315242 1315384 "INTRET" 1315632 NIL INTRET (NIL T) -7 NIL NIL NIL) (-568 1313142 1313531 1314001 "INTRAT" 1314753 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-567 1310370 1310953 1311579 "INTPM" 1312627 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-566 1307072 1307672 1308417 "INTPAF" 1309756 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-565 1302251 1303213 1304264 "INTPACK" 1306041 T INTPACK (NIL) -7 NIL NIL NIL) (-564 1299155 1301980 1302107 "INT" 1302144 T INT (NIL) -8 NIL NIL NIL) (-563 1298407 1298559 1298767 "INTHERTR" 1298997 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-562 1297846 1297926 1298114 "INTHERAL" 1298321 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-561 1295692 1296135 1296592 "INTHEORY" 1297409 T INTHEORY (NIL) -7 NIL NIL NIL) (-560 1287000 1288621 1290400 "INTG0" 1294044 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-559 1267573 1272363 1277173 "INTFTBL" 1282210 T INTFTBL (NIL) -8 NIL NIL NIL) (-558 1266822 1266960 1267133 "INTFACT" 1267432 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-557 1264207 1264653 1265217 "INTEF" 1266376 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-556 1262666 1263379 1263407 "INTDOM" 1263708 T INTDOM (NIL) -9 NIL 1263915 NIL) (-555 1262035 1262209 1262451 "INTDOM-" 1262456 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-554 1258522 1260419 1260473 "INTCAT" 1261272 NIL INTCAT (NIL T) -9 NIL 1261592 NIL) (-553 1257994 1258097 1258225 "INTBIT" 1258414 T INTBIT (NIL) -7 NIL NIL NIL) (-552 1256665 1256819 1257133 "INTALG" 1257839 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-551 1256122 1256212 1256382 "INTAF" 1256569 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-550 1249576 1255932 1256072 "INTABL" 1256077 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-549 1248907 1249346 1249411 "INT8" 1249445 T INT8 (NIL) -8 NIL NIL 1249490) (-548 1248237 1248676 1248741 "INT64" 1248775 T INT64 (NIL) -8 NIL NIL 1248820) (-547 1247567 1248006 1248071 "INT32" 1248105 T INT32 (NIL) -8 NIL NIL 1248150) (-546 1246897 1247336 1247401 "INT16" 1247435 T INT16 (NIL) -8 NIL NIL 1247480) (-545 1241904 1244586 1244614 "INS" 1245548 T INS (NIL) -9 NIL 1246213 NIL) (-544 1239144 1239915 1240889 "INS-" 1240962 NIL INS- (NIL T) -8 NIL NIL NIL) (-543 1237919 1238146 1238444 "INPSIGN" 1238897 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-542 1237037 1237154 1237351 "INPRODPF" 1237799 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-541 1235931 1236048 1236285 "INPRODFF" 1236917 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-540 1234931 1235083 1235343 "INNMFACT" 1235767 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-539 1234128 1234225 1234413 "INMODGCD" 1234830 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-538 1232636 1232881 1233205 "INFSP" 1233873 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-537 1231820 1231937 1232120 "INFPROD0" 1232516 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-536 1228702 1229885 1230400 "INFORM" 1231313 T INFORM (NIL) -8 NIL NIL NIL) (-535 1228312 1228372 1228470 "INFORM1" 1228637 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-534 1227835 1227924 1228038 "INFINITY" 1228218 T INFINITY (NIL) -7 NIL NIL NIL) (-533 1227011 1227555 1227656 "INETCLTS" 1227754 T INETCLTS (NIL) -8 NIL NIL NIL) (-532 1225627 1225877 1226198 "INEP" 1226759 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-531 1224903 1225524 1225589 "INDE" 1225594 NIL INDE (NIL T) -8 NIL NIL NIL) (-530 1224467 1224535 1224652 "INCRMAPS" 1224830 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-529 1223285 1223736 1223942 "INBFILE" 1224281 T INBFILE (NIL) -8 NIL NIL NIL) (-528 1218585 1219521 1220465 "INBFF" 1222373 NIL INBFF (NIL T) -7 NIL NIL NIL) (-527 1217493 1217762 1217790 "INBCON" 1218303 T INBCON (NIL) -9 NIL 1218569 NIL) (-526 1216745 1216968 1217244 "INBCON-" 1217249 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-525 1216247 1216466 1216558 "INAST" 1216673 T INAST (NIL) -8 NIL NIL NIL) (-524 1215701 1215926 1216032 "IMPTAST" 1216161 T IMPTAST (NIL) -8 NIL NIL NIL) (-523 1212195 1215545 1215649 "IMATRIX" 1215654 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-522 1210907 1211030 1211345 "IMATQF" 1212051 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-521 1209127 1209354 1209691 "IMATLIN" 1210663 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-520 1203753 1209051 1209109 "ILIST" 1209114 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-519 1201706 1203613 1203726 "IIARRAY2" 1203731 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-518 1197131 1201617 1201681 "IFF" 1201686 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-517 1196505 1196748 1196864 "IFAST" 1197035 T IFAST (NIL) -8 NIL NIL NIL) (-516 1191548 1195797 1195985 "IFARRAY" 1196362 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-515 1190755 1191452 1191525 "IFAMON" 1191530 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-514 1190339 1190404 1190458 "IEVALAB" 1190665 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-513 1190014 1190082 1190242 "IEVALAB-" 1190247 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-512 1189672 1189928 1189991 "IDPO" 1189996 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-511 1188949 1189561 1189636 "IDPOAMS" 1189641 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-510 1188283 1188838 1188913 "IDPOAM" 1188918 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-509 1187368 1187618 1187671 "IDPC" 1188084 NIL IDPC (NIL T T) -9 NIL 1188233 NIL) (-508 1186864 1187260 1187333 "IDPAM" 1187338 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-507 1186267 1186756 1186829 "IDPAG" 1186834 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-506 1186035 1186182 1186232 "IDENT" 1186237 T IDENT (NIL) -8 NIL NIL NIL) (-505 1182290 1183138 1184033 "IDECOMP" 1185192 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-504 1175154 1176213 1177260 "IDEAL" 1181326 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-503 1174318 1174430 1174629 "ICDEN" 1175038 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-502 1173416 1173798 1173945 "ICARD" 1174191 T ICARD (NIL) -8 NIL NIL NIL) (-501 1171476 1171789 1172194 "IBPTOOLS" 1173093 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-500 1167110 1171096 1171209 "IBITS" 1171395 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-499 1163833 1164409 1165104 "IBATOOL" 1166527 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-498 1161612 1162074 1162607 "IBACHIN" 1163368 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-497 1159489 1161458 1161561 "IARRAY2" 1161566 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-496 1155642 1159415 1159472 "IARRAY1" 1159477 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-495 1149626 1154054 1154535 "IAN" 1155181 T IAN (NIL) -8 NIL NIL NIL) (-494 1149137 1149194 1149367 "IALGFACT" 1149563 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-493 1148665 1148778 1148806 "HYPCAT" 1149013 T HYPCAT (NIL) -9 NIL NIL NIL) (-492 1148203 1148320 1148506 "HYPCAT-" 1148511 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-491 1147825 1147998 1148081 "HOSTNAME" 1148140 T HOSTNAME (NIL) -8 NIL NIL NIL) (-490 1147670 1147707 1147748 "HOMOTOP" 1147753 NIL HOMOTOP (NIL T) -9 NIL 1147786 NIL) (-489 1144349 1145680 1145721 "HOAGG" 1146702 NIL HOAGG (NIL T) -9 NIL 1147381 NIL) (-488 1142943 1143342 1143868 "HOAGG-" 1143873 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-487 1136974 1142538 1142687 "HEXADEC" 1142814 T HEXADEC (NIL) -8 NIL NIL NIL) (-486 1135722 1135944 1136207 "HEUGCD" 1136751 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-485 1134825 1135559 1135689 "HELLFDIV" 1135694 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-484 1133052 1134602 1134690 "HEAP" 1134769 NIL HEAP (NIL T) -8 NIL NIL NIL) (-483 1132342 1132604 1132738 "HEADAST" 1132938 T HEADAST (NIL) -8 NIL NIL NIL) (-482 1126256 1132257 1132319 "HDP" 1132324 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-481 1119999 1125891 1126043 "HDMP" 1126157 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-480 1119323 1119463 1119627 "HB" 1119855 T HB (NIL) -7 NIL NIL NIL) (-479 1112820 1119169 1119273 "HASHTBL" 1119278 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-478 1112323 1112541 1112633 "HASAST" 1112748 T HASAST (NIL) -8 NIL NIL NIL) (-477 1110128 1111945 1112127 "HACKPI" 1112161 T HACKPI (NIL) -8 NIL NIL NIL) (-476 1105823 1109981 1110094 "GTSET" 1110099 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-475 1099349 1105701 1105799 "GSTBL" 1105804 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-474 1091654 1098380 1098645 "GSERIES" 1099140 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-473 1090821 1091212 1091240 "GROUP" 1091443 T GROUP (NIL) -9 NIL 1091577 NIL) (-472 1090187 1090346 1090597 "GROUP-" 1090602 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-471 1088554 1088875 1089262 "GROEBSOL" 1089864 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-470 1087494 1087756 1087807 "GRMOD" 1088336 NIL GRMOD (NIL T T) -9 NIL 1088504 NIL) (-469 1087262 1087298 1087426 "GRMOD-" 1087431 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-468 1082579 1083616 1084616 "GRIMAGE" 1086282 T GRIMAGE (NIL) -8 NIL NIL NIL) (-467 1081045 1081306 1081630 "GRDEF" 1082275 T GRDEF (NIL) -7 NIL NIL NIL) (-466 1080489 1080605 1080746 "GRAY" 1080924 T GRAY (NIL) -7 NIL NIL NIL) (-465 1079702 1080082 1080133 "GRALG" 1080286 NIL GRALG (NIL T T) -9 NIL 1080379 NIL) (-464 1079363 1079436 1079599 "GRALG-" 1079604 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-463 1076167 1078948 1079126 "GPOLSET" 1079270 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-462 1075521 1075578 1075836 "GOSPER" 1076104 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-461 1071280 1071959 1072485 "GMODPOL" 1075220 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-460 1070285 1070469 1070707 "GHENSEL" 1071092 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-459 1064336 1065179 1066206 "GENUPS" 1069369 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-458 1064033 1064084 1064173 "GENUFACT" 1064279 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-457 1063445 1063522 1063687 "GENPGCD" 1063951 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-456 1062919 1062954 1063167 "GENMFACT" 1063404 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-455 1061485 1061742 1062049 "GENEEZ" 1062662 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-454 1055386 1061096 1061258 "GDMP" 1061408 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-453 1044755 1049157 1050263 "GCNAALG" 1054369 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-452 1043174 1044010 1044038 "GCDDOM" 1044293 T GCDDOM (NIL) -9 NIL 1044450 NIL) (-451 1042644 1042771 1042986 "GCDDOM-" 1042991 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-450 1041316 1041501 1041805 "GB" 1042423 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-449 1029932 1032262 1034654 "GBINTERN" 1039007 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-448 1027769 1028061 1028482 "GBF" 1029607 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-447 1026550 1026715 1026982 "GBEUCLID" 1027585 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-446 1025899 1026024 1026173 "GAUSSFAC" 1026421 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-445 1024266 1024568 1024882 "GALUTIL" 1025618 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-444 1022574 1022848 1023172 "GALPOLYU" 1023993 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-443 1019939 1020229 1020636 "GALFACTU" 1022271 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-442 1011745 1013244 1014852 "GALFACT" 1018371 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-441 1009133 1009791 1009819 "FVFUN" 1010975 T FVFUN (NIL) -9 NIL 1011695 NIL) (-440 1008399 1008581 1008609 "FVC" 1008900 T FVC (NIL) -9 NIL 1009083 NIL) (-439 1008069 1008224 1008292 "FUNDESC" 1008351 T FUNDESC (NIL) -8 NIL NIL NIL) (-438 1007711 1007866 1007947 "FUNCTION" 1008021 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-437 1005482 1006033 1006499 "FT" 1007265 T FT (NIL) -8 NIL NIL NIL) (-436 1004300 1004783 1004986 "FTEM" 1005299 T FTEM (NIL) -8 NIL NIL NIL) (-435 1002556 1002845 1003249 "FSUPFACT" 1003991 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-434 1000953 1001242 1001574 "FST" 1002244 T FST (NIL) -8 NIL NIL NIL) (-433 1000124 1000230 1000425 "FSRED" 1000835 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-432 998802 999058 999412 "FSPRMELT" 999839 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-431 995887 996325 996824 "FSPECF" 998365 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-430 977941 986390 986430 "FS" 990278 NIL FS (NIL T) -9 NIL 992567 NIL) (-429 966588 969581 973637 "FS-" 973934 NIL FS- (NIL T T) -8 NIL NIL NIL) (-428 966102 966156 966333 "FSINT" 966529 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-427 964421 965095 965398 "FSERIES" 965881 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-426 963435 963551 963782 "FSCINT" 964301 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-425 959669 962379 962420 "FSAGG" 962790 NIL FSAGG (NIL T) -9 NIL 963049 NIL) (-424 957431 958032 958828 "FSAGG-" 958923 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-423 956473 956616 956843 "FSAGG2" 957284 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-422 954127 954407 954961 "FS2UPS" 956191 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-421 953709 953752 953907 "FS2" 954078 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-420 952566 952737 953046 "FS2EXPXP" 953534 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-419 951992 952107 952259 "FRUTIL" 952446 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-418 943432 947487 948845 "FR" 950666 NIL FR (NIL T) -8 NIL NIL NIL) (-417 938507 941150 941190 "FRNAALG" 942586 NIL FRNAALG (NIL T) -9 NIL 943193 NIL) (-416 934180 935256 936531 "FRNAALG-" 937281 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-415 933818 933861 933988 "FRNAAF2" 934131 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-414 932225 932672 932967 "FRMOD" 933630 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-413 930003 930608 930925 "FRIDEAL" 932016 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-412 929198 929285 929574 "FRIDEAL2" 929910 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-411 928331 928745 928786 "FRETRCT" 928791 NIL FRETRCT (NIL T) -9 NIL 928967 NIL) (-410 927443 927674 928025 "FRETRCT-" 928030 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-409 924647 925831 925890 "FRAMALG" 926772 NIL FRAMALG (NIL T T) -9 NIL 927064 NIL) (-408 922781 923236 923866 "FRAMALG-" 924089 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-407 916729 922256 922532 "FRAC" 922537 NIL FRAC (NIL T) -8 NIL NIL NIL) (-406 916365 916422 916529 "FRAC2" 916666 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-405 916001 916058 916165 "FR2" 916302 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-404 910666 913526 913554 "FPS" 914673 T FPS (NIL) -9 NIL 915230 NIL) (-403 910115 910224 910388 "FPS-" 910534 NIL FPS- (NIL T) -8 NIL NIL NIL) (-402 907561 909204 909232 "FPC" 909457 T FPC (NIL) -9 NIL 909599 NIL) (-401 907354 907394 907491 "FPC-" 907496 NIL FPC- (NIL T) -8 NIL NIL NIL) (-400 906232 906842 906883 "FPATMAB" 906888 NIL FPATMAB (NIL T) -9 NIL 907040 NIL) (-399 903932 904408 904834 "FPARFRAC" 905869 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-398 899325 899824 900506 "FORTRAN" 903364 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-397 897041 897541 898080 "FORT" 898806 T FORT (NIL) -7 NIL NIL NIL) (-396 894717 895279 895307 "FORTFN" 896367 T FORTFN (NIL) -9 NIL 896991 NIL) (-395 894481 894531 894559 "FORTCAT" 894618 T FORTCAT (NIL) -9 NIL 894680 NIL) (-394 892614 893097 893487 "FORMULA" 894111 T FORMULA (NIL) -8 NIL NIL NIL) (-393 892402 892432 892501 "FORMULA1" 892578 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-392 891925 891977 892150 "FORDER" 892344 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-391 891021 891185 891378 "FOP" 891752 T FOP (NIL) -7 NIL NIL NIL) (-390 889629 890301 890475 "FNLA" 890903 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-389 888384 888773 888801 "FNCAT" 889261 T FNCAT (NIL) -9 NIL 889521 NIL) (-388 887950 888343 888371 "FNAME" 888376 T FNAME (NIL) -8 NIL NIL NIL) (-387 886605 887542 887570 "FMTC" 887575 T FMTC (NIL) -9 NIL 887611 NIL) (-386 882965 884128 884757 "FMONOID" 886009 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-385 882184 882707 882856 "FM" 882861 NIL FM (NIL T T) -8 NIL NIL NIL) (-384 879608 880254 880282 "FMFUN" 881426 T FMFUN (NIL) -9 NIL 882134 NIL) (-383 878877 879058 879086 "FMC" 879376 T FMC (NIL) -9 NIL 879558 NIL) (-382 876071 876905 876959 "FMCAT" 878154 NIL FMCAT (NIL T T) -9 NIL 878649 NIL) (-381 874964 875837 875937 "FM1" 876016 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-380 872738 873154 873648 "FLOATRP" 874515 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-379 866339 870467 871088 "FLOAT" 872137 T FLOAT (NIL) -8 NIL NIL NIL) (-378 863777 864277 864855 "FLOATCP" 865806 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-377 862578 863390 863431 "FLINEXP" 863436 NIL FLINEXP (NIL T) -9 NIL 863529 NIL) (-376 861732 861967 862295 "FLINEXP-" 862300 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-375 860808 860952 861176 "FLASORT" 861584 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-374 858025 858867 858919 "FLALG" 860146 NIL FLALG (NIL T T) -9 NIL 860613 NIL) (-373 851809 855511 855552 "FLAGG" 856814 NIL FLAGG (NIL T) -9 NIL 857466 NIL) (-372 850535 850874 851364 "FLAGG-" 851369 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-371 849577 849720 849947 "FLAGG2" 850388 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-370 846544 847526 847585 "FINRALG" 848713 NIL FINRALG (NIL T T) -9 NIL 849221 NIL) (-369 845704 845933 846272 "FINRALG-" 846277 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-368 845110 845323 845351 "FINITE" 845547 T FINITE (NIL) -9 NIL 845654 NIL) (-367 837568 839729 839769 "FINAALG" 843436 NIL FINAALG (NIL T) -9 NIL 844889 NIL) (-366 832900 833950 835094 "FINAALG-" 836473 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-365 832295 832655 832758 "FILE" 832830 NIL FILE (NIL T) -8 NIL NIL NIL) (-364 830979 831291 831345 "FILECAT" 832029 NIL FILECAT (NIL T T) -9 NIL 832245 NIL) (-363 828839 830341 830369 "FIELD" 830409 T FIELD (NIL) -9 NIL 830489 NIL) (-362 827459 827844 828355 "FIELD-" 828360 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-361 825336 826094 826441 "FGROUP" 827145 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-360 824426 824590 824810 "FGLMICPK" 825168 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-359 820285 824351 824408 "FFX" 824413 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-358 819886 819947 820082 "FFSLPE" 820218 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-357 815875 816658 817454 "FFPOLY" 819122 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-356 815379 815415 815624 "FFPOLY2" 815833 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-355 811249 815298 815361 "FFP" 815366 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-354 806674 811160 811224 "FF" 811229 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-353 801827 806017 806207 "FFNBX" 806528 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-352 796783 800962 801220 "FFNBP" 801681 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-351 791443 796067 796278 "FFNB" 796616 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-350 790275 790473 790788 "FFINTBAS" 791240 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-349 786495 788682 788710 "FFIELDC" 789330 T FFIELDC (NIL) -9 NIL 789706 NIL) (-348 785157 785528 786025 "FFIELDC-" 786030 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-347 784726 784772 784896 "FFHOM" 785099 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-346 782421 782908 783425 "FFF" 784241 NIL FFF (NIL T) -7 NIL NIL NIL) (-345 778066 782163 782264 "FFCGX" 782364 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-344 773714 777798 777905 "FFCGP" 778009 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-343 768924 773441 773549 "FFCG" 773650 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-342 750749 759795 759881 "FFCAT" 765046 NIL FFCAT (NIL T T T) -9 NIL 766497 NIL) (-341 745947 746994 748308 "FFCAT-" 749538 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-340 745358 745401 745636 "FFCAT2" 745898 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-339 734555 738330 739550 "FEXPR" 744210 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-338 733555 733990 734031 "FEVALAB" 734115 NIL FEVALAB (NIL T) -9 NIL 734376 NIL) (-337 732714 732924 733262 "FEVALAB-" 733267 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-336 731307 732097 732300 "FDIV" 732613 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-335 728373 729088 729203 "FDIVCAT" 730771 NIL FDIVCAT (NIL T T T T) -9 NIL 731208 NIL) (-334 728135 728162 728332 "FDIVCAT-" 728337 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-333 727355 727442 727719 "FDIV2" 728042 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-332 726041 726300 726589 "FCPAK1" 727086 T FCPAK1 (NIL) -7 NIL NIL NIL) (-331 725167 725541 725682 "FCOMP" 725932 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-330 708896 712317 715855 "FC" 721649 T FC (NIL) -8 NIL NIL NIL) (-329 701467 705460 705500 "FAXF" 707302 NIL FAXF (NIL T) -9 NIL 707994 NIL) (-328 698743 699401 700226 "FAXF-" 700691 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-327 693843 698119 698295 "FARRAY" 698600 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-326 689088 691128 691181 "FAMR" 692204 NIL FAMR (NIL T T) -9 NIL 692664 NIL) (-325 687978 688280 688715 "FAMR-" 688720 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-324 687174 687900 687953 "FAMONOID" 687958 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-323 684986 685670 685723 "FAMONC" 686664 NIL FAMONC (NIL T T) -9 NIL 687050 NIL) (-322 683678 684740 684877 "FAGROUP" 684882 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-321 681473 681792 682195 "FACUTIL" 683359 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-320 680572 680757 680979 "FACTFUNC" 681283 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-319 672969 679823 680035 "EXPUPXS" 680428 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-318 670452 670992 671578 "EXPRTUBE" 672403 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-317 666646 667238 667975 "EXPRODE" 669791 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-316 652012 665301 665729 "EXPR" 666250 NIL EXPR (NIL T) -8 NIL NIL NIL) (-315 646419 647006 647819 "EXPR2UPS" 651310 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-314 646055 646112 646219 "EXPR2" 646356 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-313 637452 645187 645484 "EXPEXPAN" 645892 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-312 637279 637409 637438 "EXIT" 637443 T EXIT (NIL) -8 NIL NIL NIL) (-311 636786 637003 637094 "EXITAST" 637208 T EXITAST (NIL) -8 NIL NIL NIL) (-310 636413 636475 636588 "EVALCYC" 636718 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-309 635954 636072 636113 "EVALAB" 636283 NIL EVALAB (NIL T) -9 NIL 636387 NIL) (-308 635435 635557 635778 "EVALAB-" 635783 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-307 632895 634171 634199 "EUCDOM" 634754 T EUCDOM (NIL) -9 NIL 635104 NIL) (-306 631300 631742 632332 "EUCDOM-" 632337 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-305 618838 621598 624348 "ESTOOLS" 628570 T ESTOOLS (NIL) -7 NIL NIL NIL) (-304 618470 618527 618636 "ESTOOLS2" 618775 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-303 618221 618263 618343 "ESTOOLS1" 618422 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-302 612126 613854 613882 "ES" 616650 T ES (NIL) -9 NIL 618059 NIL) (-301 607073 608360 610177 "ES-" 610341 NIL ES- (NIL T) -8 NIL NIL NIL) (-300 603447 604208 604988 "ESCONT" 606313 T ESCONT (NIL) -7 NIL NIL NIL) (-299 603192 603224 603306 "ESCONT1" 603409 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-298 602867 602917 603017 "ES2" 603136 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-297 602497 602555 602664 "ES1" 602803 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-296 601713 601842 602018 "ERROR" 602341 T ERROR (NIL) -7 NIL NIL NIL) (-295 595216 601572 601663 "EQTBL" 601668 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-294 587767 590530 591979 "EQ" 593800 NIL -3317 (NIL T) -8 NIL NIL NIL) (-293 587399 587456 587565 "EQ2" 587704 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-292 582688 583737 584830 "EP" 586338 NIL EP (NIL T) -7 NIL NIL NIL) (-291 581266 581563 581875 "ENV" 582396 T ENV (NIL) -8 NIL NIL NIL) (-290 580437 580965 580993 "ENTIRER" 580998 T ENTIRER (NIL) -9 NIL 581044 NIL) (-289 576931 578392 578762 "EMR" 580236 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-288 576075 576260 576314 "ELTAGG" 576694 NIL ELTAGG (NIL T T) -9 NIL 576905 NIL) (-287 575794 575856 575997 "ELTAGG-" 576002 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-286 575583 575612 575666 "ELTAB" 575750 NIL ELTAB (NIL T T) -9 NIL NIL NIL) (-285 574709 574855 575054 "ELFUTS" 575434 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-284 574451 574507 574535 "ELEMFUN" 574640 T ELEMFUN (NIL) -9 NIL NIL NIL) (-283 574321 574342 574410 "ELEMFUN-" 574415 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-282 569212 572421 572462 "ELAGG" 573402 NIL ELAGG (NIL T) -9 NIL 573865 NIL) (-281 567497 567931 568594 "ELAGG-" 568599 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-280 566154 566434 566729 "ELABEXPR" 567222 T ELABEXPR (NIL) -8 NIL NIL NIL) (-279 559018 560821 561648 "EFUPXS" 565430 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-278 552468 554269 555079 "EFULS" 558294 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-277 549890 550248 550727 "EFSTRUC" 552100 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-276 538961 540527 542087 "EF" 548405 NIL EF (NIL T T) -7 NIL NIL NIL) (-275 538062 538446 538595 "EAB" 538832 T EAB (NIL) -8 NIL NIL NIL) (-274 537271 538021 538049 "E04UCFA" 538054 T E04UCFA (NIL) -8 NIL NIL NIL) (-273 536480 537230 537258 "E04NAFA" 537263 T E04NAFA (NIL) -8 NIL NIL NIL) (-272 535689 536439 536467 "E04MBFA" 536472 T E04MBFA (NIL) -8 NIL NIL NIL) (-271 534898 535648 535676 "E04JAFA" 535681 T E04JAFA (NIL) -8 NIL NIL NIL) (-270 534109 534857 534885 "E04GCFA" 534890 T E04GCFA (NIL) -8 NIL NIL NIL) (-269 533320 534068 534096 "E04FDFA" 534101 T E04FDFA (NIL) -8 NIL NIL NIL) (-268 532529 533279 533307 "E04DGFA" 533312 T E04DGFA (NIL) -8 NIL NIL NIL) (-267 526702 528054 529418 "E04AGNT" 531185 T E04AGNT (NIL) -7 NIL NIL NIL) (-266 525408 525888 525928 "DVARCAT" 526403 NIL DVARCAT (NIL T) -9 NIL 526602 NIL) (-265 524612 524824 525138 "DVARCAT-" 525143 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-264 517504 524411 524540 "DSMP" 524545 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-263 512313 513449 514517 "DROPT" 516456 T DROPT (NIL) -8 NIL NIL NIL) (-262 511978 512037 512135 "DROPT1" 512248 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-261 507093 508219 509356 "DROPT0" 510861 T DROPT0 (NIL) -7 NIL NIL NIL) (-260 505438 505763 506149 "DRAWPT" 506727 T DRAWPT (NIL) -7 NIL NIL NIL) (-259 500025 500948 502027 "DRAW" 504412 NIL DRAW (NIL T) -7 NIL NIL NIL) (-258 499658 499711 499829 "DRAWHACK" 499966 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-257 498389 498658 498949 "DRAWCX" 499387 T DRAWCX (NIL) -7 NIL NIL NIL) (-256 497904 497973 498124 "DRAWCURV" 498315 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-255 488372 490334 492449 "DRAWCFUN" 495809 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-254 485185 487067 487108 "DQAGG" 487737 NIL DQAGG (NIL T) -9 NIL 488010 NIL) (-253 473456 480163 480246 "DPOLCAT" 482098 NIL DPOLCAT (NIL T T T T) -9 NIL 482643 NIL) (-252 468292 469641 471599 "DPOLCAT-" 471604 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-251 461441 468153 468251 "DPMO" 468256 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-250 454493 461221 461388 "DPMM" 461393 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-249 454125 454412 454460 "DOMCTOR" 454465 T DOMCTOR (NIL) -8 NIL NIL NIL) (-248 453420 453647 453784 "DOMAIN" 454008 T DOMAIN (NIL) -8 NIL NIL NIL) (-247 447163 453055 453207 "DMP" 453321 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-246 446763 446819 446963 "DLP" 447101 NIL DLP (NIL T) -7 NIL NIL NIL) (-245 440633 446090 446280 "DLIST" 446605 NIL DLIST (NIL T) -8 NIL NIL NIL) (-244 437477 439486 439527 "DLAGG" 440077 NIL DLAGG (NIL T) -9 NIL 440307 NIL) (-243 436282 436920 436948 "DIVRING" 437040 T DIVRING (NIL) -9 NIL 437123 NIL) (-242 435519 435709 436009 "DIVRING-" 436014 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-241 433621 433978 434384 "DISPLAY" 435133 T DISPLAY (NIL) -7 NIL NIL NIL) (-240 427557 433535 433598 "DIRPROD" 433603 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-239 426405 426608 426873 "DIRPROD2" 427350 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-238 415662 421620 421673 "DIRPCAT" 422083 NIL DIRPCAT (NIL NIL T) -9 NIL 422923 NIL) (-237 412988 413630 414511 "DIRPCAT-" 414848 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-236 412275 412435 412621 "DIOSP" 412822 T DIOSP (NIL) -7 NIL NIL NIL) (-235 408977 411187 411228 "DIOPS" 411662 NIL DIOPS (NIL T) -9 NIL 411891 NIL) (-234 408526 408640 408831 "DIOPS-" 408836 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-233 407410 408012 408040 "DIFRING" 408227 T DIFRING (NIL) -9 NIL 408337 NIL) (-232 407056 407133 407285 "DIFRING-" 407290 NIL DIFRING- (NIL T) -8 NIL NIL NIL) (-231 404853 406099 406140 "DIFEXT" 406503 NIL DIFEXT (NIL T) -9 NIL 406797 NIL) (-230 403138 403566 404232 "DIFEXT-" 404237 NIL DIFEXT- (NIL T T) -8 NIL NIL NIL) (-229 400460 402670 402711 "DIAGG" 402716 NIL DIAGG (NIL T) -9 NIL 402736 NIL) (-228 399844 400001 400253 "DIAGG-" 400258 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-227 395309 398803 399080 "DHMATRIX" 399613 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-226 390921 391830 392840 "DFSFUN" 394319 T DFSFUN (NIL) -7 NIL NIL NIL) (-225 386026 389852 390164 "DFLOAT" 390629 T DFLOAT (NIL) -8 NIL NIL NIL) (-224 384254 384535 384931 "DFINTTLS" 385734 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-223 381310 382275 382675 "DERHAM" 383920 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-222 379159 381085 381174 "DEQUEUE" 381254 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-221 378374 378507 378703 "DEGRED" 379021 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-220 374769 375514 376367 "DEFINTRF" 377602 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-219 372296 372765 373364 "DEFINTEF" 374288 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-218 371673 371916 372031 "DEFAST" 372201 T DEFAST (NIL) -8 NIL NIL NIL) (-217 365704 371268 371417 "DECIMAL" 371544 T DECIMAL (NIL) -8 NIL NIL NIL) (-216 363214 363674 364180 "DDFACT" 365248 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-215 362810 362853 363004 "DBLRESP" 363165 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-214 360709 361043 361403 "DBASE" 362577 NIL DBASE (NIL T) -8 NIL NIL NIL) (-213 359978 360189 360335 "DATAARY" 360608 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-212 359111 359937 359965 "D03FAFA" 359970 T D03FAFA (NIL) -8 NIL NIL NIL) (-211 358245 359070 359098 "D03EEFA" 359103 T D03EEFA (NIL) -8 NIL NIL NIL) (-210 356195 356661 357150 "D03AGNT" 357776 T D03AGNT (NIL) -7 NIL NIL NIL) (-209 355511 356154 356182 "D02EJFA" 356187 T D02EJFA (NIL) -8 NIL NIL NIL) (-208 354827 355470 355498 "D02CJFA" 355503 T D02CJFA (NIL) -8 NIL NIL NIL) (-207 354143 354786 354814 "D02BHFA" 354819 T D02BHFA (NIL) -8 NIL NIL NIL) (-206 353459 354102 354130 "D02BBFA" 354135 T D02BBFA (NIL) -8 NIL NIL NIL) (-205 346656 348245 349851 "D02AGNT" 351873 T D02AGNT (NIL) -7 NIL NIL NIL) (-204 344424 344947 345493 "D01WGTS" 346130 T D01WGTS (NIL) -7 NIL NIL NIL) (-203 343518 344383 344411 "D01TRNS" 344416 T D01TRNS (NIL) -8 NIL NIL NIL) (-202 342613 343477 343505 "D01GBFA" 343510 T D01GBFA (NIL) -8 NIL NIL NIL) (-201 341708 342572 342600 "D01FCFA" 342605 T D01FCFA (NIL) -8 NIL NIL NIL) (-200 340803 341667 341695 "D01ASFA" 341700 T D01ASFA (NIL) -8 NIL NIL NIL) (-199 339898 340762 340790 "D01AQFA" 340795 T D01AQFA (NIL) -8 NIL NIL NIL) (-198 338993 339857 339885 "D01APFA" 339890 T D01APFA (NIL) -8 NIL NIL NIL) (-197 338088 338952 338980 "D01ANFA" 338985 T D01ANFA (NIL) -8 NIL NIL NIL) (-196 337183 338047 338075 "D01AMFA" 338080 T D01AMFA (NIL) -8 NIL NIL NIL) (-195 336278 337142 337170 "D01ALFA" 337175 T D01ALFA (NIL) -8 NIL NIL NIL) (-194 335373 336237 336265 "D01AKFA" 336270 T D01AKFA (NIL) -8 NIL NIL NIL) (-193 334468 335332 335360 "D01AJFA" 335365 T D01AJFA (NIL) -8 NIL NIL NIL) (-192 327763 329316 330877 "D01AGNT" 332927 T D01AGNT (NIL) -7 NIL NIL NIL) (-191 327100 327228 327380 "CYCLOTOM" 327631 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-190 323835 324548 325275 "CYCLES" 326393 T CYCLES (NIL) -7 NIL NIL NIL) (-189 323147 323281 323452 "CVMP" 323696 NIL CVMP (NIL T) -7 NIL NIL NIL) (-188 320918 321176 321552 "CTRIGMNP" 322875 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-187 320409 320709 320783 "CTOR" 320864 T CTOR (NIL) -8 NIL NIL NIL) (-186 319945 320140 320241 "CTORKIND" 320328 T CTORKIND (NIL) -8 NIL NIL NIL) (-185 319293 319552 319580 "CTORCAT" 319762 T CTORCAT (NIL) -9 NIL 319875 NIL) (-184 318891 319002 319161 "CTORCAT-" 319166 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-183 318407 318594 318692 "CTORCALL" 318813 T CTORCALL (NIL) -8 NIL NIL NIL) (-182 317781 317880 318033 "CSTTOOLS" 318304 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-181 313580 314237 314995 "CRFP" 317093 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-180 313082 313301 313393 "CRCEAST" 313508 T CRCEAST (NIL) -8 NIL NIL NIL) (-179 312129 312314 312542 "CRAPACK" 312886 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-178 311513 311614 311818 "CPMATCH" 312005 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-177 311238 311266 311372 "CPIMA" 311479 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-176 307602 308274 308992 "COORDSYS" 310573 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-175 307010 307132 307275 "CONTOUR" 307479 T CONTOUR (NIL) -8 NIL NIL NIL) (-174 302928 305013 305505 "CONTFRAC" 306550 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-173 302808 302829 302857 "CONDUIT" 302894 T CONDUIT (NIL) -9 NIL NIL NIL) (-172 301973 302501 302529 "COMRING" 302534 T COMRING (NIL) -9 NIL 302586 NIL) (-171 301054 301331 301515 "COMPPROP" 301809 T COMPPROP (NIL) -8 NIL NIL NIL) (-170 300715 300750 300878 "COMPLPAT" 301013 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-169 290764 300524 300633 "COMPLEX" 300638 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-168 290400 290457 290564 "COMPLEX2" 290701 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-167 290118 290153 290251 "COMPFACT" 290359 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-166 274272 284500 284540 "COMPCAT" 285544 NIL COMPCAT (NIL T) -9 NIL 286940 NIL) (-165 263783 266711 270338 "COMPCAT-" 270694 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-164 263512 263540 263643 "COMMUPC" 263749 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-163 263307 263340 263399 "COMMONOP" 263473 T COMMONOP (NIL) -7 NIL NIL NIL) (-162 262890 263058 263145 "COMM" 263240 T COMM (NIL) -8 NIL NIL NIL) (-161 262493 262694 262769 "COMMAAST" 262835 T COMMAAST (NIL) -8 NIL NIL NIL) (-160 261742 261936 261964 "COMBOPC" 262302 T COMBOPC (NIL) -9 NIL 262477 NIL) (-159 260638 260848 261090 "COMBINAT" 261532 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-158 256835 257409 258049 "COMBF" 260060 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-157 255620 255951 256186 "COLOR" 256620 T COLOR (NIL) -8 NIL NIL NIL) (-156 255123 255341 255433 "COLONAST" 255548 T COLONAST (NIL) -8 NIL NIL NIL) (-155 254763 254810 254935 "CMPLXRT" 255070 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-154 254238 254463 254562 "CLLCTAST" 254684 T CLLCTAST (NIL) -8 NIL NIL NIL) (-153 249738 250768 251848 "CLIP" 253178 T CLIP (NIL) -7 NIL NIL NIL) (-152 248111 248844 249083 "CLIF" 249565 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-151 244333 246257 246298 "CLAGG" 247227 NIL CLAGG (NIL T) -9 NIL 247763 NIL) (-150 242755 243212 243795 "CLAGG-" 243800 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-149 242299 242384 242524 "CINTSLPE" 242664 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-148 239800 240271 240819 "CHVAR" 241827 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-147 239035 239563 239591 "CHARZ" 239596 T CHARZ (NIL) -9 NIL 239611 NIL) (-146 238789 238829 238907 "CHARPOL" 238989 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-145 237908 238469 238497 "CHARNZ" 238544 T CHARNZ (NIL) -9 NIL 238600 NIL) (-144 235897 236598 236933 "CHAR" 237593 T CHAR (NIL) -8 NIL NIL NIL) (-143 235623 235684 235712 "CFCAT" 235823 T CFCAT (NIL) -9 NIL NIL NIL) (-142 234868 234979 235161 "CDEN" 235507 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-141 230860 234021 234301 "CCLASS" 234608 T CCLASS (NIL) -8 NIL NIL NIL) (-140 230167 230310 230473 "CATEGORY" 230717 T -10 (NIL) -8 NIL NIL NIL) (-139 229799 230086 230134 "CATCTOR" 230139 T CATCTOR (NIL) -8 NIL NIL NIL) (-138 229273 229499 229598 "CATAST" 229720 T CATAST (NIL) -8 NIL NIL NIL) (-137 228776 228994 229086 "CASEAST" 229201 T CASEAST (NIL) -8 NIL NIL NIL) (-136 223812 224805 225558 "CARTEN" 228079 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-135 222920 223068 223289 "CARTEN2" 223659 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-134 221262 222070 222327 "CARD" 222683 T CARD (NIL) -8 NIL NIL NIL) (-133 220865 221066 221141 "CAPSLAST" 221207 T CAPSLAST (NIL) -8 NIL NIL NIL) (-132 220237 220565 220593 "CACHSET" 220725 T CACHSET (NIL) -9 NIL 220802 NIL) (-131 219733 220029 220057 "CABMON" 220107 T CABMON (NIL) -9 NIL 220163 NIL) (-130 219233 219437 219547 "BYTEORD" 219643 T BYTEORD (NIL) -8 NIL NIL NIL) (-129 218236 218767 218909 "BYTE" 219072 T BYTE (NIL) -8 NIL NIL 219194) (-128 213636 217741 217913 "BYTEBUF" 218084 T BYTEBUF (NIL) -8 NIL NIL NIL) (-127 211193 213328 213435 "BTREE" 213562 NIL BTREE (NIL T) -8 NIL NIL NIL) (-126 208690 210841 210963 "BTOURN" 211103 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-125 206107 208160 208201 "BTCAT" 208269 NIL BTCAT (NIL T) -9 NIL 208346 NIL) (-124 205774 205854 206003 "BTCAT-" 206008 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-123 201066 204917 204945 "BTAGG" 205167 T BTAGG (NIL) -9 NIL 205328 NIL) (-122 200556 200681 200887 "BTAGG-" 200892 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-121 197599 199834 200049 "BSTREE" 200373 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-120 196737 196863 197047 "BRILL" 197455 NIL BRILL (NIL T) -7 NIL NIL NIL) (-119 193436 195463 195504 "BRAGG" 196153 NIL BRAGG (NIL T) -9 NIL 196411 NIL) (-118 191965 192371 192926 "BRAGG-" 192931 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-117 185221 191311 191495 "BPADICRT" 191813 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-116 183563 185158 185203 "BPADIC" 185208 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-115 183261 183291 183405 "BOUNDZRO" 183527 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-114 178776 179867 180734 "BOP" 182414 T BOP (NIL) -8 NIL NIL NIL) (-113 176397 176841 177361 "BOP1" 178289 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-112 175099 175821 176014 "BOOLEAN" 176224 T BOOLEAN (NIL) -8 NIL NIL NIL) (-111 174461 174839 174893 "BMODULE" 174898 NIL BMODULE (NIL T T) -9 NIL 174963 NIL) (-110 170289 174259 174332 "BITS" 174408 T BITS (NIL) -8 NIL NIL NIL) (-109 169701 169823 169965 "BINDING" 170167 T BINDING (NIL) -8 NIL NIL NIL) (-108 163735 169298 169446 "BINARY" 169573 T BINARY (NIL) -8 NIL NIL NIL) (-107 161562 162990 163031 "BGAGG" 163291 NIL BGAGG (NIL T) -9 NIL 163428 NIL) (-106 161393 161425 161516 "BGAGG-" 161521 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 160491 160777 160982 "BFUNCT" 161208 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 159181 159359 159647 "BEZOUT" 160315 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 155698 158033 158363 "BBTREE" 158884 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 155432 155485 155513 "BASTYPE" 155632 T BASTYPE (NIL) -9 NIL NIL NIL) (-101 155285 155313 155386 "BASTYPE-" 155391 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 154719 154795 154947 "BALFACT" 155196 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 153602 154134 154320 "AUTOMOR" 154564 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 153328 153333 153359 "ATTREG" 153364 T ATTREG (NIL) -9 NIL NIL NIL) (-97 151607 152025 152377 "ATTRBUT" 152994 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 151242 151435 151501 "ATTRAST" 151559 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 150778 150891 150917 "ATRIG" 151118 T ATRIG (NIL) -9 NIL NIL NIL) (-94 150587 150628 150715 "ATRIG-" 150720 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 150258 150418 150444 "ASTCAT" 150449 T ASTCAT (NIL) -9 NIL 150479 NIL) (-92 149985 150044 150163 "ASTCAT-" 150168 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 148182 149761 149849 "ASTACK" 149928 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 146687 146984 147349 "ASSOCEQ" 147864 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 145719 146346 146470 "ASP9" 146594 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 145482 145667 145706 "ASP8" 145711 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-87 144350 145087 145229 "ASP80" 145371 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-86 143248 143985 144117 "ASP7" 144249 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-85 142202 142925 143043 "ASP78" 143161 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-84 141171 141882 141999 "ASP77" 142116 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-83 140083 140809 140940 "ASP74" 141071 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-82 138983 139718 139850 "ASP73" 139982 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-81 138087 138809 138909 "ASP6" 138914 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 137031 137764 137882 "ASP55" 138000 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 135980 136705 136824 "ASP50" 136943 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 135068 135681 135791 "ASP4" 135901 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-77 134156 134769 134879 "ASP49" 134989 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-76 132940 133695 133863 "ASP42" 134045 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 131716 132473 132643 "ASP41" 132827 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-74 130666 131393 131511 "ASP35" 131629 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 130431 130614 130653 "ASP34" 130658 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 130168 130235 130311 "ASP33" 130386 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 129061 129803 129935 "ASP31" 130067 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 128826 129009 129048 "ASP30" 129053 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 128561 128630 128706 "ASP29" 128781 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 128326 128509 128548 "ASP28" 128553 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 128091 128274 128313 "ASP27" 128318 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 127175 127789 127900 "ASP24" 128011 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 126251 126977 127089 "ASP20" 127094 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 125339 125952 126062 "ASP1" 126172 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-63 124281 125013 125132 "ASP19" 125251 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-62 124018 124085 124161 "ASP12" 124236 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-61 122870 123617 123761 "ASP10" 123905 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-60 120769 122714 122805 "ARRAY2" 122810 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 116583 120417 120531 "ARRAY1" 120686 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-58 115615 115788 116009 "ARRAY12" 116406 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-57 109974 111845 111920 "ARR2CAT" 114550 NIL ARR2CAT (NIL T T T) -9 NIL 115308 NIL) (-56 107408 108152 109106 "ARR2CAT-" 109111 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 107000 107235 107314 "ARITY" 107347 T ARITY (NIL) -8 NIL NIL NIL) (-54 105748 105900 106206 "APPRULE" 106836 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 105399 105447 105566 "APPLYORE" 105694 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 104373 104664 104859 "ANY" 105222 T ANY (NIL) -8 NIL NIL NIL) (-51 103651 103774 103931 "ANY1" 104247 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-50 101208 102088 102415 "ANTISYM" 103375 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 100723 100912 101009 "ANON" 101129 T ANON (NIL) -8 NIL NIL NIL) (-48 94847 99262 99716 "AN" 100287 T AN (NIL) -8 NIL NIL NIL) (-47 91095 92457 92508 "AMR" 93256 NIL AMR (NIL T T) -9 NIL 93856 NIL) (-46 90207 90428 90791 "AMR-" 90796 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 74757 90124 90185 "ALIST" 90190 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 71586 74351 74520 "ALGSC" 74675 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 68141 68696 69303 "ALGPKG" 71026 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 67418 67519 67703 "ALGMFACT" 68027 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 63155 63842 64497 "ALGMANIP" 66941 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 54552 62781 62931 "ALGFF" 63088 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 53748 53879 54058 "ALGFACT" 54410 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 52805 53379 53417 "ALGEBRA" 53422 NIL ALGEBRA (NIL T) -9 NIL 53463 NIL) (-37 52523 52582 52714 "ALGEBRA-" 52719 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 34782 50525 50577 "ALAGG" 50713 NIL ALAGG (NIL T T) -9 NIL 50874 NIL) (-35 34318 34431 34457 "AHYP" 34658 T AHYP (NIL) -9 NIL NIL NIL) (-34 33249 33497 33523 "AGG" 34022 T AGG (NIL) -9 NIL 34301 NIL) (-33 32683 32845 33059 "AGG-" 33064 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 30359 30782 31200 "AF" 32325 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 29866 30084 30174 "ADDAST" 30287 T ADDAST (NIL) -8 NIL NIL NIL) (-30 29134 29393 29549 "ACPLOT" 29728 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 18418 26347 26398 "ACFS" 27109 NIL ACFS (NIL T) -9 NIL 27348 NIL) (-28 16432 16922 17697 "ACFS-" 17702 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 12697 14599 14625 "ACF" 15504 T ACF (NIL) -9 NIL 15916 NIL) (-26 11401 11735 12228 "ACF-" 12233 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 10999 11168 11194 "ABELSG" 11286 T ABELSG (NIL) -9 NIL 11351 NIL) (-24 10866 10891 10957 "ABELSG-" 10962 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 10235 10496 10522 "ABELMON" 10692 T ABELMON (NIL) -9 NIL 10804 NIL) (-22 9899 9983 10121 "ABELMON-" 10126 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 9233 9579 9605 "ABELGRP" 9730 T ABELGRP (NIL) -9 NIL 9812 NIL) (-20 8696 8825 9041 "ABELGRP-" 9046 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119 NIL) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 9a594e45..8167b9ec 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,18372 +1,18373 @@ -(735849 . 3444870411) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) - (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-684 (-563))) (-5 *5 (-112)) (-5 *7 (-684 (-225))) - (-5 *3 (-563)) (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-750))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-349)) (-5 *2 (-1257 *1)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-684 *1)) (-4 *1 (-145)) (-4 *1 (-905)) - (-5 *2 (-1257 *1))))) -(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694))))) -(((*1 *2 *3 *4 *4 *2 *2 *2) - (-12 (-5 *2 (-563)) - (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) - (-5 *1 (-449 *5 *6 *7 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-611 (-888 *3))) (-4 *3 (-882 *3)) - (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-611 (-888 *3))) (-4 *2 (-882 *3)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-856)) (-5 *3 (-128)) (-5 *2 (-767))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1135 *3 *4)) (-14 *3 (-917)) (-4 *4 (-363)) - (-5 *1 (-989 *3 *4))))) +(735973 . 3449148019) (((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *2 (-1203 (-922))) - (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1087 (-225))) (-5 *6 (-563)) (-5 *7 (-1151)) - (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) - (-5 *2 (-1203 (-922))) (-5 *1 (-318)))) - ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1087 (-225))) (-5 *6 (-225)) (-5 *7 (-563)) (-5 *8 (-1151)) - (-5 *2 (-1203 (-922))) (-5 *1 (-318))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-640 (-112))) (-5 *7 (-684 (-225))) - (-5 *8 (-684 (-563))) (-5 *3 (-563)) (-5 *4 (-225)) (-5 *5 (-112)) - (-5 *2 (-1031)) (-5 *1 (-750))))) -(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349))) - ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-905))))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-38 (-407 (-563)))) - (-4 *2 (-172))))) -(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-1045)))) - ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-1149 *4) (-1149 *4))) (-5 *2 (-1149 *4)) - (-5 *1 (-1282 *4)) (-4 *4 (-1208)))) + (-12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-450 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *1 (-450 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *1 (-450 *4 *5 *6 *7)))) + ((*1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) + (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) + (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-1260)) + (-5 *1 (-1263)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-640 (-1149 *5)) (-640 (-1149 *5)))) (-5 *4 (-563)) - (-5 *2 (-640 (-1149 *5))) (-5 *1 (-1282 *5)) (-4 *5 (-1208))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-846)) (-4 *5 (-905)) (-4 *6 (-789)) - (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-418 (-1165 *8))) - (-5 *1 (-902 *5 *6 *7 *8)) (-5 *4 (-1165 *8)))) + (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) + (-5 *2 (-1260)) (-5 *1 (-1263))))) +(((*1 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) +(((*1 *2 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) - (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-563)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) - ((*1 *2 *3 *3 *2) - (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) -(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-555)))) - ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3 *4 *3 *3) - (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) - (-4 *5 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *5 *6)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-640 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) - (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) - (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-640 (-294 *8))) (-5 *4 (-640 (-114))) (-5 *5 (-294 *8)) - (-5 *6 (-640 *8)) (-4 *8 (-430 *7)) - (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *7 *8)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) (-5 *5 (-294 *7)) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-846) (-555) (-611 (-536)))) - (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-114))) (-5 *6 (-640 (-294 *8))) - (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) - (-4 *7 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *7 *8)))) - ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) - (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *5)))) - ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) - (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *3)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) - (-4 *6 (-13 (-846) (-555) (-611 (-536)))) (-5 *2 (-52)) - (-5 *1 (-317 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-640 *3)) - (-4 *3 (-430 *7)) (-4 *7 (-13 (-846) (-555) (-611 (-536)))) - (-5 *2 (-52)) (-5 *1 (-317 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1103)) (-5 *3 (-563))))) + (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) + (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) + (-5 *1 (-947 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) + (-15 -1634 (*7 $)))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-38 (-407 (-564)))) + (-5 *2 (-2 (|:| -2297 (-1150 *4)) (|:| -2309 (-1150 *4)))) + (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) + (-4 *5 (-373 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 (-564))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 (-564)) (-14 *5 (-768)))) + ((*1 *2 *1 *3 *3 *3 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-768)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-768)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-768)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) + (-14 *4 *3) (-14 *5 (-768)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-564)) + (-14 *4 (-768)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-245 (-1152))) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-847) + (-10 -8 (-15 -4382 ((-1152) $ *3)) (-15 -3589 ((-1264) $)) + (-15 -2096 ((-1264) $))))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-986)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-847) + (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) + (-15 -2096 ((-1264) $))))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "count") (-5 *2 (-768)) (-5 *1 (-245 *4)) (-4 *4 (-847)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-847)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-847)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) + ((*1 *2 *1 *2) + (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) + (-4 *2 (-1235 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *2 *1 *2 *2) + (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) + (-4 *4 (-1235 (-407 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1152)) (-5 *1 (-502)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-52)) (-5 *1 (-630)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-641 (-889 *4))) (-5 *1 (-889 *4)) + (-4 *4 (-1094)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) + (-4 *4 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-918)) (-4 *2 (-363)) + (-5 *1 (-990 *4 *2)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "value") (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) (-4 *2 (-1046)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-918)) (-4 *4 (-1094)) + (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) + (-5 *1 (-1070 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-918)) (-4 *4 (-1094)) + (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) + (-5 *1 (-1071 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-4 *1 (-1097 *3 *4 *5 *6 *7)) + (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) + (-4 *7 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) + (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)))) + ((*1 *1 *1 *1) (-4 *1 (-1138))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-407 *1)) (-4 *1 (-1235 *2)) (-4 *2 (-1046)) + (-4 *2 (-363)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) + (-4 *3 (-556)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "last") (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 "rest") (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 "first") (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) - (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-945 *2 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *2 (-905)) - (-5 *1 (-902 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-905)) (-5 *1 (-903 *2 *3)) (-4 *3 (-1233 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 - *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 - *9) - (-12 (-5 *4 (-684 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) - (-5 *7 (-684 (-563))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) - (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-749))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-983 (-407 (-563)) (-860 *3) (-240 *4 (-767)) - (-247 *3 (-407 (-563))))) - (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-982 *3 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1103))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 - *7 *3 *8) - (-12 (-5 *5 (-684 (-225))) (-5 *6 (-112)) (-5 *7 (-684 (-563))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) - (-5 *3 (-563)) (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) + (-12 (-5 *2 (-641 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-556)) + (-4 *3 (-1209))))) (((*1 *2 *3) - (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) - (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) - (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-640 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) - (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1045)) - (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-848 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) - (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-849 *5 *3)) - (-4 *3 (-848 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-945 *4 *6 *5)) (-4 *4 (-452)) - (-4 *5 (-846)) (-4 *6 (-789)) (-5 *1 (-983 *4 *5 *6 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) + (-5 *2 (-1 *5 *4)) (-5 *1 (-679 *4 *5))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-5 *1 (-316 *3)) (-4 *3 (-555)) (-4 *3 (-846))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-563)) (-5 *1 (-1103)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1257 (-563))) (-5 *3 (-640 (-563))) (-5 *4 (-563)) - (-5 *1 (-1103))))) -(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) - (-5 *2 (-1031)) (-5 *1 (-749))))) -(((*1 *2 *3) - (-12 (-4 *4 (-905)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-418 (-1165 *7))) - (-5 *1 (-902 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-905)) (-4 *5 (-1233 *4)) (-5 *2 (-418 (-1165 *5))) - (-5 *1 (-903 *4 *5)) (-5 *3 (-1165 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *2) - (|:| |polj| *2))) - (-4 *5 (-789)) (-4 *2 (-945 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) - (-4 *4 (-452)) (-4 *6 (-846))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) - (-5 *1 (-762 *3 *4)) (-4 *3 (-704 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1045)) - (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-848 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) - (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-849 *5 *3)) - (-4 *3 (-848 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-846)) - (-4 *5 (-789)) (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-640 (-563))) (-5 *3 (-112)) (-5 *1 (-1103))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) - (-5 *2 (-1031)) (-5 *1 (-749))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) - (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-905)) (-4 *5 (-789)) - (-4 *6 (-846)) (-5 *1 (-902 *4 *5 *6 *7)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) - (-4 *5 (-1233 *4)) (-4 *4 (-905)) (-5 *1 (-903 *4 *5))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-640 (-2 (|:| |totdeg| (-767)) (|:| -3206 *3)))) - (-5 *4 (-767)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-789)) - (-4 *7 (-846)) (-5 *1 (-449 *5 *6 *7 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-555)) (-4 *3 (-1045)) - (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-848 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) - (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-849 *5 *3)) - (-4 *3 (-848 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-640 *6)) - (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-767))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-684 (-563))) (-5 *3 (-640 (-563))) (-5 *1 (-1103))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) - (-5 *2 (-1031)) (-5 *1 (-749))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-640 (-1165 *7))) (-5 *3 (-1165 *7)) - (-4 *7 (-945 *5 *6 *4)) (-4 *5 (-905)) (-4 *6 (-789)) - (-4 *4 (-846)) (-5 *1 (-902 *5 *6 *4 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-311)))) - ((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-555)) (-4 *3 (-1045)) - (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-848 *3)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-555)) (-4 *5 (-1045)) - (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-849 *5 *3)) - (-4 *3 (-848 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) - ((*1 *1 *1 *1) (-5 *1 (-1213))) ((*1 *1 *1 *1) (-5 *1 (-1214))) - ((*1 *1 *1 *1) (-5 *1 (-1215)))) -(((*1 *2 *1) - (-12 (-4 *2 (-945 *3 *5 *4)) (-5 *1 (-983 *3 *4 *5 *2)) - (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *1 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-307)))) + (-12 (-5 *2 (-2 (|:| -2577 (-779 *3)) (|:| |coef1| (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1738 *1))) - (-4 *1 (-307))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) - (-5 *2 (-1031)) (-5 *1 (-749))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *6)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-640 *3)) (-4 *3 (-945 *5 *6 *7)) (-4 *5 (-452)) - (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) - (-5 *1 (-449 *5 *6 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *3 *2)) - (-4 *3 (-13 (-1093) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1268))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *1 *1 *1) (-5 *1 (-129))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) - ((*1 *1 *1 *1) (-5 *1 (-1213))) ((*1 *1 *1 *1) (-5 *1 (-1214))) - ((*1 *1 *1 *1) (-5 *1 (-1215)))) -(((*1 *1 *1) - (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) - (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) + (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-2 (|:| -2577 *1) (|:| |coef1| *1))) + (-4 *1 (-1060 *3 *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) + (-4 *3 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349)))) - ((*1 *1) (-4 *1 (-368))) - ((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349)))) - ((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545))) - ((*1 *1 *1) (-5 *1 (-563))) ((*1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *1) (-12 (-5 *2 (-901 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) - (-4 *4 (-1093)))) - ((*1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-545)) (-4 *2 (-555))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-307))))) + (-12 (-4 *1 (-349)) (-5 *3 (-564)) (-5 *2 (-1182 (-918) (-768)))))) +(((*1 *1 *1) (-4 *1 (-243))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (-4030 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) + ((*1 *1 *1) (-4 *1 (-473))) + ((*1 *2 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) - (-5 *1 (-1103))))) -(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) - (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-749))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) + (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) + (-4 *4 (-1046))))) (((*1 *2 *3 *2) - (-12 - (-5 *2 - (-640 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-767)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *3 (-789)) (-4 *6 (-945 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-846)) - (-5 *1 (-449 *4 *3 *5 *6))))) -(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)))) - ((*1 *2 *2) - (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-686 (-578))) (-5 *1 (-578))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) + (-12 (-5 *2 (-641 (-379))) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-468)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) (((*1 *2 *3) - (-12 (-4 *3 (-1233 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-981 *4 *2 *3 *5)) - (-4 *4 (-349)) (-4 *5 (-720 *2 *3))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *1 *1) (-5 *1 (-225))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379)))) -(((*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-844)) (-5 *1 (-303 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-640 (-563))) (-5 *3 (-684 (-563))) (-5 *1 (-1103))))) -(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-748))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-640 (-767)))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) + (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768)))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) (((*1 *2 *2) - (-12 - (-5 *2 - (-640 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-767)) (|:| |poli| *6) - (|:| |polj| *6)))) - (-4 *4 (-789)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-846)) - (-5 *1 (-449 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-858)))) - ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-958))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-789)) - (-4 *3 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *5 (-555)) - (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1045)) (-4 *5 (-789)) - (-4 *3 - (-13 (-846) - (-10 -8 (-15 -2802 ((-1169) $)) - (-15 -4040 ((-3 $ "failed") (-1169)))))) - (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *6)) - (-4 *6 - (-13 (-846) - (-10 -8 (-15 -2802 ((-1169) $)) - (-15 -4040 ((-3 $ "failed") (-1169)))))) - (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) - (-4 *2 (-945 (-948 *4) *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-225))) (-5 *4 (-767)) (-5 *2 (-684 (-225))) - (-5 *1 (-305))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1103))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3))))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-640 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *3) - (|:| |polj| *3)))) - (-4 *5 (-789)) (-4 *3 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) - (-5 *1 (-449 *4 *5 *6 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-744))))) +(((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4)) + (-5 *3 (-641 *4))))) +(((*1 *2 *3 *4 *4 *3) + (|partial| -12 (-5 *4 (-610 *3)) + (-4 *3 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) + (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) (-5 *2 (-112)) + (-5 *1 (-1286 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-789)) - (-4 *3 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *5 (-555)) - (-5 *1 (-728 *4 *3 *5 *2)) (-4 *2 (-945 (-407 (-948 *5)) *4 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *4 (-1045)) (-4 *5 (-789)) - (-4 *3 - (-13 (-846) - (-10 -8 (-15 -2802 ((-1169) $)) - (-15 -4040 ((-3 $ "failed") (-1169)))))) - (-5 *1 (-980 *4 *5 *3 *2)) (-4 *2 (-945 (-948 *4) *5 *3)))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) + (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *6)) - (-4 *6 - (-13 (-846) - (-10 -8 (-15 -2802 ((-1169) $)) - (-15 -4040 ((-3 $ "failed") (-1169)))))) - (-4 *4 (-1045)) (-4 *5 (-789)) (-5 *1 (-980 *4 *5 *6 *2)) - (-4 *2 (-945 (-948 *4) *5 *6))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-407 (-563))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-748))))) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 (-641 *7) (-641 *7))) (-5 *2 (-641 *7)) + (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) (-4 *5 (-790)) + (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-1095 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-640 *4))) (-5 *1 (-900 *4)) - (-5 *3 (-640 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1093)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-900 *4)) - (-5 *3 (-1095 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5))))) + (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-131))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1045)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1738 *1))) - (-4 *1 (-848 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) - ((*1 *2 *2) - (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) - (-4 *6 (-1059 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3233 *1) (|:| |upper| *1))) - (-4 *1 (-972 *4 *5 *3 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-748))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1095 (-1095 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *3 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-945 *4 *3 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-948 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-91 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-225)) (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) - (-5 *1 (-900 *4))))) + (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) + ((*1 *2 *3) + (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) + ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 (-407 (-564)))) (-5 *2 (-641 *1)) (-4 *1 (-1009)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 *1)) (-4 *1 (-1009)) (-5 *2 (-641 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-845) (-363))) (-4 *3 (-1235 *4)) (-5 *2 (-641 *1)) + (-4 *1 (-1063 *4 *3))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) - (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-407 (-564))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) + (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) + (-4 *8 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) + (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) + (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-407 (-564))) (-4 *4 (-1046)) (-4 *1 (-1242 *4 *3)) + (-4 *3 (-1219 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-452)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *5 (-906)) (-5 *1 (-457 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-906))))) (((*1 *2 *3) - (-12 (-5 *3 (-948 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-640 *3)))) + (-12 (-4 *4 (-1046)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) + (-4 *3 (-1235 *4)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) - (-5 *2 (-640 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *5 (-555)) - (-5 *2 - (-2 (|:| |minor| (-640 (-917))) (|:| -3087 *3) - (|:| |minors| (-640 (-640 (-917)))) (|:| |ops| (-640 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1178))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-640 (-767))) - (-5 *1 (-900 *4))))) -(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) - (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-640 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-112))))) +(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379))) + ((*1 *1) (-5 *1 (-379)))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) + (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) + (-4 *4 (-266 *3)) (-4 *5 (-790))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))) - (-5 *2 (-1031)) (-5 *1 (-305))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) - (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1095 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-4 *5 (-13 (-452) (-847) (-1035 *4) (-637 *4))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-847) (-1035 *5) (-637 *5))) (-5 *5 (-564)) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) + (-4 *7 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) + (-4 *3 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-564)) (-4 *4 (-1046)) (-4 *1 (-1221 *4 *3)) + (-4 *3 (-1250 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-133)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-161)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-672)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1061)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1090))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-771)) (-5 *1 (-114)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-962))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1149 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2244 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1031)) (-5 *1 (-305))))) + (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) + (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) + (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) + (-5 *2 (-2 (|:| -1619 (-768)) (|:| -2390 *8))) + (-5 *1 (-908 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) + (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) + (-4 *6 (-342 (-407 (-564)) *4 *5)) + (-5 *2 (-2 (|:| -1619 (-768)) (|:| -2390 *6))) + (-5 *1 (-909 *4 *5 *6))))) +(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) + (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) + (-5 *2 (-1032)) (-5 *1 (-753))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-225)) - (-5 *7 (-684 (-563))) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-900 *4)) - (-4 *4 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-449 *4 *5 *6 *2))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) + (-4 *6 (-1235 *5)) (-5 *2 (-1166 (-1166 *7))) + (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1235 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1077 *3)) (-4 *3 (-132))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))))) - (-5 *2 (-1031)) (-5 *1 (-305)))) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *2 *2) + (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) + (-4 *3 (-644 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046))))) +(((*1 *2 *3 *3 *2 *4) + (-12 (-5 *3 (-685 *2)) (-5 *4 (-564)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)) + (-4 *2 (-452)))) ((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) - (-5 *2 (-1031)) (-5 *1 (-305))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-899 *3))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-748))))) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1235 (-564))) (-5 *2 (-641 (-564))) + (-5 *1 (-486 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)) (-4 *3 (-452))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) - (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) + (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) + (-5 *1 (-842 *4 *5)) (-14 *4 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) + (-4 *5 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) + (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) - (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *3 (-1045)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1738 *1))) - (-4 *1 (-848 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-4 *1 (-899 *3))))) + (-12 (-5 *4 (-768)) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-768)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) + (-4 *6 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-768))) + (-4 *7 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-768))) + (-4 *3 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-96)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1094)))) + ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-438 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-4 *1 (-832 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-862)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-962)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1069 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1109)))) + ((*1 *1 *1) (-5 *1 (-1170)))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 (-768) *2)) (-5 *4 (-768)) (-4 *2 (-1094)) + (-5 *1 (-674 *2)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1 *3 (-768) *3)) (-4 *3 (-1094)) (-5 *1 (-678 *3))))) +(((*1 *2 *2 *2 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-610 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) + (-4 *2 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *1 (-566 *5 *2 *6)) (-4 *6 (-1094))))) +(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-719))) + ((*1 *1) (-4 *1 (-723))) + ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) + ((*1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-363)) + (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *1 (-450 *4 *5 *6 *2)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) + (-5 *2 + (-2 (|:| R (-685 *6)) (|:| A (-685 *6)) (|:| |Ainv| (-685 *6)))) + (-5 *1 (-975 *6)) (-5 *3 (-685 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-945 *4 *5 *6)) (-5 *2 (-640 (-640 *7))) - (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-640 *7)))) + (|partial| -12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) + (-4 *5 (-430 *4)) (-5 *2 (-418 (-1166 (-407 (-564))))) + (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *3 (-1060 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) - (-4 *7 (-846)) (-4 *8 (-945 *5 *6 *7)) (-5 *2 (-640 (-640 *8))) - (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) - (-4 *4 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) - (-4 *4 (-1233 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) - (-4 *3 (-1233 *2)))) - ((*1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) - (-4 *4 (-1093)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-363)) (-5 *1 (-762 *2 *3)) (-4 *2 (-704 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *3 (-1060 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) + (-5 *2 (-1032)) (-5 *1 (-746))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *7 (-1235 *5)) (-4 *4 (-721 *5 *7)) + (-5 *2 (-2 (|:| -2069 (-685 *6)) (|:| |vec| (-1259 *5)))) + (-5 *1 (-808 *5 *6 *7 *4 *3)) (-4 *6 (-652 *5)) (-4 *3 (-652 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) (((*1 *2 *3) - (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) ((*1 *2 *3) - (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) ((*1 *2 *3) - (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1135 *4 *2)) (-14 *4 (-917)) - (-4 *2 (-13 (-1045) (-10 -7 (-6 (-4410 "*"))))) - (-5 *1 (-898 *4 *2))))) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305))))) (((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-307)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-447 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) - (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *1 (-447 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) - (-4 *4 (-307)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *1 (-447 *4 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) - (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) + (-12 (-5 *2 (-641 (-481 *3 *4))) (-14 *3 (-641 (-1170))) + (-4 *4 (-452)) (-5 *1 (-629 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *1) (-4 *1 (-23))) + ((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1) (-5 *1 (-536))) + ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *4 *5 *6))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-744))))) (((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-847)) + (-4 *4 (-790)) (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-564))) (-5 *1 (-1113)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) + (-5 *2 (-1032)) (-5 *1 (-745))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-641 (-294 *4))) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) + (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-233)) (-4 *3 (-1046)) (-4 *4 (-847)) (-4 *5 (-266 *4)) + (-4 *6 (-790)) (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + (-12 (-4 *4 (-1046)) (-4 *3 (-847)) (-4 *5 (-266 *3)) (-4 *6 (-790)) + (-5 *2 (-1 *1 (-768))) (-4 *1 (-253 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-266 *2)) (-4 *2 (-847))))) +(((*1 *2 *1 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-307)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1693 *1))) + (-4 *1 (-307))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3826)) (-5 *2 (-112)) (-5 *1 (-615)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -3833)) (-5 *2 (-112)) (-5 *1 (-615)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -2592)) (-5 *2 (-112)) (-5 *1 (-615)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| -1522)) (-5 *2 (-112)) (-5 *1 (-687 *4)) + (-4 *4 (-611 (-859))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-611 (-859))) (-5 *2 (-112)) + (-5 *1 (-687 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-591))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1160))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-624))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1090))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1084))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1068))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-967))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1033))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-667))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1270))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1061))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-677))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1109))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-1269))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-672))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1131)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1152))) (-5 *2 (-112)) (-5 *1 (-1175)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-1170))) (-5 *2 (-112)) (-5 *1 (-1175)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1175)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (|[\|\|]| (-564))) (-5 *2 (-112)) (-5 *1 (-1175))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-900 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) ((*1 *2 *3) - (-12 (-5 *3 (-1087 (-839 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *3 (-1059 *6 *7 *8)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1101 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) + (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) + (-4 *3 (-644 *2)))) + ((*1 *1 *1) + (-12 (-4 *2 (-172)) (-4 *2 (-1046)) (-5 *1 (-711 *2 *3)) + (-4 *3 (-644 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046)))) + ((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-172)) (-4 *2 (-1046))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) + (-4 *2 (-652 *4))))) +(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) + (-5 *2 (-1032)) (-5 *1 (-753))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *3 (-641 (-564))) + (-5 *1 (-880))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1262))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-816 *3)) (-4 *3 (-847))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-349)) + (-5 *2 + (-2 (|:| |cont| *5) + (|:| -2267 (-641 (-2 (|:| |irr| *3) (|:| -2943 (-564))))))) + (-5 *1 (-216 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) + ((*1 *1 *1 *1) (-5 *1 (-1114)))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-218)))) + ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-439)))) + ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-835)))) + ((*1 *2 *1) (-12 (-5 *2 (-1112)) (-5 *1 (-1109)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1175))) (-5 *3 (-1175)) (-5 *1 (-1112))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1235 *5)) + (-5 *1 (-804 *5 *2 *3 *6)) + (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-4 *3 (-652 *2)) (-4 *6 (-652 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-407 *2))) (-4 *2 (-1235 *5)) + (-5 *1 (-804 *5 *2 *3 *6)) + (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) + (-4 *6 (-652 (-407 *2)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) + (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-192)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -1926 *9)))) - (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) - (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) - (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -1926 *9)))) - (-5 *1 (-1101 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-748))))) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1170)) + (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300))))) +(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1235 *2)) + (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-1235 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) + (-4 *3 (-409 *2 *4)))) + ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) + ((*1 *2) + (-12 (-4 *3 (-1235 *2)) (-5 *2 (-564)) (-5 *1 (-765 *3 *4)) + (-4 *4 (-409 *2 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)) (-4 *3 (-172)))) + ((*1 *2 *3) + (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-640 *3)) (|:| |image| (-640 *3)))) - (-5 *1 (-901 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-307)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-447 *4 *5 *6 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) - (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *1) (-4 *1 (-964)))) +(((*1 *2 *1) + (-12 (-4 *3 (-13 (-363) (-147))) + (-5 *2 (-641 (-2 (|:| -2515 (-768)) (|:| -2212 *4) (|:| |num| *4)))) + (-5 *1 (-399 *3 *4)) (-4 *4 (-1235 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-491))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307))))) (((*1 *2 *3) - (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) + (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1149 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))) - (-5 *1 (-1101 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3))))) -(((*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-446)) (-5 *3 (-563))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1257 *5)) (-4 *5 (-788)) (-5 *2 (-112)) - (-5 *1 (-841 *4 *5)) (-14 *4 (-767))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) + (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-192)))) + (-12 + (-5 *3 + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) + (-5 *2 (-641 (-1170))) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-300)))) + (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-641 *5)) + (-5 *1 (-321 *4 *5 *6 *7)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) + (-14 *4 *2) (-4 *5 (-387)))) + ((*1 *2 *1) + (-12 (-4 *1 (-430 *3)) (-4 *3 (-847)) (-5 *2 (-641 (-1170))))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-641 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-225))) (-5 *2 (-640 (-1151))) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))) + (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) + (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *5)) + (-5 *1 (-947 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1096 (-1170))) (-5 *1 (-963 *3)) (-4 *3 (-964)))) ((*1 *2 *1) - (-12 (-4 *3 (-1093)) - (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) - (-5 *1 (-1069 *3 *4 *2)) - (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-4 *5 (-847)) (-5 *2 (-641 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *3 *2)) (-4 *3 (-1093))))) + (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-5 *2 (-641 (-1170))) + (-5 *1 (-1040 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-684 *4)) (-4 *5 (-651 *4))))) -(((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) - (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) - (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3))))) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) + (-5 *1 (-528 *4))))) +(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *1) (-4 *1 (-964)))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045)))) + (-12 (-5 *2 (-1259 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) + (-4 *3 (-556)) (-5 *1 (-43 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-918)) (-4 *4 (-363)) (-5 *2 (-1259 *1)) + (-4 *1 (-329 *4)))) + ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1259 *1)) (-4 *1 (-329 *3)))) ((*1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) - (-4 *2 (-1208))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1151)) (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-137)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-478)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-590)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-623)))) + (-12 (-4 *3 (-172)) (-4 *4 (-1235 *3)) (-5 *2 (-1259 *1)) + (-4 *1 (-409 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-1093)) - (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) - (-5 *1 (-1069 *3 *4 *2)) - (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))))) + (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) + (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) + (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) ((*1 *2 *1) - (-12 (-4 *2 (-1093)) (-5 *1 (-1158 *2 *3)) (-4 *3 (-1093))))) + (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) + (-5 *2 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) + (-4 *6 (-409 *4 *5)) (-14 *7 *2))) + ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-417 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 *4))) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) +(((*1 *2) + (-12 (-4 *3 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-1264)) + (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1046)) + (-5 *3 (-407 (-564))) (-5 *1 (-1154 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-685 *11)) (-5 *4 (-641 (-407 (-949 *8)))) + (-5 *5 (-768)) (-5 *6 (-1152)) (-4 *8 (-13 (-307) (-147))) + (-4 *11 (-946 *8 *10 *9)) (-4 *9 (-13 (-847) (-612 (-1170)))) + (-4 *10 (-790)) + (-5 *2 + (-2 + (|:| |rgl| + (-641 + (-2 (|:| |eqzro| (-641 *11)) (|:| |neqzro| (-641 *11)) + (|:| |wcond| (-641 (-949 *8))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *8)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *8)))))))))) + (|:| |rgsz| (-564)))) + (-5 *1 (-921 *8 *9 *10 *11)) (-5 *7 (-564))))) +(((*1 *1) (-5 *1 (-1261)))) +(((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *6))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1166 (-407 (-1166 *2)))) (-5 *4 (-610 *2)) + (-4 *2 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *1 (-560 *5 *2 *6)) (-4 *6 (-1094)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1166 *1)) (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *3 (-847)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1166 *4)) (-4 *4 (-1046)) (-4 *1 (-946 *4 *5 *3)) + (-4 *5 (-790)) (-4 *3 (-847)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-1166 *2))) (-4 *5 (-790)) (-4 *4 (-847)) + (-4 *6 (-1046)) + (-4 *2 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))) + (-5 *1 (-947 *5 *4 *6 *7 *2)) (-4 *7 (-946 *6 *5 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-1166 (-407 (-949 *5))))) (-5 *4 (-1170)) + (-5 *2 (-407 (-949 *5))) (-5 *1 (-1040 *5)) (-4 *5 (-556))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) +(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1) (-4 *1 (-964))) ((*1 *1 *1) (-5 *1 (-1114)))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-555)) - (-5 *2 (-2 (|:| -4277 (-684 *5)) (|:| |vec| (-1257 (-640 (-917)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-917)) (-4 *3 (-651 *5))))) + (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) + (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) + (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) +(((*1 *1 *1) (|partial| -4 *1 (-145))) ((*1 *1 *1) (-4 *1 (-349))) + ((*1 *1 *1) (|partial| -12 (-4 *1 (-145)) (-4 *1 (-906))))) +(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1158 3 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) + ((*1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046))))) +(((*1 *1 *1) (-5 *1 (-1058)))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) - (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) - (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *2 *1) (-12 (-5 *2 (-967)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4409)) (-4 *1 (-489 *3)) - (-4 *3 (-1208))))) -(((*1 *2 *3) - (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707))))) (((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-192)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-300)))) - ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1151)) (-5 *1 (-305))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-59 *3)) (-4 *3 (-1208)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-59 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225)))))) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843))))) +(((*1 *2 *1) + (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-641 *6)) + (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-641 (-918))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-918)) + (-4 *2 (-363)) (-14 *5 (-990 *4 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-710 *5 *6 *7)) (-4 *5 (-847)) + (-4 *6 (-238 (-2641 *4) (-768))) + (-14 *7 + (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *6)) + (-2 (|:| -1495 *5) (|:| -2515 *6)))) + (-14 *4 (-641 (-1170))) (-4 *2 (-172)) + (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-946 *2 *6 (-861 *4))))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) + (-4 *4 (-1235 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-732 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-723)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) + (-4 *4 (-1046)) (-4 *5 (-847)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) + (-4 *2 (-847)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) + (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *2 (-847)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 *5)) (-4 *1 (-970 *4 *5 *6)) + (-4 *4 (-1046)) (-4 *5 (-789)) (-4 *6 (-847)))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-970 *4 *3 *2)) (-4 *4 (-1046)) (-4 *3 (-789)) + (-4 *2 (-847))))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) + (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) + (-15 -1634 ((-1119 *3 (-610 $)) $)) + (-15 -3742 ($ (-1119 *3 (-610 $)))))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-641 *3)) (-4 *3 (-1209))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-610 *1)) (-4 *1 (-302))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *5 *6)) + (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *1 (-449 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) - (-5 *1 (-1066 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) - (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) (-5 *3 (-563)) - (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *2 *3) - (-12 (-5 *2 (-563)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1045))))) + (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-839 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1166 *6)) (-4 *6 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-1166 *7)) (-5 *1 (-321 *4 *5 *6 *7)) + (-4 *7 (-946 *6 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1209)) + (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *2 *7)) (-4 *6 (-1046)) + (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-2 (|:| |totdeg| (-768)) (|:| -4268 *4))) (-5 *5 (-768)) + (-4 *4 (-946 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-5 *2 + (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) + (|:| |polj| *4))) + (-5 *1 (-449 *6 *7 *8 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-1257 (-316 (-379)))) - (-5 *1 (-305))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1208)) - (-4 *3 (-373 *4)) (-4 *5 (-373 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225)))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) - (-5 *1 (-1066 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) - (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *2 (-1031)) (-5 *1 (-748))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1) - (-12 (-4 *2 (-147)) (-4 *2 (-307)) (-4 *2 (-452)) (-4 *3 (-846)) - (-4 *4 (-789)) (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-316 (-563))) (-5 *1 (-1112)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193)))))) -(((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) - (-5 *2 (-1031)) (-5 *1 (-836))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-640 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-589 *5 *6 *7 *8 *3))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-564)) (-5 *1 (-204))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094))))) (((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-563)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1208)) - (-4 *5 (-373 *4)) (-4 *3 (-373 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-1087 (-225))))) - ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-1087 (-225)))))) -(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) - (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3087 (-640 *9)) (|:| -1926 *4) (|:| |ineq| (-640 *9)))) - (-5 *1 (-984 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) - (-4 *4 (-1065 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) - (-4 *8 (-846)) (-4 *9 (-1059 *6 *7 *8)) - (-5 *2 - (-2 (|:| -3087 (-640 *9)) (|:| -1926 *4) (|:| |ineq| (-640 *9)))) - (-5 *1 (-1100 *6 *7 *8 *9 *4)) (-5 *3 (-640 *9)) - (-4 *4 (-1065 *6 *7 *8 *9))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1034 (-563))) (-4 *1 (-302)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-748))))) -(((*1 *1) - (-12 (-4 *1 (-404)) (-3730 (|has| *1 (-6 -4399))) - (-3730 (|has| *1 (-6 -4391))))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846)))) - ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846))) - ((*1 *2 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) -(((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) -(((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-846)) - (-4 *5 (-789)) (-4 *2 (-266 *4))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) + ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) (((*1 *2 *3) - (-12 (-4 *1 (-835)) - (-5 *3 - (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) - (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) - (|:| |ub| (-640 (-839 (-225)))))) - (-5 *2 (-1031)))) - ((*1 *2 *3) - (-12 (-4 *1 (-835)) - (-5 *3 - (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) - (-5 *2 (-1031))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-563))) (-5 *4 (-901 (-563))) - (-5 *2 (-684 (-563))) (-5 *1 (-588)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-640 (-684 (-563)))) - (-5 *1 (-588)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-563))) (-5 *4 (-640 (-901 (-563)))) - (-5 *2 (-640 (-684 (-563)))) (-5 *1 (-588))))) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) + (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1257 (-694))) (-5 *1 (-305))))) -(((*1 *1) (-5 *1 (-55)))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) - (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *9 (-1059 *6 *7 *8)) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) + (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1056 (-1021 *4) (-1166 (-1021 *4)))) (-5 *3 (-859)) + (-5 *1 (-1021 *4)) (-4 *4 (-13 (-845) (-363) (-1019)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) (-5 *2 - (-640 - (-2 (|:| -3087 (-640 *9)) (|:| -1926 *10) (|:| |ineq| (-640 *9))))) - (-5 *1 (-984 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-640 *10)) (-5 *5 (-112)) (-4 *10 (-1065 *6 *7 *8 *9)) - (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *9 (-1059 *6 *7 *8)) + (-2 (|:| |ir| (-585 (-407 *6))) (|:| |specpart| (-407 *6)) + (|:| |polypart| *6))) + (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-685 *4)) + (-5 *1 (-811 *4 *5)) (-4 *5 (-652 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-363)) + (-5 *2 (-685 *5)) (-5 *1 (-811 *5 *6)) (-4 *6 (-652 *5))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 - (-640 - (-2 (|:| -3087 (-640 *9)) (|:| -1926 *10) (|:| |ineq| (-640 *9))))) - (-5 *1 (-1100 *6 *7 *8 *9 *10)) (-5 *3 (-640 *9))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *2 (-1031)) (-5 *1 (-747))))) + (-2 (|:| -2577 (-779 *3)) (|:| |coef1| (-779 *3)) + (|:| |coef2| (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-2 (|:| -2577 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1060 *3 *4 *5))))) +(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1166 *3)) (-4 *3 (-1046)) (-4 *1 (-1235 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) +(((*1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-1035 (-407 *2)))) (-5 *2 (-564)) + (-5 *1 (-115 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-1095 *3)) (-5 *1 (-901 *3)) (-4 *3 (-368)) - (-4 *3 (-1093))))) -(((*1 *2 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045)))) - ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-445 *3)) (-4 *3 (-1045))))) -(((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-767)) (-5 *1 (-213 *4 *2)) (-14 *4 (-917)) - (-4 *2 (-1093))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-555)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1198 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1151)) (-5 *2 (-214 (-502))) (-5 *1 (-833))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *3) (-12 (-5 *3 (-640 (-563))) (-5 *2 (-767)) (-5 *1 (-588))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-694)) (-5 *1 (-305))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) - (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) - (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4))))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) - (-4 *5 (-373 *2)) (-4 *2 (-1208)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-4 *2 (-1093)) (-5 *1 (-213 *4 *2)) - (-14 *4 (-917)))) + (-12 (-5 *3 (-1170)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -1926 *7)))) - (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-984 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-640 (-2 (|:| |val| (-640 *6)) (|:| -1926 *7)))) - (-4 *6 (-1059 *3 *4 *5)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-1100 *3 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3))))) -(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *2 (-1031)) (-5 *1 (-747))))) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-610 *4)) (-4 *4 (-847)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-5 *2 (-112)) (-5 *1 (-884 *5 *3 *4)) + (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-883 *5)) (-4 *5 (-1094)) + (-5 *2 (-112)) (-5 *1 (-884 *5 *6 *4)) (-4 *4 (-612 (-889 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-767)) (-5 *4 (-563)) (-5 *1 (-445 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) - (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-169 *3)) (-5 *1 (-1197 *4 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-767)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-831 *3)) (-4 *3 (-1093)) (-5 *2 (-55))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) + (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-1150 (-1150 (-949 *5)))) + (-5 *1 (-1267 *5)) (-5 *4 (-1150 (-949 *5)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-564))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-768)) (-4 *5 (-556)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-112)) (-5 *5 (-1096 (-768))) (-5 *6 (-768)) + (-5 *2 + (-2 (|:| |contp| (-564)) + (|:| -2267 (-641 (-2 (|:| |irr| *3) (|:| -2943 (-564))))))) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 *4)))) + (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094)) + (-4 *7 (-1094)) (-5 *2 (-641 *1)) (-4 *1 (-1097 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1193) (-29 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) - (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) - (-5 *2 (-316 *5)) (-5 *1 (-587 *5))))) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-536))) (-5 *1 (-536))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-768)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-144))))) +(((*1 *1 *2 *3 *3 *3 *4) + (-12 (-4 *4 (-363)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 (-407 *3))) + (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-363)) (-4 *4 (-1235 *2)) + (-4 *5 (-1235 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) + (-4 *6 (-342 *2 *4 *5)))) + ((*1 *1 *2 *2) + (-12 (-4 *2 (-363)) (-4 *3 (-1235 *2)) (-4 *4 (-1235 (-407 *3))) + (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) + (-4 *1 (-335 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-1150 *3))) (-5 *1 (-1150 *3)) (-4 *3 (-1209))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1120 *4 *3 *5))) (-4 *4 (-38 (-407 (-564)))) + (-4 *4 (-1046)) (-4 *3 (-847)) (-5 *1 (-1120 *4 *3 *5)) + (-4 *5 (-946 *4 (-531 *3) *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1 (-1203 *4))) (-5 *3 (-1170)) (-5 *1 (-1203 *4)) + (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) + ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) + ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1214)))))) (((*1 *2 *3) + (-12 (-4 *4 (-1046)) + (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-685 *4)) (-4 *5 (-652 *4))))) +(((*1 *2 *3) + (-12 (-14 *4 (-641 (-1170))) (-14 *5 (-768)) + (-5 *2 + (-641 + (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) + (-247 *4 (-407 (-564)))))) + (-5 *1 (-505 *4 *5)) + (-5 *3 + (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) + (-247 *4 (-407 (-564)))))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *3) (-12 (-5 *3 (-169 (-564))) (-5 *2 (-112)) (-5 *1 (-446)))) + ((*1 *2 *3) (-12 (-5 *3 - (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) - (-5 *2 (-640 (-225))) (-5 *1 (-305))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-640 (-1069 *4 *5 *2))) (-4 *4 (-1093)) - (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) - (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) - (-5 *1 (-54 *4 *5 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-640 (-1069 *5 *6 *2))) (-5 *4 (-917)) (-4 *5 (-1093)) - (-4 *6 (-13 (-1045) (-882 *5) (-846) (-611 (-888 *5)))) - (-4 *2 (-13 (-430 *6) (-882 *5) (-611 (-888 *5)))) - (-5 *1 (-54 *5 *6 *2))))) + (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) + (-247 *4 (-407 (-564))))) + (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-958 *3)) (-4 *3 (-545)))) + ((*1 *2 *1) (-12 (-4 *1 (-1213)) (-5 *2 (-112))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-685 (-407 (-949 (-564))))) + (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-1150 *4) (-1150 *4))) (-5 *2 (-1150 *4)) + (-5 *1 (-1284 *4)) (-4 *4 (-1209)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-641 (-1150 *5)) (-641 (-1150 *5)))) (-5 *4 (-564)) + (-5 *2 (-641 (-1150 *5))) (-5 *1 (-1284 *5)) (-4 *5 (-1209))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) + (-5 *2 + (-3 (|:| |overq| (-1166 (-407 (-564)))) + (|:| |overan| (-1166 (-48))) (|:| -1986 (-112)))) + (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) + (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) + (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) +(((*1 *2 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1003))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-1229 *3 *2)) + (-4 *2 (-1235 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) + ((*1 *1 *1) (-12 (-4 *1 (-691 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2913 (-564)) (|:| -2267 (-641 *3)))) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -1926 *8))) - (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-112)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -1926 *8))) - (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *6 (-225)) - (-5 *3 (-563)) (-5 *2 (-1031)) (-5 *1 (-747))))) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) + (-5 *1 (-686 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-765)) + (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-14 *5 (-641 (-1170))) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) - (-5 *1 (-564)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-765)) (-5 *4 (-1057)) + (-641 (-2 (|:| -3400 (-1166 *4)) (|:| -1785 (-641 (-949 *4)))))) + (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))) (|:| |extra| (-1031)))) - (-5 *1 (-564)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-783)) (-5 *3 (-1057)) - (-5 *4 - (-2 (|:| |fn| (-316 (-225))) - (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) + (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) - (|:| |extra| (-1031)))))) + (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) + (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-783)) (-5 *3 (-1057)) - (-5 *4 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)) - (|:| |extra| (-1031)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-796)) (-5 *3 (-1057)) - (-5 *4 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)))))) + (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) + (-5 *1 (-1285 *5 *6 *7)) (-5 *3 (-641 (-949 *5))) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) ((*1 *2 *3) - (-12 (-5 *3 (-804)) + (-12 (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))))) - (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-804)) (-5 *4 (-1057)) + (-641 (-2 (|:| -3400 (-1166 *4)) (|:| -1785 (-641 (-949 *4)))))) + (-5 *1 (-1285 *4 *5 *6)) (-5 *3 (-641 (-949 *4))) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-379))) (-5 *1 (-263)))) + ((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *5 (-610 *4)) (-5 *6 (-1166 *4)) + (-4 *4 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))))) - (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-835)) (-5 *3 (-1057)) - (-5 *4 - (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) - (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)))))) - ((*1 *2 *3 *4) - (-12 (-4 *1 (-835)) (-5 *3 (-1057)) - (-5 *4 - (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) - (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) - (|:| |ub| (-640 (-839 (-225)))))) - (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-837)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) + (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094)))) + ((*1 *2 *3 *4 *5 *5 *5 *4 *6) + (-12 (-5 *5 (-610 *4)) (-5 *6 (-407 (-1166 *4))) + (-4 *4 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))))) - (-5 *1 (-836)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-837)) (-5 *4 (-1057)) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) + (-5 *1 (-560 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) + (-4 *3 (-1235 *4)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-768))) + (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1235 *3))))) +(((*1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *1) + (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1209)) (-4 *1 (-238 *3 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) + ((*1 *1 *1) (-4 *1 (-160)))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) + (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1064 *7 *8 *9 *3 *4)) (-4 *4 (-1066 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *3 (-1060 *6 *7 *8)) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))))) - (-5 *1 (-836)))) + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-891)) (-5 *3 (-1057)) - (-5 *4 - (-2 (|:| |pde| (-640 (-316 (-225)))) - (|:| |constraints| - (-640 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-767)) (|:| |boundaryType| (-563)) - (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) - (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) - (|:| |tol| (-225)))) - (-5 *2 (-2 (|:| -4072 (-379)) (|:| |explanations| (-1151)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-894)) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1064 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-768)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-790)) + (-4 *9 (-847)) (-4 *3 (-1060 *7 *8 *9)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1139 *7 *8 *9 *3 *4)) (-4 *4 (-1103 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-768)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *3 (-1060 *6 *7 *8)) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))))) - (-5 *1 (-893)))) + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1103 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-894)) (-5 *4 (-1057)) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 - (-2 (|:| -4072 (-379)) (|:| -3359 (-1151)) - (|:| |explanations| (-640 (-1151))))) - (-5 *1 (-893))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-418 *6)) (-4 *6 (-1233 *5)) - (-4 *5 (-1045)) (-5 *2 (-640 *6)) (-5 *1 (-444 *5 *6))))) + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-112)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-112)) (-5 *1 (-1197 *4 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *4)))))) -(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)))) + (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) + (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) + (-5 *4 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) + (-5 *4 (-316 (-564))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-169 (-379))))) + (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-564)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-169 (-379))))) + (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-564)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-564))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) + (-5 *4 (-316 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) + (-5 *4 (-316 (-695))) (-5 *1 (-330)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-949 (-564)))) + (-5 *4 (-316 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-690)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-695)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-316 (-697)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-690)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-695)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-316 (-697)))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-695))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-695))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-685 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-695))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-316 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-330)))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) - (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) - (-4 *3 (-643 *2)))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) - (-4 *3 (-643 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045)))) - ((*1 *1 *1) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *3) (-12 (-5 *3 (-640 (-52))) (-5 *2 (-1262)) (-5 *1 (-859))))) -(((*1 *2 *3) - (-12 (-5 *3 (-584 *2)) (-4 *2 (-13 (-29 *4) (-1193))) - (-5 *1 (-582 *4 *2)) - (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-407 (-948 *4)))) - (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) - (-5 *2 (-316 *4)) (-5 *1 (-587 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1087 (-839 (-225)))) (-5 *1 (-305))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) - (-5 *1 (-100 *4 *3)) (-4 *3 (-1233 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-13 (-452) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) - (-5 *1 (-984 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) - (-5 *1 (-1100 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-747))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-5 *1 (-892 *2 *4)) - (-4 *2 (-1233 *4))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-917)) (-5 *1 (-442 *2)) - (-4 *2 (-1233 (-563))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-917)) (-5 *4 (-767)) (-5 *1 (-442 *2)) - (-4 *2 (-1233 (-563))))) - ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *1 (-442 *2)) - (-4 *2 (-1233 (-563))))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) - (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) - ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-917)) (-5 *4 (-640 (-767))) (-5 *5 (-767)) - (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1233 (-563))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-418 *2)) (-4 *2 (-1233 *5)) - (-5 *1 (-444 *5 *2)) (-4 *5 (-1045))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) + (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) -(((*1 *2 *2) - (-12 (-4 *2 (-172)) (-4 *2 (-1045)) (-5 *1 (-710 *2 *3)) - (-4 *3 (-643 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-832 *2)) (-4 *2 (-172)) (-4 *2 (-1045))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) + (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826))))) (((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-586 *4)) - (-4 *4 (-349))))) + (-12 (-5 *3 (-1152)) (-5 *2 (-214 (-502))) (-5 *1 (-834))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-1170)) + (-4 *2 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-277 *5 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -3742 ($ *7))))) + (-4 *7 (-845)) + (-4 *8 + (-13 (-1237 *3 *7) (-363) (-1194) + (-10 -8 (-15 -4117 ($ $)) (-15 -3128 ($ $))))) + (-5 *2 + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) + (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) + (-14 *10 (-1170))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-5 *1 (-437))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-563)))) - (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1060))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-99 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-52))))) + (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) + (-5 *2 (-1259 (-564))) (-5 *1 (-1286 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-984 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 *3)) (-4 *3 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) - (-5 *2 (-112)) (-5 *1 (-1100 *5 *6 *7 *8 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-747))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-5 *1 (-892 *2 *3)) - (-4 *2 (-1233 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-2 (|:| -2055 *4) (|:| -1962 (-563))))) - (-4 *4 (-1233 (-563))) (-5 *2 (-733 (-767))) (-5 *1 (-442 *4)))) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) + (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-5 *3 (-418 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1045)) - (-5 *2 (-733 (-767))) (-5 *1 (-444 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-109))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) + (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-316 *4)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-640 *2)) (-5 *1 (-113 *2)) - (-4 *2 (-1093)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-640 *4))) (-4 *4 (-1093)) - (-5 *1 (-113 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-640 *4))) - (-5 *1 (-113 *4)) (-4 *4 (-1093)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) - (-5 *1 (-710 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 (-316 (-225)))) + (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-940 *4)) (-4 *4 (-1046)) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-918))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 - (-2 (|:| |additions| (-563)) (|:| |multiplications| (-563)) - (|:| |exponentiations| (-563)) (|:| |functionCalls| (-563)))) - (-5 *1 (-305))))) -(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-860 *3)) (-14 *3 (-640 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-985)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1085 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) - (-5 *2 (-1169)))) - ((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2)))) -(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1151)) (-5 *1 (-52))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *2 (-1031)) (-5 *1 (-747))))) -(((*1 *2 *3) - (-12 (-4 *1 (-891)) - (-5 *3 - (-2 (|:| |pde| (-640 (-316 (-225)))) - (|:| |constraints| - (-640 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-767)) (|:| |boundaryType| (-563)) - (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) - (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) - (|:| |tol| (-225)))) - (-5 *2 (-1031))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-107 *3))))) + (-641 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) + (-5 *1 (-449 *3 *4 *5 *6))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)))) (-5 *1 (-188 *3 *2)) - (-4 *2 (-13 (-27) (-1193) (-430 (-169 *3)))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) - (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) +(((*1 *2 *2 *1 *3 *4) + (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 *8 *8 *8)) + (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1202 *5 *6 *7 *8)) (-4 *5 (-556)) + (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7))))) +(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) + (-12 (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) (-5 *3 (-564)) + (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-564)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-768)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-918)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) + (-4 *4 (-172)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-157)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194))) + (-5 *1 (-227 *3)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) + ((*1 *1 *2 *1) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-1106)) (-4 *2 (-1209)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)))) + ((*1 *1 *2 *3) + (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-4 *6 (-238 (-2641 *3) (-768))) + (-14 *7 + (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *6)) + (-2 (|:| -1495 *5) (|:| -2515 *6)))) + (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-847)) + (-4 *2 (-946 *4 *6 (-861 *3))))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-1046)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-644 *2)) (-4 *2 (-1053)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-1 *7 *5)) + (-5 *1 (-680 *5 *6 *7)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-683 *3 *2 *4)) (-4 *3 (-1046)) (-4 *2 (-373 *3)) + (-4 *4 (-373 *3)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-683 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *2 (-373 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) (-4 *1 (-717))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) + (-5 *1 (-966 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1052 *2)) (-4 *2 (-1053)))) + ((*1 *1 *1 *1) (-4 *1 (-1106))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *2 (-238 *3 *4)) + (-4 *5 (-238 *3 *4)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1117 *3 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) + (-4 *2 (-946 *3 (-531 *4) *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1197 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-643 *3)) (-4 *3 (-1045)) - (-5 *1 (-710 *3 *4)))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-940 (-225))) (-5 *3 (-225)) (-5 *1 (-1205)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-832 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-585 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) - (-5 *2 (-379)) (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-723)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-564)) (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *3 (-641 (-263))) + (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-468))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) +(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-818))))) +(((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) + ((*1 *1 *1) (-4 *1 (-999))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1009)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1009)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-918)))) + ((*1 *1 *1) (-4 *1 (-1009)))) +(((*1 *2 *2) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) + (-5 *1 (-176 *3))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-747))))) -(((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) - (-5 *2 (-640 (-2 (|:| |k| *4) (|:| |c| *3)))))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |k| (-889 *3)) (|:| |c| *4)))) - (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) - (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-667 *3))) (-5 *1 (-889 *3)) (-4 *3 (-846))))) + (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) + (-5 *1 (-1012 *4 *5)) (-5 *3 (-407 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046))))) +(((*1 *2 *2) (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) (((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1149 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2244 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-558))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-1045)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1233 *3))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545))))) -(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-747))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) - (-14 *4 (-640 (-1169))))) + (-12 (-5 *3 (-564)) (|has| *1 (-6 -4402)) (-4 *1 (-404)) + (-5 *2 (-918))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) + (-14 *4 (-918))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1235 (-48))))) ((*1 *2 *3) - (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1208)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) - (-14 *4 (-640 (-1169))))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-846))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1045)) - (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-1045)) - (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-1233 *4))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-563))) (-5 *1 (-305))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-747))))) -(((*1 *2 *3) - (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-640 *5)) - (-5 *1 (-886 *4 *5)) (-4 *5 (-1208))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1045)) - (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-248))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-767)) (-5 *1 (-585 *2)) (-4 *2 (-545)))) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) + (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-946 (-48) *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-48))) (-4 *5 (-847)) (-4 *6 (-790)) + (-4 *7 (-946 (-48) *6 *5)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1166 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1433 *3) (|:| -2631 (-767)))) (-5 *1 (-585 *3)) - (-4 *3 (-545))))) -(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-563))) (-5 *1 (-305))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-62 *3)) (-14 *3 (-1169)))) - ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-69 *3)) (-14 *3 (-1169)))) - ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-72 *3)) (-14 *3 (-1169)))) - ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1262)))) - ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-397)))) + (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) + (-4 *3 (-1235 (-169 *4))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) - ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) + (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *2)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 (-684 *3))) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-747))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-886 *4 *3)) - (-4 *3 (-1208)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-5 *2 (-563)) - (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1233 *5)) - (-4 *6 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))))) + (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1233 *4)) - (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-767)) (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1087 (-839 (-379)))) (-5 *2 (-1087 (-839 (-225)))) - (-5 *1 (-305))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) - (-5 *1 (-885 *4 *5)) (-4 *5 (-1093)))) + (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-888 *5)) (-4 *5 (-1093)) (-5 *2 (-112)) - (-5 *1 (-886 *5 *3)) (-4 *3 (-1208)))) + (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) - (-4 *6 (-1208)) (-5 *2 (-112)) (-5 *1 (-886 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1233 *4)) - (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))))) -(((*1 *1) (-5 *1 (-1262)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-767)) (-4 *1 (-979 *2)) (-4 *2 (-1193))))) -(((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 (-169 (-564)))) (-5 *1 (-446)) + (-5 *3 (-169 (-564))))) + ((*1 *2 *3) (-12 - (-5 *3 - (-640 - (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *2)) - (|:| |logand| (-1165 *2))))) - (-5 *4 (-640 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) - (-4 *2 (-363)) (-5 *1 (-584 *2))))) -(((*1 *2 *3) - (-12 (-5 *3 (-839 (-379))) (-5 *2 (-839 (-225))) (-5 *1 (-305))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-391))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) - (-4 *4 (-13 (-1093) (-34)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| -3673 (-114)) (|:| |arg| (-640 (-888 *3))))) - (-5 *1 (-888 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-888 *4))) - (-5 *1 (-888 *4)) (-4 *4 (-1093))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1045)) - (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) + (-4 *4 + (-13 (-847) + (-10 -8 (-15 -2235 ((-1170) $)) + (-15 -3851 ((-3 $ "failed") (-1170)))))) + (-4 *5 (-790)) (-4 *7 (-556)) (-5 *2 (-418 *3)) + (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-556)) + (-4 *3 (-946 *7 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1166 *4))) (-5 *1 (-458 *4)) + (-5 *3 (-1166 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-4 *7 (-13 (-363) (-147) (-721 *5 *6))) (-5 *2 (-418 *3)) + (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1235 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) + (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) + (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) + (-4 *3 (-946 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-917)) (-4 *5 (-1045)) - (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) - (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-183))))) -(((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-165 *3 *2)) (-4 *3 (-166 *2)))) + (-12 (-5 *4 (-1 (-418 (-1166 *7)) (-1166 *7))) + (-4 *7 (-13 (-307) (-147))) (-4 *5 (-847)) (-4 *6 (-790)) + (-4 *8 (-946 *7 *6 *5)) (-5 *2 (-418 (-1166 *8))) + (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1166 *8)))) + ((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *6 (-1235 *5)) (-5 *2 (-641 (-649 (-407 *6)))) + (-5 *1 (-653 *5 *6)) (-5 *3 (-649 (-407 *6))))) ((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *2 *4)) (-4 *4 (-1233 *2)) - (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-1233 *2)) (-4 *2 (-172)) (-5 *1 (-408 *3 *2 *4)) - (-4 *3 (-409 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-409 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) - ((*1 *2) - (-12 (-4 *3 (-1233 *2)) (-5 *2 (-563)) (-5 *1 (-764 *3 *4)) - (-4 *4 (-409 *2 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)) (-4 *3 (-172)))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) + (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5))))) ((*1 *2 *3) - (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-870)))) - ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)) (-5 *3 (-1151)))) - ((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-241)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) -(((*1 *2 *1) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363))))) -(((*1 *2 *3) - (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305))))) -(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1262)) (-5 *1 (-391)))) - ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-391))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-767)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767))))) + (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-668 *4))) + (-5 *1 (-668 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-5 *2 (-641 *3)) (-5 *1 (-692 *3)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) (-5 *2 (-418 *3)) + (-5 *1 (-694 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-349)) + (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-694 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) + ((*1 *2 *3) + (-12 (-4 *4 (-790)) + (-4 *5 + (-13 (-847) + (-10 -8 (-15 -2235 ((-1170) $)) + (-15 -3851 ((-3 $ "failed") (-1170)))))) + (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-727 *4 *5 *6 *3)) + (-4 *3 (-946 (-949 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-790)) + (-4 *5 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *6 (-556)) + (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) + (-4 *3 (-946 (-407 (-949 *6)) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-13 (-307) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-730 *4 *5 *6 *3)) + (-4 *3 (-946 (-407 *6) *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-738 *4 *5 *6 *3)) + (-4 *3 (-946 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) + (-4 *3 (-1235 (-407 (-564)))))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1038 *3)) + (-4 *3 (-1235 (-407 (-949 (-564))))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1235 (-407 (-564)))) + (-4 *5 (-13 (-363) (-147) (-721 (-407 (-564)) *4))) + (-5 *2 (-418 *3)) (-5 *1 (-1073 *4 *5 *3)) (-4 *3 (-1235 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1235 (-407 (-949 (-564))))) + (-4 *5 (-13 (-363) (-147) (-721 (-407 (-949 (-564))) *4))) + (-5 *2 (-418 *3)) (-5 *1 (-1075 *4 *5 *3)) (-4 *3 (-1235 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) + (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) + (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) + ((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) - (-4 *3 (-1093))))) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1045)) (-5 *2 (-563)) (-5 *1 (-443 *4 *3 *5)) - (-4 *3 (-1233 *4)) - (-4 *5 (-13 (-404) (-1034 *4) (-363) (-1193) (-284)))))) + (-12 (-4 *4 (-847)) (-5 *2 (-1181 (-641 *4))) (-5 *1 (-1180 *4)) + (-5 *3 (-641 *4))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)) (-4 *3 (-172)))) - ((*1 *2 *3 *3) - (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-157)))) - ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) - ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1094))))) (((*1 *2 *1) - (-12 - (-5 *2 - (-640 - (-2 (|:| |scalar| (-407 (-563))) (|:| |coeff| (-1165 *3)) - (|:| |logand| (-1165 *3))))) - (-5 *1 (-584 *3)) (-4 *3 (-363))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) -(((*1 *2 *1 *1 *3 *4) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) - (-5 *2 (-112)) (-5 *1 (-1133 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) + (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2577 *3))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-379)) (-5 *1 (-1037))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-767)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-112)) (-5 *5 (-1095 (-767))) (-5 *6 (-767)) - (-5 *2 - (-2 (|:| |contp| (-563)) - (|:| -2524 (-640 (-2 (|:| |irr| *3) (|:| -2581 (-563))))))) - (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *4 (-1169)) - (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300))))) -(((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1093) (-34))) - (-5 *2 (-112)) (-5 *1 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) + (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2))))) (((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) - ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) - (-4 *3 (-555)))) - ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-1257 *5)) (-4 *5 (-307)) - (-4 *5 (-1045)) (-5 *2 (-684 *5)) (-5 *1 (-1025 *5))))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) (((*1 *1 *2) - (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 *4)))) - (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-644 *3 *4 *5))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-1149 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) - (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) - (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) + (-14 *4 (-641 (-1170))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-555))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-684 *5))) (-4 *5 (-307)) (-4 *5 (-1045)) - (-5 *2 (-1257 (-1257 *5))) (-5 *1 (-1025 *5)) (-5 *4 (-1257 *5))))) -(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208)))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-373 *2)) (-4 *2 (-1208)))) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-5 *1 (-625 *3 *4 *5)) + (-14 *5 (-918)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) + (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) + (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) + (-4 *4 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-4 *1 (-266 *3)) (-4 *3 (-847)))) + ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) + (-4 *4 (-1235 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) - (-5 *2 (-640 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) + (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) + (-4 *3 (-1235 *2)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-640 (-1169))) - (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-1149 (-225))) (-5 *1 (-300))))) -(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) - (-5 *2 (-2 (|:| -2765 *4) (|:| -2896 *3) (|:| -1488 *3))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-1059 *3 *4 *5)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-555)) (-4 *3 (-1045)) - (-5 *2 (-2 (|:| -2765 *3) (|:| -2896 *1) (|:| -1488 *1))) - (-4 *1 (-1233 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-4 *4 (-1045)) - (-5 *1 (-1025 *4))))) -(((*1 *1) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-4 *2 (-363)) (-4 *2 (-897 *3)) (-5 *1 (-585 *2)) + (-5 *3 (-1170)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-585 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) + (-4 *4 (-1094)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) - (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-192)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-1169)) - (-5 *5 (-1087 (-839 (-225)))) (-5 *2 (-640 (-225))) (-5 *1 (-300))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3)))))) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 (-407 (-949 *6)))) + (-5 *3 (-407 (-949 *6))) + (-4 *6 (-13 (-556) (-1035 (-564)) (-147))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-570 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-1046)) + (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-1235 *4))))) (((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-679 *4 *3)) (-4 *4 (-1094)) + (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) + (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) + (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) + ((*1 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) + (-4 *2 (-683 *3 *4 *5)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-685 *2)) (-4 *2 (-363)) (-4 *2 (-1046)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1117 *2 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-1180 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) + (-5 *1 (-1154 *3))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *3 (-641 (-263))) + (-5 *1 (-261)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) + (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 (-1259 *6)) + (-5 *1 (-629 *5 *6))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-968))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1132)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1094)) (-4 *4 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-1 *6 *5)) (-5 *1 (-680 *5 *4 *6))))) (((*1 *2 *1) - (-12 (-4 *2 (-1208)) (-5 *1 (-869 *3 *2)) (-4 *3 (-1208)))) - ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) + (-12 (-5 *2 (-859)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) + (-4 *3 (-1209))))) +(((*1 *1 *1) (-5 *1 (-1058)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 (-641 *7) *7 (-1166 *7))) (-5 *5 (-1 (-418 *7) *7)) + (-4 *7 (-1235 *6)) (-4 *6 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-5 *2 (-641 (-2 (|:| |frac| (-407 *7)) (|:| -4032 *3)))) + (-5 *1 (-806 *6 *7 *3 *8)) (-4 *3 (-652 *7)) + (-4 *8 (-652 (-407 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-5 *2 + (-641 (-2 (|:| |frac| (-407 *6)) (|:| -4032 (-650 *6 (-407 *6)))))) + (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6)))))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-610 *1)) (-4 *1 (-430 *4)) (-4 *4 (-847)) + (-4 *4 (-556)) (-5 *2 (-407 (-1166 *1))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 (-1166 (-407 (-1166 *3)))) (-5 *1 (-560 *6 *3 *7)) + (-5 *5 (-1166 *3)) (-4 *7 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1255 *5)) (-14 *5 (-1170)) (-4 *6 (-1046)) + (-5 *2 (-1232 *5 (-949 *6))) (-5 *1 (-944 *5 *6)) (-5 *3 (-949 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-1166 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) (-5 *2 (-1166 *1)) + (-4 *1 (-946 *4 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-1046)) + (-4 *7 (-946 *6 *5 *4)) (-5 *2 (-407 (-1166 *3))) + (-5 *1 (-947 *5 *4 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1166 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $))))) + (-4 *7 (-946 *6 *5 *4)) (-4 *5 (-790)) (-4 *4 (-847)) + (-4 *6 (-1046)) (-5 *1 (-947 *5 *4 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-4 *5 (-556)) + (-5 *2 (-407 (-1166 (-407 (-949 *5))))) (-5 *1 (-1040 *5)) + (-5 *3 (-407 (-949 *5)))))) +(((*1 *2 *3 *4 *4 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1032)) (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-225)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-407 (-564))) (-5 *1 (-379))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) - (-12 (-4 *3 (-555)) (-5 *2 (-640 *4)) (-5 *1 (-43 *3 *4)) - (-4 *4 (-417 *3))))) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) + (-4 *4 (-38 (-407 (-564))))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *4 (-555)) (-4 *5 (-1233 *4)) - (-5 *2 (-2 (|:| -2486 (-620 *4 *5)) (|:| -2476 (-407 *5)))) - (-5 *1 (-620 *4 *5)) (-5 *3 (-407 *5)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) - (-14 *3 (-917)) (-4 *4 (-1045)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-452)) (-4 *3 (-1045)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) - (-4 *1 (-1233 *3))))) + (-12 (-5 *3 (-585 *2)) (-4 *2 (-13 (-29 *4) (-1194))) + (-5 *1 (-583 *4 *2)) + (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-407 (-949 *4)))) + (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-5 *2 (-316 *4)) (-5 *1 (-588 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))) + (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *5 (-1035 (-48))) + (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) + (-5 *2 (-418 (-1166 (-48)))) (-5 *1 (-435 *4 *5 *3)) + (-4 *3 (-1235 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302))))) (((*1 *2 *3) - (-12 (-5 *3 (-1257 (-1257 *4))) (-4 *4 (-1045)) (-5 *2 (-684 *4)) - (-5 *1 (-1025 *4))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-4 *4 (-349)) + (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -2458 *3)))) + (-5 *1 (-216 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-235 *3)))) + ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1150 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) +(((*1 *1 *2) + (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-4 *1 (-374 *3 *4)) + (-4 *4 (-172))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-112)) (-5 *1 (-300))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) -(((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-684 *2)) (-5 *4 (-563)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) + (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1235 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-5 *1 (-1229 *4 *2)) - (-4 *2 (-1233 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-901 (-563))) (-5 *4 (-563)) (-5 *2 (-684 *4)) - (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-684 (-563))) (-5 *1 (-1024 *4)) - (-4 *4 (-1045)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-901 (-563)))) (-5 *4 (-563)) - (-5 *2 (-640 (-684 *4))) (-5 *1 (-1024 *5)) (-4 *5 (-1045)))) + (-12 (-4 *3 (-1235 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-982 *4 *2 *3 *5)) + (-4 *4 (-349)) (-4 *5 (-721 *2 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) + (-5 *2 (-112)) (-5 *1 (-636 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-857)) (-5 *2 (-687 (-1217))) (-5 *3 (-1217))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) + ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215))) + ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217)))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-556)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-545)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-640 (-563)))) (-5 *2 (-640 (-684 (-563)))) - (-5 *1 (-1024 *4)) (-4 *4 (-1045))))) -(((*1 *1 *2 *1) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) - (-14 *4 *3)))) -(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) - (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-684 *2)) (-5 *4 (-767)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *5 (-1233 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1005 *3)) (-4 *3 (-1035 (-407 (-564))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-564)) (-14 *4 (-768))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-1174)) (-5 *1 (-1173))))) (((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) + (-12 (-5 *2 (-641 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1170))))) +(((*1 *1 *1 *1) (-5 *1 (-129))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) + ((*1 *1 *1 *1) (-5 *1 (-1214))) ((*1 *1 *1 *1) (-5 *1 (-1215))) + ((*1 *1 *1 *1) (-5 *1 (-1216))) ((*1 *1 *1 *1) (-5 *1 (-1217)))) +(((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-1024 *3)))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) ((*1 *2 *2) - (-12 (-5 *2 (-640 (-684 *3))) (-4 *3 (-1045)) (-5 *1 (-1024 *3))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-609 *1)) (-4 *1 (-302))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) - (-4 *5 (-846)) (-5 *2 (-948 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *5)) (-4 *4 (-1045)) - (-4 *5 (-846)) (-5 *2 (-948 *4)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) - (-5 *2 (-948 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-1248 *4)) (-4 *4 (-1045)) - (-5 *2 (-948 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) - (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-767)) (-4 *5 (-349)) (-4 *6 (-1233 *5)) - (-5 *2 - (-640 - (-2 (|:| -3288 (-684 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-684 *6))))) - (-5 *1 (-498 *5 *6 *7)) - (-5 *3 - (-2 (|:| -3288 (-684 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-684 *6)))) - (-4 *7 (-1233 *6))))) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-1204 *3)) + (-4 *3 (-971))))) (((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1045)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-1233 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1087 *3)) (-4 *3 (-945 *7 *6 *4)) (-4 *6 (-789)) - (-4 *4 (-846)) (-4 *7 (-555)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) - (-5 *1 (-592 *6 *4 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-555)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-563)))) - (-5 *1 (-592 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1161 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1193))) - (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1161 *4 *2)))) + (-12 (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) (-4 *3 (-612 (-379))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) - (-5 *2 (-407 (-948 *5))) (-5 *1 (-1162 *5)) (-5 *3 (-948 *5)))) + (-12 (-5 *4 (-918)) (-5 *2 (-169 (-379))) (-5 *1 (-782 *3)) + (-4 *3 (-612 (-379))))) + ((*1 *2 *3) + (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-612 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) - (-5 *2 (-3 (-407 (-948 *5)) (-316 *5))) (-5 *1 (-1162 *5)) - (-5 *3 (-407 (-948 *5))))) + (-12 (-5 *3 (-169 *5)) (-5 *4 (-918)) (-4 *5 (-172)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-612 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085 (-948 *5))) (-5 *3 (-948 *5)) - (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-407 *3)) - (-5 *1 (-1162 *5)))) + (-12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) - (-4 *5 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-3 *3 (-316 *5))) - (-5 *1 (-1162 *5))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (-4 *4 (-1045)) - (-5 *1 (-1024 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) (-4 *4 (-1045)) - (-5 *1 (-1024 *4))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-563) (-563))) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-767) (-767))) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) - (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-640 *3))))) -(((*1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1132))) ((*1 *1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(((*1 *2 *1) - (-12 - (-5 *2 - (-640 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) - (|:| |xpnt| (-563))))) - (-5 *1 (-418 *3)) (-4 *3 (-555)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-767)) (-4 *3 (-349)) (-4 *5 (-1233 *3)) - (-5 *2 (-640 (-1165 *3))) (-5 *1 (-498 *3 *5 *6)) - (-4 *6 (-1233 *5))))) + (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 (-379))) + (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-782 *5))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) + (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-307)) (-5 *2 (-768))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) (((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-555)) - (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-1228 *4 *3)) - (-4 *3 (-1233 *4))))) + (-12 (-5 *3 (-1170)) + (-5 *2 + (-2 (|:| |zeros| (-1150 (-225))) (|:| |ones| (-1150 (-225))) + (|:| |singularities| (-1150 (-225))))) + (-5 *1 (-105))))) +(((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-32 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *1 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-114)) (-5 *1 (-163)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *4)) + (-4 *4 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) + ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *4 (-847)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *4)) + (-4 *4 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) + ((*1 *2 *2) + (-12 (-5 *2 (-114)) (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *4)) + (-4 *4 (-13 (-430 *3) (-999) (-1194))))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1016))))) (((*1 *2 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-684 (-948 *4))) (-5 *1 (-1024 *4)) - (-4 *4 (-1045))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-131)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-361 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-386 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-644 *3 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))) + (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046))))) +(((*1 *2) + (-12 (-4 *1 (-349)) + (-5 *2 (-641 (-2 (|:| -4127 (-564)) (|:| -2515 (-564)))))))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-751))))) (((*1 *2) - (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-343 *3 *4)) (-14 *3 (-917)) - (-14 *4 (-917)))) + (-12 (-4 *3 (-1213)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)))) ((*1 *2) - (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-1165 *3)))) + (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *4 (-1235 *3)) + (-5 *2 + (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) ((*1 *2) - (-12 (-5 *2 (-954 (-1113))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-917))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-767)) (-5 *1 (-226)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-169 (-225))) (-5 *3 (-767)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) - ((*1 *2 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-495))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-43 *4 *3)) - (-4 *3 (-417 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-147))) (-5 *2 (-640 *3)) - (-5 *1 (-1227 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-684 *4)) (-5 *3 (-917)) (|has| *4 (-6 (-4410 "*"))) - (-4 *4 (-1045)) (-5 *1 (-1024 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-640 (-684 *4))) (-5 *3 (-917)) - (|has| *4 (-6 (-4410 "*"))) (-4 *4 (-1045)) (-5 *1 (-1024 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-642 *3)) (-4 *3 (-1093))))) -(((*1 *2) - (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) - (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + (-12 (-4 *3 (-1235 (-564))) + (-5 *2 + (-2 (|:| -4265 (-685 (-564))) (|:| |basisDen| (-564)) + (|:| |basisInv| (-685 (-564))))) + (-5 *1 (-765 *3 *4)) (-4 *4 (-409 (-564) *3)))) ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-491))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) - (-4 *5 (-373 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "right") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-119 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-640 (-563))) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 (-563)) (-14 *5 (-767)))) - ((*1 *2 *1 *3 *3 *3 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-767)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-767)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-767)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-172)) (-5 *1 (-136 *4 *5 *2)) - (-14 *4 *3) (-14 *5 (-767)))) - ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-136 *3 *4 *2)) (-14 *3 (-563)) - (-14 *4 (-767)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-245 (-1151))) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-846) - (-10 -8 (-15 -3858 ((-1151) $ *3)) (-15 -3051 ((-1262) $)) - (-15 -2807 ((-1262) $))))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-985)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-846) - (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) - (-15 -2807 ((-1262) $))))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-767)) (-5 *1 (-245 *4)) (-4 *4 (-846)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-245 *3)) (-4 *3 (-846)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "unique") (-5 *1 (-245 *3)) (-4 *3 (-846)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-286 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1208)))) - ((*1 *2 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) - (-4 *2 (-1233 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) - ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) - (-4 *4 (-1233 (-407 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-4 *1 (-417 *2)) (-4 *2 (-172)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1151)) (-5 *1 (-502)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-52)) (-5 *1 (-629)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-640 (-888 *4))) (-5 *1 (-888 *4)) - (-4 *4 (-1093)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-901 *4)) (-5 *1 (-900 *4)) - (-4 *4 (-1093)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-240 *4 *2)) (-14 *4 (-917)) (-4 *2 (-363)) - (-5 *1 (-989 *4 *2)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "value") (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) (-4 *2 (-1045)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *2 *6 *7)) - (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1045)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-917)) (-4 *4 (-1093)) - (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) - (-5 *1 (-1069 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-917)) (-4 *4 (-1093)) - (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) - (-5 *1 (-1070 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) + (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) + (-5 *2 + (-2 (|:| -4265 (-685 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-685 *4)))) + (-5 *1 (-982 *3 *4 *5 *6)) (-4 *6 (-721 *4 *5)))) + ((*1 *2) + (-12 (-4 *3 (-349)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 *4)) + (-5 *2 + (-2 (|:| -4265 (-685 *4)) (|:| |basisDen| *4) + (|:| |basisInv| (-685 *4)))) + (-5 *1 (-1268 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-563))) (-4 *1 (-1096 *3 *4 *5 *6 *7)) - (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) - (-4 *7 (-1093)))) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) - (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)))) - ((*1 *1 *1 *1) (-4 *1 (-1137))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-407 *1)) (-4 *1 (-1233 *2)) (-4 *2 (-1045)) - (-4 *2 (-363)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-407 *1)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)) - (-4 *3 (-555)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "last") (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 "rest") (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 "first") (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1151)) (-5 *1 (-97))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-114)) (-5 *4 (-767)) (-4 *5 (-452)) (-4 *5 (-846)) - (-4 *5 (-1034 (-563))) (-4 *5 (-555)) (-5 *1 (-41 *5 *2)) - (-4 *2 (-430 *5)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *5 (-609 $)) $)) - (-15 -2636 ((-1118 *5 (-609 $)) $)) - (-15 -2062 ($ (-1118 *5 (-609 $)))))))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-555) (-147))) - (-5 *2 (-2 (|:| -2654 *3) (|:| -2665 *3))) (-5 *1 (-1227 *4 *3)) - (-4 *3 (-1233 *4))))) + (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *3 *2)) + (-4 *3 (-13 (-1094) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1270))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2448 *4))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1) (-5 *1 (-379))) ((*1 *1) (-5 *1 (-379)))) (((*1 *2 *3) - (-12 (-5 *3 (-684 (-407 (-948 (-563))))) - (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027))))) + (-12 (-5 *3 (-1181 (-641 *4))) (-4 *4 (-847)) + (-5 *2 (-641 (-641 *4))) (-5 *1 (-1180 *4))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *1)) (-5 *4 (-1257 *1)) (-4 *1 (-636 *5)) - (-4 *5 (-1045)) - (-5 *2 (-2 (|:| -4277 (-684 *5)) (|:| |vec| (-1257 *5)))))) - ((*1 *2 *3) - (-12 (-5 *3 (-684 *1)) (-4 *1 (-636 *4)) (-4 *4 (-1045)) - (-5 *2 (-684 *4))))) + (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-776 *4)) + (-4 *4 (-13 (-363) (-845)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) + (-14 *4 (-768)) (-4 *5 (-172))))) (((*1 *2) - (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) - (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-985 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) + (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1101 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-768)) (-4 *2 (-1094)) + (-5 *1 (-674 *2))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *1 *1 *1) (-4 *1 (-657)))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-768)) (-4 *2 (-556)) (-5 *1 (-966 *2 *4)) + (-4 *4 (-1235 *2))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-845))) + (-5 *2 (-641 (-2 (|:| -2267 (-641 *3)) (|:| -1912 *5)))) + (-5 *1 (-181 *5 *3)) (-4 *3 (-1235 (-169 *5))))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036)))) - ((*1 *1 *1 *1) (-4 *1 (-1132)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-5 *2 (-112)) (-5 *1 (-920 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-112)) - (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) - (-4 *4 (-1208)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208))))) + (-12 (-4 *4 (-13 (-363) (-845))) + (-5 *2 (-641 (-2 (|:| -2267 (-641 *3)) (|:| -1912 *4)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) - (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) - (-15 -2636 ((-1118 *3 (-609 $)) $)) - (-15 -2062 ($ (-1118 *3 (-609 $)))))))))) -(((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-1227 *3 *2)) - (-4 *2 (-1233 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027))))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) (-4 *5 (-363)) - (-4 *5 (-555)) (-5 *2 (-1257 *5)) (-5 *1 (-635 *5 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 *5)) - (-3730 (-4 *5 (-363))) (-4 *5 (-555)) (-5 *2 (-1257 (-407 *5))) - (-5 *1 (-635 *5 *4))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-1212)) (-4 *5 (-1233 *3)) (-4 *6 (-1233 (-407 *5))) - (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) - ((*1 *1 *1) (-4 *1 (-844))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)) (-4 *2 (-1054)))) - ((*1 *1 *1) (-4 *1 (-1054))) ((*1 *1 *1) (-4 *1 (-1132)))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-858)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1135 *3 *4)) (-5 *1 (-989 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-363)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 *5))) (-4 *5 (-1045)) - (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) - (-4 *7 (-238 *3 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) - (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *2)) (-4 *2 (-945 *3 *5 *4))))) -(((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-169 (-225))) (-5 *6 (-1151)) - (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) - (-4 *4 (-1208)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) - (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) - (-15 -2636 ((-1118 *3 (-609 $)) $)) - (-15 -2062 ($ (-1118 *3 (-609 $)))))))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) - (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027))))) + (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) + (-5 *1 (-626 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) - (-5 *2 (-1257 *4)) (-5 *1 (-635 *4 *5))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-847) (-556)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) - (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-640 (-563))) - (|:| |cols| (-640 (-563))))) - (-5 *4 (-684 *12)) (-5 *5 (-640 (-407 (-948 *9)))) - (-5 *6 (-640 (-640 *12))) (-5 *7 (-767)) (-5 *8 (-563)) - (-4 *9 (-13 (-307) (-147))) (-4 *12 (-945 *9 *11 *10)) - (-4 *10 (-13 (-846) (-611 (-1169)))) (-4 *11 (-789)) (-5 *2 - (-2 (|:| |eqzro| (-640 *12)) (|:| |neqzro| (-640 *12)) - (|:| |wcond| (-640 (-948 *9))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *9)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *9))))))))) - (-5 *1 (-920 *9 *10 *11 *12))))) -(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) + (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *1 *1 *1) (-4 *1 (-657)))) (((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-846)) (-4 *3 (-1034 (-563))) - (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) - (-15 -2636 ((-1118 *3 (-609 $)) $)) - (-15 -2062 ($ (-1118 *3 (-609 $)))))))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-767)) (-4 *4 (-13 (-555) (-147))) - (-5 *1 (-1227 *4 *2)) (-4 *2 (-1233 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-684 (-407 (-948 (-563))))) - (-5 *2 (-684 (-316 (-563)))) (-5 *1 (-1027))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 *5)) (-4 *5 (-636 *4)) (-4 *4 (-555)) - (-5 *2 (-112)) (-5 *1 (-635 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603))))) -(((*1 *2 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) - (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-1131)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-858))) (-5 *2 (-1262)) (-5 *1 (-1131))))) -(((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1151)) (-5 *4 (-169 (-225))) (-5 *5 (-563)) - (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) + (-5 *1 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-684 *7)) (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-563)) (-5 *1 (-486 *4)) - (-4 *4 (-1233 *2))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-1165 *3)) (-5 *1 (-41 *4 *3)) - (-4 *3 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *4 (-609 $)) $)) - (-15 -2636 ((-1118 *4 (-609 $)) $)) - (-15 -2062 ($ (-1118 *4 (-609 $)))))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) - (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) - (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) - (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) - (-5 *2 (-2 (|:| |num| (-684 *4)) (|:| |den| *4))) - (-5 *1 (-688 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-4 *6 (-1233 *5)) - (-5 *2 (-2 (|:| -3087 *7) (|:| |rh| (-640 (-407 *6))))) - (-5 *1 (-803 *5 *6 *7 *3)) (-5 *4 (-640 (-407 *6))) - (-4 *7 (-651 *6)) (-4 *3 (-651 (-407 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1226 *4 *5 *3)) - (-4 *3 (-1233 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-684 (-407 (-948 (-563))))) (-5 *2 (-640 (-316 (-563)))) - (-5 *1 (-1027))))) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) + ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-672)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) +(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) +(((*1 *1 *1) (-5 *1 (-859)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-839 *3))) (-4 *3 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) + (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *1 *1) (-5 *1 (-1169))) + ((*1 *1 *2) + (-12 (-5 *2 - (-3 (-839 *3) - (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) - (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) - "failed")) - (-5 *1 (-633 *5 *3)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1151)) - (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-839 *3)) (-5 *1 (-633 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-839 (-948 *5)))) (-4 *5 (-452)) + (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *7)) (-4 *7 (-847)) + (-4 *8 (-946 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) (-5 *2 - (-3 (-839 (-407 (-948 *5))) - (-2 (|:| |leftHandLimit| (-3 (-839 (-407 (-948 *5))) "failed")) - (|:| |rightHandLimit| (-3 (-839 (-407 (-948 *5))) "failed"))) - "failed")) - (-5 *1 (-634 *5)) (-5 *3 (-407 (-948 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) - (-4 *5 (-452)) + (-2 (|:| |particular| (-3 (-1259 (-407 *8)) "failed")) + (|:| -4265 (-641 (-1259 (-407 *8)))))) + (-5 *1 (-665 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) +(((*1 *2 *3 *4 *4 *3 *5) + (-12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) + (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) + ((*1 *2 *3 *4 *4 *4 *3 *5) + (-12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) + (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 - (-3 (-839 *3) - (-2 (|:| |leftHandLimit| (-3 (-839 *3) "failed")) - (|:| |rightHandLimit| (-3 (-839 *3) "failed"))) - "failed")) - (-5 *1 (-634 *5)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-294 (-407 (-948 *6)))) (-5 *5 (-1151)) - (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-839 *3)) - (-5 *1 (-634 *6))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1157 3 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) - ((*1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) + (-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) + (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) + (|:| |args| (-641 (-859))))) + (-5 *1 (-1170)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-1170))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *8)) (-5 *4 (-767)) (-4 *8 (-945 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) - (-4 *7 (-789)) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152))))) +(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-768)) (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) + (-5 *1 (-842 *4 *5)) (-14 *4 (-768))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *4 (-225)) (-5 *2 - (-640 - (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) - (|:| |cols| (-640 (-563)))))) - (-5 *1 (-920 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) - (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-1045)) - (-5 *2 (-684 *3))))) -(((*1 *1) (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-536))) ((*1 *1) (-4 *1 (-718))) - ((*1 *1) (-4 *1 (-722))) - ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) - ((*1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846))))) + (-2 (|:| |brans| (-641 (-641 (-940 *4)))) + (|:| |xValues| (-1088 *4)) (|:| |yValues| (-1088 *4)))) + (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 *4))))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *4 (-1170)) + (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-641 (-225))) (-5 *1 (-300))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) (((*1 *2 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3))))) + (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) + (-5 *1 (-1154 *4)))) + ((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) + (-14 *4 (-1170)) (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) (-5 *2 (-112)) + (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-974 *3 *4 *5 *6))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) -(((*1 *2 *2) - (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-142 *3 *4 *2)) - (-4 *2 (-373 *4)))) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) + (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-988 *4)) (-4 *2 (-373 *4)) - (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-684 *5)) (-4 *5 (-988 *4)) (-4 *4 (-555)) - (-5 *2 (-684 *4)) (-5 *1 (-688 *4 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-555)) (-4 *4 (-988 *3)) (-5 *1 (-1226 *3 *4 *2)) - (-4 *2 (-1233 *4))))) -(((*1 *2 *2) - (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) - (-15 -2636 ((-1118 *3 (-609 $)) $)) - (-15 -2062 ($ (-1118 *3 (-609 $))))))))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) - (-15 -2636 ((-1118 *3 (-609 $)) $)) - (-15 -2062 ($ (-1118 *3 (-609 $))))))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *4 (-609 $)) $)) - (-15 -2636 ((-1118 *4 (-609 $)) $)) - (-15 -2062 ($ (-1118 *4 (-609 $))))))) - (-4 *4 (-555)) (-5 *1 (-41 *4 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-640 (-609 *2))) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *4 (-609 $)) $)) - (-15 -2636 ((-1118 *4 (-609 $)) $)) - (-15 -2062 ($ (-1118 *4 (-609 $))))))) - (-4 *4 (-555)) (-5 *1 (-41 *4 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-684 (-407 (-948 (-563))))) - (-5 *2 (-640 (-684 (-316 (-563))))) (-5 *1 (-1027)) - (-5 *3 (-316 (-563)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-294 (-829 *3))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-829 *3)) (-5 *1 (-633 *5 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-829 (-948 *5)))) (-4 *5 (-452)) - (-5 *2 (-829 (-407 (-948 *5)))) (-5 *1 (-634 *5)) - (-5 *3 (-407 (-948 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 (-407 (-948 *5)))) (-5 *3 (-407 (-948 *5))) - (-4 *5 (-452)) (-5 *2 (-829 *3)) (-5 *1 (-634 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208))))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-768)) (-4 *5 (-556)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5))))) (((*1 *2 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) - (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) + (-12 (-4 *4 (-38 (-407 (-564)))) + (-5 *2 (-2 (|:| -2428 (-1150 *4)) (|:| -2438 (-1150 *4)))) + (-5 *1 (-1156 *4)) (-5 *3 (-1150 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) + (-5 *1 (-745))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-786)) (-5 *5 (-564))))) +(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |k| (-668 *3)) (|:| |c| *4)))) + (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) + (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-786)) (-5 *5 (-564))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1046)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046))))) (((*1 *2) - (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) - (-5 *2 (-767)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + (-12 (-4 *4 (-172)) (-5 *2 (-641 (-1259 *4))) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))) -(((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-169 (-225))) (-5 *5 (-563)) (-5 *6 (-1151)) - (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) + (-5 *2 (-641 (-1259 *3)))))) +(((*1 *2 *3) (-12 (-5 *3 (-641 (-564))) (-5 *2 (-768)) (-5 *1 (-589))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1219 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) + (-12 (-5 *4 (-564)) (-5 *5 (-1152)) (-5 *6 (-685 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) - (-4 *8 (-945 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) - (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-112)) - (-5 *1 (-920 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1233 (-563))) (-5 *1 (-486 *3))))) -(((*1 *1) (-4 *1 (-23))) - ((*1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-536))) - ((*1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))) + (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) + (-5 *2 (-685 (-316 (-225)))) (-5 *1 (-205)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *6 (-897 *5)) (-5 *2 (-685 *6)) + (-5 *1 (-688 *5 *6 *3 *4)) (-4 *3 (-373 *6)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411))))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1235 *2)) (-4 *2 (-1213)) (-5 *1 (-148 *2 *4 *3)) + (-4 *3 (-1235 (-407 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) - (-5 *2 (-1257 (-684 (-948 *4)))) (-5 *1 (-189 *4))))) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564)))) + ((*1 *2 *2) + (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-555)) (-5 *1 (-41 *3 *2)) - (-4 *2 - (-13 (-363) (-302) - (-10 -8 (-15 -2626 ((-1118 *3 (-609 $)) $)) - (-15 -2636 ((-1118 *3 (-609 $)) $)) - (-15 -2062 ($ (-1118 *3 (-609 $)))))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-142 *2 *4 *3)) - (-4 *3 (-373 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-503 *2 *4 *5 *3)) - (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-684 *4)) (-4 *4 (-988 *2)) (-4 *2 (-555)) - (-5 *1 (-688 *2 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-988 *2)) (-4 *2 (-555)) (-5 *1 (-1226 *2 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-684 (-407 (-948 (-563))))) + (-12 (-5 *2 - (-640 - (-2 (|:| |radval| (-316 (-563))) (|:| |radmult| (-563)) - (|:| |radvect| (-640 (-684 (-316 (-563)))))))) - (-5 *1 (-1027))))) -(((*1 *1 *1) (-12 (-5 *1 (-605 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1) (-5 *1 (-629)))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-767))))) + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) + (|:| |xpnt| (-564)))) + (-4 *4 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2577 ($ $ $))))) + (-4 *3 (-556)) (-5 *1 (-1238 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1007 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-1088 (-840 (-225)))) (-5 *1 (-305))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) (-4 *7 (-847)) + (-4 *8 (-307)) (-4 *6 (-790)) (-4 *9 (-946 *8 *6 *7)) + (-5 *2 + (-2 (|:| |unitPart| *9) + (|:| |suPart| + (-641 (-2 (|:| -4127 (-1166 *9)) (|:| -2515 (-564))))))) + (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-641 (-280))) (-5 *1 (-280)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1259 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1046)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1693 *1))) + (-4 *1 (-849 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-892)) + (-5 *3 + (-2 (|:| |pde| (-641 (-316 (-225)))) + (|:| |constraints| + (-641 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-768)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) + (|:| |tol| (-225)))) + (-5 *2 (-1032))))) +(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-5 *2 (-640 (-640 (-563)))) - (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-563)) (-4 *7 (-945 *4 *6 *5))))) + (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *3 *5)) + (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) + (-4 *5 (-652 (-407 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1235 *4)) (-5 *1 (-804 *4 *2 *5 *3)) + (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-652 *2)) + (-4 *3 (-652 (-407 *2)))))) +(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) + (-12 (-5 *3 (-918)) (-5 *4 (-225)) (-5 *5 (-564)) (-5 *6 (-871)) + (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1175)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-1175))) (-5 *1 (-1175))))) +(((*1 *2 *2 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094)))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-1151)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1170))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-97))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563)))))) + (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1211))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-685 (-564))) (-5 *3 (-641 (-564))) (-5 *1 (-1104))))) +(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) + (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-121 *3))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-918)) (-4 *3 (-363)) + (-14 *4 (-990 *2 *3)))) + ((*1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + ((*1 *1 *1) + (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) + ((*1 *1) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) + ((*1 *1 *1) (|partial| -4 *1 (-719))) + ((*1 *1 *1) (|partial| -4 *1 (-723))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) + (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) + ((*1 *2 *2 *1) + (|partial| -12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) + (-4 *2 (-1235 *3)))) + ((*1 *2 *2) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2863)) (-5 *2 (-112)) (-5 *1 (-614)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2941)) (-5 *2 (-112)) (-5 *1 (-614)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -1657)) (-5 *2 (-112)) (-5 *1 (-614)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2925)) (-5 *2 (-112)) (-5 *1 (-686 *4)) - (-4 *4 (-610 (-858))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-610 (-858))) (-5 *2 (-112)) - (-5 *1 (-686 *4)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-506))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-590))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-478))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-137))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1159))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-623))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1089))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1083))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-966))) (-5 *2 (-112)))) + (-12 (-5 *3 (-564)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) + (-4 *2 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-180))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1032))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-311))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-666))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-154))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-525))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1268))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1060))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-517))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-676))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1108))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-133))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-138))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-1267))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-671))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-218))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1130)) (-5 *3 (|[\|\|]| (-524))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1151))) (-5 *2 (-112)) (-5 *1 (-1174)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1169))) (-5 *2 (-112)) (-5 *1 (-1174)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-225))) (-5 *2 (-112)) (-5 *1 (-1174)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-563))) (-5 *2 (-112)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-112)))))) + (-12 (-5 *3 (-564)) (-4 *2 (-1094)) (-5 *1 (-645 *2 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *1 (-816 *2)) (-4 *2 (-847))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-5 *2 (-641 (-641 (-564)))) + (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-564)) (-4 *7 (-946 *4 *6 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *2 (-1262)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1233 (-407 *5))) (-14 *7 *6)))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-778 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-959 *3 *2)) (-4 *2 (-131)) (-4 *3 (-555)) - (-4 *3 (-1045)) (-4 *2 (-788)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-1165 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-967)) (-4 *2 (-131)) (-5 *1 (-1171 *3)) (-4 *3 (-555)) - (-4 *3 (-1045)))) - ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-1230 *4 *3)) (-14 *4 (-1169)) - (-4 *3 (-1045))))) -(((*1 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208))))) + (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-999))))) + ((*1 *2) + (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) + (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) + (-4 *3 (-342 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) + (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-452)) - (-5 *2 (-481 *4 *5)) (-5 *1 (-628 *4 *5))))) + (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) + (-4 *5 (-452)) + (-5 *2 + (-2 (|:| |gblist| (-641 (-247 *4 *5))) + (|:| |gvlist| (-641 (-564))))) + (-5 *1 (-629 *4 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) + (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) (((*1 *2 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) - (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) + (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) + (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))) ((*1 *2 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3))))) + (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 (-640 *6))) (-4 *6 (-945 *3 *5 *4)) - (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-846) (-611 (-1169)))) - (-4 *5 (-789)) (-5 *1 (-920 *3 *4 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-484 *3))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123))) - ((*1 *1 *1 *1) (-5 *1 (-1113)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-686 (-187))) (-5 *1 (-187))))) -(((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1224 *3)) (-4 *3 (-1208))))) -(((*1 *2 *1) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208))))) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) + (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-640 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) - (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5))))) -(((*1 *2) - (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) - (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5))))) + (|partial| -12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-557 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-5 *2 (-640 *1)) (-4 *1 (-1127 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-38 (-407 (-564)))) + (-4 *2 (-172))))) +(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1260)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-263))) (-5 *1 (-1261))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) + (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) + (-4 *3 (-1094))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-5 *1 (-330))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-5 *1 (-695)))) + ((*1 *2 *2 *2 *3 *4) + (-12 (-5 *2 (-685 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) + (-4 *5 (-363)) (-5 *1 (-975 *5))))) +(((*1 *2 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859))))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1152)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-506)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-591)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-478)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-137)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1160)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-624)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1090)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1084)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1068)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-967)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-180)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1033)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-311)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-667)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-154)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-525)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1270)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1061)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-517)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-677)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1109)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-133)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-1269)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-672)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-218)))) + ((*1 *2 *1) (-12 (-4 *1 (-1131)) (-5 *2 (-524)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175))))) (((*1 *2 *3) (-12 (-5 *3 - (-640 - (-2 (|:| -3406 (-767)) + (-641 + (-2 (|:| -1544 (-768)) (|:| |eqns| - (-640 - (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) - (|:| |cols| (-640 (-563)))))) - (|:| |fgb| (-640 *7))))) - (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) - (-5 *1 (-920 *4 *5 *6 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-640 (-506))) (-5 *2 (-506)) (-5 *1 (-483))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *1) (-4 *1 (-963)))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) (-4 *2 (-669 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) + (-641 + (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564)))))) + (|:| |fgb| (-641 *7))))) + (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) + (-5 *1 (-921 *4 *5 *6 *7))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1035 (-564))) (-4 *3 (-13 (-847) (-556))) + (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1166 *4)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *1 *1) (-12 (-4 *1 (-1046)) (-4 *1 (-302)))) + ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) + ((*1 *2) (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1063 *3 *2)) (-4 *3 (-13 (-845) (-363))) + (-4 *2 (-1235 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-120 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *1 *1 *3) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-4 *5 (-13 (-1094) (-34))) + (-5 *2 (-112)) (-5 *1 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1046)) + (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-849 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) + (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-850 *5 *3)) + (-4 *3 (-849 *5))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *2 *2 *5) + (|partial| -12 (-5 *2 (-840 *4)) (-5 *3 (-610 *4)) (-5 *5 (-112)) + (-4 *4 (-13 (-1194) (-29 *6))) + (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-224 *6 *4))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)))) + ((*1 *2 *1) + (-12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-768))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-27) (-430 *4))) + (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) + (-4 *7 (-1235 (-407 *6))) (-5 *1 (-552 *4 *5 *6 *7 *2)) + (-4 *2 (-342 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-874 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-876 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-5 *2 - (-2 (|:| |contp| (-563)) - (|:| -2524 (-640 (-2 (|:| |irr| *3) (|:| -2581 (-563))))))) - (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) + (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 - (-2 (|:| |contp| (-563)) - (|:| -2524 (-640 (-2 (|:| |irr| *3) (|:| -2581 (-563))))))) - (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-860 *4)) - (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-628 *4 *5))))) + (-641 + (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-564)) + (|:| |outvect| (-641 (-685 (-169 *4))))))) + (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845)))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-695)) (-5 *1 (-305))))) +(((*1 *1 *1) (|partial| -4 *1 (-1145)))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *1 *2 *3 *4) + (-12 + (-5 *3 + (-641 + (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *2)) + (|:| |logand| (-1166 *2))))) + (-5 *4 (-641 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) + (-4 *2 (-363)) (-5 *1 (-585 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-641 *2)) (-5 *1 (-1183 *2)) (-4 *2 (-363))))) +(((*1 *2 *2) + (-12 (-4 *3 (-1235 (-407 (-564)))) (-5 *1 (-910 *3 *2)) + (-4 *2 (-1235 (-407 *3)))))) +(((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-641 (-1024 *5 *6 *7 *3))) (-5 *1 (-1024 *5 *6 *7 *3)) + (-4 *3 (-1060 *5 *6 *7)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-641 *6)) (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) + ((*1 *2 *3 *1 *4 *4 *4 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-641 (-1140 *5 *6 *7 *3))) (-5 *1 (-1140 *5 *6 *7 *3)) + (-4 *3 (-1060 *5 *6 *7))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545))))) +(((*1 *2 *3) + (-12 (-5 *2 (-610 *4)) (-5 *1 (-609 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-847))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-434)) (-4 *5 (-847)) + (-5 *1 (-1100 *5 *4)) (-4 *4 (-430 *5))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) +(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) + ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545))) + ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1046)) (-5 *1 (-711 *2 *4)) + (-4 *4 (-644 *2)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-361 (-114))) (-5 *1 (-833 *2)) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307))))) +(((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-840 *3)) (-4 *3 (-1094))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-621 *4 *5)) + (-5 *3 + (-1 (-2 (|:| |ans| *4) (|:| -2427 *4) (|:| |sol?| (-112))) + (-564) *4)) + (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *1 (-574 *4 *5))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387))))) +(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))) (((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-640 (-939 *4))) (-4 *1 (-1127 *4)) (-4 *4 (-1045)) - (-5 *2 (-767))))) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) +(((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *1) (-12 (-4 *1 (-1042 *2)) (-4 *2 (-23))))) +(((*1 *2 *2) + (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) + (-4 *2 (-683 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) +(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-752))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-800))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (|partial| -12 (-5 *4 (-641 (-407 *6))) (-5 *3 (-407 *6)) + (-4 *6 (-1235 *5)) (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-568 *5 *6))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "right") (|has| *1 (-6 -4412)) (-4 *1 (-119 *3)) + (-4 *3 (-1209)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "left") (|has| *1 (-6 -4412)) (-4 *1 (-119 *3)) + (-4 *3 (-1209)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) + (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1170)) (-5 *1 (-630)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-1226 (-564))) (|has| *1 (-6 -4412)) (-4 *1 (-647 *2)) + (-4 *2 (-1209)))) + ((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-641 (-564))) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "value") (|has| *1 (-6 -4412)) (-4 *1 (-1007 *2)) + (-4 *2 (-1209)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *2) + (-12 (-4 *1 (-1185 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "last") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) + (-4 *2 (-1209)))) + ((*1 *1 *1 *2 *1) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *3)) + (-4 *3 (-1209)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *3 "first") (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) + (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-640 - (-2 (|:| -3406 (-767)) - (|:| |eqns| - (-640 - (-2 (|:| |det| *7) (|:| |rows| (-640 (-563))) - (|:| |cols| (-640 (-563)))))) - (|:| |fgb| (-640 *7))))) - (-4 *7 (-945 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) (-5 *2 (-767)) - (-5 *1 (-920 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-247 *3 *4)) - (-14 *3 (-640 (-1169))) (-4 *4 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-563))) (-14 *3 (-640 (-1169))) - (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1045)) - (-4 *5 (-238 (-1708 *3) (-767))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-481 *3 *4)) - (-14 *3 (-640 (-1169))) (-4 *4 (-1045))))) -(((*1 *1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *1) (-4 *1 (-963)))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *3 (-564)) (-4 *1 (-866 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) + (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) + (-4 *3 (-1094)) (-5 *2 (-768)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) + (-4 *4 (-1209)) (-5 *2 (-768))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-452) (-147))) (-5 *2 (-418 *3)) + (-5 *1 (-100 *4 *3)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-13 (-452) (-147))) + (-5 *2 (-418 *3)) (-5 *1 (-100 *5 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1208)) (-5 *2 (-767)) (-5 *1 (-182 *4 *3)) - (-4 *3 (-669 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112))))) + (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) +(((*1 *1 *1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-592 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1114))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) + (-4 *4 (-13 (-556) (-1035 (-564)) (-147))) (-5 *1 (-570 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-154)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1061))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-785)))) + ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) + (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-785))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1233 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) - (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1233 (-563))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) - (-4 *3 (-1233 (-407 (-563)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-640 (-609 *4))) (-4 *4 (-430 *3)) (-4 *3 (-846)) - (-5 *1 (-572 *3 *4)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) + (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-407 *5))) (-5 *1 (-1013 *4 *5)) + (-5 *3 (-407 *5))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-63 LSFUN2)))) + (-5 *2 (-1032)) (-5 *1 (-750))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-1021 *3 *2)) (-4 *2 (-651 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -3087 *3) (|:| -3673 (-640 *5)))) - (-5 *1 (-1021 *5 *3)) (-5 *4 (-640 *5)) (-4 *3 (-651 *5))))) -(((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-247 *5 *6))) (-4 *6 (-452)) - (-5 *2 (-247 *5 *6)) (-14 *5 (-640 (-1169))) (-5 *1 (-628 *5 *6))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1212)) (-4 *3 (-1233 *4)) - (-4 *5 (-1233 (-407 *3))) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112)))) + (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564)))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) + (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-845)) (-5 *1 (-303 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-861 *3)) (-14 *3 (-641 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-986)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) ((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-5 *2 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2)))) +(((*1 *1 *2 *3 *3 *4 *4) + (-12 (-5 *2 (-949 (-564))) (-5 *3 (-1170)) + (-5 *4 (-1088 (-407 (-564)))) (-5 *1 (-30))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-966 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) + (-5 *1 (-1118 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) + (-4 *7 (-790)) + (-5 *2 + (-641 + (-2 (|:| -1544 (-768)) + (|:| |eqns| + (-641 + (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564)))))) + (|:| |fgb| (-641 *8))))) + (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1094)) (-4 *6 (-1094)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *5 (-1094))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-171)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-5 *2 (-640 *3)) (-5 *1 (-920 *4 *5 *6 *3)) - (-4 *3 (-945 *4 *6 *5))))) -(((*1 *2 *3 *3 *3 *3) - (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-480))))) -(((*1 *1 *1) (-4 *1 (-123))) ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1) (-4 *1 (-963))) ((*1 *1 *1) (-5 *1 (-1113)))) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-974 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2060 *4))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-641 (-52))) (-5 *2 (-1264)) (-5 *1 (-860))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *2)) (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) + (-5 *1 (-729 *5 *4 *6 *2)) (-4 *5 (-790)) + (-4 *4 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) + (-4 *6 (-556))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-719)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-723)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-564)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *2 (-1264)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-452))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) + (-5 *1 (-574 *5 *3))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) + (-4 *4 (-1094)) (-4 *5 (-1094))))) +(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-1046)))) + ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556))))) +(((*1 *1) (-5 *1 (-615)))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-549)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) +(((*1 *1) (-5 *1 (-1079)))) +(((*1 *2 *2) (-12 (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 *6)) (-5 *3 (-564)) (-4 *6 (-307)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615)))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) + (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) + (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4))))))) +(((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *4 (-556)) (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| -1958 (-621 *4 *5)) (|:| -4278 (-407 *5)))) + (-5 *1 (-621 *4 *5)) (-5 *3 (-407 *5)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-918)) (-4 *4 (-1046)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-452)) (-4 *3 (-1046)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) + (-4 *1 (-1235 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-641 (-506))) (-5 *2 (-506)) (-5 *1 (-483))))) +(((*1 *1) (-5 *1 (-820)))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-407 (-1166 (-316 *3)))) (-4 *3 (-13 (-556) (-847))) + (-5 *1 (-1124 *3))))) +(((*1 *2 *3 *1 *4) + (-12 (-5 *3 (-1134 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) + (-5 *2 (-112)) (-5 *1 (-1135 *5 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-790)) + (-4 *5 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *6 (-556)) + (-5 *2 (-2 (|:| -2850 (-949 *6)) (|:| -4023 (-949 *6)))) + (-5 *1 (-729 *4 *5 *6 *3)) (-4 *3 (-946 (-407 (-949 *6)) *4 *5))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-594 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1046))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1208)) (-5 *1 (-182 *3 *2)) - (-4 *2 (-669 *3))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *3 (-949 (-564))) + (-5 *1 (-330)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1086 (-949 (-564)))) (-5 *1 (-330))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)))) + ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) (((*1 *2 *1) - (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3))))) + (-12 (-4 *2 (-1094)) (-5 *1 (-961 *3 *2)) (-4 *3 (-1094))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) + (-12 (-5 *2 (-768)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) + (-14 *4 (-564))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) + ((*1 *2 *1) + (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1046))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *2)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-685 *3))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) + (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-840 (-225)))))) + (-5 *1 (-267))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1055 (-1020 *4) (-1165 (-1020 *4)))) (-5 *3 (-858)) - (-5 *1 (-1020 *4)) (-4 *4 (-13 (-844) (-363) (-1018)))))) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-946 *4 *6 *5)) (-4 *4 (-452)) + (-4 *5 (-847)) (-4 *6 (-790)) (-5 *1 (-984 *4 *5 *6 *3))))) +(((*1 *1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-940 (-225)) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *3 (-640 (-263))) - (-5 *1 (-261)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) + (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2084 *9)))) + (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) + (-5 *1 (-1064 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2084 *9)))) + (-5 *4 (-768)) (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-1264)) + (-5 *1 (-1139 *5 *6 *7 *8 *9))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) + (-4 *2 (-172))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) + (-5 *2 (-641 (-2 (|:| -2091 *5) (|:| -4032 *3)))) + (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) + (-4 *7 (-652 (-407 *6)))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-641 (-610 *2))) (-5 *4 (-641 (-1170))) + (-4 *2 (-13 (-430 (-169 *5)) (-999) (-1194))) + (-4 *5 (-13 (-556) (-847))) (-5 *1 (-598 *5 *6 *2)) + (-4 *6 (-13 (-430 *5) (-999) (-1194)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1264)) (-5 *1 (-1173)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-481 *5 *6))) (-5 *3 (-481 *5 *6)) - (-14 *5 (-640 (-1169))) (-4 *6 (-452)) (-5 *2 (-1257 *6)) - (-5 *1 (-628 *5 *6))))) + (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) + (-5 *1 (-1173)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *4 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1264)) + (-5 *1 (-1173))))) +(((*1 *2 *3) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-407 (-564))) (-5 *1 (-305))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-280))))) +(((*1 *2 *1) + (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) - (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-873 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-875 *2)) (-4 *2 (-1208)))) + (-12 (-4 *3 (-1046)) (-4 *4 (-1235 *3)) (-5 *1 (-164 *3 *4 *2)) + (-4 *2 (-1235 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-753))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) + (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) + ((*1 *2 *3) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) + (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))) + (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046))))) +(((*1 *2 *1) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-641 (-779 *3))) (-5 *1 (-779 *3)) (-4 *3 (-556)) + (-4 *3 (-1046))))) +(((*1 *2 *1) + (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-1060 *3 *4 *2)) (-4 *2 (-847)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1094)) + (-4 *2 (-131))))) +(((*1 *2 *3) + (-12 (-5 *3 (-840 (-379))) (-5 *2 (-840 (-225))) (-5 *1 (-305))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-147))) (-5 *2 (-641 *3)) + (-5 *1 (-1229 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *1) + (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) + (-4 *2 (-847))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-112)))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -4277 (-684 (-407 (-948 *4)))) - (|:| |vec| (-640 (-407 (-948 *4)))) (|:| -3406 (-767)) - (|:| |rows| (-640 (-563))) (|:| |cols| (-640 (-563))))) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))) + (-5 *2 (-1032)) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-940 *4))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *7)) (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) + (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-5 *2 (-924)) (-5 *1 (-922 *3)) + (-4 *3 (-612 (-536))))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-924)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) + (-4 *7 (-946 *5 *6 *4)) (-4 *5 (-906)) (-4 *6 (-790)) + (-4 *4 (-847)) (-5 *1 (-903 *5 *6 *4 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *5 *5)) + (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) (-5 *2 - (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *4))))))) - (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-480))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-640 *3)) (-4 *3 (-1208))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-844))) - (-5 *2 (-2 (|:| |start| *3) (|:| -2524 (-418 *3)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) -(((*1 *1 *1 *2) + (-2 (|:| |solns| (-641 *5)) + (|:| |maps| (-641 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1122 *3 *5)) (-4 *3 (-1235 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) + (-5 *2 (-1166 (-949 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) + (-4 *4 (-349)) (-5 *2 (-685 *4)) (-5 *1 (-346 *4))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-1170)) (-4 *4 (-1046)) (-4 *4 (-847)) + (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2515 (-564)))) + (-4 *1 (-430 *4)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1046)) (-4 *4 (-847)) + (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2515 (-564)))) + (-4 *1 (-430 *4)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) + (-5 *2 (-2 (|:| |var| (-610 *1)) (|:| -2515 (-564)))) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -2515 (-768)))) + (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-946 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-2 (|:| |var| *5) (|:| -2515 (-768)))))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) + (-4 *7 (-946 *6 *4 *5)) + (-5 *2 (-2 (|:| |var| *5) (|:| -2515 (-564)))) + (-5 *1 (-947 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) + (-15 -1634 (*7 $)))))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-768)) (-5 *3 (-940 *4)) (-4 *1 (-1128 *4)) + (-4 *4 (-1046)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-768)) (-5 *4 (-940 (-225))) (-5 *2 (-1264)) + (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1170)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-151 *3)))) + ((*1 *1 *2) (-12 - (-5 *2 - (-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) - (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) - (|:| |args| (-640 (-858))))) - (-5 *1 (-1169)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-640 (-858)))) (-5 *1 (-1169))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-117 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-563)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-867 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-867 *2)) (-14 *2 (-563)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-563)) (-14 *3 *2) (-5 *1 (-868 *3 *4)) - (-4 *4 (-865 *3)))) - ((*1 *1 *1) - (-12 (-14 *2 (-563)) (-5 *1 (-868 *2 *3)) (-4 *3 (-865 *2)))) + (-5 *2 (-641 (-2 (|:| -2515 (-768)) (|:| -2212 *4) (|:| |num| *4)))) + (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-112)) (-5 *1 (-437)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-5 *3 (-641 (-1170))) (-5 *4 (-112)) (-5 *1 (-437)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1150 *3)) (-5 *1 (-599 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) + (-4 *4 (-172)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-563)) (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1248 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1219 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1248 *2))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-1055 (-1020 *3) (-1165 (-1020 *3)))) - (-5 *1 (-1020 *3)) (-4 *3 (-13 (-844) (-363) (-1018)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 (-481 *3 *4))) (-14 *3 (-640 (-1169))) - (-4 *4 (-452)) (-5 *1 (-628 *3 *4))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) - (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-770)) (-5 *1 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) + (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) + (-4 *4 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-668 *3)) (-4 *3 (-847)) (-5 *1 (-660 *3 *4)) + (-4 *4 (-172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 (-641 *3)))) (-4 *3 (-1094)) + (-5 *1 (-671 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-710 *2 *3 *4)) (-4 *2 (-847)) (-4 *3 (-1094)) + (-14 *4 + (-1 (-112) (-2 (|:| -1495 *2) (|:| -2515 *3)) + (-2 (|:| -1495 *2) (|:| -2515 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-835)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 *4)))) + (-4 *4 (-1094)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *5)) (-4 *5 (-13 (-1094) (-34))) + (-5 *2 (-641 (-1134 *3 *5))) (-5 *1 (-1134 *3 *5)) + (-4 *3 (-13 (-1094) (-34))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| |val| *4) (|:| -2084 *5)))) + (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) + (-5 *2 (-641 (-1134 *4 *5))) (-5 *1 (-1134 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2084 *4))) + (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34))) + (-5 *1 (-1134 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34))))) + ((*1 *1 *2 *3 *2 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-13 (-1094) (-34))) + (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1134 *2 *3))) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34))) (-5 *1 (-1135 *2 *3)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1135 *2 *3))) (-5 *1 (-1135 *2 *3)) + (-4 *2 (-13 (-1094) (-34))) (-4 *3 (-13 (-1094) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-1159 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-5 *3 (-169 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) + (-5 *1 (-755))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1094)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) + (-5 *1 (-693)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-225))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-693)))) + ((*1 *2 *2 *3 *4 *4 *5) + (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1 (-940 (-225)) (-225) (-225))) + (-5 *4 (-1088 (-225))) (-5 *5 (-641 (-263))) (-5 *1 (-693))))) +(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1094)) (-5 *2 (-768))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-751))))) (((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-641 (-861 *4))) + (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) + (-4 *6 (-452))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-107 *3))))) +(((*1 *1) (-5 *1 (-1260)))) +(((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-14 *6 (-1259 (-685 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))))) + ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753 'JINT 'X 'ELAM) (-3753) (-695)))) + (-5 *1 (-61 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753) (-3753 'XC) (-695)))) + (-5 *1 (-63 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-3753 'X) (-3753) (-695))) (-5 *1 (-64 *3)) + (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-3753) (-3753 'XC) (-695))) (-5 *1 (-66 *3)) + (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753 'X) (-3753 '-4186) (-695)))) + (-5 *1 (-71 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753) (-3753 'X) (-695)))) + (-5 *1 (-74 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753 'X 'EPS) (-3753 '-4186) (-695)))) + (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) + (-14 *5 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753 'EPS) (-3753 'YA 'YB) (-695)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1170)) (-14 *4 (-1170)) + (-14 *5 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-3753) (-3753 'X) (-695))) (-5 *1 (-77 *3)) + (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-3753) (-3753 'X) (-695))) (-5 *1 (-78 *3)) + (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753) (-3753 'XC) (-695)))) + (-5 *1 (-79 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753) (-3753 'X) (-695)))) + (-5 *1 (-80 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753 'X '-4186) (-3753) (-695)))) + (-5 *1 (-82 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-685 (-339 (-3753 'X '-4186) (-3753) (-695)))) + (-5 *1 (-83 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-685 (-339 (-3753 'X) (-3753) (-695)))) (-5 *1 (-84 *3)) + (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753 'X) (-3753) (-695)))) + (-5 *1 (-85 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-339 (-3753 'X) (-3753 '-4186) (-695)))) + (-5 *1 (-86 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-685 (-339 (-3753 'XL 'XR 'ELAM) (-3753) (-695)))) + (-5 *1 (-87 *3)) (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-339 (-3753 'X) (-3753 '-4186) (-695))) (-5 *1 (-89 *3)) + (-14 *3 (-1170)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-564)) (-14 *4 (-768)) (-4 *5 (-172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) + (-14 *3 (-564)) (-14 *4 (-768)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1136 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) + (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) + ((*1 *1 *2) + (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-768)) (-4 *5 (-172)) + (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) + (-5 *2 (-1259 (-685 (-407 (-949 *4))))) (-5 *1 (-189 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1086 (-316 *4))) + (-4 *4 (-13 (-847) (-556) (-612 (-379)))) (-5 *2 (-1086 (-379))) + (-5 *1 (-258 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-847)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1235 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) + (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1244 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) + (-14 *5 (-1170)) (-14 *6 *4) + (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) + (-5 *1 (-313 *3 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) + (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) + (-4 *3 (-329 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) + (-4 *3 (-329 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-5 *2 (-1283 *3 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-5 *2 (-1274 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) + (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-383)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-695))) (-4 *1 (-383)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) + (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-384)))) + ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) + (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-396)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-564)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-564))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-690)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-695)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-294 (-316 (-697)))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-690))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-695))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-697))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) + (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) + (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) + (-14 *3 (-1170)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1170)) + (-14 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-14 *5 (-641 (-1170))) (-14 *6 (-1174)))) + ((*1 *1 *2) + (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-847) (-21))) + (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))))) + ((*1 *1 *2) + (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-564))))) + (-4 *3 (-13 (-847) (-21))))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 (-949 (-407 *3)))) (-4 *3 (-556)) (-4 *3 (-847)) + (-4 *1 (-430 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 (-407 *3))) (-4 *3 (-556)) (-4 *3 (-847)) + (-4 *1 (-430 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 *3)) (-4 *3 (-556)) (-4 *3 (-847)) + (-4 *1 (-430 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-1046)) (-4 *3 (-847)) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-434)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-434)))) + ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) + (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-440)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-695))) (-4 *1 (-440)))) + ((*1 *1 *2) + (-12 + (-5 *2 (-2 (|:| |localSymbols| (-1174)) (|:| -1328 (-641 (-330))))) + (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-330))) (-4 *1 (-441)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 (-407 (-949 *3)))) (-4 *3 (-172)) + (-14 *6 (-1259 (-685 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-14 *4 (-918)) (-14 *5 (-641 (-1170))))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-468)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-1046)) (-14 *4 (-1170)) + (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-502)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-5 *1 (-605 *3 *2)) (-4 *2 (-741 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) (-12 (-4 *1 (-614 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) (-12 (-4 *1 (-618 *2)) (-4 *2 (-1046)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1279 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) + (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) + (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-5 *1 (-633 *3 *2)) (-4 *2 (-741 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-673 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) + (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-5 *1 (-671 *3)) + (-4 *3 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-955 (-955 (-955 *3)))) (-4 *3 (-1094)) + (-5 *1 (-671 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) + ((*1 *1 *2) (-12 (-5 *2 (-1112)) (-5 *1 (-677)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *2)) (-4 *4 (-373 *3)) + (-4 *2 (-373 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-697))) (-5 *1 (-690)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-695))) (-5 *1 (-690)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-564))) (-5 *1 (-690)))) + ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-690)))) + ((*1 *1 *2) (-12 (-5 *2 (-697)) (-5 *1 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-695)))) + ((*1 *2 *3) + (-12 (-5 *3 (-316 (-564))) (-5 *2 (-316 (-697))) (-5 *1 (-697)))) + ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-172)) (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-2 (|:| -1762 *3) (|:| -2414 *4)))) + (-4 *3 (-1046)) (-4 *4 (-723)) (-5 *1 (-732 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-760)))) + ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *4))))))) - (-5 *3 (-640 *7)) (-4 *4 (-13 (-307) (-147))) - (-4 *7 (-945 *4 *6 *5)) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-5 *1 (-920 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| |mdnia| + (-2 (|:| |fn| (-316 (-225))) + (|:| -3089 (-641 (-1088 (-840 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) + (-5 *1 (-766)))) + ((*1 *1 *2) + (-12 (-5 *2 - (-2 (|:| |dpolys| (-640 (-247 *5 *6))) - (|:| |coords| (-640 (-563))))) - (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452))))) -(((*1 *2 *2) - (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1233 (-169 *2)))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) - (-4 *2 (-1248 *3))))) -(((*1 *2 *3) + (-2 (|:| |fn| (-316 (-225))) + (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *1 (-766)))) + ((*1 *1 *2) (-12 (-5 *2 - (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) - (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *4) + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *1 (-766)))) + ((*1 *2 *3) (-12 (-5 *2 (-771)) (-5 *1 (-770 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2) (-12 (-5 *2 - (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) - (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) - (-5 *4 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))))) - ((*1 *2 *3 *4) + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *1 (-805)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-821)))) + ((*1 *1 *2) (-12 (-5 *2 - (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) - (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))) (-5 *4 (-407 (-563))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-407 (-563))) - (-5 *2 (-640 (-2 (|:| -2654 *5) (|:| -2665 *5)))) (-5 *1 (-1016 *3)) - (-4 *3 (-1233 (-563))) (-5 *4 (-2 (|:| -2654 *5) (|:| -2665 *5))))) - ((*1 *2 *3) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) + (|:| |lb| (-641 (-840 (-225)))) + (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-840 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-641 (-316 (-225)))) + (|:| -3258 (-641 (-225))))))) + (-5 *1 (-838)))) + ((*1 *1 *2) (-12 (-5 *2 - (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) - (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))))) - ((*1 *2 *3 *4) + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) + (-5 *1 (-838)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) + (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-840 (-225)))))) + (-5 *1 (-838)))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-855)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) + ((*1 *2 *3) + (-12 (-5 *3 (-949 (-48))) (-5 *2 (-316 (-564))) (-5 *1 (-872)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-949 (-48)))) (-5 *2 (-316 (-564))) + (-5 *1 (-872)))) + ((*1 *1 *2) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-816 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) + ((*1 *1 *2) (-12 (-5 *2 - (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) - (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))) - (-5 *4 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))))) + (-2 (|:| |pde| (-641 (-316 (-225)))) + (|:| |constraints| + (-641 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-768)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) + (|:| |tol| (-225)))) + (-5 *1 (-895)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-911 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307)))) + ((*1 *2 *3) + (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-916 *4)) + (-4 *4 (-13 (-847) (-556))))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-963 *3)) (-4 *3 (-964)))) + ((*1 *1 *2) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964)))) + ((*1 *2 *3) (-12 (-5 *2 (-1264)) (-5 *1 (-1030 *3)) (-4 *3 (-1209)))) + ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1030 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) + (-14 *6 (-641 *2)))) + ((*1 *2 *3) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-1040 *3)) (-4 *3 (-556)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1046)) (-4 *4 (-847)) (-5 *1 (-1120 *3 *4 *2)) + (-4 *2 (-946 *3 (-531 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1046)) (-4 *2 (-847)) (-5 *1 (-1120 *3 *2 *4)) + (-4 *4 (-946 *3 (-531 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-859)))) + ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1138)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) + (-14 *5 *3) (-5 *1 (-1168 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1169)))) + ((*1 *2 *1) (-12 (-5 *2 (-1182 (-1170) (-437))) (-5 *1 (-1174)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1181 *3)) (-4 *3 (-1094)))) + ((*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-1188 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-5 *1 (-1203 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-1046)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1088 *3)) (-4 *3 (-1209)) (-5 *1 (-1226 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) + (-4 *3 (-1046)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1232 *4 *3)) (-4 *3 (-1046)) (-14 *4 (-1170)) + (-14 *5 *3) (-5 *1 (-1251 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-1255 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-1260)))) + ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1260)) (-5 *1 (-1263)))) + ((*1 *1 *2) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1283 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-172)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-172)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-5 *1 (-1279 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *3 (-685 (-564))) (-5 *1 (-1104))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) + (-4 *3 (-13 (-363) (-147) (-1035 (-564)))) (-5 *1 (-568 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) + ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) + (-4 *4 (-1209)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) + (-4 *3 (-683 *4 *5 *6)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) + (-5 *2 (-768))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-911 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-563))) - (-5 *2 (-640 (-2 (|:| -2654 *4) (|:| -2665 *4)))) (-5 *1 (-1017 *3)) - (-4 *3 (-1233 *4)))) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-407 (-563))) - (-5 *2 (-640 (-2 (|:| -2654 *5) (|:| -2665 *5)))) (-5 *1 (-1017 *3)) - (-4 *3 (-1233 *5)) (-5 *4 (-2 (|:| -2654 *5) (|:| -2665 *5)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) - (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) - (-4 *6 (-452)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-481 *5 *6))) (-5 *4 (-860 *5)) - (-14 *5 (-640 (-1169))) (-5 *2 (-481 *5 *6)) (-5 *1 (-628 *5 *6)) - (-4 *6 (-452))))) + (-12 (-5 *4 (-418 (-949 *6))) (-5 *5 (-1170)) (-5 *3 (-949 *6)) + (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-912 *6))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-1259 *4))) (-4 *4 (-1046)) (-5 *2 (-685 *4)) + (-5 *1 (-1026 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) (-5 *2 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1149 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2244 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *1 (-558))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) - (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1093))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-768)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1046)) + (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) - (-4 *7 (-789)) - (-5 *2 - (-640 - (-2 (|:| -3406 (-767)) - (|:| |eqns| - (-640 - (-2 (|:| |det| *8) (|:| |rows| (-640 (-563))) - (|:| |cols| (-640 (-563)))))) - (|:| |fgb| (-640 *8))))) - (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-767))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 (-481 *4 *5))) (-5 *3 (-640 (-860 *4))) - (-14 *4 (-640 (-1169))) (-4 *5 (-452)) (-5 *1 (-471 *4 *5 *6)) - (-4 *6 (-452))))) -(((*1 *1 *1) (-5 *1 (-536)))) -(((*1 *2 *3) - (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) - (-4 *4 (-13 (-363) (-844))) (-4 *3 (-1233 *2))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) - (-5 *2 (-407 (-948 *4))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-1217 *4)) (-4 *4 (-1045)) (-4 *4 (-555)) - (-5 *2 (-407 (-948 *4)))))) + (-12 (-5 *4 (-564)) (-5 *2 (-641 (-2 (|:| -4127 *3) (|:| -2266 *4)))) + (-5 *1 (-692 *3)) (-4 *3 (-1235 *4))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-640 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563)))))) - (-5 *2 (-640 (-407 (-563)))) (-5 *1 (-1016 *4)) - (-4 *4 (-1233 (-563)))))) + (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-863 *4 *5 *6 *7)) + (-4 *4 (-1046)) (-14 *5 (-641 (-1170))) (-14 *6 (-641 *3)) + (-14 *7 *3))) + ((*1 *2 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) + (-14 *8 (-641 *5)) (-5 *2 (-1264)) + (-5 *1 (-1271 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-946 *4 *6 *5)) + (-14 *9 (-641 *3)) (-14 *10 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) - (-4 *5 (-452)) (-5 *2 (-640 (-247 *4 *5))) (-5 *1 (-628 *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-640 *2) *2 *2 *2)) (-4 *2 (-1093)) - (-5 *1 (-103 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (-5 *1 (-103 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-847) (-556)))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) + (-4 *2 (-1235 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| -4176 *1) (|:| -4398 *1) (|:| |associate| *1))) + (-4 *1 (-556))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-1190))))) +(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) + ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) + ((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-1150 (-564)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) + (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + ((*1 *1 *1) (|partial| -4 *1 (-719)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-4 *7 (-945 *4 *6 *5)) + (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) (-5 *2 - (-2 (|:| |sysok| (-112)) (|:| |z0| (-640 *7)) (|:| |n0| (-640 *7)))) - (-5 *1 (-920 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-860 *5))) (-14 *5 (-640 (-1169))) (-4 *6 (-452)) - (-5 *2 (-640 (-640 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) - (-5 *3 (-640 (-247 *5 *6))) (-4 *7 (-452))))) + (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) + (-5 *1 (-626 *5 *6))))) +(((*1 *1) (-5 *1 (-186)))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1233 (-169 *2))))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1233 (-169 *2)))))) -(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) - ((*1 *1) (-5 *1 (-129))) - ((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) - (-4 *4 (-172)))) - ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547))) - ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-4 *1 (-722))) - ((*1 *1) (-5 *1 (-1169))) - ((*1 *1) (-12 (-5 *1 (-1175 *2)) (-14 *2 (-917)))) - ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-917)))) - ((*1 *1) (-5 *1 (-1213))) ((*1 *1) (-5 *1 (-1214))) - ((*1 *1) (-5 *1 (-1215)))) -(((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) - (-5 *2 (-407 (-563))) (-5 *1 (-1016 *4)) (-4 *4 (-1233 (-563)))))) + (-12 (-5 *3 (-641 (-1070 *4 *5 *2))) (-4 *4 (-1094)) + (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) + (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) + (-5 *1 (-54 *4 *5 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-641 (-1070 *5 *6 *2))) (-5 *4 (-918)) (-4 *5 (-1094)) + (-4 *6 (-13 (-1046) (-883 *5) (-847) (-612 (-889 *5)))) + (-4 *2 (-13 (-430 *6) (-883 *5) (-612 (-889 *5)))) + (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) + (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-1272 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) + (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-14 *4 (-640 (-1169))) (-4 *5 (-452)) - (-5 *2 - (-2 (|:| |glbase| (-640 (-247 *4 *5))) (|:| |glval| (-640 (-563))))) - (-5 *1 (-628 *4 *5)) (-5 *3 (-640 (-247 *4 *5)))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4)))))) + (-12 (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *2 (-641 *3)) (-5 *1 (-974 *4 *5 *6 *3)) + (-4 *3 (-1060 *4 *5 *6))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-753))))) (((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-939 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-939 *3))) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-939 *3))) (-4 *1 (-1127 *3)) (-4 *3 (-1045))))) + (-12 (-4 *3 (-1046)) (-4 *4 (-1094)) (-5 *2 (-641 *1)) + (-4 *1 (-382 *3 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-723)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-946 *3 *4 *5))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1170))) (-4 *6 (-363)) + (-5 *2 (-641 (-294 (-949 *6)))) (-5 *1 (-538 *5 *6 *7)) + (-4 *5 (-452)) (-4 *7 (-13 (-363) (-845)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-4 *5 (-1235 *4)) (-5 *2 (-1264)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1235 (-407 *5))) (-14 *7 *6)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-468)) (-5 *3 (-641 (-263))) (-5 *1 (-1260)))) + ((*1 *1 *1) (-5 *1 (-1260)))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *1 *2 *3 *1) + (-12 (-14 *4 (-641 (-1170))) (-4 *2 (-172)) + (-4 *3 (-238 (-2641 *4) (-768))) + (-14 *6 + (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *3)) + (-2 (|:| -1495 *5) (|:| -2515 *3)))) + (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-847)) + (-4 *7 (-946 *2 *3 (-861 *4)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) + (-14 *4 (-641 (-1170)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-752))))) (((*1 *2 *3) - (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-307) (-147))) - (-4 *2 (-945 *4 *6 *5)) (-5 *1 (-920 *4 *5 *6 *2)) - (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789))))) -(((*1 *1) (-5 *1 (-468)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1233 (-169 *3)))))) -(((*1 *2 *3) (-12 (-5 *3 (-169 (-563))) (-5 *2 (-112)) (-5 *1 (-446)))) - ((*1 *2 *3) (-12 (-5 *3 - (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) - (-247 *4 (-407 (-563))))) - (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-957 *3)) (-4 *3 (-545)))) - ((*1 *2 *1) (-12 (-4 *1 (-1212)) (-5 *2 (-112))))) + (-2 (|:| -2069 (-685 (-407 (-949 *4)))) + (|:| |vec| (-641 (-407 (-949 *4)))) (|:| -1544 (-768)) + (|:| |rows| (-641 (-564))) (|:| |cols| (-641 (-564))))) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) + (-5 *2 + (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *4))))))) + (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) + (-4 *2 (-13 (-847) (-21)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *2 (-816 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-819))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) +(((*1 *1) (-5 *1 (-186)))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-32 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *1 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-114)) (-5 *1 (-163)))) - ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *4)) - (-4 *4 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-301 *3)) (-4 *3 (-302)))) - ((*1 *2 *2) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-4 *1 (-1092 *3)))) + ((*1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *1) (-5 *1 (-291)))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-790)) + (-4 *3 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *5 (-556)) + (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1046)) (-4 *5 (-790)) + (-4 *3 + (-13 (-847) + (-10 -8 (-15 -2235 ((-1170) $)) + (-15 -3851 ((-3 $ "failed") (-1170)))))) + (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *6)) + (-4 *6 + (-13 (-847) + (-10 -8 (-15 -2235 ((-1170) $)) + (-15 -3851 ((-3 $ "failed") (-1170)))))) + (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) + (-4 *2 (-946 (-949 *4) *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) + (-4 *2 (-1250 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *4 (-846)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) + (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) + (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *4)) - (-4 *4 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) + (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) + (-4 *2 (-1250 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *4)) - (-4 *4 (-13 (-430 *3) (-998) (-1193))))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015))))) -(((*1 *1 *2) - (-12 (-4 *3 (-1045)) (-5 *1 (-823 *2 *3)) (-4 *2 (-704 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-481 *4 *5))) (-14 *4 (-640 (-1169))) - (-4 *5 (-452)) - (-5 *2 - (-2 (|:| |gblist| (-640 (-247 *4 *5))) - (|:| |gvlist| (-640 (-563))))) - (-5 *1 (-628 *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4)))))) -(((*1 *1 *1 *1) (-4 *1 (-656)))) -(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) - (-5 *2 (-640 (-407 (-948 *4)))) (-5 *1 (-920 *4 *5 *6 *7)) - (-4 *7 (-945 *4 *6 *5))))) -(((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) - (-5 *4 (-640 (-917))) (-5 *5 (-640 (-263))) (-5 *1 (-468)))) - ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) - (-5 *4 (-640 (-917))) (-5 *1 (-468)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) - ((*1 *1 *1) (-5 *1 (-468)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1210))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1257 *6)) (-5 *4 (-1257 (-563))) (-5 *5 (-563)) - (-4 *6 (-1093)) (-5 *2 (-1 *6)) (-5 *1 (-1013 *6))))) -(((*1 *1 *1) (-4 *1 (-626))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) -(((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-5 *2 (-684 (-407 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) -(((*1 *1 *1 *1) (-4 *1 (-656)))) -(((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) - (-5 *2 (-640 (-640 (-939 *3)))))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) (-4 *4 (-1045)) - (-4 *1 (-1127 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 (-939 *3)))) (-4 *3 (-1045)) - (-4 *1 (-1127 *3)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-112)) - (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) - ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-640 (-640 (-939 *4)))) (-5 *3 (-112)) - (-4 *1 (-1127 *4)) (-4 *4 (-1045)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-640 (-171))) - (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-640 (-640 (-939 *5)))) (-5 *3 (-640 (-171))) - (-5 *4 (-171)) (-4 *1 (-1127 *5)) (-4 *5 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-5 *2 (-407 (-948 *4))) (-5 *1 (-920 *4 *5 *6 *3)) - (-4 *3 (-945 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-5 *2 (-684 (-407 (-948 *4)))) - (-5 *1 (-920 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) (-5 *2 (-640 (-407 (-948 *4)))) - (-5 *1 (-920 *4 *5 *6 *7))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468))))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) + (-5 *1 (-1146 *3))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1134 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) + (-4 *4 (-13 (-1094) (-34))) (-4 *5 (-13 (-1094) (-34))) + (-5 *1 (-1135 *4 *5)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-641 (-1134 *3 *4))) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-844))) (-5 *1 (-181 *3 *2)) - (-4 *2 (-1233 (-169 *3)))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-97))))) -(((*1 *2) - (-12 - (-5 *2 (-2 (|:| -1843 (-640 (-1169))) (|:| -1856 (-640 (-1169))))) - (-5 *1 (-1210))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34)))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-2 (|:| -3556 *4) (|:| -2417 (-563))))) - (-4 *4 (-1093)) (-5 *2 (-1 *4)) (-5 *1 (-1013 *4))))) -(((*1 *1 *1) (-4 *1 (-626))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-564)) (-5 *1 (-486 *4)) + (-4 *4 (-1235 *2))))) +(((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) + (-5 *1 (-752))))) +(((*1 *2 *3) + (-12 (-5 *2 (-418 (-1166 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1166 *1)) + (-4 *4 (-452)) (-4 *4 (-556)) (-4 *4 (-847)))) + ((*1 *2 *3) + (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-917))))) +(((*1 *2 *2 *2 *3 *4) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1046)) + (-5 *1 (-850 *5 *2)) (-4 *2 (-849 *5))))) +(((*1 *1 *1) (-4 *1 (-143))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) - (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-684 *11)) (-5 *4 (-640 (-407 (-948 *8)))) - (-5 *5 (-767)) (-5 *6 (-1151)) (-4 *8 (-13 (-307) (-147))) - (-4 *11 (-945 *8 *10 *9)) (-4 *9 (-13 (-846) (-611 (-1169)))) - (-4 *10 (-789)) - (-5 *2 - (-2 - (|:| |rgl| - (-640 - (-2 (|:| |eqzro| (-640 *11)) (|:| |neqzro| (-640 *11)) - (|:| |wcond| (-640 (-948 *8))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *8)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *8)))))))))) - (|:| |rgsz| (-563)))) - (-5 *1 (-920 *8 *9 *10 *11)) (-5 *7 (-563))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *3 (-640 (-263))) - (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-468))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-363) (-844))) - (-5 *2 (-640 (-2 (|:| -2524 (-640 *3)) (|:| -3452 *5)))) - (-5 *1 (-181 *5 *3)) (-4 *3 (-1233 (-169 *5))))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-363) (-844))) - (-5 *2 (-640 (-2 (|:| -2524 (-640 *3)) (|:| -3452 *4)))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-857)) (-5 *3 (-128)) (-5 *2 (-768))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1210))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) - (-4 *5 (-1233 *4)) (-5 *2 (-640 (-407 *5))) (-5 *1 (-1012 *4 *5)) - (-5 *3 (-407 *5))))) -(((*1 *1 *1) (-4 *1 (-626))) + (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-758)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (|has| *4 (-6 (-4413 "*"))) + (-4 *4 (-1046)) (-5 *1 (-1025 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) + (|has| *4 (-6 (-4413 "*"))) (-4 *4 (-1046)) (-5 *1 (-1025 *4))))) +(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) + (-5 *2 (-1032)) (-5 *1 (-753))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) - (-5 *2 (-2 (|:| |num| (-1257 *4)) (|:| |den| *4)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) - (-5 *2 (-640 (-640 (-640 (-767)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1151)) (-4 *4 (-13 (-307) (-147))) - (-4 *5 (-13 (-846) (-611 (-1169)))) (-4 *6 (-789)) - (-5 *2 - (-640 - (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) - (|:| |wcond| (-640 (-948 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *4)))))))))) - (-5 *1 (-920 *4 *5 *6 *7)) (-4 *7 (-945 *4 *6 *5))))) -(((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *5 (-917)) - (-5 *2 (-1262)) (-5 *1 (-468)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468)))) - ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-870)) (-5 *5 (-917)) - (-5 *2 (-1262)) (-5 *1 (-468))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-640 (-169 *4))) (-5 *1 (-155 *3 *4)) - (-4 *3 (-1233 (-169 (-563)))) (-4 *4 (-13 (-363) (-844))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-640 (-169 *4))) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-846)) - (-4 *3 (-1093))))) -(((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) - (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -3460 *6))) - (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) + (-12 (-5 *3 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6)) + (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556))))) +(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1057)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1057))))) +(((*1 *1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) + ((*1 *1 *1) (|partial| -4 *1 (-719)))) +(((*1 *2 *3) (-12 (-5 *3 (-819)) (-5 *2 (-52)) (-5 *1 (-826))))) (((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) - (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) - (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) - (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-998))))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))) - ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) - (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-114)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) - (-5 *1 (-627 *4 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) - (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) - (-5 *2 (-640 (-640 (-640 (-939 *3)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *3 *4) - (-12 + (-12 (-4 *1 (-797)) (-5 *3 - (-640 - (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) - (|:| |wcond| (-640 (-948 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *5)))))))))) - (-5 *4 (-1151)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-945 *5 *7 *6)) - (-4 *6 (-13 (-846) (-611 (-1169)))) (-4 *7 (-789)) (-5 *2 (-563)) - (-5 *1 (-920 *5 *6 *7 *8))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-939 (-225))) (-5 *2 (-1262)) (-5 *1 (-468))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-1032))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1209 *2)) - (-4 *2 (-1093)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1166 *7)) (-4 *5 (-1046)) + (-4 *7 (-1046)) (-4 *2 (-1235 *5)) (-5 *1 (-501 *5 *2 *6 *7)) + (-4 *6 (-1235 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1046)) (-4 *7 (-1046)) + (-4 *4 (-1235 *5)) (-5 *2 (-1166 *7)) (-5 *1 (-501 *5 *4 *6 *7)) + (-4 *6 (-1235 *4))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-744))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-846)) - (-5 *1 (-1209 *2))))) -(((*1 *1) (-5 *1 (-330)))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1233 *6)) - (-4 *6 (-13 (-363) (-147) (-1034 *4))) (-5 *4 (-563)) - (-5 *2 - (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) - (|:| -3087 - (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) - (|:| |beta| *3))))) - (-5 *1 (-1011 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-640 (-1169))) - (-5 *2 - (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) - (-5 *1 (-625 *5 *6))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-484 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) - (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) - (-5 *2 (-2 (|:| |num| (-684 *5)) (|:| |den| *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-640 (-171))))))) + (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046))))) +(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-630))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-610 *3)) (-5 *5 (-1 (-1166 *3) (-1166 *3))) + (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-847) (-556))) + (-5 *2 (-585 *3)) (-5 *1 (-551 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48))))) + ((*1 *2 *3 *1) + (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) + (-5 *1 (-121 *3)) (-4 *3 (-847)))) + ((*1 *2 *2) + (-12 (-5 *2 (-585 *4)) (-4 *4 (-13 (-29 *3) (-1194))) + (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-5 *1 (-583 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-585 (-407 (-949 *3)))) + (-4 *3 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-5 *1 (-588 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -3087 *3) (|:| |special| *3))) (-5 *1 (-724 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1259 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) + (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) + (-5 *3 (-641 (-685 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1259 (-1259 *5))) (-4 *5 (-363)) (-4 *5 (-1046)) + (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) + (-5 *3 (-641 (-685 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-641 *1)) (-4 *1 (-1138)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-641 *1)) (-4 *1 (-1138))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-1150 *7))) (-4 *6 (-847)) + (-4 *7 (-946 *5 (-531 *6) *6)) (-4 *5 (-1046)) + (-5 *2 (-1 (-1150 *7) *7)) (-5 *1 (-1120 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *8)) (-4 *8 (-945 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) - (-4 *7 (-789)) - (-5 *2 - (-640 - (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) - (|:| |wcond| (-640 (-948 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *5)))))))))) - (-5 *1 (-920 *5 *6 *7 *8)) (-5 *4 (-640 *8)))) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) + (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-641 *3)) + (-5 *1 (-590 *5 *6 *7 *8 *3)) (-4 *3 (-1103 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *8)) (-5 *4 (-640 (-1169))) (-4 *8 (-945 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) - (-4 *7 (-789)) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 - (-640 - (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) - (|:| |wcond| (-640 (-948 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *5)))))))))) - (-5 *1 (-920 *5 *6 *7 *8)))) + (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) + (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) + (-14 *6 (-641 (-1170))))) ((*1 *2 *3) - (-12 (-5 *3 (-684 *7)) (-4 *7 (-945 *4 *6 *5)) - (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-846) (-611 (-1169)))) - (-4 *6 (-789)) - (-5 *2 - (-640 - (-2 (|:| |eqzro| (-640 *7)) (|:| |neqzro| (-640 *7)) - (|:| |wcond| (-640 (-948 *4))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *4)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *4)))))))))) - (-5 *1 (-920 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-684 *9)) (-5 *5 (-917)) (-4 *9 (-945 *6 *8 *7)) - (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-846) (-611 (-1169)))) - (-4 *8 (-789)) - (-5 *2 - (-640 - (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) - (|:| |wcond| (-640 (-948 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *6)))))))))) - (-5 *1 (-920 *6 *7 *8 *9)) (-5 *4 (-640 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) - (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) + (-12 (-4 *4 (-13 (-307) (-147))) (-5 *2 - (-640 - (-2 (|:| |eqzro| (-640 *9)) (|:| |neqzro| (-640 *9)) - (|:| |wcond| (-640 (-948 *6))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *6)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *6)))))))))) - (-5 *1 (-920 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *8)) (-5 *4 (-917)) (-4 *8 (-945 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) - (-4 *7 (-789)) + (-641 (-2 (|:| -3400 (-1166 *4)) (|:| -1785 (-641 (-949 *4)))))) + (-5 *1 (-1072 *4 *5)) (-5 *3 (-641 (-949 *4))) + (-14 *5 (-641 (-1170))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-5 *2 - (-640 - (-2 (|:| |eqzro| (-640 *8)) (|:| |neqzro| (-640 *8)) - (|:| |wcond| (-640 (-948 *5))) - (|:| |bsoln| - (-2 (|:| |partsol| (-1257 (-407 (-948 *5)))) - (|:| -3288 (-640 (-1257 (-407 (-948 *5)))))))))) - (-5 *1 (-920 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 *9)) (-5 *5 (-1151)) - (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) - (-5 *1 (-920 *6 *7 *8 *9)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-684 *9)) (-5 *4 (-640 (-1169))) (-5 *5 (-1151)) - (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) - (-5 *1 (-920 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *8)) (-5 *4 (-1151)) (-4 *8 (-945 *5 *7 *6)) - (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-846) (-611 (-1169)))) - (-4 *7 (-789)) (-5 *2 (-563)) (-5 *1 (-920 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 *10)) (-5 *5 (-917)) - (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) - (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) - (-5 *1 (-920 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-684 *10)) (-5 *4 (-640 (-1169))) (-5 *5 (-917)) - (-5 *6 (-1151)) (-4 *10 (-945 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) - (-4 *8 (-13 (-846) (-611 (-1169)))) (-4 *9 (-789)) (-5 *2 (-563)) - (-5 *1 (-920 *7 *8 *9 *10)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-684 *9)) (-5 *4 (-917)) (-5 *5 (-1151)) - (-4 *9 (-945 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-13 (-846) (-611 (-1169)))) (-4 *8 (-789)) (-5 *2 (-563)) - (-5 *1 (-920 *6 *7 *8 *9))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *3 (-640 (-870))) - (-5 *1 (-468))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) -(((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1258)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1258)))) - ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-1259)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1259))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093))))) + (-641 (-2 (|:| -3400 (-1166 *5)) (|:| -1785 (-641 (-949 *5)))))) + (-5 *1 (-1072 *5 *6)) (-5 *3 (-641 (-949 *5))) + (-14 *6 (-641 (-1170)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) - (-5 *2 (-2 (|:| |ans| (-407 *5)) (|:| |nosol| (-112)))) - (-5 *1 (-1011 *4 *5)) (-5 *3 (-407 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) - (-5 *1 (-625 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1193) (-998))))) - ((*1 *2) - (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) - (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) - (-4 *3 (-342 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) - (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3))))) + (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2084 *8))) + (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *8)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2084 *8))) + (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) (((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-640 (-171)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-169 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) - (-5 *1 (-754))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-4 *2 (-1233 *4)) - (-5 *1 (-918 *4 *2))))) + (|partial| -12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-641 (-536)))) (-5 *1 (-114)))) + ((*1 *1) (-5 *1 (-578)))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-1259 *5)) (-5 *3 (-768)) (-5 *4 (-1114)) (-4 *5 (-349)) + (-5 *1 (-528 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-319 *3 *4 *5)) + (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3)))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-452))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *2 *3 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-671 *2)) (-4 *2 (-1046)) (-4 *2 (-1094))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-768)) (-5 *1 (-779 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *1 (-960 *3 *2)) (-4 *2 (-131)) (-4 *3 (-556)) + (-4 *3 (-1046)) (-4 *2 (-789)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-768)) (-5 *1 (-1166 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-968)) (-4 *2 (-131)) (-5 *1 (-1172 *3)) (-4 *3 (-556)) + (-4 *3 (-1046)))) + ((*1 *1 *1 *2 *3 *1) + (-12 (-5 *2 (-768)) (-5 *1 (-1232 *4 *3)) (-14 *4 (-1170)) + (-4 *3 (-1046))))) +(((*1 *2) (-12 (-5 *2 (-641 *3)) (-5 *1 (-1078 *3)) (-4 *3 (-132))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-640 (-225))) - (-5 *1 (-468))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1193) (-998)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-767)) (-5 *2 (-112)))) + (-12 (-5 *3 (-1096 *4)) (-4 *4 (-1094)) (-5 *2 (-1 *4)) + (-5 *1 (-1014 *4)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1209 *3)) (-4 *3 (-1093)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1093)) (-5 *2 (-112)) - (-5 *1 (-1209 *3))))) -(((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) - (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) - (|:| -3460 *6))) - (-5 *1 (-1011 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-755))))) + (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-564))) (-5 *2 (-1 (-564))) (-5 *1 (-1044))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) + (-4 *6 (-342 *3 *4 *5))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-768)) (-5 *2 (-1264))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) (((*1 *2 *2) - (-12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) (-5 *1 (-360 *3 *4)) - (-14 *4 (-640 (-1169))))) - ((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-450 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *1 (-450 *4 *5 *6 *7)))) - ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-640 *7)) (-5 *3 (-1151)) (-4 *7 (-945 *4 *5 *6)) - (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *1 (-450 *4 *5 *6 *7)))) - ((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) - (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4))))) -(((*1 *2) - (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 (-407 *2))) - (-4 *2 (-1233 *4)) (-5 *1 (-341 *3 *4 *2 *5)) - (-4 *3 (-342 *4 *2 *5)))) - ((*1 *2) - (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1212)) - (-4 *4 (-1233 (-407 *2))) (-4 *2 (-1233 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-640 (-2 (|:| -2055 (-1165 *6)) (|:| -2631 (-563))))) - (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-753))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-768)) (-5 *4 (-1259 *2)) (-4 *5 (-307)) + (-4 *6 (-989 *5)) (-4 *2 (-13 (-409 *6 *7) (-1035 *6))) + (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1235 *6))))) (((*1 *2 *3) - (-12 (-4 *1 (-916)) (-5 *2 (-2 (|:| -2765 (-640 *1)) (|:| -1738 *1))) - (-5 *3 (-640 *1))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) - ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1193) (-998)))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-434)) (-4 *5 (-846)) - (-5 *1 (-1099 *5 *4)) (-4 *4 (-430 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2) - (-12 (-5 *2 (-2 (|:| -1856 (-640 *3)) (|:| -1843 (-640 *3)))) - (-5 *1 (-1209 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1169)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-640 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3971 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1193) (-27) (-430 *8))) - (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) - (-5 *3 (-563)) (-5 *2 (-640 *4)) (-5 *1 (-1010 *8 *4))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) + (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-2 (|:| |num| (-685 *5)) (|:| |den| *5)))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-771)) (-5 *1 (-52))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *3 (-1060 *6 *7 *8)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1102 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2084 *9)))) + (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) + (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) + (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2084 *9)))) + (-5 *1 (-1102 *6 *7 *4 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) + (-4 *4 (-349)) (-5 *2 (-1264)) (-5 *1 (-528 *4))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-768)) (-4 *3 (-1209)) (-4 *1 (-57 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1) (-5 *1 (-171))) + ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1094)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389)))) + ((*1 *1) (-5 *1 (-394))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) + ((*1 *1) + (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) + (-4 *4 (-662 *3)))) + ((*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *1 (-1136 *3 *2)) (-14 *3 (-768)) (-4 *2 (-1046)))) + ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) + ((*1 *1 *1) (-5 *1 (-1170))) ((*1 *1) (-5 *1 (-1170))) + ((*1 *1) (-5 *1 (-1189)))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-640 (-948 *3))) (-4 *3 (-452)) - (-5 *1 (-360 *3 *4)) (-14 *4 (-640 (-1169))))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-640 (-776 *3 (-860 *4)))) (-4 *3 (-452)) - (-14 *4 (-640 (-1169))) (-5 *1 (-625 *3 *4))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-1212)) - (-4 *6 (-1233 (-407 *5))) + (-12 (-5 *2 - (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) - (|:| |gd| *5))) - (-4 *1 (-342 *4 *5 *6))))) + (-984 (-407 (-564)) (-861 *3) (-240 *4 (-768)) + (-247 *3 (-407 (-564))))) + (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-983 *3 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) - (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4408) (-6 -4409)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) - (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4408) (-6 -4409))))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-753))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-640 *1)) (-4 *1 (-916))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1193) (-998)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) - (-5 *1 (-1209 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-5 *2 (-1262)) - (-5 *1 (-1209 *4))))) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1093) (-34))) - (-4 *4 (-13 (-1093) (-34)))))) -(((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1169)) - (-5 *6 - (-1 - (-3 - (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) - "failed") - *4 (-640 *4))) - (-5 *7 - (-1 (-3 (-2 (|:| -3971 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1193) (-27) (-430 *8))) - (-4 *8 (-13 (-452) (-846) (-147) (-1034 *3) (-636 *3))) - (-5 *3 (-563)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -2665 *4) (|:| |sol?| (-112)))) - (-5 *1 (-1009 *8 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-112)) - (-5 *1 (-360 *4 *5)) (-14 *5 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-776 *4 (-860 *5)))) (-4 *4 (-452)) - (-14 *5 (-640 (-1169))) (-5 *2 (-112)) (-5 *1 (-625 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) - (-4 *7 (-1233 (-407 *6))) (-5 *2 (-640 (-948 *5))) - (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1212)) - (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *4 (-363)) - (-5 *2 (-640 (-948 *4)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-1125 *4 *2)) - (-4 *2 (-13 (-601 (-563) *4) (-10 -7 (-6 -4408) (-6 -4409)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-846)) (-4 *3 (-1208)) (-5 *1 (-1125 *3 *2)) - (-4 *2 (-13 (-601 (-563) *3) (-10 -7 (-6 -4408) (-6 -4409))))))) -(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1151)) (-5 *5 (-684 (-225))) (-5 *6 (-684 (-563))) - (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-753))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) - (-5 *1 (-914 *4))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1193) (-998)))))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-641 *3)))) + ((*1 *2 *1) + (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) + (-5 *2 (-641 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-563)) (-4 *5 (-349)) (-5 *2 (-418 (-1165 (-1165 *5)))) - (-5 *1 (-1206 *5)) (-5 *3 (-1165 (-1165 *5)))))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1008)) (-5 *2 (-858))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-659 *4 *5))) - (-5 *1 (-624 *4 *5 *6)) (-4 *5 (-13 (-172) (-713 (-407 (-563))))) - (-14 *6 (-917))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) + (-5 *1 (-702 *3 *4)) (-4 *3 (-1209)) (-4 *4 (-1209))))) +(((*1 *1 *1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *3 (-556))))) +(((*1 *2 *2) (-12 (-5 *2 (-641 (-316 (-225)))) (-5 *1 (-267))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)) + (-4 *3 (-789))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-2 (|:| -1327 *3) (|:| -2423 *4)))) + (-4 *3 (-1094)) (-4 *4 (-1094)) (-4 *1 (-1185 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1185 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2448 *4))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-610 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-566 *5 *3 *6)) (-4 *6 (-1094))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) (((*1 *2) - (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) - (-5 *2 (-640 (-640 *4))) (-5 *1 (-341 *3 *4 *5 *6)) - (-4 *3 (-342 *4 *5 *6)))) + (-12 (-14 *4 (-768)) (-4 *5 (-1209)) (-5 *2 (-134)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-640 (-640 *3)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 *4)) (-4 *4 (-1045)) (-4 *2 (-1233 *4)) - (-5 *1 (-444 *4 *2)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-407 (-1165 (-316 *5)))) (-5 *3 (-1257 (-316 *5))) - (-5 *4 (-563)) (-4 *5 (-13 (-555) (-846))) (-5 *1 (-1123 *5))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-753))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-640 (-948 *4))) (-5 *3 (-640 (-1169))) (-4 *4 (-452)) - (-5 *1 (-914 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 (-563)))) (-5 *1 (-466))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1193) (-998)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) - (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |k| (-667 *3)) (|:| |c| *4)))) - (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) - (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) ((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-407 (-1165 (-316 *3)))) (-4 *3 (-13 (-555) (-846))) - (-5 *1 (-1123 *3))))) -(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-70 APROD)))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-752))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) - ((*1 *2 *3) (-12 (-5 *3 (-967)) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1257 (-1257 (-563)))) (-5 *3 (-917)) (-5 *1 (-466))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-854)))) - ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-961)))) - ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-985)))) - ((*1 *2 *1) (-12 (-4 *1 (-1006 *2)) (-4 *2 (-1208)))) + (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1093) (-34))) (-5 *1 (-1133 *2 *3)) - (-4 *3 (-13 (-1093) (-34)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1193) (-998)))))) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) + (-5 *2 (-564)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-977 *3)) (-4 *3 (-1046)) (-5 *2 (-918)))) + ((*1 *2) (-12 (-4 *1 (-1266 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -2519 (-641 *7)))) + (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) + (-5 *1 (-1104))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1165 (-1165 *4)))) - (-5 *1 (-1206 *4)) (-5 *3 (-1165 (-1165 *4)))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1165 *1)) (-4 *1 (-1008))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-640 (-294 *4))) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) - (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917))))) -(((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-363)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 (-407 *3))) - (-4 *1 (-335 *4 *3 *5 *2)) (-4 *2 (-342 *4 *3 *5)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-363)) (-4 *4 (-1233 *2)) - (-4 *5 (-1233 (-407 *4))) (-4 *1 (-335 *2 *4 *5 *6)) - (-4 *6 (-342 *2 *4 *5)))) - ((*1 *1 *2 *2) - (-12 (-4 *2 (-363)) (-4 *3 (-1233 *2)) (-4 *4 (-1233 (-407 *3))) - (-4 *1 (-335 *2 *3 *4 *5)) (-4 *5 (-342 *2 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) - (-4 *1 (-335 *3 *4 *5 *2)) (-4 *2 (-342 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-413 *4 (-407 *4) *5 *6)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-4 *3 (-363)) - (-4 *1 (-335 *3 *4 *5 *6))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2 *3) (-12 (-5 *3 (-968)) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *3 (-112)) (-5 *1 (-1104))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-846) (-147))) - (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) - (-5 *1 (-1122 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-846) (-147))) - (-5 *2 (-1158 (-640 (-316 *5)) (-640 (-294 (-316 *5))))) - (-5 *1 (-1122 *5))))) -(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) - (-5 *2 (-1031)) (-5 *1 (-752))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) - ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-858)))) -(((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-846)) (-4 *5 (-789)) - (-4 *6 (-555)) (-4 *7 (-945 *6 *5 *3)) - (-5 *1 (-462 *5 *3 *6 *7 *2)) - (-4 *2 - (-13 (-1034 (-407 (-563))) (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) - (-15 -2636 (*7 $)))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 (-939 *3) (-939 *3))) (-5 *1 (-176 *3)) - (-4 *3 (-13 (-363) (-1193) (-998)))))) -(((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-640 (-640 (-225)))) (-5 *4 (-225)) - (-5 *2 (-640 (-939 *4))) (-5 *1 (-1204)) (-5 *3 (-939 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858))))) -(((*1 *2 *3 *4 *5 *6 *7 *6) - (|partial| -12 - (-5 *5 - (-2 (|:| |contp| *3) - (|:| -2524 (-640 (-2 (|:| |irr| *10) (|:| -2581 (-563))))))) - (-5 *6 (-640 *3)) (-5 *7 (-640 *8)) (-4 *8 (-846)) (-4 *3 (-307)) - (-4 *10 (-945 *3 *9 *8)) (-4 *9 (-789)) - (-5 *2 - (-2 (|:| |polfac| (-640 *10)) (|:| |correct| *3) - (|:| |corrfact| (-640 (-1165 *3))))) - (-5 *1 (-622 *8 *9 *3 *10)) (-5 *4 (-640 (-1165 *3)))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2) + (-12 + (-5 *2 (-2 (|:| -1380 (-641 (-1170))) (|:| -3163 (-641 (-1170))))) + (-5 *1 (-1211))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098)) (-5 *1 (-280))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1136 *3 *4)) (-14 *3 (-918)) (-4 *4 (-363)) + (-5 *1 (-990 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-316 *5))) - (-5 *1 (-1122 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) - (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-640 (-316 *5)))) - (-5 *1 (-1122 *5))))) -(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-112)) - (-5 *6 (-225)) (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-73 MSOLVE)))) - (-5 *2 (-1031)) (-5 *1 (-752))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-940 *3))) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-940 *3))) (-4 *1 (-1128 *3)) (-4 *3 (-1046))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-859))) (-5 *1 (-114)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-1 (-859) (-641 (-859)))) (-5 *1 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-847) + (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 (*2 $)) + (-15 -2096 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-394)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502)))) + ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-707)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1189)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1189))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-610 *5))) (-4 *4 (-847)) (-5 *2 (-610 *5)) + (-5 *1 (-573 *4 *5)) (-4 *5 (-430 *4))))) +(((*1 *2 *3 *3) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) + (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1187))))) +(((*1 *2 *2) (-12 (-5 *1 (-678 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-386 *4)) (-4 *4 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-23)) (-5 *1 (-645 *4 *2 *5)) + (-4 *4 (-1094)) (-14 *5 *2))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-768)) (-5 *1 (-816 *4)) (-4 *4 (-847))))) +(((*1 *2 *3 *4 *4 *3 *3 *5) + (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-1166 *3)) + (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) + (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094)))) + ((*1 *2 *3 *4 *4 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-407 (-1166 *3))) + (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) + (-5 *1 (-560 *6 *3 *7)) (-4 *7 (-1094))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) + (-4 *2 (-1209))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) - ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *1) - (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) - (-14 *6 - (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *2)) - (-2 (|:| -3491 *5) (|:| -2631 *2)))) - (-4 *2 (-238 (-1708 *3) (-767))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-846)) (-4 *7 (-945 *4 *2 (-860 *3)))))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)) + (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) + ((*1 *2) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-685 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1170)) + (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) (-5 *1 (-557 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-4 *1 (-764 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-685 *4))) (-4 *4 (-172)) + (-5 *2 (-1259 (-685 (-949 *4)))) (-5 *1 (-189 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783))))) (((*1 *2 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-241)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1262)) (-5 *1 (-241))))) + (-12 + (-5 *2 + (-504 (-407 (-564)) (-240 *4 (-768)) (-861 *3) + (-247 *3 (-407 (-564))))) + (-14 *3 (-641 (-1170))) (-14 *4 (-768)) (-5 *1 (-505 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *3) - (-12 (-5 *3 (-563)) (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-1204))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-858))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-767)) (-5 *5 (-640 *3)) (-4 *3 (-307)) (-4 *6 (-846)) - (-4 *7 (-789)) (-5 *2 (-112)) (-5 *1 (-622 *6 *7 *3 *8)) - (-4 *8 (-945 *3 *7 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) - (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) - (-4 *6 (-342 *3 *4 *5))))) + (-12 (-4 *4 (-452)) + (-5 *2 + (-641 + (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) + (|:| |eigmult| (-768)) + (|:| |eigvec| (-641 (-685 (-407 (-949 *4)))))))) + (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4))))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-187))) (-5 *1 (-187))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-114)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) + (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) + ((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) + (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) - (-5 *1 (-1122 *5)))) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-641 *2)) (-5 *1 (-113 *2)) + (-4 *2 (-1094)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 (-641 *4))) (-4 *4 (-1094)) + (-5 *1 (-113 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) + (-5 *1 (-113 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-13 (-307) (-846) (-147))) - (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1122 *4)))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-1 *4 (-641 *4))) + (-5 *1 (-113 *4)) (-4 *4 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) + (-5 *1 (-711 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) + (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 *3)) (-4 *3 (-1235 *5)) + (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 (-564)))) (-5 *3 (-1166 (-564))) + (-5 *1 (-572)))) + ((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 *1))) (-5 *3 (-1166 *1)) + (-4 *1 (-906))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1094))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *2 (-816 *3)))) + ((*1 *2 *1) + (-12 (-4 *2 (-843)) (-5 *1 (-1282 *3 *2)) (-4 *3 (-1046))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) +(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-782 *3)) (-4 *3 (-612 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-948 *5)))) (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *5)))) - (-5 *1 (-1122 *5)))) + (-12 (-5 *4 (-918)) (-5 *2 (-379)) (-5 *1 (-782 *3)) + (-4 *3 (-612 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-294 (-407 (-948 *4)))) - (-4 *4 (-13 (-307) (-846) (-147))) (-5 *2 (-640 (-294 (-316 *4)))) - (-5 *1 (-1122 *4)))) + (-12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) + (-5 *2 (-379)) (-5 *1 (-782 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) - (-4 *5 (-13 (-307) (-846) (-147))) - (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) + (-12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-407 (-948 *4)))) - (-4 *4 (-13 (-307) (-846) (-147))) - (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4)))) + (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) (-4 *4 (-612 *2)) + (-5 *2 (-379)) (-5 *1 (-782 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-294 (-407 (-948 *5))))) (-5 *4 (-640 (-1169))) - (-4 *5 (-13 (-307) (-846) (-147))) - (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1122 *5)))) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) - (-4 *4 (-13 (-307) (-846) (-147))) - (-5 *2 (-640 (-640 (-294 (-316 *4))))) (-5 *1 (-1122 *4))))) -(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) - (-5 *2 (-1031)) (-5 *1 (-752))))) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) + (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) (-4 *5 (-847)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-768)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) - ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) + (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) + (-5 *3 (-564))))) +(((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) + (-14 *3 (-641 (-1170)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880))))) +(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-828))))) +(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) + (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-680 *4 *5 *6)) (-4 *4 (-1094))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-847))) + (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) + (-5 *1 (-598 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-999) (-1194)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *3)) + (-4 *3 (-1209)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1 *3) + (|partial| -12 (-4 *1 (-1202 *4 *5 *3 *2)) (-4 *4 (-556)) + (-4 *5 (-790)) (-4 *3 (-847)) (-4 *2 (-1060 *4 *5 *3)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-5 *1 (-1206 *2)) (-4 *2 (-1209))))) (((*1 *2 *1) - (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) - (-4 *5 (-238 (-1708 *3) (-767))) - (-14 *6 - (-1 (-112) (-2 (|:| -3491 *2) (|:| -2631 *5)) - (-2 (|:| -3491 *2) (|:| -2631 *5)))) - (-4 *2 (-846)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-945 *4 *5 (-860 *3)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) - (-5 *1 (-176 *3))))) + (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-38 (-407 (-564)))) + (-4 *2 (-172))))) (((*1 *1 *2) - (-12 (-5 *2 (-917)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1045)) - (-4 *4 (-1208)))) + (-12 (-5 *2 (-641 *1)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *1 *2) - (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) - (-4 *5 (-238 (-1708 *3) (-767))) - (-14 *6 - (-1 (-112) (-2 (|:| -3491 *2) (|:| -2631 *5)) - (-2 (|:| -3491 *2) (|:| -2631 *5)))) - (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-846)) - (-4 *7 (-945 *4 *5 (-860 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-1059 *3 *4 *5)) (-5 *1 (-621 *3 *4 *5 *6 *7 *2)) - (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *2 (-1102 *3 *4 *5 *6))))) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-685 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *4)) (-4 *4 (-1046)) (-4 *1 (-1117 *3 *4 *5 *6)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-747))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1134 *4 *5)) (-4 *4 (-13 (-1094) (-34))) + (-4 *5 (-13 (-1094) (-34))) (-5 *2 (-112)) (-5 *1 (-1135 *4 *5))))) +(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-752)))) + ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) + (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) (((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) - (-5 *2 (-1257 *6)) (-5 *1 (-336 *3 *4 *5 *6)) - (-4 *6 (-342 *3 *4 *5))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208))))) + (-12 + (-5 *2 + (-641 + (-2 (|:| |scalar| (-407 (-564))) (|:| |coeff| (-1166 *3)) + (|:| |logand| (-1166 *3))))) + (-5 *1 (-585 *3)) (-4 *3 (-363))))) +(((*1 *2 *2 *3 *3) + (|partial| -12 (-5 *3 (-1170)) + (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-575 *4 *2)) + (-4 *2 (-13 (-1194) (-956) (-1133) (-29 *4)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) + (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-748))))) +(((*1 *2 *3) + (-12 (-5 *3 (-949 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-758)))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 *3 (-641 *1))) + (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| |deg| (-768)) (|:| -2458 *5)))) + (-4 *5 (-1235 *4)) (-4 *4 (-349)) (-5 *2 (-641 *5)) + (-5 *1 (-216 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-2 (|:| -4127 *5) (|:| -2266 (-564))))) + (-5 *4 (-564)) (-4 *5 (-1235 *4)) (-5 *2 (-641 *5)) + (-5 *1 (-692 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *1) (-5 *1 (-55)))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-379)) (-5 *3 (-1152)) (-5 *1 (-97))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) (((*1 *2 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) -(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-752))))) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-768)) (-5 *2 (-112)) (-5 *1 (-586 *3)) (-4 *3 (-545))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 (-610 *4))) (-4 *4 (-430 *3)) (-4 *3 (-847)) + (-5 *1 (-573 *3 *4)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-66 FUNCT1)))) + (-5 *2 (-1032)) (-5 *1 (-750))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-955 *3)) (-5 *1 (-1157 *4 *3)) + (-4 *3 (-1235 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) - ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-640 (-1169))) (-4 *2 (-172)) - (-4 *4 (-238 (-1708 *5) (-767))) - (-14 *6 - (-1 (-112) (-2 (|:| -3491 *3) (|:| -2631 *4)) - (-2 (|:| -3491 *3) (|:| -2631 *4)))) - (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-846)) - (-4 *7 (-945 *2 *4 (-860 *5)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) - (-5 *1 (-176 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-225)) (-5 *5 (-563)) (-5 *2 (-1203 *3)) - (-5 *1 (-786 *3)) (-4 *3 (-970)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-112)) - (-5 *1 (-1203 *2)) (-4 *2 (-970))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-563))))) + (|partial| -12 (-5 *3 (-610 *4)) (-4 *4 (-847)) (-4 *2 (-847)) + (-5 *1 (-609 *2 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2))))) + (|partial| -12 (-4 *3 (-1106)) (-4 *3 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-641 *1)) (-4 *1 (-946 *3 *4 *5)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) + (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-641 *3)) + (-5 *1 (-947 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) + (-15 -1634 (*7 $)))))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-144))) (-5 *1 (-141)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-141))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) - (-5 *1 (-332))))) -(((*1 *2 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-640 (-1169))) (-4 *4 (-1093)) - (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) - (-5 *1 (-1069 *4 *5 *2)) - (-4 *2 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))))) - ((*1 *1 *2 *2) - (-12 (-4 *3 (-1093)) - (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) - (-5 *1 (-1069 *3 *4 *2)) - (-4 *2 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))))) + (-12 (-5 *4 (-918)) (-4 *6 (-13 (-556) (-847))) + (-5 *2 (-641 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) + (-4 *5 (-1046)))) + ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-556)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 *5)) (-4 *5 (-13 (-29 *4) (-1194))) + (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-5 *2 (-641 *5)) (-5 *1 (-583 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-585 (-407 (-949 *4)))) + (-4 *4 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-5 *2 (-641 (-316 *4))) (-5 *1 (-588 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-845)) (-4 *2 (-1143 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) + (-4 *2 (-1143 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194))))) + ((*1 *2 *1) + (-12 (-5 *2 (-1274 (-1170) *3)) (-5 *1 (-1281 *3)) (-4 *3 (-1046)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1274 *3 *4)) (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-1046))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-641 (-171))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) - ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-752))))) -(((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-640 (-1169))) (-4 *2 (-172)) - (-4 *3 (-238 (-1708 *4) (-767))) - (-14 *6 - (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *3)) - (-2 (|:| -3491 *5) (|:| -2631 *3)))) - (-5 *1 (-461 *4 *2 *5 *3 *6 *7)) (-4 *5 (-846)) - (-4 *7 (-945 *2 *3 (-860 *4)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) - (-5 *2 (-112))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-619 *4 *2)) (-4 *2 (-13 (-1193) (-955) (-29 *4)))))) + (-12 (-5 *3 (-407 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-556)) + (-4 *4 (-1046)) (-4 *2 (-1250 *4)) (-5 *1 (-1253 *4 *5 *6 *2)) + (-4 *6 (-652 *5))))) +(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) + (-5 *1 (-753))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) - (-5 *1 (-332))))) -(((*1 *2 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) -(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) - (-5 *2 (-1031)) (-5 *1 (-752))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) - ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-640 *3)) (-5 *5 (-917)) (-4 *3 (-1233 *4)) - (-4 *4 (-307)) (-5 *1 (-460 *4 *3))))) + (-12 (-5 *3 (-564)) (-5 *4 (-418 *2)) (-4 *2 (-946 *7 *5 *6)) + (-5 *1 (-739 *5 *6 *7 *2)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-307))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) (((*1 *2 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970))))) -(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) - (-5 *2 (-112))))) -(((*1 *2 *3 *3 *3) - (|partial| -12 - (-4 *4 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *5 (-1233 *4)) (-5 *2 (-1165 (-407 *5))) (-5 *1 (-612 *4 *5)) - (-5 *3 (-407 *5)))) - ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-147) (-27) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 (-1165 (-407 *6))) (-5 *1 (-612 *5 *6)) (-5 *3 (-407 *6))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) + (-5 *2 (-1032)) (-5 *1 (-746)))) + ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) + (-5 *8 (-388)) (-5 *2 (-1032)) (-5 *1 (-746))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25)))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) + (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) + (-5 *1 (-693))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-1 (-585 *3) *3 (-1170))) + (-5 *6 + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 + (-1170))) + (-4 *3 (-284)) (-4 *3 (-627)) (-4 *3 (-1035 *4)) (-4 *3 (-430 *7)) + (-5 *4 (-1170)) (-4 *7 (-612 (-889 (-564)))) (-4 *7 (-452)) + (-4 *7 (-883 (-564))) (-4 *7 (-847)) (-5 *2 (-585 *3)) + (-5 *1 (-573 *7 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1170)) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-4 *4 (-13 (-29 *6) (-1194) (-956))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4265 (-641 *4)))) + (-5 *1 (-798 *6 *4 *3)) (-4 *3 (-652 *4))))) +(((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-1152)) (-5 *4 (-169 (-225))) (-5 *5 (-564)) + (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-1046)) (-4 *2 (-1235 *4)) + (-5 *1 (-444 *4 *2)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-407 (-1166 (-316 *5)))) (-5 *3 (-1259 (-316 *5))) + (-5 *4 (-564)) (-4 *5 (-13 (-556) (-847))) (-5 *1 (-1124 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-685 *4)) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) +(((*1 *2) + (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) + (-4 *3 (-329 *4)))) + ((*1 *2) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-768))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) - (-5 *1 (-332))))) -(((*1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-368)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349)))) + (-12 (-5 *4 (-768)) (-5 *2 (-641 (-1170))) (-5 *1 (-210)) + (-5 *3 (-1170)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-768)) (-5 *2 (-641 (-1170))) + (-5 *1 (-267)))) ((*1 *2 *1) - (-12 (-4 *2 (-846)) (-5 *1 (-709 *2 *3 *4)) (-4 *3 (-1093)) - (-14 *4 - (-1 (-112) (-2 (|:| -3491 *2) (|:| -2631 *3)) - (-2 (|:| -3491 *2) (|:| -2631 *3))))))) -(((*1 *2 *2 *2) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) -(((*1 *1) - (-12 (-4 *1 (-404)) (-3730 (|has| *1 (-6 -4399))) - (-3730 (|has| *1 (-6 -4391))))) - ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-846)))) - ((*1 *2 *1) (-12 (-4 *1 (-826 *2)) (-4 *2 (-846)))) - ((*1 *1) (-4 *1 (-840))) ((*1 *1 *1 *1) (-4 *1 (-846)))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) - ((*1 *2) (-12 (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) - (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-917)) (-4 *5 (-307)) (-4 *3 (-1233 *5)) - (-5 *2 (-2 (|:| |plist| (-640 *3)) (|:| |modulo| *5))) - (-5 *1 (-460 *5 *3)) (-5 *4 (-640 *3))))) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-5 *2 (-641 *3)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 *3)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) + (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *2 (-641 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-1272 *4 *5 *6 *7))) + (-5 *1 (-1272 *4 *5 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 *9)) (-5 *4 (-1 (-112) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) + (-4 *7 (-790)) (-4 *8 (-847)) (-5 *2 (-641 (-1272 *6 *7 *8 *9))) + (-5 *1 (-1272 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-5 *2 (-641 *3)) (-5 *1 (-921 *4 *5 *6 *3)) + (-4 *3 (-946 *4 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) (((*1 *2 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) - (-5 *1 (-176 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1203 *3)) (-4 *3 (-970))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *2) + (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1235 (-169 *2)))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) (((*1 *2 *1) - (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *5)) (-5 *1 (-881 *3 *4 *5)) - (-4 *3 (-1093)) (-4 *5 (-661 *4))))) + (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-641 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-641 (-610 *6))) (-5 *4 (-1170)) (-5 *2 (-610 *6)) + (-4 *6 (-430 *5)) (-4 *5 (-847)) (-5 *1 (-573 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-418 (-1166 (-564)))) (-5 *1 (-191)) (-5 *3 (-564))))) +(((*1 *2 *3) (-12 (-5 *3 (-407 (-564))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-1183 *2)) (-4 *2 (-363))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| -3426 *4) (|:| -3564 (-564))))) + (-4 *4 (-1094)) (-5 *2 (-1 *4)) (-5 *1 (-1014 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818))))) +(((*1 *2 *3) + (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1235 *5)) + (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-112)) + (-5 *1 (-908 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) + (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) + (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-112)) + (-5 *1 (-909 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-1259 (-641 (-564)))) (-5 *1 (-480)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1209)) (-5 *1 (-1150 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-1181 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) + ((*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) + (-4 *3 (-847)) (-5 *2 (-768))))) +(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) + (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) + (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750))))) +(((*1 *2 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-685 (-949 *4))) (-5 *1 (-1025 *4)) + (-4 *4 (-1046))))) +(((*1 *2 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-640 *1)) (|has| *1 (-6 -4409)) (-4 *1 (-1006 *3)) - (-4 *3 (-1208))))) + (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-609 *4)) (-4 *4 (-846)) (-4 *2 (-846)) - (-5 *1 (-608 *2 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-846))))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) + (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) - ((*1 *2 *3 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-752))))) -(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) + (-12 (-5 *3 (-641 (-641 (-940 (-225))))) + (-5 *2 (-641 (-1088 (-225)))) (-5 *1 (-925))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 (-768))) (-5 *1 (-966 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) + (-15 -1634 ((-1119 *3 (-610 $)) $)) + (-15 -3742 ($ (-1119 *3 (-610 $)))))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1173))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-114)) (-4 *4 (-1046)) (-5 *1 (-711 *4 *2)) + (-4 *2 (-644 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-833 *2)) (-4 *2 (-1046))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-640 *5)) (-4 *5 (-1233 *3)) (-4 *3 (-307)) - (-5 *2 (-112)) (-5 *1 (-455 *3 *5))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *1) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-14 *6 + (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *2)) + (-2 (|:| -1495 *5) (|:| -2515 *2)))) + (-4 *2 (-238 (-2641 *3) (-768))) (-5 *1 (-461 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-847)) (-4 *7 (-946 *4 *2 (-861 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) (((*1 *2 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193) (-998))) - (-5 *1 (-176 *3))))) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *2 *1) - (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-1203 *3)) - (-4 *3 (-970))))) -(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) (-4 *2 (-1208))))) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-4 *5 (-238 (-2641 *3) (-768))) + (-14 *6 + (-1 (-112) (-2 (|:| -1495 *2) (|:| -2515 *5)) + (-2 (|:| -1495 *2) (|:| -2515 *5)))) + (-4 *2 (-847)) (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-946 *4 *5 (-861 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-821)) (-5 *1 (-822))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) + (-5 *2 (-1032)) (-5 *1 (-745))))) +(((*1 *2 *3 *4 *4 *2 *2 *2 *2) + (-12 (-5 *2 (-564)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) + (-5 *1 (-449 *5 *6 *7 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-847) (-147))) + (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) + (-5 *1 (-1123 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-847) (-147))) + (-5 *2 (-1159 (-641 (-316 *5)) (-641 (-294 (-316 *5))))) + (-5 *1 (-1123 *5))))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-789)) (-4 *3 (-172))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-363)) (-5 *2 (-641 (-1150 *4))) (-5 *1 (-285 *4 *5)) + (-5 *3 (-1150 *4)) (-4 *5 (-1250 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-847) (-556)))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) + (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-785))))) (((*1 *2 *3) - (-12 (-5 *2 (-609 *4)) (-5 *1 (-608 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-846))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *3 (-948 (-563))) - (-5 *1 (-330)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1085 (-948 (-563)))) (-5 *1 (-330))))) + (-12 (-5 *2 (-112)) (-5 *1 (-39 *3)) (-4 *3 (-1235 (-48)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-114)))) + (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1094)) (-4 *2 (-847)) + (-5 *1 (-113 *2))))) +(((*1 *1 *2) + (-12 (-4 *3 (-1046)) (-5 *1 (-824 *2 *3)) (-4 *2 (-705 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1250 *4)) + (-4 *4 (-38 (-407 (-564)))) + (-5 *2 (-1 (-1150 *4) (-1150 *4) (-1150 *4))) (-5 *1 (-1252 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) + ((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) + (-14 *4 (-564))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) + (-4 *6 (-13 (-27) (-430 *5))) + (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) + (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) + (-4 *3 (-342 *6 *7 *8))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291))) + ((*1 *1) (-5 *1 (-859))) + ((*1 *1) + (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) + (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1079))) + ((*1 *1) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34))))) + ((*1 *1) (-5 *1 (-1173))) ((*1 *1) (-5 *1 (-1174)))) +(((*1 *1 *1 *2) + (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *3)) (-4 *3 (-1209)) (-5 *2 (-564))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) + (-4 *4 (-172)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1151)) (-4 *4 (-846)) (-5 *1 (-925 *4 *2)) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-172))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-768)) (-4 *5 (-556)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1166 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) + (-5 *1 (-32 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-4 *5 (-430 *4)) + (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-855)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-962)))) + ((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-986)))) + ((*1 *2 *1) (-12 (-4 *1 (-1007 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-1094) (-34))) (-5 *1 (-1134 *2 *3)) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-641 (-114)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-138)))) + ((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-186))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 *6)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) + (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *3) (|:| |radicand| *6))) + (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-768)) (-4 *7 (-1235 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *1 *1 *2 *1) + (-12 (-5 *2 (-564)) (-5 *1 (-1150 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-753))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *5 (-556)) + (-5 *2 + (-2 (|:| |minor| (-641 (-918))) (|:| -4032 *3) + (|:| |minors| (-641 (-641 (-918)))) (|:| |ops| (-641 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) + (-5 *2 (-641 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3))))) +(((*1 *2 *1 *1 *3 *4) + (-12 (-5 *3 (-1 (-112) *5 *5)) (-5 *4 (-1 (-112) *6 *6)) + (-4 *5 (-13 (-1094) (-34))) (-4 *6 (-13 (-1094) (-34))) + (-5 *2 (-112)) (-5 *1 (-1134 *5 *6))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) + (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) + (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-307))))) +(((*1 *2 *3 *4) + (-12 (-4 *6 (-556)) (-4 *2 (-946 *3 *5 *4)) + (-5 *1 (-729 *5 *4 *6 *2)) (-5 *3 (-407 (-949 *6))) (-4 *5 (-790)) + (-4 *4 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)))))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) + (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *9 (-1060 *6 *7 *8)) + (-5 *2 + (-641 + (-2 (|:| -4032 (-641 *9)) (|:| -2084 *10) (|:| |ineq| (-641 *9))))) + (-5 *1 (-985 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-641 *10)) (-5 *5 (-112)) (-4 *10 (-1066 *6 *7 *8 *9)) + (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *9 (-1060 *6 *7 *8)) + (-5 *2 + (-641 + (-2 (|:| -4032 (-641 *9)) (|:| -2084 *10) (|:| |ineq| (-641 *9))))) + (-5 *1 (-1101 *6 *7 *8 *9 *10)) (-5 *3 (-641 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) +(((*1 *2 *3) + (-12 (-5 *3 (-766)) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) + (-5 *1 (-565)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-766)) (-5 *4 (-1058)) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) + (-5 *1 (-565)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-784)) (-5 *3 (-1058)) + (-5 *4 + (-2 (|:| |fn| (-316 (-225))) + (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) + (|:| |extra| (-1032)))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-1151)) (-5 *2 (-316 (-563))) - (-5 *1 (-926))))) -(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + (-12 (-4 *1 (-784)) (-5 *3 (-1058)) + (-5 *4 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)) + (|:| |extra| (-1032)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-797)) (-5 *3 (-1058)) + (-5 *4 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)))))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) + (-12 (-5 *3 (-805)) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-802)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-805)) (-5 *4 (-1058)) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-802)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-836)) (-5 *3 (-1058)) + (-5 *4 + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) + (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)))))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-836)) (-5 *3 (-1058)) + (-5 *4 + (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) + (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-840 (-225)))))) + (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-838)) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-837)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-838)) (-5 *4 (-1058)) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-837)))) + ((*1 *2 *3 *4) + (-12 (-4 *1 (-892)) (-5 *3 (-1058)) + (-5 *4 + (-2 (|:| |pde| (-641 (-316 (-225)))) + (|:| |constraints| + (-641 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-768)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) + (|:| |tol| (-225)))) + (-5 *2 (-2 (|:| -3406 (-379)) (|:| |explanations| (-1152)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-895)) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-894)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-895)) (-5 *4 (-1058)) + (-5 *2 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *1 (-894))))) +(((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564))))) +(((*1 *2 *3 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) (-5 *1 (-752))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1257 (-640 *3))) (-4 *4 (-307)) - (-5 *2 (-640 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-109))) (-5 *1 (-175))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-192)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1088 (-840 (-225)))) (-5 *2 (-225)) (-5 *1 (-305))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-756))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-640 (-1 *4 (-640 *4)))) (-4 *4 (-1093)) - (-5 *1 (-113 *4)))) + (|partial| -12 (-5 *2 (-641 (-1166 *7))) (-5 *3 (-1166 *7)) + (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-906)) (-4 *5 (-790)) + (-4 *6 (-847)) (-5 *1 (-903 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1093)) - (-5 *1 (-113 *4)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-5 *2 (-640 (-1 *4 (-640 *4)))) - (-5 *1 (-113 *4)) (-4 *4 (-1093))))) -(((*1 *2 *1) (-12 (-5 *1 (-1203 *2)) (-4 *2 (-970))))) + (|partial| -12 (-5 *2 (-641 (-1166 *5))) (-5 *3 (-1166 *5)) + (-4 *5 (-1235 *4)) (-4 *4 (-906)) (-5 *1 (-904 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-949 (-169 (-564))))) (-5 *2 (-641 (-169 *4))) + (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-845))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) + (-5 *4 (-641 (-1170))) (-5 *2 (-641 (-641 (-169 *5)))) + (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-845)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-331 *3)) (-4 *3 (-847))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *5)) (-4 *5 (-789)) (-5 *2 (-112)) + (-5 *1 (-842 *4 *5)) (-14 *4 (-768))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-114)) (-5 *4 (-768)) (-4 *5 (-452)) (-4 *5 (-847)) + (-4 *5 (-1035 (-564))) (-4 *5 (-556)) (-5 *1 (-41 *5 *2)) + (-4 *2 (-430 *5)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *5 (-610 $)) $)) + (-15 -1634 ((-1119 *5 (-610 $)) $)) + (-15 -3742 ($ (-1119 *5 (-610 $)))))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) + (-4 *2 + (-13 (-402) + (-10 -7 (-15 -3742 (*2 *4)) (-15 -1906 ((-918) *2)) + (-15 -4265 ((-1259 *2) (-918))) (-15 -2578 (*2 *2))))) + (-5 *1 (-356 *2 *4))))) +(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))) +(((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) + ((*1 *2 *1) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924))))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-815 *3)) (|:| |rm| (-815 *3)))) - (-5 *1 (-815 *3)) (-4 *3 (-846)))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) + (-12 + (-5 *2 + (-2 (|:| |polnum| (-779 *3)) (|:| |polden| *3) (|:| -1703 (-768)))) + (-5 *1 (-779 *3)) (-4 *3 (-1046)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -1703 (-768)))) + (-4 *1 (-1060 *3 *4 *5))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-870 *2 *3)) (-4 *2 (-1209)) (-4 *3 (-1209))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1168 *4 *5 *6)) + (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-1232 *5 *4)) (-5 *1 (-1251 *4 *5 *6)) + (-4 *4 (-1046)) (-14 *5 (-1170)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-563))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) - (-4 *3 (-555)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-563))))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) - (-4 *3 (-1093)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) - (-4 *3 (-1093)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-563))))) - ((*1 *2 *3) - (|partial| -12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) - (-4 *3 (-1034 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1193)))) - ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-609 *3)) (-4 *3 (-846))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) - ((*1 *2 *3 *3 *3) - (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *3)) (-5 *1 (-1121 *4 *3)) (-4 *4 (-1233 *3))))) -(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) - (-5 *1 (-752))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-1158 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261)))) + ((*1 *2 *1) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1261))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) + (-4 *4 (-847)) (-5 *1 (-1180 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-917))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-767)) (-4 *4 (-307)) (-4 *6 (-1233 *4)) - (-5 *2 (-1257 (-640 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-640 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-312)) (-5 *1 (-296)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-296)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-1151))) (-5 *3 (-1151)) (-5 *2 (-312)) - (-5 *1 (-296))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) + (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) + (-5 *1 (-1267 *4)) (-4 *4 (-363))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-556)) (-5 *1 (-966 *4 *2)) + (-4 *2 (-1235 *4))))) +(((*1 *2 *3 *2) + (-12 (-4 *1 (-784)) (-5 *2 (-1032)) + (-5 *3 + (-2 (|:| |fn| (-316 (-225))) + (|:| -3089 (-641 (-1088 (-840 (-225))))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))))) + ((*1 *2 *3 *2) + (-12 (-4 *1 (-784)) (-5 *2 (-1032)) + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))))) +(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-918))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1079))) (-5 *1 (-291))))) +(((*1 *2 *3 *4 *5 *6 *7 *7 *8) + (-12 + (-5 *3 + (-2 (|:| |det| *12) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564))))) + (-5 *4 (-685 *12)) (-5 *5 (-641 (-407 (-949 *9)))) + (-5 *6 (-641 (-641 *12))) (-5 *7 (-768)) (-5 *8 (-564)) + (-4 *9 (-13 (-307) (-147))) (-4 *12 (-946 *9 *11 *10)) + (-4 *10 (-13 (-847) (-612 (-1170)))) (-4 *11 (-790)) + (-5 *2 + (-2 (|:| |eqzro| (-641 *12)) (|:| |neqzro| (-641 *12)) + (|:| |wcond| (-641 (-949 *9))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *9)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *9))))))))) + (-5 *1 (-921 *9 *10 *11 *12))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1088 (-840 (-379)))) (-5 *2 (-1088 (-840 (-225)))) + (-5 *1 (-305))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-754))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-579))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) + (-4 *2 (-1250 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847))))) +(((*1 *1) (-5 *1 (-1076)))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| -1762 *4) (|:| -1935 *3) (|:| -1363 *3))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-112)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-1060 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) - (-4 *2 (-555)))) - ((*1 *1 *1 *1) (|partial| -4 *1 (-555))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) - (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-555)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-767))) - ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-555)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) - (-5 *1 (-965 *3 *4)))) + (-12 (-4 *3 (-556)) (-4 *3 (-1046)) + (-5 *2 (-2 (|:| -1762 *3) (|:| -1935 *1) (|:| -1363 *1))) + (-4 *1 (-1235 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1152)) (-5 *1 (-1190))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-291))))) +(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-819))))) +(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) + ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) + ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| -4127 (-1166 *6)) (|:| -2515 (-564))))) + (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-564)) + (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) + (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-946 *4 *5 *6)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-555)))) - ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-129)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) + (-4 *3 (-1035 *4)) (-4 *3 (-13 (-847) (-556)))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-131)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-361 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-386 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1094)) (-5 *1 (-645 *3 *4 *5)) + (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) +(((*1 *2 *3 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-480))))) +(((*1 *2 *3) + (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-142 *2 *4 *3)) + (-4 *3 (-373 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-503 *2 *4 *5 *3)) + (-4 *5 (-373 *2)) (-4 *3 (-373 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *4)) (-4 *4 (-989 *2)) (-4 *2 (-556)) + (-5 *1 (-689 *2 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-989 *2)) (-4 *2 (-556)) (-5 *1 (-1228 *2 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-169 (-225)))) (-5 *2 (-1032)) + (-5 *1 (-751))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-1 *4 (-564))) (-4 *4 (-1046)) + (-5 *1 (-1154 *4))))) +(((*1 *2 *3 *3 *3 *4 *5 *4 *6) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *2 (-1204 (-923))) + (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-564)) (-5 *7 (-1152)) + (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) + (-5 *2 (-1204 (-923))) (-5 *1 (-318)))) + ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-225)) (-5 *7 (-564)) (-5 *8 (-1152)) + (-5 *2 (-1204 (-923))) (-5 *1 (-318))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *3 *4 *4 *5) + (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) + (-4 *3 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-566 *6 *3 *7)) (-4 *7 (-1094))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-418 *3)) (-4 *3 (-545)) (-4 *3 (-555)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + (|partial| -12 (-4 *3 (-1046)) (-4 *3 (-847)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2515 (-564)))) (-4 *1 (-430 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + (|partial| -12 + (-5 *2 (-2 (|:| |val| (-889 *3)) (|:| -2515 (-889 *3)))) + (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) + (-4 *7 (-946 *6 *4 *5)) + (-5 *2 (-2 (|:| |val| *3) (|:| -2515 (-564)))) + (-5 *1 (-947 *4 *5 *6 *7 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) + (-15 -1634 (*7 $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-577)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-144)))) + ((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-144))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-974 *3 *4 *5 *6))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |k| (-1170)) (|:| |c| (-1281 *3))))) + (-5 *1 (-1281 *3)) (-4 *3 (-1046)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-829 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) + (-12 (-5 *2 (-641 (-2 (|:| |k| *3) (|:| |c| (-1283 *3 *4))))) + (-5 *1 (-1283 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046))))) +(((*1 *2 *3) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) + (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-839 *3)) (-4 *3 (-545)) (-4 *3 (-1093)))) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) + (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046)))) + ((*1 *2 *3) + (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) + (-5 *1 (-684 *2 *4 *5 *3)) (-4 *3 (-683 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) (-5 *2 (-112)))) + (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4413 "*"))) (-4 *2 (-1046))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-756))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-192)))) ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-1004 *3)) (-4 *3 (-1034 (-407 (-563))))))) + (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-300)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 (-225))) (-5 *2 (-641 (-1152))) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1226 *3)) (-4 *3 (-1209))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330))))) + (-12 (-4 *2 (-1094)) (-5 *1 (-961 *2 *3)) (-4 *3 (-1094))))) (((*1 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) - (-4 *5 (-13 (-27) (-1193) (-430 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-563))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) - (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) - (-4 *6 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) - (-4 *7 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) - (-4 *3 (-13 (-27) (-1193) (-430 *7))) - (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) - (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) - (-4 *8 (-13 (-27) (-1193) (-430 *7))) - (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) - (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) - (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) - (-4 *3 (-1045)) (-5 *1 (-593 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-594 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) - (-4 *3 (-1045)) (-4 *1 (-1217 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-767)) - (-5 *3 (-1149 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))) - (-4 *4 (-1045)) (-4 *1 (-1238 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-4 *1 (-1248 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1149 (-2 (|:| |k| (-767)) (|:| |c| *3)))) - (-4 *3 (-1045)) (-4 *1 (-1248 *3))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *5 *5)) - (-4 *5 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 - (-2 (|:| |solns| (-640 *5)) - (|:| |maps| (-640 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1121 *3 *5)) (-4 *3 (-1233 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1166 *7)) + (-4 *5 (-1046)) (-4 *7 (-1046)) (-4 *2 (-1235 *5)) + (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1235 *2))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-48))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-641 (-610 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 (-48))) (-5 *3 (-610 (-48))) (-5 *1 (-48)))) + ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-169 (-225)))) - (-5 *2 (-1031)) (-5 *1 (-751))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-640 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-307)) - (-5 *2 (-767)) (-5 *1 (-455 *5 *3))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) - (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) - (-4 *8 (-846)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3796 (-640 *9)))) - (-5 *3 (-640 *9)) (-4 *1 (-1201 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3796 (-640 *8)))) - (-5 *3 (-640 *8)) (-4 *1 (-1201 *5 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-563))))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-418 *3)) (-4 *3 (-545)) - (-4 *3 (-555)))) - ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-563))))) - ((*1 *2 *1) - (-12 (-4 *1 (-793 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-563))))) + (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1235 (-169 *2))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-918)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) ((*1 *2 *1) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-829 *3)) (-4 *3 (-545)) - (-4 *3 (-1093)))) + (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1235 *2)) (-4 *2 (-172)))) ((*1 *2 *1) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-839 *3)) (-4 *3 (-545)) - (-4 *3 (-1093)))) + (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) (-5 *1 (-413 *3 *2 *4 *5)) + (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1035 *2))))) ((*1 *2 *1) - (-12 (-4 *1 (-993 *3)) (-4 *3 (-172)) (-4 *3 (-545)) - (-5 *2 (-407 (-563))))) - ((*1 *2 *3) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1004 *3)) (-4 *3 (-1034 *2))))) -(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-950))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330))))) -(((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1257 *4)) (-5 *3 (-684 *4)) (-4 *4 (-363)) - (-5 *1 (-662 *4)))) - ((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-363)) - (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4409)))) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409)))) - (-5 *1 (-663 *4 *5 *2 *3)) (-4 *3 (-682 *4 *5 *2)))) - ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-640 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) - (-5 *1 (-810 *2 *3)) (-4 *3 (-651 *2)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *1 (-1121 *3 *2)) (-4 *3 (-1233 *2))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-112)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-751))))) -(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-900 (-563))) (-5 *1 (-913)))) + (-12 (-4 *4 (-1235 *2)) (-4 *2 (-989 *3)) + (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) + (-14 *6 (-1259 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-918)) (-4 *5 (-1046)) + (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) + (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-610 (-495)))) (-5 *1 (-495)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-610 (-495))) (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-641 (-610 (-495)))) + (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 (-495))) (-5 *3 (-610 (-495))) (-5 *1 (-495)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-918)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-900 (-563))) (-5 *1 (-913))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3288 (-640 *1)))) - (-4 *1 (-367 *3)))) - ((*1 *2) - (|partial| -12 - (-5 *2 - (-2 (|:| |particular| (-453 *3 *4 *5 *6)) - (|:| -3288 (-640 (-453 *3 *4 *5 *6))))) - (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002))))) + (-12 (-4 *4 (-452)) (-4 *5 (-721 *4 *2)) (-4 *2 (-1235 *4)) + (-5 *1 (-772 *4 *2 *5 *3)) (-4 *3 (-1235 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)))) + ((*1 *1 *1) (-4 *1 (-1055)))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-525))))) +(((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) + (-14 *3 (-641 (-1170)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4))))) +(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) + (-5 *2 (-1032)) (-5 *1 (-753))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-2 (|:| -1327 (-1170)) (|:| -2423 (-437))))) + (-5 *1 (-1174))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-4 *3 (-1235 *4)) (-5 *1 (-806 *4 *3 *2 *5)) (-4 *2 (-652 *3)) + (-4 *5 (-652 (-407 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-407 *5)) + (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *5 (-1235 *4)) + (-5 *1 (-806 *4 *5 *2 *6)) (-4 *2 (-652 *5)) (-4 *6 (-652 *3))))) (((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) + (-5 *2 (-2 (|:| -3566 (-641 *6)) (|:| -1702 (-641 *6))))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-640 - (-2 - (|:| -3320 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -3704 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1149 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2244 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-558)))) - ((*1 *2 *1) - (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) - (-5 *2 (-640 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-689))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-696))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-694))) (-5 *1 (-330)))) - ((*1 *1) (-5 *1 (-330)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1149 *7))) (-4 *6 (-846)) - (-4 *7 (-945 *5 (-531 *6) *6)) (-4 *5 (-1045)) - (-5 *2 (-1 (-1149 *7) *7)) (-5 *1 (-1119 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-751)))) - ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-67 DOT)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-388)) - (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) - (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) - (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-307))))) -(((*1 *2) - (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -3288 (-640 *1)))) - (-4 *1 (-367 *3)))) - ((*1 *2) + (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *2) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) + (-5 *1 (-176 *3))))) +(((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-529))))) +(((*1 *2 *1) (|partial| -12 + (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) (-5 *2 - (-2 (|:| |particular| (-453 *3 *4 *5 *6)) - (|:| -3288 (-640 (-453 *3 *4 *5 *6))))) - (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) - (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-468)) (-5 *1 (-1261)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *2 (-468)) - (-5 *1 (-1261)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) - (-5 *2 (-468)) (-5 *1 (-1261))))) + (-2 + (|:| |%term| + (-2 (|:| |%coef| (-1244 *4 *5 *6)) + (|:| |%expon| (-319 *4 *5 *6)) + (|:| |%expTerms| + (-641 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))))) + (|:| |%type| (-1152)))) + (-5 *1 (-1245 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1194) (-430 *3))) + (-14 *5 (-1170)) (-14 *6 *4)))) +(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1032)) (-5 *1 (-748))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-840 (-225)))) (-5 *4 (-225)) (-5 *2 (-641 *4)) + (-5 *1 (-267))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1032)) (-5 *1 (-745))))) +(((*1 *2 *1) + (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) + (-4 *3 (-1235 *4)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-307) (-147))) + (-4 *2 (-946 *4 *6 *5)) (-5 *1 (-921 *4 *5 *6 *2)) + (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-768)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-373 *3)) (-4 *3 (-1209)) + (-4 *3 (-1094)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) + (-5 *2 (-564)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) + (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-5 *2 (-1114)) (-5 *1 (-529)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564)) (-5 *3 (-141)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-564))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| -1762 (-407 *5)) (|:| |poly| *3))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-940 (-225)))) (-5 *1 (-1260))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *1 *1) (-4 *1 (-493))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) + (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2084 *7)))) + (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-985 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1002))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) - (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-5 *1 (-330))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-939 (-225))) (-5 *4 (-870)) (-5 *2 (-1262)) - (-5 *1 (-468)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-976 *3)))) + (-12 (-5 *2 (-641 (-2 (|:| |val| (-641 *6)) (|:| -2084 *7)))) + (-4 *6 (-1060 *3 *4 *5)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-1101 *3 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-641 (-641 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-939 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-1045)) (-4 *1 (-1127 *3)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-939 *3)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)) (-5 *3 (-225))))) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-641 (-641 *5))))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-641 *3))) (-5 *1 (-1181 *3)) (-4 *3 (-1094))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-307)) (-4 *6 (-373 *5)) (-4 *4 (-373 *5)) + (-12 (-5 *3 (-685 *8)) (-4 *8 (-946 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) + (-4 *7 (-790)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) - (-5 *1 (-1117 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-418 *2)) (-4 *2 (-307)) (-5 *1 (-910 *2)))) + (-641 + (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) + (|:| |wcond| (-641 (-949 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *5)))))))))) + (-5 *1 (-921 *5 *6 *7 *8)) (-5 *4 (-641 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-418 (-948 *6))) (-5 *5 (-1169)) (-5 *3 (-948 *6)) - (-4 *6 (-13 (-307) (-147))) (-5 *2 (-52)) (-5 *1 (-911 *6))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-112)) (-5 *6 (-684 (-225))) - (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1257 (-1169))) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) - (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-453 *4 *5 *6 *7))) - (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-917)) - (-14 *6 (-640 *2)) (-14 *7 (-1257 (-684 *4))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) - (-14 *6 (-1257 (-684 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-1169))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-172)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))) - (-14 *6 (-1257 (-684 *3))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1169)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-917)) (-14 *5 (-640 *2)) (-14 *6 (-1257 (-684 *3))))) - ((*1 *1) - (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-917)) - (-14 *4 (-640 (-1169))) (-14 *5 (-1257 (-684 *2)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1208)) - (-4 *5 (-1208)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-767)) - (-4 *7 (-1208)) (-4 *5 (-1208)) (-5 *2 (-240 *6 *5)) - (-5 *1 (-239 *6 *7 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1208)) (-4 *5 (-1208)) - (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) + (-12 (-5 *3 (-685 *8)) (-5 *4 (-641 (-1170))) (-4 *8 (-946 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) + (-4 *7 (-790)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) + (|:| |wcond| (-641 (-949 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *5)))))))))) + (-5 *1 (-921 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) + (|:| |wcond| (-641 (-949 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *4)))))))))) + (-5 *1 (-921 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1093)) (-4 *5 (-1093)) - (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) + (-12 (-5 *3 (-685 *9)) (-5 *5 (-918)) (-4 *9 (-946 *6 *8 *7)) + (-4 *6 (-13 (-307) (-147))) (-4 *7 (-13 (-847) (-612 (-1170)))) + (-4 *8 (-790)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) + (|:| |wcond| (-641 (-949 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *6)))))))))) + (-5 *1 (-921 *6 *7 *8 *9)) (-5 *4 (-641 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-640 *6)) (-4 *6 (-1208)) - (-4 *5 (-1208)) (-5 *2 (-640 *5)) (-5 *1 (-638 *6 *5)))) + (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) + (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *9)) (|:| |neqzro| (-641 *9)) + (|:| |wcond| (-641 (-949 *6))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *6)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *6)))))))))) + (-5 *1 (-921 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *8)) (-5 *4 (-918)) (-4 *8 (-946 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) + (-4 *7 (-790)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) + (|:| |wcond| (-641 (-949 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *5)))))))))) + (-5 *1 (-921 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-954 *6)) (-4 *6 (-1208)) - (-4 *5 (-1208)) (-5 *2 (-954 *5)) (-5 *1 (-953 *6 *5)))) + (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 *9)) (-5 *5 (-1152)) + (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) + (-5 *1 (-921 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1149 *6)) (-4 *6 (-1208)) - (-4 *3 (-1208)) (-5 *2 (-1149 *3)) (-5 *1 (-1147 *6 *3)))) + (-12 (-5 *3 (-685 *9)) (-5 *4 (-641 (-1170))) (-5 *5 (-1152)) + (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) + (-5 *1 (-921 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *8)) (-5 *4 (-1152)) (-4 *8 (-946 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) + (-4 *7 (-790)) (-5 *2 (-564)) (-5 *1 (-921 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 *10)) (-5 *5 (-918)) + (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) + (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) + (-5 *1 (-921 *7 *8 *9 *10)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-685 *10)) (-5 *4 (-641 (-1170))) (-5 *5 (-918)) + (-5 *6 (-1152)) (-4 *10 (-946 *7 *9 *8)) (-4 *7 (-13 (-307) (-147))) + (-4 *8 (-13 (-847) (-612 (-1170)))) (-4 *9 (-790)) (-5 *2 (-564)) + (-5 *1 (-921 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1257 *6)) (-4 *6 (-1208)) - (-4 *5 (-1208)) (-5 *2 (-1257 *5)) (-5 *1 (-1256 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *1 *1) (-4 *1 (-493))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) + (-12 (-5 *3 (-685 *9)) (-5 *4 (-918)) (-5 *5 (-1152)) + (-4 *9 (-946 *6 *8 *7)) (-4 *6 (-13 (-307) (-147))) + (-4 *7 (-13 (-847) (-612 (-1170)))) (-4 *8 (-790)) (-5 *2 (-564)) + (-5 *1 (-921 *6 *7 *8 *9))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1215)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-826))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-641 (-2 (|:| |totdeg| (-768)) (|:| -4268 *3)))) + (-5 *4 (-768)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *6 (-790)) + (-4 *7 (-847)) (-5 *1 (-449 *5 *6 *7 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *3 *3 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-564)) (-4 *4 (-1235 (-407 *3))) (-5 *2 (-918)) + (-5 *1 (-910 *4 *5)) (-4 *5 (-1235 (-407 *4)))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-13 (-556) (-147))) + (-5 *2 (-2 (|:| -2413 *3) (|:| -2427 *3))) (-5 *1 (-1229 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-407 (-564))) (-4 *4 (-1035 (-564))) + (-4 *4 (-13 (-847) (-556))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-134))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-564)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) + (-4 *5 (-1250 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1221 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-407 (-564))) (-4 *4 (-363)) (-4 *4 (-38 *3)) + (-4 *5 (-1219 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1242 *4 *5)) + (-4 *6 (-980 *5)))) + ((*1 *1 *1 *1) (-4 *1 (-284))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-361 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-5 *1 (-379))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-430 *3)) (-4 *3 (-847)) (-4 *3 (-1106)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-564)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-564)) (-4 *4 (-349)) + (-5 *1 (-528 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-536)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-536)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *4 (-1094)) + (-5 *1 (-678 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *4)) (-5 *3 (-768)) (-4 *4 (-1046)) + (-5 *1 (-686 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *3 (-1046)) (-5 *1 (-711 *3 *4)) + (-4 *4 (-644 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-4 *4 (-1046)) + (-5 *1 (-711 *4 *5)) (-4 *5 (-644 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-723)) (-5 *2 (-768)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-768)) (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-833 *3)) (-4 *3 (-1046)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-564)) (-5 *1 (-833 *4)) (-4 *4 (-1046)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-407 (-564))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1106)) (-5 *2 (-918)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-1117 *3 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-1232 *4 *5)) (-5 *3 (-641 *5)) (-14 *4 (-1170)) + (-4 *5 (-363)) (-5 *1 (-920 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *5)) (-4 *5 (-363)) (-5 *2 (-1166 *5)) + (-5 *1 (-920 *4 *5)) (-14 *4 (-1170)))) + ((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-768)) (-4 *6 (-363)) + (-5 *2 (-407 (-949 *6))) (-5 *1 (-1047 *5 *6)) (-14 *5 (-1170))))) +(((*1 *2 *3 *4 *5 *6 *7 *8 *9) + (|partial| -12 (-5 *4 (-641 *11)) (-5 *5 (-641 (-1166 *9))) + (-5 *6 (-641 *9)) (-5 *7 (-641 *12)) (-5 *8 (-641 (-768))) + (-4 *11 (-847)) (-4 *9 (-307)) (-4 *12 (-946 *9 *10 *11)) + (-4 *10 (-790)) (-5 *2 (-641 (-1166 *12))) + (-5 *1 (-704 *10 *11 *9 *12)) (-5 *3 (-1166 *12))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) + (-5 *1 (-915 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) (((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) - (-14 *4 *2) (-4 *5 (-172)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-917)) (-5 *1 (-165 *3 *4)) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *1 (-586 *2)) (-4 *2 (-545))))) +(((*1 *2 *1) + (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) + (-4 *3 (-964))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-877))))) +(((*1 *2 *2 *2) + (-12 + (-5 *2 + (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) + ((*1 *1 *1) + (-12 (-5 *1 (-625 *2 *3 *4)) (-4 *2 (-847)) + (-4 *3 (-13 (-172) (-714 (-407 (-564))))) (-14 *4 (-918)))) + ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-418 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-1046)) (-5 *2 (-641 *6)) (-5 *1 (-444 *5 *6))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-564)) (-5 *1 (-241))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *4 *5 *6 *7)) + (-4 *4 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) + (-4 *7 (-1209))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-165 *3 *4)) (-4 *3 (-166 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-917)))) ((*1 *2) - (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) - (-5 *2 (-917)))) - ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) + (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) + (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) + ((*1 *2) + (-12 (-4 *4 (-847)) (-5 *2 (-768)) (-5 *1 (-429 *3 *4)) + (-4 *3 (-430 *4)))) + ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-544 *3)) (-4 *3 (-545)))) + ((*1 *2) (-12 (-4 *1 (-760)) (-5 *2 (-768)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-793 *3 *4)) + (-4 *3 (-794 *4)))) + ((*1 *2) + (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-988 *3 *4)) + (-4 *3 (-989 *4)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-768)) (-5 *1 (-993 *3 *4)) + (-4 *3 (-994 *4)))) + ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1008 *3)) (-4 *3 (-1009)))) + ((*1 *2) (-12 (-4 *1 (-1046)) (-5 *2 (-768)))) + ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-1054 *3)) (-4 *3 (-1055))))) +(((*1 *2 *3) + (-12 + (-5 *2 + (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) - (-5 *2 (-767)) (-5 *1 (-662 *5)))) + (-12 + (-5 *2 + (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) + (-5 *4 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-767)) - (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) + (-12 + (-5 *2 + (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))) (-5 *4 (-407 (-564))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-407 (-564))) + (-5 *2 (-641 (-2 (|:| -2413 *5) (|:| -2427 *5)))) (-5 *1 (-1017 *3)) + (-4 *3 (-1235 (-564))) (-5 *4 (-2 (|:| -2413 *5) (|:| -2427 *5))))) ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) - (-4 *3 (-682 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) - (-5 *2 (-767))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) - ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002))))) -(((*1 *2 *1) - (-12 (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1208)) - (-5 *2 (-640 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-330))))) -(((*1 *2 *3) - (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-12 (-5 *2 - (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6))))) -(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-751))))) -(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) + (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) + (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *2 + (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) + (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))) + (-5 *4 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-407 (-564))) + (-5 *2 (-641 (-2 (|:| -2413 *4) (|:| -2427 *4)))) (-5 *1 (-1018 *3)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-407 (-564))) + (-5 *2 (-641 (-2 (|:| -2413 *5) (|:| -2427 *5)))) (-5 *1 (-1018 *3)) + (-4 *3 (-1235 *5)) (-5 *4 (-2 (|:| -2413 *5) (|:| -2427 *5)))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) - (-5 *2 (-1165 (-948 *3))))) + (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4265 (-641 *1)))) + (-4 *1 (-367 *3)))) ((*1 *2) - (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1086 *3)) (-4 *3 (-1208)) (-5 *2 (-563))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-453 *3 *4 *5 *6)) + (|:| -4265 (-641 (-453 *3 *4 *5 *6))))) + (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) - ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-939 (-225))) (-5 *2 (-225)) (-5 *1 (-1204)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *1 *1) (-4 *1 (-493))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-563))) (-5 *4 (-563)) (-5 *2 (-52)) - (-5 *1 (-1001))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4408)) (-4 *1 (-601 *4 *3)) (-4 *4 (-1093)) - (-4 *3 (-1208)) (-4 *3 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-330))))) -(((*1 *2 *1) (-12 (-5 *2 (-418 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-976 *2)) (-4 *2 (-1045)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-1045))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) -(((*1 *2 *1) - (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) - (-4 *2 (-846))))) -(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-330))))) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1021 *3)) + (-4 *3 (-13 (-845) (-363) (-1019))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) + (-4 *3 (-1235 *2)))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) + (-4 *3 (-1235 *2))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) + (-4 *3 (-1235 *4)) (-5 *2 (-564)))) + ((*1 *2 *3) + (|partial| -12 + (-4 *4 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) + (-5 *2 (-564)) (-5 *1 (-1110 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) + (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-1152)) + (-4 *6 (-13 (-556) (-847) (-1035 *2) (-637 *2) (-452))) + (-5 *2 (-564)) (-5 *1 (-1110 *6 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-564)) + (-5 *1 (-1111 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-840 (-407 (-949 *6)))) + (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-564)) + (-5 *1 (-1111 *6)))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1170)) + (-5 *5 (-1152)) (-4 *6 (-452)) (-5 *2 (-564)) (-5 *1 (-1111 *6)))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-564)) (-5 *1 (-1191 *3)) (-4 *3 (-1046))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-536))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-768)) (-5 *3 (-940 *5)) (-4 *5 (-1046)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) + (-14 *4 (-918)) (-4 *5 (-1046)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) - (-5 *1 (-1153 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) -(((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) - (-5 *1 (-701 *3 *4)) (-4 *3 (-1208)) (-4 *4 (-1208))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1149 (-407 *3))) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) - (-4 *2 (-1045))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-133)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-138)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-154)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-161)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-671)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1060)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1089))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) + (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-4 *4 (-1046)) + (-5 *1 (-1026 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *6 (-847)) (-4 *4 (-363)) (-4 *5 (-790)) + (-5 *2 + (-2 (|:| |mval| (-685 *4)) (|:| |invmval| (-685 *4)) + (|:| |genIdeal| (-504 *4 *5 *6 *7)))) + (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-946 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-192)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-300)))) + ((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1152)) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)))) + ((*1 *1) (-4 *1 (-1145)))) (((*1 *2 *1) - (-12 (-4 *1 (-601 *2 *3)) (-4 *3 (-1208)) (-4 *2 (-1093)) - (-4 *2 (-846))))) -(((*1 *2 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330))))) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) + (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-112))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1104))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) + (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *1 (-974 *4 *5 *6 *7))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 (-407 (-949 (-564))))) + (-5 *2 + (-641 + (-2 (|:| |radval| (-316 (-564))) (|:| |radmult| (-564)) + (|:| |radvect| (-641 (-685 (-316 (-564)))))))) + (-5 *1 (-1028))))) (((*1 *2 *3) - (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-1129))))) + (-12 (-5 *3 (-768)) (-5 *2 (-1166 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-330))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-563))) (-5 *5 (-1 (-1149 *4))) (-4 *4 (-363)) - (-4 *4 (-1045)) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) - ((*1 *1 *1 *1) (-4 *1 (-789)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) + (|partial| -12 (-5 *3 (-768)) (-4 *4 (-307)) (-4 *6 (-1235 *4)) + (-5 *2 (-1259 (-641 *6))) (-5 *1 (-455 *4 *6)) (-5 *5 (-641 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-407 *5)) (-4 *5 (-1233 *4)) (-4 *4 (-555)) - (-4 *4 (-1045)) (-4 *2 (-1248 *4)) (-5 *1 (-1251 *4 *5 *6 *2)) - (-4 *6 (-651 *5))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-563)) (-4 *2 (-430 *3)) (-5 *1 (-32 *3 *2)) - (-4 *3 (-1034 *4)) (-4 *3 (-13 (-846) (-555)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-96)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-114)))) - ((*1 *2 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1093)))) - ((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-438 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-483)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-4 *1 (-831 *2)) (-4 *2 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-961)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1068 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-506)) (-5 *1 (-1108)))) - ((*1 *1 *1) (-5 *1 (-1169)))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1208)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) - (-4 *2 (-1208))))) -(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-363)) (-4 *3 (-1045)) - (-5 *1 (-1153 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) - (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) + (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) + (-5 *1 (-205))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1165 (-948 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2) + (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-343 *3 *4)) (-14 *3 (-918)) + (-14 *4 (-918)))) ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) - (-5 *2 (-1165 (-948 *3))))) + (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-344 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-1166 *3)))) ((*1 *2) - (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1149 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1045)) (-4 *5 (-1233 *4)) (-5 *2 (-1 *6 (-640 *6))) - (-5 *1 (-1251 *4 *5 *3 *6)) (-4 *3 (-651 *5)) (-4 *6 (-1248 *4))))) -(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *1 *1 *1) (-5 *1 (-379))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-734))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-846) (-555))) - (-5 *2 (-858)) (-5 *1 (-32 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-368)) (-4 *1 (-329 *3)) - (-4 *3 (-363))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1149 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1045)) - (-5 *3 (-407 (-563))) (-5 *1 (-1153 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) - (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1165 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1165 (-407 (-948 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-767)) (-4 *5 (-1045)) (-4 *2 (-1233 *5)) - (-5 *1 (-1251 *5 *2 *6 *3)) (-4 *6 (-651 *2)) (-4 *3 (-1248 *5))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) + (-12 (-5 *2 (-955 (-1114))) (-5 *1 (-345 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-918))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-468)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260))))) (((*1 *2 *1 *3) - (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1057)) (-5 *3 (-1151))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| -1490 (-640 (-858))) (|:| -3367 (-640 (-858))) - (|:| |presup| (-640 (-858))) (|:| -1479 (-640 (-858))) - (|:| |args| (-640 (-858))))) - (-5 *1 (-1169))))) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564))))) + (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *5)) + (-4 *5 (-1235 (-407 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1165 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) - (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4)))))) +(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) ((*1 *1) (-4 *1 (-545))) + ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) -(((*1 *1 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307))))) + (-5 *1 (-786)) (-5 *5 (-564))))) (((*1 *2 *1) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1045)) (-4 *3 (-1233 *4)) (-4 *2 (-1248 *4)) - (-5 *1 (-1251 *4 *3 *5 *2)) (-4 *5 (-651 *3))))) -(((*1 *1 *1) (-4 *1 (-95))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1057))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) +(((*1 *1 *2 *3 *4) + (-12 (-14 *5 (-641 (-1170))) (-4 *2 (-172)) + (-4 *4 (-238 (-2641 *5) (-768))) + (-14 *6 + (-1 (-112) (-2 (|:| -1495 *3) (|:| -2515 *4)) + (-2 (|:| -1495 *3) (|:| -2515 *4)))) + (-5 *1 (-461 *5 *2 *3 *4 *6 *7)) (-4 *3 (-847)) + (-4 *7 (-946 *2 *4 (-861 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1045)) - (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) - ((*1 *1 *1) (-4 *1 (-545))) - ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-4 *1 (-991 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-1205 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-998)) - (-4 *2 (-1045))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1165 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) - (-5 *2 (-1165 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1258)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1259))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-2 (|:| -3440 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-749))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1149 *3))) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) - (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) - (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1235 (-407 *2))) + (-4 *2 (-1235 *5)) (-5 *1 (-215 *5 *2 *6 *3)) + (-4 *3 (-342 *5 *2 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-1233 (-407 (-563)))) (-5 *1 (-909 *3 *2)) - (-4 *2 (-1233 (-407 *3)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 (-1 *6 (-640 *6)))) - (-4 *5 (-38 (-407 (-563)))) (-4 *6 (-1248 *5)) (-5 *2 (-640 *6)) - (-5 *1 (-1250 *5 *6))))) + (|partial| -12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) + (-4 *2 (-670 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) + (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) + (-4 *2 (-1250 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) + (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) + (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) + (-4 *2 (-1250 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) - ((*1 *1 *1) (-4 *1 (-1196)))) -(((*1 *1) (-5 *1 (-1057)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3)))) - ((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-788))))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) + (-5 *1 (-1146 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1153 *4)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) - (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) + (-12 + (-5 *3 + (-3 + (|:| |noa| + (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) + (|:| |lb| (-641 (-840 (-225)))) + (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-840 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-641 (-316 (-225)))) + (|:| -3258 (-641 (-225))))))) + (-5 *2 (-641 (-1152))) (-5 *1 (-267))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1054)) (-4 *3 (-1193)) - (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-640 *2))) (-5 *4 (-640 *5)) - (-4 *5 (-38 (-407 (-563)))) (-4 *2 (-1248 *5)) - (-5 *1 (-1250 *5 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) - ((*1 *1 *1) (-4 *1 (-1196)))) -(((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-1057))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) -(((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-1045)) (-5 *1 (-890 *2 *3)) (-4 *2 (-1233 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) - (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *1 (-584 *2)) (-4 *2 (-1034 *3)) - (-4 *2 (-363)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-584 *2)) (-4 *2 (-363)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)) - (-4 *2 (-13 (-430 *4) (-998) (-1193))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085 *2)) (-4 *2 (-13 (-430 *4) (-998) (-1193))) - (-4 *4 (-13 (-846) (-555))) (-5 *1 (-627 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-955)) (-5 *2 (-1169)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-955))))) -(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) - ((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1257 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *1 *1 *1) (-5 *1 (-162))) - ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-162))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) - (-4 *4 (-38 (-407 (-563))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) - ((*1 *1 *1) (-4 *1 (-1196)))) -(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1056)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1056))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-788)) (-4 *3 (-172))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1149 *4)) (-5 *3 (-1 *4 (-563))) (-4 *4 (-1045)) - (-5 *1 (-1153 *4))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) - (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) + (-2 (|:| -3132 (-768)) (|:| |curves| (-768)) + (|:| |polygons| (-768)) (|:| |constructs| (-768))))))) +(((*1 *2 *1) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-744))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-917)) (-4 *5 (-555)) (-5 *2 (-684 *5)) - (-5 *1 (-952 *5 *3)) (-4 *3 (-651 *5))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1257 *4)) (-4 *4 (-417 *3)) (-4 *3 (-307)) - (-4 *3 (-555)) (-5 *1 (-43 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-917)) (-4 *4 (-363)) (-5 *2 (-1257 *1)) - (-4 *1 (-329 *4)))) - ((*1 *2) (-12 (-4 *3 (-363)) (-5 *2 (-1257 *1)) (-4 *1 (-329 *3)))) - ((*1 *2) - (-12 (-4 *3 (-172)) (-4 *4 (-1233 *3)) (-5 *2 (-1257 *1)) - (-4 *1 (-409 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) - (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) - (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) + (-12 (-5 *3 (-1166 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) + (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-949 *5)) (-4 *5 (-452)) (-5 *2 (-641 *6)) + (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-564)) (-5 *1 (-1191 *4)) + (-4 *4 (-1046))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 *4)) (-4 *4 (-363)) (-5 *2 (-1166 *4)) + (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-845)))))) +(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-641 (-407 *7))) + (-4 *7 (-1235 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-574 *6 *7))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-418 *3)) (-4 *3 (-556)) (-5 *1 (-419 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) + (-4 *5 (-847)) (-5 *2 (-949 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *5)) (-4 *4 (-1046)) + (-4 *5 (-847)) (-5 *2 (-949 *4)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) + (-5 *2 (-949 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-1250 *4)) (-4 *4 (-1046)) + (-5 *2 (-949 *4))))) +(((*1 *2 *1) + (|partial| -12 + (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) + (-5 *2 (-840 *4)) (-5 *1 (-313 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) + (-14 *6 *4))) ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) - (-5 *2 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)) - (-4 *6 (-409 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-417 *3)))) + (|partial| -12 + (-4 *3 (-13 (-847) (-1035 (-564)) (-637 (-564)) (-452))) + (-5 *2 (-840 *4)) (-5 *1 (-1245 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1194) (-430 *3))) (-14 *5 (-1170)) + (-14 *6 *4)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) ((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1257 (-1257 *4))) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) - ((*1 *1 *1) (-4 *1 (-160)))) + (-12 (-5 *2 (-112)) (-5 *1 (-569 *3)) (-4 *3 (-1035 (-564))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-768)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-3 (-112) (-641 *1))) + (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-968))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1248 *4)) (-5 *1 (-1250 *4 *2)) - (-4 *4 (-38 (-407 (-563))))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -3087 (-418 *3)) (|:| |special| (-418 *3)))) + (-5 *1 (-724 *5 *3))))) +(((*1 *2 *2 *3) + (|partial| -12 + (-5 *3 (-641 (-2 (|:| |func| *2) (|:| |pole| (-112))))) + (-4 *2 (-13 (-430 *4) (-999))) (-4 *4 (-13 (-847) (-556))) + (-5 *1 (-276 *4 *2))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-768)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) +(((*1 *2 *3 *4 *5 *4 *4 *4) + (-12 (-4 *6 (-847)) (-5 *3 (-641 *6)) (-5 *5 (-641 *3)) + (-5 *2 + (-2 (|:| |f1| *3) (|:| |f2| (-641 *5)) (|:| |f3| *5) + (|:| |f4| (-641 *5)))) + (-5 *1 (-1180 *6)) (-5 *4 (-641 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) - ((*1 *1 *1) (-4 *1 (-1196)))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) - (-4 *3 (-1233 *2))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) - (-4 *2 (-682 *3 *4 *5))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-323 *4 *2)) (-4 *4 (-1093)) - (-4 *2 (-131))))) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-368)) + (-4 *3 (-1094))))) (((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) - (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) - (-4 *3 (-945 *7 *5 *6)) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) + (-5 *1 (-901 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-52)) (-5 *1 (-889 *4)) + (-4 *4 (-1094))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| -2631 (-767)) (|:| -2765 *3) (|:| |radicand| (-640 *3)))) - (-5 *1 (-949 *5 *6 *7 *3 *8)) (-5 *4 (-767)) - (-4 *8 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *3)) (-15 -2626 (*3 $)) (-15 -2636 (*3 $)))))))) + (-641 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-768)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *3 (-790)) (-4 *6 (-946 *4 *3 *5)) (-4 *4 (-452)) (-4 *5 (-847)) + (-5 *1 (-449 *4 *3 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) (((*1 *2 *1) - (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-357 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-528 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) + (-5 *2 (-413 *4 (-407 *4) *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 *6)) (-4 *6 (-13 (-409 *4 *5) (-1035 *4))) + (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *3 (-307)) + (-5 *1 (-413 *3 *4 *5 *6)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169))))) -(((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-5 *1 (-1250 *3 *2)) - (-4 *2 (-1248 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) - ((*1 *1 *1) (-4 *1 (-1196)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-555)) (-5 *2 (-418 *4)) - (-5 *1 (-419 *4)))) - ((*1 *1 *1) (-5 *1 (-922))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) - ((*1 *1 *1) (-5 *1 (-923))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) - (-5 *4 (-407 (-563))) (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) - (-5 *1 (-1016 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) - (-5 *4 (-407 (-563))) (-5 *1 (-1017 *3)) (-4 *3 (-1233 *4)))) - ((*1 *2 *3 *2 *2) - (|partial| -12 - (-5 *2 (-2 (|:| -2654 (-407 (-563))) (|:| -2665 (-407 (-563))))) - (-5 *1 (-1017 *3)) (-4 *3 (-1233 (-407 (-563)))))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) - (-4 *3 (-1233 *2))))) -(((*1 *2 *2) - (-12 (-4 *3 (-555)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) - (-4 *2 (-682 *3 *4 *5))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) - (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) - (-5 *2 - (-2 (|:| -3556 *4) (|:| -3452 *4) (|:| |totalpts| (-563)) - (|:| |success| (-112)))) - (-5 *1 (-785)) (-5 *5 (-563))))) -(((*1 *2 *3 *4) - (-12 (-4 *7 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-4 *7 (-555)) - (-4 *8 (-945 *7 *5 *6)) - (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *3) (|:| |radicand| *3))) - (-5 *1 (-949 *5 *6 *7 *8 *3)) (-5 *4 (-767)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *8)) (-15 -2626 (*8 $)) (-15 -2636 (*8 $)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-917)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-917)) - (-5 *1 (-528 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *2 (-1060 *4 *5 *6)) (-5 *1 (-773 *4 *5 *6 *2 *3)) + (-4 *3 (-1066 *4 *5 *6 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1046)) (-5 *1 (-709 *3 *4)) + (-4 *4 (-1235 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-640 *5))) (-4 *5 (-1248 *4)) - (-4 *4 (-38 (-407 (-563)))) - (-5 *2 (-1 (-1149 *4) (-640 (-1149 *4)))) (-5 *1 (-1250 *4 *5))))) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *3) + (-12 (-4 *3 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *3)) (-5 *1 (-1122 *4 *3)) (-4 *4 (-1235 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-641 *1)) (-4 *1 (-1060 *3 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-752))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) + (-5 *1 (-468))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-846)))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) - ((*1 *1 *1) (-4 *1 (-1196)))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-844) (-363))) (-5 *2 (-112)) (-5 *1 (-1055 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) - (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) - (-4 *2 (-682 *3 *5 *6))))) -(((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) - (-4 *3 (-1093)) (-5 *2 (-767)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4408)) (-4 *1 (-489 *4)) - (-4 *4 (-1208)) (-5 *2 (-767))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *3) - (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) - (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) - (-5 *1 (-784))))) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *2 *1) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-1060 *3 *4 *5))))) +(((*1 *2 *3 *4 *4 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1032)) (-5 *1 (-749))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-563))) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-555)) (-4 *8 (-945 *7 *5 *6)) - (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *9) (|:| |radicand| *9))) - (-5 *1 (-949 *5 *6 *7 *8 *9)) (-5 *4 (-767)) - (-4 *9 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *8)) (-15 -2626 (*8 $)) (-15 -2636 (*8 $)))))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1248 *4)) - (-4 *4 (-38 (-407 (-563)))) - (-5 *2 (-1 (-1149 *4) (-1149 *4) (-1149 *4))) (-5 *1 (-1250 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-626))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-609 (-48))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-640 (-609 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1165 (-48))) (-5 *3 (-609 (-48))) (-5 *1 (-48)))) - ((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *2 (-13 (-363) (-844))) (-5 *1 (-181 *2 *3)) - (-4 *3 (-1233 (-169 *2))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-917)) (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-363)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *2 *3)) (-4 *3 (-1233 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) - (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) (-5 *1 (-413 *3 *2 *4 *5)) - (-4 *3 (-307)) (-4 *5 (-13 (-409 *2 *4) (-1034 *2))))) - ((*1 *2 *1) - (-12 (-4 *4 (-1233 *2)) (-4 *2 (-988 *3)) - (-5 *1 (-414 *3 *2 *4 *5 *6)) (-4 *3 (-307)) (-4 *5 (-409 *2 *4)) - (-14 *6 (-1257 *5)))) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) + (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) + (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-917)) (-4 *5 (-1045)) - (-4 *2 (-13 (-404) (-1034 *5) (-363) (-1193) (-284))) - (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1233 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-609 (-495)))) (-5 *1 (-495)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-609 (-495))) (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-640 (-609 (-495)))) - (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1165 (-495))) (-5 *3 (-609 (-495))) (-5 *1 (-495)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1257 *4)) (-5 *3 (-917)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-720 *4 *2)) (-4 *2 (-1233 *4)) - (-5 *1 (-771 *4 *2 *5 *3)) (-4 *3 (-1233 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) - ((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *2 *2 *3 *4 *4) - (-12 (-5 *4 (-563)) (-4 *3 (-172)) (-4 *5 (-373 *3)) - (-4 *6 (-373 *3)) (-5 *1 (-683 *3 *5 *6 *2)) - (-4 *2 (-682 *3 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-591 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1113))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1165 *3))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) - (-5 *3 (-563))))) -(((*1 *2 *3 *4 *5 *6 *5 *3 *7) - (-12 (-5 *4 (-563)) - (-5 *6 - (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379)))) - (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) - (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) - (-5 *1 (-784)))) - ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) - (-12 (-5 *4 (-563)) - (-5 *6 - (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -2271 (-379)))) - (-5 *7 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) - (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) - (-5 *1 (-784))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-555)) - (-4 *7 (-945 *3 *5 *6)) - (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *8) (|:| |radicand| *8))) - (-5 *1 (-949 *5 *6 *3 *7 *8)) (-5 *4 (-767)) - (-4 *8 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $)))))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1113)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) + (-12 (-5 *3 (-641 *9)) (-4 *9 (-1046)) (-4 *5 (-847)) (-4 *6 (-790)) + (-4 *8 (-1046)) (-4 *2 (-946 *9 *7 *5)) + (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) + (-4 *4 (-946 *8 *6 *5))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) + (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) + (-4 *6 (-452)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-481 *5 *6))) (-5 *4 (-861 *5)) + (-14 *5 (-641 (-1170))) (-5 *2 (-481 *5 *6)) (-5 *1 (-629 *5 *6)) + (-4 *6 (-452))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-316 (-225)))) + (-5 *2 + (-2 (|:| |additions| (-564)) (|:| |multiplications| (-564)) + (|:| |exponentiations| (-564)) (|:| |functionCalls| (-564)))) + (-5 *1 (-305))))) (((*1 *1 *1 *1) (-4 *1 (-143))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *3 *4) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044)) + (-5 *3 (-564))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-768)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1248 *4)) - (-4 *4 (-38 (-407 (-563)))) (-5 *2 (-1 (-1149 *4) (-1149 *4))) - (-5 *1 (-1250 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545)))) - ((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-563)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *1 (-683 *4 *5 *6 *2)) - (-4 *2 (-682 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-112)) + (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-112)) (-5 *1 (-1198 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-768)))) + ((*1 *1 *1) (-4 *1 (-402)))) +(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(((*1 *1) (-5 *1 (-468)))) (((*1 *2 *3) - (-12 (-5 *2 (-1149 (-563))) (-5 *1 (-1153 *4)) (-4 *4 (-1045)) - (-5 *3 (-563))))) -(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) - (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) - (-5 *1 (-784))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-1045)) (-4 *3 (-846)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2631 (-563)))) (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -2631 (-888 *3)))) - (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + (-12 (-5 *3 (-918)) (-5 *2 (-1259 (-1259 (-564)))) (-5 *1 (-466))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-330))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-949 (-564)))) (-5 *4 (-641 (-1170))) + (-5 *2 (-641 (-641 (-379)))) (-5 *1 (-1020)) (-5 *5 (-379)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) - (-4 *7 (-945 *6 *4 *5)) - (-5 *2 (-2 (|:| |val| *3) (|:| -2631 (-563)))) - (-5 *1 (-946 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) - (-15 -2636 (*7 $)))))))) + (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) + (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-949 *4))) + (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) + (-14 *4 (-768)) (-4 *5 (-172))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1257 *4)) (-5 *3 (-767)) (-4 *4 (-349)) - (-5 *1 (-528 *4))))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-1170)) (-4 *6 (-430 *5)) + (-4 *5 (-847)) (-5 *2 (-641 (-610 *6))) (-5 *1 (-573 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) - (-5 *2 (-640 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) - (-5 *2 (-640 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1149 *3)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 *3)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-722)))) - ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-640 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1248 *3)) (-4 *3 (-1045)) (-5 *2 (-1149 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-545)))) - ((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-152 *2 *3 *4)) (-14 *2 (-917)) (-4 *3 (-363)) - (-14 *4 (-989 *2 *3)))) - ((*1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) - ((*1 *1 *1) - (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) - ((*1 *1) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) - ((*1 *1 *1) (|partial| -4 *1 (-718))) - ((*1 *1 *1) (|partial| -4 *1 (-722))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) - (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) - ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) - (-4 *2 (-1233 *3)))) - ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) - (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) - (-5 *1 (-784)))) - ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-563)) (-5 *6 (-1 (-1262) (-1257 *5) (-1257 *5) (-379))) - (-5 *3 (-1257 (-379))) (-5 *5 (-379)) (-5 *2 (-1262)) - (-5 *1 (-784))))) -(((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1169)) (-4 *4 (-1045)) (-4 *4 (-846)) - (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -2631 (-563)))) - (-4 *1 (-430 *4)))) - ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *4 (-1045)) (-4 *4 (-846)) - (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -2631 (-563)))) - (-4 *1 (-430 *4)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) - (-5 *2 (-2 (|:| |var| (-609 *1)) (|:| -2631 (-563)))) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-888 *3)) (|:| -2631 (-767)))) - (-5 *1 (-888 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-2 (|:| |var| *5) (|:| -2631 (-767)))))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) - (-4 *7 (-945 *6 *4 *5)) - (-5 *2 (-2 (|:| |var| *5) (|:| -2631 (-563)))) - (-5 *1 (-946 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) - (-15 -2636 (*7 $)))))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1257 *5)) (-5 *3 (-767)) (-5 *4 (-1113)) (-4 *5 (-349)) - (-5 *1 (-528 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) -(((*1 *1 *1) (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045))))) -(((*1 *1 *1) (-4 *1 (-626))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) -(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-5 *1 (-910 *2)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) - ((*1 *2 *1) (-12 (-4 *1 (-1054)) (-5 *2 (-563))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-640 (-1151))) (-5 *3 (-563)) (-5 *4 (-1151)) - (-5 *1 (-241)))) - ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) + (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045))))) + (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-918)) (-4 *4 (-1046))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-902 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 (-407 (-949 (-564))))) + (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028))))) +(((*1 *2 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1032)) + (-5 *1 (-743))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) + (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) (-5 *3 (-225)) + (-5 *2 (-1032)) (-5 *1 (-745))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-59 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-59 *3))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) + (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) + (-5 *1 (-397)))) + ((*1 *2 *3 *4 *5 *6 *3) + (-12 (-5 *5 (-641 (-641 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-641 (-3 (|:| |array| (-641 *3)) (|:| |scalar| (-1170))))) + (-5 *6 (-641 (-1170))) (-5 *3 (-1170)) (-5 *2 (-1098)) + (-5 *1 (-397)))) + ((*1 *2 *3 *4 *5 *4) + (-12 (-5 *4 (-641 (-1170))) (-5 *5 (-1173)) (-5 *3 (-1170)) + (-5 *2 (-1098)) (-5 *1 (-397))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1105)) (-4 *3 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-430 *3)))) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) + (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 *4)))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) - (-4 *3 (-1093)))) + (-12 (-5 *2 (-641 (-2 (|:| -1762 *3) (|:| -2414 *4)))) + (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-723)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) + (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-5 *2 (-1150 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-974 *4 *5 *6 *7))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768))))) +(((*1 *2) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-192))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032))))) +(((*1 *1 *1 *1) (-4 *1 (-964)))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) + (-5 *1 (-332)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-1086 (-949 (-564)))) (-5 *2 (-330)) + (-5 *1 (-332)))) + ((*1 *1 *2 *2 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) + (-4 *3 (-1094))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-610 *1))) (-5 *3 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-294 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-1259 (-685 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1259 (-685 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 (-685 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) + (-5 *2 (-1259 (-685 (-407 (-949 *5))))) (-5 *1 (-1080 *5)) + (-5 *4 (-685 (-407 (-949 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-1170))) (-4 *5 (-363)) + (-5 *2 (-1259 (-685 (-949 *5)))) (-5 *1 (-1080 *5)) + (-5 *4 (-685 (-949 *5))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) - (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) - (-5 *1 (-946 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) - (-15 -2636 (*7 $)))))))) + (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) + (-5 *2 (-1259 (-685 *4))) (-5 *1 (-1080 *4))))) +(((*1 *1) (-5 *1 (-330)))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-783)) (-5 *2 (-1031)) - (-5 *3 - (-2 (|:| |fn| (-316 (-225))) - (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))))) - ((*1 *2 *3 *2) - (-12 (-4 *1 (-783)) (-5 *2 (-1031)) - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))))) + (-12 (-5 *2 (-379)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) (((*1 *2 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1165 *4)) (-5 *1 (-528 *4)) - (-4 *4 (-349))))) -(((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-767)) - (-4 *3 (-13 (-722) (-368) (-10 -7 (-15 ** (*3 *3 (-563)))))) - (-5 *1 (-246 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-563))) (-4 *3 (-1045)) (-5 *1 (-593 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1217 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-563))) (-4 *1 (-1248 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) - ((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) - (-14 *3 (-640 (-1169))))) - ((*1 *1 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093)))) - ((*1 *1 *1) - (-12 (-14 *2 (-640 (-1169))) (-4 *3 (-172)) - (-4 *5 (-238 (-1708 *2) (-767))) - (-14 *6 - (-1 (-112) (-2 (|:| -3491 *4) (|:| -2631 *5)) - (-2 (|:| -3491 *4) (|:| -2631 *5)))) - (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-846)) - (-4 *7 (-945 *3 *5 (-860 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846)))) - ((*1 *1 *1) - (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1) - (-12 (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1045)) - (-4 *3 (-722)))) - ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) -(((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-487)))) - ((*1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)) (-4 *2 (-307)))) - ((*1 *2 *1) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563)))) - ((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-1093)) (-4 *4 (-1208)) (-5 *2 (-112)) - (-5 *1 (-1149 *4))))) + (-12 (-4 *4 (-1046)) (-4 *3 (-1235 *4)) (-4 *2 (-1250 *4)) + (-5 *1 (-1253 *4 *3 *5 *2)) (-4 *5 (-652 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1) (-5 *1 (-630)))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) - (-4 *3 (-1093)))) - ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-640 *1)) (-4 *1 (-945 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) - (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *3)) - (-5 *1 (-946 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) - (-15 -2636 (*7 $)))))))) + (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-826)) (-5 *3 (-1152))))) +(((*1 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-175))))) +(((*1 *1 *2) + (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1035 *4)) (-4 *3 (-307)) + (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) (-4 *6 (-409 *4 *5)) + (-14 *7 (-1259 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-989 *3)) + (-4 *5 (-1235 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) + (-14 *7 *2)))) +(((*1 *2 *2) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) + (-5 *1 (-176 *3))))) +(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-1096 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-641 *4))) (-5 *1 (-901 *4)) + (-5 *3 (-641 *4)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1094)) (-5 *2 (-1096 (-1096 *4))) (-5 *1 (-901 *4)) + (-5 *3 (-1096 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 + *7 *3 *8) + (-12 (-5 *5 (-685 (-225))) (-5 *6 (-112)) (-5 *7 (-685 (-564))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-65 QPHESS)))) + (-5 *3 (-564)) (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-750))))) (((*1 *2 *3) - (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) - (-5 *1 (-528 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208))))) + (|partial| -12 (-5 *3 (-949 (-169 *4))) (-4 *4 (-172)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-949 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-172)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-949 (-169 *4)))) (-4 *4 (-556)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-407 (-949 (-169 *5)))) (-5 *4 (-918)) + (-4 *5 (-556)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-782 *5)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-556)) (-4 *4 (-847)) + (-4 *4 (-612 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-847)) (-4 *5 (-612 (-379))) (-5 *2 (-169 (-379))) + (-5 *1 (-782 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1152)) (-5 *1 (-536))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1085 (-839 *3))) (-4 *3 (-13 (-1193) (-955) (-29 *5))) - (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-1086 (-840 *3))) (-4 *3 (-13 (-1194) (-956) (-29 *5))) + (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 - (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) + (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1085 (-839 *3))) (-5 *5 (-1151)) - (-4 *3 (-13 (-1193) (-955) (-29 *6))) - (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-1086 (-840 *3))) (-5 *5 (-1152)) + (-4 *3 (-13 (-1194) (-956) (-29 *6))) + (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 - (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) + (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-219 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1085 (-839 (-316 *5)))) - (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1086 (-840 (-316 *5)))) + (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 - (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) + (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1085 (-839 (-316 *6)))) - (-5 *5 (-1151)) - (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *3 (-407 (-949 *6))) (-5 *4 (-1086 (-840 (-316 *6)))) + (-5 *5 (-1152)) + (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 - (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) + (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085 (-839 (-407 (-948 *5))))) (-5 *3 (-407 (-948 *5))) - (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-1086 (-840 (-407 (-949 *5))))) (-5 *3 (-407 (-949 *5))) + (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 - (-3 (|:| |f1| (-839 (-316 *5))) (|:| |f2| (-640 (-839 (-316 *5)))) + (-3 (|:| |f1| (-840 (-316 *5))) (|:| |f2| (-641 (-840 (-316 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1085 (-839 (-407 (-948 *6))))) (-5 *5 (-1151)) - (-5 *3 (-407 (-948 *6))) - (-4 *6 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-1086 (-840 (-407 (-949 *6))))) (-5 *5 (-1152)) + (-5 *3 (-407 (-949 *6))) + (-4 *6 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) (-5 *2 - (-3 (|:| |f1| (-839 (-316 *6))) (|:| |f2| (-640 (-839 (-316 *6)))) + (-3 (|:| |f1| (-840 (-316 *6))) (|:| |f2| (-641 (-840 (-316 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-220 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-3 *3 (-640 *3))) (-5 *1 (-428 *5 *3)) - (-4 *3 (-13 (-1193) (-955) (-29 *5))))) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-3 *3 (-641 *3))) (-5 *1 (-428 *5 *3)) + (-4 *3 (-13 (-1194) (-956) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-474 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) - (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))) - ((*1 *2 *3) (-12 (-5 *3 (-765)) (-5 *2 (-1031)) (-5 *1 (-564)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) + (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))) + ((*1 *2 *3) (-12 (-5 *3 (-766)) (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) - (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) + (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) - (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) + (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1087 (-839 (-379)))) - (-5 *2 (-1031)) (-5 *1 (-564)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-1088 (-840 (-379)))) + (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) - (-5 *2 (-1031)) (-5 *1 (-564)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) + (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) - (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) + (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) - (-5 *5 (-379)) (-5 *2 (-1031)) (-5 *1 (-564)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) + (-5 *5 (-379)) (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-1087 (-839 (-379))))) - (-5 *5 (-379)) (-5 *6 (-1057)) (-5 *2 (-1031)) (-5 *1 (-564)))) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-1088 (-840 (-379))))) + (-5 *5 (-379)) (-5 *6 (-1058)) (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) - (-5 *5 (-1151)) (-5 *2 (-1031)) (-5 *1 (-564)))) + (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) + (-5 *5 (-1152)) (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1085 (-839 (-379)))) - (-5 *5 (-1169)) (-5 *2 (-1031)) (-5 *1 (-564)))) + (|partial| -12 (-5 *3 (-316 (-379))) (-5 *4 (-1086 (-840 (-379)))) + (-5 *5 (-1170)) (-5 *2 (-1032)) (-5 *1 (-565)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) (-4 *5 (-1233 *4)) - (-5 *2 (-584 (-407 *5))) (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5)))) + (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) (-4 *5 (-1235 *4)) + (-5 *2 (-585 (-407 *5))) (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-1169)) (-4 *5 (-147)) - (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) - (-5 *2 (-3 (-316 *5) (-640 (-316 *5)))) (-5 *1 (-587 *5)))) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) + (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-5 *2 (-3 (-316 *5) (-641 (-316 *5)))) (-5 *1 (-588 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045)))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-736 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)) - (-4 *3 (-38 (-407 (-563)))))) + (-12 (-4 *1 (-737 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-847)) + (-4 *3 (-38 (-407 (-564)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1169)) (-5 *1 (-948 *3)) (-4 *3 (-38 (-407 (-563)))) - (-4 *3 (-1045)))) + (-12 (-5 *2 (-1170)) (-5 *1 (-949 *3)) (-4 *3 (-38 (-407 (-564)))) + (-4 *3 (-1046)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-4 *2 (-846)) - (-5 *1 (-1119 *3 *2 *4)) (-4 *4 (-945 *3 (-531 *2) *2)))) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-4 *2 (-847)) + (-5 *1 (-1120 *3 *2 *4)) (-4 *4 (-946 *3 (-531 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) - (-5 *1 (-1153 *3)))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) + (-5 *1 (-1154 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1161 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1167 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1168 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-38 (-407 (-563)))) - (-4 *3 (-1045)))) + (-12 (-5 *2 (-1170)) (-5 *1 (-1203 *3)) (-4 *3 (-38 (-407 (-564)))) + (-4 *3 (-1046)))) ((*1 *1 *1 *2) - (-2811 - (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) - (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) - (-4 *3 (-38 (-407 (-563)))))) - (-12 (-5 *2 (-1169)) (-4 *1 (-1217 *3)) (-4 *3 (-1045)) - (-12 (|has| *3 (-15 -2185 ((-640 *2) *3))) - (|has| *3 (-15 -3204 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))) + (-4030 + (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) + (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) + (-4 *3 (-38 (-407 (-564)))))) + (-12 (-5 *2 (-1170)) (-4 *1 (-1219 *3)) (-4 *3 (-1046)) + (-12 (|has| *3 (-15 -4269 ((-641 *2) *3))) + (|has| *3 (-15 -3128 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1217 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) + (-12 (-4 *1 (-1219 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1223 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) ((*1 *1 *1) - (-12 (-4 *1 (-1233 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) ((*1 *1 *1 *2) - (-2811 - (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) - (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) - (-4 *3 (-38 (-407 (-563)))))) - (-12 (-5 *2 (-1169)) (-4 *1 (-1238 *3)) (-4 *3 (-1045)) - (-12 (|has| *3 (-15 -2185 ((-640 *2) *3))) - (|has| *3 (-15 -3204 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))) + (-4030 + (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) + (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) + (-4 *3 (-38 (-407 (-564)))))) + (-12 (-5 *2 (-1170)) (-4 *1 (-1240 *3)) (-4 *3 (-1046)) + (-12 (|has| *3 (-15 -4269 ((-641 *2) *3))) + (|has| *3 (-15 -3128 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1238 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) + (-12 (-4 *1 (-1240 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3))) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1244 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-2811 - (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) - (-12 (-4 *3 (-29 (-563))) (-4 *3 (-955)) (-4 *3 (-1193)) - (-4 *3 (-38 (-407 (-563)))))) - (-12 (-5 *2 (-1169)) (-4 *1 (-1248 *3)) (-4 *3 (-1045)) - (-12 (|has| *3 (-15 -2185 ((-640 *2) *3))) - (|has| *3 (-15 -3204 (*3 *3 *2))) (-4 *3 (-38 (-407 (-563)))))))) + (-4030 + (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) + (-12 (-4 *3 (-29 (-564))) (-4 *3 (-956)) (-4 *3 (-1194)) + (-4 *3 (-38 (-407 (-564)))))) + (-12 (-5 *2 (-1170)) (-4 *1 (-1250 *3)) (-4 *3 (-1046)) + (-12 (|has| *3 (-15 -4269 ((-641 *2) *3))) + (|has| *3 (-15 -3128 (*3 *3 *2))) (-4 *3 (-38 (-407 (-564)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-38 (-407 (-563)))))) + (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046)) (-4 *2 (-38 (-407 (-564)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *3 (-1045)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-945 *3 *4 *5))))) -(((*1 *1 *1) (-4 *1 (-1054)))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *2 *3 *1) - (-12 - (-5 *2 - (-2 (|:| |cycle?| (-112)) (|:| -3090 (-767)) (|:| |period| (-767)))) - (-5 *1 (-1149 *4)) (-4 *4 (-1208)) (-5 *3 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-782))))) + (-12 (-5 *2 (-1255 *4)) (-14 *4 (-1170)) (-5 *1 (-1251 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046)) (-14 *5 *3)))) +(((*1 *2 *3 *3 *2) + (|partial| -12 (-5 *2 (-768)) + (-4 *3 (-13 (-723) (-368) (-10 -7 (-15 ** (*3 *3 (-564)))))) + (-5 *1 (-246 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-918)) (-4 *5 (-556)) (-5 *2 (-685 *5)) + (-5 *1 (-953 *5 *3)) (-4 *3 (-652 *5))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) + (-5 *2 (-1032)) (-5 *1 (-742))))) +(((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) + (-5 *1 (-886 *4 *5)) (-4 *5 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-889 *5)) (-4 *5 (-1094)) (-5 *2 (-112)) + (-5 *1 (-887 *5 *3)) (-4 *3 (-1209)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) + (-4 *6 (-1209)) (-5 *2 (-112)) (-5 *1 (-887 *5 *6))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-225)) (-5 *3 (-768)) (-5 *1 (-226)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-169 (-225))) (-5 *3 (-768)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-1093)) (-5 *2 (-640 *1)) - (-4 *1 (-382 *3 *4)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-722)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-945 *3 *4 *5))))) + (-12 (-4 *1 (-1221 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1250 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-330))))) +(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) + (-5 *2 (-1032)) (-5 *1 (-745))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) - (-4 *4 (-349)) (-5 *2 (-1262)) (-5 *1 (-528 *4))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208))))) + (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-739 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1167 *4 *5 *6)) - (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1230 *5 *4)) (-5 *1 (-1249 *4 *5 *6)) - (-4 *4 (-1045)) (-14 *5 (-1169)) (-14 *6 *4)))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-112)))) + ((*1 *2 *3 *1 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1202 *5 *6 *7 *3)) + (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) + (-12 (-5 *6 (-641 (-112))) (-5 *7 (-685 (-225))) + (-5 *8 (-685 (-564))) (-5 *3 (-564)) (-5 *4 (-225)) (-5 *5 (-112)) + (-5 *2 (-1032)) (-5 *1 (-751))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1 (-940 (-225)) (-225) (-225))) + (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-918)) + (-5 *2 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) + (-5 *1 (-346 *4)) (-4 *4 (-349))))) +(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210))))) +(((*1 *2 *1) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-5 *2 (-641 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) + (-5 *2 (-641 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) + (-12 (-5 *2 (-1150 *3)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) ((*1 *2 *1) - (-12 (-14 *3 (-640 (-1169))) (-4 *5 (-238 (-1708 *3) (-767))) - (-14 *6 - (-1 (-112) (-2 (|:| -3491 *4) (|:| -2631 *5)) - (-2 (|:| -3491 *4) (|:| -2631 *5)))) - (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-846)) - (-4 *7 (-945 *2 *5 (-860 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-846)) (-4 *2 (-1093)))) + (-12 (-5 *2 (-641 *3)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-723)))) + ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-641 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-555)) (-5 *1 (-620 *2 *3)) (-4 *3 (-1233 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + (-12 (-4 *1 (-1250 *3)) (-4 *3 (-1046)) (-5 *2 (-1150 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *1) (-12 (-4 *1 (-1247 *3)) (-4 *3 (-1209)) (-5 *2 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-967)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-1068)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175)) (-5 *1 (-1112))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) + (-5 *2 (-641 (-2 (|:| -3566 *1) (|:| -1702 (-641 *7))))) + (-5 *3 (-641 *7)) (-4 *1 (-1202 *4 *5 *6 *7))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-736 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-247 *4 *5))) (-5 *2 (-247 *4 *5)) + (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5))))) +(((*1 *1 *2) + (-12 (-5 *2 (-685 *5)) (-4 *5 (-1046)) (-5 *1 (-1050 *3 *4 *5)) + (-14 *3 (-768)) (-14 *4 (-768))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1209)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) + (-4 *2 (-1209))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1046)) + (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-849 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) + (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-850 *5 *3)) + (-4 *3 (-849 *5))))) +(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) +(((*1 *2 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046)))) + ((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) + (-5 *1 (-1154 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) + (-14 *4 (-1170)) (-14 *5 *3)))) +(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) + (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) + (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-579))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-407 (-564))))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2) + (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-559))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) + (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) + (-15 -1634 ((-1119 *3 (-610 $)) $)) + (-15 -3742 ($ (-1119 *3 (-610 $)))))))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1136 *4 *2)) (-14 *4 (-918)) + (-4 *2 (-13 (-1046) (-10 -7 (-6 (-4413 "*"))))) + (-5 *1 (-899 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1208)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) ((*1 *2 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-846)) - (-4 *3 (-722)))) - ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + (-12 (-4 *3 (-1094)) + (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) + (-5 *1 (-1070 *3 *4 *2)) + (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *3 (-788)) (-4 *4 (-846)) - (-4 *2 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846))))) + (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-886 *5 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) + (-4 *3 (-166 *6)) (-4 (-949 *6) (-883 *5)) + (-4 *6 (-13 (-883 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-886 *4 *1)) (-5 *3 (-889 *4)) (-4 *1 (-883 *4)) + (-4 *4 (-1094)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-886 *5 *6)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) + (-4 *6 (-13 (-1094) (-1035 *3))) (-4 *3 (-883 *5)) + (-5 *1 (-928 *5 *3 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) + (-4 *3 (-13 (-430 *6) (-612 *4) (-883 *5) (-1035 (-610 $)))) + (-5 *4 (-889 *5)) (-4 *6 (-13 (-556) (-847) (-883 *5))) + (-5 *1 (-929 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-886 (-564) *3)) (-5 *4 (-889 (-564))) (-4 *3 (-545)) + (-5 *1 (-930 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-886 *5 *6)) (-5 *3 (-610 *6)) (-4 *5 (-1094)) + (-4 *6 (-13 (-847) (-1035 (-610 $)) (-612 *4) (-883 *5))) + (-5 *4 (-889 *5)) (-5 *1 (-931 *5 *6)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-882 *5 *6 *3)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) + (-4 *6 (-883 *5)) (-4 *3 (-662 *6)) (-5 *1 (-932 *5 *6 *3)))) + ((*1 *2 *3 *4 *2 *5) + (-12 (-5 *5 (-1 (-886 *6 *3) *8 (-889 *6) (-886 *6 *3))) + (-4 *8 (-847)) (-5 *2 (-886 *6 *3)) (-5 *4 (-889 *6)) + (-4 *6 (-1094)) (-4 *3 (-13 (-946 *9 *7 *8) (-612 *4))) + (-4 *7 (-790)) (-4 *9 (-13 (-1046) (-847) (-883 *6))) + (-5 *1 (-933 *6 *7 *8 *9 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) + (-4 *3 (-13 (-946 *8 *6 *7) (-612 *4))) (-5 *4 (-889 *5)) + (-4 *7 (-883 *5)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *8 (-13 (-1046) (-847) (-883 *5))) + (-5 *1 (-933 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-886 *5 *3)) (-4 *5 (-1094)) (-4 *3 (-989 *6)) + (-4 *6 (-13 (-556) (-883 *5) (-612 *4))) (-5 *4 (-889 *5)) + (-5 *1 (-936 *5 *6 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-886 *5 (-1170))) (-5 *3 (-1170)) (-5 *4 (-889 *5)) + (-4 *5 (-1094)) (-5 *1 (-937 *5)))) + ((*1 *2 *3 *4 *5 *2 *6) + (-12 (-5 *4 (-641 (-889 *7))) (-5 *5 (-1 *9 (-641 *9))) + (-5 *6 (-1 (-886 *7 *9) *9 (-889 *7) (-886 *7 *9))) (-4 *7 (-1094)) + (-4 *9 (-13 (-1046) (-612 (-889 *7)) (-1035 *8))) + (-5 *2 (-886 *7 *9)) (-5 *3 (-641 *9)) (-4 *8 (-13 (-1046) (-847))) + (-5 *1 (-938 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) + (-5 *4 (-1 (-225) (-225) (-225) (-225))) + (-5 *2 (-1 (-940 (-225)) (-225) (-225))) (-5 *1 (-693))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-847)) (-4 *5 (-790)) + (-4 *6 (-556)) (-4 *7 (-946 *6 *5 *3)) + (-5 *1 (-462 *5 *3 *6 *7 *2)) + (-4 *2 + (-13 (-1035 (-407 (-564))) (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) + (-15 -1634 (*7 $)))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-846)) (-5 *2 (-767)) (-5 *1 (-429 *3 *4)) - (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-544 *3)) (-4 *3 (-545)))) - ((*1 *2) (-12 (-4 *1 (-759)) (-5 *2 (-767)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-792 *3 *4)) - (-4 *3 (-793 *4)))) - ((*1 *2) - (-12 (-4 *4 (-555)) (-5 *2 (-767)) (-5 *1 (-987 *3 *4)) - (-4 *3 (-988 *4)))) + (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *2) + (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1067 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-767)) (-5 *1 (-992 *3 *4)) - (-4 *3 (-993 *4)))) - ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1007 *3)) (-4 *3 (-1008)))) - ((*1 *2) (-12 (-4 *1 (-1045)) (-5 *2 (-767)))) - ((*1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-1053 *3)) (-4 *3 (-1054))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) + (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-1264)) + (-5 *1 (-1102 *3 *4 *5 *6 *7)) (-4 *7 (-1066 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-999)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-137)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-478)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-591)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-624)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1094)) + (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) + (-5 *1 (-1070 *3 *4 *2)) + (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))))) + ((*1 *2 *1) + (-12 (-4 *2 (-1094)) (-5 *1 (-1159 *2 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1170)) (-5 *2 (-641 (-962))) (-5 *1 (-291))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) + (-4 *3 (-1235 (-407 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) + (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-1152)) (-5 *1 (-52))))) +(((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-1149 *3))) (-5 *1 (-1149 *3)) (-4 *3 (-1208))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782))))) -(((*1 *2 *1) (-12 (-4 *1 (-326 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) - ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) - (-4 *3 (-846)) (-5 *2 (-767))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-129)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-241)))) + (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-735))))) +(((*1 *2 *3 *4 *4 *5 *6) + (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-871)) + (-5 *5 (-918)) (-5 *6 (-641 (-263))) (-5 *2 (-468)) (-5 *1 (-1263)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-468)) + (-5 *1 (-1263)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-641 (-263))) + (-5 *2 (-468)) (-5 *1 (-1263))))) +(((*1 *2 *3) + (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-307)) + (-5 *2 (-407 (-418 (-949 *4)))) (-5 *1 (-1039 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-677)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-1112))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1262))))) +(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1032)) (-5 *1 (-748))))) +(((*1 *1 *1) (-5 *1 (-1058)))) +(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-558 *3)) (-4 *3 (-545)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-563)) (-5 *1 (-241))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) - (-14 *4 *2)))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) + (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) + (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-739 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) ((*1 *2 *1) - (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) - (-4 *6 (-238 (-1708 *3) (-767))) - (-14 *7 - (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *6)) - (-2 (|:| -3491 *5) (|:| -2631 *6)))) - (-5 *2 (-709 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-846)) (-4 *8 (-945 *4 *6 (-860 *3))))) + (-12 (-4 *3 (-452)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-418 *1)) (-4 *1 (-946 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-847)) (-4 *5 (-790)) (-4 *6 (-452)) (-5 *2 (-418 *3)) + (-5 *1 (-976 *4 *5 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-452)) + (-4 *7 (-946 *6 *4 *5)) (-5 *2 (-418 (-1166 (-407 *7)))) + (-5 *1 (-1165 *4 *5 *6 *7)) (-5 *3 (-1166 (-407 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1213)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-418 *3)) (-5 *1 (-1238 *4 *3)) + (-4 *3 (-13 (-1235 *4) (-556) (-10 -8 (-15 -2577 ($ $ $))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-14 *5 (-641 (-1170))) + (-5 *2 + (-641 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6))))) + (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-225)) (-5 *5 (-564)) (-5 *2 (-1204 *3)) + (-5 *1 (-787 *3)) (-4 *3 (-971)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *4 (-112)) + (-5 *1 (-1204 *2)) (-4 *2 (-971))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1235 (-169 *3)))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-744))))) +(((*1 *2 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-52)) (-5 *2 (-112)) (-5 *1 (-51 *4)) (-4 *4 (-1209)))) ((*1 *2 *1) - (-12 (-4 *2 (-722)) (-4 *2 (-846)) (-5 *1 (-731 *3 *2)) - (-4 *3 (-1045)))) - ((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) - (-4 *4 (-846))))) -(((*1 *1 *2) - (-12 (-5 *2 (-684 *5)) (-4 *5 (-1045)) (-5 *1 (-1049 *3 *4 *5)) - (-14 *3 (-767)) (-14 *4 (-767))))) + (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-890 *3)) (-4 *3 (-847))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1259 (-768))) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *1)) (-5 *4 (-1259 *1)) (-4 *1 (-637 *5)) + (-4 *5 (-1046)) + (-5 *2 (-2 (|:| -2069 (-685 *5)) (|:| |vec| (-1259 *5)))))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *1)) (-4 *1 (-637 *4)) (-4 *4 (-1046)) + (-5 *2 (-685 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) +(((*1 *2 *3 *1) + (|partial| -12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-4 *2 (-1094)) + (-5 *1 (-886 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-4 *5 (-363)) + (-4 *5 (-1046)) (-5 *2 (-112)) (-5 *1 (-1026 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-685 *4))) (-4 *4 (-363)) (-4 *4 (-1046)) + (-5 *2 (-112)) (-5 *1 (-1026 *4))))) +(((*1 *1) (-5 *1 (-1058)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) + (-4 *5 (-883 (-564))) + (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) + (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1058))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-845)) (-4 *4 (-363)) (-5 *2 (-768)) + (-5 *1 (-942 *4 *5)) (-4 *5 (-1235 *4))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-594 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1219 *3)) (-4 *3 (-1046)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 (-564))) (-4 *1 (-1250 *3)) (-4 *3 (-1046))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) +(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1094))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) + (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1152)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) (-4 *5 (-363)) + (-4 *5 (-556)) (-5 *2 (-1259 *5)) (-5 *1 (-636 *5 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 *5)) + (-4255 (-4 *5 (-363))) (-4 *5 (-556)) (-5 *2 (-1259 (-407 *5))) + (-5 *1 (-636 *5 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257))))) +(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-820)) (-5 *1 (-819))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-434)) + (-5 *2 + (-641 + (-3 (|:| -4324 (-1170)) + (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564))))))))) + (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-128))))) +(((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) + ((*1 *1 *1) (-4 *1 (-1055)))) +(((*1 *2) + (-12 (-4 *1 (-349)) + (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-174 *6)) + (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-847)) + (-5 *2 + (-2 (|:| |f1| (-641 *4)) (|:| |f2| (-641 (-641 (-641 *4)))) + (|:| |f3| (-641 (-641 *4))) (|:| |f4| (-641 (-641 (-641 *4)))))) + (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 (-641 *4))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-641 (-940 *3)))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-744))))) +(((*1 *2 *3) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-452)) + (-5 *2 (-481 *4 *5)) (-5 *1 (-629 *4 *5))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-737 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-847)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *1 (-977 *3)) (-4 *3 (-1046)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) + (-4 *1 (-1066 *4 *5 *6 *3)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *1) + (-12 + (-5 *2 + (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") + (|:| |Conditional| "conditional") (|:| |Return| "return") + (|:| |Block| "block") (|:| |Comment| "comment") + (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") + (|:| |Repeat| "repeat") (|:| |Goto| "goto") + (|:| |Continue| "continue") + (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") + (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) + (-5 *1 (-330))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) (-4 *1 (-1055)))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) + (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1170)) (-4 *5 (-612 (-889 (-564)))) + (-4 *5 (-883 (-564))) + (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) + (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) + (-5 *1 (-567 *5 *3)) (-4 *3 (-627)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *2 *3 *4 *4) + (|partial| -12 (-5 *3 (-1170)) (-5 *4 (-840 *2)) (-4 *2 (-1133)) + (-4 *2 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-612 (-889 (-564)))) (-4 *5 (-883 (-564))) + (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) + (-5 *1 (-567 *5 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-819))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *5)) (-4 *5 (-1235 *3)) (-4 *3 (-307)) + (-5 *2 (-112)) (-5 *1 (-455 *3 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556))))) +(((*1 *2 *2 *3 *4 *5) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-1 (-112) *9)) + (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) + (-4 *8 (-847)) (-5 *1 (-974 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1235 *4)) + (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))))) +(((*1 *1 *1) + (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1046)) (-4 *3 (-847)) + (-4 *4 (-266 *3)) (-4 *5 (-790))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-582))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-5 *2 (-2 (|:| -3163 (-641 *3)) (|:| -1380 (-641 *3)))) + (-5 *1 (-1210 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1150 *2)) (-4 *2 (-1209))))) +(((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1170)) (-5 *1 (-671 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-5 *2 (-858)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) - (-4 *3 (-1208))))) -(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) - (-14 *4 (-640 (-1169))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) (-4 *1 (-284))) - ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-5 *1 (-624 *3 *4 *5)) - (-14 *5 (-917)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) + (-5 *1 (-205))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-307)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-447 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) - (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) - (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)))) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) + (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *1 (-447 *4 *5 *6 *7)))) + ((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-1152)) (-4 *7 (-946 *4 *5 *6)) + (-4 *4 (-307)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *1 (-447 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) + (-5 *2 + (-2 (|:| A (-685 *5)) + (|:| |eqs| + (-641 + (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5)) (|:| -4032 *6) + (|:| |rh| *5)))))) + (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) + (-4 *6 (-652 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-652 *5)) + (-5 *2 (-2 (|:| -2069 (-685 *6)) (|:| |vec| (-1259 *5)))) + (-5 *1 (-810 *5 *6)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *5))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-558 *2)) (-4 *2 (-545))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) + (-5 *2 (-169 (-316 *4))) (-5 *1 (-188 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-169 *3)) (-5 *1 (-1198 *4 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1046)) (-5 *1 (-891 *2 *3)) (-4 *2 (-1235 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-282 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -1327 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2423 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3089 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))))) + (-5 *1 (-559)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-691 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 + (|:| -1327 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (|:| -2423 + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))))) + (-5 *1 (-800)))) + ((*1 *2 *3 *4) + (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 (-641 *8))) + (-4 *7 (-847)) (-4 *8 (-307)) (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) + (-5 *2 + (-2 (|:| |upol| (-1166 *8)) (|:| |Lval| (-641 *8)) + (|:| |Lfact| + (-641 (-2 (|:| -4127 (-1166 *8)) (|:| -2515 (-564))))) + (|:| |ctpol| *8))) + (-5 *1 (-739 *6 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) + (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-556)) (-4 *4 (-847)) + (-5 *1 (-573 *4 *2)) (-4 *2 (-430 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-768)) (-5 *4 (-564)) (-5 *1 (-445 *2)) (-4 *2 (-1046))))) +(((*1 *1) (-5 *1 (-1264)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) + (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) + (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412))))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-641 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-210))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-767))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-548)))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1151)) (-5 *3 (-563)) (-5 *1 (-241))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-843))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-1088 *3)) (-4 *3 (-946 *7 *6 *4)) (-4 *6 (-790)) + (-4 *4 (-847)) (-4 *7 (-556)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) + (-5 *1 (-593 *6 *4 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-790)) (-4 *4 (-847)) (-4 *6 (-556)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-564)))) + (-5 *1 (-593 *5 *4 *6 *3)) (-4 *3 (-946 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1162 *4 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-160) (-27) (-1194))) + (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1162 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) + (-5 *2 (-407 (-949 *5))) (-5 *1 (-1163 *5)) (-5 *3 (-949 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) + (-5 *2 (-3 (-407 (-949 *5)) (-316 *5))) (-5 *1 (-1163 *5)) + (-5 *3 (-407 (-949 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1086 (-949 *5))) (-5 *3 (-949 *5)) + (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-407 *3)) + (-5 *1 (-1163 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1086 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) + (-4 *5 (-13 (-556) (-847) (-1035 (-564)))) (-5 *2 (-3 *3 (-316 *5))) + (-5 *1 (-1163 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1264)) + (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *2 *1 *2) + (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-126 *3))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-1094)) (-4 *2 (-897 *4)) (-5 *1 (-688 *4 *2 *5 *3)) + (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4411))))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1209)) (-4 *2 (-1046)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) + ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-940 (-225))) (-5 *2 (-225)) (-5 *1 (-1205)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-1046))))) (((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) - (-14 *4 *2)))) -(((*1 *2 *1) - (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) + (-5 *3 (-641 (-564))))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) + (-5 *3 (-641 (-564)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-1205))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) + (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) +(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1166 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) -(((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-846))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1166 *3))))) +(((*1 *1 *1) (-12 (-5 *1 (-963 *2)) (-4 *2 (-964))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1149 *3)) (-4 *3 (-1093)) - (-4 *3 (-1208))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-917)) (-5 *1 (-782))))) -(((*1 *2 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)) - (-4 *2 (-452)))) + (-12 (-4 *3 (-1046)) (-5 *2 (-955 (-709 *3 *4))) (-5 *1 (-709 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5 (-641 *5))) (-4 *5 (-1250 *4)) + (-4 *4 (-38 (-407 (-564)))) + (-5 *2 (-1 (-1150 *4) (-641 (-1150 *4)))) (-5 *1 (-1252 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-985 *5 *6 *7 *8 *3)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-1060 *5 *6 *7)) + (-5 *2 (-112)) (-5 *1 (-1101 *5 *6 *7 *8 *3))))) +(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) +(((*1 *2 *3 *4) + (-12 + (-5 *3 + (-641 + (-2 (|:| |eqzro| (-641 *8)) (|:| |neqzro| (-641 *8)) + (|:| |wcond| (-641 (-949 *5))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *5)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *5)))))))))) + (-5 *4 (-1152)) (-4 *5 (-13 (-307) (-147))) (-4 *8 (-946 *5 *7 *6)) + (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-564)) + (-5 *1 (-921 *5 *6 *7 *8))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) + (-14 *4 (-768)) (-4 *5 (-172))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) + ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-1233 (-563))) (-5 *2 (-640 (-563))) - (-5 *1 (-486 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)) (-4 *3 (-452))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1215)))))) -(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-241))))) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *1 (-958 *2)) (-4 *2 (-545))))) (((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) - (-14 *4 *2)))) + (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))))) + ((*1 *1 *1) (-5 *1 (-379))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-773 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-685 (-407 (-949 (-564))))) + (-5 *2 (-641 (-685 (-316 (-564))))) (-5 *1 (-1028)) + (-5 *3 (-316 (-564)))))) +(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-368))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) + (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *6 (-883 *5)) (-5 *2 (-882 *5 *6 (-641 *6))) + (-5 *1 (-884 *5 *6 *4)) (-5 *3 (-641 *6)) (-4 *4 (-612 (-889 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 *3))) (-5 *1 (-884 *5 *3 *4)) + (-4 *3 (-1035 (-1170))) (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-5 *2 (-641 (-294 (-949 *3)))) + (-5 *1 (-884 *5 *3 *4)) (-4 *3 (-1046)) + (-4255 (-4 *3 (-1035 (-1170)))) (-4 *3 (-883 *5)) + (-4 *4 (-612 (-889 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-5 *2 (-886 *5 *3)) (-5 *1 (-884 *5 *3 *4)) + (-4255 (-4 *3 (-1035 (-1170)))) (-4255 (-4 *3 (-1046))) + (-4 *3 (-883 *5)) (-4 *4 (-612 (-889 *5)))))) +(((*1 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-768))) (-5 *1 (-1262))))) +(((*1 *2 *3 *2) + (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1235 (-169 *2))))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-363) (-845))) (-5 *1 (-181 *2 *3)) + (-4 *3 (-1235 (-169 *2)))))) (((*1 *2 *1) - (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 *4)))) + (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4)))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) - (-4 *6 (-1093)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-679 *4 *5 *6))))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-801 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1194) (-956)))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-112))))) -(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) - ((*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4))))) + (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-5 *2 (-768)))) + ((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) + (-5 *2 (-768)))) + ((*1 *2 *1) + (-12 (-5 *2 (-768)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-723))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) (-5 *1 (-537 *4 *2)) - (-4 *2 (-1248 *4)))) + (-12 (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) (-5 *1 (-537 *4 *2)) + (-4 *2 (-1250 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) - (-4 *5 (-1233 *4)) (-4 *6 (-720 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) - (-4 *2 (-1248 *6)))) + (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) + (-4 *5 (-1235 *4)) (-4 *6 (-721 *4 *5)) (-5 *1 (-541 *4 *5 *6 *2)) + (-4 *2 (-1250 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-563)) (-4 *4 (-13 (-363) (-368) (-611 *3))) - (-5 *1 (-542 *4 *2)) (-4 *2 (-1248 *4)))) + (-12 (-5 *3 (-564)) (-4 *4 (-13 (-363) (-368) (-612 *3))) + (-5 *1 (-542 *4 *2)) (-4 *2 (-1250 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-13 (-555) (-147))) - (-5 *1 (-1145 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-917)) (-5 *2 (-1151)) (-5 *1 (-782))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-563)) (-4 *5 (-844)) (-4 *5 (-363)) - (-5 *2 (-767)) (-5 *1 (-941 *5 *6)) (-4 *6 (-1233 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-546)))))) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-13 (-556) (-147))) + (-5 *1 (-1146 *4))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-902 *3))) (-4 *3 (-1094)) (-5 *1 (-901 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-294 (-948 (-563)))) + (-12 (-5 *2 (-641 (-641 (-564)))) (-5 *1 (-968)) + (-5 *3 (-641 (-564)))))) +(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) + (|partial| -12 (-5 *2 (-641 (-1166 *13))) (-5 *3 (-1166 *13)) + (-5 *4 (-641 *12)) (-5 *5 (-641 *10)) (-5 *6 (-641 *13)) + (-5 *7 (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| *13))))) + (-5 *8 (-641 (-768))) (-5 *9 (-1259 (-641 (-1166 *10)))) + (-4 *12 (-847)) (-4 *10 (-307)) (-4 *13 (-946 *10 *11 *12)) + (-4 *11 (-790)) (-5 *1 (-704 *11 *12 *10 *13))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-859)))) + ((*1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1170)) (-5 *2 (-437)) (-5 *1 (-1174))))) +(((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-655 *4 *2)) + (-4 *2 (-652 *4))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 - (-2 (|:| |varOrder| (-640 (-1169))) - (|:| |inhom| (-3 (-640 (-1257 (-767))) "failed")) - (|:| |hom| (-640 (-1257 (-767)))))) - (-5 *1 (-236))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1149 *2)) (-4 *2 (-1208))))) + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) + (-12 + (-5 *2 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-263)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3 *3 *4 *4 *4) + (-12 (-5 *3 (-564)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3) + (-12 + (-5 *3 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -4231 (-225)) + (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) + (-5 *1 (-1261)))) + ((*1 *2 *1 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2) + (|partial| -12 (-4 *3 (-556)) (-4 *3 (-172)) + (-5 *2 (-2 (|:| |particular| *1) (|:| -4265 (-641 *1)))) + (-4 *1 (-367 *3)))) + ((*1 *2) + (|partial| -12 + (-5 *2 + (-2 (|:| |particular| (-453 *3 *4 *5 *6)) + (|:| -4265 (-641 (-453 *3 *4 *5 *6))))) + (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) + (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-946 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1046)) (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) + (-4 *1 (-1235 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) + (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) - (-14 *4 *2)))) -(((*1 *1 *1) (-4 *1 (-243))) - ((*1 *1 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) + (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-4 *7 (-989 *4)) (-4 *2 (-683 *7 *8 *9)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-683 *4 *5 *6)) + (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) ((*1 *1 *1) - (-2811 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208))))) - ((*1 *1 *1) (-4 *1 (-473))) - ((*1 *2 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)) (-4 *2 (-307)))) + ((*1 *2 *2) + (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) + (-4 *2 (-683 *3 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)) (-4 *2 (-363))))) -(((*1 *2 *1) - (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) + (-12 (-4 *1 (-1049 *2 *3 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *4 (-1093))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-847) (-556)))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-949 *4))) (-5 *3 (-641 (-1170))) (-4 *4 (-452)) + (-5 *1 (-915 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1045)) (-4 *2 (-682 *4 *5 *6)) - (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1233 *4)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1097)) (-5 *3 (-770)) (-5 *1 (-52))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) - (-4 *2 (-1248 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) - (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1248 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) - (-5 *1 (-1145 *3))))) + (-12 (-4 *3 (-1213)) (-4 *5 (-1235 *3)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-112)) (-5 *1 (-341 *4 *3 *5 *6)) (-4 *4 (-342 *3 *5 *6)))) + ((*1 *2 *3 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1209)) (-5 *1 (-870 *3 *2)) (-4 *3 (-1209)))) + ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *2) + (|:| |polj| *2))) + (-4 *5 (-790)) (-4 *2 (-946 *4 *5 *6)) (-5 *1 (-449 *4 *5 *6 *2)) + (-4 *4 (-452)) (-4 *6 (-847))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-749))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-610 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4))) + (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-277 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) + (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 *9)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-790)) + (-4 *7 (-847)) (-5 *2 (-768)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-685 *5))) (-4 *5 (-307)) (-4 *5 (-1046)) + (-5 *2 (-1259 (-1259 *5))) (-5 *1 (-1026 *5)) (-5 *4 (-1259 *5))))) +(((*1 *1 *1) (-4 *1 (-1055))) + ((*1 *1 *1 *2 *2) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-821)) (-5 *3 (-641 (-1170))) (-5 *1 (-822))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1094)) (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 *2))) + (-5 *2 (-889 *3)) (-5 *1 (-1070 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-883 *3) (-612 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-700 *3)) + (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1170)) (-5 *2 (-1 (-225) (-225) (-225))) + (-5 *1 (-700 *3)) (-4 *3 (-612 (-536)))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *3 *4 *4 *4 *5 *6 *7) + (|partial| -12 (-5 *5 (-1170)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-641 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1194) (-27) (-430 *8))) + (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) + (-5 *3 (-564)) (-5 *2 (-641 *4)) (-5 *1 (-1011 *8 *4))))) +(((*1 *2) + (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) + (-5 *1 (-457 *3 *4 *2 *5)) (-4 *5 (-946 *2 *3 *4)))) + ((*1 *2) + (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *2 (-906)) + (-5 *1 (-903 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-906)) (-5 *1 (-904 *2 *3)) (-4 *3 (-1235 *2))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-157)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-564))) (-5 *1 (-1044))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-961 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2427 *6) (|:| |sol?| (-112))) (-564) + *6)) + (-4 *6 (-363)) (-4 *7 (-1235 *6)) + (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-744))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) + (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-641 (-768))))) + ((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) + (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 (-768)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) + (-4 *3 (-1235 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) + (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) - (-4 *5 (-555)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-781 *5)))) + (-12 (-5 *4 (-641 (-768))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-641 (-768))) (-5 *5 (-768)) (-5 *2 (-418 *3)) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-768)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) + (-4 *3 (-1235 (-564))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-781 *5)))) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1004 *3)) + (-4 *3 (-1235 (-407 (-564)))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-781 *5))))) + (-12 (-5 *2 (-418 *3)) (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2577 *3))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-641 *6) "failed") (-564) *6 *6)) (-4 *6 (-363)) + (-4 *7 (-1235 *6)) + (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-768)) (-5 *1 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-832 *3)) (-4 *3 (-1094)) (-5 *2 (-55))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-786)) (-5 *5 (-564))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-564))) (-5 *4 (-564)) (-5 *2 (-52)) + (-5 *1 (-1002))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-564) (-564))) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-768) (-768))) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) + (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) + (-4 *3 (-556))))) +(((*1 *1 *2 *2 *3 *1) + (-12 (-5 *2 (-1170)) (-5 *3 (-1098)) (-5 *1 (-291))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 *2)) (-4 *4 (-1235 *2)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2)) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) + (-5 *2 (-641 *3)) (-5 *1 (-774 *4 *5 *6 *3 *7)) (-4 *3 (-1235 *6)) + (-14 *7 (-918))))) +(((*1 *2 *3) + (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) (-5 *2 (-418 *3)) + (-5 *1 (-739 *4 *5 *6 *3)) (-4 *3 (-946 *6 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-866 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-844)) (-4 *4 (-363)) (-5 *2 (-767)) - (-5 *1 (-941 *4 *5)) (-4 *5 (-1233 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1213)))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-235 *3)))) - ((*1 *1) (-12 (-4 *1 (-235 *2)) (-4 *2 (-1093))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-1235 *4)) (-5 *1 (-539 *4 *2 *5 *6)) + (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-768)))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-826))))) +(((*1 *1 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1046))))) +(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) + ((*1 *2 *1 *1) + (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 (-918))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) + (-14 *4 (-918)) (-14 *5 (-990 *4 *2)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-131)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *2 (-556)) (-5 *1 (-621 *2 *4)) + (-4 *4 (-1235 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-705 *2)) (-4 *2 (-1046)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-723)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *5)) (-5 *3 (-641 (-768))) (-4 *1 (-737 *4 *5)) + (-4 *4 (-1046)) (-4 *5 (-847)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-737 *4 *2)) (-4 *4 (-1046)) + (-4 *2 (-847)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-4 *1 (-849 *2)) (-4 *2 (-1046)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *6)) (-5 *3 (-641 (-768))) (-4 *1 (-946 *4 *5 *6)) + (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *6 (-847)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-946 *4 *5 *2)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *2 (-847)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-4 *2 (-946 *4 (-531 *5) *5)) + (-5 *1 (-1120 *4 *5 *2)) (-4 *4 (-1046)) (-4 *5 (-847)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-949 *4)) (-5 *1 (-1203 *4)) + (-4 *4 (-1046))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-817)) (-14 *5 (-1170)) (-5 *2 (-641 (-1232 *5 *4))) + (-5 *1 (-1108 *4 *5)) (-5 *3 (-1232 *5 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *2)) (-5 *4 (-1170)) (-4 *2 (-430 *5)) + (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-847) (-556))))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-4 *1 (-1009)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-1166 *1)) (-5 *3 (-918)) (-5 *4 (-859)) + (-4 *1 (-1009)))) + ((*1 *1 *2 *3) + (|partial| -12 (-5 *3 (-918)) (-4 *4 (-13 (-845) (-363))) + (-4 *1 (-1063 *4 *2)) (-4 *2 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-1150 *3))) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) + (-4 *3 (-38 (-407 (-564)))) (-4 *3 (-1046))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-641 (-768))) + (-5 *1 (-901 *4))))) +(((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-1 (-112) *5 *5)) + (-5 *4 (-641 *5)) (-4 *5 (-847)) (-5 *1 (-1180 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) + ((*1 *1 *1 *1) (-4 *1 (-790)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) - (-5 *1 (-1153 *4)))) - ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) - (-14 *4 (-1169)) (-14 *5 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-112)))) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1114)) (-4 *4 (-349)) + (-5 *1 (-528 *4))))) +(((*1 *1) + (-12 (-4 *1 (-404)) (-4255 (|has| *1 (-6 -4402))) + (-4255 (|has| *1 (-6 -4394))))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))) + ((*1 *1) (-4 *1 (-841))) ((*1 *1 *1 *1) (-4 *1 (-847))) + ((*1 *2 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1009)) (-5 *2 (-859))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-667)))) ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) + (-12 (-5 *2 (-641 (-918))) (-5 *1 (-1095 *3 *4)) (-14 *3 (-918)) + (-14 *4 (-918))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-294 (-830 *3))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-830 *3)) (-5 *1 (-634 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-830 (-949 *5)))) (-4 *5 (-452)) + (-5 *2 (-830 (-407 (-949 *5)))) (-5 *1 (-635 *5)) + (-5 *3 (-407 (-949 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) + (-4 *5 (-452)) (-5 *2 (-830 *3)) (-5 *1 (-635 *5))))) +(((*1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468))))) +(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379))))) +(((*1 *2 *1) + (-12 (-4 *1 (-554 *3)) (-4 *3 (-13 (-404) (-1194))) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-845)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1063 *4 *3)) (-4 *4 (-13 (-845) (-363))) + (-4 *3 (-1235 *4)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-748))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1093)) (-4 *6 (-1093)) - (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-679 *4 *5 *6)) (-4 *5 (-1093))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-641 (-225))) (-5 *1 (-204))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1170)) + (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) + (-5 *2 + (-2 (|:| -2118 (-407 (-949 *5))) (|:| |coeff| (-407 (-949 *5))))) + (-5 *1 (-570 *5)) (-5 *3 (-407 (-949 *5)))))) +(((*1 *2 *3 *1) + (-12 (-4 *4 (-13 (-845) (-363))) (-5 *2 (-112)) (-5 *1 (-1056 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *4 *2 *5) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-889 *6))) + (-5 *5 (-1 (-886 *6 *8) *8 (-889 *6) (-886 *6 *8))) (-4 *6 (-1094)) + (-4 *8 (-13 (-1046) (-612 (-889 *6)) (-1035 *7))) + (-5 *2 (-886 *6 *8)) (-4 *7 (-13 (-1046) (-847))) + (-5 *1 (-938 *6 *7 *8))))) +(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-1152)) (-5 *1 (-783))))) (((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *1 *1) + (-12 (-4 *2 (-452)) (-4 *3 (-847)) (-4 *4 (-790)) + (-5 *1 (-984 *2 *3 *4 *5)) (-4 *5 (-946 *2 *4 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *4 *5 *3 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1032)) (-5 *1 (-749))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) - (-4 *2 (-1248 *3)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) - (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1248 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) - (-5 *1 (-1145 *3))))) + (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046)))) + ((*1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046))))) +(((*1 *2 *3 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-748))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1058)) (-5 *3 (-1152))))) +(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) + (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-746))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) - (-5 *2 (-379)) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) - (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) + (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349)))) + ((*1 *1) (-4 *1 (-368))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) - (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) + (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349)))) + ((*1 *1 *1) (-4 *1 (-545))) ((*1 *1) (-4 *1 (-545))) + ((*1 *1 *1) (-5 *1 (-564))) ((*1 *1 *1) (-5 *1 (-768))) + ((*1 *2 *1) (-12 (-5 *2 (-902 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-902 *4)) (-5 *1 (-901 *4)) + (-4 *4 (-1094)))) + ((*1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-545)) (-4 *2 (-556))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) + (-12 (-5 *4 (-685 (-564))) (-5 *5 (-112)) (-5 *7 (-685 (-225))) + (-5 *3 (-564)) (-5 *6 (-225)) (-5 *2 (-1032)) (-5 *1 (-751))))) +(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-768)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-768))))) +(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) + ((*1 *1) (-5 *1 (-129))) + ((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) + (-4 *4 (-172)))) + ((*1 *1) (-5 *1 (-546))) ((*1 *1) (-5 *1 (-547))) + ((*1 *1) (-5 *1 (-548))) ((*1 *1) (-5 *1 (-549))) + ((*1 *1) (-4 *1 (-723))) ((*1 *1) (-5 *1 (-1170))) + ((*1 *1) (-12 (-5 *1 (-1176 *2)) (-14 *2 (-918)))) + ((*1 *1) (-12 (-5 *1 (-1177 *2)) (-14 *2 (-918)))) + ((*1 *1) (-5 *1 (-1214))) ((*1 *1) (-5 *1 (-1215))) + ((*1 *1) (-5 *1 (-1216))) ((*1 *1) (-5 *1 (-1217)))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-974 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-192)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) +(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-536))) (-5 *1 (-536))))) +(((*1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-445 *3)) (-4 *3 (-1046))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) + (-4 *6 (-13 (-556) (-1035 *5))) (-4 *5 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-949 *6)))))) (-5 *1 (-1036 *5 *6))))) +(((*1 *1 *2) + (-12 + (-5 *2 + (-641 + (-2 + (|:| -1327 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2423 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3089 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-559))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-678 *2)) (-4 *2 (-1094)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) - (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) + (-12 (-5 *3 (-1 (-641 *5) (-641 *5))) (-5 *4 (-564)) + (-5 *2 (-641 *5)) (-5 *1 (-678 *5)) (-4 *5 (-1094))))) +(((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-397))))) +(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-141)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1138)) (-5 *2 (-144))))) +(((*1 *2) + (-12 + (-5 *2 + (-1259 (-641 (-2 (|:| -3426 (-907 *3)) (|:| -1495 (-1114)))))) + (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) (-14 *4 (-918)))) + ((*1 *2) + (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3426 *3) (|:| -1495 (-1114)))))) + (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1166 *3) *2)))) + ((*1 *2) + (-12 (-5 *2 (-1259 (-641 (-2 (|:| -3426 *3) (|:| -1495 (-1114)))))) + (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-918))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2577 (-779 *3)) (|:| |coef2| (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-2 (|:| -2577 *1) (|:| |coef2| *1))) + (-4 *1 (-1060 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *1) + (-12 (-4 *1 (-404)) (-4255 (|has| *1 (-6 -4402))) + (-4255 (|has| *1 (-6 -4394))))) + ((*1 *2 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1094)) (-4 *2 (-847)))) + ((*1 *2 *1) (-12 (-4 *1 (-827 *2)) (-4 *2 (-847)))) + ((*1 *1) (-4 *1 (-841))) ((*1 *1 *1 *1) (-4 *1 (-847)))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-183))) (-5 *1 (-140))))) +(((*1 *1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-373 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114))))) +(((*1 *2 *1) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) + (-5 *2 + (-2 (|:| -3585 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-846)) (-4 *5 (-611 *2)) (-5 *2 (-379)) - (-5 *1 (-781 *5))))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |poly| *6) (|:| -3087 (-407 *6)) + (|:| |special| (-407 *6)))) + (-5 *1 (-724 *5 *6)) (-5 *3 (-407 *6)))) + ((*1 *2 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-893 *3 *4)) + (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4 *4) + (|partial| -12 (-5 *4 (-768)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -2413 *3) (|:| -2427 *3))) (-5 *1 (-893 *3 *5)) + (-4 *3 (-1235 *5)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) + (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) + (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1066 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1064 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) + (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *2 *4 *4 *4 *4 *4) + (-12 (-5 *2 (-641 *9)) (-5 *3 (-641 *8)) (-5 *4 (-112)) + (-4 *8 (-1060 *5 *6 *7)) (-4 *9 (-1103 *5 *6 *7 *8)) (-4 *5 (-452)) + (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1139 *5 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-4 *2 (-363)) (-4 *2 (-844)) (-5 *1 (-941 *2 *3)) - (-4 *3 (-1233 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-547)))))) -(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) -(((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + (-12 (-4 *3 (-1235 (-407 (-564)))) + (-5 *2 (-2 (|:| |den| (-564)) (|:| |gcdnum| (-564)))) + (-5 *1 (-910 *3 *4)) (-4 *4 (-1235 (-407 *3))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1235 (-407 *2))) (-5 *2 (-564)) (-5 *1 (-910 *4 *3)) + (-4 *3 (-1235 (-407 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) (-5 *3 (-564))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) ((*1 *1 *1) - (-12 (-5 *1 (-1249 *2 *3 *4)) (-4 *2 (-1045)) (-14 *3 (-1169)) - (-14 *4 *2)))) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) + ((*1 *1 *1) (-4 *1 (-845))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172)) (-4 *2 (-1055)))) + ((*1 *1 *1) (-4 *1 (-1055))) ((*1 *1 *1) (-4 *1 (-1133)))) (((*1 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) - (-4 *5 (-13 (-27) (-1193) (-430 *4))))) + (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *4 (-1235 *3)) + (-5 *2 + (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-407 (-563))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-563))) - (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-1 *8 (-407 (-563)))) (-5 *4 (-294 *8)) - (-5 *5 (-1224 (-407 (-563)))) (-5 *6 (-407 (-563))) - (-4 *8 (-13 (-27) (-1193) (-430 *7))) - (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) - ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-407 (-563)))) - (-5 *7 (-407 (-563))) (-4 *3 (-13 (-27) (-1193) (-430 *8))) - (-4 *8 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-407 (-563))) (-4 *4 (-1045)) (-4 *1 (-1240 *4 *3)) - (-4 *3 (-1217 *4))))) + (-12 (-5 *3 (-564)) (-4 *4 (-1235 *3)) + (-5 *2 + (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-765 *4 *5)) (-4 *5 (-409 *3 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) + (-5 *2 + (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-982 *4 *3 *5 *6)) (-4 *6 (-721 *3 *5)))) + ((*1 *2 *3) + (-12 (-4 *4 (-349)) (-4 *3 (-1235 *4)) (-4 *5 (-1235 *3)) + (-5 *2 + (-2 (|:| -4265 (-685 *3)) (|:| |basisDen| *3) + (|:| |basisInv| (-685 *3)))) + (-5 *1 (-1268 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *2 *3 *2) + (-12 + (-5 *2 + (-641 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *3) + (|:| |polj| *3)))) + (-4 *5 (-790)) (-4 *3 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) + (-5 *1 (-449 *4 *5 *6 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *1 (-585 *2)) (-4 *2 (-1035 *3)) + (-4 *2 (-363)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)) + (-4 *2 (-13 (-430 *4) (-999) (-1194))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-13 (-430 *4) (-999) (-1194))) + (-4 *4 (-13 (-847) (-556))) (-5 *1 (-628 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-956)) (-5 *2 (-1170)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-956))))) +(((*1 *2 *3 *4 *5) + (-12 (-4 *6 (-1235 *9)) (-4 *7 (-790)) (-4 *8 (-847)) (-4 *9 (-307)) + (-4 *10 (-946 *9 *7 *8)) + (-5 *2 + (-2 (|:| |deter| (-641 (-1166 *10))) + (|:| |dterm| + (-641 (-641 (-2 (|:| -1845 (-768)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-641 *6)) (|:| |nlead| (-641 *10)))) + (-5 *1 (-775 *6 *7 *8 *9 *10)) (-5 *3 (-1166 *10)) (-5 *4 (-641 *6)) + (-5 *5 (-641 *10))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-563)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563))))) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1093)) (-4 *5 (-1093)) - (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *4 *5 *6))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 (-4 *5 (-556)) + (-5 *2 (-2 (|:| -2069 (-685 *5)) (|:| |vec| (-1259 (-641 (-918)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-918)) (-4 *3 (-652 *5))))) +(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 + *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 + *9) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-112)) (-5 *6 (-225)) + (-5 *7 (-685 (-564))) + (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-80 CONFUN)))) + (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-77 OBJFUN)))) + (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-750))))) +(((*1 *2 *1 *1) + (|partial| -12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-555) (-147))) (-5 *1 (-537 *3 *2)) - (-4 *2 (-1248 *3)))) + (|partial| -12 (-5 *2 (-641 (-949 *3))) (-4 *3 (-452)) + (-5 *1 (-360 *3 *4)) (-14 *4 (-641 (-1170))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-4 *4 (-1233 *3)) - (-4 *5 (-720 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1248 *5)))) + (|partial| -12 (-5 *2 (-641 (-777 *3 (-861 *4)))) (-4 *3 (-452)) + (-14 *4 (-641 (-1170))) (-5 *1 (-626 *3 *4))))) +(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-363) (-368) (-611 (-563)))) (-5 *1 (-542 *3 *2)) - (-4 *2 (-1248 *3)))) + (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) + (-4 *6 (-1060 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3014 *1) (|:| |upper| *1))) + (-4 *1 (-973 *4 *5 *3 *6))))) +(((*1 *2 *3 *4 *5 *6 *7 *6) + (|partial| -12 + (-5 *5 + (-2 (|:| |contp| *3) + (|:| -2267 (-641 (-2 (|:| |irr| *10) (|:| -2943 (-564))))))) + (-5 *6 (-641 *3)) (-5 *7 (-641 *8)) (-4 *8 (-847)) (-4 *3 (-307)) + (-4 *10 (-946 *3 *9 *8)) (-4 *9 (-790)) + (-5 *2 + (-2 (|:| |polfac| (-641 *10)) (|:| |correct| *3) + (|:| |corrfact| (-641 (-1166 *3))))) + (-5 *1 (-623 *8 *9 *3 *10)) (-5 *4 (-641 (-1166 *3)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *5)) (-4 *5 (-363)) (-5 *2 (-641 *6)) + (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-845)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) + (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) + (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5))))))) +(((*1 *2 *3 *1) + (-12 (|has| *1 (-6 -4411)) (-4 *1 (-602 *4 *3)) (-4 *4 (-1094)) + (-4 *3 (-1209)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(((*1 *1 *2 *3 *4) + (-12 (-5 *3 (-564)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-13 (-555) (-147))) - (-5 *1 (-1145 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) - (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-686 (-1214)))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) - (-5 *1 (-1153 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) - (-14 *4 (-1169)) (-14 *5 *3)))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1133))) ((*1 *1 *1 *1) (-4 *1 (-1133)))) (((*1 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) - (-4 *5 (-13 (-27) (-1193) (-430 *4))))) + (-12 (-5 *3 (-1043 *4 *5)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-14 *5 (-641 (-1170))) (-5 *2 (-641 (-641 (-1021 (-407 *4))))) + (-5 *1 (-1285 *4 *5 *6)) (-14 *6 (-641 (-1170))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-641 (-1021 (-407 *5))))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-949 *4))) + (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-641 (-1021 (-407 *4))))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-175)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-109))) (-5 *1 (-1079))))) +(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + ((*1 *1 *1 *1) (-4 *1 (-473))) + ((*1 *1 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-880)))) + ((*1 *1 *1) (-5 *1 (-968))) + ((*1 *1 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-5 *2 (-407 (-949 *4))) (-5 *1 (-921 *4 *5 *6 *3)) + (-4 *3 (-946 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *7)) (-4 *7 (-946 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-5 *2 (-685 (-407 (-949 *4)))) + (-5 *1 (-921 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-5 *2 (-641 (-407 (-949 *4)))) + (-5 *1 (-921 *4 *5 *6 *7))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-564)) (-5 *2 (-112)) (-5 *1 (-553))))) +(((*1 *1 *1) (-5 *1 (-112)))) +(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-561)) (-5 *3 (-564))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-859))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1244 *3 *4 *5)) (-4 *3 (-13 (-363) (-847))) + (-14 *4 (-1170)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1037)) (-5 *3 (-379))))) +(((*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) +(((*1 *1) (-4 *1 (-349))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-563)) (-4 *5 (-13 (-452) (-846) (-1034 *4) (-636 *4))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *5))))) + (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) + (-4 *4 (-13 (-556) (-847) (-147))) + (-5 *2 + (-2 (|:| |primelt| *5) (|:| |poly| (-641 (-1166 *5))) + (|:| |prim| (-1166 *5)))) + (-5 *1 (-432 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-556) (-847) (-147))) + (-5 *2 + (-2 (|:| |primelt| *3) (|:| |pol1| (-1166 *3)) + (|:| |pol2| (-1166 *3)) (|:| |prim| (-1166 *3)))) + (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) + ((*1 *2 *3 *4 *3 *4) + (-12 (-5 *3 (-949 *5)) (-5 *4 (-1170)) (-4 *5 (-13 (-363) (-147))) + (-5 *2 + (-2 (|:| |coef1| (-564)) (|:| |coef2| (-564)) + (|:| |prim| (-1166 *5)))) + (-5 *1 (-957 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-452) (-846) (-1034 *5) (-636 *5))) (-5 *5 (-563)) - (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-363) (-147))) + (-5 *2 + (-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 *5))) + (|:| |prim| (-1166 *5)))) + (-5 *1 (-957 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-563))) - (-4 *7 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-563))) - (-4 *3 (-13 (-27) (-1193) (-430 *7))) - (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-563)) (-4 *4 (-1045)) (-4 *1 (-1219 *4 *3)) - (-4 *3 (-1248 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-563)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1093)) (-4 *4 (-1093)) - (-4 *6 (-1093)) (-5 *2 (-1 *6 *5)) (-5 *1 (-679 *5 *4 *6))))) + (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-5 *5 (-1170)) + (-4 *6 (-13 (-363) (-147))) + (-5 *2 + (-2 (|:| -1762 (-641 (-564))) (|:| |poly| (-641 (-1166 *6))) + (|:| |prim| (-1166 *6)))) + (-5 *1 (-957 *6))))) (((*1 *2) (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) (-4 *3 (-367 *4)))) ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-629))))) -(((*1 *1 *1) (|partial| -4 *1 (-1144)))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-38 (-407 (-563)))) - (-4 *2 (-172))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *3 *6)) (-4 *4 (-556)) (-4 *5 (-790)) + (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-363)) (-5 *1 (-1022 *3 *2)) (-4 *2 (-652 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-5 *2 (-2 (|:| -4032 *3) (|:| -3440 (-641 *5)))) + (-5 *1 (-1022 *5 *3)) (-5 *4 (-641 *5)) (-4 *3 (-652 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-1087 *3)) (-5 *1 (-1085 *3)) (-4 *3 (-1208)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-941 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-767))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1149 *4)) (-5 *3 (-563)) (-4 *4 (-1045)) - (-5 *1 (-1153 *4)))) - ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-563)) (-5 *1 (-1249 *3 *4 *5)) (-4 *3 (-1045)) - (-14 *4 (-1169)) (-14 *5 *3)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-4 *3 (-1094)) + (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) + (-5 *2 (-641 (-1070 *3 *4 *5))) (-5 *1 (-1071 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-717)) (-5 *2 (-918)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-719)) (-5 *2 (-768))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *5)) - (-4 *5 (-13 (-27) (-1193) (-430 *4))))) + (-4 *5 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *4 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *4))))) + (-4 *3 (-13 (-27) (-1194) (-430 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-767)) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-407 (-564))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *5))))) + (-4 *3 (-13 (-27) (-1194) (-430 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-294 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-294 *3)) (-5 *5 (-767)) - (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-294 *3)) (-5 *5 (-407 (-564))) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-315 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 (-563))) (-5 *4 (-294 *6)) - (-4 *6 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *3 (-1 *6 (-564))) (-5 *4 (-294 *6)) + (-4 *6 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-563))) (-5 *4 (-294 *7)) (-5 *5 (-1224 (-767))) - (-4 *7 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *3 (-1 *7 (-564))) (-5 *4 (-294 *7)) (-5 *5 (-1226 (-564))) + (-4 *7 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1169)) (-5 *5 (-294 *3)) (-5 *6 (-1224 (-767))) - (-4 *3 (-13 (-27) (-1193) (-430 *7))) - (-4 *7 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-564))) + (-4 *3 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 (-52)) (-5 *1 (-459 *7 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1219 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1248 *3))))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-1 *8 (-407 (-564)))) (-5 *4 (-294 *8)) + (-5 *5 (-1226 (-407 (-564)))) (-5 *6 (-407 (-564))) + (-4 *8 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *7 *8)))) + ((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *4 (-1170)) (-5 *5 (-294 *3)) (-5 *6 (-1226 (-407 (-564)))) + (-5 *7 (-407 (-564))) (-4 *3 (-13 (-27) (-1194) (-430 *8))) + (-4 *8 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-52)) (-5 *1 (-459 *8 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) + (-4 *3 (-1046)) (-5 *1 (-594 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-595 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) + (-4 *3 (-1046)) (-4 *1 (-1219 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-768)) + (-5 *3 (-1150 (-2 (|:| |k| (-407 (-564))) (|:| |c| *4)))) + (-4 *4 (-1046)) (-4 *1 (-1240 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-4 *1 (-1250 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1150 (-2 (|:| |k| (-768)) (|:| |c| *3)))) + (-4 *3 (-1046)) (-4 *1 (-1250 *3))))) +(((*1 *2 *1 *3 *3 *3 *2) + (-12 (-5 *3 (-768)) (-5 *1 (-671 *2)) (-4 *2 (-1094))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-999)))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-887 *4 *3)) + (-4 *3 (-1209)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-52)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) + (-5 *1 (-262 *2)) (-4 *2 (-1209)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-52)) + (-5 *1 (-263))))) +(((*1 *1 *1 *1) (-4 *1 (-143))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-158 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) +(((*1 *2 *1) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) + ((*1 *2 *3 *2) + (-12 (-5 *3 (-641 (-641 *4))) (-5 *2 (-641 *4)) (-4 *4 (-307)) + (-5 *1 (-179 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 *8)) + (-5 *4 + (-641 + (-2 (|:| -4265 (-685 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-685 *7))))) + (-5 *5 (-768)) (-4 *8 (-1235 *7)) (-4 *7 (-1235 *6)) (-4 *6 (-349)) + (-5 *2 + (-2 (|:| -4265 (-685 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-685 *7)))) + (-5 *1 (-498 *6 *7 *8)))) + ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-563)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-564)))) ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563))))) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-685 *2)) (-5 *4 (-768)) + (-4 *2 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *5 (-1235 *2)) (-5 *1 (-499 *2 *5 *6)) (-4 *6 (-409 *2 *5))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-564)) (-4 *5 (-845)) (-4 *5 (-363)) + (-5 *2 (-768)) (-5 *1 (-942 *5 *6)) (-4 *6 (-1235 *5))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-3 (-407 (-949 *6)) (-1159 (-1170) (-949 *6)))) + (-5 *5 (-768)) (-4 *6 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *6))))) + (-5 *1 (-292 *6)) (-5 *4 (-685 (-407 (-949 *6)))))) + ((*1 *2 *3 *4) + (-12 + (-5 *3 + (-2 (|:| |eigval| (-3 (-407 (-949 *5)) (-1159 (-1170) (-949 *5)))) + (|:| |eigmult| (-768)) (|:| |eigvec| (-641 *4)))) + (-4 *5 (-452)) (-5 *2 (-641 (-685 (-407 (-949 *5))))) + (-5 *1 (-292 *5)) (-5 *4 (-685 (-407 (-949 *5))))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-1141 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *1 *1) (-5 *1 (-1058)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1235 *5)) + (-5 *1 (-724 *5 *2)) (-4 *5 (-363))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-4 *1 (-900 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) - (-5 *2 (-1 *5 *4)) (-5 *1 (-678 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) + (-12 + (-5 *3 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-768)) (|:| |poli| *7) + (|:| |polj| *7))) + (-4 *5 (-790)) (-4 *7 (-946 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-847)) + (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1166 *7)) (-5 *3 (-564)) (-4 *7 (-946 *6 *4 *5)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1046)) + (-5 *1 (-321 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) + (-5 *1 (-745))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) + (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) + (-4 *2 (-683 *3 *5 *6))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-349)) (-5 *2 (-1259 *1)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-685 *1)) (-4 *1 (-145)) (-4 *1 (-906)) + (-5 *2 (-1259 *1))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-307)) (-5 *1 (-179 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-911 *3)) (-4 *3 (-307))))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *3 (-847)) (-4 *3 (-1035 (-564))) + (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) (-4 *2 (-430 *3)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) + (-15 -1634 ((-1119 *3 (-610 $)) $)) + (-15 -3742 ($ (-1119 *3 (-610 $)))))))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-536) (-640 (-536)))) (-5 *1 (-114)))) - ((*1 *1) (-5 *1 (-577)))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-247 *4 *5)) - (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169)))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-767)) (-4 *2 (-1093)) - (-5 *1 (-673 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-525))))) -(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193)))))) -(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-563)))) + (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *2 *2 *2) + (|partial| -12 (-4 *3 (-363)) (-5 *1 (-893 *2 *3)) + (-4 *2 (-1235 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) + (-12 (-5 *4 (-641 (-112))) (-5 *5 (-685 (-225))) + (-5 *6 (-685 (-564))) (-5 *7 (-225)) (-5 *3 (-564)) (-5 *2 (-1032)) + (-5 *1 (-751))))) +(((*1 *2 *3) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) + (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *2 (-1264)) + (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1046)) (-4 *1 (-977 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-563))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-940 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-1046)) (-4 *1 (-1128 *3)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-940 *3)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + ((*1 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)) (-5 *3 (-225))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1046)) (-5 *2 (-641 *1)) (-4 *1 (-1128 *3))))) +(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-157))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-2 (|:| |ans| *7) (|:| -2427 *7) (|:| |sol?| (-112))) + (-564) *7)) + (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) + (-5 *3 (-407 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-574 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1093)) (-4 *5 (-1093)) - (-5 *2 (-1 *5)) (-5 *1 (-678 *4 *5))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) - (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-525))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *2 *1) (-12 (-4 *1 (-1245 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1208)) - (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *2 *7)) (-4 *6 (-1045)) - (-4 *7 (-238 *4 *6)) (-4 *2 (-238 *5 *6))))) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) + (-4 *3 (-13 (-1194) (-29 *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-678 *4 *3)) (-4 *4 (-1093)) - (-4 *3 (-1093))))) -(((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-640 (-1257 *4))) (-5 *1 (-366 *3 *4)) - (-4 *3 (-367 *4)))) - ((*1 *2) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) - (-5 *2 (-640 (-1257 *3)))))) -(((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-640 (-1023 *5 *6 *7 *3))) (-5 *1 (-1023 *5 *6 *7 *3)) - (-4 *3 (-1059 *5 *6 *7)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-640 *6)) (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *2)) (-4 *3 (-452)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) - ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-640 (-1139 *5 *6 *7 *3))) (-5 *1 (-1139 *5 *6 *7 *3)) - (-4 *3 (-1059 *5 *6 *7))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-640 (-778 *3))) (-5 *1 (-778 *3)) (-4 *3 (-555)) - (-4 *3 (-1045))))) + (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-999)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-768)) (-5 *5 (-641 *3)) (-4 *3 (-307)) (-4 *6 (-847)) + (-4 *7 (-790)) (-5 *2 (-112)) (-5 *1 (-623 *6 *7 *3 *8)) + (-4 *8 (-946 *3 *7 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) - (-5 *2 (-948 *5)) (-5 *1 (-940 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) - ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) -(((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1208)) - (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-1048 *4 *5 *6 *7 *2)) (-4 *6 (-1045)) - (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-767) *2)) (-5 *4 (-767)) (-4 *2 (-1093)) - (-5 *1 (-673 *2)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1 *3 (-767) *3)) (-4 *3 (-1093)) (-5 *1 (-677 *3))))) + (-12 + (-5 *3 + (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) + (-247 *4 (-407 (-564))))) + (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) - (-5 *2 (-1165 *3))))) -(((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8))))) -(((*1 *2 *1 *1) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-847)) + (-5 *2 (-2 (|:| -1762 (-564)) (|:| |var| (-610 *1)))) + (-4 *1 (-430 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-556)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1199 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) + (-4 *3 (-1094))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *2 (-641 (-1166 *4))) (-5 *3 (-1166 *4)) + (-4 *4 (-906)) (-5 *1 (-659 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) + (-5 *1 (-190))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *2 *1) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) + (-5 *2 (-1166 *3))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-363)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) + (-5 *1 (-763 *3 *4)) (-4 *3 (-705 *4)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *3 (-1046)) + (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-849 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-363)) (-4 *5 (-1046)) + (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-850 *5 *3)) + (-4 *3 (-849 *5))))) +(((*1 *2 *3 *4 *3 *4 *4 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) + (-5 *1 (-753))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| -3962 *3) (|:| |coef1| (-778 *3)) (|:| |coef2| (-778 *3)))) - (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1175))) (-5 *1 (-183))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *1)) (-5 *4 (-1170)) (-4 *1 (-27)) + (-5 *2 (-641 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1166 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-949 *1)) (-4 *1 (-27)) (-5 *2 (-641 *1)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-641 *1)) + (-4 *1 (-29 *4)))) + ((*1 *2 *1) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *2 (-641 *1)) (-4 *1 (-29 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) + (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))) +(((*1 *2 *3 *1) + (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1173)) (-5 *3 (-1170))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-112)) (-5 *5 (-564)) (-4 *6 (-363)) (-4 *6 (-368)) + (-4 *6 (-1046)) (-5 *2 (-641 (-641 (-685 *6)))) (-5 *1 (-1026 *6)) + (-5 *3 (-641 (-685 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1046)) + (-5 *2 (-641 (-641 (-685 *4)))) (-5 *1 (-1026 *4)) + (-5 *3 (-641 (-685 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) + (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) + (-5 *3 (-641 (-685 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-918)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046)) + (-5 *2 (-641 (-641 (-685 *5)))) (-5 *1 (-1026 *5)) + (-5 *3 (-641 (-685 *5)))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) +(((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *4 (-1 (-3 (-564) "failed") *5)) (-4 *5 (-1046)) + (-5 *2 (-564)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1235 *5)))) + ((*1 *2 *3 *4 *2 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) + (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1 (-3 (-564) "failed") *4)) (-4 *4 (-1046)) + (-5 *2 (-564)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *1 (-103 *3)) (-4 *3 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-191)) (-5 *3 (-564)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-780 *2)) (-4 *2 (-172)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-564))) (-5 *1 (-939)) (-5 *3 (-564))))) +(((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) + ((*1 *2 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349))))) (((*1 *2 *3) - (-12 (-5 *3 (-948 *5)) (-4 *5 (-1045)) (-5 *2 (-481 *4 *5)) - (-5 *1 (-940 *4 *5)) (-14 *4 (-640 (-1169)))))) + (-12 (-5 *3 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) + (-5 *2 (-407 (-564))) (-5 *1 (-1017 *4)) (-4 *4 (-1235 (-564)))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) (((*1 *2 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) -(((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-948 *6)) (-5 *4 (-1169)) - (-5 *5 (-839 *7)) - (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-4 *7 (-13 (-1193) (-29 *6))) (-5 *1 (-224 *6 *7)))) - ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1165 *6)) (-5 *4 (-839 *6)) - (-4 *6 (-13 (-1193) (-29 *5))) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-224 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-244 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1) (-5 *1 (-112)))) + (-12 (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) + (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *2)) (-4 *2 (-946 *3 *5 *4))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) + (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1213)) + (-4 *6 (-1235 (-407 *5))) + (-5 *2 + (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) + (|:| |gd| *5))) + (-4 *1 (-342 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) - (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) - ((*1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)) (-4 *2 (-307)))) - ((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) - (-4 *2 (-682 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1048 *2 *3 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *2 *4)) (-4 *4 (-307))))) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-847)) (-5 *1 (-1180 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-768)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-426 *4 *2)) (-4 *2 (-13 (-1194) (-29 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) (-4 *5 (-147)) + (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-637 (-564)))) + (-5 *2 (-316 *5)) (-5 *1 (-588 *5))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) + (-5 *5 (-112)) (-5 *2 (-1261)) (-5 *1 (-257))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *3)) + (-5 *1 (-974 *4 *5 *6 *3)) (-4 *3 (-1060 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-820)))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-677 *2)) (-4 *2 (-1093)))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1250 *4)) + (-4 *4 (-38 (-407 (-564)))) (-5 *2 (-1 (-1150 *4) (-1150 *4))) + (-5 *1 (-1252 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-889 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1094)) + (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-889 *4)) (-5 *3 (-641 (-1 (-112) *5))) (-4 *4 (-1094)) + (-4 *5 (-1209)) (-5 *1 (-887 *4 *5)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-889 *5)) (-5 *3 (-641 (-1170))) + (-5 *4 (-1 (-112) (-641 *6))) (-4 *5 (-1094)) (-4 *6 (-1209)) + (-5 *1 (-887 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1209)) (-4 *4 (-847)) + (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) (-4 *4 (-847)) + (-5 *1 (-934 *4 *2 *5)) (-4 *2 (-430 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-640 *5) (-640 *5))) (-5 *4 (-563)) - (-5 *2 (-640 *5)) (-5 *1 (-677 *5)) (-4 *5 (-1093))))) + (-12 (-5 *3 (-1170)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1209)) + (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-641 (-1 (-112) *5))) (-4 *5 (-1209)) + (-5 *2 (-316 (-564))) (-5 *1 (-935 *5)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1 (-112) (-641 *6))) + (-4 *6 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))) (-4 *4 (-1094)) + (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) + (-5 *1 (-1070 *4 *5 *6))))) +(((*1 *2 *3 *1) + (-12 + (-5 *2 + (-2 (|:| |cycle?| (-112)) (|:| -4037 (-768)) (|:| |period| (-768)))) + (-5 *1 (-1150 *4)) (-4 *4 (-1209)) (-5 *3 (-768))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1129))) (-5 *1 (-1084))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-449 *3 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1179))))) +(((*1 *2) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-768))))) (((*1 *2 *1) - (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-555)) - (-5 *2 (-1165 *3))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *8 (-1059 *5 *6 *7)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-768)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-768))))) +(((*1 *1 *1 *2 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-768)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-768)) (-4 *5 (-172)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 - (-2 (|:| |val| (-640 *8)) - (|:| |towers| (-640 (-1023 *5 *6 *7 *8))))) - (-5 *1 (-1023 *5 *6 *7 *8)) (-5 *3 (-640 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *8 (-1059 *5 *6 *7)) + (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) + (-247 *4 (-407 (-564))))) + (-5 *3 (-641 (-861 *4))) (-14 *4 (-641 (-1170))) (-14 *5 (-768)) + (-5 *1 (-505 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-112)) + (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-4 *3 (-13 (-27) (-1194) (-430 *6) (-10 -8 (-15 -3742 ($ *7))))) + (-4 *7 (-845)) + (-4 *8 + (-13 (-1237 *3 *7) (-363) (-1194) + (-10 -8 (-15 -4117 ($ $)) (-15 -3128 ($ $))))) (-5 *2 - (-2 (|:| |val| (-640 *8)) - (|:| |towers| (-640 (-1139 *5 *6 *7 *8))))) - (-5 *1 (-1139 *5 *6 *7 *8)) (-5 *3 (-640 *8))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3962 *3) (|:| |coef1| (-778 *3)))) - (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) + (-3 (|:| |%series| *8) + (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) + (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1152)) (-4 *9 (-980 *8)) + (-14 *10 (-1170))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-768)) (-4 *4 (-13 (-556) (-147))) + (-5 *1 (-1229 *4 *2)) (-4 *2 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 (-407 (-564)))) + (-5 *2 + (-641 + (-2 (|:| |outval| *4) (|:| |outmult| (-564)) + (|:| |outvect| (-641 (-685 *4)))))) + (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845)))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-918)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1166 *1)) + (-4 *1 (-329 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1166 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) + (-4 *2 (-1235 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-1166 *4)) + (-5 *1 (-528 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-1060 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) - (-5 *2 (-247 *4 *5)) (-5 *1 (-940 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517))))) -(((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-839 *4)) (-5 *3 (-609 *4)) (-5 *5 (-112)) - (-4 *4 (-13 (-1193) (-29 *6))) - (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-224 *6 *4))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) + (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-767)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6)))) + (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) + (-4 *4 (-13 (-556) (-847))) + (-4 *2 (-13 (-430 (-169 *4)) (-999) (-1194))) + (-5 *1 (-598 *4 *5 *2))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-847))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) ((*1 *2 *1) - (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-767)))) - ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-767)) (-5 *1 (-683 *4 *5 *6 *3)) - (-4 *3 (-682 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) + (-4 *3 (-556)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) - (-5 *2 (-767))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-858))) (-5 *1 (-114)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) + (|partial| -12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-1 (-858) (-640 (-858)))) (-5 *1 (-114)))) + (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) + (-4 *3 (-1094)))) ((*1 *2 *1) - (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-846) - (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 (*2 $)) - (-15 -2807 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-394)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502)))) - ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-706)))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1188)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1188))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) - (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-225)))) - ((*1 *1 *1 *1) - (-2811 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1208))) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1208))))) - ((*1 *1 *1 *1) (-4 *1 (-363))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-555)) (-4 *3 (-846)) - (-4 *1 (-430 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-473))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-618 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-722) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-722) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)) (-4 *2 (-363)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-657 *2 *4 *3)) (-4 *2 (-713 *4)) - (-4 *3 (|SubsetCategory| (-722) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *4 (-172)) (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4)) - (-4 *2 (|SubsetCategory| (-722) *4)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-862 *2 *3 *4 *5)) (-4 *2 (-363)) - (-4 *2 (-1045)) (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-767))) - (-14 *5 (-767)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1048 *3 *4 *2 *5 *6)) (-4 *2 (-1045)) - (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) + (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *3) + (|partial| -12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) + (-4 *3 (-1035 *2))))) +(((*1 *2 *1 *3 *3) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1209)) (-5 *2 (-1264))))) +(((*1 *2 *3) + (-12 (-5 *3 (-918)) + (-5 *2 + (-3 (-1166 *4) + (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114))))))) + (-5 *1 (-346 *4)) (-4 *4 (-349))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-556)) (-4 *2 (-1046)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-363)))) + (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1045)) (-4 *3 (-846)) - (-4 *4 (-789)) (-14 *6 (-640 *3)) - (-5 *1 (-1269 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-945 *2 *4 *3)) - (-14 *7 (-640 (-767))) (-14 *8 (-767)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1045)) - (-4 *3 (-842))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1093)) (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 *2))) - (-5 *2 (-888 *3)) (-5 *1 (-1069 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-882 *3) (-611 *2)))))) -(((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-640 *11)) - (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -1926 *11)))))) - (-5 *6 (-767)) - (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -1926 *11)))) - (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) - (-4 *11 (-1065 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) - (-4 *9 (-846)) (-5 *1 (-1063 *7 *8 *9 *10 *11)))) - ((*1 *2 *3 *4 *2 *5 *6) - (-12 - (-5 *5 - (-2 (|:| |done| (-640 *11)) - (|:| |todo| (-640 (-2 (|:| |val| *3) (|:| -1926 *11)))))) - (-5 *6 (-767)) - (-5 *2 (-640 (-2 (|:| |val| (-640 *10)) (|:| -1926 *11)))) - (-5 *3 (-640 *10)) (-5 *4 (-640 *11)) (-4 *10 (-1059 *7 *8 *9)) - (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-789)) - (-4 *9 (-846)) (-5 *1 (-1138 *7 *8 *9 *10 *11))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3962 *3) (|:| |coef2| (-778 *3)))) - (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-640 (-1169))) (-4 *5 (-1045)) - (-5 *2 (-481 *4 *5)) (-5 *1 (-940 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-517))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1151)) - (-4 *4 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1193) (-29 *4)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3) - (-12 (|has| *6 (-6 -4409)) (-4 *4 (-363)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-521 *4 *5 *6 *3)) - (-4 *3 (-682 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (|has| *9 (-6 -4409)) (-4 *4 (-555)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-4 *7 (-988 *4)) (-4 *8 (-373 *7)) - (-4 *9 (-373 *7)) (-5 *2 (-640 *6)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-682 *4 *5 *6)) - (-4 *10 (-682 *7 *8 *9)))) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556)))) + ((*1 *2 *3 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *1)))) + (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *1 *2) + (-12 (-5 *2 (-918)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) + (-4 *4 (-363)) (-14 *5 (-990 *3 *4))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4411)) (-4 *1 (-34)) (-5 *2 (-768)))) ((*1 *2 *1) - (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-4 *3 (-555)) (-5 *2 (-640 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *4 (-172)) (-4 *5 (-373 *4)) - (-4 *6 (-373 *4)) (-5 *2 (-640 *6)) (-5 *1 (-683 *4 *5 *6 *3)) - (-4 *3 (-682 *4 *5 *6)))) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-564)))) ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-555)) - (-5 *2 (-640 *7))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1207))) (-5 *3 (-1207)) (-5 *1 (-676))))) -(((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172))))) -(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-214 *2)) - (-4 *2 - (-13 (-846) - (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) - (-15 -2807 ((-1262) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-21))))) -(((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) - (-5 *2 - (-2 (|:| -2519 (-413 *4 (-407 *4) *5 *6)) (|:| |principalPart| *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |poly| *6) (|:| -3385 (-407 *6)) - (|:| |special| (-407 *6)))) - (-5 *1 (-723 *5 *6)) (-5 *3 (-407 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-640 *3)) (-5 *1 (-892 *3 *4)) - (-4 *3 (-1233 *4)))) - ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-767)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -2654 *3) (|:| -2665 *3))) (-5 *1 (-892 *3 *5)) - (-4 *3 (-1233 *5)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) - (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) - (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) - (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-640 *9)) (-5 *3 (-640 *8)) (-5 *4 (-112)) - (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) - (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-768)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-843))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3 *2 *4) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 (-247 *5 *6))) (-4 *6 (-452)) + (-5 *2 (-247 *5 *6)) (-14 *5 (-641 (-1170))) (-5 *1 (-629 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-546)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-684 (-407 (-563)))) - (-5 *2 - (-640 - (-2 (|:| |outval| *4) (|:| |outmult| (-563)) - (|:| |outvect| (-640 (-684 *4)))))) - (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844)))))) -(((*1 *2 *3 *2 *3) - (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) - ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *4 (-1169)) - (-5 *1 (-1172)))) - ((*1 *2 *3 *2 *3 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1172)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-1169)) (-5 *1 (-1173)))) - ((*1 *2 *3 *2 *1) - (-12 (-5 *2 (-437)) (-5 *3 (-640 (-1169))) (-5 *1 (-1173))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) + (-12 (-5 *3 (-641 *2)) (-5 *4 (-1 (-112) *2 *2)) (-5 *1 (-1210 *2)) + (-4 *2 (-1094)))) ((*1 *2 *3) - (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-327 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-516 *3 *4)) - (-14 *4 (-563))))) -(((*1 *1 *1) - (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1045)) (-14 *3 (-640 (-1169))))) - ((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) - (-14 *3 (-640 (-1169)))))) -(((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-563)) (-5 *1 (-1149 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1230 *4 *5)) (-5 *3 (-640 *5)) (-14 *4 (-1169)) - (-4 *5 (-363)) (-5 *1 (-919 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *5)) (-4 *5 (-363)) (-5 *2 (-1165 *5)) - (-5 *1 (-919 *4 *5)) (-14 *4 (-1169)))) - ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-640 *6)) (-5 *4 (-767)) (-4 *6 (-363)) - (-5 *2 (-407 (-948 *6))) (-5 *1 (-1046 *5 *6)) (-14 *5 (-1169))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-847)) + (-5 *1 (-1210 *2))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-948 (-563))) (-5 *2 (-330)) - (-5 *1 (-332)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-1085 (-948 (-563)))) (-5 *2 (-330)) - (-5 *1 (-332)))) - ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) - (-4 *3 (-1093))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-1151)) (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-214 *2)) - (-4 *2 - (-13 (-846) - (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 ((-1262) $)) - (-15 -2807 ((-1262) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1208)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)))) - ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) - (-4 *2 (-1233 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-939 (-225))) (-5 *1 (-1204)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-25))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) - (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *8 (-1060 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1063 *7 *8 *9 *3 *4)) (-4 *4 (-1065 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *3 (-1059 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-767)) (-5 *6 (-112)) (-4 *7 (-452)) (-4 *8 (-789)) - (-4 *9 (-846)) (-4 *3 (-1059 *7 *8 *9)) - (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1138 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *3 (-1059 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) + (-2 (|:| |val| (-641 *8)) + (|:| |towers| (-641 (-1024 *5 *6 *7 *8))))) + (-5 *1 (-1024 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *8 (-1060 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) + (-2 (|:| |val| (-641 *8)) + (|:| |towers| (-641 (-1140 *5 *6 *7 *8))))) + (-5 *1 (-1140 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(((*1 *1 *2) (-12 (-5 *2 (-816 *3)) (-4 *3 (-847)) (-5 *1 (-668 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) + (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-1070 *3 *4 *5))) (-4 *3 (-1094)) + (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) + (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3)))) + (-5 *1 (-1071 *3 *4 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-641 *4)) (-4 *4 (-363)) (-5 *2 (-1259 *4)) + (-5 *1 (-811 *4 *3)) (-4 *3 (-652 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-775 *4)) - (-4 *4 (-13 (-363) (-844)))))) + (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-5 *2 (-564)) + (-5 *1 (-443 *5 *3 *6)) (-4 *3 (-1235 *5)) + (-4 *6 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))))) + ((*1 *2 *3) + (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1235 *4)) + (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))))) +(((*1 *1 *1) + (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-723)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-4 *5 (-349)) (-5 *2 (-418 (-1166 (-1166 *5)))) + (-5 *1 (-1207 *5)) (-5 *3 (-1166 (-1166 *5)))))) +(((*1 *2 *1 *3 *3 *2) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1209)) + (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) + ((*1 *2 *1 *3 *2) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) + (-4 *2 (-1209))))) (((*1 *2 *3) - (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))) -(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) - (-14 *4 (-563))))) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) + (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1094)) (-4 *5 (-1094)) + (-5 *2 (-1 *5)) (-5 *1 (-679 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) - (-14 *4 (-640 (-1169))))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) - (-14 *4 (-640 (-1169)))))) -(((*1 *2 *1 *2) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1043))))) -(((*1 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-670 *3)) (-4 *3 (-1045)) - (-4 *3 (-1093))))) -(((*1 *1 *1) (-4 *1 (-173))) - ((*1 *1 *1) - (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *3 (-1059 *6 *7 *8)) + (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-5 *2 (-1152))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-955 (-1114))) + (-5 *1 (-346 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3 *4 *4 *2 *2 *2) + (-12 (-5 *2 (-564)) + (-5 *3 + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-768)) (|:| |poli| *4) + (|:| |polj| *4))) + (-4 *6 (-790)) (-4 *4 (-946 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-847)) + (-5 *1 (-449 *5 *6 *7 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1135 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *6 (-1235 *5)) + (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4032 *3)))) + (-5 *1 (-806 *5 *6 *3 *7)) (-4 *3 (-652 *6)) + (-4 *7 (-652 (-407 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *6 (-1235 *5)) + (-5 *2 (-641 (-2 (|:| |poly| *6) (|:| -4032 (-650 *6 (-407 *6)))))) + (-5 *1 (-809 *5 *6)) (-5 *3 (-650 *6 (-407 *6)))))) +(((*1 *2 *3 *4 *5 *5) + (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *7 (-897 *6)) + (-5 *2 (-685 *7)) (-5 *1 (-688 *6 *7 *3 *4)) (-4 *3 (-373 *7)) + (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4411))))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4412)) (-4 *1 (-489 *3)) + (-4 *3 (-1209))))) +(((*1 *2 *3 *3) + (-12 (|has| *2 (-6 (-4413 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) + (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) + (-4 *4 (-683 *2 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) + (-5 *1 (-807 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1063 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-767)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *3 (-1059 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1138 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) + (-12 (-5 *3 (-649 (-407 *6))) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-5 *2 (-2 (|:| -4265 (-641 (-407 *6))) (|:| -2069 (-685 *5)))) + (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) + (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-684 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) - ((*1 *2 *3) - (-12 (-4 *4 (-172)) (-4 *2 (-1233 *4)) (-5 *1 (-177 *4 *2 *3)) - (-4 *3 (-720 *4 *2)))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) + (-5 *1 (-807 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 (-407 (-948 *5)))) (-5 *4 (-1169)) - (-5 *2 (-948 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))) - ((*1 *2 *3) - (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-5 *2 (-948 *4)) - (-5 *1 (-292 *4)) (-4 *4 (-452)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-684 (-169 (-407 (-563))))) - (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *4)) - (-4 *4 (-13 (-363) (-844))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *4 (-1169)) - (-5 *2 (-948 (-169 (-407 (-563))))) (-5 *1 (-760 *5)) - (-4 *5 (-13 (-363) (-844))))) + (-12 (-5 *3 (-650 *6 (-407 *6))) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-5 *2 (-2 (|:| -4265 (-641 (-407 *6))) (|:| -2069 (-685 *5)))) + (-5 *1 (-807 *5 *6)) (-5 *4 (-641 (-407 *6)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-3 (-112) "failed")) (-4 *3 (-452)) (-4 *4 (-847)) + (-4 *5 (-790)) (-5 *1 (-984 *3 *4 *5 *6)) (-4 *6 (-946 *3 *5 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-2 (|:| -4127 *4) (|:| -2266 (-564))))) + (-4 *4 (-1235 (-564))) (-5 *2 (-734 (-768))) (-5 *1 (-442 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *2 (-948 (-407 (-563)))) - (-5 *1 (-775 *4)) (-4 *4 (-13 (-363) (-844))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 (-407 (-563)))) (-5 *4 (-1169)) - (-5 *2 (-948 (-407 (-563)))) (-5 *1 (-775 *5)) - (-4 *5 (-13 (-363) (-844)))))) + (-12 (-5 *3 (-418 *5)) (-4 *5 (-1235 *4)) (-4 *4 (-1046)) + (-5 *2 (-734 (-768))) (-5 *1 (-444 *4 *5))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-563)) (-5 *1 (-938))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) (-14 *4 *2)))) + (-12 (-4 *1 (-836)) + (-5 *3 + (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) + (|:| |lb| (-641 (-840 (-225)))) (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-840 (-225)))))) + (-5 *2 (-1032)))) + ((*1 *2 *3) + (-12 (-4 *1 (-836)) + (-5 *3 + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) + (-5 *2 (-1032))))) +(((*1 *1 *2) (-12 (-5 *1 (-1195 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-1195 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *3 (-641 (-1195 *2))) (-5 *1 (-1195 *2)) (-4 *2 (-1094))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) +(((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225)))))) (((*1 *1 *2) - (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1045) (-846))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-563)) (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3)) - (-4 *3 (-1208))))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043))))) -(((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-767)) (-5 *1 (-670 *2)) (-4 *2 (-1093))))) + (-12 (-5 *2 (-918)) (-4 *1 (-238 *3 *4)) (-4 *4 (-1046)) + (-4 *4 (-1209)))) + ((*1 *1 *2) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-4 *5 (-238 (-2641 *3) (-768))) + (-14 *6 + (-1 (-112) (-2 (|:| -1495 *2) (|:| -2515 *5)) + (-2 (|:| -1495 *2) (|:| -2515 *5)))) + (-5 *1 (-461 *3 *4 *2 *5 *6 *7)) (-4 *2 (-847)) + (-4 *7 (-946 *4 *5 (-861 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205))))) (((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-5 *2 (-1151))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *3 (-1059 *6 *7 *8)) - (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1063 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-5 *2 - (-2 (|:| |done| (-640 *4)) - (|:| |todo| (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))))) - (-5 *1 (-1138 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))) + (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) + (|:| |c2| (-407 *5)) (|:| |deg| (-768)))) + (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1235 (-407 *5)))))) +(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-615)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 *1)) (-4 *1 (-430 *4)) + (-4 *4 (-847)))) + ((*1 *1 *2 *1 *1 *1 *1) + (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) + ((*1 *1 *2 *1 *1 *1) + (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847))))) +(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) + ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) + ((*1 *2 *1 *3 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3) (-12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *2 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4 *5 *6) + (-12 (-5 *6 (-918)) (-4 *5 (-307)) (-4 *3 (-1235 *5)) + (-5 *2 (-2 (|:| |plist| (-641 *3)) (|:| |modulo| *5))) + (-5 *1 (-460 *5 *3)) (-5 *4 (-641 *3))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-1259 *6)) (-5 *1 (-336 *3 *4 *5 *6)) + (-4 *6 (-342 *3 *4 *5))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1235 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) - (-5 *2 (-640 (-767))) (-5 *1 (-774 *3 *4 *5 *6 *7)) - (-4 *3 (-1233 *6)) (-4 *7 (-945 *6 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560)))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-847) (-556)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) +(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *2) + (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1235 *4)) + (-5 *1 (-774 *3 *4 *5 *2 *6)) (-4 *2 (-1235 *5)) (-14 *6 (-918)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) + ((*1 *1 *1) (-12 (-4 *1 (-1278 *2)) (-4 *2 (-363)) (-4 *2 (-368))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) + ((*1 *1 *1 *1) (-4 *1 (-452))) ((*1 *2 *3) - (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-327 *3)) (-4 *3 (-1208)))) + (-12 (-5 *3 (-641 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1235 (-564))))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-768))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-307)) + (-5 *1 (-913 *3 *4 *5 *2)) (-4 *2 (-946 *5 *3 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *6 *4 *5)) + (-5 *1 (-913 *4 *5 *6 *2)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-307)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1166 *6)) (-4 *6 (-946 *5 *3 *4)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *5 (-307)) (-5 *1 (-913 *3 *4 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-1166 *7))) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-307)) (-5 *2 (-1166 *7)) (-5 *1 (-913 *4 *5 *6 *7)) + (-4 *7 (-946 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-918))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-452)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) + (-4 *2 (-1235 *3)))) + ((*1 *2 *2 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-452))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) + (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4411) (-6 -4412)))))) ((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1208)) - (-14 *4 (-563))))) -(((*1 *1 *1) - (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1045) (-846))) - (-14 *3 (-640 (-1169)))))) + (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) + (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4411) (-6 -4412))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-180)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-311)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-967)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-991)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1033)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1068))))) (((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) - (-5 *2 (-839 *4)) (-5 *1 (-313 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) - (-14 *6 *4))) - ((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) - (-5 *2 (-839 *4)) (-5 *1 (-1243 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1193) (-430 *3))) (-14 *5 (-1169)) - (-14 *6 *4)))) -(((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043))))) -(((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1169)) (-5 *1 (-670 *3)) (-4 *3 (-1093))))) + (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-5 *2 (-1166 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927))))) (((*1 *2 *1) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) - (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) - (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1233 *9)) (-4 *7 (-789)) (-4 *8 (-846)) (-4 *9 (-307)) - (-4 *10 (-945 *9 *7 *8)) + (-12 (-5 *2 - (-2 (|:| |deter| (-640 (-1165 *10))) - (|:| |dterm| - (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-640 *6)) (|:| |nlead| (-640 *10)))) - (-5 *1 (-774 *6 *7 *8 *9 *10)) (-5 *3 (-1165 *10)) (-5 *4 (-640 *6)) - (-5 *5 (-640 *10))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-191)) (-5 *3 (-563)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-779 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))) -(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-846))))) + (-641 + (-2 + (|:| -1327 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| -2423 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3089 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| + "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated")))))))) + (-5 *1 (-559)))) + ((*1 *2 *1) + (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) + (-5 *2 (-641 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1152))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-379)) (-5 *1 (-1058))))) +(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-1088 (-225))))) + ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-1088 (-225)))))) +(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1169)) (-5 *6 (-112)) - (-4 *7 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-4 *3 (-13 (-1193) (-955) (-29 *7))) + (-12 (-5 *5 (-610 *4)) (-5 *6 (-1170)) + (-4 *4 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) (-5 *2 - (-3 (|:| |f1| (-839 *3)) (|:| |f2| (-640 (-839 *3))) - (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-219 *7 *3)) (-5 *5 (-839 *3))))) + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) + (-5 *1 (-566 *7 *4 *3)) (-4 *3 (-652 *4)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *5 *3 *6 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-169 (-225))) (-5 *6 (-1152)) + (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))) (((*1 *2 *1) - (|partial| -12 - (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) - (-5 *2 - (-2 - (|:| |%term| - (-2 (|:| |%coef| (-1242 *4 *5 *6)) - (|:| |%expon| (-319 *4 *5 *6)) - (|:| |%expTerms| - (-640 (-2 (|:| |k| (-407 (-563))) (|:| |c| *4)))))) - (|:| |%type| (-1151)))) - (-5 *1 (-1243 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) - (-14 *5 (-1169)) (-14 *6 *4)))) -(((*1 *1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-563))) (-5 *1 (-1043)) - (-5 *3 (-563))))) + (-12 (-4 *1 (-1097 *3 *2 *4 *5 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-744))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1046)) (-5 *2 (-564)) (-5 *1 (-443 *4 *3 *5)) + (-4 *3 (-1235 *4)) + (-4 *5 (-13 (-404) (-1035 *4) (-363) (-1194) (-284)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1152)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-263))))) +(((*1 *2 *1) (-12 (-4 *1 (-509 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-847))))) +(((*1 *1 *1 *1) (-5 *1 (-162))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-162))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1174))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847))))) +(((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-545)))) + ((*1 *1 *1) (-4 *1 (-1055)))) (((*1 *2 *1) - (-12 (-5 *2 (-1257 (-767))) (-5 *1 (-670 *3)) (-4 *3 (-1093))))) -(((*1 *2 *1 *2) - (-12 (-4 *1 (-364 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *9 (-1065 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) - (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1063 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *9)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-452)) (-4 *6 (-789)) - (-4 *7 (-846)) (-5 *2 (-767)) (-5 *1 (-1138 *5 *6 *7 *8 *9))))) + (-12 (-4 *1 (-253 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-847)) + (-4 *5 (-790)) (-4 *2 (-266 *4))))) +(((*1 *2 *1 *3 *2) + (-12 (-5 *3 (-768)) (-5 *1 (-213 *4 *2)) (-14 *4 (-918)) + (-4 *2 (-1094))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) + ((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-685 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) + (-5 *2 (-641 (-2 (|:| |k| *4) (|:| |c| *3)))))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |k| (-890 *3)) (|:| |c| *4)))) + (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) + (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-668 *3))) (-5 *1 (-890 *3)) (-4 *3 (-847))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-741 *3)) (-4 *3 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1174))))) +(((*1 *1 *1) (-5 *1 (-1058)))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) - (-5 *2 (-640 *3)) (-5 *1 (-773 *4 *5 *6 *3 *7)) (-4 *3 (-1233 *6)) - (-14 *7 (-917))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))) -(((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-767)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-767)) (-4 *5 (-172)))) - ((*1 *2 *2 *3) (-12 + (-5 *3 + (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) + (-5 *2 (-641 (-225))) (-5 *1 (-305))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) + (-4 *4 (-172))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-373 *2)) + (-4 *5 (-373 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-768)) (-4 *2 (-1094)) (-5 *1 (-213 *4 *2)) + (-14 *4 (-918)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-288 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *2 *6 *7)) + (-4 *6 (-238 *5 *2)) (-4 *7 (-238 *4 *2)) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-5 *1 (-1028))))) +(((*1 *2 *3) + (-12 (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *2 - (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) - (-247 *4 (-407 (-563))))) - (-5 *3 (-640 (-860 *4))) (-14 *4 (-640 (-1169))) (-14 *5 (-767)) - (-5 *1 (-505 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144))))) -(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-217))))) + (-2 (|:| |glbase| (-641 (-247 *4 *5))) (|:| |glval| (-641 (-564))))) + (-5 *1 (-629 *4 *5)) (-5 *3 (-641 (-247 *4 *5)))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-52))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) + (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-452)))) + ((*1 *1 *1 *1) (-4 *1 (-452)))) (((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) - (-5 *2 (-407 (-563)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1095 *4)) (-4 *4 (-1093)) (-5 *2 (-1 *4)) - (-5 *1 (-1013 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1087 (-563))) (-5 *2 (-1 (-563))) (-5 *1 (-1043))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) - (-4 *2 - (-13 (-402) - (-10 -7 (-15 -2062 (*2 *4)) (-15 -3267 ((-917) *2)) - (-15 -3288 ((-1257 *2) (-917))) (-15 -1772 (*2 *2))))) - (-5 *1 (-356 *2 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1137)))) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) + (-5 *2 (-1166 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-1194)))) + ((*1 *2 *1) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-610 *3)) (-4 *3 (-847))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-172)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-1046))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-974 *3 *4 *5 *6)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-641 *7)) (-5 *3 (-112)) (-4 *7 (-1060 *4 *5 *6)) + (-4 *4 (-452)) (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *1 (-974 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) - (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-767)) (-5 *1 (-852 *2)) (-4 *2 (-172)))) + (-12 (-5 *3 (-1166 (-949 *6))) (-4 *6 (-556)) + (-4 *2 (-946 (-407 (-949 *6)) *5 *4)) (-5 *1 (-729 *5 *4 *6 *2)) + (-4 *5 (-790)) + (-4 *4 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $)))))))) +(((*1 *2 *2) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) + (-5 *1 (-176 *3))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1032)) + (-5 *1 (-746))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *5 *5 *4 *6) + (-12 (-5 *4 (-564)) (-5 *6 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-785))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1244 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) + (-4 *3 (-13 (-363) (-847))) (-14 *4 (-1170)) (-14 *5 *3))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1094)) (-5 *1 (-710 *3 *2 *4)) (-4 *3 (-847)) + (-14 *4 + (-1 (-112) (-2 (|:| -1495 *3) (|:| -2515 *2)) + (-2 (|:| -1495 *3) (|:| -2515 *2))))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1235 *6)) + (-4 *6 (-13 (-363) (-147) (-1035 *4))) (-5 *4 (-564)) + (-5 *2 + (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-112)))) + (|:| -4032 + (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) + (|:| |beta| *3))))) + (-5 *1 (-1012 *6 *3))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-871)) (-5 *3 (-641 (-263))) (-5 *1 (-261))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561)))) ((*1 *2 *3) - (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563))))) + (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2448 *3) (|:| |coef1| (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) +(((*1 *2 *3) + (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-887 *4 *5)) (-4 *5 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1160))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) + (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 + *4 *6 *4) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) (-5 *6 (-671 (-225))) + (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-747))))) +(((*1 *2 *1 *3) + (-12 (-4 *1 (-342 *4 *3 *5)) (-4 *4 (-1213)) (-4 *3 (-1235 *4)) + (-4 *5 (-1235 (-407 *3))) (-5 *2 (-112)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-768)) (-5 *3 (-112)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918))))) (((*1 *2 *3) - (-12 (-14 *4 (-640 (-1169))) (-14 *5 (-767)) + (-12 (-5 *3 (-294 (-949 (-564)))) (-5 *2 - (-640 - (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) - (-247 *4 (-407 (-563)))))) - (-5 *1 (-505 *4 *5)) + (-2 (|:| |varOrder| (-641 (-1170))) + (|:| |inhom| (-3 (-641 (-1259 (-768))) "failed")) + (|:| |hom| (-641 (-1259 (-768)))))) + (-5 *1 (-236))))) +(((*1 *1 *1 *1 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4284 *4))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217))))) +(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-5 *2 (-968)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1009)) (-5 *2 (-859))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *1 *1) (-4 *1 (-35))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 - (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) - (-247 *4 (-407 (-563)))))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-112)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1217 *3))))) -(((*1 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-954 (-1165 *4))) (-5 *1 (-357 *4)) - (-5 *3 (-1165 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-846)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-899 *3)) (-4 *3 (-1093)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) -(((*1 *1 *1) (-4 *1 (-1137)))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1151)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *4 (-1059 *6 *7 *8)) (-5 *2 (-1262)) - (-5 *1 (-772 *6 *7 *8 *4 *5)) (-4 *5 (-1065 *6 *7 *8 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-917)) (-5 *1 (-1026 *2)) - (-4 *2 (-13 (-1093) (-10 -8 (-15 -3027 ($ $ $)))))))) -(((*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563)))) + (-641 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) + (|:| |xpnt| (-564))))) + (-4 *2 (-556)) (-5 *1 (-418 *2)))) ((*1 *2 *3) - (-12 (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-938)) (-5 *3 (-563))))) -(((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) - ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) - ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694))))) -(((*1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3) (-12 (-5 *3 - (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) - (-247 *4 (-407 (-563))))) - (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1233 *4))))) + (-2 (|:| |contp| (-564)) + (|:| -2267 (-641 (-2 (|:| |irr| *4) (|:| -2943 (-564))))))) + (-4 *4 (-1235 (-564))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-845))) (-5 *1 (-181 *3 *2)) + (-4 *2 (-1235 (-169 *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1186 *4 *5)) + (-4 *4 (-1094)) (-4 *5 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-4 *7 (-1235 (-407 *6))) + (-5 *2 (-2 (|:| |answer| *3) (|:| -3539 *3))) + (-5 *1 (-562 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |answer| (-407 *6)) (|:| -3539 (-407 *6)) + (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) + (-5 *1 (-563 *5 *6)) (-5 *3 (-407 *6))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1240 *3 *2)) (-4 *3 (-1045)) - (-4 *2 (-1217 *3))))) + (-12 (-4 *3 (-1209)) (-5 *2 (-641 *1)) (-4 *1 (-1007 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-128))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) + (-5 *2 + (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) + (-5 *1 (-1123 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-13 (-307) (-847) (-147))) + (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1123 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-407 (-949 *5)))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *5)))) + (-5 *1 (-1123 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-294 (-407 (-949 *4)))) + (-4 *4 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-294 (-316 *4)))) + (-5 *1 (-1123 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-307) (-847) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-407 (-949 *4)))) + (-4 *4 (-13 (-307) (-847) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-294 (-407 (-949 *5))))) (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-307) (-847) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1123 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) + (-4 *4 (-13 (-307) (-847) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *4))))) (-5 *1 (-1123 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)))) - ((*1 *1) (-4 *1 (-1144)))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) - ((*1 *1 *1) (-4 *1 (-1137)))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-1283 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-172)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-816 *3)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-1046)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-940 *5)) (-4 *5 (-1046)) (-5 *2 (-768)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-918)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-768))) (-5 *3 (-768)) (-5 *1 (-1158 *4 *5)) + (-14 *4 (-918)) (-4 *5 (-1046)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-768))) (-5 *3 (-940 *5)) (-4 *5 (-1046)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))))) - ((*1 *1 *1) (-5 *1 (-379))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-772 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 (-888 *6))) - (-5 *5 (-1 (-885 *6 *8) *8 (-888 *6) (-885 *6 *8))) (-4 *6 (-1093)) - (-4 *8 (-13 (-1045) (-611 (-888 *6)) (-1034 *7))) - (-5 *2 (-885 *6 *8)) (-4 *7 (-13 (-1045) (-846))) - (-5 *1 (-937 *6 *7 *8))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-504 (-407 (-563)) (-240 *5 (-767)) (-860 *4) - (-247 *4 (-407 (-563))))) - (-14 *4 (-640 (-1169))) (-14 *5 (-767)) (-5 *2 (-112)) - (-5 *1 (-505 *4 *5))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1233 *4))))) + (-12 (-4 *3 (-612 (-889 *3))) (-4 *3 (-883 *3)) + (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-612 (-889 *3))) (-4 *2 (-883 *3)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) + (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-307)) (-5 *1 (-696 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-918)) (-5 *2 (-1166 *3)) (-5 *1 (-1183 *3)) + (-4 *3 (-363))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-768)) (-4 *5 (-556)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-966 *5 *3)) (-4 *3 (-1235 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-917)) (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-788)))) + (-12 (-5 *2 (-918)) (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-789)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1238 *3)) (-4 *3 (-1045))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) -(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) + (-12 (-5 *2 (-407 (-564))) (-4 *1 (-1240 *3)) (-4 *3 (-1046))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -1762 *3) (|:| |gap| (-768)) (|:| -1935 (-779 *3)) + (|:| -1363 (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-1046)))) + ((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) + (-5 *2 + (-2 (|:| -1762 *1) (|:| |gap| (-768)) (|:| -1935 *1) + (|:| -1363 *1))) + (-4 *1 (-1060 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1022 *3)) (-4 *3 (-1208))))) -(((*1 *1 *1) (-4 *1 (-626))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-627 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998) (-1193)))))) -(((*1 *1) (-5 *1 (-614)))) -(((*1 *1 *1) (-4 *1 (-1137)))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *2 (-1059 *4 *5 *6)) (-5 *1 (-772 *4 *5 *6 *2 *3)) - (-4 *3 (-1065 *4 *5 *6 *2))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 *5 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) - (-4 *3 (-166 *6)) (-4 (-948 *6) (-882 *5)) - (-4 *6 (-13 (-882 *5) (-172))) (-5 *1 (-178 *5 *6 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-885 *4 *1)) (-5 *3 (-888 *4)) (-4 *1 (-882 *4)) - (-4 *4 (-1093)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 *5 *6)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) - (-4 *6 (-13 (-1093) (-1034 *3))) (-4 *3 (-882 *5)) - (-5 *1 (-927 *5 *3 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) - (-4 *3 (-13 (-430 *6) (-611 *4) (-882 *5) (-1034 (-609 $)))) - (-5 *4 (-888 *5)) (-4 *6 (-13 (-555) (-846) (-882 *5))) - (-5 *1 (-928 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 (-563) *3)) (-5 *4 (-888 (-563))) (-4 *3 (-545)) - (-5 *1 (-929 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 *5 *6)) (-5 *3 (-609 *6)) (-4 *5 (-1093)) - (-4 *6 (-13 (-846) (-1034 (-609 $)) (-611 *4) (-882 *5))) - (-5 *4 (-888 *5)) (-5 *1 (-930 *5 *6)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-881 *5 *6 *3)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) - (-4 *6 (-882 *5)) (-4 *3 (-661 *6)) (-5 *1 (-931 *5 *6 *3)))) - ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-885 *6 *3) *8 (-888 *6) (-885 *6 *3))) - (-4 *8 (-846)) (-5 *2 (-885 *6 *3)) (-5 *4 (-888 *6)) - (-4 *6 (-1093)) (-4 *3 (-13 (-945 *9 *7 *8) (-611 *4))) - (-4 *7 (-789)) (-4 *9 (-13 (-1045) (-846) (-882 *6))) - (-5 *1 (-932 *6 *7 *8 *9 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) - (-4 *3 (-13 (-945 *8 *6 *7) (-611 *4))) (-5 *4 (-888 *5)) - (-4 *7 (-882 *5)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *8 (-13 (-1045) (-846) (-882 *5))) - (-5 *1 (-932 *5 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 *5 *3)) (-4 *5 (-1093)) (-4 *3 (-988 *6)) - (-4 *6 (-13 (-555) (-882 *5) (-611 *4))) (-5 *4 (-888 *5)) - (-5 *1 (-935 *5 *6 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-885 *5 (-1169))) (-5 *3 (-1169)) (-5 *4 (-888 *5)) - (-4 *5 (-1093)) (-5 *1 (-936 *5)))) - ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-640 (-888 *7))) (-5 *5 (-1 *9 (-640 *9))) - (-5 *6 (-1 (-885 *7 *9) *9 (-888 *7) (-885 *7 *9))) (-4 *7 (-1093)) - (-4 *9 (-13 (-1045) (-611 (-888 *7)) (-1034 *8))) - (-5 *2 (-885 *7 *9)) (-5 *3 (-640 *9)) (-4 *8 (-13 (-1045) (-846))) - (-5 *1 (-937 *7 *8 *9))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 + (-2 (|:| -1762 *1) (|:| |gap| (-768)) (|:| -1935 *1) + (|:| -1363 *1))) + (-4 *1 (-1060 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *3 (-1060 *6 *7 *8)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1064 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 + (-2 (|:| |done| (-641 *4)) + (|:| |todo| (-641 (-2 (|:| |val| (-641 *3)) (|:| -2084 *4)))))) + (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1103 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) + (-5 *1 (-176 *3))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1250 *4)) (-5 *1 (-1252 *4 *2)) + (-4 *4 (-38 (-407 (-564))))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-768))))) (((*1 *2 *3) - (-12 (-4 *4 (-349)) - (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -1404 *3)))) - (-5 *1 (-216 *4 *3)) (-4 *3 (-1233 *4))))) + (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 + (-2 (|:| |func| *3) (|:| |kers| (-641 (-610 *3))) + (|:| |vals| (-641 *3)))) + (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) (((*1 *2 *1) - (-12 (-4 *3 (-1093)) - (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) - (-5 *2 (-640 (-1069 *3 *4 *5))) (-5 *1 (-1070 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))))) -(((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) - (|:| |xpnt| (-563)))) - (-4 *4 (-13 (-1233 *3) (-555) (-10 -8 (-15 -1647 ($ $ $))))) - (-4 *3 (-555)) (-5 *1 (-1236 *3 *4))))) -(((*1 *1) (-5 *1 (-157))) - ((*1 *2 *1) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))) + (-641 + (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) + (|:| |xpnt| (-564))))) + (-5 *1 (-418 *3)) (-4 *3 (-556)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *4 (-768)) (-4 *3 (-349)) (-4 *5 (-1235 *3)) + (-5 *2 (-641 (-1166 *3))) (-5 *1 (-498 *3 *5 *6)) + (-4 *6 (-1235 *5))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1079))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-1224 (-563)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-491)) (-5 *4 (-950)) (-5 *2 (-686 (-533))) - (-5 *1 (-533)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-950)) (-4 *3 (-1093)) (-5 *2 (-686 *1)) - (-4 *1 (-763 *3))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1093) (-1034 *5))) - (-4 *5 (-882 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-927 *4 *5 *6))))) + (-12 (-5 *3 (-564)) (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1046)) + (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-946 *2 *4 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-1 (-112) *8))) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-2 (|:| |goodPols| (-641 *8)) (|:| |badPols| (-641 *8)))) + (-5 *1 (-974 *5 *6 *7 *8)) (-5 *4 (-641 *8))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1) (-5 *1 (-859)))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-641 (-962))) (-5 *1 (-109))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 (-641 *6))) (-4 *6 (-946 *3 *5 *4)) + (-4 *3 (-13 (-307) (-147))) (-4 *4 (-13 (-847) (-612 (-1170)))) + (-4 *5 (-790)) (-5 *1 (-921 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379)))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1259 *4)) (-4 *4 (-637 (-564))) + (-5 *2 (-1259 (-407 (-564)))) (-5 *1 (-1286 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) - (-14 *5 *3))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1087 (-839 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-305)))) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1259 (-3 (-468) "undefined"))) (-5 *1 (-1260))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)) (-4 *3 (-172)))) + ((*1 *2 *3 *3) + (-12 (-4 *2 (-556)) (-5 *1 (-966 *2 *3)) (-4 *3 (-1235 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-556)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) + (-12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-172))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-349)) - (-5 *2 - (-2 (|:| |cont| *5) - (|:| -2524 (-640 (-2 (|:| |irr| *3) (|:| -2581 (-563))))))) - (-5 *1 (-216 *5 *3)) (-4 *3 (-1233 *5))))) -(((*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858)))))) -(((*1 *1 *1) - (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-452)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *1)))) - (-4 *1 (-1065 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1212))) - ((*1 *2 *2) - (-12 (-4 *3 (-555)) (-5 *1 (-1236 *3 *2)) - (-4 *2 (-13 (-1233 *3) (-555) (-10 -8 (-15 -1647 ($ $ $)))))))) -(((*1 *2) (-12 (-4 *1 (-1040 *2)) (-4 *2 (-23))))) -(((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) + (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) + (-4 *8 (-946 *5 *7 *6)) (-4 *5 (-13 (-307) (-147))) + (-4 *6 (-13 (-847) (-612 (-1170)))) (-4 *7 (-790)) (-5 *2 (-112)) + (-5 *1 (-921 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-838)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-837)))) + ((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) + ((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-641 (-379))) (-5 *5 (-641 (-840 (-379)))) + (-5 *6 (-641 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1032)) + (-5 *1 (-837)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) + (-5 *5 (-641 (-840 (-379)))) (-5 *2 (-1032)) (-5 *1 (-837)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 (-379))) (-5 *4 (-641 (-379))) (-5 *2 (-1032)) + (-5 *1 (-837)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) + (-5 *2 (-1032)) (-5 *1 (-837))))) (((*1 *2 *1) - (-12 + (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *4)) (-5 *1 (-882 *3 *4 *5)) + (-4 *3 (-1094)) (-4 *5 (-662 *4))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-330))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-949 (-564))))) + (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-845) (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-294 (-407 (-949 (-564)))))) + (-5 *2 (-641 (-641 (-294 (-949 *4))))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-845) (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 (-294 (-949 *4)))) + (-5 *1 (-380 *4)) (-4 *4 (-13 (-845) (-363))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-407 (-949 (-564))))) + (-5 *2 (-641 (-294 (-949 *4)))) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-845) (-363))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1170)) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-4 *4 (-13 (-29 *6) (-1194) (-956))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -4265 (-641 *4)))) + (-5 *1 (-648 *6 *4 *3)) (-4 *3 (-652 *4)))) + ((*1 *2 *3 *2 *4 *2 *5) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *2)) + (-4 *2 (-13 (-29 *6) (-1194) (-956))) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-648 *6 *2 *3)) (-4 *3 (-652 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) (-5 *2 - (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") - (|:| |Conditional| "conditional") (|:| |Return| "return") - (|:| |Block| "block") (|:| |Comment| "comment") - (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") - (|:| |Repeat| "repeat") (|:| |Goto| "goto") - (|:| |Continue| "continue") - (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") - (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) - (-5 *1 (-330))))) + (-2 (|:| |particular| (-3 (-1259 *5) "failed")) + (|:| -4265 (-641 (-1259 *5))))) + (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) + (-5 *2 + (-2 (|:| |particular| (-3 (-1259 *5) "failed")) + (|:| -4265 (-641 (-1259 *5))))) + (-5 *1 (-663 *5)) (-5 *4 (-1259 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *5)) (-4 *5 (-363)) + (-5 *2 + (-641 + (-2 (|:| |particular| (-3 (-1259 *5) "failed")) + (|:| -4265 (-641 (-1259 *5)))))) + (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-641 *5))) (-4 *5 (-363)) + (-5 *2 + (-641 + (-2 (|:| |particular| (-3 (-1259 *5) "failed")) + (|:| -4265 (-641 (-1259 *5)))))) + (-5 *1 (-663 *5)) (-5 *4 (-641 (-1259 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) + (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) + (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4412)))) + (-5 *2 + (-641 + (-2 (|:| |particular| (-3 *7 "failed")) (|:| -4265 (-641 *7))))) + (-5 *1 (-664 *5 *6 *7 *3)) (-5 *4 (-641 *7)) + (-4 *3 (-683 *5 *6 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) + ((*1 *2 *2 *2 *3 *4) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1170)) + (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-769 *5 *2)) (-4 *2 (-13 (-29 *5) (-1194) (-956))))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-685 *7)) (-5 *5 (-1170)) + (-4 *7 (-13 (-29 *6) (-1194) (-956))) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1259 *7)) (|:| -4265 (-641 (-1259 *7))))) + (-5 *1 (-799 *6 *7)) (-5 *4 (-1259 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-685 *6)) (-5 *4 (-1170)) + (-4 *6 (-13 (-29 *5) (-1194) (-956))) + (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-1259 *6))) (-5 *1 (-799 *5 *6)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) + (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1259 *7)) (|:| -4265 (-641 (-1259 *7))))) + (-5 *1 (-799 *6 *7)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) + (-5 *5 (-1170)) (-4 *7 (-13 (-29 *6) (-1194) (-956))) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-2 (|:| |particular| (-1259 *7)) (|:| -4265 (-641 (-1259 *7))))) + (-5 *1 (-799 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1170)) + (-4 *7 (-13 (-29 *6) (-1194) (-956))) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *7) (|:| -4265 (-641 *7))) *7 "failed")) + (-5 *1 (-799 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-1170)) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 + (-3 (-2 (|:| |particular| *3) (|:| -4265 (-641 *3))) *3 "failed")) + (-5 *1 (-799 *6 *3)) (-4 *3 (-13 (-29 *6) (-1194) (-956))))) + ((*1 *2 *3 *4 *3 *5) + (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-641 *2)) + (-4 *2 (-13 (-29 *6) (-1194) (-956))) (-5 *1 (-799 *6 *2)) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))))) + ((*1 *2 *2 *3 *4 *5) + (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-641 *2)) + (-4 *2 (-13 (-29 *6) (-1194) (-956))) + (-4 *6 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-799 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-805)) (-5 *2 (-1032)) (-5 *1 (-802)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-805)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-802)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) + (-5 *2 (-1032)) (-5 *1 (-802)))) + ((*1 *2 *3 *4 *4 *5 *4) + (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) + (-5 *2 (-1032)) (-5 *1 (-802)))) + ((*1 *2 *3 *4 *4 *5 *6 *4) + (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) + ((*1 *2 *3 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1259 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-641 *4)) + (-5 *2 (-1032)) (-5 *1 (-802)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4) + (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) + ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) + (-12 (-5 *3 (-1259 (-316 *4))) (-5 *5 (-641 (-379))) + (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1032)) (-5 *1 (-802)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 + (-5 *5 + (-1 + (-3 (-2 (|:| |particular| *6) (|:| -4265 (-641 *6))) "failed") + *7 *6)) + (-4 *6 (-363)) (-4 *7 (-652 *6)) + (-5 *2 (-2 (|:| |particular| (-1259 *6)) (|:| -4265 (-685 *6)))) + (-5 *1 (-810 *6 *7)) (-5 *3 (-685 *6)) (-5 *4 (-1259 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-895)) (-5 *2 (-1032)) (-5 *1 (-894)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-895)) (-5 *4 (-1058)) (-5 *2 (-1032)) (-5 *1 (-894)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) + (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) + (-5 *8 (-225)) (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) + (-5 *2 (-1032)) (-5 *1 (-894)))) + ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) + (-12 (-5 *4 (-768)) (-5 *6 (-641 (-641 (-316 *3)))) (-5 *7 (-1152)) + (-5 *5 (-641 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1032)) + (-5 *1 (-894)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-949 (-407 (-564)))) (-5 *2 (-641 (-379))) + (-5 *1 (-1020)) (-5 *4 (-379)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-949 (-564))) (-5 *2 (-641 (-379))) (-5 *1 (-1020)) + (-5 *4 (-379)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *2 (-641 *4)) (-5 *1 (-1122 *3 *4)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) + (-5 *3 (-316 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-294 (-316 *4)))) (-5 *1 (-1125 *4)) + (-5 *3 (-294 (-316 *4))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) + (-5 *3 (-294 (-316 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-294 (-316 *5)))) (-5 *1 (-1125 *5)) + (-5 *3 (-316 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *2 (-641 (-641 (-294 (-316 *5))))) (-5 *1 (-1125 *5)) + (-5 *3 (-641 (-294 (-316 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) + (-4 *5 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) + (-5 *1 (-1178 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1170))) (-4 *5 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-1178 *5)) + (-5 *3 (-641 (-294 (-407 (-949 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-407 (-949 *4)))) (-4 *4 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-1178 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) + (-5 *1 (-1178 *4)) (-5 *3 (-641 (-294 (-407 (-949 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-4 *5 (-556)) + (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) + (-5 *3 (-407 (-949 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) (-4 *5 (-556)) + (-5 *2 (-641 (-294 (-407 (-949 *5))))) (-5 *1 (-1178 *5)) + (-5 *3 (-294 (-407 (-949 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) + (-5 *1 (-1178 *4)) (-5 *3 (-407 (-949 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 (-294 (-407 (-949 *4))))) + (-5 *1 (-1178 *4)) (-5 *3 (-294 (-407 (-949 *4))))))) +(((*1 *1 *2 *3 *1 *3) + (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) - ((*1 *2 *3 *1) - (-12 (-5 *2 (-2 (|:| |less| (-121 *3)) (|:| |greater| (-121 *3)))) - (-5 *1 (-121 *3)) (-4 *3 (-846)))) + (|partial| -12 (-5 *3 (-1259 *5)) (-4 *5 (-637 *4)) (-4 *4 (-556)) + (-5 *2 (-1259 *4)) (-5 *1 (-636 *4 *5))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-564)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *1 (-684 *4 *5 *6 *2)) + (-4 *2 (-683 *4 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) ((*1 *2 *2) - (-12 (-5 *2 (-584 *4)) (-4 *4 (-13 (-29 *3) (-1193))) - (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) - (-5 *1 (-582 *3 *4)))) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-584 (-407 (-948 *3)))) - (-4 *3 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) - (-5 *1 (-587 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3385 *3) (|:| |special| *3))) (-5 *1 (-723 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1257 *5)) (-4 *5 (-363)) (-4 *5 (-1045)) - (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) - (-5 *3 (-640 (-684 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1257 (-1257 *5))) (-4 *5 (-363)) (-4 *5 (-1045)) - (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) - (-5 *3 (-640 (-684 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-141)) (-5 *2 (-640 *1)) (-4 *1 (-1137)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-144)) (-5 *2 (-640 *1)) (-4 *1 (-1137))))) -(((*1 *2 *1) (-12 (-4 *1 (-763 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-640 (-939 (-225))))) - (-5 *2 (-640 (-1087 (-225)))) (-5 *1 (-924))))) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-690))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-697))) (-5 *1 (-330)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-695))) (-5 *1 (-330)))) + ((*1 *1) (-5 *1 (-330)))) +(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1037))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-820)) (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3 *4 *5 *5 *6) + (-12 (-5 *4 (-1170)) (-5 *6 (-112)) + (-4 *7 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-4 *3 (-13 (-1194) (-956) (-29 *7))) + (-5 *2 + (-3 (|:| |f1| (-840 *3)) (|:| |f2| (-641 (-840 *3))) + (|:| |fail| "failed") (|:| |pole| "potentialPole"))) + (-5 *1 (-219 *7 *3)) (-5 *5 (-840 *3))))) +(((*1 *2) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-105))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-504 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-363)) (-4 *6 (-1233 (-407 *2))) - (-4 *2 (-1233 *5)) (-5 *1 (-215 *5 *2 *6 *3)) - (-4 *3 (-342 *5 *2 *6))))) + (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) + (-4 *3 (-1094)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-902 *4)) (-4 *4 (-1094)) (-5 *2 (-112)) + (-5 *1 (-901 *4)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-918)) (-5 *2 (-112)) (-5 *1 (-1095 *4 *5)) (-14 *4 *3) + (-14 *5 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1) (-4 *1 (-493))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) + (-4 *3 (-1235 *2))))) (((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) - (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 *4)))))) + (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-117 *3)) (-14 *3 (-564)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) + ((*1 *2 *3) + (-12 (-5 *2 (-174 (-564))) (-5 *1 (-762 *3)) (-4 *3 (-404)))) ((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| -2765 *3) (|:| -1576 *4)))) - (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-722)))) + (-12 (-5 *2 (-174 (-407 (-564)))) (-5 *1 (-868 *3)) (-14 *3 (-564)))) ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) - (-5 *2 (-1149 (-2 (|:| |k| *4) (|:| |c| *3))))))) + (-12 (-14 *3 (-564)) (-5 *2 (-174 (-407 (-564)))) + (-5 *1 (-869 *3 *4)) (-4 *4 (-866 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *2 *3) + (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4)) + (-4 *4 (-38 (-407 (-564)))) (-4 *4 (-1046))))) (((*1 *2 *3) - (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-307)) - (-5 *2 (-407 (-418 (-948 *4)))) (-5 *1 (-1038 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-669 *3)) (-4 *3 (-1208)) (-5 *2 (-767))))) + (-12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3089 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-559))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-563)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-767)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-917)))) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) + (-5 *2 (-407 (-564)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *3) + (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) + (-5 *2 (-247 *4 *5)) (-5 *1 (-941 *4 *5))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-641 *1)) (-4 *1 (-307))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) + (-4 *4 (-349)) (-5 *2 (-768)) (-5 *1 (-346 *4)))) + ((*1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) + (-14 *4 (-918)))) + ((*1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) + (-14 *4 + (-3 (-1166 *3) + (-1259 (-641 (-2 (|:| -3426 *3) (|:| -1495 (-1114))))))))) + ((*1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-918))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-407 *5)) (-4 *4 (-1213)) (-4 *5 (-1235 *4)) + (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1235 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1172 (-407 (-564)))) (-5 *2 (-407 (-564))) + (-5 *1 (-190)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-685 (-316 (-225)))) (-5 *3 (-641 (-1170))) + (-5 *4 (-1259 (-316 (-225)))) (-5 *1 (-205)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1094)) + (-4 *3 (-1209)) (-5 *1 (-294 *3)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) - (-4 *4 (-172)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-157)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-917)) (-5 *1 (-157)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-939 *3)) (-4 *3 (-13 (-363) (-1193))) - (-5 *1 (-227 *3)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) + (-12 (-4 *2 (-309 *2)) (-4 *2 (-1094)) (-4 *2 (-1209)) + (-5 *1 (-294 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 (-641 *1)))) + (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1 *1 (-641 *1))) (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 (-641 *1)))) + (-4 *1 (-302)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-1 *1 *1))) (-4 *1 (-302)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-238 *3 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) - ((*1 *1 *2 *1) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) + (-12 (-5 *2 (-641 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-294 *2)) (-4 *2 (-1105)) (-4 *2 (-1208)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-361 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-381 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-846)))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-1093)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-14 *3 (-640 (-1169))) (-4 *4 (-172)) - (-4 *6 (-238 (-1708 *3) (-767))) - (-14 *7 - (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *6)) - (-2 (|:| -3491 *5) (|:| -2631 *6)))) - (-5 *1 (-461 *3 *4 *5 *6 *7 *2)) (-4 *5 (-846)) - (-4 *2 (-945 *4 *6 (-860 *3))))) + (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-564))) (-5 *4 (-1172 (-407 (-564)))) + (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-564)))))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *1)) (-4 *1 (-374 *4 *5)) + (-4 *4 (-847)) (-4 *5 (-172)))) + ((*1 *1 *1 *2 *1) + (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-847)) (-4 *3 (-172)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 *1)) + (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-1170)) (-5 *3 (-768)) (-5 *4 (-1 *1 (-641 *1))) + (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-1046)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) + (-5 *4 (-641 (-1 *1 (-641 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-847)) + (-4 *5 (-1046)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-641 (-768))) + (-5 *4 (-641 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-847)) + (-4 *5 (-1046)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-114))) (-5 *3 (-641 *1)) (-5 *4 (-1170)) + (-4 *1 (-430 *5)) (-4 *5 (-847)) (-4 *5 (-612 (-536))))) + ((*1 *1 *1 *2 *1 *3) + (-12 (-5 *2 (-114)) (-5 *3 (-1170)) (-4 *1 (-430 *4)) (-4 *4 (-847)) + (-4 *4 (-612 (-536))))) + ((*1 *1 *1) + (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-612 (-536))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-536))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-594 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) - (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-1 *7 *5)) - (-5 *1 (-679 *5 *6 *7)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-682 *3 *2 *4)) (-4 *3 (-1045)) (-4 *2 (-373 *3)) - (-4 *4 (-373 *3)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-682 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *2 (-373 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (-12 (-5 *2 (-641 (-1170))) (-4 *1 (-430 *3)) (-4 *3 (-847)) + (-4 *3 (-612 (-536))))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) - (-4 *4 (-373 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-716))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-555)) - (-5 *1 (-965 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1051 *2)) (-4 *2 (-1052)))) - ((*1 *1 *1 *1) (-4 *1 (-1105))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *2 (-238 *3 *4)) - (-4 *5 (-238 *3 *4)))) + (-12 (-5 *2 (-1170)) (-4 *1 (-430 *3)) (-4 *3 (-847)) + (-4 *3 (-612 (-536))))) + ((*1 *1 *1 *2 *3) + (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 *5)) (-4 *1 (-514 *4 *5)) + (-4 *4 (-1094)) (-4 *5 (-1209)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1116 *3 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4)))) + (-12 (-5 *2 (-830 *3)) (-4 *3 (-363)) (-5 *1 (-715 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-900 *2)) (-4 *2 (-1094)))) + ((*1 *2 *2 *3 *2) + (-12 (-5 *2 (-407 (-949 *4))) (-5 *3 (-1170)) (-4 *4 (-556)) + (-5 *1 (-1040 *4)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-641 (-1170))) (-5 *4 (-641 (-407 (-949 *5)))) + (-5 *2 (-407 (-949 *5))) (-4 *5 (-556)) (-5 *1 (-1040 *5)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-294 (-407 (-949 *4)))) (-5 *2 (-407 (-949 *4))) + (-4 *4 (-556)) (-5 *1 (-1040 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-294 (-407 (-949 *4))))) (-5 *2 (-407 (-949 *4))) + (-4 *4 (-556)) (-5 *1 (-1040 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1237 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1150 *3))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *1 *2 *3) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-564)) (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) + (-4 *3 (-1046)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-816 *4)) (-4 *4 (-847)) (-4 *1 (-1276 *4 *3)) + (-4 *3 (-1046))))) +(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) (-12 (-5 *1 (-668 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *2 *3) + (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-825) (-847) (-1046))) + (-5 *2 (-1152)) (-5 *1 (-823 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) + (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1152)) + (-5 *1 (-823 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-819)) (-5 *4 (-316 *5)) + (-4 *5 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) + (-5 *1 (-823 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-819)) (-5 *4 (-316 *6)) (-5 *5 (-112)) + (-4 *6 (-13 (-825) (-847) (-1046))) (-5 *2 (-1264)) + (-5 *1 (-823 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-825)) (-5 *2 (-1152)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-825)) (-5 *3 (-112)) (-5 *2 (-1152)))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *2 (-1264)))) + ((*1 *2 *3 *1 *4) + (-12 (-4 *1 (-825)) (-5 *3 (-819)) (-5 *4 (-112)) (-5 *2 (-1264))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-564))) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-556)) (-4 *8 (-946 *7 *5 *6)) + (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *9) (|:| |radicand| *9))) + (-5 *1 (-950 *5 *6 *7 *8 *9)) (-5 *4 (-768)) + (-4 *9 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *8)) (-15 -1625 (*8 $)) (-15 -1634 (*8 $)))))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-685 *3)) + (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411))))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) + ((*1 *2 *1) + (-12 + (-5 *2 + (-2 (|:| -1550 (-641 (-859))) (|:| -2850 (-641 (-859))) + (|:| |presup| (-641 (-859))) (|:| -1797 (-641 (-859))) + (|:| |args| (-641 (-859))))) + (-5 *1 (-1170))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -2060 *4))) (-5 *1 (-966 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-363)) (-5 *1 (-763 *2 *3)) (-4 *2 (-705 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *2 *3) + (-12 (-5 *2 (-564)) (-5 *1 (-445 *3)) (-4 *3 (-404)) (-4 *3 (-1046))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-373 *2)) (-4 *2 (-1209)) + (-4 *2 (-847)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) - (-4 *2 (-945 *3 (-531 *4) *4)))) + (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4412)) + (-4 *1 (-373 *3)) (-4 *3 (-1209))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-564))) (-5 *4 (-902 (-564))) + (-5 *2 (-685 (-564))) (-5 *1 (-589)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-641 (-685 (-564)))) + (-5 *1 (-589)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-564))) (-5 *4 (-641 (-902 (-564)))) + (-5 *2 (-641 (-685 (-564)))) (-5 *1 (-589))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-4 *2 (-1094)) (-5 *1 (-676 *5 *6 *2))))) +(((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-5 *2 (-2 (|:| -1327 *3) (|:| -2423 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1194) (-430 *3))) + (-14 *4 (-1170)) (-14 *5 *2))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-4 *2 (-13 (-27) (-1194) (-430 *3) (-10 -8 (-15 -3742 ($ *4))))) + (-4 *4 (-845)) + (-4 *5 + (-13 (-1237 *2 *4) (-363) (-1194) + (-10 -8 (-15 -4117 ($ $)) (-15 -3128 ($ $))))) + (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-980 *5)) (-14 *7 (-1170))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1046)) + (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) + ((*1 *1 *1) (-4 *1 (-545))) + ((*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-668 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-918)) (-5 *1 (-673 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) (-12 (-4 *1 (-992 *3)) (-4 *3 (-1209)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-1206 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) + (-4 *2 (-1046))))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *6 (-1060 *3 *4 *5)) (-5 *1 (-622 *3 *4 *5 *6 *7 *2)) + (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *2 (-1103 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-847)) (-5 *2 (-641 (-660 *4 *5))) + (-5 *1 (-625 *4 *5 *6)) (-4 *5 (-13 (-172) (-714 (-407 (-564))))) + (-14 *6 (-918))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1170))) (-5 *3 (-1170)) (-5 *1 (-536)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-939 (-225))) (-5 *3 (-225)) (-5 *1 (-1204)))) + (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *2 *2 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-701 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *4 (-641 (-1170))) (-5 *2 (-1170)) (-5 *1 (-701 *3)) + (-4 *3 (-612 (-536)))))) +(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1090)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) + (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1170))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 + (-1 (-2 (|:| |ans| *6) (|:| -2427 *6) (|:| |sol?| (-112))) (-564) + *6)) + (-4 *6 (-363)) (-4 *7 (-1235 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) + (-2 (|:| -2118 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2) (-12 (-5 *2 (-1141 (-1152))) (-5 *1 (-391))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1179))))) +(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-225))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1 *1 *1) (-5 *1 (-379))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-307)) (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1235 *4)) (-5 *1 (-806 *4 *2 *3 *5)) + (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) (-4 *3 (-652 *2)) + (-4 *5 (-652 (-407 *2)))))) +(((*1 *2 *2 *3) + (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1250 *3))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-97))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-1170))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1170)) (-5 *3 (-1152)) (-5 *1 (-986)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1088 *4)) (-4 *4 (-1209)) + (-5 *1 (-1086 *4))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-610 *5))) (-5 *3 (-1170)) (-4 *5 (-430 *4)) + (-4 *4 (-847)) (-5 *1 (-573 *4 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *3)))) + (-5 *1 (-594 *3)) (-4 *3 (-1046))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-327 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-5 *1 (-516 *3 *4)) + (-14 *4 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) + (-4 *2 (-1094)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1255 *2)) (-4 *2 (-1208)) (-4 *2 (-722)))) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *3)) + (-4 *3 (-1209)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-563)) (-4 *1 (-1255 *3)) (-4 *3 (-1208)) (-4 *3 (-21)))) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-670 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) + (-5 *1 (-734 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) + (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3) + (|partial| -12 (-5 *2 (-564)) (-5 *1 (-569 *3)) (-4 *3 (-1035 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |cd| (-1152)) (|:| -4324 (-1152)))) + (-5 *1 (-819))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) - (-5 *1 (-262 *2)) (-4 *2 (-1208)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-52)) - (-5 *1 (-263))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-141)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-144))))) + (-12 (-5 *3 (-1170)) (-4 *5 (-363)) (-5 *2 (-641 (-1203 *5))) + (-5 *1 (-1267 *5)) (-5 *4 (-1203 *5))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1023 (-840 (-564)))) (-5 *1 (-594 *3)) (-4 *3 (-1046))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-280)))) + ((*1 *2 *1) + (-12 (-5 *2 (-3 (-564) (-225) (-1170) (-1152) (-1175))) + (-5 *1 (-1175))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-30)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-418 *4) *4)) (-4 *4 (-556)) (-5 *2 (-418 *4)) + (-5 *1 (-419 *4)))) + ((*1 *1 *1) (-5 *1 (-923))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) + ((*1 *1 *1) (-5 *1 (-924))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) + (-5 *4 (-407 (-564))) (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) + (-5 *1 (-1017 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) + (-5 *4 (-407 (-564))) (-5 *1 (-1018 *3)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *2 *2) + (|partial| -12 + (-5 *2 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564))))) + (-5 *1 (-1018 *3)) (-4 *3 (-1235 (-407 (-564)))))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *1 *1) (-4 *1 (-95))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1235 *4))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564)))) + ((*1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1) (-4 *1 (-866 *2))) + ((*1 *1 *1) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) + (-4 *4 (-847))))) +(((*1 *2 *3) + (-12 (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-307)) + (-5 *2 (-641 (-768))) (-5 *1 (-775 *3 *4 *5 *6 *7)) + (-4 *3 (-1235 *6)) (-4 *7 (-946 *6 *4 *5))))) +(((*1 *2 *3 *4 *3 *5 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *3 (-564)) + (-5 *2 (-1032)) (-5 *1 (-751))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-467)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *1) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-418 *3)) (-4 *3 (-545)) + (-4 *3 (-556)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (-12 (-4 *1 (-794 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-830 *3)) (-4 *3 (-545)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-840 *3)) (-4 *3 (-545)) + (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *1 (-994 *3)) (-4 *3 (-172)) (-4 *3 (-545)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *3) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1005 *3)) (-4 *3 (-1035 *2))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-1264)) (-5 *1 (-828))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *1 *1) (-4 *1 (-1197)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-684 (-169 (-407 (-563))))) + (-12 (-5 *3 (-418 *5)) (-4 *5 (-556)) (-5 *2 - (-640 - (-2 (|:| |outval| (-169 *4)) (|:| |outmult| (-563)) - (|:| |outvect| (-640 (-684 (-169 *4))))))) - (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) -(((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-922)))) + (-2 (|:| -2515 (-768)) (|:| -1762 *5) (|:| |radicand| (-641 *5)))) + (-5 *1 (-320 *5)) (-5 *4 (-768)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-999)) (-5 *2 (-564))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *2 (-641 (-169 *4))) (-5 *1 (-155 *3 *4)) + (-4 *3 (-1235 (-169 (-564)))) (-4 *4 (-13 (-363) (-845))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-641 (-169 *4))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(((*1 *1 *2) + (-12 (-5 *2 (-685 *4)) (-4 *4 (-1046)) (-5 *1 (-1136 *3 *4)) + (-14 *3 (-768))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-922)))) - ((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923)))) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) + (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-939 (-225)) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923))))) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) + (-4 *1 (-367 *4)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1259 *4)) (-5 *3 (-1259 *1)) (-4 *4 (-172)) + (-4 *1 (-370 *4 *5)) (-4 *5 (-1235 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *1 *1) (-4 *1 (-1197)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) + ((*1 *1 *1 *1) (-4 *1 (-545))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) + ((*1 *1 *2) (-12 (-5 *1 (-715 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-768))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-134))))) (((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) - (-5 *2 (-112)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) + ((*1 *2 *1) (-12 (-5 *2 (-157)) (-5 *1 (-871)))) + ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-641 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) + (-5 *2 (-112)) (-5 *1 (-663 *5)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-112)) + (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) + (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-641 *4))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *1 *1) (-4 *1 (-1197)))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-407 (-564))) + (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-610 *3)) (-4 *3 (-430 *5)) + (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) + (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-433 *5 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-363)) + (-5 *2 (-641 (-2 (|:| C (-685 *5)) (|:| |g| (-1259 *5))))) + (-5 *1 (-975 *5)) (-5 *3 (-685 *5)) (-5 *4 (-1259 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) + (-5 *2 (-641 (-668 *5))) (-5 *1 (-668 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-640 (-316 (-225)))) - (|:| |constraints| - (-640 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-767)) (|:| |boundaryType| (-563)) - (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) - (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) - (|:| |tol| (-225)))) - (-5 *2 (-112)) (-5 *1 (-210))))) + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-1150 (-225))) (-5 *1 (-192)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-316 (-225))) (-5 *4 (-641 (-1170))) + (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *4 (-641 (-1170))) + (-5 *5 (-1088 (-840 (-225)))) (-5 *2 (-1150 (-225))) (-5 *1 (-300))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 (-641 *2) *2 *2 *2)) (-4 *2 (-1094)) + (-5 *1 (-103 *2)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (-5 *1 (-103 *2))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *1 *1) (-4 *1 (-1197)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-5 *5 (-641 *8)) + (-4 *7 (-847)) (-4 *8 (-1046)) (-4 *9 (-946 *8 *6 *7)) + (-4 *6 (-790)) (-5 *2 (-1166 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-786)) (-5 *5 (-564))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1259 (-695))) (-5 *1 (-305))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-5 *1 (-660 *3 *4)))) + ((*1 *2 *1) + (|partial| -12 (-5 *2 (-660 *3 *4)) (-5 *1 (-1279 *3 *4)) + (-4 *3 (-847)) (-4 *4 (-172))))) (((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) - (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) + (-12 (-4 *1 (-602 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1209)) + (-5 *2 (-641 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 (-940 *4))) (-4 *1 (-1128 *4)) (-4 *4 (-1046)) + (-5 *2 (-768))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *1 *1) (-4 *1 (-1197)))) +(((*1 *1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-647 *2)) (-4 *2 (-1209))))) +(((*1 *2) + (|partial| -12 (-4 *4 (-1213)) (-4 *5 (-1235 (-407 *2))) + (-4 *2 (-1235 *4)) (-5 *1 (-341 *3 *4 *2 *5)) + (-4 *3 (-342 *4 *2 *5)))) + ((*1 *2) + (|partial| -12 (-4 *1 (-342 *3 *2 *4)) (-4 *3 (-1213)) + (-4 *4 (-1235 (-407 *2))) (-4 *2 (-1235 *3))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *1)) (|has| *1 (-6 -4412)) (-4 *1 (-1007 *3)) + (-4 *3 (-1209))))) +(((*1 *2 *1 *3) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-117 *4)) (-14 *4 *3) + (-5 *3 (-564)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) - (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-917)))) - ((*1 *2 *3) - (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) - (-4 *5 (-1233 *4)) (-4 *6 (-1233 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) - (-5 *2 (-767)) (-5 *1 (-392 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-829 (-917))))) - ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) - (-4 *4 (-1233 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) - (-4 *3 (-846)))) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-868 *4)) (-14 *4 *3) + (-5 *3 (-564)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-736 *4 *3)) (-4 *4 (-1045)) (-4 *3 (-846)) - (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) + (-12 (-14 *4 *3) (-5 *2 (-407 (-564))) (-5 *1 (-869 *4 *5)) + (-5 *3 (-564)) (-4 *5 (-866 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1009)) (-5 *2 (-407 (-564))))) + ((*1 *2 *3 *1 *2) + (-12 (-4 *1 (-1063 *2 *3)) (-4 *2 (-13 (-845) (-363))) + (-4 *3 (-1235 *2)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) + (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3742 (*2 (-1170)))) + (-4 *2 (-1046))))) +(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-786)) (-5 *5 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-517))))) +(((*1 *2 *3) + (-12 (-5 *3 (-924)) + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) - (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) - (-4 *8 (-342 *5 *6 *7)) - (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-767)) - (-5 *1 (-907 *4 *5 *6 *7 *8)))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)) (-5 *3 (-641 (-940 (-225)))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) - (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) - (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-767)) - (-5 *1 (-908 *4 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) - (-4 *7 (-1233 *6)) (-4 *4 (-1233 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) - (-4 *9 (-13 (-368) (-363))) (-5 *2 (-767)) - (-5 *1 (-1014 *6 *7 *4 *8 *9)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-4 *3 (-555)) - (-5 *2 (-767)))) - ((*1 *2 *1 *2) - (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) -(((*1 *2 *3) - (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-112)) - (-5 *1 (-667 *4))))) + (-12 + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)) (-5 *3 (-641 (-641 (-940 (-225))))))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-1088 (-379)))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-452)) (-4 *4 (-817)) + (-14 *5 (-1170)) (-5 *2 (-564)) (-5 *1 (-1108 *4 *5))))) +(((*1 *2) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-641 (-641 *4))) (-5 *1 (-341 *3 *4 *5 *6)) + (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *3 (-368)) (-5 *2 (-641 (-641 *3)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1112)) (-5 *1 (-1109))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1165 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-331 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *1 *1) (-4 *1 (-1197)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-316 (-225)))) (-5 *4 (-768)) + (-5 *2 (-685 (-225))) (-5 *1 (-267))))) +(((*1 *1) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) + (-4 *4 (-172))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-4 *2 (-1046)) (-4 *1 (-1117 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) + (-4 *5 (-238 *3 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-847) (-1035 (-564)) (-452) (-637 (-564)))) + (-5 *2 (-2 (|:| -4114 *3) (|:| |nconst| *3))) (-5 *1 (-567 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-886 *4 *5)) (-5 *3 (-886 *4 *6)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-662 *5)) (-5 *1 (-882 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-563)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) - (-14 *4 (-767)) (-4 *5 (-172)))) + (-12 (-5 *2 (-564)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 *2) + (-14 *4 (-768)) (-4 *5 (-172)))) ((*1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) + (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-564)) (-14 *3 (-768)) (-4 *4 (-172)))) ((*1 *1 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-373 *2)) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *2 *4)) (-4 *2 (-373 *3)) + (-12 (-4 *3 (-1046)) (-4 *1 (-683 *3 *2 *4)) (-4 *2 (-373 *3)) (-4 *4 (-373 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1135 *2 *3)) (-14 *2 (-767)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-684 (-169 (-407 (-563))))) (-5 *2 (-640 (-169 *4))) - (-5 *1 (-760 *4)) (-4 *4 (-13 (-363) (-844)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) - (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) - ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) - (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) - ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-922)))) - ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-922)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) - ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1 (-225) (-225)))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923))))) -(((*1 *1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5)))) + (-12 (-5 *1 (-1136 *2 *3)) (-14 *2 (-768)) (-4 *3 (-1046))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) + (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2) (-12 (-5 *1 (-898 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) + (-4 *3 (-1235 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-14 *6 (-1 (-3 *4 "failed") *4 *4)) + (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-640 (-316 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) - (-5 *1 (-210))))) -(((*1 *2 *1) (-12 (-5 *2 (-139)) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *2 (-187)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-249)) (-5 *1 (-248))))) -(((*1 *1 *1) (-4 *1 (-1054))) - ((*1 *1 *1 *2 *2) - (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-13 (-363) (-846))) - (-14 *4 (-1169)) (-14 *5 *3) (-5 *1 (-319 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-379))) (-5 *1 (-1036)) (-5 *3 (-379))))) -(((*1 *1 *2) (-12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *1 *2) - (-12 (-5 *2 (-684 *4)) (-4 *4 (-1045)) (-5 *1 (-1135 *3 *4)) - (-14 *3 (-767))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-757)))) -(((*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) - ((*1 *2 *1) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) - (-5 *2 - (-2 (|:| |mval| (-684 *4)) (|:| |invmval| (-684 *4)) - (|:| |genIdeal| (-504 *4 *5 *6 *7)))) - (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-210))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-174 *3)) (-4 *3 (-307)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-736 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-846)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *1 (-976 *3)) (-4 *3 (-1045)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) - (-4 *1 (-1065 *4 *5 *6 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1235 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-379)) (-5 *1 (-1036))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-815 *3)) (-4 *3 (-846)) (-5 *1 (-667 *3))))) + (|partial| -12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) + (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) + (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) +(((*1 *2 *2 *3) + (-12 (-4 *4 (-790)) + (-4 *3 (-13 (-847) (-10 -8 (-15 -2235 ((-1170) $))))) (-4 *5 (-556)) + (-5 *1 (-729 *4 *3 *5 *2)) (-4 *2 (-946 (-407 (-949 *5)) *4 *3)))) + ((*1 *2 *2 *3) + (-12 (-4 *4 (-1046)) (-4 *5 (-790)) + (-4 *3 + (-13 (-847) + (-10 -8 (-15 -2235 ((-1170) $)) + (-15 -3851 ((-3 $ "failed") (-1170)))))) + (-5 *1 (-981 *4 *5 *3 *2)) (-4 *2 (-946 (-949 *4) *5 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *6)) + (-4 *6 + (-13 (-847) + (-10 -8 (-15 -2235 ((-1170) $)) + (-15 -3851 ((-3 $ "failed") (-1170)))))) + (-4 *4 (-1046)) (-4 *5 (-790)) (-5 *1 (-981 *4 *5 *6 *2)) + (-4 *2 (-946 (-949 *4) *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1259 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) + (-4 *1 (-721 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1235 *5)) + (-5 *2 (-685 *5))))) +(((*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-847)) + (-4 *3 (-1094))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1259 *1)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4)))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-1230 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-641 *3)) (-5 *1 (-958 *3)) (-4 *3 (-545))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1211))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-1217)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 (-564))))) + (-5 *1 (-361 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 (-768))))) + (-5 *1 (-386 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| -4127 *3) (|:| -2515 (-564))))) + (-5 *1 (-418 *3)) (-4 *3 (-556)))) + ((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 (-768))))) + (-5 *1 (-816 *3)) (-4 *3 (-847))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) + ((*1 *2 *1) + (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *1) + (-12 (-5 *2 (-564)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) + (-14 *4 (-641 (-1170))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) + (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-275)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1166 *8)) (-5 *4 (-641 *6)) (-4 *6 (-847)) + (-4 *8 (-946 *7 *5 *6)) (-4 *5 (-790)) (-4 *7 (-1046)) + (-5 *2 (-641 (-768))) (-5 *1 (-321 *5 *6 *7 *8)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) + ((*1 *2 *1) + (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-847)) (-4 *4 (-172)) + (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + ((*1 *2 *1) + (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-705 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1046)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *6)) (-4 *1 (-946 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 (-768))))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-946 *4 *5 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) + (-4 *3 (-847)) (-5 *2 (-768)))) + ((*1 *2 *1) + (-12 (-4 *1 (-970 *3 *2 *4)) (-4 *3 (-1046)) (-4 *4 (-847)) + (-4 *2 (-789)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-768)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1250 *3)) + (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1242 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1219 *3)) + (-5 *2 (-407 (-564))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918))))) + ((*1 *2 *1) + (-12 (-4 *1 (-1280 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *2 (-768))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-999)) + (-4 *2 (-1046))))) +(((*1 *2 *2) + (-12 (-4 *3 (-556)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *1 (-684 *3 *4 *5 *2)) + (-4 *2 (-683 *3 *4 *5))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) (((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34)))))) -(((*1 *1 *1 *1) (-4 *1 (-473))) ((*1 *1 *1 *1) (-4 *1 (-757)))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-640 (-225)))) (-5 *1 (-922))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |mval| (-684 *3)) (|:| |invmval| (-684 *3)) - (|:| |genIdeal| (-504 *3 *4 *5 *6)))) - (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1046)) (-5 *2 (-1259 *4)) + (-5 *1 (-1171 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-918)) (-5 *2 (-1259 *3)) (-5 *1 (-1171 *3)) + (-4 *3 (-1046))))) +(((*1 *2 *3) (-12 (-5 *3 (-838)) (-5 *2 (-1032)) (-5 *1 (-837)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-316 (-379)))) (-5 *4 (-641 (-379))) + (-5 *2 (-1032)) (-5 *1 (-837))))) +(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-1233 *4)) (-4 *4 (-1045)) - (-5 *2 (-1257 *4))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) - (-5 *2 (-59 (-640 (-667 *5)))) (-5 *1 (-667 *5))))) + (-12 (-4 *1 (-906)) (-5 *2 (-418 (-1166 *1))) (-5 *3 (-1166 *1))))) +(((*1 *2 *1) + (-12 (-5 *2 (-171)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *2 *1) + (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-4 *3 (-556)) + (-5 *2 (-1166 *3))))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-749))))) +(((*1 *2 *1) + (|partial| -12 (-4 *1 (-1242 *3 *2)) (-4 *3 (-1046)) + (-4 *2 (-1219 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1175))))) (((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34)))))) -(((*1 *1 *1 *1) (-4 *1 (-757)))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) + ((*1 *2) (-12 (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *1 *2 *3 *1) + (-12 (-5 *2 (-889 *4)) (-4 *4 (-1094)) (-5 *1 (-886 *4 *3)) + (-4 *3 (-1094))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-695))))) (((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4))))) + (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-452)))) + ((*1 *2 *3 *1) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *1)))) + (-4 *1 (-1066 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1213))) + ((*1 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-1238 *3 *2)) + (-4 *2 (-13 (-1235 *3) (-556) (-10 -8 (-15 -2577 ($ $ $)))))))) (((*1 *2 *3) + (-12 (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) + (-4 *3 (-13 (-430 *4) (-999)))))) +(((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *1 *2 *2) (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1233 *3)) (-4 *3 (-1045)) (-5 *2 (-1165 *3))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-917)) (-4 *5 (-846)) - (-5 *2 (-640 (-667 *5))) (-5 *1 (-667 *5))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-614)))) + (-12 (-5 *2 (-859)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-768)) + (-14 *4 (-768)) (-4 *5 (-172))))) (((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1133 *4 *5)) (-4 *4 (-13 (-1093) (-34))) - (-4 *5 (-13 (-1093) (-34))) (-5 *2 (-112)) (-5 *1 (-1134 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-755))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) + (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1133)))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1233 *3)) - (-4 *5 (-1233 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) - (-5 *2 (-413 *4 (-407 *4) *5 *6)))) + (|partial| -12 (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790)) + (-5 *2 (-112)) (-5 *1 (-984 *3 *4 *5 *6)) + (-4 *6 (-946 *3 *5 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) - (-12 (-5 *2 (-1257 *6)) (-4 *6 (-13 (-409 *4 *5) (-1034 *4))) - (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *3 (-307)) - (-5 *1 (-413 *3 *4 *5 *6)))) + (-12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))) -(((*1 *2 *3) + (-12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 *2)) + (-14 *4 (-641 *2)) (-4 *5 (-387)))) + ((*1 *1 *2) + (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) + (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-1170))))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) + ((*1 *2 *1) (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1165 *3)) (-4 *3 (-1045)) (-4 *1 (-1233 *3))))) -(((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1036))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-640 *7)) (-4 *7 (-846)) - (-4 *8 (-945 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) (-5 *2 - (-2 (|:| |particular| (-3 (-1257 (-407 *8)) "failed")) - (|:| -3288 (-640 (-1257 (-407 *8)))))) - (-5 *1 (-664 *5 *6 *7 *8))))) -(((*1 *2 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1165 *4)) (-5 *1 (-357 *4)) - (-4 *4 (-349))))) -(((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1133 *5 *6)) (-5 *4 (-1 (-112) *6 *6)) - (-4 *5 (-13 (-1093) (-34))) (-4 *6 (-13 (-1093) (-34))) - (-5 *2 (-112)) (-5 *1 (-1134 *5 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-948 (-563)))) (-5 *1 (-437)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-225))) (-5 *2 (-1097)) - (-5 *1 (-755)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-684 (-563))) (-5 *2 (-1097)) - (-5 *1 (-755))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-536))) (-5 *2 (-1169)) (-5 *1 (-536))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-767)) (-4 *1 (-1233 *3)) (-4 *3 (-1045))))) -(((*1 *2 *1) - (|partial| -12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-789)) (-4 *5 (-1045)) (-4 *6 (-945 *5 *4 *2)) - (-4 *2 (-846)) (-5 *1 (-946 *4 *2 *5 *6 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *6)) (-15 -2626 (*6 $)) - (-15 -2636 (*6 $))))))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) - (-5 *2 (-1169)) (-5 *1 (-1039 *4))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-363)) - (-5 *2 (-112)) (-5 *1 (-662 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) (-5 *2 (-112)) - (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 (-437))))) - (-5 *1 (-1173))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3)) - (-4 *3 (-1093)))) - ((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4408)) (-4 *1 (-235 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) - ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-607 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) - (-5 *1 (-733 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) - (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5))))) -(((*1 *2 *3) + (-3 + (|:| |nia| + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (|:| |mdnia| + (-2 (|:| |fn| (-316 (-225))) + (|:| -3089 (-641 (-1088 (-840 (-225))))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) + (-5 *1 (-766)))) + ((*1 *2 *1) (-12 - (-5 *3 + (-5 *2 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) - (-5 *1 (-205))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) - (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-945 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1045)) (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) - (-4 *1 (-1233 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) - (-4 *6 (-13 (-555) (-1034 *5))) (-4 *5 (-555)) - (-5 *2 (-640 (-640 (-294 (-407 (-948 *6)))))) (-5 *1 (-1035 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 (-1165 *4))) (-5 *3 (-1165 *4)) - (-4 *4 (-905)) (-5 *1 (-658 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) -(((*1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-105))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1133 *4 *5))) (-5 *3 (-1 (-112) *5 *5)) - (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) - (-5 *1 (-1134 *4 *5)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-640 (-1133 *3 *4))) (-4 *3 (-13 (-1093) (-34))) - (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4))))) -(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) - (-5 *1 (-504 *4 *5 *6 *2)) (-4 *2 (-945 *4 *5 *6)))) - ((*1 *1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-945 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-684 (-316 (-225)))) - (-5 *2 - (-2 (|:| |stiffnessFactor| (-379)) (|:| |stabilityFactor| (-379)))) - (-5 *1 (-205))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) - (-4 *2 (-651 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169)) - (-5 *2 - (-2 (|:| |zeros| (-1149 (-225))) (|:| |ones| (-1149 (-225))) - (|:| |singularities| (-1149 (-225))))) - (-5 *1 (-105))))) -(((*1 *1 *2 *2) + (-5 *1 (-805)))) + ((*1 *2 *1) (-12 (-5 *2 - (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) - (-5 *1 (-1168))))) -(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) (-5 *2 (-112)) - (-5 *1 (-983 *3 *4 *5 *6)) (-4 *6 (-945 *3 *5 *4)))) + (-3 + (|:| |noa| + (-2 (|:| |fn| (-316 (-225))) (|:| -3258 (-641 (-225))) + (|:| |lb| (-641 (-840 (-225)))) + (|:| |cf| (-641 (-316 (-225)))) + (|:| |ub| (-641 (-840 (-225)))))) + (|:| |lsa| + (-2 (|:| |lfn| (-641 (-316 (-225)))) + (|:| -3258 (-641 (-225))))))) + (-5 *1 (-838)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) - (-4 *4 (-13 (-1093) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-755))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *6 (-611 (-1169))) - (-4 *4 (-363)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *2 (-1158 (-640 (-948 *4)) (-640 (-294 (-948 *4))))) - (-5 *1 (-504 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-684 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1260)))) - ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1260))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1031))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-651 *3)) (-4 *3 (-1045)) (-4 *3 (-363)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-767)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) - (-5 *1 (-654 *5 *2)) (-4 *2 (-651 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-112)) - (-5 *1 (-357 *4))))) -(((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) - (-5 *1 (-1168))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34)))))) -(((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-214 *4)) - (-4 *4 - (-13 (-846) - (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 (*2 $)) - (-15 -2807 (*2 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1262)) (-5 *1 (-214 *3)) - (-4 *3 - (-13 (-846) - (-10 -8 (-15 -3858 ((-1151) $ (-1169))) (-15 -3051 (*2 $)) - (-15 -2807 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-502))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-640 (-379))) (-5 *2 (-379)) (-5 *1 (-205))))) -(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) - ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-917)) (-5 *1 (-1028 *2)) - (-4 *2 (-13 (-1093) (-10 -8 (-15 * ($ $ $)))))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-363)) (-5 *1 (-654 *4 *2)) - (-4 *2 (-651 *4))))) + (-2 (|:| |pde| (-641 (-316 (-225)))) + (|:| |constraints| + (-641 + (-2 (|:| |start| (-225)) (|:| |finish| (-225)) + (|:| |grid| (-768)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) + (|:| |tol| (-225)))) + (-5 *1 (-895)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) + (-4030 + (-12 (-5 *2 (-949 *3)) + (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) + (-4255 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) + (-4 *5 (-847))) + (-12 (-5 *2 (-949 *3)) + (-12 (-4255 (-4 *3 (-545))) (-4255 (-4 *3 (-38 (-407 (-564))))) + (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) + (-4 *5 (-847))) + (-12 (-5 *2 (-949 *3)) + (-12 (-4255 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) + (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) + (-4 *5 (-847))))) + ((*1 *1 *2) + (-4030 + (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) + (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) + (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) + (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) + ((*1 *1 *2) + (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) + ((*1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *5 (-13 (-611 *2) (-172))) (-5 *2 (-888 *4)) - (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1093)) (-4 *3 (-166 *5)))) + (-12 (-4 *5 (-13 (-612 *2) (-172))) (-5 *2 (-889 *4)) + (-5 *1 (-170 *4 *5 *3)) (-4 *4 (-1094)) (-4 *3 (-166 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-1087 (-839 (-379))))) - (-5 *2 (-640 (-1087 (-839 (-225))))) (-5 *1 (-305)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-394)))) + (-12 (-5 *3 (-641 (-1088 (-840 (-379))))) + (-5 *2 (-641 (-1088 (-840 (-225))))) (-5 *1 (-305)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-394)))) ((*1 *1 *2) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) - (-4 *4 (-1233 *3)))) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) + (-4 *4 (-1235 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) - (-5 *2 (-1257 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-1259 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1259 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-555)) - (-4 *3 (-846)))) + (-12 (-5 *2 (-418 *1)) (-4 *1 (-430 *3)) (-4 *3 (-556)) + (-4 *3 (-847)))) ((*1 *1 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-463 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-536)))) - ((*1 *2 *1) (-12 (-4 *1 (-611 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2) (-12 (-4 *1 (-615 *2)) (-4 *2 (-1208)))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-463 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-536)))) + ((*1 *2 *1) (-12 (-4 *1 (-612 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) (-12 (-4 *1 (-616 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) + (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + (-12 (-5 *2 (-641 (-889 *3))) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) ((*1 *1 *2) - (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) - (-4 *5 (-611 (-1169))) (-4 *4 (-789)) (-4 *5 (-846)))) + (-12 (-5 *2 (-949 *3)) (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) + (-4 *5 (-612 (-1170))) (-4 *4 (-790)) (-4 *5 (-847)))) ((*1 *1 *2) - (-2811 - (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) - (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) - (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) - (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) + (-4030 + (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) + (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) + (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) + (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) ((*1 *1 *2) - (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -1926 *8))) - (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1065 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) - (-5 *1 (-1063 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-640 *7)) (|:| -1926 *8))) - (-4 *7 (-1059 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1151)) - (-5 *1 (-1138 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1174)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-858)) (-5 *3 (-563)) (-5 *1 (-1188)))) - ((*1 *2 *3) - (-12 (-5 *3 (-776 *4 (-860 *5))) - (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *5 (-640 (-1169))) - (-5 *2 (-776 *4 (-860 *6))) (-5 *1 (-1283 *4 *5 *6)) - (-14 *6 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-5 *3 (-948 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) - (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-5 *3 (-776 *4 (-860 *6))) - (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) - (-5 *2 (-948 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) - (-14 *5 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 *4)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-1165 (-1020 (-407 *4)))) (-5 *1 (-1283 *4 *5 *6)) - (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169))))) + (-12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2084 *8))) + (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1066 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) + (-5 *1 (-1064 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-641 *7)) (|:| -2084 *8))) + (-4 *7 (-1060 *4 *5 *6)) (-4 *8 (-1103 *4 *5 *6 *7)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-1152)) + (-5 *1 (-1139 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) + ((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-1175)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-859)) (-5 *3 (-564)) (-5 *1 (-1189)))) + ((*1 *2 *3) + (-12 (-5 *3 (-777 *4 (-861 *5))) + (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *5 (-641 (-1170))) + (-5 *2 (-777 *4 (-861 *6))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *6 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-949 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-777 *4 (-861 *6))) + (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) + (-5 *2 (-949 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-1166 (-1021 (-407 *4)))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170))))) ((*1 *2 *3) (-12 - (-5 *3 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6)))) - (-4 *4 (-13 (-844) (-307) (-147) (-1018))) (-14 *6 (-640 (-1169))) - (-5 *2 (-640 (-776 *4 (-860 *6)))) (-5 *1 (-1283 *4 *5 *6)) - (-14 *5 (-640 (-1169)))))) -(((*1 *2) + (-5 *3 (-1140 *4 (-531 (-861 *6)) (-861 *6) (-777 *4 (-861 *6)))) + (-4 *4 (-13 (-845) (-307) (-147) (-1019))) (-14 *6 (-641 (-1170))) + (-5 *2 (-641 (-777 *4 (-861 *6)))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170)))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1094))))) +(((*1 *1 *2 *2) (-12 (-5 *2 - (-1257 (-640 (-2 (|:| -3556 (-906 *3)) (|:| -3491 (-1113)))))) - (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) (-14 *4 (-917)))) - ((*1 *2) - (-12 (-5 *2 (-1257 (-640 (-2 (|:| -3556 *3) (|:| -3491 (-1113)))))) - (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) (-14 *4 (-3 (-1165 *3) *2)))) - ((*1 *2) - (-12 (-5 *2 (-1257 (-640 (-2 (|:| -3556 *3) (|:| -3491 (-1113)))))) - (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) (-14 *4 (-917))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *1 (-103 *3)) (-4 *3 (-1093))))) -(((*1 *1 *1) (-5 *1 (-1168))) - ((*1 *1 *2) + (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *1) (-12 (-5 *2 - (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) - (-5 *1 (-1168))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-1133 *3 *2)) (-4 *3 (-13 (-1093) (-34))) - (-4 *2 (-13 (-1093) (-34)))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-754))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) - (-4 *6 (-1233 *5)) (-5 *2 (-1165 (-1165 *7))) - (-5 *1 (-501 *5 *6 *4 *7)) (-4 *4 (-1233 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2)))) + (-1259 + (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) + (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -3132 (-564)) + (|:| -2871 (-564)) (|:| |spline| (-564)) (|:| -1671 (-564)) + (|:| |axesColor| (-871)) (|:| -4371 (-564)) + (|:| |unitsColor| (-871)) (|:| |showing| (-564))))) + (-5 *1 (-1260))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-641 *7)) (|:| |badPols| (-641 *7)))) + (-5 *1 (-974 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-685 *2)) (-4 *2 (-172)) (-5 *1 (-146 *2)))) + ((*1 *2 *3) + (-12 (-4 *4 (-172)) (-4 *2 (-1235 *4)) (-5 *1 (-177 *4 *2 *3)) + (-4 *3 (-721 *4 *2)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-685 (-407 (-949 *5)))) (-5 *4 (-1170)) + (-5 *2 (-949 *5)) (-5 *1 (-292 *5)) (-4 *5 (-452)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-5 *2 (-949 *4)) + (-5 *1 (-292 *4)) (-4 *4 (-452)))) ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *2 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-563)) (-5 *1 (-204))))) -(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -1926 *9)))) - (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1065 *5 *6 *7 *8)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) - (-5 *1 (-1063 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -1926 *9)))) - (-5 *4 (-767)) (-4 *8 (-1059 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-1262)) - (-5 *1 (-1138 *5 *6 *7 *8 *9))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-1257 *5))) (-5 *4 (-563)) (-5 *2 (-1257 *5)) - (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045))))) -(((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) - (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5)))))) -(((*1 *2) - (-12 (-5 *2 (-684 (-906 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) - (-14 *4 (-917)))) - ((*1 *2) - (-12 (-5 *2 (-684 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) - (-14 *4 - (-3 (-1165 *3) - (-1257 (-640 (-2 (|:| -3556 *3) (|:| -3491 (-1113))))))))) - ((*1 *2) - (-12 (-5 *2 (-684 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-917))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-103 *3))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-922))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) - (-5 *4 (-684 (-1165 *8))) (-4 *5 (-1045)) (-4 *8 (-1045)) - (-4 *6 (-1233 *5)) (-5 *2 (-684 *6)) (-5 *1 (-501 *5 *6 *7 *8)) - (-4 *7 (-1233 *6))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-311)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-966)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-990)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1032)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1067))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-640 (-225))) (-5 *1 (-204))))) -(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-112)) (-5 *5 (-563)) (-4 *6 (-363)) (-4 *6 (-368)) - (-4 *6 (-1045)) (-5 *2 (-640 (-640 (-684 *6)))) (-5 *1 (-1025 *6)) - (-5 *3 (-640 (-684 *6))))) + (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *4 (-368)) (-4 *4 (-1045)) - (-5 *2 (-640 (-640 (-684 *4)))) (-5 *1 (-1025 *4)) - (-5 *3 (-640 (-684 *4))))) + (-12 (-5 *3 (-685 (-169 (-407 (-564))))) + (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *4)) + (-4 *4 (-13 (-363) (-845))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) - (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) - (-5 *3 (-640 (-684 *5))))) + (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *4 (-1170)) + (-5 *2 (-949 (-169 (-407 (-564))))) (-5 *1 (-761 *5)) + (-4 *5 (-13 (-363) (-845))))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *2 (-949 (-407 (-564)))) + (-5 *1 (-776 *4)) (-4 *4 (-13 (-363) (-845))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-917)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1045)) - (-5 *2 (-640 (-640 (-684 *5)))) (-5 *1 (-1025 *5)) - (-5 *3 (-640 (-684 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) - (-4 *4 (-349)) (-5 *2 (-767)) (-5 *1 (-346 *4)))) - ((*1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-351 *3 *4)) (-14 *3 (-917)) - (-14 *4 (-917)))) - ((*1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) - (-14 *4 - (-3 (-1165 *3) - (-1257 (-640 (-2 (|:| -3556 *3) (|:| -3491 (-1113))))))))) - ((*1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) - (-14 *4 (-917))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280)))) + (-12 (-5 *3 (-685 (-407 (-564)))) (-5 *4 (-1170)) + (-5 *2 (-949 (-407 (-564)))) (-5 *1 (-776 *5)) + (-4 *5 (-13 (-363) (-845)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-357 *3)) (-4 *3 (-349))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-918)) (-5 *2 (-468)) (-5 *1 (-1260))))) +(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-999)))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1098)) (-5 *3 (-771)) (-5 *1 (-52))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1261)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-871)))) + ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-685 *8)) (-5 *4 (-768)) (-4 *8 (-946 *5 *7 *6)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-13 (-847) (-612 (-1170)))) + (-4 *7 (-790)) + (-5 *2 + (-641 + (-2 (|:| |det| *8) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564)))))) + (-5 *1 (-921 *5 *6 *7 *8))))) +(((*1 *2 *3 *1) + (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-5 *2 (-112))))) +(((*1 *2 *1) + (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) + (-4 *3 (-964))))) +(((*1 *2 *1) (-12 (-4 *1 (-1094)) (-5 *2 (-1152))))) +(((*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-687 (-579))) (-5 *1 (-579))))) +(((*1 *2 *3 *3) + (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1035 (-564)))) + (-4 *5 (-1235 *4)) + (-5 *2 (-2 (|:| -2118 (-407 *5)) (|:| |coeff| (-407 *5)))) + (-5 *1 (-568 *4 *5)) (-5 *3 (-407 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-330))))) +(((*1 *1 *2 *2) + (-12 + (-5 *2 + (-3 (|:| I (-316 (-564))) (|:| -3510 (-316 (-379))) + (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1169)))) + (-5 *1 (-1169))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-241)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-641 (-1152))) (-5 *3 (-564)) (-5 *4 (-1152)) + (-5 *1 (-241)))) + ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-563) (-225) (-1169) (-1151) (-1174))) - (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-922))))) + (-12 (-4 *1 (-1237 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *1) (-4 *1 (-302))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859)))) + ((*1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 (-2 (|:| -4127 (-1166 *6)) (|:| -2515 (-564))))) + (-4 *6 (-307)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-739 *4 *5 *6 *7)) (-4 *7 (-946 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1165 *7)) - (-4 *5 (-1045)) (-4 *7 (-1045)) (-4 *2 (-1233 *5)) - (-5 *1 (-501 *5 *2 *6 *7)) (-4 *6 (-1233 *2))))) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-918)) (-4 *5 (-847)) + (-5 *2 (-59 (-641 (-668 *5)))) (-5 *1 (-668 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) (((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *2 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-2 (|:| -3673 (-114)) (|:| |w| (-225)))) (-5 *1 (-204))))) -(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260))))) -(((*1 *1) (-5 *1 (-291)))) + (-12 (-4 *1 (-166 *3)) (-4 *3 (-172)) (-4 *3 (-1055)) (-4 *3 (-1194)) + (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-859)))) + ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-959))))) +(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172)))) + ((*1 *2 *3 *3 *2) + (-12 (-5 *3 (-768)) (-5 *1 (-853 *2)) (-4 *2 (-172))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-786)) (-5 *5 (-564))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-4 *5 (-363)) - (-4 *5 (-1045)) (-5 *2 (-112)) (-5 *1 (-1025 *5)))) + (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) + (-4 *5 (-556)) (-5 *2 (-641 (-641 (-949 *5)))) (-5 *1 (-1178 *5))))) +(((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8))))) +(((*1 *2 *3 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-752))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *2 *2 *3 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-1046)) (-5 *1 (-1231 *4 *2)) + (-4 *2 (-1235 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999))))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1250 *3)) + (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1221 *3 *4)))) + ((*1 *2 *2) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *4 (-1219 *3)) + (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1242 *3 *4)) (-4 *5 (-980 *4)))) + ((*1 *1 *1) (-4 *1 (-284))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) (-4 *4 (-1045)) - (-5 *2 (-112)) (-5 *1 (-1025 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 *4)))) - (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2) - (-12 (-4 *1 (-349)) - (-5 *2 (-640 (-2 (|:| -2055 (-563)) (|:| -2631 (-563)))))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-640 (-280))) (-5 *1 (-280)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1281 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-846)) - (-4 *2 (-172)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-815 *4)) (-4 *1 (-1274 *4 *2)) (-4 *4 (-846)) - (-4 *2 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842))))) + (-12 (-5 *3 (-418 *4)) (-4 *4 (-556)) + (-5 *2 (-641 (-2 (|:| -1762 (-768)) (|:| |logand| *4)))) + (-5 *1 (-320 *4)))) + ((*1 *1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *2 *1) + (-12 (-5 *2 (-660 *3 *4)) (-5 *1 (-625 *3 *4 *5)) (-4 *3 (-847)) + (-4 *4 (-13 (-172) (-714 (-407 (-564))))) (-14 *5 (-918)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1155 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-38 (-407 (-564)))) + (-5 *1 (-1156 *3)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-13 (-1046) (-714 (-407 (-564))))) + (-4 *5 (-847)) (-5 *1 (-1275 *4 *5 *2)) (-4 *2 (-1280 *5 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-1279 *3 *4)) + (-4 *4 (-714 (-407 (-564)))) (-4 *3 (-847)) (-4 *4 (-172))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1169)) (-5 *5 (-1087 (-225))) (-5 *2 (-923)) - (-5 *1 (-921 *3)) (-4 *3 (-611 (-536))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-5 *2 (-923)) (-5 *1 (-921 *3)) - (-4 *3 (-611 (-536))))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-923)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1087 (-225))) - (-5 *1 (-923))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1165 *7)) (-4 *5 (-1045)) - (-4 *7 (-1045)) (-4 *2 (-1233 *5)) (-5 *1 (-501 *5 *2 *6 *7)) - (-4 *6 (-1233 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1045)) (-4 *7 (-1045)) - (-4 *4 (-1233 *5)) (-5 *2 (-1165 *7)) (-5 *1 (-501 *5 *4 *6 *7)) - (-4 *6 (-1233 *4))))) -(((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-192))))) -(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1260))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-640 (-684 *6))) (-5 *4 (-112)) (-5 *5 (-563)) - (-5 *2 (-684 *6)) (-5 *1 (-1025 *6)) (-4 *6 (-363)) (-4 *6 (-1045)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 (-684 *4))) (-5 *2 (-684 *4)) (-5 *1 (-1025 *4)) - (-4 *4 (-363)) (-4 *4 (-1045)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-640 (-684 *5))) (-5 *4 (-563)) (-5 *2 (-684 *5)) - (-5 *1 (-1025 *5)) (-4 *5 (-363)) (-4 *5 (-1045))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) - (-14 *4 *3)))) + (-12 (-5 *5 (-768)) (-4 *6 (-1094)) (-4 *3 (-897 *6)) + (-5 *2 (-685 *3)) (-5 *1 (-688 *6 *3 *7 *4)) (-4 *7 (-373 *3)) + (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4411))))))) (((*1 *2 *3) - (-12 (-4 *1 (-349)) (-5 *3 (-563)) (-5 *2 (-1181 (-917) (-767)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) -(((*1 *2 *2 *2) - (-12 - (-5 *2 - (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-684 *3)))) - (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 (-379)) (-5 *1 (-192))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1260))))) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) + (-5 *2 (-1259 (-641 (-2 (|:| -3426 *4) (|:| -1495 (-1114)))))) + (-5 *1 (-346 *4))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2) + (-12 (-5 *2 (-1259 (-1095 *3 *4))) (-5 *1 (-1095 *3 *4)) + (-14 *3 (-918)) (-14 *4 (-918))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-788)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-789)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-640 (-1169))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-641 (-1170))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1208)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-59 *6)) (-5 *1 (-58 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) - (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) + (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-564)) + (-14 *6 (-768)) (-4 *7 (-172)) (-4 *8 (-172)) (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-169 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-5 *2 (-169 *6)) (-5 *1 (-168 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1045) (-846))) - (-5 *1 (-223 *3 *4)) (-14 *4 (-640 (-1169))))) + (-12 (-5 *2 (-1 (-316 *3) (-316 *3))) (-4 *3 (-13 (-1046) (-847))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) - (-4 *6 (-1208)) (-4 *7 (-1208)) (-5 *2 (-240 *5 *7)) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) + (-4 *6 (-1209)) (-4 *7 (-1209)) (-5 *2 (-240 *5 *7)) (-5 *1 (-239 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-294 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-294 *6)) (-5 *1 (-293 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-294 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-294 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1151)) (-5 *5 (-609 *6)) - (-4 *6 (-302)) (-4 *2 (-1208)) (-5 *1 (-297 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1152)) (-5 *5 (-610 *6)) + (-4 *6 (-302)) (-4 *2 (-1209)) (-5 *1 (-297 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-609 *5)) (-4 *5 (-302)) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-610 *5)) (-4 *5 (-302)) (-4 *2 (-302)) (-5 *1 (-298 *5 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-609 *1)) (-4 *1 (-302)))) + (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-610 *1)) (-4 *1 (-302)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-684 *6)) (-5 *1 (-304 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-685 *5)) (-4 *5 (-1046)) + (-4 *6 (-1046)) (-5 *2 (-685 *6)) (-5 *1 (-304 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-846)) - (-4 *6 (-846)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-316 *5)) (-4 *5 (-847)) + (-4 *6 (-847)) (-5 *2 (-316 *6)) (-5 *1 (-314 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-336 *5 *6 *7 *8)) (-4 *5 (-363)) - (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) - (-4 *9 (-363)) (-4 *10 (-1233 *9)) (-4 *11 (-1233 (-407 *10))) + (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) + (-4 *9 (-363)) (-4 *10 (-1235 *9)) (-4 *11 (-1235 (-407 *10))) (-5 *2 (-336 *9 *10 *11 *12)) (-5 *1 (-333 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-342 *9 *10 *11)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1093)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-338 *3)) (-4 *3 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1212)) (-4 *8 (-1212)) - (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) (-4 *9 (-1233 *8)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1213)) (-4 *8 (-1213)) + (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) (-4 *9 (-1235 *8)) (-4 *2 (-342 *8 *9 *10)) (-5 *1 (-340 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1233 (-407 *9))))) + (-4 *4 (-342 *5 *6 *7)) (-4 *10 (-1235 (-407 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1208)) (-4 *6 (-1208)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1209)) (-4 *6 (-1209)) (-4 *2 (-373 *6)) (-5 *1 (-371 *5 *4 *6 *2)) (-4 *4 (-373 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-1093)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-555)) - (-4 *6 (-555)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-418 *5)) (-4 *5 (-556)) + (-4 *6 (-556)) (-5 *2 (-418 *6)) (-5 *1 (-405 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-555)) - (-4 *6 (-555)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-407 *5)) (-4 *5 (-556)) + (-4 *6 (-556)) (-5 *2 (-407 *6)) (-5 *1 (-406 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-413 *5 *6 *7 *8)) (-4 *5 (-307)) - (-4 *6 (-988 *5)) (-4 *7 (-1233 *6)) - (-4 *8 (-13 (-409 *6 *7) (-1034 *6))) (-4 *9 (-307)) - (-4 *10 (-988 *9)) (-4 *11 (-1233 *10)) + (-4 *6 (-989 *5)) (-4 *7 (-1235 *6)) + (-4 *8 (-13 (-409 *6 *7) (-1035 *6))) (-4 *9 (-307)) + (-4 *10 (-989 *9)) (-4 *11 (-1235 *10)) (-5 *2 (-413 *9 *10 *11 *12)) (-5 *1 (-412 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-409 *10 *11) (-1034 *10))))) + (-4 *12 (-13 (-409 *10 *11) (-1035 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) (-4 *2 (-417 *6)) (-5 *1 (-415 *4 *5 *2 *6)) (-4 *4 (-417 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-555)) (-5 *1 (-418 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-556)) (-5 *1 (-418 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1045) (-846))) - (-4 *6 (-13 (-1045) (-846))) (-4 *2 (-430 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-1046) (-847))) + (-4 *6 (-13 (-1046) (-847))) (-4 *2 (-430 *6)) (-5 *1 (-421 *5 *4 *6 *2)) (-4 *4 (-430 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1093)) (-4 *6 (-1093)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-425 *6)) (-5 *1 (-423 *5 *4 *6 *2)) (-4 *4 (-425 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1208)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-489 *3)) (-4 *3 (-1209)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-846)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-509 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-847)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-584 *5)) (-4 *5 (-363)) - (-4 *6 (-363)) (-5 *2 (-584 *6)) (-5 *1 (-583 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-585 *5)) (-4 *5 (-363)) + (-4 *6 (-363)) (-5 *2 (-585 *6)) (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -3971 *5) (|:| |coeff| *5)) "failed")) + (-5 *4 (-3 (-2 (|:| -2118 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) - (-5 *2 (-2 (|:| -3971 *6) (|:| |coeff| *6))) - (-5 *1 (-583 *5 *6)))) + (-5 *2 (-2 (|:| -2118 *6) (|:| |coeff| *6))) + (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) - (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-583 *5 *2)))) + (-4 *5 (-363)) (-4 *2 (-363)) (-5 *1 (-584 *5 *2)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (-641 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-363)) (-4 *6 (-363)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) - (-5 *1 (-583 *5 *6)))) + (-641 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (-5 *1 (-584 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-598 *6)) (-5 *1 (-595 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-599 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-599 *6)) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) - (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-598 *8)) - (-5 *1 (-596 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-599 *7)) + (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-599 *8)) + (-5 *1 (-597 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-598 *7)) - (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) - (-5 *1 (-596 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-599 *7)) + (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) + (-5 *1 (-597 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-1149 *7)) - (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) - (-5 *1 (-596 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-599 *6)) (-5 *5 (-1150 *7)) + (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) + (-5 *1 (-597 *6 *7 *8)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1209)) (-5 *1 (-599 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-640 *6)) (-5 *1 (-638 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-641 *6)) (-5 *1 (-639 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-640 *6)) (-5 *5 (-640 *7)) - (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-640 *8)) - (-5 *1 (-639 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-641 *6)) (-5 *5 (-641 *7)) + (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-641 *8)) + (-5 *1 (-640 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1045)) (-4 *8 (-1045)) - (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-682 *8 *9 *10)) - (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-682 *5 *6 *7)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1046)) (-4 *8 (-1046)) + (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *2 (-683 *8 *9 *10)) + (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1045)) - (-4 *8 (-1045)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) - (-4 *2 (-682 *8 *9 *10)) (-5 *1 (-680 *5 *6 *7 *4 *8 *9 *10 *2)) - (-4 *4 (-682 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-555)) (-4 *7 (-555)) - (-4 *6 (-1233 *5)) (-4 *2 (-1233 (-407 *8))) - (-5 *1 (-705 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1233 (-407 *6))) - (-4 *8 (-1233 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1045)) (-4 *9 (-1045)) - (-4 *5 (-846)) (-4 *6 (-789)) (-4 *2 (-945 *9 *7 *5)) - (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) - (-4 *4 (-945 *8 *6 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-846)) (-4 *6 (-846)) (-4 *7 (-789)) - (-4 *9 (-1045)) (-4 *2 (-945 *9 *8 *6)) - (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-789)) - (-4 *4 (-945 *9 *7 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-731 *5 *7)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-4 *7 (-722)) (-5 *2 (-731 *6 *7)) - (-5 *1 (-730 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1046)) + (-4 *8 (-1046)) (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) + (-4 *2 (-683 *8 *9 *10)) (-5 *1 (-681 *5 *6 *7 *4 *8 *9 *10 *2)) + (-4 *4 (-683 *5 *6 *7)) (-4 *9 (-373 *8)) (-4 *10 (-373 *8)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-556)) (-4 *7 (-556)) + (-4 *6 (-1235 *5)) (-4 *2 (-1235 (-407 *8))) + (-5 *1 (-706 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1235 (-407 *6))) + (-4 *8 (-1235 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1046)) (-4 *9 (-1046)) + (-4 *5 (-847)) (-4 *6 (-790)) (-4 *2 (-946 *9 *7 *5)) + (-5 *1 (-725 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-790)) + (-4 *4 (-946 *8 *6 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-847)) (-4 *6 (-847)) (-4 *7 (-790)) + (-4 *9 (-1046)) (-4 *2 (-946 *9 *8 *6)) + (-5 *1 (-726 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-790)) + (-4 *4 (-946 *9 *7 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5 *7)) (-4 *5 (-1046)) + (-4 *6 (-1046)) (-4 *7 (-723)) (-5 *2 (-732 *6 *7)) + (-5 *1 (-731 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-731 *3 *4)) - (-4 *4 (-722)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-732 *3 *4)) + (-4 *4 (-723)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-778 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-778 *6)) (-5 *1 (-777 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-779 *5)) (-4 *5 (-1046)) + (-4 *6 (-1046)) (-5 *2 (-779 *6)) (-5 *1 (-778 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-793 *6)) (-5 *1 (-794 *4 *5 *2 *6)) (-4 *4 (-793 *5)))) + (-4 *2 (-794 *6)) (-5 *1 (-795 *4 *5 *2 *6)) (-4 *4 (-794 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) (-4 *5 (-1093)) - (-4 *6 (-1093)) (-5 *2 (-829 *6)) (-5 *1 (-828 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-830 *6)) (-5 *1 (-829 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-829 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-829 *5)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-828 *5 *6)))) + (-12 (-5 *2 (-830 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-830 *5)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-829 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) (-4 *5 (-1093)) - (-4 *6 (-1093)) (-5 *2 (-839 *6)) (-5 *1 (-838 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-840 *6)) (-5 *1 (-839 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-839 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-839 *5)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-5 *1 (-838 *5 *6)))) + (-12 (-5 *2 (-840 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-840 *5)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-5 *1 (-839 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-873 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-873 *6)) (-5 *1 (-872 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-874 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-874 *6)) (-5 *1 (-873 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-875 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-875 *6)) (-5 *1 (-874 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-876 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-876 *6)) (-5 *1 (-875 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-878 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-878 *6)) (-5 *1 (-877 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-879 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-879 *6)) (-5 *1 (-878 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-885 *5 *6)) (-4 *5 (-1093)) - (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-885 *5 *7)) - (-5 *1 (-884 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-886 *5 *6)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-886 *5 *7)) + (-5 *1 (-885 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-888 *5)) (-4 *5 (-1093)) - (-4 *6 (-1093)) (-5 *2 (-888 *6)) (-5 *1 (-887 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-889 *5)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-889 *6)) (-5 *1 (-888 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-948 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-948 *6)) (-5 *1 (-942 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-949 *5)) (-4 *5 (-1046)) + (-4 *6 (-1046)) (-5 *2 (-949 *6)) (-5 *1 (-943 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-846)) - (-4 *8 (-1045)) (-4 *6 (-789)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-847)) + (-4 *8 (-1046)) (-4 *6 (-790)) (-4 *2 - (-13 (-1093) - (-10 -8 (-15 -3027 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-767)))))) - (-5 *1 (-947 *6 *7 *8 *5 *2)) (-4 *5 (-945 *8 *6 *7)))) + (-13 (-1094) + (-10 -8 (-15 -1780 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-768)))))) + (-5 *1 (-948 *6 *7 *8 *5 *2)) (-4 *5 (-946 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-954 *6)) (-5 *1 (-953 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-955 *6)) (-5 *1 (-954 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-939 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-939 *6)) (-5 *1 (-977 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-940 *5)) (-4 *5 (-1046)) + (-4 *6 (-1046)) (-5 *2 (-940 *6)) (-5 *1 (-978 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-948 *4))) (-4 *4 (-1045)) - (-4 *2 (-945 (-948 *4) *5 *6)) (-4 *5 (-789)) + (-12 (-5 *3 (-1 *2 (-949 *4))) (-4 *4 (-1046)) + (-4 *2 (-946 (-949 *4) *5 *6)) (-4 *5 (-790)) (-4 *6 - (-13 (-846) - (-10 -8 (-15 -2802 ((-1169) $)) - (-15 -4040 ((-3 $ "failed") (-1169)))))) - (-5 *1 (-980 *4 *5 *6 *2)))) + (-13 (-847) + (-10 -8 (-15 -2235 ((-1170) $)) + (-15 -3851 ((-3 $ "failed") (-1170)))))) + (-5 *1 (-981 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-555)) (-4 *6 (-555)) - (-4 *2 (-988 *6)) (-5 *1 (-986 *5 *6 *4 *2)) (-4 *4 (-988 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-556)) (-4 *6 (-556)) + (-4 *2 (-989 *6)) (-5 *1 (-987 *5 *6 *4 *2)) (-4 *4 (-989 *5)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-172)) (-4 *6 (-172)) - (-4 *2 (-993 *6)) (-5 *1 (-994 *4 *5 *2 *6)) (-4 *4 (-993 *5)))) + (-4 *2 (-994 *6)) (-5 *1 (-995 *4 *5 *2 *6)) (-4 *4 (-994 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) - (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) + (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1048 *3 *4 *5 *6 *7)) - (-4 *5 (-1045)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1045)) (-4 *10 (-1045)) - (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *2 (-1048 *5 *6 *10 *11 *12)) - (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1049 *3 *4 *5 *6 *7)) + (-4 *5 (-1046)) (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1046)) (-4 *10 (-1046)) + (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *2 (-1049 *5 *6 *10 *11 *12)) + (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *11 (-238 *6 *10)) (-4 *12 (-238 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-1087 *6)) (-5 *1 (-1082 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-1088 *6)) (-5 *1 (-1083 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1087 *5)) (-4 *5 (-844)) - (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-640 *6)) - (-5 *1 (-1082 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1088 *5)) (-4 *5 (-845)) + (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-641 *6)) + (-5 *1 (-1083 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1085 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-1085 *6)) (-5 *1 (-1084 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1086 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-1086 *6)) (-5 *1 (-1085 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) - (-4 *2 (-1142 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1089 *4 *2)) (-4 *4 (-845)) + (-4 *2 (-1143 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-1149 *6)) (-5 *1 (-1147 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-1150 *6)) (-5 *1 (-1148 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1149 *6)) (-5 *5 (-1149 *7)) - (-4 *6 (-1208)) (-4 *7 (-1208)) (-4 *8 (-1208)) (-5 *2 (-1149 *8)) - (-5 *1 (-1148 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1150 *6)) (-5 *5 (-1150 *7)) + (-4 *6 (-1209)) (-4 *7 (-1209)) (-4 *8 (-1209)) (-5 *2 (-1150 *8)) + (-5 *1 (-1149 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1165 *5)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-5 *2 (-1165 *6)) (-5 *1 (-1163 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5)) (-4 *5 (-1046)) + (-4 *6 (-1046)) (-5 *2 (-1166 *6)) (-5 *1 (-1164 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1184 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1185 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1221 *5 *7 *9)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1221 *6 *8 *10)) (-5 *1 (-1216 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1169)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1223 *5 *7 *9)) (-4 *5 (-1046)) + (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1223 *6 *8 *10)) (-5 *1 (-1218 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1170)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-1224 *6)) (-5 *1 (-1223 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-1226 *6)) (-5 *1 (-1225 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1224 *5)) (-4 *5 (-844)) - (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1149 *6)) - (-5 *1 (-1223 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1226 *5)) (-4 *5 (-845)) + (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1150 *6)) + (-5 *1 (-1225 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1230 *5 *6)) (-14 *5 (-1169)) - (-4 *6 (-1045)) (-4 *8 (-1045)) (-5 *2 (-1230 *7 *8)) - (-5 *1 (-1225 *5 *6 *7 *8)) (-14 *7 (-1169)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1232 *5 *6)) (-14 *5 (-1170)) + (-4 *6 (-1046)) (-4 *8 (-1046)) (-5 *2 (-1232 *7 *8)) + (-5 *1 (-1227 *5 *6 *7 *8)) (-14 *7 (-1170)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) - (-4 *2 (-1233 *6)) (-5 *1 (-1231 *5 *4 *6 *2)) (-4 *4 (-1233 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) + (-4 *2 (-1235 *6)) (-5 *1 (-1233 *5 *4 *6 *2)) (-4 *4 (-1235 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1242 *5 *7 *9)) (-4 *5 (-1045)) - (-4 *6 (-1045)) (-14 *7 (-1169)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1242 *6 *8 *10)) (-5 *1 (-1237 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1169)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1244 *5 *7 *9)) (-4 *5 (-1046)) + (-4 *6 (-1046)) (-14 *7 (-1170)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1244 *6 *8 *10)) (-5 *1 (-1239 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1170)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1045)) (-4 *6 (-1045)) - (-4 *2 (-1248 *6)) (-5 *1 (-1246 *5 *6 *4 *2)) (-4 *4 (-1248 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1046)) (-4 *6 (-1046)) + (-4 *2 (-1250 *6)) (-5 *1 (-1248 *5 *6 *4 *2)) (-4 *4 (-1250 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) - (-4 *6 (-1208)) (-5 *2 (-1257 *6)) (-5 *1 (-1256 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) + (-4 *6 (-1209)) (-5 *2 (-1259 *6)) (-5 *1 (-1258 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1257 *5)) - (-4 *5 (-1208)) (-4 *6 (-1208)) (-5 *2 (-1257 *6)) - (-5 *1 (-1256 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1259 *5)) + (-4 *5 (-1209)) (-4 *6 (-1209)) (-5 *2 (-1259 *6)) + (-5 *1 (-1258 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-1045)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-1046)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1045)) (-5 *1 (-1280 *3 *4)) - (-4 *4 (-842))))) -(((*1 *1) (-4 *1 (-349)))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-291))) - ((*1 *1) (-5 *1 (-858))) - ((*1 *1) - (-12 (-4 *2 (-452)) (-4 *3 (-846)) (-4 *4 (-789)) - (-5 *1 (-983 *2 *3 *4 *5)) (-4 *5 (-945 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1078))) - ((*1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34))))) - ((*1 *1) (-5 *1 (-1172))) ((*1 *1) (-5 *1 (-1173)))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-1282 *3 *4)) + (-4 *4 (-843))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-147))) (-5 *1 (-537 *3 *2)) + (-4 *2 (-1250 *3)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-4 *4 (-1235 *3)) + (-4 *5 (-721 *3 *4)) (-5 *1 (-541 *3 *4 *5 *2)) (-4 *2 (-1250 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-363) (-368) (-612 (-564)))) (-5 *1 (-542 *3 *2)) + (-4 *2 (-1250 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-13 (-556) (-147))) + (-5 *1 (-1146 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1126 (-225))) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) - (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) - (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) - (-5 *1 (-259 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) - (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-611 (-536)) (-1093))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1126 (-225))) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-611 (-536)) (-1093))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) - (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) - (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1126 (-225))) - (-5 *1 (-259 *5))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-684 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) -(((*1 *1) - (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) - (-4 *4 (-661 *3)))) - ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) -(((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| "There are singularities at both end points") - (|:| |notEvaluated| "End point continuity not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1260))))) -(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) - (-4 *3 (-1233 *4)) (-5 *2 (-112))))) + (|partial| -12 (-5 *4 (-1170)) (-5 *5 (-641 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-557 *6 *3))))) +(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) (((*1 *2 *3) - (-12 (-4 *4 (-789)) - (-4 *5 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *6 (-555)) - (-5 *2 (-2 (|:| -3367 (-948 *6)) (|:| -2502 (-948 *6)))) - (-5 *1 (-728 *4 *5 *6 *3)) (-4 *3 (-945 (-407 (-948 *6)) *4 *5))))) -(((*1 *2) - (-12 (-4 *1 (-349)) - (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-437)) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-684 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-684 *3)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) + (-12 (-5 *3 (-768)) (-5 *2 (-1 (-1150 (-949 *4)) (-1150 (-949 *4)))) + (-5 *1 (-1267 *4)) (-4 *4 (-363))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-241))))) +(((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |h| *6) + (|:| |c1| (-407 *6)) (|:| |c2| (-407 *6)) (|:| -1335 *6))) + (-5 *1 (-1013 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) + (-5 *1 (-418 *4)) (-4 *4 (-556))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *2 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))) - (-5 *1 (-192))))) -(((*1 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1260))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-1086 *3)) (-4 *3 (-1208))))) + (-12 (-5 *3 (-1152)) + (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-112)) (-5 *1 (-224 *4 *5)) (-4 *5 (-13 (-1194) (-29 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) - (-4 *3 (-1233 *4)) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1233 *5)) - (-5 *1 (-723 *5 *2)) (-4 *5 (-363))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1169)) (-5 *1 (-536)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) - ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) - ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1169)) (-5 *1 (-700 *3)) (-4 *3 (-611 (-536))))) - ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-700 *3)) - (-4 *3 (-611 (-536)))))) + (-12 (-5 *2 (-1088 *3)) (-5 *1 (-1086 *3)) (-4 *3 (-1209)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2) (-12 (-5 *1 (-1226 *2)) (-4 *2 (-1209))))) (((*1 *2 *3) - (-12 (-5 *3 (-917)) - (-5 *2 - (-3 (-1165 *4) - (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113))))))) - (-5 *1 (-346 *4)) (-4 *4 (-349))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *1 *1) (-5 *1 (-858))) - ((*1 *2 *1) - (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093)))) - ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1150)))) - ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1169))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) - ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-467)))) - ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-923))))) + (-12 (-5 *3 (-610 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1035 (-564))) + (-4 *4 (-13 (-847) (-556))) (-5 *2 (-1166 *5)) (-5 *1 (-32 *4 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-610 *1)) (-4 *1 (-1046)) (-4 *1 (-302)) + (-5 *2 (-1166 *1))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-767)) - (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *4 (-1233 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1143 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563))))) -(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-1260))))) -(((*1 *2 *1) - (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-112)))) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4284 *4))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *1) (-5 *1 (-578))) + ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-860)))) + ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-860)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) - (-4 *3 (-1233 *4)) (-5 *2 (-112))))) + (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-1150 *4)) + (-4 *4 (-1094)) (-4 *4 (-1209))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3385 (-418 *3)) (|:| |special| (-418 *3)))) - (-5 *1 (-723 *5 *3))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-917)) - (-5 *2 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) - (-5 *1 (-346 *4)) (-4 *4 (-349))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-434)) - (-5 *2 - (-640 - (-3 (|:| -3359 (-1169)) - (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563))))))))) - (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) + (-12 (-5 *3 (-685 (-169 (-407 (-564))))) (-5 *2 (-641 (-169 *4))) + (-5 *1 (-761 *4)) (-4 *4 (-13 (-363) (-845)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) + (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-641 (-641 *7))) + (-5 *1 (-448 *4 *5 *6 *7)) (-5 *3 (-641 *7)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) + (-4 *7 (-847)) (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-641 (-641 *8))) + (-5 *1 (-448 *5 *6 *7 *8)) (-5 *3 (-641 *8))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1152)) (-5 *3 (-771)) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-529)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1128 *2)) (-4 *2 (-1046)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-1158 *3 *4))) (-5 *1 (-1158 *3 *4)) + (-14 *3 (-918)) (-4 *4 (-1046)))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-1158 *2 *3)) (-14 *2 (-918)) (-4 *3 (-1046))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1259 *6)) (-5 *4 (-1259 (-564))) (-5 *5 (-564)) + (-4 *6 (-1094)) (-5 *2 (-1 *6)) (-5 *1 (-1014 *6))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2118 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-363)) (-4 *7 (-1235 *6)) + (-5 *2 (-2 (|:| |answer| (-585 (-407 *7))) (|:| |a0| *6))) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) +(((*1 *2 *2 *3) + (|partial| -12 (-5 *3 (-768)) (-5 *1 (-586 *2)) (-4 *2 (-545)))) + ((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -3237 *3) (|:| -2515 (-768)))) (-5 *1 (-586 *3)) + (-4 *3 (-545))))) (((*1 *2 *3) - (-12 (-5 *2 (-640 (-1165 (-563)))) (-5 *1 (-191)) (-5 *3 (-563))))) -(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) -(((*1 *2 *2) - (-12 (-4 *3 (-1034 (-563))) (-4 *3 (-13 (-846) (-555))) - (-5 *1 (-32 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1165 *4)) (-5 *1 (-165 *3 *4)) - (-4 *3 (-166 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1045)) (-4 *1 (-302)))) - ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) - ((*1 *2) (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1062 *3 *2)) (-4 *3 (-13 (-844) (-363))) - (-4 *2 (-1233 *3))))) -(((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-718)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-722)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) - (-4 *4 (-349)) (-5 *2 (-684 *4)) (-5 *1 (-346 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *1) (-12 (-4 *1 (-951)) (-5 *2 (-640 (-640 (-939 (-225))))))) - ((*1 *2 *1) (-12 (-4 *1 (-970)) (-5 *2 (-640 (-640 (-939 (-225)))))))) -(((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-609 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) (-5 *5 (-1165 *2)) - (-4 *2 (-13 (-430 *6) (-27) (-1193))) - (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093)))) - ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-609 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) - (-5 *5 (-407 (-1165 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1193))) - (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *1 (-559 *6 *2 *7)) (-4 *7 (-1093))))) -(((*1 *2 *1) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) + (-5 *1 (-1210 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-5 *2 (-1264)) + (-5 *1 (-1210 *4))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *1 *1) (-12 (-5 *2 - (-640 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225))))) - (-5 *1 (-558)))) - ((*1 *2 *1) - (-12 (-4 *1 (-607 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-5 *2 (-640 *3)))) - ((*1 *2 *1) + (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) + (-5 *1 (-386 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *1) (-12 (-5 *2 - (-640 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225))))) - (-5 *1 (-799))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1258)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1258)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-873 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1258)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-875 (-1 (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-939 (-225)) (-225))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *5 (-640 (-263))) (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-878 (-1 (-225) (-225) (-225)))) (-5 *4 (-1087 (-379))) - (-5 *2 (-1259)) (-5 *1 (-255)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-1169)) (-5 *5 (-640 (-263))) - (-4 *7 (-430 *6)) (-4 *6 (-13 (-555) (-846) (-1034 (-563)))) - (-5 *2 (-1258)) (-5 *1 (-256 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1258)) - (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1258)) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-611 (-536)) (-1093))))) + (-2 (|:| |lm| (-816 *3)) (|:| |mm| (-816 *3)) (|:| |rm| (-816 *3)))) + (-5 *1 (-816 *3)) (-4 *3 (-847))))) +(((*1 *2 *3 *2 *4 *5) + (-12 (-5 *2 (-641 *3)) (-5 *5 (-918)) (-4 *3 (-1235 *4)) + (-4 *4 (-307)) (-5 *1 (-460 *4 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-235 *3)) + (-4 *3 (-1094)))) + ((*1 *1 *2 *1) + (-12 (|has| *1 (-6 -4411)) (-4 *1 (-235 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) + ((*1 *2 *3 *1) + (|partial| -12 (-4 *1 (-608 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-564)) (-4 *4 (-1094)) + (-5 *1 (-734 *4)))) + ((*1 *1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-5 *1 (-734 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1134 *3 *4)) (-4 *3 (-13 (-1094) (-34))) + (-4 *4 (-13 (-1094) (-34))) (-5 *1 (-1135 *3 *4))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) +(((*1 *2 *3 *4 *4 *4 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-748))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-873 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) - (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) - (-5 *1 (-259 *6)))) + (-12 (-5 *3 (-649 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) + (-5 *5 (-1 (-418 *7) *7)) + (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-873 *5)) (-5 *4 (-1085 (-379))) - (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1258)) - (-5 *1 (-259 *5)))) + (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-641 *5) *6)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *6 (-1235 *5)) (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-875 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) - (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-875 *5)) (-5 *4 (-1085 (-379))) - (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) - (-5 *1 (-259 *5)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) (-5 *2 (-1259)) - (-5 *1 (-259 *3)) (-4 *3 (-13 (-611 (-536)) (-1093))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1085 (-379))) (-5 *2 (-1259)) (-5 *1 (-259 *3)) - (-4 *3 (-13 (-611 (-536)) (-1093))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-878 *6)) (-5 *4 (-1085 (-379))) (-5 *5 (-640 (-263))) - (-4 *6 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) - (-5 *1 (-259 *6)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-878 *5)) (-5 *4 (-1085 (-379))) - (-4 *5 (-13 (-611 (-536)) (-1093))) (-5 *2 (-1259)) - (-5 *1 (-259 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1258)) (-5 *1 (-260)))) - ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1258)) - (-5 *1 (-260)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *2 (-1258)) (-5 *1 (-260)))) + (-12 (-5 *3 (-650 *7 (-407 *7))) (-5 *4 (-1 (-641 *6) *7)) + (-5 *5 (-1 (-418 *7) *7)) + (-4 *6 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *7 (-1235 *6)) (-5 *2 (-641 (-407 *7))) (-5 *1 (-809 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-649 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-649 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) + (-4 *6 (-1235 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6)))) + ((*1 *2 *3) + (-12 (-5 *3 (-650 *5 (-407 *5))) (-4 *5 (-1235 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-5 *2 (-641 (-407 *5))) (-5 *1 (-809 *4 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-650 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) + (-4 *6 (-1235 *5)) (-4 *5 (-27)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-5 *2 (-641 (-407 *6))) (-5 *1 (-809 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-62 *3)) (-14 *3 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-69 *3)) (-14 *3 (-1170)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-72 *3)) (-14 *3 (-1170)))) + ((*1 *2 *1) (-12 (-4 *1 (-395)) (-5 *2 (-1264)))) + ((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-397)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) + ((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1264)) (-5 *1 (-1132)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-859))) (-5 *2 (-1264)) (-5 *1 (-1132))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-556) (-847))) + (-4 *2 (-13 (-430 *4) (-999) (-1194))) (-5 *1 (-598 *4 *2 *3)) + (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1166 (-564))) (-5 *2 (-564)) (-5 *1 (-939))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-426 *5 *3)) + (-4 *3 (-13 (-1194) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-939 (-225)))) (-5 *4 (-640 (-263))) - (-5 *2 (-1258)) (-5 *1 (-260)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-640 (-225))) (-5 *2 (-1259)) (-5 *1 (-260)))) - ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-640 (-225))) (-5 *4 (-640 (-263))) (-5 *2 (-1259)) - (-5 *1 (-260))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) - (-5 *1 (-190))))) -(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) + (-12 (-5 *4 (-1170)) (-4 *5 (-13 (-556) (-1035 (-564)) (-147))) + (-5 *2 (-585 (-407 (-949 *5)))) (-5 *1 (-570 *5)) + (-5 *3 (-407 (-949 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) - ((*1 *2 *3) - (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) - ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 (-563))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 (-407 (-563)))) (-5 *2 (-640 *1)) (-4 *1 (-1008)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 *1)) (-4 *1 (-1008)) (-5 *2 (-640 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-844) (-363))) (-4 *3 (-1233 *4)) (-5 *2 (-640 *1)) - (-4 *1 (-1062 *4 *3))))) + (-12 + (-5 *3 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3089 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *2 (-1032)) (-5 *1 (-305))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1257 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) - (-4 *1 (-720 *5 *6)) (-4 *5 (-172)) (-4 *6 (-1233 *5)) - (-5 *2 (-684 *5))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) (((*1 *2 *3) - (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) - (-5 *2 (-1257 (-640 (-2 (|:| -3556 *4) (|:| -3491 (-1113)))))) - (-5 *1 (-346 *4))))) + (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 + (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) + (-5 *1 (-1118 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6))))) +(((*1 *1) (-5 *1 (-800)))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-997 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *6 *5)) + (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-5 *2 (-112)) (-5 *1 (-921 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-112)) + (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-918)) (-4 *1 (-404)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-564)) (-4 *1 (-404)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1097 *3 *4 *5 *2 *6)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *2 (-1094))))) +(((*1 *2 *1 *1 *3) + (-12 (-4 *4 (-1046)) (-4 *5 (-790)) (-4 *3 (-847)) + (-5 *2 (-2 (|:| -1762 *1) (|:| |gap| (-768)) (|:| -1363 *1))) + (-4 *1 (-1060 *4 *5 *3)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *2 (-2 (|:| -1762 *1) (|:| |gap| (-768)) (|:| -1363 *1))) + (-4 *1 (-1060 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 - (-640 - (-640 - (-3 (|:| -3359 (-1169)) - (|:| -1832 (-640 (-3 (|:| S (-1169)) (|:| P (-948 (-563)))))))))) - (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) - (-4 *5 (-846)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-640 *1)) (-4 *1 (-302)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-114)) (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-846)) - (-5 *1 (-609 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1258)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-263))) (-5 *1 (-1259))))) -(((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) (-5 *6 (-1165 *3)) - (-4 *3 (-13 (-430 *7) (-27) (-1193))) - (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093)))) - ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) - (-5 *6 (-407 (-1165 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1193))) - (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-559 *7 *3 *8)) (-4 *8 (-1093))))) + (-641 + (-641 + (-3 (|:| -4324 (-1170)) + (|:| -2663 (-641 (-3 (|:| S (-1170)) (|:| P (-949 (-564)))))))))) + (-5 *1 (-1174))))) +(((*1 *1) (-5 *1 (-157))) + ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-23))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1 *2 (-641 *2))) (-5 *4 (-641 *5)) + (-4 *5 (-38 (-407 (-564)))) (-4 *2 (-1250 *5)) + (-5 *1 (-1252 *5 *2))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-452))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-1094)) (-4 *4 (-1209)) (-5 *2 (-112)) + (-5 *1 (-1150 *4))))) +(((*1 *2 *3 *4 *4 *5 *4 *4 *5) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-754))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-563))) (-5 *2 (-1171 (-407 (-563)))) - (-5 *1 (-190))))) -(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) + (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-587 *4)) + (-4 *4 (-349))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) + (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-685 *6)) (-5 *5 (-1 (-418 (-1166 *6)) (-1166 *6))) + (-4 *6 (-363)) + (-5 *2 + (-641 + (-2 (|:| |outval| *7) (|:| |outmult| (-564)) + (|:| |outvect| (-641 (-685 *7)))))) + (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-845)))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-768)) (-4 *6 (-363)) (-5 *4 (-1203 *6)) + (-5 *2 (-1 (-1150 *4) (-1150 *4))) (-5 *1 (-1267 *6)) + (-5 *5 (-1150 *4))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-768)) (-4 *1 (-231 *4)) + (-4 *4 (-1046)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1165 *2)) (-5 *4 (-1169)) (-4 *2 (-430 *5)) - (-5 *1 (-32 *5 *2)) (-4 *5 (-13 (-846) (-555))))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-4 *1 (-1008)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1165 *1)) (-5 *3 (-917)) (-5 *4 (-858)) - (-4 *1 (-1008)))) - ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-917)) (-4 *4 (-13 (-844) (-363))) - (-4 *1 (-1062 *4 *2)) (-4 *2 (-1233 *4))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1046)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-768)))) + ((*1 *1 *1) (-4 *1 (-233))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *1 *1) + (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) + (-4 *3 (-1235 *2)))) + ((*1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-1046)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 *4)) (-5 *3 (-641 (-768))) (-4 *1 (-897 *4)) + (-4 *4 (-1094)))) + ((*1 *1 *1 *2 *3) + (-12 (-5 *3 (-768)) (-4 *1 (-897 *2)) (-4 *2 (-1094)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *1 (-897 *3)) (-4 *3 (-1094)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-897 *2)) (-4 *2 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-1259 *5))) (-5 *4 (-564)) (-5 *2 (-1259 *5)) + (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-368)) (-4 *5 (-1046))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *5) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-79 LSFUN1)))) + (-5 *2 (-1032)) (-5 *1 (-750))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-452))))) (((*1 *2 *3) - (-12 (-5 *3 (-1165 *4)) (-4 *4 (-349)) (-5 *2 (-954 (-1113))) - (-5 *1 (-346 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-1173))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-819)) (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) - ((*1 *1 *1) (-12 (-4 *1 (-669 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1) (-4 *1 (-865 *2))) + (-12 (-5 *3 (-924)) + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-924)) (-5 *4 (-407 (-564))) + (-5 *2 + (-2 (|:| |brans| (-641 (-641 (-940 (-225))))) + (|:| |xValues| (-1088 (-225))) (|:| |yValues| (-1088 (-225))))) + (-5 *1 (-153))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-788)) - (-4 *4 (-846))))) -(((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) - (-4 *3 (-13 (-430 *6) (-27) (-1193))) - (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) - (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) - ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) - (-4 *3 (-13 (-430 *6) (-27) (-1193))) - (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) - (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190))))) -(((*1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260)))) - ((*1 *2 *2) (-12 (-5 *2 (-870)) (-5 *1 (-1260))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-1020 *3)) - (-4 *3 (-13 (-844) (-363) (-1018))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) - (-4 *3 (-1233 *2)))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) - (-4 *3 (-1233 *2))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767))))) -(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) - ((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-1173))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-967))))) -(((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-609 *3)) (-5 *5 (-1165 *3)) - (-4 *3 (-13 (-430 *6) (-27) (-1193))) - (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093)))) - ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-609 *3)) (-5 *5 (-407 (-1165 *3))) - (-4 *3 (-13 (-430 *6) (-27) (-1193))) - (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 (-584 *3)) (-5 *1 (-559 *6 *3 *7)) (-4 *7 (-1093))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) -(((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-1059 *3 *4 *2)) (-4 *2 (-846)))) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *1 (-585 *2)) (-4 *2 (-363))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-311)))) ((*1 *2 *1) - (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) - ((*1 *1 *1) (|partial| -4 *1 (-718)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-767)) (-5 *4 (-1257 *2)) (-4 *5 (-307)) - (-4 *6 (-988 *5)) (-4 *2 (-13 (-409 *6 *7) (-1034 *6))) - (-5 *1 (-413 *5 *6 *7 *2)) (-4 *7 (-1233 *6))))) + (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) + (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) + (-5 *2 (-1264)) (-5 *1 (-1173)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) + (-5 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *2 (-1264)) + (-5 *1 (-1173)))) + ((*1 *2 *3 *4 *1) + (-12 (-5 *3 (-1170)) + (-5 *4 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *2 (-1264)) + (-5 *1 (-1173))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-924))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) +(((*1 *2 *3 *2 *3) + (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) + ((*1 *2 *3 *2 *4 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *4 (-1170)) + (-5 *1 (-1173)))) + ((*1 *2 *3 *2 *3 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1173)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-1170)) (-5 *1 (-1174)))) + ((*1 *2 *3 *2 *1) + (-12 (-5 *2 (-437)) (-5 *3 (-641 (-1170))) (-5 *1 (-1174))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-949 (-379))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + (-4 *5 (-1035 (-379))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-949 (-564))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-316 (-564))) (-5 *1 (-339 *3 *4 *5)) + (-4 *5 (-1035 (-564))) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))) (-4 *5 (-387)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) - (-14 *3 (-640 *2)) (-14 *4 (-640 *2)) (-4 *5 (-387)))) + (|partial| -12 (-5 *2 (-1170)) (-5 *1 (-339 *3 *4 *5)) + (-14 *3 (-641 *2)) (-14 *4 (-641 *2)) (-4 *5 (-387)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 *5)) (-4 *5 (-387)) - (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))))) + (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-641 (-1170))) + (-14 *4 (-641 (-1170))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-407 (-949 (-564))))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-407 (-949 (-379))))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-949 (-564)))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-949 (-379)))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-316 (-564)))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) + (|partial| -12 (-5 *2 (-685 (-316 (-379)))) (-4 *1 (-384)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-407 (-949 (-564)))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) + (|partial| -12 (-5 *2 (-407 (-949 (-379)))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-564))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-949 (-379))) (-4 *1 (-396)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-564))) (-4 *1 (-396)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-564))))) (-4 *1 (-441)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-407 (-949 (-379))))) (-4 *1 (-441)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-949 (-564)))) (-4 *1 (-441)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-949 (-379)))) (-4 *1 (-441)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-316 (-564)))) (-4 *1 (-441)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) + (|partial| -12 (-5 *2 (-1259 (-316 (-379)))) (-4 *1 (-441)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1233 *5)) - (-5 *2 (-1165 (-1165 *4))) (-5 *1 (-773 *4 *5 *6 *3 *7)) - (-4 *3 (-1233 *6)) (-14 *7 (-917)))) + (|partial| -12 (-4 *4 (-349)) (-4 *5 (-329 *4)) (-4 *6 (-1235 *5)) + (-5 *2 (-1166 (-1166 *4))) (-5 *1 (-774 *4 *5 *6 *3 *7)) + (-4 *3 (-1235 *6)) (-14 *7 (-918)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) - (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *1 (-972 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1034 *2)) (-4 *2 (-1208)))) + (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) + (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) + (-4 *1 (-973 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1035 *2)) (-4 *2 (-1209)))) ((*1 *1 *2) - (|partial| -2811 - (-12 (-5 *2 (-948 *3)) - (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) - (-3730 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) - (-4 *5 (-846))) - (-12 (-5 *2 (-948 *3)) - (-12 (-3730 (-4 *3 (-545))) (-3730 (-4 *3 (-38 (-407 (-563))))) - (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) - (-4 *5 (-846))) - (-12 (-5 *2 (-948 *3)) - (-12 (-3730 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) - (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) - (-4 *5 (-846))))) + (|partial| -4030 + (-12 (-5 *2 (-949 *3)) + (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) + (-4255 (-4 *3 (-38 (-564)))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) + (-4 *5 (-847))) + (-12 (-5 *2 (-949 *3)) + (-12 (-4255 (-4 *3 (-545))) (-4255 (-4 *3 (-38 (-407 (-564))))) + (-4 *3 (-38 (-564))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) + (-4 *5 (-847))) + (-12 (-5 *2 (-949 *3)) + (-12 (-4255 (-4 *3 (-989 (-564)))) (-4 *3 (-38 (-407 (-564)))) + (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *1 (-1060 *3 *4 *5)) (-4 *4 (-790)) + (-4 *5 (-847))))) ((*1 *1 *2) - (|partial| -2811 - (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) - (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) - (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) - (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) + (|partial| -4030 + (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) + (-12 (-4255 (-4 *3 (-38 (-407 (-564))))) (-4 *3 (-38 (-564))) + (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))) + (-12 (-5 *2 (-949 (-564))) (-4 *1 (-1060 *3 *4 *5)) + (-12 (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170)))) + (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) - (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) -(((*1 *1) (-5 *1 (-1172)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818))))) -(((*1 *2 *3) - (-12 (-5 *2 (-640 (-640 (-563)))) (-5 *1 (-967)) - (-5 *3 (-640 (-563)))))) -(((*1 *2) (-12 (-5 *2 (-829 (-563))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-829 *2)) (-4 *2 (-1093))))) -(((*1 *1 *2) - (-12 - (-5 *2 - (-640 - (-2 - (|:| -3320 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -3704 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1149 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2244 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated")))))))) - (-5 *1 (-558))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) - (-4 *3 (-1233 *2))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) - (-5 *1 (-190))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-767))))) -(((*1 *1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-172)) (-4 *2 (-555)))) - ((*1 *1 *1) (|partial| -4 *1 (-718)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)) - (-5 *1 (-408 *3 *4 *5)) (-4 *3 (-409 *4 *5)))) - ((*1 *2) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) - (-5 *2 (-684 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) - ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1151)) (-5 *3 (-819)) (-5 *1 (-818))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-967))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-13 (-846) (-555))))) - ((*1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1193)))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-558))))) -(((*1 *1 *1) (-12 (-4 *1 (-119 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) - (-4 *3 (-1233 *2))))) + (|partial| -12 (-5 *2 (-949 (-407 (-564)))) (-4 *1 (-1060 *3 *4 *5)) + (-4 *3 (-38 (-407 (-564)))) (-4 *5 (-612 (-1170))) + (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-902 (-564))) (-5 *4 (-564)) (-5 *2 (-685 *4)) + (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1025 *4)) + (-4 *4 (-1046)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-902 (-564)))) (-5 *4 (-564)) + (-5 *2 (-641 (-685 *4))) (-5 *1 (-1025 *5)) (-4 *5 (-1046)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-641 (-564)))) (-5 *2 (-641 (-685 (-564)))) + (-5 *1 (-1025 *4)) (-4 *4 (-1046))))) +(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1190))))) (((*1 *2 *3) - (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) -(((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-218)))) - ((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-483)) (-5 *1 (-671)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) - (-5 *2 (-684 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-112)) (-5 *1 (-817))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3962 *4))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *1) (-5 *1 (-558)))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1093))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) + (-12 (-5 *3 (-918)) (-5 *2 (-1166 *4)) (-5 *1 (-357 *4)) + (-4 *4 (-349))))) (((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) -(((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-172)) (-5 *1 (-289 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1233 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) - (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) - (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))) -(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-1151)) (-5 *4 (-1113)) (-5 *2 (-112)) (-5 *1 (-817))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3962 *4))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) (-4 *2 (-307)) - (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3))))) - ((*1 *2 *1) - (-12 (-4 *3 (-555)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) - ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) - (-5 *1 (-618 *3 *4 *2)) (-4 *3 (-38 *4)))) - ((*1 *2 *1) - (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-722) *4)) - (-5 *1 (-657 *3 *4 *2)) (-4 *3 (-713 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))) -(((*1 *2 *2) (|partial| -12 (-5 *1 (-557 *2)) (-4 *2 (-545))))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) (-5 *2 (-112))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) + (-5 *2 (-1032)) (-5 *1 (-751))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259)))) - ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1259))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-1059 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1242 *3 *4 *5)) (-5 *1 (-319 *3 *4 *5)) - (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3))) - ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-563)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1093)) (-5 *1 (-709 *3 *2 *4)) (-4 *3 (-846)) - (-14 *4 - (-1 (-112) (-2 (|:| -3491 *3) (|:| -2631 *2)) - (-2 (|:| -3491 *3) (|:| -2631 *2))))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))) -(((*1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1172))))) -(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817))))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *2) (-12 (-5 *2 (-918)) (|has| *1 (-6 -4402)) (-4 *1 (-404)))) + ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-918)))) + ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695)))) + ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-695))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-641 (-641 *4)))) (-5 *2 (-641 (-641 *4))) + (-5 *1 (-1180 *4)) (-4 *4 (-847))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-555)) (-5 *1 (-965 *2 *3)) (-4 *3 (-1233 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *1) - (-12 (-4 *3 (-307)) (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) - (-5 *2 (-1257 *6)) (-5 *1 (-413 *3 *4 *5 *6)) - (-4 *6 (-13 (-409 *4 *5) (-1034 *4))))) + (-12 (-5 *2 (-1166 *3)) (-5 *1 (-911 *3)) (-4 *3 (-307))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1103 *5 *6 *7 *8)) + (-4 *5 (-13 (-307) (-147))) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *8 (-1060 *5 *6 *7)) (-5 *2 (-112)) + (-5 *1 (-590 *5 *6 *7 *8 *3))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1264)) (-5 *1 (-214 *4)) + (-4 *4 + (-13 (-847) + (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 (*2 $)) + (-15 -2096 (*2 $))))))) ((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *3 (-846)) (-5 *2 (-1118 *3 (-609 *1))) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) + (-12 (-5 *2 (-1264)) (-5 *1 (-214 *3)) + (-4 *3 + (-13 (-847) + (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 (*2 $)) + (-15 -2096 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-502))))) +(((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) + (-5 *1 (-32 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) + (-5 *1 (-158 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) + (-5 *1 (-276 *4 *5)) (-4 *5 (-13 (-430 *4) (-999))))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-301 *4)) (-4 *4 (-302)))) + ((*1 *2 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-429 *4 *5)) (-4 *4 (-430 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) + (-5 *1 (-431 *4 *5)) (-4 *5 (-430 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-114)) (-4 *4 (-13 (-847) (-556))) (-5 *2 (-112)) + (-5 *1 (-628 *4 *5)) (-4 *5 (-13 (-430 *4) (-999) (-1194)))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *1) + (-12 + (-5 *2 + (-2 (|:| -2448 *3) (|:| |coef1| (-779 *3)) (|:| |coef2| (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) +(((*1 *2 *3 *4 *4 *5 *6 *7) + (-12 (-5 *5 (-1170)) + (-5 *6 + (-1 + (-3 + (-2 (|:| |mainpart| *4) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + "failed") + *4 (-641 *4))) + (-5 *7 + (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1194) (-27) (-430 *8))) + (-4 *8 (-13 (-452) (-847) (-147) (-1035 *3) (-637 *3))) + (-5 *3 (-564)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -2427 *4) (|:| |sol?| (-112)))) + (-5 *1 (-1010 *8 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1094)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-679 *4 *5)) (-4 *4 (-1094)))) + ((*1 *2 *2) + (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-618 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-722) *3)))) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) ((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-713 *3)) (-5 *1 (-657 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-722) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-555))))) -(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-302)) (-4 *2 (-1208)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-609 *1))) (-5 *3 (-640 *1)) (-4 *1 (-302)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-294 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-294 *1)) (-4 *1 (-302))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1) (-5 *1 (-1259)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) + (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843))))) +(((*1 *1 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847)) (-4 *2 (-556)))) + ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) + (-5 *2 + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-786)) (-5 *5 (-564))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-4 *5 (-1235 *4)) + (-5 *2 (-641 (-2 (|:| |deg| (-768)) (|:| -4032 *5)))) + (-5 *1 (-806 *4 *5 *3 *6)) (-4 *3 (-652 *5)) + (-4 *6 (-652 (-407 *5)))))) +(((*1 *2 *3) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-446)) (-5 *3 (-564))))) +(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-379)))) + ((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-379))))) +(((*1 *1 *2) + (-12 (-5 *2 (-407 (-564))) (-4 *1 (-554 *3)) + (-4 *3 (-13 (-404) (-1194))))) + ((*1 *1 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-554 *2)) (-4 *2 (-13 (-404) (-1194)))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-610 *1))) (-4 *1 (-302))))) +(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1032)) + (-5 *1 (-745))))) +(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) + (-5 *2 (-1032)) (-5 *1 (-745))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) (((*1 *2 *2) - (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-418 *3)) (-4 *3 (-555))))) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) + (-5 *1 (-176 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1262)) (-5 *1 (-1172)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) - (-5 *1 (-1172)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1262)) - (-5 *1 (-1172))))) -(((*1 *2 *1) (-12 (-5 *2 (-818)) (-5 *1 (-817))))) -(((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1169)) (-5 *6 (-640 (-609 *3))) - (-5 *5 (-609 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *7))) - (-4 *7 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) - (-5 *1 (-556 *7 *3))))) + (-12 (-5 *3 (-685 (-407 (-949 *4)))) (-4 *4 (-452)) + (-5 *2 (-641 (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4))))) + (-5 *1 (-292 *4))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-5 *2 (-112))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-641 + (-2 (|:| -1544 (-768)) + (|:| |eqns| + (-641 + (-2 (|:| |det| *7) (|:| |rows| (-641 (-564))) + (|:| |cols| (-641 (-564)))))) + (|:| |fgb| (-641 *7))))) + (-4 *7 (-946 *4 *6 *5)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) (-5 *2 (-768)) + (-5 *1 (-921 *4 *5 *6 *7))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-225))) (-5 *4 (-768)) (-5 *2 (-685 (-225))) + (-5 *1 (-305))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4411)) (-4 *1 (-235 *3)) + (-4 *3 (-1094)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209))))) +(((*1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-756))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-847) (-556)))))) +(((*1 *2 *3 *4 *5 *6 *5) + (-12 (-5 *4 (-169 (-225))) (-5 *5 (-564)) (-5 *6 (-1152)) + (-5 *3 (-225)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-391))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-640 (-263))) (-5 *1 (-1259)))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-147)) + (-4 *3 (-307)) (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-974 *3 *4 *5 *6))))) +(((*1 *2 *3 *3) + (-12 (-4 *2 (-556)) (-4 *2 (-452)) (-5 *1 (-966 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-641 *3)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) + (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) + ((*1 *2 *3 *3 *4 *5) + (-12 (-5 *4 (-1170)) (-5 *5 (-1088 (-225))) (-5 *2 (-924)) + (-5 *1 (-922 *3)) (-4 *3 (-612 (-536))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-923)))) + ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *2 *2 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-923)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1088 (-225))) (-5 *1 (-924)))) + ((*1 *1 *2 *2 *3 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924)))) + ((*1 *1 *2 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1151)) (-5 *1 (-1259)))) - ((*1 *1 *1) (-5 *1 (-1259)))) + (-12 (-5 *2 (-641 (-1 (-225) (-225)))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924)))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924)))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *3 (-1088 (-225))) + (-5 *1 (-924))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1045)) (-5 *2 (-112)) (-5 *1 (-444 *4 *3)) - (-4 *3 (-1233 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) - (-4 *4 (-1233 *3))))) + (-12 (-4 *4 (-27)) + (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-649 (-407 *5)))) + (-5 *1 (-653 *4 *5)) (-5 *3 (-649 (-407 *5)))))) +(((*1 *2 *3) (-12 (-5 *3 (-388)) (-5 *2 (-1264)) (-5 *1 (-391)))) + ((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-391))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-847)) (-5 *1 (-245 *3))))) +(((*1 *2 *3) + (-12 (-4 *1 (-917)) (-5 *2 (-2 (|:| -1762 (-641 *1)) (|:| -1693 *1))) + (-5 *3 (-641 *1))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1235 (-564))) (-5 *1 (-486 *3))))) +(((*1 *2 *1 *2 *3) + (|partial| -12 (-5 *2 (-1152)) (-5 *3 (-564)) (-5 *1 (-1058))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-418 *4)) (-4 *4 (-555))))) -(((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-5 *2 (-1262)) (-5 *1 (-1172)))) + (-12 (-4 *1 (-857)) (-5 *2 (-687 (-549))) (-5 *3 (-549))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-818))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-918)) (-5 *1 (-1027 *2)) + (-4 *2 (-13 (-1094) (-10 -8 (-15 -1780 ($ $ $)))))))) +(((*1 *2 *2 *3 *4 *4) + (-12 (-5 *4 (-564)) (-4 *3 (-172)) (-4 *5 (-373 *3)) + (-4 *6 (-373 *3)) (-5 *1 (-684 *3 *5 *6 *2)) + (-4 *2 (-683 *3 *5 *6))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1170)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-698 *3 *5 *6 *7)) + (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209)) + (-4 *7 (-1209)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) - (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *2 (-1262)) - (-5 *1 (-1172)))) - ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1169)) - (-5 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *2 (-1262)) - (-5 *1 (-1172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-817))))) -(((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-767)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) - (-4 *2 (-1233 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) - (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-584 *3)) (-5 *1 (-556 *5 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-1157 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259)))) - ((*1 *2 *1) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1259))))) + (-12 (-5 *4 (-1170)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *3 *5 *6)) + (-4 *3 (-612 (-536))) (-4 *5 (-1209)) (-4 *6 (-1209))))) +(((*1 *2 *1) (-12 (-4 *1 (-670 *3)) (-4 *3 (-1209)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-708 *3 *4)) - (-4 *4 (-1233 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))) -(((*1 *2 *1) - (|partial| -12 (-4 *3 (-452)) (-4 *4 (-846)) (-4 *5 (-789)) - (-5 *2 (-112)) (-5 *1 (-983 *3 *4 *5 *6)) - (-4 *6 (-945 *3 *5 *4)))) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) - (-4 *4 (-13 (-1093) (-34)))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1172)))) - ((*1 *2 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-1172))))) -(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-817))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-767)) (-4 *2 (-555)) (-5 *1 (-965 *2 *4)) - (-4 *4 (-1233 *2))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1169)) - (-4 *4 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-556 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-767)) (-5 *3 (-939 *4)) (-4 *1 (-1127 *4)) - (-4 *4 (-1045)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-767)) (-5 *4 (-939 (-225))) (-5 *2 (-1262)) - (-5 *1 (-1259))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) + ((*1 *2 *1) (-12 (-4 *1 (-994 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1088 (-225))) + (-5 *2 (-1261)) (-5 *1 (-257))))) (((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-5 *2 (-1257 *3)) (-5 *1 (-708 *3 *4)) - (-4 *4 (-1233 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555))))) -(((*1 *2 *3 *1) - (-12 (-5 *3 (-1169)) - (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) (-5 *1 (-1172))))) -(((*1 *2 *3) (-12 (-5 *3 (-52)) (-5 *1 (-51 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2) - (-12 (-5 *2 (-948 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 (-948 (-379)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-379))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-379))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-948 (-563))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 (-948 (-563)))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-563))) (-5 *1 (-339 *3 *4 *5)) - (-4 *5 (-1034 (-563))) (-14 *3 (-640 (-1169))) - (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1169)) (-5 *1 (-339 *3 *4 *5)) (-14 *3 (-640 *2)) - (-14 *4 (-640 *2)) (-4 *5 (-387)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 *5)) (-4 *5 (-387)) (-5 *1 (-339 *3 *4 *5)) - (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))))) - ((*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-563))))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-684 (-407 (-948 (-379))))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-563)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-684 (-948 (-379)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-563)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-684 (-316 (-379)))) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-563)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-948 (-379)))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-948 (-563))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-948 (-379))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-563))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-316 (-379))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-563))))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 (-407 (-948 (-379))))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-563)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 (-948 (-379)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-563)))) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 (-316 (-379)))) (-4 *1 (-441)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| |mdnia| - (-2 (|:| |fn| (-316 (-225))) - (|:| -2244 (-640 (-1087 (-839 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-765)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-804)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) - (|:| |lb| (-640 (-839 (-225)))) - (|:| |cf| (-640 (-316 (-225)))) - (|:| |ub| (-640 (-839 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-640 (-316 (-225)))) - (|:| -2956 (-640 (-225))))))) - (-5 *1 (-837)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |pde| (-640 (-316 (-225)))) - (|:| |constraints| - (-640 - (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-767)) (|:| |boundaryType| (-563)) - (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) - (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) - (|:| |tol| (-225)))) - (-5 *1 (-894)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *1 (-972 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1034 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2) - (-2811 - (-12 (-5 *2 (-948 *3)) - (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) - (-3730 (-4 *3 (-38 (-563)))) (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) - (-4 *5 (-846))) - (-12 (-5 *2 (-948 *3)) - (-12 (-3730 (-4 *3 (-545))) (-3730 (-4 *3 (-38 (-407 (-563))))) - (-4 *3 (-38 (-563))) (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) - (-4 *5 (-846))) - (-12 (-5 *2 (-948 *3)) - (-12 (-3730 (-4 *3 (-988 (-563)))) (-4 *3 (-38 (-407 (-563)))) - (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *1 (-1059 *3 *4 *5)) (-4 *4 (-789)) - (-4 *5 (-846))))) - ((*1 *1 *2) - (-2811 - (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) - (-12 (-3730 (-4 *3 (-38 (-407 (-563))))) (-4 *3 (-38 (-563))) - (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))) - (-12 (-5 *2 (-948 (-563))) (-4 *1 (-1059 *3 *4 *5)) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169)))) - (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846))))) - ((*1 *1 *2) - (-12 (-5 *2 (-948 (-407 (-563)))) (-4 *1 (-1059 *3 *4 *5)) - (-4 *3 (-38 (-407 (-563)))) (-4 *5 (-611 (-1169))) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2896 *1) (|:| -1488 *1))) (-4 *1 (-307)))) - ((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) - (-5 *1 (-386 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2896 (-767)) (|:| -1488 (-767)))) - (-5 *1 (-767)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-815 *3)) (-4 *3 (-846))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-556 *6 *3))))) -(((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-13 (-846) (-555)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) - (-5 *1 (-1168))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) -(((*1 *2) - (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) - (-4 *4 (-1233 *3))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-563)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) - (-5 *1 (-418 *2)) (-4 *2 (-555))))) -(((*1 *2 *3 *1) - (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1172)) (-5 *3 (-1169))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-555)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -2555 *4))) (-5 *1 (-965 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1169)) - (-4 *5 (-13 (-452) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) (-5 *1 (-556 *5 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) + (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) + (-4 *3 (-964))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) (((*1 *2) - (-12 (-4 *2 (-13 (-430 *3) (-998))) (-5 *1 (-276 *3 *2)) - (-4 *3 (-13 (-846) (-555)))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) - (-5 *1 (-1168))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-1059 *3 *4 *5))))) + (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *2 (-1259 *4)) (-5 *3 (-685 *4)) (-4 *4 (-363)) + (-5 *1 (-663 *4)))) + ((*1 *2 *3 *2) + (|partial| -12 (-4 *4 (-363)) + (-4 *5 (-13 (-373 *4) (-10 -7 (-6 -4412)))) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412)))) + (-5 *1 (-664 *4 *5 *2 *3)) (-4 *3 (-683 *4 *5 *2)))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *4 (-641 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-363)) + (-5 *1 (-811 *2 *3)) (-4 *3 (-652 *2)))) + ((*1 *2 *3) + (-12 (-4 *2 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-564))))))) + (-5 *1 (-1122 *3 *2)) (-4 *3 (-1235 *2))))) (((*1 *2) - (-12 (-4 *3 (-1045)) (-5 *2 (-954 (-708 *3 *4))) (-5 *1 (-708 *3 *4)) - (-4 *4 (-1233 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-263)))) - ((*1 *1) - (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-555)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555))))) -(((*1 *2) (-12 (-5 *2 (-640 *3)) (-5 *1 (-1077 *3)) (-4 *3 (-132))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1169)) (-5 *2 (-1173)) (-5 *1 (-1172))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-555)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2555 *4))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -2570 *1) (|:| -4395 *1) (|:| |associate| *1))) - (-4 *1 (-555))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275))))) -(((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-767)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) - (-5 *1 (-1168))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) (((*1 *2 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-1059 *3 *4 *5))))) -(((*1 *1 *1) - (-12 (-4 *2 (-349)) (-4 *2 (-1045)) (-5 *1 (-708 *2 *3)) - (-4 *3 (-1233 *2))))) -(((*1 *1 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555))))) -(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-52))))) + (-12 (-4 *2 (-705 *3)) (-5 *1 (-824 *2 *3)) (-4 *3 (-1046))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-973 *3 *4 *2 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)) (-4 *5 (-1060 *3 *4 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-1045)) (-5 *2 (-1257 *4)) - (-5 *1 (-1170 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-917)) (-5 *2 (-1257 *3)) (-5 *1 (-1170 *3)) - (-4 *3 (-1045))))) + (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-481 *4 *5)) + (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-602 *2 *3)) (-4 *3 (-1209)) (-4 *2 (-1094)) + (-4 *2 (-847))))) (((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-386 *3)) (|:| |mm| (-386 *3)) (|:| |rm| (-386 *3)))) - (-5 *1 (-386 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |lm| (-815 *3)) (|:| |mm| (-815 *3)) (|:| |rm| (-815 *3)))) - (-5 *1 (-815 *3)) (-4 *3 (-846))))) -(((*1 *2 *3 *3) - (-12 (-4 *2 (-555)) (-4 *2 (-452)) (-5 *1 (-965 *2 *3)) - (-4 *3 (-1233 *2))))) -(((*1 *1 *1) (-4 *1 (-555)))) -(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-275))))) -(((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-767)) (-4 *3 (-1208)) (-4 *1 (-57 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1) (-5 *1 (-171))) - ((*1 *1) (-12 (-5 *1 (-213 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1093)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1151)) (-4 *1 (-389)))) - ((*1 *1) (-5 *1 (-394))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) - ((*1 *1) - (-12 (-4 *3 (-1093)) (-5 *1 (-881 *2 *3 *4)) (-4 *2 (-1093)) - (-4 *4 (-661 *3)))) - ((*1 *1) (-12 (-5 *1 (-885 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *1 (-1135 *3 *2)) (-14 *3 (-767)) (-4 *2 (-1045)))) - ((*1 *1) (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045)))) - ((*1 *1 *1) (-5 *1 (-1169))) ((*1 *1) (-5 *1 (-1169))) - ((*1 *1) (-5 *1 (-1188)))) -(((*1 *2 *3 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-263)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) - ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-563)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) - ((*1 *2 *1 *3) - (-12 - (-5 *3 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *2 (-1262)) (-5 *1 (-1259)))) - ((*1 *2 *1) - (-12 - (-5 *2 - (-2 (|:| |theta| (-225)) (|:| |phi| (-225)) (|:| -2243 (-225)) - (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) (|:| |scaleZ| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)))) - (-5 *1 (-1259)))) - ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) + (-12 (-4 *3 (-363)) (-4 *3 (-1046)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1693 *1))) + (-4 *1 (-849 *3))))) +(((*1 *2 *2 *3 *2) + (-12 (-5 *3 (-768)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) + (-4 *2 (-1235 *4)))) + ((*1 *2 *2 *3 *2 *3) + (-12 (-5 *3 (-564)) (-5 *1 (-692 *2)) (-4 *2 (-1235 *3))))) +(((*1 *1 *2 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) (((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) - (-5 *1 (-1168))))) -(((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-767)) (-5 *3 (-112)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-1169))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-386 *4)) (-4 *4 (-1093)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-23)) (-5 *1 (-644 *4 *2 *5)) - (-4 *4 (-1093)) (-14 *5 *2))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-5 *2 (-767)) (-5 *1 (-815 *4)) (-4 *4 (-846))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-640 (-767))) (-5 *1 (-965 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564))))) (((*1 *2 *3) - (-12 - (-5 *3 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) - (|:| |lb| (-640 (-839 (-225)))) - (|:| |cf| (-640 (-316 (-225)))) - (|:| |ub| (-640 (-839 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-640 (-316 (-225)))) - (|:| -2956 (-640 (-225))))))) - (-5 *2 (-640 (-1151))) (-5 *1 (-267))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-2 (|:| -3320 *3) (|:| -3704 *4)))) - (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *1 (-1184 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1184 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706))))) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) +(((*1 *2 *3) (-12 (-5 *3 (-949 (-225))) (-5 *2 (-225)) (-5 *1 (-305))))) (((*1 *2 *3) - (-12 (-5 *3 (-563)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) - (-5 *2 (-917))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1169))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-323 *2 *4)) (-4 *4 (-131)) - (-4 *2 (-1093)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-418 *2)) (-4 *2 (-555)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-1093)) (-5 *1 (-644 *2 *4 *5)) - (-4 *4 (-23)) (-14 *5 *4))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *1 (-815 *2)) (-4 *2 (-846))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-640 *3)) (-5 *1 (-965 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-555)) (-5 *2 (-112))))) -(((*1 *1 *1) (-5 *1 (-48))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1208)) - (-4 *2 (-1208)) (-5 *1 (-58 *5 *2)))) - ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1093)) (|has| *1 (-6 -4408)) - (-4 *1 (-151 *2)) (-4 *2 (-1208)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) - (-4 *2 (-1208)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) - (-4 *2 (-1208)))) + (-12 (-5 *3 (-1170)) (-5 *2 (-1 (-1166 (-949 *4)) (-949 *4))) + (-5 *1 (-1267 *4)) (-4 *4 (-363))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-52))) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-452)) (-5 *2 (-112)) + (-5 *1 (-360 *4 *5)) (-14 *5 (-641 (-1170))))) ((*1 *2 *3) - (-12 (-4 *4 (-1045)) - (-5 *2 (-2 (|:| -3206 (-1165 *4)) (|:| |deg| (-917)))) - (-5 *1 (-221 *4 *5)) (-5 *3 (-1165 *4)) (-4 *5 (-13 (-555) (-846))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-767)) - (-4 *6 (-1208)) (-4 *2 (-1208)) (-5 *1 (-239 *5 *6 *2)))) - ((*1 *1 *2 *3) - (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) - (-4 *2 (-1233 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-555)) (-4 *2 (-846)))) - ((*1 *1 *1) - (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1233 *2)) - (-4 *4 (-1233 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1208)) (-4 *2 (-1208)) - (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1093)) (-4 *2 (-1093)) - (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) - ((*1 *1 *1) (-5 *1 (-495))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-640 *5)) (-4 *5 (-1208)) - (-4 *2 (-1208)) (-5 *1 (-638 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1045)) (-4 *2 (-1045)) - (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) - (-4 *9 (-373 *2)) (-5 *1 (-680 *5 *6 *7 *4 *2 *8 *9 *10)) - (-4 *4 (-682 *5 *6 *7)) (-4 *10 (-682 *2 *8 *9)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1045)) (-5 *1 (-708 *3 *2)) (-4 *2 (-1233 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-363)) - (-4 *3 (-172)) (-4 *1 (-720 *3 *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-4 *1 (-720 *3 *2)) (-4 *2 (-1233 *3)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-954 *5)) (-4 *5 (-1208)) - (-4 *2 (-1208)) (-5 *1 (-953 *5 *2)))) - ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) - (-14 *6 (-640 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1045)) (-4 *2 (-1045)) - (-14 *5 (-767)) (-14 *6 (-767)) (-4 *8 (-238 *6 *7)) - (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) - (-5 *1 (-1050 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1048 *5 *6 *7 *8 *9)) (-4 *12 (-1048 *5 *6 *2 *10 *11)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1149 *5)) (-4 *5 (-1208)) - (-4 *2 (-1208)) (-5 *1 (-1147 *5 *2)))) - ((*1 *2 *2 *1 *3 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) - (-4 *1 (-1201 *5 *6 *7 *2)) (-4 *5 (-555)) (-4 *6 (-789)) - (-4 *7 (-846)) (-4 *2 (-1059 *5 *6 *7)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1257 *5)) (-4 *5 (-1208)) - (-4 *2 (-1208)) (-5 *1 (-1256 *5 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1031)) (-5 *3 (-1169)) (-5 *1 (-267))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-646 *2)) (-4 *2 (-1208))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) -(((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706))))) + (-12 (-5 *3 (-641 (-777 *4 (-861 *5)))) (-4 *4 (-452)) + (-14 *5 (-641 (-1170))) (-5 *2 (-112)) (-5 *1 (-626 *4 *5))))) +(((*1 *2 *3 *3 *3 *4 *5) + (-12 (-5 *5 (-641 (-641 (-225)))) (-5 *4 (-225)) + (-5 *2 (-641 (-940 *4))) (-5 *1 (-1205)) (-5 *3 (-940 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-327 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-516 *3 *4)) (-4 *3 (-1209)) (-14 *4 *2)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-205)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-379))) (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-1235 *4)) (-4 *4 (-1213)) + (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1235 (-407 *3)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-407 (-564))) (-5 *1 (-305))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-553))))) +(((*1 *2 *3 *4) + (-12 (-4 *7 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) + (-4 *8 (-946 *7 *5 *6)) + (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *3) (|:| |radicand| *3))) + (-5 *1 (-950 *5 *6 *7 *8 *3)) (-5 *4 (-768)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *8)) (-15 -1625 (*8 $)) (-15 -1634 (*8 $)))))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-391))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1135 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2448 *4))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-563)) (|has| *1 (-6 -4399)) (-4 *1 (-404)) - (-5 *2 (-917))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169))))) + (-12 (-5 *3 (-316 (-225))) (-5 *2 (-316 (-407 (-564)))) + (-5 *1 (-305))))) (((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 (-563))))) - (-5 *1 (-361 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 (-767))))) - (-5 *1 (-386 *3)) (-4 *3 (-1093)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-5 *2 (-112)))) ((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| -2055 *3) (|:| -2631 (-563))))) - (-5 *1 (-418 *3)) (-4 *3 (-555)))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) + (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-594 *3)) (-4 *3 (-1046)))) ((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |gen| *3) (|:| -3177 (-767))))) - (-5 *1 (-815 *3)) (-4 *3 (-846))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3974 *4))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *1 *2) - (-12 (-5 *2 (-407 (-563))) (-4 *1 (-553 *3)) - (-4 *3 (-13 (-404) (-1193))))) - ((*1 *1 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-609 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1193))) - (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 (-1165 (-407 (-1165 *6)))) (-5 *1 (-559 *5 *6 *7)) - (-5 *3 (-1165 *6)) (-4 *7 (-1093)))) + (-12 (-4 *3 (-556)) (-5 *2 (-112)) (-5 *1 (-621 *3 *4)) + (-4 *4 (-1235 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) + (-12 (-5 *2 (-112)) (-5 *1 (-732 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-723)))) ((*1 *2 *1) - (-12 (-4 *1 (-720 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1233 *3)))) - ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1165 *11)) (-5 *6 (-640 *10)) - (-5 *7 (-640 (-767))) (-5 *8 (-640 *11)) (-4 *10 (-846)) - (-4 *11 (-307)) (-4 *9 (-789)) (-4 *5 (-945 *11 *9 *10)) - (-5 *2 (-640 (-1165 *5))) (-5 *1 (-738 *9 *10 *11 *5)) - (-5 *3 (-1165 *5)))) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *2 (-112))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1226 (-564))) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-4 *1 (-647 *3)) (-4 *3 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *6)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-945 *3 *4 *5)) (-5 *1 (-1030 *3 *4 *5 *2 *6)) - (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-14 *6 (-640 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))) -(((*1 *2 *2) (-12 (-5 *1 (-677 *2)) (-4 *2 (-1093))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) -(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-640 (-1165 *13))) (-5 *3 (-1165 *13)) - (-5 *4 (-640 *12)) (-5 *5 (-640 *10)) (-5 *6 (-640 *13)) - (-5 *7 (-640 (-640 (-2 (|:| -2804 (-767)) (|:| |pcoef| *13))))) - (-5 *8 (-640 (-767))) (-5 *9 (-1257 (-640 (-1165 *10)))) - (-4 *12 (-846)) (-4 *10 (-307)) (-4 *13 (-945 *10 *11 *12)) - (-4 *11 (-789)) (-5 *1 (-703 *11 *12 *10 *13))))) -(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-767)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-402)) (-5 *2 (-767))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-1257 *4)) - (-5 *1 (-810 *4 *3)) (-4 *3 (-651 *4))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3974 *4))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))) -(((*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) + (-12 (-5 *2 (-641 (-902 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-752))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1094)) + (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) + (-5 *2 (-641 (-1170))) (-5 *1 (-1070 *3 *4 *5)) + (-4 *5 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) -(((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-640 *11)) (-5 *5 (-640 (-1165 *9))) - (-5 *6 (-640 *9)) (-5 *7 (-640 *12)) (-5 *8 (-640 (-767))) - (-4 *11 (-846)) (-4 *9 (-307)) (-4 *12 (-945 *9 *10 *11)) - (-4 *10 (-789)) (-5 *2 (-640 (-1165 *12))) - (-5 *1 (-703 *10 *11 *9 *12)) (-5 *3 (-1165 *12))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-402)) (-5 *2 (-767)))) - ((*1 *1 *1) (-4 *1 (-402)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-1169))))) + (-12 (-5 *2 (-564)) (|has| *1 (-6 -4412)) (-4 *1 (-373 *3)) + (-4 *3 (-1209))))) +(((*1 *1 *2) + (|partial| -12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) + (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-1272 *3 *4 *5 *6)))) + ((*1 *1 *2 *3 *4) + (|partial| -12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) + (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-1272 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 *4)) (-4 *4 (-363)) (-5 *2 (-684 *4)) - (-5 *1 (-810 *4 *5)) (-4 *5 (-651 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-767)) (-4 *5 (-363)) - (-5 *2 (-684 *5)) (-5 *1 (-810 *5 *6)) (-4 *6 (-651 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1647 *3))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193)))))) -(((*1 *2 *2) (-12 (-5 *2 (-640 (-316 (-225)))) (-5 *1 (-267))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1059 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) -(((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-640 (-1165 *11))) (-5 *3 (-1165 *11)) - (-5 *4 (-640 *10)) (-5 *5 (-640 *8)) (-5 *6 (-640 (-767))) - (-5 *7 (-1257 (-640 (-1165 *8)))) (-4 *10 (-846)) - (-4 *8 (-307)) (-4 *11 (-945 *8 *9 *10)) (-4 *9 (-789)) - (-5 *1 (-703 *9 *10 *8 *11))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) (-4 *1 (-284))) - ((*1 *2 *3) - (-12 (-5 *3 (-418 *4)) (-4 *4 (-555)) - (-5 *2 (-640 (-2 (|:| -2765 (-767)) (|:| |logand| *4)))) - (-5 *1 (-320 *4)))) + (-12 (-5 *3 (-316 (-379))) (-5 *2 (-316 (-225))) (-5 *1 (-305))))) +(((*1 *1 *1) + (-12 (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) (-4 *2 (-1209)) + (-4 *2 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-768)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-768)) (-4 *5 (-349)) (-4 *6 (-1235 *5)) + (-5 *2 + (-641 + (-2 (|:| -4265 (-685 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-685 *6))))) + (-5 *1 (-498 *5 *6 *7)) + (-5 *3 + (-2 (|:| -4265 (-685 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-685 *6)))) + (-4 *7 (-1235 *6))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-1114)) (-5 *2 (-112)) (-5 *1 (-818))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *1 *1) + (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) + (-4 *2 (-452)))) ((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *2 *1) - (-12 (-5 *2 (-659 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) - (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) + (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1213)) (-4 *3 (-1235 *2)) + (-4 *4 (-1235 (-407 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-452)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)) (-4 *3 (-452)))) + ((*1 *1 *1) + (-12 (-4 *1 (-946 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847)) (-4 *2 (-452)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) - (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4)))) + (-12 (-4 *3 (-307)) (-4 *3 (-556)) (-5 *1 (-1157 *3 *2)) + (-4 *2 (-1235 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) + ((*1 *2 *1) + (-12 (-4 *1 (-970 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-789)) + (-4 *5 (-847)) (-5 *2 (-112))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-643 *2)) (-4 *2 (-1094))))) +(((*1 *1) + (-12 (-4 *3 (-1094)) (-5 *1 (-882 *2 *3 *4)) (-4 *2 (-1094)) + (-4 *4 (-662 *3)))) + ((*1 *1) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-13 (-307) (-147))) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-4 *7 (-946 *4 *6 *5)) + (-5 *2 + (-2 (|:| |sysok| (-112)) (|:| |z0| (-641 *7)) (|:| |n0| (-641 *7)))) + (-5 *1 (-921 *4 *5 *6 *7)) (-5 *3 (-641 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) + (-4 *4 (-1235 *3)) (-14 *5 (-1 *4 *4 *2)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2)) + (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-708 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) + (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) + ((*1 *2 *1) + (-12 (-4 *2 (-23)) (-5 *1 (-712 *3 *2 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) + ((*1 *2) (-12 (-4 *1 (-866 *3)) (-5 *2 (-564))))) +(((*1 *2) + (-12 (-5 *2 (-685 (-907 *3))) (-5 *1 (-351 *3 *4)) (-14 *3 (-918)) + (-14 *4 (-918)))) + ((*1 *2) + (-12 (-5 *2 (-685 *3)) (-5 *1 (-352 *3 *4)) (-4 *3 (-349)) + (-14 *4 + (-3 (-1166 *3) + (-1259 (-641 (-2 (|:| -3426 *3) (|:| -1495 (-1114))))))))) + ((*1 *2) + (-12 (-5 *2 (-685 *3)) (-5 *1 (-353 *3 *4)) (-4 *3 (-349)) + (-14 *4 (-918))))) +(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) + (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-225)) + (-5 *7 (-685 (-564))) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-247 *3 *4)) + (-14 *3 (-641 (-1170))) (-4 *4 (-1046)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) - (-4 *4 (-713 (-407 (-563)))) (-4 *3 (-846)) (-4 *4 (-172))))) -(((*1 *1 *2) - (-12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) - (-5 *1 (-399 *3 *4))))) + (-12 (-5 *2 (-641 (-564))) (-14 *3 (-641 (-1170))) + (-5 *1 (-454 *3 *4 *5)) (-4 *4 (-1046)) + (-4 *5 (-238 (-2641 *3) (-768))))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-481 *3 *4)) + (-14 *3 (-641 (-1170))) (-4 *4 (-1046))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *1 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) (-12 (-5 *1 (-890 *2)) (-4 *2 (-847)))) + ((*1 *1 *1) + (|partial| -12 (-4 *1 (-1202 *2 *3 *4 *5)) (-4 *2 (-556)) + (-4 *3 (-790)) (-4 *4 (-847)) (-4 *5 (-1060 *2 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-241)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1264)) (-5 *1 (-241))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *1 *2 *2 *2) + (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194))))) + ((*1 *2 *1 *3 *4 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-379)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1093)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-678 *4 *5)) (-4 *4 (-1093)))) - ((*1 *2 *2) - (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) + (-12 (|has| *6 (-6 -4412)) (-4 *4 (-363)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-521 *4 *5 *6 *3)) + (-4 *3 (-683 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926)))) + (-12 (|has| *9 (-6 -4412)) (-4 *4 (-556)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-4 *7 (-989 *4)) (-4 *8 (-373 *7)) + (-4 *9 (-373 *7)) (-5 *2 (-641 *6)) + (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-683 *4 *5 *6)) + (-4 *10 (-683 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-1274 *3 *2)) (-4 *3 (-846)) (-4 *2 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-1280 *2 *3)) (-4 *3 (-842))))) -(((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-858) (-858) (-858))) (-5 *4 (-563)) (-5 *2 (-858)) - (-5 *1 (-644 *5 *6 *7)) (-4 *5 (-1093)) (-4 *6 (-23)) (-14 *7 *6))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-858)) (-5 *1 (-850 *3 *4 *5)) (-4 *3 (-1045)) - (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-858)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-858)))) - ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-858)) (-5 *1 (-1165 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) - (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-641 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) - (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-684 *7)) - (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3288 (-640 *6))) - *7 *6)) - (-4 *6 (-363)) (-4 *7 (-651 *6)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1257 *6) "failed")) - (|:| -3288 (-640 (-1257 *6))))) - (-5 *1 (-809 *6 *7)) (-5 *4 (-1257 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1647 *3))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-553 *3)) (-4 *3 (-13 (-404) (-1193))) (-5 *2 (-112))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *4 (-767)) - (-5 *2 (-684 (-225))) (-5 *1 (-267))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1259)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) - (-5 *2 (-2 (|:| -2765 *1) (|:| |gap| (-767)) (|:| -1488 *1))) - (-4 *1 (-1059 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-2 (|:| -2765 *1) (|:| |gap| (-767)) (|:| -1488 *1))) - (-4 *1 (-1059 *3 *4 *5))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *3 *5 *6 *7)) - (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) - (-4 *7 (-1208)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *3 *5 *6)) - (-4 *3 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1233 *3)) (-5 *1 (-399 *3 *2)) - (-4 *3 (-13 (-363) (-147)))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) + (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-641 *6)) (-5 *1 (-684 *4 *5 *6 *3)) + (-4 *3 (-683 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) - (-5 *2 - (-2 (|:| A (-684 *5)) - (|:| |eqs| - (-640 - (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5)) (|:| -3087 *6) - (|:| |rh| *5)))))) - (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5)) - (-4 *6 (-651 *5)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-651 *5)) - (-5 *2 (-2 (|:| -4277 (-684 *6)) (|:| |vec| (-1257 *5)))) - (-5 *1 (-809 *5 *6)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1647 *3))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-563)) (-5 *2 (-112)) (-5 *1 (-552))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267))))) -(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-922)))) - ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1087 (-225))) (-5 *1 (-923)))) - ((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -2765 *3) (|:| |gap| (-767)) (|:| -2896 (-778 *3)) - (|:| -1488 (-778 *3)))) - (-5 *1 (-778 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) - (-5 *2 - (-2 (|:| -2765 *1) (|:| |gap| (-767)) (|:| -2896 *1) - (|:| -1488 *1))) - (-4 *1 (-1059 *4 *5 *3)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 - (-2 (|:| -2765 *1) (|:| |gap| (-767)) (|:| -2896 *1) - (|:| -1488 *1))) - (-4 *1 (-1059 *3 *4 *5))))) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) + (-5 *2 (-641 *7))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) + (-5 *1 (-985 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) + (-5 *1 (-1101 *3 *4 *5 *6 *7))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-564)) (-5 *1 (-379))))) (((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-1 *6 *5)) (-5 *1 (-702 *4 *5 *6)) - (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208))))) + (-12 (-5 *3 (-949 *5)) (-4 *5 (-1046)) (-5 *2 (-247 *4 *5)) + (-5 *1 (-941 *4 *5)) (-14 *4 (-641 (-1170)))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-112)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263)))) + ((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467)))) + ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-467))))) (((*1 *2 *1) - (-12 (-4 *3 (-13 (-363) (-147))) - (-5 *2 (-640 (-2 (|:| -2631 (-767)) (|:| -3219 *4) (|:| |num| *4)))) - (-5 *1 (-399 *3 *4)) (-4 *4 (-1233 *3))))) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-648 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) - (-5 *5 (-1 (-418 *7) *7)) - (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-640 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *6 (-1233 *5)) (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-649 *7 (-407 *7))) (-5 *4 (-1 (-640 *6) *7)) - (-5 *5 (-1 (-418 *7) *7)) - (-4 *6 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *7 (-1233 *6)) (-5 *2 (-640 (-407 *7))) (-5 *1 (-808 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-648 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) - (-4 *6 (-1233 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6)))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *5 (-407 *5))) (-4 *5 (-1233 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 (-640 (-407 *5))) (-5 *1 (-808 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-1 (-418 *6) *6)) - (-4 *6 (-1233 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 (-640 (-407 *6))) (-5 *1 (-808 *5 *6))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552))))) -(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-4 *1 (-404)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-4 *1 (-404)))) + (-12 (-4 *1 (-602 *3 *2)) (-4 *3 (-1094)) (-4 *3 (-847)) + (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *1 (-673 *2)) (-4 *2 (-847)))) + ((*1 *2 *1) (-12 (-5 *1 (-816 *2)) (-4 *2 (-847)))) ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *2 *6)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *2 (-1093))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225))) (-5 *1 (-699 *3)) - (-4 *3 (-611 (-536))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1169)) (-5 *2 (-1 (-225) (-225) (-225))) - (-5 *1 (-699 *3)) (-4 *3 (-611 (-536)))))) -(((*1 *2 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-397))))) + (-12 (-4 *2 (-1209)) (-5 *1 (-870 *2 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-668 *3)) (-5 *1 (-890 *3)) (-4 *3 (-847)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1202 *3 *4 *5 *2)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *2 (-1060 *3 *4 *5)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1247 *3)) (-4 *3 (-1209)))) + ((*1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-564)) (-4 *6 (-790)) (-4 *7 (-847)) (-4 *8 (-307)) + (-4 *9 (-946 *8 *6 *7)) + (-5 *2 (-2 (|:| -4268 (-1166 *9)) (|:| |polval| (-1166 *8)))) + (-5 *1 (-739 *6 *7 *8 *9)) (-5 *3 (-1166 *9)) (-5 *4 (-1166 *8))))) +(((*1 *1 *1) (-5 *1 (-1058)))) +(((*1 *2 *2 *3 *3 *4) + (-12 (-5 *4 (-768)) (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) + (-4 *2 (-1235 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-640 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) - (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -3087 *3)))) - (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) - (-4 *7 (-651 (-407 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-640 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *6 (-1233 *5)) - (-5 *2 (-640 (-2 (|:| |poly| *6) (|:| -3087 (-649 *6 (-407 *6)))))) - (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-552))))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| |polnum| (-778 *3)) (|:| |polden| *3) (|:| -3381 (-767)))) - (-5 *1 (-778 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3381 (-767)))) - (-4 *1 (-1059 *3 *4 *5))))) + (-12 (-4 *4 (-1094)) (-5 *2 (-112)) (-5 *1 (-882 *3 *4 *5)) + (-4 *3 (-1094)) (-4 *5 (-662 *4)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-886 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-1166 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-962))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1152) (-771))) (-5 *1 (-114))))) +(((*1 *2 *2 *3 *4) + (|partial| -12 + (-5 *3 + (-1 (-3 (-2 (|:| -2118 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-363)) (-5 *1 (-574 *4 *2)) (-4 *2 (-1235 *4))))) +(((*1 *2 *1) + (-12 (-4 *2 (-1235 *3)) (-5 *1 (-399 *3 *2)) + (-4 *3 (-13 (-363) (-147)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-858)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-858))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-685 (-564))) (-5 *1 (-1104))))) (((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-697 *4 *5 *6 *7)) - (-4 *4 (-611 (-536))) (-4 *5 (-1208)) (-4 *6 (-1208)) - (-4 *7 (-1208))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) - (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) - (-5 *1 (-397)))) - ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-640 (-640 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-640 (-3 (|:| |array| (-640 *3)) (|:| |scalar| (-1169))))) - (-5 *6 (-640 (-1169))) (-5 *3 (-1169)) (-5 *2 (-1097)) - (-5 *1 (-397)))) - ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-640 (-1169))) (-5 *5 (-1172)) (-5 *3 (-1169)) - (-5 *2 (-1097)) (-5 *1 (-397))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-640 *7) *7 (-1165 *7))) (-5 *5 (-1 (-418 *7) *7)) - (-4 *7 (-1233 *6)) (-4 *6 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-5 *2 (-640 (-2 (|:| |frac| (-407 *7)) (|:| -3087 *3)))) - (-5 *1 (-805 *6 *7 *3 *8)) (-4 *3 (-651 *7)) - (-4 *8 (-651 (-407 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 - (-640 (-2 (|:| |frac| (-407 *6)) (|:| -3087 (-649 *6 (-407 *6)))))) - (-5 *1 (-808 *5 *6)) (-5 *3 (-649 *6 (-407 *6)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-767)) (-4 *5 (-555)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1094)) (-4 *5 (-1094)) + (-4 *6 (-1094)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-680 *4 *5 *6))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-27) (-430 *4))) - (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) - (-4 *7 (-1233 (-407 *6))) (-5 *1 (-551 *4 *5 *6 *7 *2)) - (-4 *2 (-342 *5 *6 *7))))) -(((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) - (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) - (|:| |ub| (-640 (-839 (-225)))))) - (-5 *1 (-267))))) -(((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555))))) -(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696)))) - ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-696))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-379)) (-5 *1 (-97))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *7 (-1233 *5)) (-4 *4 (-720 *5 *7)) - (-5 *2 (-2 (|:| -4277 (-684 *6)) (|:| |vec| (-1257 *5)))) - (-5 *1 (-807 *5 *6 *7 *4 *3)) (-4 *6 (-651 *5)) (-4 *3 (-651 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-767)) (-4 *5 (-555)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) - (-4 *6 (-13 (-27) (-430 *5))) - (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) - (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) - (-4 *3 (-342 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-839 (-225)))) (-5 *4 (-225)) (-5 *2 (-640 *4)) - (-5 *1 (-267))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-858))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555))))) -(((*1 *2 *3 *3) - (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) - (-5 *1 (-683 *3 *4 *5 *6)) (-4 *6 (-682 *3 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2896 *3) (|:| -1488 *3))) (-5 *1 (-695 *3)) - (-4 *3 (-307))))) -(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-391))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) (-4 *5 (-1093)) - (-4 *6 (-1208)) (-5 *2 (-1 *6 *5)) (-5 *1 (-637 *5 *6)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) - (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 *5)) (-4 *6 (-1093)) - (-4 *5 (-1208)) (-5 *2 (-1 *5 *6)) (-5 *1 (-637 *6 *5)))) - ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-4 *5 (-1093)) - (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-640 *5)) (-5 *4 (-640 *6)) - (-4 *5 (-1093)) (-4 *6 (-1208)) (-5 *1 (-637 *5 *6)))) - ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-640 *5)) (-5 *4 (-640 *2)) (-5 *6 (-1 *2 *5)) - (-4 *5 (-1093)) (-4 *2 (-1208)) (-5 *1 (-637 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-767))))) + (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *4))))))) + (-5 *3 (-641 *7)) (-4 *4 (-13 (-307) (-147))) + (-4 *7 (-946 *4 *6 *5)) (-4 *5 (-13 (-847) (-612 (-1170)))) + (-4 *6 (-790)) (-5 *1 (-921 *4 *5 *6 *7))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-819))))) +(((*1 *2 *2) (-12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *1 *1) (-4 *1 (-556)))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1209)) + (-4 *5 (-373 *4)) (-4 *3 (-373 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-564)) (-5 *3 (-768)) (-5 *1 (-561))))) +(((*1 *2 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) +(((*1 *2 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *5 (-1213)) (-4 *6 (-1235 *5)) + (-4 *7 (-1235 (-407 *6))) (-5 *2 (-641 (-949 *5))) + (-5 *1 (-341 *4 *5 *6 *7)) (-4 *4 (-342 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *1 (-342 *4 *5 *6)) (-4 *4 (-1213)) + (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *4 (-363)) + (-5 *2 (-641 (-949 *4)))))) +(((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262)))) + ((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-1262))))) +(((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-108)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-217)))) + ((*1 *2 *1) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-487)))) + ((*1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) + ((*1 *2 *1) + (-12 (-5 *2 (-407 (-564))) (-5 *1 (-1001 *3)) (-14 *3 (-564)))) + ((*1 *1 *1) (-4 *1 (-1055)))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) + (-5 *2 (-112))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1208)) (-5 *2 (-767)) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) +(((*1 *2) + (-12 (-14 *4 *2) (-4 *5 (-1209)) (-5 *2 (-768)) (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-131)) - (-5 *2 (-767)))) + (-12 (-4 *1 (-323 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-131)) + (-5 *2 (-768)))) ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) + (-12 (-4 *4 (-363)) (-5 *2 (-768)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-361 *3)) (-4 *3 (-1093)))) - ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-386 *3)) (-4 *3 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-361 *3)) (-4 *3 (-1094)))) + ((*1 *2) (-12 (-4 *1 (-368)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-386 *3)) (-4 *3 (-1094)))) ((*1 *2) - (-12 (-4 *4 (-1093)) (-5 *2 (-767)) (-5 *1 (-424 *3 *4)) + (-12 (-4 *4 (-1094)) (-5 *2 (-768)) (-5 *1 (-424 *3 *4)) (-4 *3 (-425 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-1093)) + (-12 (-5 *2 (-768)) (-5 *1 (-645 *3 *4 *5)) (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-172)) (-4 *5 (-1233 *4)) (-5 *2 (-767)) - (-5 *1 (-719 *3 *4 *5)) (-4 *3 (-720 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) - ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-1002)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-844) (-363))) (-5 *1 (-1055 *2 *3)) - (-4 *3 (-1233 *2))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1208)) (-5 *2 (-640 *1)) (-4 *1 (-1006 *3)))) + (-12 (-4 *4 (-172)) (-4 *5 (-1235 *4)) (-5 *2 (-768)) + (-5 *1 (-720 *3 *4 *5)) (-4 *3 (-721 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-816 *3)) (-4 *3 (-847)))) + ((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1003)))) ((*1 *2 *1) - (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) - (-14 *3 (-917)) (-4 *4 (-1045))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) - (-4 *2 (-1233 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-648 (-407 *2))) (-4 *2 (-1233 *4)) (-5 *1 (-806 *4 *2)) - (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-649 *2 (-407 *2))) (-4 *2 (-1233 *4)) - (-5 *1 (-806 *4 *2)) - (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1233 *6)) - (-4 *6 (-13 (-27) (-430 *5))) - (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) (-4 *8 (-1233 (-407 *7))) - (-5 *2 (-584 *3)) (-5 *1 (-551 *5 *6 *7 *8 *3)) - (-4 *3 (-342 *6 *7 *8))))) -(((*1 *2 *1) - (-12 (-4 *3 (-233)) (-4 *3 (-1045)) (-4 *4 (-846)) (-4 *5 (-266 *4)) - (-4 *6 (-789)) (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *3 *4 *5 *6)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1045)) (-4 *3 (-846)) (-4 *5 (-266 *3)) (-4 *6 (-789)) - (-5 *2 (-1 *1 (-767))) (-4 *1 (-253 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-266 *2)) (-4 *2 (-846))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-1034 (-407 *2)))) (-5 *2 (-563)) - (-5 *1 (-115 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))) -(((*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 *4)) (-5 *1 (-1134 *3 *4)) - (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-648 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) - (-5 *1 (-806 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-648 (-407 *6))) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 (-2 (|:| -3288 (-640 (-407 *6))) (|:| -4277 (-684 *5)))) - (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6 (-407 *6))) (-5 *4 (-407 *6)) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) - (-5 *1 (-806 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-649 *6 (-407 *6))) (-4 *6 (-1233 *5)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-5 *2 (-2 (|:| -3288 (-640 (-407 *6))) (|:| -4277 (-684 *5)))) - (-5 *1 (-806 *5 *6)) (-5 *4 (-640 (-407 *6)))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-767)) (-4 *5 (-555)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-609 *3)) (-5 *5 (-1 (-1165 *3) (-1165 *3))) - (-4 *3 (-13 (-27) (-430 *6))) (-4 *6 (-13 (-846) (-555))) - (-5 *2 (-584 *3)) (-5 *1 (-550 *6 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) - (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) - ((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) - (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-846)) (-5 *2 (-767))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-114)) (-4 *2 (-1093)) (-4 *2 (-846)) - (-5 *1 (-113 *2))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-888 *4)) (-5 *3 (-1 (-112) *5)) (-4 *4 (-1093)) - (-4 *5 (-1208)) (-5 *1 (-886 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-888 *4)) (-5 *3 (-640 (-1 (-112) *5))) (-4 *4 (-1093)) - (-4 *5 (-1208)) (-5 *1 (-886 *4 *5)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-888 *5)) (-5 *3 (-640 (-1169))) - (-5 *4 (-1 (-112) (-640 *6))) (-4 *5 (-1093)) (-4 *6 (-1208)) - (-5 *1 (-886 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *5)) (-4 *5 (-1208)) (-4 *4 (-846)) - (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) + (-12 (-4 *2 (-13 (-845) (-363))) (-5 *1 (-1056 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 *3 *3 (-564))) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-99 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-91 *3))))) +(((*1 *1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-504 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-436))))) +(((*1 *2 *2) (-12 (-5 *2 (-316 (-225))) (-5 *1 (-267))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-752))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-585 *3)) (-4 *3 (-363))))) +(((*1 *1) (-5 *1 (-820)))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) +(((*1 *1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-4 *1 (-302)))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-830 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-840 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-641 (-949 *6))) (-5 *4 (-641 (-1170))) (-4 *6 (-452)) + (-5 *2 (-641 (-641 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) + (-4 *5 (-13 (-363) (-845)))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-114)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) (-4 *4 (-846)) - (-5 *1 (-933 *4 *2 *5)) (-4 *2 (-430 *4)))) + (-12 (-5 *3 (-1152)) (-4 *4 (-847)) (-5 *1 (-926 *4 *2)) + (-4 *2 (-430 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-1 (-112) *5)) (-4 *5 (-1208)) - (-5 *2 (-316 (-563))) (-5 *1 (-934 *5)))) + (-12 (-5 *3 (-1170)) (-5 *4 (-1152)) (-5 *2 (-316 (-564))) + (-5 *1 (-927))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-407 (-949 (-564))))) (-5 *4 (-641 (-1170))) + (-5 *2 (-641 (-641 *5))) (-5 *1 (-380 *5)) + (-4 *5 (-13 (-845) (-363))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-5 *4 (-640 (-1 (-112) *5))) (-4 *5 (-1208)) - (-5 *2 (-316 (-563))) (-5 *1 (-934 *5)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-1 (-112) (-640 *6))) - (-4 *6 (-13 (-430 *5) (-882 *4) (-611 (-888 *4)))) (-4 *4 (-1093)) - (-4 *5 (-13 (-1045) (-882 *4) (-846) (-611 (-888 *4)))) - (-5 *1 (-1069 *4 *5 *6))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555))))) + (-12 (-5 *3 (-407 (-949 (-564)))) (-5 *2 (-641 *4)) (-5 *1 (-380 *4)) + (-4 *4 (-13 (-845) (-363)))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))) -(((*1 *2) (-12 (-5 *2 (-1140 (-1151))) (-5 *1 (-391))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-144)))) - ((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-144))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) + (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-564) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1078 *2))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1023 (-840 (-564)))) + (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *4)))) (-4 *4 (-1046)) + (-5 *1 (-594 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-643 *5)) (-4 *5 (-1045)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-848 *5)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-644 *5)) (-4 *5 (-1046)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-849 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-684 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)))) + (-12 (-5 *2 (-685 *3)) (-4 *1 (-417 *3)) (-4 *3 (-172)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1045)) - (-5 *1 (-849 *2 *3)) (-4 *3 (-848 *2))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) -(((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-767)) (-4 *5 (-555)) - (-5 *2 - (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-965 *5 *3)) (-4 *3 (-1233 *5))))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-4 *3 (-1233 *4)) (-5 *1 (-805 *4 *3 *2 *5)) (-4 *2 (-651 *3)) - (-4 *5 (-651 (-407 *3))))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 *5)) - (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-1233 *4)) - (-5 *1 (-805 *4 *5 *2 *6)) (-4 *2 (-651 *5)) (-4 *6 (-651 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-379)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) -(((*1 *2 *1 *3 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2 *1 *1) - (-12 - (-5 *2 - (-2 (|:| -1647 (-778 *3)) (|:| |coef1| (-778 *3)) - (|:| |coef2| (-778 *3)))) - (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-2 (|:| -1647 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1059 *3 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-684 *3)) (-4 *3 (-307)) (-5 *1 (-695 *3))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1046)) + (-5 *1 (-850 *2 *3)) (-4 *3 (-849 *2))))) (((*1 *2 *1) - (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) - (-14 *4 (-767)) (-4 *5 (-172))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-121 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *1 (-674 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093))))) -(((*1 *1 *1) - (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-640 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *6 (-1233 *5)) - (-5 *2 (-640 (-2 (|:| -2495 *5) (|:| -3087 *3)))) - (-5 *1 (-805 *5 *6 *3 *7)) (-4 *3 (-651 *6)) - (-4 *7 (-651 (-407 *6)))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-555)) (-5 *1 (-965 *4 *2)) - (-4 *2 (-1233 *4))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-846)) (-4 *3 (-1093))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1647 (-778 *3)) (|:| |coef1| (-778 *3)))) - (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-2 (|:| -1647 *1) (|:| |coef1| *1))) - (-4 *1 (-1059 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) - ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) + (-5 *2 (-641 (-641 (-641 (-940 *3)))))))) (((*1 *2 *1) - (-12 (-5 *2 (-858)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 (-767)) - (-14 *4 (-767)) (-4 *5 (-172))))) -(((*1 *2 *2 *3) - (-12 (-5 *1 (-674 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-373 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *1)) (-4 *1 (-1127 *3)) (-4 *3 (-1045)))) + (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-859)))) (-5 *1 (-859)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1136 *3 *4)) (-5 *1 (-990 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-363)))) ((*1 *1 *2) - (-12 (-5 *2 (-640 (-1157 *3 *4))) (-5 *1 (-1157 *3 *4)) - (-14 *3 (-917)) (-4 *4 (-1045)))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) + (-12 (-5 *2 (-641 (-641 *5))) (-4 *5 (-1046)) + (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *6 (-238 *4 *5)) + (-4 *7 (-238 *3 *5))))) +(((*1 *2 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-330))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-103 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-312)) (-5 *1 (-296)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-1152))) (-5 *3 (-1152)) (-5 *2 (-312)) + (-5 *1 (-296))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-641 *8))) (-5 *3 (-641 *8)) + (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) (-4 *6 (-790)) + (-4 *7 (-847)) (-5 *2 (-112)) (-5 *1 (-974 *5 *6 *7 *8))))) +(((*1 *2 *2 *1) + (-12 (-5 *2 (-641 *6)) (-4 *1 (-973 *3 *4 *5 *6)) (-4 *3 (-1046)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) + (-4 *3 (-556))))) +(((*1 *2 *2) + (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-142 *3 *4 *2)) + (-4 *2 (-373 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) (-4 *2 (-373 *4)) + (-5 *1 (-503 *4 *5 *2 *3)) (-4 *3 (-373 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) + (-5 *2 (-685 *4)) (-5 *1 (-689 *4 *5)))) + ((*1 *2 *2) + (-12 (-4 *3 (-556)) (-4 *4 (-989 *3)) (-5 *1 (-1228 *3 *4 *2)) + (-4 *2 (-1235 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-4 *5 (-1233 *4)) - (-5 *2 (-640 (-2 (|:| |deg| (-767)) (|:| -3087 *5)))) - (-5 *1 (-805 *4 *5 *3 *6)) (-4 *3 (-651 *5)) - (-4 *6 (-651 (-407 *5)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3962 *4))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) + (-12 (-4 *4 (-13 (-556) (-847))) (-5 *2 (-169 *5)) + (-5 *1 (-598 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-999) (-1194))) + (-4 *3 (-13 (-430 (-169 *4)) (-999) (-1194)))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *1) (-5 *1 (-144))) + (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-4 *1 (-368)) (-5 *2 (-918)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-263))))) -(((*1 *1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-119 *2)) (-4 *2 (-1208))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-157)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-1069 *3 *4 *5))) (-4 *3 (-1093)) - (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) - (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3)))) - (-5 *1 (-1070 *3 *4 *5))))) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-918)) + (-5 *1 (-528 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -1647 (-778 *3)) (|:| |coef2| (-778 *3)))) - (-5 *1 (-778 *3)) (-4 *3 (-555)) (-4 *3 (-1045)))) - ((*1 *2 *1 *1) - (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-2 (|:| -1647 *1) (|:| |coef2| *1))) - (-4 *1 (-1059 *3 *4 *5))))) -(((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694)))) - ((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-694))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-1151))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-939 *5)) (-4 *5 (-1045)) (-5 *2 (-767)) - (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) - (-14 *4 (-917)) (-4 *5 (-1045)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) - (-5 *1 (-1157 *4 *5)) (-14 *4 (-917))))) + (-12 (-4 *1 (-1092 *3)) (-4 *3 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5 *5) + (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *3 (-1060 *6 *7 *8)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1067 *6 *7 *8 *3 *4)) (-4 *4 (-1066 *6 *7 *8 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-641 (-2 (|:| |val| (-641 *8)) (|:| -2084 *9)))) + (-5 *5 (-112)) (-4 *8 (-1060 *6 *7 *4)) (-4 *9 (-1066 *6 *7 *4 *8)) + (-4 *6 (-452)) (-4 *7 (-790)) (-4 *4 (-847)) + (-5 *2 (-641 (-2 (|:| |val| *8) (|:| -2084 *9)))) + (-5 *1 (-1067 *6 *7 *4 *8 *9))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-1166 (-949 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-4 *3 (-363)) + (-5 *2 (-1166 (-949 *3))))) + ((*1 *2) + (-12 (-5 *2 (-1166 (-407 (-949 *3)))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) (((*1 *2 *3) - (-12 (-4 *2 (-1233 *4)) (-5 *1 (-805 *4 *2 *3 *5)) - (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) - (-4 *5 (-651 (-407 *2)))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3962 *4))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) + (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *3 *4 *3 *3) + (-12 (-5 *3 (-294 *6)) (-5 *4 (-114)) (-4 *6 (-430 *5)) + (-4 *5 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *5 *6)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-641 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-641 (-294 *7))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-641 (-294 *8))) (-5 *4 (-641 (-114))) (-5 *5 (-294 *8)) + (-5 *6 (-641 *8)) (-4 *8 (-430 *7)) + (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *7 *8)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-641 *7)) (-5 *4 (-641 (-114))) (-5 *5 (-294 *7)) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-847) (-556) (-612 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *6 *7)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-641 (-114))) (-5 *6 (-641 (-294 *8))) + (-4 *8 (-430 *7)) (-5 *5 (-294 *8)) + (-4 *7 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *7 *8)))) + ((*1 *2 *3 *4 *3 *5) + (-12 (-5 *3 (-294 *5)) (-5 *4 (-114)) (-4 *5 (-430 *6)) + (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *5)))) + ((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) + (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4 *5 *5) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-4 *3 (-430 *6)) + (-4 *6 (-13 (-847) (-556) (-612 (-536)))) (-5 *2 (-52)) + (-5 *1 (-317 *6 *3)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *4 (-114)) (-5 *5 (-294 *3)) (-5 *6 (-641 *3)) + (-4 *3 (-430 *7)) (-4 *7 (-13 (-847) (-556) (-612 (-536)))) + (-5 *2 (-52)) (-5 *1 (-317 *7 *3))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2 *3 *4 *4 *5 *3 *6) + (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) (-5 *6 (-1166 *3)) + (-4 *3 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094)))) + ((*1 *2 *3 *4 *4 *5 *4 *3 *6) + (|partial| -12 (-5 *4 (-610 *3)) (-5 *5 (-641 *3)) + (-5 *6 (-407 (-1166 *3))) (-4 *3 (-13 (-430 *7) (-27) (-1194))) + (-4 *7 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-560 *7 *3 *8)) (-4 *8 (-1094))))) +(((*1 *1 *2) + (-12 (-5 *2 (-316 *3)) (-4 *3 (-13 (-1046) (-847))) + (-5 *1 (-223 *3 *4)) (-14 *4 (-641 (-1170)))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-640 *2)) (-4 *2 (-1093)) (-4 *2 (-1208))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-939 (-225)))) (-5 *1 (-1258))))) -(((*1 *2 *1 *1) - (-12 (-4 *3 (-555)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-640 *1)) (-4 *1 (-1059 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-1 (-225) (-225) (-225) (-225))) - (-5 *2 (-1 (-939 (-225)) (-225) (-225))) (-5 *1 (-692))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) - (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-939 *4)) (-4 *4 (-1045)) (-5 *1 (-1157 *3 *4)) - (-14 *3 (-917))))) + (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1166 *9)) (-5 *4 (-641 *7)) (-4 *7 (-847)) + (-4 *9 (-946 *8 *6 *7)) (-4 *6 (-790)) (-4 *8 (-307)) + (-5 *2 (-641 (-768))) (-5 *1 (-739 *6 *7 *8 *9)) (-5 *5 (-768))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1150 (-564))) (-5 *1 (-1154 *4)) (-4 *4 (-1046)) + (-5 *3 (-564))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3962 *4))) - (-5 *1 (-965 *4 *3)) (-4 *3 (-1233 *4))))) + (-12 (-4 *4 (-556)) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2448 *4))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-5 *2 (-1264)) (-5 *1 (-901 *4)) + (-4 *4 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1) + (-12 (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1094) (-34))) + (-4 *3 (-13 (-1094) (-34)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-577)))) + ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-577))))) +(((*1 *1 *1 *1) + (-12 (-5 *1 (-641 *2)) (-4 *2 (-1094)) (-4 *2 (-1209))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-536))) (-5 *2 (-1170)) (-5 *1 (-536))))) +(((*1 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) (((*1 *2 *3 *4) - (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *3 *5)) - (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) - (-4 *5 (-651 (-407 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1233 *4)) (-5 *1 (-803 *4 *2 *5 *3)) - (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *5 (-651 *2)) - (-4 *3 (-651 (-407 *2)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-917)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-263))))) -(((*1 *1) (-5 *1 (-1258)))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555))))) -(((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-316 (-563))) (-5 *4 (-1 (-225) (-225))) - (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) - (-5 *1 (-692))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *2 *2) - (-12 - (-5 *2 - (-504 (-407 (-563)) (-240 *4 (-767)) (-860 *3) - (-247 *3 (-407 (-563))))) - (-14 *3 (-640 (-1169))) (-14 *4 (-767)) (-5 *1 (-505 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-245 *3))))) + (-12 (-5 *4 (-1170)) + (-4 *5 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-585 *3)) (-5 *1 (-557 *5 *3)) + (-4 *3 (-13 (-27) (-1194) (-430 *5)))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-946 *5 *6 *7)) (-4 *5 (-452)) + (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-5 *1 (-449 *5 *6 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *5 (-1152)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1032)) + (-5 *1 (-747))))) +(((*1 *2 *1) (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *1 *2 *2 *3) + (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-1094)) + (-4 *5 (-13 (-1046) (-883 *4) (-847) (-612 (-889 *4)))) + (-5 *1 (-1070 *4 *5 *2)) + (-4 *2 (-13 (-430 *5) (-883 *4) (-612 (-889 *4)))))) + ((*1 *1 *2 *2) + (-12 (-4 *3 (-1094)) + (-4 *4 (-13 (-1046) (-883 *3) (-847) (-612 (-889 *3)))) + (-5 *1 (-1070 *3 *4 *2)) + (-4 *2 (-13 (-430 *4) (-883 *3) (-612 (-889 *3))))))) +(((*1 *1 *1 *1) (-4 *1 (-758)))) +(((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) (((*1 *1 *1) - (-12 (-4 *1 (-1096 *2 *3 *4 *5 *6)) (-4 *2 (-1093)) (-4 *3 (-1093)) - (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093))))) -(((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-939 *5)) (-5 *3 (-767)) (-4 *5 (-1045)) - (-5 *1 (-1157 *4 *5)) (-14 *4 (-917))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-846)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-964 *2)) (-4 *2 (-846))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3219 *5) (|:| -2320 *5)))) - (-5 *1 (-803 *4 *5 *3 *6)) (-4 *3 (-651 *5)) - (-4 *6 (-651 (-407 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3219 *4) (|:| -2320 *4)))) - (-5 *1 (-803 *5 *4 *3 *6)) (-4 *3 (-651 *4)) - (-4 *6 (-651 (-407 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-4 *5 (-1233 *4)) (-5 *2 (-640 (-2 (|:| -3219 *5) (|:| -2320 *5)))) - (-5 *1 (-803 *4 *5 *6 *3)) (-4 *6 (-651 *5)) - (-4 *3 (-651 (-407 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-4 *4 (-1233 *5)) (-5 *2 (-640 (-2 (|:| -3219 *4) (|:| -2320 *4)))) - (-5 *1 (-803 *5 *4 *6 *3)) (-4 *6 (-651 *4)) - (-4 *3 (-651 (-407 *4)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1137)) (-5 *2 (-112))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-468)) (-5 *3 (-640 (-263))) (-5 *1 (-1258)))) - ((*1 *1 *1) (-5 *1 (-1258)))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 *1)) (-4 *1 (-430 *4)) - (-4 *4 (-846)))) - ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) - ((*1 *1 *2 *1 *1 *1) - (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) - ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846))))) -(((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *3 (-555))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) - (-5 *1 (-692))))) -(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *2 (-379)) (-5 *1 (-781 *3)) (-4 *3 (-611 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-917)) (-5 *2 (-379)) (-5 *1 (-781 *3)) - (-4 *3 (-611 *2)))) - ((*1 *2 *3) - (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 *2)) - (-5 *2 (-379)) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) - (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 *2)) - (-5 *2 (-379)) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) - (-4 *4 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) - (-4 *5 (-611 *2)) (-5 *2 (-379)) (-5 *1 (-781 *5))))) -(((*1 *1 *2) (-12 (-4 *1 (-661 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-1169))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-767)) (-5 *3 (-939 *5)) (-4 *5 (-1045)) - (-5 *1 (-1157 *4 *5)) (-14 *4 (-917)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-767))) (-5 *3 (-767)) (-5 *1 (-1157 *4 *5)) - (-14 *4 (-917)) (-4 *5 (-1045)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-767))) (-5 *3 (-939 *5)) (-4 *5 (-1045)) - (-5 *1 (-1157 *4 *5)) (-14 *4 (-917))))) -(((*1 *1 *1 *1) (-4 *1 (-963)))) + (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) + (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1209)) (-5 *2 (-768)) (-5 *1 (-182 *4 *3)) + (-4 *3 (-670 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-407 *2)) (-4 *2 (-1233 *5)) - (-5 *1 (-803 *5 *2 *3 *6)) - (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) - (-4 *3 (-651 *2)) (-4 *6 (-651 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-407 *2))) (-4 *2 (-1233 *5)) - (-5 *1 (-803 *5 *2 *3 *6)) - (-4 *5 (-13 (-363) (-147) (-1034 (-407 (-563))))) (-4 *3 (-651 *2)) - (-4 *6 (-651 (-407 *2)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-870)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))) -(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-917)) (-5 *4 (-225)) (-5 *5 (-563)) (-5 *6 (-870)) - (-5 *2 (-1262)) (-5 *1 (-1258))))) -(((*1 *2 *2) - (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926))))) -(((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555))))) -(((*1 *2 *3 *3 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-1 (-225) (-225) (-225))) - (-5 *4 (-3 (-1 (-225) (-225) (-225) (-225)) "undefined")) - (-5 *5 (-1087 (-225))) (-5 *6 (-640 (-263))) (-5 *2 (-1126 (-225))) - (-5 *1 (-692)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-939 (-225)) (-225) (-225))) (-5 *4 (-1087 (-225))) - (-5 *5 (-640 (-263))) (-5 *2 (-1126 (-225))) (-5 *1 (-692)))) - ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1126 (-225))) (-5 *3 (-1 (-939 (-225)) (-225) (-225))) - (-5 *4 (-1087 (-225))) (-5 *5 (-640 (-263))) (-5 *1 (-692))))) -(((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) - (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-767))) (-5 *3 (-112)) (-5 *1 (-1157 *4 *5)) - (-14 *4 (-917)) (-4 *5 (-1045))))) + (-12 (-4 *5 (-1094)) (-4 *3 (-897 *5)) (-5 *2 (-1259 *3)) + (-5 *1 (-688 *5 *3 *6 *4)) (-4 *6 (-373 *3)) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411))))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-648 *4)) (-4 *4 (-342 *5 *6 *7)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) - (-5 *1 (-802 *5 *6 *7 *4))))) -(((*1 *1 *1 *1) (-4 *1 (-963)))) -(((*1 *1 *1 *1) (-4 *1 (-545)))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-985)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1087 *4)) (-4 *4 (-1208)) - (-5 *1 (-1085 *4))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-563)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 + (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) (-5 *2 - (-1257 - (-2 (|:| |scaleX| (-225)) (|:| |scaleY| (-225)) - (|:| |deltaX| (-225)) (|:| |deltaY| (-225)) (|:| -2276 (-563)) - (|:| -2253 (-563)) (|:| |spline| (-563)) (|:| -2529 (-563)) - (|:| |axesColor| (-870)) (|:| -1386 (-563)) - (|:| |unitsColor| (-870)) (|:| |showing| (-563))))) - (-5 *1 (-1258))))) + (-2 (|:| |dpolys| (-641 (-247 *5 *6))) + (|:| |coords| (-641 (-564))))) + (-5 *1 (-471 *5 *6 *7)) (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) (((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-452))))) -(((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-767)) (-4 *4 (-349)) (-5 *1 (-216 *4 *2)) - (-4 *2 (-1233 *4)))) - ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 (-407 (-948 (-563))))) (-5 *4 (-640 (-1169))) - (-5 *2 (-640 (-640 *5))) (-5 *1 (-380 *5)) - (-4 *5 (-13 (-844) (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 *4)) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-844) (-363)))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-767))) (-5 *3 (-171)) (-5 *1 (-1157 *4 *5)) - (-14 *4 (-917)) (-4 *5 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-800 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1193) (-955)))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-563) "failed") *5)) (-4 *5 (-1045)) - (-5 *2 (-563)) (-5 *1 (-543 *5 *3)) (-4 *3 (-1233 *5)))) - ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) - (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-563) "failed") *4)) (-4 *4 (-1045)) - (-5 *2 (-563)) (-5 *1 (-543 *4 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-506))) (-5 *1 (-483))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263))))) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-1170)) (-5 *1 (-525))))) (((*1 *2 *3) - (-12 (-5 *2 (-1171 (-407 (-563)))) (-5 *1 (-190)) (-5 *3 (-563)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1257 (-3 (-468) "undefined"))) (-5 *1 (-1258))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) + (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-999)))))) +(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) + (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4032 (-641 *9)) (|:| -2084 *4) (|:| |ineq| (-641 *9)))) + (-5 *1 (-985 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) + (-4 *4 (-1066 *6 *7 *8 *9)))) + ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) + (|partial| -12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-790)) + (-4 *8 (-847)) (-4 *9 (-1060 *6 *7 *8)) + (-5 *2 + (-2 (|:| -4032 (-641 *9)) (|:| -2084 *4) (|:| |ineq| (-641 *9)))) + (-5 *1 (-1101 *6 *7 *8 *9 *4)) (-5 *3 (-641 *9)) + (-4 *4 (-1066 *6 *7 *8 *9))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) + (-12 (-4 *1 (-794 *2)) (-4 *2 (-172)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-996 *3)) (-4 *3 (-172)) (-5 *1 (-796 *3))))) (((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-452))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-2 (|:| |deg| (-767)) (|:| -1404 *5)))) - (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *2 (-640 *5)) - (-5 *1 (-216 *4 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-2 (|:| -2055 *5) (|:| -1962 (-563))))) - (-5 *4 (-563)) (-4 *5 (-1233 *4)) (-5 *2 (-640 *5)) - (-5 *1 (-691 *5))))) + (-12 (-4 *1 (-1097 *2 *3 *4 *5 *6)) (-4 *2 (-1094)) (-4 *3 (-1094)) + (-4 *4 (-1094)) (-4 *5 (-1094)) (-4 *6 (-1094))))) +(((*1 *1 *1 *2 *3 *1) + (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 (-169 (-563))))) (-5 *2 (-640 (-169 *4))) - (-5 *1 (-378 *4)) (-4 *4 (-13 (-363) (-844))))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) - (-5 *4 (-640 (-1169))) (-5 *2 (-640 (-640 (-169 *5)))) - (-5 *1 (-378 *5)) (-4 *5 (-13 (-363) (-844)))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-767))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *1 (-800 *4 *2)) (-4 *2 (-13 (-29 *4) (-1193) (-955)))))) -(((*1 *2 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963))))) + (-12 (-5 *4 (-641 (-861 *5))) (-14 *5 (-641 (-1170))) (-4 *6 (-452)) + (-5 *2 (-641 (-641 (-247 *5 *6)))) (-5 *1 (-471 *5 *6 *7)) + (-5 *3 (-641 (-247 *5 *6))) (-4 *7 (-452))))) +(((*1 *2 *3 *4 *5 *5 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-949 *6)) (-5 *4 (-1170)) + (-5 *5 (-840 *7)) + (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-4 *7 (-13 (-1194) (-29 *6))) (-5 *1 (-224 *6 *7)))) + ((*1 *2 *3 *4 *4 *2) + (|partial| -12 (-5 *2 (-112)) (-5 *3 (-1166 *6)) (-5 *4 (-840 *6)) + (-4 *6 (-13 (-1194) (-29 *5))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-224 *5 *6))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-5 *1 (-455 *3 *2)) (-4 *2 (-1233 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-5 *1 (-460 *3 *2)) (-4 *2 (-1233 *3)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-767))) - (-5 *1 (-539 *3 *2 *4 *5)) (-4 *2 (-1233 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-112)) (-5 *3 (-640 (-263))) (-5 *1 (-261))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-1060 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-974 *4 *5 *6 *2))))) +(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-768)) (-4 *5 (-363)) (-5 *2 (-407 *6)) + (-5 *1 (-864 *5 *4 *6)) (-4 *4 (-1250 *5)) (-4 *6 (-1235 *5)))) + ((*1 *2 *3 *3 *4 *4) + (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) + (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) + (-5 *1 (-865 *5 *6 *7)))) + ((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *3 (-768)) (-5 *4 (-1251 *5 *6 *7)) (-4 *5 (-363)) + (-14 *6 (-1170)) (-14 *7 *5) (-5 *2 (-407 (-1232 *6 *5))) + (-5 *1 (-865 *5 *6 *7))))) +(((*1 *2 *3 *3 *3) + (|partial| -12 + (-4 *4 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-1166 (-407 *5))) (-5 *1 (-613 *4 *5)) + (-5 *3 (-407 *5)))) + ((*1 *2 *3 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-147) (-27) (-1035 (-564)) (-1035 (-407 (-564))))) + (-5 *2 (-1166 (-407 *6))) (-5 *1 (-613 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *1 *2) (-12 (-4 *1 (-662 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-1170))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-641 (-1208))) (-5 *3 (-1208)) (-5 *1 (-677))))) +(((*1 *1 *1) (-12 (-4 *1 (-373 *2)) (-4 *2 (-1209)))) ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) + (-12 (-4 *3 (-1046)) (-5 *1 (-444 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-1126 *4 *2)) + (-4 *2 (-13 (-602 (-564) *4) (-10 -7 (-6 -4411) (-6 -4412)))))) ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-452))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-563)) (-5 *2 (-640 (-2 (|:| -2055 *3) (|:| -1962 *4)))) - (-5 *1 (-691 *3)) (-4 *3 (-1233 *4))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1093)) - (-4 *6 (-1093)) (-4 *2 (-1093)) (-5 *1 (-675 *5 *6 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-407 (-948 (-169 (-563)))))) - (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-844))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-294 (-407 (-948 (-169 (-563))))))) - (-5 *2 (-640 (-640 (-294 (-948 (-169 *4)))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-844))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 (-169 (-563))))) - (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-844))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-948 (-169 (-563)))))) - (-5 *2 (-640 (-294 (-948 (-169 *4))))) (-5 *1 (-378 *4)) - (-4 *4 (-13 (-363) (-844)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-939 *4)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *3) - (|partial| -12 - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))) - (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) - (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) + (-12 (-4 *3 (-847)) (-4 *3 (-1209)) (-5 *1 (-1126 *3 *2)) + (-4 *2 (-13 (-602 (-564) *3) (-10 -7 (-6 -4411) (-6 -4412))))))) (((*1 *2 *3) - (-12 (-5 *3 (-923)) - (-5 *2 - (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) - (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) - (-5 *2 - (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) - (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) - (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) - (-5 *1 (-153)) (-5 *3 (-640 (-939 (-225)))))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-847) (-556)))))) +(((*1 *1) (-5 *1 (-141))) ((*1 *1 *1) (-5 *1 (-144))) + ((*1 *1 *1) (-4 *1 (-1138)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *1) (-5 *1 (-144))) ((*1 *2 *3) - (-12 - (-5 *2 - (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) - (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) - (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 (-225))))))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-263))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-917)) (-5 *2 (-468)) (-5 *1 (-1258))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-452))))) + (-12 (-5 *3 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-263))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-171))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-4 *5 (-368)) + (-5 *2 (-768))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-436))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-563)) (-5 *1 (-379))))) + (-12 (-5 *3 (-918)) (-5 *1 (-1029 *2)) + (-4 *2 (-13 (-1094) (-10 -8 (-15 * ($ $ $)))))))) +(((*1 *2 *1) (-12 (-5 *2 (-859)) (-5 *1 (-52))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-879 *2)) (-4 *2 (-1209))))) +(((*1 *2 *3 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *1 *1) (-4 *1 (-627))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-628 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999) (-1194)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)) (-5 *3 (-1152)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-241)))) + ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-1 (-112) *7 (-641 *7))) (-4 *1 (-1202 *4 *5 *6 *7)) + (-4 *4 (-556)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-768))) (-5 *3 (-171)) (-5 *1 (-1158 *4 *5)) + (-14 *4 (-918)) (-4 *5 (-1046))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-818)) (-5 *4 (-52)) (-5 *2 (-1264)) (-5 *1 (-828))))) (((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) + (-5 *2 (-641 (-641 (-940 *3)))))) + ((*1 *1 *2 *3 *3) + (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) (-4 *4 (-1046)) + (-4 *1 (-1128 *4)))) + ((*1 *1 *2) + (-12 (-5 *2 (-641 (-641 (-940 *3)))) (-4 *3 (-1046)) + (-4 *1 (-1128 *3)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-112)) + (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) + ((*1 *1 *1 *2 *3 *3) + (-12 (-5 *2 (-641 (-641 (-940 *4)))) (-5 *3 (-112)) + (-4 *1 (-1128 *4)) (-4 *4 (-1046)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-641 (-641 *5)))) (-5 *3 (-641 (-171))) + (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046)))) + ((*1 *1 *1 *2 *3 *4) + (-12 (-5 *2 (-641 (-641 (-940 *5)))) (-5 *3 (-641 (-171))) + (-5 *4 (-171)) (-4 *1 (-1128 *5)) (-4 *5 (-1046))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) + (-5 *1 (-190))))) +(((*1 *2 *1) (-12 (-4 *1 (-556)) (-5 *2 (-112))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *3)) (-4 *3 (-1066 *4 *5 *6 *7))))) (((*1 *1 *2) (-12 (-5 *2 - (-640 + (-641 (-2 - (|:| -3320 + (|:| -1327 (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) - (|:| |yinit| (-640 (-225))) (|:| |intvals| (-640 (-225))) + (|:| |fn| (-1259 (-316 (-225)))) + (|:| |yinit| (-641 (-225))) (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -3704 + (|:| -2423 (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) (|:| |expense| (-379)) (|:| |accuracy| (-379)) (|:| |intermediateResults| (-379))))))) - (-5 *1 (-799))))) -(((*1 *1 *1) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-1233 *4)) (-5 *1 (-539 *4 *2 *5 *6)) - (-4 *4 (-307)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-767)))))) -(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1) (-5 *1 (-1057)))) -(((*1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1208)) (-4 *2 (-1093)))) - ((*1 *1 *1) (-12 (-4 *1 (-690 *2)) (-4 *2 (-1093))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-225)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-407 (-563))) (-5 *1 (-379))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208))))) -(((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-799))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *6)) (-5 *4 (-640 (-1169))) (-4 *6 (-363)) - (-5 *2 (-640 (-294 (-948 *6)))) (-5 *1 (-538 *5 *6 *7)) - (-4 *5 (-452)) (-4 *7 (-13 (-363) (-844)))))) -(((*1 *1 *2) (-12 (-5 *2 (-870)) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) -(((*1 *1 *1) (-4 *1 (-35))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1) (-5 *1 (-1057)))) -(((*1 *2 *1) - (-12 (-4 *1 (-690 *3)) (-4 *3 (-1093)) - (-5 *2 (-640 (-2 (|:| -3704 *3) (|:| -3261 (-767)))))))) -(((*1 *1 *1) (-5 *1 (-225))) ((*1 *1 *1) (-5 *1 (-379))) - ((*1 *1) (-5 *1 (-379)))) -(((*1 *2 *1) - (-12 (-5 *2 (-171)) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *1) (-5 *1 (-799)))) -(((*1 *2 *1) - (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) - (-4 *3 (-963))))) -(((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-4 *6 (-452)) - (-5 *2 (-640 (-640 *7))) (-5 *1 (-538 *6 *7 *5)) (-4 *7 (-363)) - (-4 *5 (-13 (-363) (-844)))))) -(((*1 *2 *1) (-12 (-4 *1 (-132)) (-5 *2 (-767)))) - ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-373 *3)) (-4 *3 (-1208)) - (-4 *3 (-1093)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-1093)) - (-5 *2 (-563)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) - (-5 *2 (-563)))) - ((*1 *2 *1) (-12 (-5 *2 (-1113)) (-5 *1 (-529)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563)) (-5 *3 (-141)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1137)) (-5 *2 (-563))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1137)) (-5 *3 (-144)) (-5 *2 (-112))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) + (-5 *1 (-800))))) +(((*1 *2 *3 *4 *5 *6 *5 *3 *7) + (-12 (-5 *4 (-564)) + (-5 *6 + (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379)))) + (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-785)))) + ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) + (-12 (-5 *4 (-564)) + (-5 *6 + (-2 (|:| |try| (-379)) (|:| |did| (-379)) (|:| -3919 (-379)))) + (-5 *7 (-1 (-1264) (-1259 *5) (-1259 *5) (-379))) + (-5 *3 (-1259 (-379))) (-5 *5 (-379)) (-5 *2 (-1264)) + (-5 *1 (-785))))) +(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-275))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) (-4 *1 (-493))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1) (-5 *1 (-1057)))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *7 (-896 *6)) - (-5 *2 (-684 *7)) (-5 *1 (-687 *6 *7 *3 *4)) (-4 *3 (-373 *7)) - (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4408))))))) -(((*1 *1) (-5 *1 (-225))) ((*1 *1) (-5 *1 (-379)))) -(((*1 *1 *1) - (-12 (-5 *1 (-1157 *2 *3)) (-14 *2 (-917)) (-4 *3 (-1045))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1169)) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-4 *4 (-13 (-29 *6) (-1193) (-955))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3288 (-640 *4)))) - (-5 *1 (-797 *6 *4 *3)) (-4 *3 (-651 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1165 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) - (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844))))) + (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) + (-15 -1634 ((-1119 *3 (-610 $)) $)) + (-15 -3742 ($ (-1119 *3 (-610 $))))))))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-556)) (-5 *1 (-41 *3 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *3 (-610 $)) $)) + (-15 -1634 ((-1119 *3 (-610 $)) $)) + (-15 -3742 ($ (-1119 *3 (-610 $))))))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *4 (-610 $)) $)) + (-15 -1634 ((-1119 *4 (-610 $)) $)) + (-15 -3742 ($ (-1119 *4 (-610 $))))))) + (-4 *4 (-556)) (-5 *1 (-41 *4 *2)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-641 (-610 *2))) + (-4 *2 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *4 (-610 $)) $)) + (-15 -1634 ((-1119 *4 (-610 $)) $)) + (-15 -3742 ($ (-1119 *4 (-610 $))))))) + (-4 *4 (-556)) (-5 *1 (-41 *4 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-949 (-564)))) (-5 *1 (-437)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-948 *5)) (-4 *5 (-452)) (-5 *2 (-640 *6)) - (-5 *1 (-538 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-407 (-563))))) (-5 *1 (-263)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-1087 (-379)))) (-5 *1 (-263))))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) - ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) (-4 *1 (-493))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1) (-5 *1 (-1057)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1257 (-316 (-225)))) (-5 *4 (-640 (-1169))) - (-5 *2 (-684 (-316 (-225)))) (-5 *1 (-205)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-4 *6 (-896 *5)) (-5 *2 (-684 *6)) - (-5 *1 (-687 *5 *6 *3 *4)) (-4 *3 (-373 *6)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408))))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) - ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379))))) -(((*1 *2 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858))))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-563)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1151)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-506)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-590)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-478)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1159)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-623)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1089)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1083)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1067)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-966)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1032)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-311)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-666)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-154)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-525)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1268)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1060)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-517)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-676)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1108)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-133)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-138)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-1267)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-671)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-218)))) - ((*1 *2 *1) (-12 (-4 *1 (-1130)) (-5 *2 (-524)))) - ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-939 *4))) (-5 *1 (-1157 *3 *4)) (-14 *3 (-917)) - (-4 *4 (-1045))))) -(((*1 *2 *3) - (-12 (-4 *1 (-796)) - (-5 *3 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *2 (-1031))))) -(((*1 *2 *1) - (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) - (-4 *3 (-963))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-536)) (-5 *1 (-535 *4)) - (-4 *4 (-1208))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-263))) (-5 *4 (-1169)) (-5 *2 (-112)) - (-5 *1 (-263))))) -(((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-870)) - (-5 *5 (-917)) (-5 *6 (-640 (-263))) (-5 *2 (-1258)) - (-5 *1 (-1261)))) + (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-225))) (-5 *2 (-1098)) + (-5 *1 (-756)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-640 (-939 (-225))))) (-5 *4 (-640 (-263))) - (-5 *2 (-1258)) (-5 *1 (-1261))))) + (-12 (-5 *3 (-1170)) (-5 *4 (-685 (-564))) (-5 *2 (-1098)) + (-5 *1 (-756))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998))))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1248 *3)) - (-5 *1 (-278 *3 *4 *2)) (-4 *2 (-1219 *3 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-38 (-407 (-563)))) (-4 *4 (-1217 *3)) - (-5 *1 (-279 *3 *4 *2 *5)) (-4 *2 (-1240 *3 *4)) (-4 *5 (-979 *4)))) - ((*1 *1 *1) (-4 *1 (-493))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3))))) -(((*1 *1 *1) (-5 *1 (-1057)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-767)) (-4 *6 (-1093)) (-4 *3 (-896 *6)) - (-5 *2 (-684 *3)) (-5 *1 (-687 *6 *3 *7 *4)) (-4 *7 (-373 *3)) - (-4 *4 (-13 (-373 *6) (-10 -7 (-6 -4408))))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) - ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379))))) -(((*1 *1 *1) - (-12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)) - (-4 *2 (-452)))) - ((*1 *1 *1) - (-12 (-4 *1 (-342 *2 *3 *4)) (-4 *2 (-1212)) (-4 *3 (-1233 *2)) - (-4 *4 (-1233 (-407 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1045)) (-4 *2 (-452)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-945 *3 *4 *2)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)) (-4 *3 (-452)))) - ((*1 *1 *1) - (-12 (-4 *1 (-945 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-452)))) - ((*1 *2 *2 *3) - (-12 (-4 *3 (-307)) (-4 *3 (-555)) (-5 *1 (-1156 *3 *2)) - (-4 *2 (-1233 *3))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) - (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-995 *3)) (-4 *3 (-172)) (-5 *1 (-795 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) -(((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-536))) (-5 *1 (-536))))) -(((*1 *2 *3) - (-12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-5 *2 (-1 (-112) *5)) - (-5 *1 (-886 *4 *5)) (-4 *5 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1159))))) -(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-257))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1 *1) (-5 *1 (-1057)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-684 *3)) - (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408))))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379)))) - ((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-379))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-954 *3)) (-5 *1 (-1156 *4 *3)) - (-4 *3 (-1233 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) - (-4 *3 (-963))))) -(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-536))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1 *1) (-5 *1 (-1057)))) -(((*1 *2 *2 *3) - (-12 (-4 *4 (-1093)) (-4 *2 (-896 *4)) (-5 *1 (-687 *4 *2 *5 *3)) - (-4 *5 (-373 *2)) (-4 *3 (-13 (-373 *4) (-10 -7 (-6 -4408))))))) -(((*1 *2 *3) (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-379))))) -(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-114))) - ((*1 *1 *1) (-5 *1 (-171))) ((*1 *1 *1) (-4 *1 (-545))) - ((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1) (-12 (-4 *1 (-1127 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-407 (-563)))) - (-5 *2 (-2 (|:| -3395 (-1149 *4)) (|:| -3408 (-1149 *4)))) - (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-962 *3)) (-4 *3 (-963))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-536))))) -(((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-468)) (-5 *4 (-917)) (-5 *2 (-1262)) (-5 *1 (-1258))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-257))))) -(((*1 *1) (-5 *1 (-186)))) -(((*1 *1 *1) (-5 *1 (-1057)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-4 *2 (-896 *5)) (-5 *1 (-687 *5 *2 *3 *4)) - (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409))))))) -(((*1 *2 *3) - (-12 (-4 *4 (-38 (-407 (-563)))) - (-5 *2 (-2 (|:| -3264 (-1149 *4)) (|:| -3273 (-1149 *4)))) - (-5 *1 (-1155 *4)) (-5 *3 (-1149 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307))))) (((*1 *2 *1) - (-12 (-5 *2 (-869 (-962 *3) (-962 *3))) (-5 *1 (-962 *3)) - (-4 *3 (-963))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-684 *6)) (-5 *5 (-1 (-418 (-1165 *6)) (-1165 *6))) - (-4 *6 (-363)) - (-5 *2 - (-640 - (-2 (|:| |outval| *7) (|:| |outmult| (-563)) - (|:| |outvect| (-640 (-684 *7)))))) - (-5 *1 (-532 *6 *7 *4)) (-4 *7 (-363)) (-4 *4 (-13 (-363) (-844)))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) - (-5 *2 (-1259)) (-5 *1 (-257))))) -(((*1 *1 *1) (-5 *1 (-1057)))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-4 *3 (-896 *5)) (-5 *2 (-1257 *3)) - (-5 *1 (-687 *5 *3 *6 *4)) (-4 *6 (-373 *3)) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4408))))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409))))))) -(((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-563)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1208)) - (-4 *4 (-373 *2)) (-4 *5 (-373 *2)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) - (-4 *3 (-1208)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4409)) (-4 *1 (-119 *3)) - (-4 *3 (-1208)))) - ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-288 *3 *2)) (-4 *3 (-1093)) - (-4 *2 (-1208)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-52)) (-5 *3 (-1169)) (-5 *1 (-629)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1224 (-563))) (|has| *1 (-6 -4409)) (-4 *1 (-646 *2)) - (-4 *2 (-1208)))) - ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-640 (-563))) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4409)) (-4 *1 (-1006 *2)) - (-4 *2 (-1208)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1022 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1 *3 *2) - (-12 (-4 *1 (-1184 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-1093)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) - (-4 *2 (-1208)))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *3)) - (-4 *3 (-1208)))) - ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4409)) (-4 *1 (-1245 *2)) - (-4 *2 (-1208))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-960 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1165 *5)) (-4 *5 (-363)) (-5 *2 (-640 *6)) - (-5 *1 (-532 *5 *6 *4)) (-4 *6 (-363)) (-4 *4 (-13 (-363) (-844)))))) -(((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-169 (-225)) (-169 (-225)))) (-5 *4 (-1087 (-225))) - (-5 *5 (-112)) (-5 *2 (-1259)) (-5 *1 (-257))))) -(((*1 *2 *3) (-12 - (-5 *3 - (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) - (-5 *2 (-640 (-1169))) (-5 *1 (-267)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-640 *5)) - (-5 *1 (-321 *4 *5 *6 *7)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-339 *3 *4 *5)) (-14 *3 *2) - (-14 *4 *2) (-4 *5 (-387)))) - ((*1 *2 *1) - (-12 (-4 *1 (-430 *3)) (-4 *3 (-846)) (-5 *2 (-640 (-1169))))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) - (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-640 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) - (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-640 *5)) - (-5 *1 (-946 *4 *5 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))))) - ((*1 *2 *1) - (-12 (-5 *2 (-1095 (-1169))) (-5 *1 (-962 *3)) (-4 *3 (-963)))) + (-5 *2 + (-641 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225))))) + (-5 *1 (-559)))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-788)) - (-4 *5 (-846)) (-5 *2 (-640 *5)))) + (-12 (-4 *1 (-608 *3 *4)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-5 *2 (-641 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-5 *2 (-640 (-1169))) - (-5 *1 (-1039 *4))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057))))) -(((*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-610 (-858)))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1208)) (-5 *1 (-375 *4 *2)) - (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4409))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1006 *3)) (-4 *3 (-1208)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-114)) (-4 *4 (-1045)) (-5 *1 (-710 *4 *2)) - (-4 *2 (-643 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-114)) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1093)) (-5 *1 (-960 *2 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3) - (-12 (-5 *3 (-684 *4)) (-4 *4 (-363)) (-5 *2 (-1165 *4)) - (-5 *1 (-532 *4 *5 *6)) (-4 *5 (-363)) (-4 *6 (-13 (-363) (-844)))))) + (-12 + (-5 *2 + (-641 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225))))) + (-5 *1 (-800))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-939 (-225)) (-225) (-225))) - (-5 *3 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-255))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-125 *2)) (-4 *2 (-1093))))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1165 (-407 (-1165 *2)))) (-5 *4 (-609 *2)) - (-4 *2 (-13 (-430 *5) (-27) (-1193))) - (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *1 (-559 *5 *2 *6)) (-4 *6 (-1093)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1165 *1)) (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *3 (-846)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1165 *4)) (-4 *4 (-1045)) (-4 *1 (-945 *4 *5 *3)) - (-4 *5 (-789)) (-4 *3 (-846)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-1165 *2))) (-4 *5 (-789)) (-4 *4 (-846)) - (-4 *6 (-1045)) - (-4 *2 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))) - (-5 *1 (-946 *5 *4 *6 *7 *2)) (-4 *7 (-945 *6 *5 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-1165 (-407 (-948 *5))))) (-5 *4 (-1169)) - (-5 *2 (-407 (-948 *5))) (-5 *1 (-1039 *5)) (-4 *5 (-555))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-379)) (-5 *1 (-1057))))) -(((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) - (-5 *1 (-685 *4))))) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-847) (-307) (-1035 (-564)) (-637 (-564)) (-147))) + (-5 *1 (-801 *4 *2)) (-4 *2 (-13 (-29 *4) (-1194) (-956))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *3) + (-12 (-5 *2 (-1150 *3)) (-5 *1 (-1154 *3)) (-4 *3 (-1046))))) +(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1259 *1)) (-4 *1 (-367 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-1264)) (-5 *1 (-1173))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-946 *4 *5 *6)) (-4 *6 (-612 (-1170))) + (-4 *4 (-363)) (-4 *5 (-790)) (-4 *6 (-847)) + (-5 *2 (-1159 (-641 (-949 *4)) (-641 (-294 (-949 *4))))) + (-5 *1 (-504 *4 *5 *6 *7))))) (((*1 *1 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-4 *1 (-374 *3 *4)) - (-4 *4 (-172))))) -(((*1 *1 *1) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-361 (-114))) (-4 *2 (-1045)) (-5 *1 (-710 *2 *4)) - (-4 *4 (-643 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-361 (-114))) (-5 *1 (-832 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1) - (-12 (-4 *2 (-1093)) (-5 *1 (-960 *3 *2)) (-4 *3 (-1093))))) + (-12 (-5 *2 (-1274 (-1170) *3)) (-4 *3 (-1046)) (-5 *1 (-1281 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1274 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *1 (-1283 *3 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (|has| *1 (-6 -4412)) (-4 *1 (-1247 *3)) + (-4 *3 (-1209))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-222 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-254 *3)))) - ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *4 (-564))) (-5 *5 (-1 (-1150 *4))) (-4 *4 (-363)) + (-4 *4 (-1046)) (-5 *2 (-1150 *4)) (-5 *1 (-1154 *4))))) (((*1 *1 *2 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-788)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-640 (-917))) (-5 *1 (-152 *4 *2 *5)) (-14 *4 (-917)) - (-4 *2 (-363)) (-14 *5 (-989 *4 *2)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-709 *5 *6 *7)) (-4 *5 (-846)) - (-4 *6 (-238 (-1708 *4) (-767))) - (-14 *7 - (-1 (-112) (-2 (|:| -3491 *5) (|:| -2631 *6)) - (-2 (|:| -3491 *5) (|:| -2631 *6)))) - (-14 *4 (-640 (-1169))) (-4 *2 (-172)) - (-5 *1 (-461 *4 *2 *5 *6 *7 *8)) (-4 *8 (-945 *2 *6 (-860 *4))))) - ((*1 *1 *2 *3) - (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-846)))) + (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-564))))) + (-4 *2 (-13 (-847) (-21)))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1152)) (-5 *1 (-305))))) +(((*1 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1209)) (-5 *1 (-182 *3 *2)) (-4 *2 (-670 *3))))) +(((*1 *2 *2 *3 *4) + (-12 (-5 *2 (-641 *8)) (-5 *3 (-1 (-112) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1060 *5 *6 *7)) (-4 *5 (-556)) + (-4 *6 (-790)) (-4 *7 (-847)) (-5 *1 (-974 *5 *6 *7 *8))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-1046)) (-4 *2 (-683 *4 *5 *6)) + (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1235 *4)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-536))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-244 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-225) (-225) (-225) (-225))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225) (-225))) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-263))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-779 *2)) (-4 *2 (-1046)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1282 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-843))))) +(((*1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-723) (-25)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1032)) (-5 *1 (-305)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-1032))) (-5 *2 (-1032)) (-5 *1 (-305)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-647 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-647 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *1) (-5 *1 (-1058))) + ((*1 *2 *3) + (-12 (-5 *3 (-1150 (-1150 *4))) (-5 *2 (-1150 *4)) (-5 *1 (-1147 *4)) + (-4 *4 (-1209)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *1 *2) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) + (-4 *2 (-363)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-225)))) + ((*1 *1 *1 *1) + (-4030 (-12 (-5 *1 (-294 *2)) (-4 *2 (-363)) (-4 *2 (-1209))) + (-12 (-5 *1 (-294 *2)) (-4 *2 (-473)) (-4 *2 (-1209))))) + ((*1 *1 *1 *1) (-4 *1 (-363))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-379)))) + ((*1 *1 *2 *2) + (-12 (-5 *2 (-1119 *3 (-610 *1))) (-4 *3 (-556)) (-4 *3 (-847)) + (-4 *1 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-473))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1259 *3)) (-4 *3 (-349)) (-5 *1 (-528 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) - (-4 *4 (-1233 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) + (-12 (-4 *4 (-172)) (-5 *1 (-619 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-723) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-172)) (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-723) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-172)) (-4 *2 (-363)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-731 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-722)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) - (-4 *4 (-1045)) (-4 *5 (-846)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) - (-4 *2 (-846)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) - (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *2 (-846)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 *5)) (-4 *1 (-969 *4 *5 *6)) - (-4 *4 (-1045)) (-4 *5 (-788)) (-4 *6 (-846)))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-969 *4 *3 *2)) (-4 *4 (-1045)) (-4 *3 (-788)) - (-4 *2 (-846))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-379)) (-5 *1 (-1057))))) -(((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-684 *3)) (-4 *3 (-1045)) (-5 *1 (-685 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-373 *3)) (-4 *3 (-1208)) (-4 *3 (-846)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1208)) - (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1113)) (-5 *2 (-1262)) (-5 *1 (-827))))) + (-12 (-4 *4 (-172)) (-5 *1 (-658 *2 *4 *3)) (-4 *2 (-714 *4)) + (-4 *3 (|SubsetCategory| (-723) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *4 (-172)) (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)) + (-4 *2 (|SubsetCategory| (-723) *4)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *1) + (|partial| -12 (-5 *1 (-863 *2 *3 *4 *5)) (-4 *2 (-363)) + (-4 *2 (-1046)) (-14 *3 (-641 (-1170))) (-14 *4 (-641 (-768))) + (-14 *5 (-768)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)))) + ((*1 *1 *1 *2) + (-12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-363)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1266 *2)) (-4 *2 (-363)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *2 (-363)) (-4 *2 (-1046)) (-4 *3 (-847)) + (-4 *4 (-790)) (-14 *6 (-641 *3)) + (-5 *1 (-1271 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-946 *2 *4 *3)) + (-14 *7 (-641 (-768))) (-14 *8 (-768)))) + ((*1 *1 *1 *2) + (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-363)) (-4 *2 (-1046)) + (-4 *3 (-843))))) +(((*1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) + (-12 (-5 *3 (-1152)) (-5 *5 (-685 (-225))) (-5 *6 (-685 (-564))) + (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-754))))) +(((*1 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-129))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-640 *3)) (-5 *1 (-957 *3)) (-4 *3 (-545))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-529)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-529))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-136 *5 *6 *7)) (-14 *5 (-563)) - (-14 *6 (-767)) (-4 *7 (-172)) (-4 *8 (-172)) - (-5 *2 (-136 *5 *6 *8)) (-5 *1 (-135 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *9)) (-4 *9 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) - (-4 *8 (-1045)) (-4 *2 (-945 *9 *7 *5)) - (-5 *1 (-724 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-789)) - (-4 *4 (-945 *8 *6 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-563)) (|has| *1 (-6 -4409)) (-4 *1 (-373 *3)) - (-4 *3 (-1208))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) + (-12 (-4 *4 (-363)) (-5 *2 (-641 *3)) (-5 *1 (-942 *4 *3)) + (-4 *3 (-1235 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-561))))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-817)) (-5 *4 (-52)) (-5 *2 (-1262)) (-5 *1 (-827))))) -(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 *5)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) - (-14 *4 (-767)) (-4 *5 (-172))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 - *4 *6 *4) - (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) (-5 *6 (-670 (-225))) - (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-746))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-373 *2)) (-4 *2 (-1208)) - (-4 *2 (-846)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3 *3)) (|has| *1 (-6 -4409)) - (-4 *1 (-373 *3)) (-4 *3 (-1208))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-1194 *3))) (-5 *1 (-1194 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3) (-12 (-5 *3 (-817)) (-5 *2 (-52)) (-5 *1 (-827))))) -(((*1 *2 *2) (-12 (-5 *1 (-957 *2)) (-4 *2 (-545))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-529))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) - (-5 *1 (-984 *3 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-134))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-214 *2)) + (-4 *2 + (-13 (-847) + (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) + (-15 -2096 ((-1264) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1209)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1) (-5 *1 (-859))) ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-640 *7)) (-4 *7 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) - (-5 *1 (-1100 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *5 (-1151)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-82 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-83 BNDY)))) (-5 *2 (-1031)) - (-5 *1 (-746))))) -(((*1 *2) (-12 (-4 *3 (-172)) (-5 *2 (-1257 *1)) (-4 *1 (-367 *3))))) -(((*1 *2) (-12 (-5 *2 (-1126 (-225))) (-5 *1 (-1191))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-312)) (-5 *1 (-825))))) -(((*1 *1) (-4 *1 (-349))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 *5)) (-4 *5 (-430 *4)) - (-4 *4 (-13 (-555) (-846) (-147))) - (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-640 (-1165 *5))) - (|:| |prim| (-1165 *5)))) - (-5 *1 (-432 *4 *5)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-555) (-846) (-147))) - (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1165 *3)) - (|:| |pol2| (-1165 *3)) (|:| |prim| (-1165 *3)))) - (-5 *1 (-432 *4 *3)) (-4 *3 (-27)) (-4 *3 (-430 *4)))) - ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-948 *5)) (-5 *4 (-1169)) (-4 *5 (-13 (-363) (-147))) - (-5 *2 - (-2 (|:| |coef1| (-563)) (|:| |coef2| (-563)) - (|:| |prim| (-1165 *5)))) - (-5 *1 (-956 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) - (-4 *5 (-13 (-363) (-147))) - (-5 *2 - (-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 *5))) - (|:| |prim| (-1165 *5)))) - (-5 *1 (-956 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 (-948 *6))) (-5 *4 (-640 (-1169))) (-5 *5 (-1169)) - (-4 *6 (-13 (-363) (-147))) - (-5 *2 - (-2 (|:| -2765 (-640 (-563))) (|:| |poly| (-640 (-1165 *6))) - (|:| |prim| (-1165 *6)))) - (-5 *1 (-956 *6))))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-21))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-917)) (-4 *4 (-368)) (-4 *4 (-363)) (-5 *2 (-1165 *1)) - (-4 *1 (-329 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1165 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-370 *3 *2)) (-4 *3 (-172)) (-4 *3 (-363)) - (-4 *2 (-1233 *3)))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-685 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-819)) (-5 *1 (-818))))) +(((*1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-330))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) +(((*1 *1 *2) + (-12 (-5 *2 (-1 (-940 (-225)) (-940 (-225)))) (-5 *1 (-263)))) ((*1 *2 *3) - (-12 (-5 *3 (-1257 *4)) (-4 *4 (-349)) (-5 *2 (-1165 *4)) - (-5 *1 (-528 *4))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) - (-5 *2 (-1257 (-407 (-563)))) (-5 *1 (-1284 *4))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 *4)))) - (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1093)) (-4 *4 (-1093)) (-4 *5 (-1093)) (-4 *6 (-1093)) - (-4 *7 (-1093)) (-5 *2 (-640 *1)) (-4 *1 (-1096 *3 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-984 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1259 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112)) - (-5 *1 (-1100 *4 *5 *6 *7 *3)) (-4 *3 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) (-5 *4 (-225)) - (-5 *2 (-1031)) (-5 *1 (-746))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-1165 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) - (-5 *1 (-32 *4 *2))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) -(((*1 *1 *2 *2) - (-12 - (-5 *2 - (-3 (|:| I (-316 (-563))) (|:| -2036 (-316 (-379))) - (|:| CF (-316 (-169 (-379)))) (|:| |switch| (-1168)))) - (-5 *1 (-1168))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1151)) (-5 *2 (-563)) (-5 *1 (-1190 *4)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) - (-5 *2 (-1257 (-563))) (-5 *1 (-1284 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) - ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-4 *1 (-1091 *3)))) - ((*1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) -(((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) - (-5 *1 (-984 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6)))) - ((*1 *2) - (-12 (-4 *3 (-452)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-1262)) - (-5 *1 (-1100 *3 *4 *5 *6 *7)) (-4 *7 (-1065 *3 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-75 FCN JACOBF JACEPS)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-76 G JACOBG JACGEP)))) - (-5 *4 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) -(((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-948 (-563))) (-5 *3 (-1169)) - (-5 *4 (-1087 (-407 (-563)))) (-5 *1 (-30))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-112)) (-5 *1 (-825))))) -(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-157)))) - ((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) - (-5 *1 (-584 *3)) (-4 *3 (-363))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 *4)) (-4 *4 (-636 (-563))) (-5 *2 (-112)) - (-5 *1 (-1284 *4))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) - (-5 *1 (-984 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1151)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-1262)) - (-5 *1 (-1100 *4 *5 *6 *7 *8)) (-4 *8 (-1065 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) - (-5 *2 (-1031)) (-5 *1 (-745)))) - ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-61 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-87 BDYVAL)))) - (-5 *8 (-388)) (-5 *2 (-1031)) (-5 *1 (-745))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-844)) (-5 *2 (-563)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1062 *4 *3)) (-4 *4 (-13 (-844) (-363))) - (-4 *3 (-1233 *4)) (-5 *2 (-563)))) - ((*1 *2 *3) - (|partial| -12 - (-4 *4 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) - (-5 *2 (-563)) (-5 *1 (-1109 *4 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *4))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *6))) - (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) - (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-1151)) - (-4 *6 (-13 (-555) (-846) (-1034 *2) (-636 *2) (-452))) - (-5 *2 (-563)) (-5 *1 (-1109 *6 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *6))))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-1259 *4)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-1259 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-452)) (-5 *2 (-563)) - (-5 *1 (-1110 *4)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-839 (-407 (-948 *6)))) - (-5 *3 (-407 (-948 *6))) (-4 *6 (-452)) (-5 *2 (-563)) - (-5 *1 (-1110 *6)))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-407 (-948 *6))) (-5 *4 (-1169)) - (-5 *5 (-1151)) (-4 *6 (-452)) (-5 *2 (-563)) (-5 *1 (-1110 *6)))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) + (-4 *5 (-1235 *4)) (-5 *2 (-685 *4)))) + ((*1 *2 *1) + (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-1259 *3)))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-563)) (-5 *1 (-1190 *3)) (-4 *3 (-1045))))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) + (-5 *2 (-685 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1259 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-641 (-685 *5))) (-5 *3 (-685 *5)) (-4 *5 (-363)) + (-5 *2 (-1259 *5)) (-5 *1 (-1080 *5))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) + (-5 *1 (-985 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 *7)) (-4 *7 (-1066 *3 *4 *5 *6)) (-4 *3 (-452)) + (-4 *4 (-790)) (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) + (-5 *1 (-1101 *3 *4 *5 *6 *7))))) +(((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-157))) + ((*1 *1 *1 *1) + (-12 (-5 *1 (-214 *2)) + (-4 *2 + (-13 (-847) + (-10 -8 (-15 -4382 ((-1152) $ (-1170))) (-15 -3589 ((-1264) $)) + (-15 -2096 ((-1264) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-25)) (-4 *2 (-1209)))) + ((*1 *1 *2 *1) + (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-131)))) + ((*1 *1 *2 *1) + (-12 (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *2)) + (-4 *2 (-1235 *3)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-470 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) + ((*1 *1 *1 *1) + (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) + ((*1 *1 *1 *1) (-5 *1 (-536))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-1094)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-940 (-225))) (-5 *1 (-1205)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1257 *2)) (-4 *2 (-1209)) (-4 *2 (-25))))) +(((*1 *2 *3) (-12 (-5 *3 (-225)) (-5 *2 (-316 (-379))) (-5 *1 (-305))))) (((*1 *2 *3) - (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825)) (-5 *3 (-1151))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-584 *3)) (-4 *3 (-363))))) -(((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) - (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) - ((*1 *2 *3) - (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) - (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 *7))) - (-5 *1 (-738 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) + (-12 (-5 *3 (-481 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) + (-5 *2 (-949 *5)) (-5 *1 (-941 *4 *5))))) +(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) ((*1 *2 *1) - (-12 (-4 *3 (-452)) (-4 *3 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-418 *1)) (-4 *1 (-945 *3 *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-452)) (-5 *2 (-418 *3)) - (-5 *1 (-975 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) - (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) - (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212)))) - ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-418 *3)) (-5 *1 (-1236 *4 *3)) - (-4 *3 (-13 (-1233 *4) (-555) (-10 -8 (-15 -1647 ($ $ $))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-14 *5 (-640 (-1169))) - (-5 *2 - (-640 (-1139 *4 (-531 (-860 *6)) (-860 *6) (-776 *4 (-860 *6))))) - (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169)))))) + (|partial| -12 + (-5 *2 (-2 (|:| |num| (-889 *3)) (|:| |den| (-889 *3)))) + (-5 *1 (-889 *3)) (-4 *3 (-1094))))) (((*1 *1 *2) - (-12 (-5 *2 (-1257 *4)) (-4 *4 (-1208)) (-4 *1 (-238 *3 *4))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) - (-5 *2 (-1031)) (-5 *1 (-745))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-536))))) -(((*1 *2 *1) (-12 (-4 *1 (-367 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1189))))) -(((*1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-825))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-581))))) + (-12 (-5 *2 (-641 (-641 *3))) (-4 *3 (-1094)) (-5 *1 (-902 *3))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 (-685 *3))) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-685 *4)) (-5 *3 (-918)) (-4 *4 (-1046)) + (-5 *1 (-1025 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *2 (-641 (-685 *4))) (-5 *3 (-918)) (-4 *4 (-1046)) + (-5 *1 (-1025 *4))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-1078 *3)) (-4 *3 (-132))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *4)) (-4 *4 (-363)) (-4 *2 (-1235 *4)) + (-5 *1 (-919 *4 *2))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-955 (-1166 *4))) (-5 *1 (-357 *4)) + (-5 *3 (-1166 *4))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-768)) (-4 *5 (-1046)) (-4 *2 (-1235 *5)) + (-5 *1 (-1253 *5 *2 *6 *3)) (-4 *6 (-652 *2)) (-4 *3 (-1250 *5))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1032)) + (-5 *1 (-743))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) - (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-640 (-767))))) - ((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) - (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-640 (-767)))))) + (-12 (-4 *1 (-857)) (-5 *2 (-687 (-129))) (-5 *3 (-129))))) +(((*1 *1) (-5 *1 (-291)))) +(((*1 *2 *2) + (-12 (-4 *3 (-452)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-449 *3 *4 *5 *2)) (-4 *2 (-946 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) - (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-948 *4))) - (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) - (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) + (-4 *4 (-13 (-847) (-556)))))) +(((*1 *2 *3 *3) + (-12 (-4 *3 (-307)) (-4 *3 (-172)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) + (-5 *1 (-684 *3 *4 *5 *6)) (-4 *6 (-683 *3 *4 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-696 *3)) + (-4 *3 (-307))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) + (-5 *4 (-685 (-1166 *8))) (-4 *5 (-1046)) (-4 *8 (-1046)) + (-4 *6 (-1235 *5)) (-5 *2 (-685 *6)) (-5 *1 (-501 *5 *6 *7 *8)) + (-4 *7 (-1235 *6))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1283 *4 *2)) (-4 *1 (-374 *4 *2)) (-4 *4 (-847)) + (-4 *2 (-172)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-847)) (-4 *2 (-1046)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-816 *4)) (-4 *1 (-1276 *4 *2)) (-4 *4 (-847)) + (-4 *2 (-1046)))) + ((*1 *2 *1 *3) + (-12 (-4 *2 (-1046)) (-5 *1 (-1282 *2 *3)) (-4 *3 (-843))))) +(((*1 *2 *3) (-12 (-5 *3 (-918)) (-5 *2 (-901 (-564))) (-5 *1 (-914)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-676)))) - ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-966)))) - ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1067)))) - ((*1 *2 *1) (-12 (-5 *2 (-1174)) (-5 *1 (-1111))))) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-901 (-564))) (-5 *1 (-914))))) +(((*1 *2 *3 *4 *5 *6 *2 *7 *8) + (|partial| -12 (-5 *2 (-641 (-1166 *11))) (-5 *3 (-1166 *11)) + (-5 *4 (-641 *10)) (-5 *5 (-641 *8)) (-5 *6 (-641 (-768))) + (-5 *7 (-1259 (-641 (-1166 *8)))) (-4 *10 (-847)) + (-4 *8 (-307)) (-4 *11 (-946 *8 *9 *10)) (-4 *9 (-790)) + (-5 *1 (-704 *9 *10 *8 *11))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-744))))) +(((*1 *1 *1) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 (-859))) (-5 *1 (-859))))) +(((*1 *2) (-12 (-5 *2 (-1127 (-225))) (-5 *1 (-1192))))) +(((*1 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *2 (-1031)) - (-5 *1 (-745))))) -(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1189))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-578))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) + (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1046)) (-4 *4 (-1094)) + (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-1259 (-316 (-379)))) + (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) (((*1 *2 *1) - (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-846)) - (-4 *5 (-266 *4)) (-4 *6 (-789)) (-5 *2 (-112))))) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) + (-5 *2 (-2 (|:| |num| (-1259 *4)) (|:| |den| *4)))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-556) (-847) (-1035 (-564)))) + (-5 *1 (-188 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 (-169 *4)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3))))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-169 *4)) (-5 *1 (-181 *4 *3)) + (-4 *4 (-13 (-363) (-845))) (-4 *3 (-1235 *2))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-556)) + (-4 *7 (-946 *3 *5 *6)) + (-5 *2 (-2 (|:| -2515 (-768)) (|:| -1762 *8) (|:| |radicand| *8))) + (-5 *1 (-950 *5 *6 *3 *7 *8)) (-5 *4 (-768)) + (-4 *8 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *7)) (-15 -1625 (*7 $)) (-15 -1634 (*7 $)))))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-407 (-564))) + (-4 *4 (-13 (-556) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *4)))))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-640 (-1169))) - (-5 *2 (-640 (-640 (-379)))) (-5 *1 (-1019)) (-5 *5 (-379)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-14 *5 (-640 (-1169))) (-5 *2 (-640 (-640 (-1020 (-407 *4))))) - (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-640 (-1020 (-407 *5))))) (-5 *1 (-1283 *5 *6 *7)) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-948 *4))) - (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-640 (-1020 (-407 *4))))) (-5 *1 (-1283 *4 *5 *6)) - (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))) -(((*1 *2 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-5 *2 (-316 *4)) - (-5 *1 (-188 *4 *3)) (-4 *3 (-13 (-27) (-1193) (-430 (-169 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-1197 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-71 PEDERV)))) - (-5 *10 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-4 *1 (-151 *3)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-640 (-2 (|:| -2631 (-767)) (|:| -3219 *4) (|:| |num| *4)))) - (-4 *4 (-1233 *3)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-5 *3 (-640 (-948 (-563)))) (-5 *4 (-112)) (-5 *1 (-437)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-5 *3 (-640 (-1169))) (-5 *4 (-112)) (-5 *1 (-437)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1149 *3)) (-5 *1 (-598 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) - (-4 *4 (-172)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) - (-4 *4 (-172)))) - ((*1 *1 *2 *2) - (-12 (-5 *2 (-667 *3)) (-4 *3 (-846)) (-5 *1 (-659 *3 *4)) - (-4 *4 (-172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 (-640 *3)))) (-4 *3 (-1093)) - (-5 *1 (-670 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-709 *2 *3 *4)) (-4 *2 (-846)) (-4 *3 (-1093)) - (-14 *4 - (-1 (-112) (-2 (|:| -3491 *2) (|:| -2631 *3)) - (-2 (|:| -3491 *2) (|:| -2631 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-834)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-869 *2 *3)) (-4 *2 (-1208)) (-4 *3 (-1208)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-2 (|:| -3320 (-1169)) (|:| -3704 *4)))) - (-4 *4 (-1093)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1127 (-225))) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) + (-5 *1 (-259 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 *5)) (-4 *5 (-13 (-1093) (-34))) - (-5 *2 (-640 (-1133 *3 *5))) (-5 *1 (-1133 *3 *5)) - (-4 *3 (-13 (-1093) (-34))))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-2 (|:| |val| *4) (|:| -1926 *5)))) - (-4 *4 (-13 (-1093) (-34))) (-4 *5 (-13 (-1093) (-34))) - (-5 *2 (-640 (-1133 *4 *5))) (-5 *1 (-1133 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1926 *4))) - (-4 *3 (-13 (-1093) (-34))) (-4 *4 (-13 (-1093) (-34))) - (-5 *1 (-1133 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-5 *1 (-1133 *2 *3)) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34))))) - ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-640 *3)) (-4 *3 (-13 (-1093) (-34))) - (-5 *1 (-1134 *2 *3)) (-4 *2 (-13 (-1093) (-34))))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-640 (-1133 *2 *3))) (-4 *2 (-13 (-1093) (-34))) - (-4 *3 (-13 (-1093) (-34))) (-5 *1 (-1134 *2 *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-640 (-1134 *2 *3))) (-5 *1 (-1134 *2 *3)) - (-4 *2 (-13 (-1093) (-34))) (-4 *3 (-13 (-1093) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) - (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *1 (-1158 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-825))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-213 4 (-129))) (-5 *1 (-578))))) -(((*1 *1 *1) - (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) - (-4 *4 (-266 *3)) (-4 *5 (-789))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1042 *4 *5)) (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-14 *5 (-640 (-1169))) - (-5 *2 - (-640 (-2 (|:| -2303 (-1165 *4)) (|:| -1818 (-640 (-948 *4)))))) - (-5 *1 (-1283 *4 *5 *6)) (-14 *6 (-640 (-1169))))) - ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 - (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) - (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1127 (-225))) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) + (-5 *1 (-259 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) + (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1127 (-225))) + (-5 *1 (-259 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-835))) (-5 *1 (-140))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-267))))) +(((*1 *2 *3) + (|partial| -12 (-4 *2 (-1094)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1094))))) +(((*1 *2 *2) + (|partial| -12 (-5 *2 (-1166 *3)) (-4 *3 (-349)) (-5 *1 (-357 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-641 (-862)))))) +(((*1 *2 *3 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) + (-12 (-5 *3 (-1 (-379) (-379))) (-5 *4 (-379)) (-5 *2 - (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) - (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) + (-2 (|:| -3426 *4) (|:| -1912 *4) (|:| |totalpts| (-564)) + (|:| |success| (-112)))) + (-5 *1 (-786)) (-5 *5 (-564))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1 (-225) (-225))) (-5 *1 (-318)) (-5 *3 (-225))))) +(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-749))))) +(((*1 *2 *2) + (-12 (-5 *2 (-940 *3)) (-4 *3 (-13 (-363) (-1194) (-999))) + (-5 *1 (-176 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-923))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-112)) (-5 *6 (-685 (-225))) + (-5 *4 (-225)) (-5 *2 (-1032)) (-5 *1 (-752))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-678 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1114)) (-5 *2 (-112)) (-5 *1 (-818))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1) (-5 *1 (-1079)))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-847)) (-5 *2 (-112)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-900 *3)) (-4 *3 (-1094)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-985 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)) + (-5 *1 (-1101 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-949 (-169 (-564)))))) + (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-845))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 - (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) - (-5 *1 (-1283 *5 *6 *7)) (-5 *3 (-640 (-948 *5))) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 - (-640 (-2 (|:| -2303 (-1165 *4)) (|:| -1818 (-640 (-948 *4)))))) - (-5 *1 (-1283 *4 *5 *6)) (-5 *3 (-640 (-948 *4))) - (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))) -(((*1 *1 *1) - (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-640 (-1169))) - (-14 *3 (-640 (-1169))) (-4 *4 (-387)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) - ((*1 *1 *1) (-4 *1 (-998))) - ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-1008)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 (-563))) (-4 *1 (-1008)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1008)) (-5 *2 (-917)))) - ((*1 *1 *1) (-4 *1 (-1008)))) + (-12 (-5 *3 (-641 (-294 (-407 (-949 (-169 (-564))))))) + (-5 *2 (-641 (-641 (-294 (-949 (-169 *4)))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-845))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-407 (-949 (-169 (-564))))) + (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-845))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-294 (-407 (-949 (-169 (-564)))))) + (-5 *2 (-641 (-294 (-949 (-169 *4))))) (-5 *1 (-378 *4)) + (-4 *4 (-13 (-363) (-845)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-563)) (-5 *5 (-1151)) (-5 *6 (-684 (-225))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *8 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) - (-5 *9 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-14 *6 (-1257 (-684 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-917)) (-14 *5 (-640 (-1169))))) - ((*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-52)) (-5 *1 (-51 *3)) (-4 *3 (-1208)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074 'JINT 'X 'ELAM) (-2074) (-694)))) - (-5 *1 (-61 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074) (-2074 'XC) (-694)))) - (-5 *1 (-63 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2074 'X) (-2074) (-694))) (-5 *1 (-64 *3)) - (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2074) (-2074 'XC) (-694))) (-5 *1 (-66 *3)) - (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074 'X) (-2074 '-4367) (-694)))) - (-5 *1 (-71 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074) (-2074 'X) (-694)))) - (-5 *1 (-74 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074 'X 'EPS) (-2074 '-4367) (-694)))) - (-5 *1 (-75 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) - (-14 *5 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074 'EPS) (-2074 'YA 'YB) (-694)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1169)) (-14 *4 (-1169)) - (-14 *5 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2074) (-2074 'X) (-694))) (-5 *1 (-77 *3)) - (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2074) (-2074 'X) (-694))) (-5 *1 (-78 *3)) - (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074) (-2074 'XC) (-694)))) - (-5 *1 (-79 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074) (-2074 'X) (-694)))) - (-5 *1 (-80 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074 'X '-4367) (-2074) (-694)))) - (-5 *1 (-82 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-684 (-339 (-2074 'X '-4367) (-2074) (-694)))) - (-5 *1 (-83 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-684 (-339 (-2074 'X) (-2074) (-694)))) (-5 *1 (-84 *3)) - (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074 'X) (-2074) (-694)))) - (-5 *1 (-85 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-339 (-2074 'X) (-2074 '-4367) (-694)))) - (-5 *1 (-86 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-684 (-339 (-2074 'XL 'XR 'ELAM) (-2074) (-694)))) - (-5 *1 (-87 *3)) (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-339 (-2074 'X) (-2074 '-4367) (-694))) (-5 *1 (-89 *3)) - (-14 *3 (-1169)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-136 *3 *4 *5))) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-563)) (-14 *4 (-767)) (-4 *5 (-172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-563)) (-14 *4 (-767)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1135 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) - (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) - ((*1 *1 *2) - (-12 (-5 *2 (-240 *4 *5)) (-14 *4 (-767)) (-4 *5 (-172)) - (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1257 (-684 *4))) (-4 *4 (-172)) - (-5 *2 (-1257 (-684 (-407 (-948 *4))))) (-5 *1 (-189 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1085 (-316 *4))) - (-4 *4 (-13 (-846) (-555) (-611 (-379)))) (-5 *2 (-1085 (-379))) - (-5 *1 (-258 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-275)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1233 *3)) (-5 *1 (-289 *3 *2 *4 *5 *6 *7)) - (-4 *3 (-172)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) - (-14 *6 (-1 (-3 *4 "failed") *4 *4)) - (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1242 *4 *5 *6)) (-4 *4 (-13 (-27) (-1193) (-430 *3))) - (-14 *5 (-1169)) (-14 *6 *4) - (-4 *3 (-13 (-846) (-1034 (-563)) (-636 (-563)) (-452))) - (-5 *1 (-313 *3 *4 *5 *6)))) - ((*1 *2 *1) - (-12 (-5 *2 (-316 *5)) (-5 *1 (-339 *3 *4 *5)) - (-14 *3 (-640 (-1169))) (-14 *4 (-640 (-1169))) (-4 *5 (-387)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *3 *4 *2)) - (-4 *3 (-329 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *2 (-329 *4)) (-5 *1 (-347 *2 *4 *3)) - (-4 *3 (-329 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) - (-5 *2 (-1281 *3 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) - (-5 *2 (-1272 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) - (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-383)))) - ((*1 *1 *2) (-12 (-5 *2 (-684 (-694))) (-4 *1 (-383)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) - (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-384)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-384)))) - ((*1 *2 *3) (-12 (-5 *2 (-394)) (-5 *1 (-393 *3)) (-4 *3 (-1093)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) - (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-396)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-169 (-379))))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-563)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-169 (-379)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-379))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-563))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-689)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-694)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-294 (-316 (-696)))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-689))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-694))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-316 (-696))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) - (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) - (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-330))) (-5 *1 (-398 *3 *4 *5 *6)) - (-14 *3 (-1169)) (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-330)) (-5 *1 (-398 *3 *4 *5 *6)) (-14 *3 (-1169)) - (-14 *4 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-14 *5 (-640 (-1169))) (-14 *6 (-1173)))) - ((*1 *1 *2) - (-12 (-5 *2 (-331 *4)) (-4 *4 (-13 (-846) (-21))) - (-5 *1 (-427 *3 *4)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))))) - ((*1 *1 *2) - (-12 (-5 *1 (-427 *2 *3)) (-4 *2 (-13 (-172) (-38 (-407 (-563))))) - (-4 *3 (-13 (-846) (-21))))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 (-948 (-407 *3)))) (-4 *3 (-555)) (-4 *3 (-846)) - (-4 *1 (-430 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-948 (-407 *3))) (-4 *3 (-555)) (-4 *3 (-846)) - (-4 *1 (-430 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 *3)) (-4 *3 (-555)) (-4 *3 (-846)) - (-4 *1 (-430 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1118 *3 (-609 *1))) (-4 *3 (-1045)) (-4 *3 (-846)) - (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-434)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-434)))) - ((*1 *1 *2) (-12 (-5 *2 (-434)) (-5 *1 (-437)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) - (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-440)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 (-694))) (-4 *1 (-440)))) - ((*1 *1 *2) - (-12 - (-5 *2 (-2 (|:| |localSymbols| (-1173)) (|:| -1439 (-640 (-330))))) - (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-330)) (-4 *1 (-441)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-330))) (-4 *1 (-441)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 (-407 (-948 *3)))) (-4 *3 (-172)) - (-14 *6 (-1257 (-684 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-14 *4 (-917)) (-14 *5 (-640 (-1169))))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-640 (-939 (-225))))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-468)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1242 *3 *4 *5)) (-4 *3 (-1045)) (-14 *4 (-1169)) - (-14 *5 *3) (-5 *1 (-474 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1118 (-563) (-609 (-495)))) (-5 *1 (-495)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-502)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-945 *3 *4 *5)) (-4 *3 (-363)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-524)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-603)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-604 *3 *2)) (-4 *2 (-740 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-610 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2) (-12 (-4 *1 (-613 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1277 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) - (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) - (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) - ((*1 *1 *2) - (-12 (-4 *3 (-172)) (-5 *1 (-632 *3 *2)) (-4 *2 (-740 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-672 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) - (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-5 *1 (-670 *3)) - (-4 *3 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-954 (-954 (-954 *3)))) (-4 *3 (-1093)) - (-5 *1 (-670 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) - ((*1 *1 *2) (-12 (-5 *2 (-1111)) (-5 *1 (-676)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-677 *3)) (-4 *3 (-1093)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *2)) (-4 *4 (-373 *3)) - (-4 *2 (-373 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-696))) (-5 *1 (-689)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-694))) (-5 *1 (-689)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-563))) (-5 *1 (-689)))) - ((*1 *1 *2) (-12 (-5 *2 (-169 (-379))) (-5 *1 (-689)))) - ((*1 *1 *2) (-12 (-5 *2 (-696)) (-5 *1 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-379)) (-5 *1 (-694)))) - ((*1 *2 *3) - (-12 (-5 *3 (-316 (-563))) (-5 *2 (-316 (-696))) (-5 *1 (-696)))) - ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1151)) (-5 *1 (-706)))) - ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-707 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-172)) (-5 *1 (-711 *2 *3 *4 *5 *6)) (-4 *3 (-23)) - (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-2 (|:| -2765 *3) (|:| -1576 *4)))) - (-4 *3 (-1045)) (-4 *4 (-722)) (-5 *1 (-731 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-759)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |nia| - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| |mdnia| - (-2 (|:| |fn| (-316 (-225))) - (|:| -2244 (-640 (-1087 (-839 (-225))))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))))) - (-5 *1 (-765)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-316 (-225))) - (|:| -2244 (-640 (-1087 (-839 (-225))))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *1 (-765)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (-5 *1 (-765)))) - ((*1 *2 *3) (-12 (-5 *2 (-770)) (-5 *1 (-769 *3)) (-4 *3 (-1208)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (-5 *1 (-804)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-820)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-3 - (|:| |noa| - (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) - (|:| |lb| (-640 (-839 (-225)))) - (|:| |cf| (-640 (-316 (-225)))) - (|:| |ub| (-640 (-839 (-225)))))) - (|:| |lsa| - (-2 (|:| |lfn| (-640 (-316 (-225)))) - (|:| -2956 (-640 (-225))))))) - (-5 *1 (-837)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |lfn| (-640 (-316 (-225)))) (|:| -2956 (-640 (-225))))) - (-5 *1 (-837)))) - ((*1 *1 *2) - (-12 - (-5 *2 - (-2 (|:| |fn| (-316 (-225))) (|:| -2956 (-640 (-225))) - (|:| |lb| (-640 (-839 (-225)))) (|:| |cf| (-640 (-316 (-225)))) - (|:| |ub| (-640 (-839 (-225)))))) - (-5 *1 (-837)))) - ((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-854)))) - ((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870)))) - ((*1 *2 *3) - (-12 (-5 *3 (-948 (-48))) (-5 *2 (-316 (-563))) (-5 *1 (-871)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-948 (-48)))) (-5 *2 (-316 (-563))) - (-5 *1 (-871)))) - ((*1 *1 *2) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-815 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) - ((*1 *1 *2) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-222 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1209)) (-4 *1 (-254 *3)))) + ((*1 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-112))))) +(((*1 *2 *1 *2) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 (-1 *6 (-641 *6)))) + (-4 *5 (-38 (-407 (-564)))) (-4 *6 (-1250 *5)) (-5 *2 (-641 *6)) + (-5 *1 (-1252 *5 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3))))) +(((*1 *2 *3) (-12 - (-5 *2 - (-2 (|:| |pde| (-640 (-316 (-225)))) + (-5 *3 + (-2 (|:| |pde| (-641 (-316 (-225)))) (|:| |constraints| - (-640 + (-641 (-2 (|:| |start| (-225)) (|:| |finish| (-225)) - (|:| |grid| (-767)) (|:| |boundaryType| (-563)) - (|:| |dStart| (-684 (-225))) (|:| |dFinish| (-684 (-225)))))) - (|:| |f| (-640 (-640 (-316 (-225))))) (|:| |st| (-1151)) + (|:| |grid| (-768)) (|:| |boundaryType| (-564)) + (|:| |dStart| (-685 (-225))) (|:| |dFinish| (-685 (-225)))))) + (|:| |f| (-641 (-641 (-316 (-225))))) (|:| |st| (-1152)) (|:| |tol| (-225)))) - (-5 *1 (-894)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-901 *3))) (-4 *3 (-1093)) (-5 *1 (-900 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-901 *3))) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-901 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-407 (-418 *3))) (-4 *3 (-307)) (-5 *1 (-910 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-407 *3)) (-5 *1 (-910 *3)) (-4 *3 (-307)))) - ((*1 *2 *3) - (-12 (-5 *3 (-477)) (-5 *2 (-316 *4)) (-5 *1 (-915 *4)) - (-4 *4 (-13 (-846) (-555))))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-962 *3)) (-4 *3 (-963)))) - ((*1 *1 *2) (-12 (-5 *1 (-962 *2)) (-4 *2 (-963)))) - ((*1 *2 *3) (-12 (-5 *2 (-1262)) (-5 *1 (-1029 *3)) (-4 *3 (-1208)))) - ((*1 *2 *3) (-12 (-5 *3 (-312)) (-5 *1 (-1029 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *2 (-945 *3 *4 *5)) - (-14 *6 (-640 *2)))) - ((*1 *2 *3) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-1039 *3)) (-4 *3 (-555)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1045)) (-4 *4 (-846)) (-5 *1 (-1119 *3 *4 *2)) - (-4 *2 (-945 *3 (-531 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1045)) (-4 *2 (-846)) (-5 *1 (-1119 *3 *2 *4)) - (-4 *4 (-945 *3 (-531 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) (-5 *2 (-858)))) - ((*1 *1 *2) (-12 (-5 *2 (-144)) (-4 *1 (-1137)))) + (-5 *2 (-112)) (-5 *1 (-210))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-949 *4)) (-4 *4 (-1046)) (-4 *4 (-612 *2)) + (-5 *2 (-379)) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-949 *5)) (-5 *4 (-918)) (-4 *5 (-1046)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) - (-14 *5 *3) (-5 *1 (-1167 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1168)))) - ((*1 *2 *1) (-12 (-5 *2 (-1181 (-1169) (-437))) (-5 *1 (-1173)))) - ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-1174)))) - ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1180 *3)) (-4 *3 (-1093)))) - ((*1 *2 *3) (-12 (-5 *2 (-1188)) (-5 *1 (-1187 *3)) (-4 *3 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-948 *3)) (-4 *3 (-1045)) (-5 *1 (-1202 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1169)) (-5 *1 (-1202 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1087 *3)) (-4 *3 (-1208)) (-5 *1 (-1224 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1230 *4 *3)) (-4 *3 (-1045)) (-14 *4 (-1169)) - (-14 *5 *3) (-5 *1 (-1249 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-1253 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-858)) (-5 *1 (-1258)))) - ((*1 *2 *3) (-12 (-5 *3 (-468)) (-5 *2 (-1258)) (-5 *1 (-1261)))) - ((*1 *1 *2) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1281 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-172)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-172)))) - ((*1 *1 *2) - (-12 (-5 *2 (-659 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) - (-5 *1 (-1277 *3 *4))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-365 *2)) (-4 *2 (-1093)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1151)) (-5 *1 (-1189))))) -(((*1 *2 *3) (-12 (-5 *3 (-818)) (-5 *2 (-52)) (-5 *1 (-825))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(((*1 *1) (-5 *1 (-577)))) -(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-112)) - (-4 *5 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-1042 *5 *6))) (-5 *1 (-1283 *5 *6 *7)) - (-14 *6 (-640 (-1169))) (-14 *7 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-948 *4))) - (-4 *4 (-13 (-844) (-307) (-147) (-1018))) - (-5 *2 (-640 (-1042 *4 *5))) (-5 *1 (-1283 *4 *5 *6)) - (-14 *5 (-640 (-1169))) (-14 *6 (-640 (-1169)))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-48))) (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1233 (-48))))) + (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) + (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *5)))) ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1233 (-48))))) + (|partial| -12 (-5 *3 (-316 *4)) (-4 *4 (-556)) (-4 *4 (-847)) + (-4 *4 (-612 *2)) (-5 *2 (-379)) (-5 *1 (-782 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) - (-5 *2 (-418 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-945 (-48) *6 *5)))) + (|partial| -12 (-5 *3 (-316 *5)) (-5 *4 (-918)) (-4 *5 (-556)) + (-4 *5 (-847)) (-4 *5 (-612 *2)) (-5 *2 (-379)) + (-5 *1 (-782 *5))))) +(((*1 *1 *1 *2 *2) + (|partial| -12 (-5 *2 (-918)) (-5 *1 (-1095 *3 *4)) (-14 *3 *2) + (-14 *4 *2)))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-48))) (-4 *5 (-846)) (-4 *6 (-789)) - (-4 *7 (-945 (-48) *6 *5)) (-5 *2 (-418 (-1165 *7))) - (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1165 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-167 *4 *3)) - (-4 *3 (-1233 (-169 *4))))) + (-12 (-5 *3 (-1 (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1260)) (-5 *1 (-255)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) - ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-844))) (-5 *2 (-418 *3)) - (-5 *1 (-181 *4 *3)) (-4 *3 (-1233 (-169 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-5 *2 (-418 *3)) (-5 *1 (-216 *4 *3)) - (-4 *3 (-1233 *4)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) + (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1260)) (-5 *1 (-255)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1233 (-563))))) + (-12 (-5 *3 (-874 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1260)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-767))) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1233 (-563))))) + (-12 (-5 *3 (-876 (-1 (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-640 (-767))) (-5 *5 (-767)) (-5 *2 (-418 *3)) - (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) + (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-940 (-225)) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-767)) (-5 *2 (-418 *3)) (-5 *1 (-442 *3)) - (-4 *3 (-1233 (-563))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 (-169 (-563)))) (-5 *1 (-446)) - (-5 *3 (-169 (-563))))) - ((*1 *2 *3) - (-12 - (-4 *4 - (-13 (-846) - (-10 -8 (-15 -2802 ((-1169) $)) - (-15 -4040 ((-3 $ "failed") (-1169)))))) - (-4 *5 (-789)) (-4 *7 (-555)) (-5 *2 (-418 *3)) - (-5 *1 (-456 *4 *5 *6 *7 *3)) (-4 *6 (-555)) - (-4 *3 (-945 *7 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-307)) (-5 *2 (-418 (-1165 *4))) (-5 *1 (-458 *4)) - (-5 *3 (-1165 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 *6) *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) - (-4 *7 (-13 (-363) (-147) (-720 *5 *6))) (-5 *2 (-418 *3)) - (-5 *1 (-494 *5 *6 *7 *3)) (-4 *3 (-1233 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) - (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) - (-5 *2 (-418 *3)) (-5 *1 (-540 *5 *6 *7 *3)) - (-4 *3 (-945 *7 *6 *5)))) + (-12 (-5 *3 (-1 (-225) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-1 (-940 (-225)) (-225) (-225))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *5 (-641 (-263))) (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-879 (-1 (-225) (-225) (-225)))) (-5 *4 (-1088 (-379))) + (-5 *2 (-1261)) (-5 *1 (-255)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-294 *7)) (-5 *4 (-1170)) (-5 *5 (-641 (-263))) + (-4 *7 (-430 *6)) (-4 *6 (-13 (-556) (-847) (-1035 (-564)))) + (-5 *2 (-1260)) (-5 *1 (-256 *6 *7)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1260)) + (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-418 (-1165 *7)) (-1165 *7))) - (-4 *7 (-13 (-307) (-147))) (-4 *5 (-846)) (-4 *6 (-789)) - (-4 *8 (-945 *7 *6 *5)) (-5 *2 (-418 (-1165 *8))) - (-5 *1 (-540 *5 *6 *7 *8)) (-5 *3 (-1165 *8)))) - ((*1 *2 *3) (-12 (-5 *2 (-418 *3)) (-5 *1 (-557 *3)) (-4 *3 (-545)))) + (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1260)) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-874 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) + (-5 *1 (-259 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-640 *5) *6)) - (-4 *5 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *6 (-1233 *5)) (-5 *2 (-640 (-648 (-407 *6)))) - (-5 *1 (-652 *5 *6)) (-5 *3 (-648 (-407 *6))))) - ((*1 *2 *3) - (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-363) (-147) (-1034 (-563)) (-1034 (-407 (-563))))) - (-4 *5 (-1233 *4)) (-5 *2 (-640 (-648 (-407 *5)))) - (-5 *1 (-652 *4 *5)) (-5 *3 (-648 (-407 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-815 *4)) (-4 *4 (-846)) (-5 *2 (-640 (-667 *4))) - (-5 *1 (-667 *4)))) + (-12 (-5 *3 (-874 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1260)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-876 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) + (-5 *1 (-259 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-563)) (-5 *2 (-640 *3)) (-5 *1 (-691 *3)) - (-4 *3 (-1233 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) (-5 *2 (-418 *3)) - (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-945 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-349)) - (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) - (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) - ((*1 *2 *3) - (-12 (-4 *4 (-789)) - (-4 *5 - (-13 (-846) - (-10 -8 (-15 -2802 ((-1169) $)) - (-15 -4040 ((-3 $ "failed") (-1169)))))) - (-4 *6 (-307)) (-5 *2 (-418 *3)) (-5 *1 (-726 *4 *5 *6 *3)) - (-4 *3 (-945 (-948 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-789)) - (-4 *5 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) (-4 *6 (-555)) - (-5 *2 (-418 *3)) (-5 *1 (-728 *4 *5 *6 *3)) - (-4 *3 (-945 (-407 (-948 *6)) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-13 (-307) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-729 *4 *5 *6 *3)) - (-4 *3 (-945 (-407 *6) *4 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) - (-5 *2 (-418 *3)) (-5 *1 (-737 *4 *5 *6 *3)) - (-4 *3 (-945 *6 *5 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-846)) (-4 *5 (-789)) (-4 *6 (-13 (-307) (-147))) - (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-418 (-1165 *7))) - (-5 *1 (-737 *4 *5 *6 *7)) (-5 *3 (-1165 *7)))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1003 *3)) - (-4 *3 (-1233 (-407 (-563)))))) - ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1037 *3)) - (-4 *3 (-1233 (-407 (-948 (-563))))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1233 (-407 (-563)))) - (-4 *5 (-13 (-363) (-147) (-720 (-407 (-563)) *4))) - (-5 *2 (-418 *3)) (-5 *1 (-1072 *4 *5 *3)) (-4 *3 (-1233 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1233 (-407 (-948 (-563))))) - (-4 *5 (-13 (-363) (-147) (-720 (-407 (-948 (-563))) *4))) - (-5 *2 (-418 *3)) (-5 *1 (-1074 *4 *5 *3)) (-4 *3 (-1233 *5)))) + (-12 (-5 *3 (-876 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) (-5 *2 (-1261)) + (-5 *1 (-259 *3)) (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *4 (-1086 (-379))) (-5 *2 (-1261)) (-5 *1 (-259 *3)) + (-4 *3 (-13 (-612 (-536)) (-1094))))) + ((*1 *2 *3 *4 *4 *5) + (-12 (-5 *3 (-879 *6)) (-5 *4 (-1086 (-379))) (-5 *5 (-641 (-263))) + (-4 *6 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) + (-5 *1 (-259 *6)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-879 *5)) (-5 *4 (-1086 (-379))) + (-4 *5 (-13 (-612 (-536)) (-1094))) (-5 *2 (-1261)) + (-5 *1 (-259 *5)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1260)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1260)) + (-5 *1 (-260)))) ((*1 *2 *3) - (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-452)) - (-4 *7 (-945 *6 *4 *5)) (-5 *2 (-418 (-1165 (-407 *7)))) - (-5 *1 (-1164 *4 *5 *6 *7)) (-5 *3 (-1165 (-407 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-418 *1)) (-4 *1 (-1212)))) + (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *2 (-1260)) (-5 *1 (-260)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-641 (-263))) + (-5 *2 (-1260)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-641 (-225))) (-5 *2 (-1261)) (-5 *1 (-260)))) + ((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-641 (-225))) (-5 *4 (-641 (-263))) (-5 *2 (-1261)) + (-5 *1 (-260))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *4 (-1 *7 *7)) + (-5 *5 (-1 (-3 (-2 (|:| -2118 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-363)) (-4 *7 (-1235 *6)) + (-5 *2 + (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) + (-2 (|:| -2118 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) + (-5 *1 (-574 *6 *7)) (-5 *3 (-407 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-685 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *3) + (-12 (-5 *2 (-1172 (-407 (-564)))) (-5 *1 (-190)) (-5 *3 (-564))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-112)) (-5 *1 (-1023 *3)) (-4 *3 (-1209))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-257))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-363)) (-4 *3 (-1046)) + (-5 *1 (-1154 *3))))) +(((*1 *1 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1094)) + (-4 *4 (-1094)))) + ((*1 *1 *2) + (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-5 *1 (-316 *3)) (-4 *3 (-556)) (-4 *3 (-847))))) +(((*1 *1 *1) (-5 *1 (-48))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-59 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-58 *5 *2)))) + ((*1 *2 *3 *1 *2 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1094)) (|has| *1 (-6 -4411)) + (-4 *1 (-151 *2)) (-4 *2 (-1209)))) + ((*1 *2 *3 *1 *2) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) + (-4 *2 (-1209)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4411)) (-4 *1 (-151 *2)) + (-4 *2 (-1209)))) ((*1 *2 *3) - (-12 (-5 *2 (-418 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-89 G)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) (-5 *3 (-225)) - (-5 *2 (-1031)) (-5 *1 (-745))))) + (-12 (-4 *4 (-1046)) + (-5 *2 (-2 (|:| -4268 (-1166 *4)) (|:| |deg| (-918)))) + (-5 *1 (-221 *4 *5)) (-5 *3 (-1166 *4)) (-4 *5 (-13 (-556) (-847))))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-240 *5 *6)) (-14 *5 (-768)) + (-4 *6 (-1209)) (-4 *2 (-1209)) (-5 *1 (-239 *5 *6 *2)))) + ((*1 *1 *2 *3) + (-12 (-4 *4 (-172)) (-5 *1 (-289 *4 *2 *3 *5 *6 *7)) + (-4 *2 (-1235 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) + (-14 *6 (-1 (-3 *3 "failed") *3 *3)) + (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *1) (-12 (-5 *1 (-316 *2)) (-4 *2 (-556)) (-4 *2 (-847)))) + ((*1 *1 *1) + (-12 (-4 *1 (-335 *2 *3 *4 *5)) (-4 *2 (-363)) (-4 *3 (-1235 *2)) + (-4 *4 (-1235 (-407 *3))) (-4 *5 (-342 *2 *3 *4)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1209)) (-4 *2 (-1209)) + (-5 *1 (-371 *5 *4 *2 *6)) (-4 *4 (-373 *5)) (-4 *6 (-373 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1094)) (-4 *2 (-1094)) + (-5 *1 (-423 *5 *4 *2 *6)) (-4 *4 (-425 *5)) (-4 *6 (-425 *2)))) + ((*1 *1 *1) (-5 *1 (-495))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-641 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-639 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1046)) (-4 *2 (-1046)) + (-4 *6 (-373 *5)) (-4 *7 (-373 *5)) (-4 *8 (-373 *2)) + (-4 *9 (-373 *2)) (-5 *1 (-681 *5 *6 *7 *4 *2 *8 *9 *10)) + (-4 *4 (-683 *5 *6 *7)) (-4 *10 (-683 *2 *8 *9)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-708 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1046)) (-5 *1 (-709 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *1 *2 *3) + (-12 (-5 *1 (-712 *2 *3 *4 *5 *6)) (-4 *2 (-172)) (-4 *3 (-23)) + (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) + (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-363)) + (-4 *3 (-172)) (-4 *1 (-721 *3 *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-172)) (-4 *1 (-721 *3 *2)) (-4 *2 (-1235 *3)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-955 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-954 *5 *2)))) + ((*1 *1 *2) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-1031 *3 *4 *5 *2 *6)) (-4 *2 (-946 *3 *4 *5)) + (-14 *6 (-641 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1046)) (-4 *2 (-1046)) + (-14 *5 (-768)) (-14 *6 (-768)) (-4 *8 (-238 *6 *7)) + (-4 *9 (-238 *5 *7)) (-4 *10 (-238 *6 *2)) (-4 *11 (-238 *5 *2)) + (-5 *1 (-1051 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1049 *5 *6 *7 *8 *9)) (-4 *12 (-1049 *5 *6 *2 *10 *11)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1150 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-1148 *5 *2)))) + ((*1 *2 *2 *1 *3 *4) + (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-112) *2 *2)) + (-4 *1 (-1202 *5 *6 *7 *2)) (-4 *5 (-556)) (-4 *6 (-790)) + (-4 *7 (-847)) (-4 *2 (-1060 *5 *6 *7)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1259 *5)) (-4 *5 (-1209)) + (-4 *2 (-1209)) (-5 *1 (-1258 *5 *2))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) + (-12 (-5 *4 (-685 (-225))) (-5 *5 (-685 (-564))) (-5 *6 (-225)) + (-5 *3 (-564)) (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-114)) (-5 *3 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-114)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-610 *3)) (-4 *3 (-847)))) + ((*1 *1 *2 *3 *4) + (-12 (-5 *2 (-114)) (-5 *3 (-641 *5)) (-5 *4 (-768)) (-4 *5 (-847)) + (-5 *1 (-610 *5))))) (((*1 *2 *1) - (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *1 *1) (-4 *1 (-545)))) -(((*1 *2 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-112)))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1189))))) + (-12 (-4 *1 (-1117 *3 *4 *2 *5)) (-4 *4 (-1046)) (-4 *5 (-238 *3 *4)) + (-4 *2 (-238 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-704 *3)) (-5 *1 (-823 *2 *3)) (-4 *3 (-1045))))) -(((*1 *2 *3) (-12 (-5 *3 (-939 *2)) (-5 *1 (-978 *2)) (-4 *2 (-1045))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-576)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-576))))) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-112))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-527)) (-5 *3 (-128)) (-5 *2 (-768))))) (((*1 *1 *2) - (-12 (-5 *2 (-1272 (-1169) *3)) (-4 *3 (-1045)) (-5 *1 (-1279 *3)))) + (-12 (-5 *2 (-768)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1046)) + (-14 *4 (-641 (-1170))))) ((*1 *1 *2) - (-12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *1 (-1281 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) + (-12 (-5 *2 (-768)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1046) (-847))) + (-14 *4 (-641 (-1170))))) + ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-86 FCN)))) - (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-88 OUTPUT)))) - (-5 *3 (-225)) (-5 *2 (-1031)) (-5 *1 (-745))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) -(((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-13 (-824) (-846) (-1045))) - (-5 *2 (-1151)) (-5 *1 (-822 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-112)) - (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1151)) - (-5 *1 (-822 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-818)) (-5 *4 (-316 *5)) - (-4 *5 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) - (-5 *1 (-822 *5)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-818)) (-5 *4 (-316 *6)) (-5 *5 (-112)) - (-4 *6 (-13 (-824) (-846) (-1045))) (-5 *2 (-1262)) - (-5 *1 (-822 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-824)) (-5 *2 (-1151)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-824)) (-5 *3 (-112)) (-5 *2 (-1151)))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *2 (-1262)))) - ((*1 *2 *3 *1 *4) - (-12 (-4 *1 (-824)) (-5 *3 (-818)) (-5 *4 (-112)) (-5 *2 (-1262))))) + (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) + (-4 *4 (-1235 *3)) (-4 *5 (-1235 (-407 *4))) + (-4 *2 (-342 *3 *4 *5)))) + ((*1 *1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-4 *5 (-172)))) + ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-721 *2 *3)) (-4 *3 (-1235 *2))))) +(((*1 *1) (-5 *1 (-130)))) +(((*1 *2 *2 *2 *2 *3) + (-12 (-4 *3 (-556)) (-5 *1 (-966 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-263)))) + ((*1 *1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-263))))) +(((*1 *2 *3 *4 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-753))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-604))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) - (-5 *2 (-640 (-2 (|:| C (-684 *5)) (|:| |g| (-1257 *5))))) - (-5 *1 (-974 *5)) (-5 *3 (-684 *5)) (-5 *4 (-1257 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1 (-379))) (-5 *1 (-1036))))) -(((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1169)) - (-4 *4 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-574 *4 *2)) - (-4 *2 (-13 (-1193) (-955) (-1132) (-29 *4)))))) -(((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-640 (-114)))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |k| (-1169)) (|:| |c| (-1279 *3))))) - (-5 *1 (-1279 *3)) (-4 *3 (-1045)))) + (-12 (-5 *4 (-610 *6)) (-4 *6 (-13 (-430 *5) (-27) (-1194))) + (-4 *5 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *2 (-1166 (-407 (-1166 *6)))) (-5 *1 (-560 *5 *6 *7)) + (-5 *3 (-1166 *6)) (-4 *7 (-1094)))) ((*1 *2 *1) - (-12 (-5 *2 (-640 (-2 (|:| |k| *3) (|:| |c| (-1281 *3 *4))))) - (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1207))) (-5 *1 (-676)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1111))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434)))) - ((*1 *2 *3) - (-12 (-5 *2 (-112)) (-5 *1 (-568 *3)) (-4 *3 (-1034 (-563))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1031)) (-5 *1 (-744))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -1437 (-563)) (|:| -2524 (-640 *3)))) - (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-917)) (-5 *1 (-694)))) - ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-684 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) - (-4 *5 (-363)) (-5 *1 (-974 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1233 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) - (-5 *1 (-573 *5 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-302)) (-5 *2 (-112))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *2 (-815 *3)))) + (-12 (-4 *2 (-1235 *3)) (-5 *1 (-709 *3 *2)) (-4 *3 (-1046)))) ((*1 *2 *1) - (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-609 *1)) (-4 *1 (-430 *4)) (-4 *4 (-846)) - (-4 *4 (-555)) (-5 *2 (-407 (-1165 *1))))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *6) (-27) (-1193))) - (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 (-1165 (-407 (-1165 *3)))) (-5 *1 (-559 *6 *3 *7)) - (-5 *5 (-1165 *3)) (-4 *7 (-1093)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1253 *5)) (-14 *5 (-1169)) (-4 *6 (-1045)) - (-5 *2 (-1230 *5 (-948 *6))) (-5 *1 (-943 *5 *6)) (-5 *3 (-948 *6)))) + (-12 (-4 *1 (-721 *3 *2)) (-4 *3 (-172)) (-4 *2 (-1235 *3)))) + ((*1 *2 *3 *4 *4 *5 *6 *7 *8) + (|partial| -12 (-5 *4 (-1166 *11)) (-5 *6 (-641 *10)) + (-5 *7 (-641 (-768))) (-5 *8 (-641 *11)) (-4 *10 (-847)) + (-4 *11 (-307)) (-4 *9 (-790)) (-4 *5 (-946 *11 *9 *10)) + (-5 *2 (-641 (-1166 *5))) (-5 *1 (-739 *9 *10 *11 *5)) + (-5 *3 (-1166 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-945 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-1165 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *3 (-846)) (-5 *2 (-1165 *1)) - (-4 *1 (-945 *4 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-1045)) - (-4 *7 (-945 *6 *5 *4)) (-5 *2 (-407 (-1165 *3))) - (-5 *1 (-946 *5 *4 *6 *7 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))))) - ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1165 *3)) - (-4 *3 - (-13 (-363) - (-10 -8 (-15 -2062 ($ *7)) (-15 -2626 (*7 $)) (-15 -2636 (*7 $))))) - (-4 *7 (-945 *6 *5 *4)) (-4 *5 (-789)) (-4 *4 (-846)) - (-4 *6 (-1045)) (-5 *1 (-946 *5 *4 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-4 *5 (-555)) - (-5 *2 (-407 (-1165 (-407 (-948 *5))))) (-5 *1 (-1039 *5)) - (-5 *3 (-407 (-948 *5)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) - (-5 *1 (-744))))) -(((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-112)) (-5 *1 (-888 *4)) - (-4 *4 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-418 *3)) (-4 *3 (-555)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-2 (|:| -2055 *4) (|:| -1962 (-563))))) - (-4 *4 (-1233 (-563))) (-5 *2 (-767)) (-5 *1 (-442 *4))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-917)) (-5 *2 (-767)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *4 *5 *6)) (-4 *4 (-363)) - (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *1 (-450 *4 *5 *6 *2)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-363)) - (-5 *2 - (-2 (|:| R (-684 *6)) (|:| A (-684 *6)) (|:| |Ainv| (-684 *6)))) - (-5 *1 (-974 *6)) (-5 *3 (-684 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |ir| (-584 (-407 *6))) (|:| |specpart| (-407 *6)) - (|:| |polypart| *6))) - (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6))))) + (-12 (-4 *2 (-946 *3 *4 *5)) (-5 *1 (-1031 *3 *4 *5 *2 *6)) + (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-14 *6 (-641 *2))))) +(((*1 *1 *1) (-4 *1 (-1138)))) (((*1 *2 *3) - (-12 (-5 *3 (-609 *5)) (-4 *5 (-430 *4)) (-4 *4 (-1034 (-563))) - (-4 *4 (-13 (-846) (-555))) (-5 *2 (-1165 *5)) (-5 *1 (-32 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-609 *1)) (-4 *1 (-1045)) (-4 *1 (-302)) - (-5 *2 (-1165 *1))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *2 (-815 *3)))) - ((*1 *2 *1) - (-12 (-4 *2 (-842)) (-5 *1 (-1280 *3 *2)) (-4 *3 (-1045))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302))))) -(((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-78 FUNCTN)))) - (-5 *2 (-1031)) (-5 *1 (-744))))) + (-12 (-5 *3 (-641 (-641 (-940 (-225))))) (-5 *2 (-641 (-225))) + (-5 *1 (-468))))) +(((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-564))) (-5 *1 (-275))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-643 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) (-5 *2 (-641 *4)) + (-5 *1 (-1102 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *1 *1) (-4 *1 (-657)))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-480))))) +(((*1 *2 *3 *3 *3 *4 *5 *6) + (-12 (-5 *3 (-316 (-564))) (-5 *4 (-1 (-225) (-225))) + (-5 *5 (-1088 (-225))) (-5 *6 (-641 (-263))) (-5 *2 (-1127 (-225))) + (-5 *1 (-693))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *3 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-748))))) +(((*1 *1 *2) + (-12 (-5 *2 (-407 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-13 (-363) (-147))) + (-5 *1 (-399 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-641 (-225)))) (-5 *1 (-923))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-52)) (-5 *1 (-888 *4)) - (-4 *4 (-1093))))) -(((*1 *2) - (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *2) - (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-846)) - (-5 *2 - (-2 (|:| |f1| (-640 *4)) (|:| |f2| (-640 (-640 (-640 *4)))) - (|:| |f3| (-640 (-640 *4))) (|:| |f4| (-640 (-640 (-640 *4)))))) - (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 (-640 *4))))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-620 *4 *5)) - (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -2665 *4) (|:| |sol?| (-112))) - (-563) *4)) - (-4 *4 (-363)) (-4 *5 (-1233 *4)) (-5 *1 (-573 *4 *5))))) + (-12 (-5 *2 (-564)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1209)) + (-4 *3 (-373 *4)) (-4 *5 (-373 *4))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1032)) (-5 *3 (-1170)) (-5 *1 (-192))))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-871)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2 *2) - (-12 (-4 *3 (-1045)) (-4 *4 (-1233 *3)) (-5 *1 (-164 *3 *4 *2)) - (-4 *2 (-1233 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-1208))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-842))))) -(((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-917)) (-5 *1 (-1094 *3 *4)) (-14 *3 *2) - (-14 *4 *2)))) -(((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) (-5 *2 (-1031)) (-5 *1 (-744))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-640 (-1169))) (|:| |pred| (-52)))) - (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2) - (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *2) - (-12 (-5 *2 (-917)) (-5 *1 (-442 *3)) (-4 *3 (-1233 (-563)))))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-52)) (-5 *1 (-1187))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) +(((*1 *1 *1 *2 *3) + (-12 (-5 *2 (-641 (-768))) (-5 *3 (-112)) (-5 *1 (-1158 *4 *5)) + (-14 *4 (-918)) (-4 *5 (-1046))))) +(((*1 *2) (-12 (-5 *2 (-830 (-564))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-830 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1204 *3)) (-4 *3 (-971))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-112)) (-5 *1 (-826))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-545)) (-5 *1 (-159 *2))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-394)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-1188))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-820))))) + (-12 (-5 *3 (-1170)) (-4 *4 (-452)) (-4 *4 (-847)) + (-5 *1 (-573 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1128 *3)) (-4 *3 (-1046)) + (-5 *2 (-641 (-641 (-641 (-768)))))))) +(((*1 *2 *1 *3 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) + (-5 *2 (-407 (-949 *4))))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1219 *4)) (-4 *4 (-1046)) (-4 *4 (-556)) + (-5 *2 (-407 (-949 *4)))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1208))) (-5 *1 (-524))))) +(((*1 *1) (-5 *1 (-1173)))) (((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-577))) - ((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-859)))) - ((*1 *2 *3) (-12 (-5 *3 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1151)) (-5 *4 (-858)) (-5 *2 (-1262)) (-5 *1 (-859)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-1149 *4)) - (-4 *4 (-1093)) (-4 *4 (-1208))))) -(((*1 *2 *2 *3 *4) - (|partial| -12 - (-5 *3 - (-1 (-3 (-2 (|:| -3971 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-363)) (-5 *1 (-573 *4 *2)) (-4 *2 (-1233 *4))))) -(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208))))) + (-12 (-4 *3 (-847)) (-5 *1 (-926 *3 *2)) (-4 *2 (-430 *3)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1170)) (-5 *2 (-316 (-564))) (-5 *1 (-927))))) +(((*1 *2 *3) (-12 (-5 *3 (-379)) (-5 *2 (-225)) (-5 *1 (-1262)))) + ((*1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-1262))))) +(((*1 *2) + (-12 (-4 *2 (-13 (-430 *3) (-999))) (-5 *1 (-276 *3 *2)) + (-4 *3 (-13 (-847) (-556))))) + ((*1 *1) + (-12 (-5 *1 (-339 *2 *3 *4)) (-14 *2 (-641 (-1170))) + (-14 *3 (-641 (-1170))) (-4 *4 (-387)))) + ((*1 *1) (-5 *1 (-477))) ((*1 *1) (-4 *1 (-1194)))) (((*1 *2 *1) - (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-842))))) + (-12 (-5 *2 (-870 (-963 *3) (-963 *3))) (-5 *1 (-963 *3)) + (-4 *3 (-964))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1257 *3)) (-4 *3 (-1209)) (-4 *3 (-1046)) + (-5 *2 (-685 *3))))) +(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-112)) (-5 *5 (-685 (-169 (-225)))) + (-5 *2 (-1032)) (-5 *1 (-752))))) +(((*1 *2 *3 *2) + (-12 (-5 *2 (-918)) (-5 *3 (-641 (-263))) (-5 *1 (-261)))) + ((*1 *1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-263))))) +(((*1 *1 *2) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) +(((*1 *1 *1) (-12 (-4 *1 (-992 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-1226 (-564)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1046)) (-5 *2 (-1259 *3)) (-5 *1 (-709 *3 *4)) + (-4 *4 (-1235 *3))))) +(((*1 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-1129)) (-5 *1 (-1269))))) (((*1 *2 *3) - (-12 (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) (-4 *3 (-611 (-379))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-917)) (-5 *2 (-169 (-379))) (-5 *1 (-781 *3)) - (-4 *3 (-611 (-379))))) - ((*1 *2 *3) - (-12 (-5 *3 (-169 *4)) (-4 *4 (-172)) (-4 *4 (-611 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-169 *5)) (-5 *4 (-917)) (-4 *5 (-172)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-948 (-169 *4))) (-4 *4 (-172)) (-4 *4 (-611 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-948 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-172)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-948 *4)) (-4 *4 (-1045)) (-4 *4 (-611 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-948 *5)) (-5 *4 (-917)) (-4 *5 (-1045)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-948 *4))) (-4 *4 (-555)) (-4 *4 (-611 (-379))) - (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 *5))) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-407 (-948 (-169 *4)))) (-4 *4 (-555)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 (-169 *5)))) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-316 *4)) (-4 *4 (-555)) (-4 *4 (-846)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 *5)) (-5 *4 (-917)) (-4 *5 (-555)) (-4 *5 (-846)) - (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-316 (-169 *4))) (-4 *4 (-555)) (-4 *4 (-846)) - (-4 *4 (-611 (-379))) (-5 *2 (-169 (-379))) (-5 *1 (-781 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-169 *5))) (-5 *4 (-917)) (-4 *5 (-555)) - (-4 *5 (-846)) (-4 *5 (-611 (-379))) (-5 *2 (-169 (-379))) - (-5 *1 (-781 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-666)))) - ((*1 *2 *1) - (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) - (-14 *4 (-917))))) -(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) - (-5 *1 (-744))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *1 *2 *3) - (-12 - (-5 *3 - (-640 - (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) - (|:| |xpnt| (-563))))) - (-4 *2 (-555)) (-5 *1 (-418 *2)))) - ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |contp| (-563)) - (|:| -2524 (-640 (-2 (|:| |irr| *4) (|:| -2581 (-563))))))) - (-4 *4 (-1233 (-563))) (-5 *2 (-418 *4)) (-5 *1 (-442 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-185)) (-5 *2 (-640 (-861)))))) -(((*1 *1 *1) (-4 *1 (-143))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *2 *2) (-12 (-5 *1 (-159 *2)) (-4 *2 (-545))))) -(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-820)) (-5 *1 (-821))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-147)) - (-4 *3 (-307)) (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-640 (-407 *7))) - (-4 *7 (-1233 *6)) (-5 *3 (-407 *7)) (-4 *6 (-363)) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *6 *7))))) -(((*1 *1 *1) (-12 (-5 *1 (-294 *2)) (-4 *2 (-21)) (-4 *2 (-1208))))) -(((*1 *1 *1) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) - ((*1 *1 *1) - (-12 (-5 *1 (-1280 *2 *3)) (-4 *2 (-1045)) (-4 *3 (-842))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-917))) (-5 *1 (-1094 *3 *4)) (-14 *3 (-917)) - (-14 *4 (-917))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) - (-5 *1 (-744))))) -(((*1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093))))) -(((*1 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-388)) (-5 *1 (-436))))) + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 (-112)) (-5 *1 (-300))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-874 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-876 *2)) (-4 *2 (-1209)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-768)) (-5 *1 (-879 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-114))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *1) (-5 *1 (-437)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-644 *3)) (-4 *3 (-1046)) + (-5 *1 (-711 *3 *4)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1046)) (-5 *1 (-833 *3))))) +(((*1 *1) (-5 *1 (-820)))) (((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-846) (-555)))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-52)) (-5 *1 (-1186))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1169))) (-5 *1 (-821))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) - (-5 *2 (-2 (|:| -3971 (-407 *6)) (|:| |coeff| (-407 *6)))) - (-5 *1 (-573 *5 *6)) (-5 *3 (-407 *6))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-788)))) + (-12 (-4 *2 (-363)) (-4 *2 (-845)) (-5 *1 (-942 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *2 (-641 (-564))) (-5 *1 (-1104)) (-5 *3 (-564))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1170)) (-5 *2 (-379)) (-5 *1 (-1058))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) - (-14 *4 (-640 (-1169))))) + (-12 (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) (-4 *2 (-307)) + (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-563)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) - (-14 *4 (-640 (-1169))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1045)) (-4 *3 (-846)) - (-4 *5 (-266 *3)) (-4 *6 (-789)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-275)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1165 *8)) (-5 *4 (-640 *6)) (-4 *6 (-846)) - (-4 *8 (-945 *7 *5 *6)) (-4 *5 (-789)) (-4 *7 (-1045)) - (-5 *2 (-640 (-767))) (-5 *1 (-321 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) + (-12 (-4 *3 (-556)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) - (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-470 *3 *2)) (-4 *3 (-172)) (-4 *2 (-23)))) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) + (-5 *1 (-619 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-555)) (-5 *2 (-563)) (-5 *1 (-620 *3 *4)) - (-4 *4 (-1233 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-704 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1045)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-900 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-901 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *6)) (-4 *1 (-945 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-767))))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-945 *4 *5 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) - (-4 *3 (-846)) (-5 *2 (-767)))) + (-12 (-4 *4 (-172)) (-4 *2 (|SubsetCategory| (-723) *4)) + (-5 *1 (-658 *3 *4 *2)) (-4 *3 (-714 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556))))) +(((*1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1179))))) +(((*1 *2 *1) (-12 (-4 *1 (-952)) (-5 *2 (-641 (-641 (-940 (-225))))))) + ((*1 *2 *1) (-12 (-4 *1 (-971)) (-5 *2 (-641 (-641 (-940 (-225)))))))) +(((*1 *2 *3 *3 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-749))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-363)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-5 *2 (-940 *4)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *1) + (|partial| -12 (-4 *1 (-367 *2)) (-4 *2 (-556)) (-4 *2 (-172))))) +(((*1 *2 *3 *3 *4 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) + (-5 *1 (-745))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-564)) + (|:| -2267 (-641 (-2 (|:| |irr| *3) (|:| -2943 (-564))))))) + (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-5 *2 + (-2 (|:| |contp| (-564)) + (|:| -2267 (-641 (-2 (|:| |irr| *3) (|:| -2943 (-564))))))) + (-5 *1 (-1224 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *2 *4)) (-4 *3 (-1045)) (-4 *4 (-846)) - (-4 *2 (-788)))) + (-12 (-4 *3 (-307)) (-4 *4 (-989 *3)) (-4 *5 (-1235 *4)) + (-5 *2 (-1259 *6)) (-5 *1 (-413 *3 *4 *5 *6)) + (-4 *6 (-13 (-409 *4 *5) (-1035 *4))))) ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-767)))) + (-12 (-4 *3 (-1046)) (-4 *3 (-847)) (-5 *2 (-1119 *3 (-610 *1))) + (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1119 (-564) (-610 (-495)))) (-5 *1 (-495)))) ((*1 *2 *1) - (-12 (-4 *1 (-1219 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1248 *3)) - (-5 *2 (-563)))) + (-12 (-4 *3 (-172)) (-4 *2 (-38 *3)) (-5 *1 (-619 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-723) *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-1240 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1217 *3)) - (-5 *2 (-407 (-563))))) + (-12 (-4 *3 (-172)) (-4 *2 (-714 *3)) (-5 *1 (-658 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-723) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-790)) (-4 *6 (-847)) (-4 *7 (-556)) + (-4 *3 (-946 *7 *5 *6)) + (-5 *2 + (-2 (|:| -2515 (-768)) (|:| -1762 *3) (|:| |radicand| (-641 *3)))) + (-5 *1 (-950 *5 *6 *7 *3 *8)) (-5 *4 (-768)) + (-4 *8 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *3)) (-15 -1625 (*3 $)) (-15 -1634 (*3 $)))))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-641 (-768)))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697)))) + ((*1 *2 *2) (-12 (-5 *2 (-918)) (-5 *1 (-697))))) +(((*1 *1 *1 *2 *2 *1) + (-12 (-5 *2 (-564)) (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3))))) +(((*1 *2 *2) + (-12 (-5 *2 (-112)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *2 *1) + (-12 (-4 *1 (-253 *3 *4 *5 *6)) (-4 *3 (-1046)) (-4 *4 (-847)) + (-4 *5 (-266 *4)) (-4 *6 (-790)) (-5 *2 (-768)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-253 *4 *3 *5 *6)) (-4 *4 (-1046)) (-4 *3 (-847)) + (-4 *5 (-266 *3)) (-4 *6 (-790)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-266 *3)) (-4 *3 (-847)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-918)))) + ((*1 *2 *3) + (-12 (-5 *3 (-336 *4 *5 *6 *7)) (-4 *4 (-13 (-368) (-363))) + (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) (-4 *7 (-342 *4 *5 *6)) + (-5 *2 (-768)) (-5 *1 (-392 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-402)) (-5 *2 (-830 (-918))))) + ((*1 *2 *1) (-12 (-4 *1 (-404)) (-5 *2 (-564)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-595 *3)) (-4 *3 (-1046)))) ((*1 *2 *1) - (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917))))) + (-12 (-4 *3 (-556)) (-5 *2 (-564)) (-5 *1 (-621 *3 *4)) + (-4 *4 (-1235 *3)))) + ((*1 *2 *1 *3 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) + (-4 *3 (-847)))) + ((*1 *2 *1 *3) + (-12 (-4 *1 (-737 *4 *3)) (-4 *4 (-1046)) (-4 *3 (-847)) + (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-5 *2 (-768)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-902 *3)) (-4 *3 (-1094)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) + (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) + (-4 *8 (-342 *5 *6 *7)) + (-4 *4 (-13 (-847) (-556) (-1035 (-564)))) (-5 *2 (-768)) + (-5 *1 (-908 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-336 (-407 (-564)) *4 *5 *6)) + (-4 *4 (-1235 (-407 (-564)))) (-4 *5 (-1235 (-407 *4))) + (-4 *6 (-342 (-407 (-564)) *4 *5)) (-5 *2 (-768)) + (-5 *1 (-909 *4 *5 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-336 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-363)) + (-4 *7 (-1235 *6)) (-4 *4 (-1235 (-407 *7))) (-4 *8 (-342 *6 *7 *4)) + (-4 *9 (-13 (-368) (-363))) (-5 *2 (-768)) + (-5 *1 (-1015 *6 *7 *4 *8 *9)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1235 *3)) (-4 *3 (-1046)) (-4 *3 (-556)) + (-5 *2 (-768)))) + ((*1 *2 *1 *2) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789)))) ((*1 *2 *1) - (-12 (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *2 (-767))))) -(((*1 *2) - (-12 (-5 *2 (-1257 (-1094 *3 *4))) (-5 *1 (-1094 *3 *4)) - (-14 *3 (-917)) (-14 *4 (-917))))) -(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) - (-5 *1 (-744))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-52))) (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-846) (-555)))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-121 *2)) (-4 *2 (-846)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-126 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *1 (-282 *2)) (-4 *2 (-1208)))) + (-12 (-4 *1 (-1237 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-789))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1259 (-1170))) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) + (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) + (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4))))) + ((*1 *1 *2 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-1259 (-453 *4 *5 *6 *7))) + (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-172)) (-14 *5 (-918)) + (-14 *6 (-641 *2)) (-14 *7 (-1259 (-685 *4))))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3320 - (-2 (|:| |var| (-1169)) (|:| |fn| (-316 (-225))) - (|:| -2244 (-1087 (-839 (-225)))) (|:| |abserr| (-225)) - (|:| |relerr| (-225)))) - (|:| -3704 - (-2 - (|:| |endPointContinuity| - (-3 (|:| |continuous| "Continuous at the end points") - (|:| |lowerSingular| - "There is a singularity at the lower end point") - (|:| |upperSingular| - "There is a singularity at the upper end point") - (|:| |bothSingular| - "There are singularities at both end points") - (|:| |notEvaluated| - "End point continuity not yet evaluated"))) - (|:| |singularitiesStream| - (-3 (|:| |str| (-1149 (-225))) - (|:| |notEvaluated| - "Internal singularities not yet evaluated"))) - (|:| -2244 - (-3 (|:| |finite| "The range is finite") - (|:| |lowerInfinite| - "The bottom of range is infinite") - (|:| |upperInfinite| "The top of range is infinite") - (|:| |bothInfinite| - "Both top and bottom points are infinite") - (|:| |notEvaluated| "Range not yet evaluated"))))))) - (-5 *1 (-558)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-690 *2)) (-4 *2 (-1093)))) + (-12 (-5 *2 (-1259 (-453 *3 *4 *5 *6))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) + (-14 *6 (-1259 (-685 *3))))) ((*1 *1 *2) - (-12 - (-5 *2 - (-2 - (|:| -3320 - (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) - (|:| |fn| (-1257 (-316 (-225)))) (|:| |yinit| (-640 (-225))) - (|:| |intvals| (-640 (-225))) (|:| |g| (-316 (-225))) - (|:| |abserr| (-225)) (|:| |relerr| (-225)))) - (|:| -3704 - (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) - (|:| |expense| (-379)) (|:| |accuracy| (-379)) - (|:| |intermediateResults| (-379)))))) - (-5 *1 (-799)))) - ((*1 *2 *3 *4) - (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-820)) (-5 *3 (-640 (-1169))) (-5 *1 (-821))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -2665 *7) (|:| |sol?| (-112))) - (-563) *7)) - (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) - (-5 *3 (-407 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-573 *7 *8))))) -(((*1 *1 *1) - (|partial| -12 (-5 *1 (-294 *2)) (-4 *2 (-722)) (-4 *2 (-1208))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-305)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-1031))) (-5 *2 (-1031)) (-5 *1 (-305)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-646 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-646 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *1) (-5 *1 (-1057))) - ((*1 *2 *3) - (-12 (-5 *3 (-1149 (-1149 *4))) (-5 *2 (-1149 *4)) (-5 *1 (-1146 *4)) - (-4 *4 (-1208)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-172)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1278 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-1045))))) + (-12 (-5 *2 (-1259 (-1170))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-172)) (-14 *4 (-918)) (-14 *5 (-641 (-1170))) + (-14 *6 (-1259 (-685 *3))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1170)) (-5 *1 (-453 *3 *4 *5 *6)) (-4 *3 (-172)) + (-14 *4 (-918)) (-14 *5 (-641 *2)) (-14 *6 (-1259 (-685 *3))))) + ((*1 *1) + (-12 (-5 *1 (-453 *2 *3 *4 *5)) (-4 *2 (-172)) (-14 *3 (-918)) + (-14 *4 (-641 (-1170))) (-14 *5 (-1259 (-685 *2)))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) +(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1094)) (-5 *2 (-886 *3 *5)) (-5 *1 (-882 *3 *4 *5)) + (-4 *3 (-1094)) (-4 *5 (-662 *4))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) - (-4 *3 (-1093)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-901 *4)) (-4 *4 (-1093)) (-5 *2 (-112)) - (-5 *1 (-900 *4)))) + (-12 (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-917)) (-5 *2 (-112)) (-5 *1 (-1094 *4 *5)) (-14 *4 *3) - (-14 *5 *3)))) -(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 G)))) (-5 *2 (-1031)) - (-5 *1 (-744))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-640 (-888 *3))) (-5 *1 (-888 *3)) - (-4 *3 (-1093))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-436))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-846) (-555)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *2 (-1093)) (-5 *1 (-1185 *3 *2)) (-4 *3 (-1093))))) -(((*1 *1) (-5 *1 (-819)))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 - (-1 (-3 (-2 (|:| -3971 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-640 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1233 *7)) - (-5 *3 (-407 *8)) - (-5 *2 - (-2 - (|:| |answer| - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (|:| |a0| *7))) - (-5 *1 (-573 *7 *8))))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-294 *3))) (-5 *1 (-294 *3)) (-4 *3 (-555)) - (-4 *3 (-1208))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-1272 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) - (-5 *1 (-659 *3 *4)))) - ((*1 *2 *1) - (|partial| -12 (-5 *2 (-659 *3 *4)) (-5 *1 (-1277 *3 *4)) - (-4 *3 (-846)) (-4 *4 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-1093)) (-5 *2 (-1151))))) -(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) - (-5 *2 (-1031)) (-5 *1 (-744))))) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) + (-5 *2 (-641 (-2 (|:| |val| (-112)) (|:| -2084 *1)))) + (-4 *1 (-1066 *4 *5 *6 *3))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2448 *4))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1 *3 *3 *4 *4) + (-12 (-5 *3 (-768)) (-5 *4 (-918)) (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *1) (-5 *1 (-578)))) +(((*1 *2 *2 *3) + (-12 (-5 *2 (-1259 (-1259 (-564)))) (-5 *3 (-918)) (-5 *1 (-466))))) +(((*1 *1 *1) (-5 *1 (-1058)))) +(((*1 *2 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-748))))) +(((*1 *1) (-5 *1 (-141)))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *5 (-1259 (-641 *3))) (-4 *4 (-307)) + (-5 *2 (-641 *3)) (-5 *1 (-455 *4 *3)) (-4 *3 (-1235 *4))))) (((*1 *2 *1) - (-12 (-4 *4 (-1093)) (-5 *2 (-112)) (-5 *1 (-881 *3 *4 *5)) - (-4 *3 (-1093)) (-4 *5 (-661 *4)))) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-901 *3)) (-4 *3 (-1094)))) ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-885 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *2) (-12 (-5 *2 (-1262)) (-5 *1 (-436))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-1151)) (-4 *1 (-364 *2 *4)) (-4 *2 (-1093)) - (-4 *4 (-1093)))) - ((*1 *1 *2) - (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1093))))) + (-12 (-5 *2 (-1096 *3)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-745))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-846) (-555)))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *1) (-5 *1 (-819)))) + (-12 (-5 *3 (-641 (-1170))) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) + (-5 *2 (-641 (-407 (-949 *4)))) (-5 *1 (-921 *4 *5 *6 *7)) + (-4 *7 (-946 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-1166 *3)) (-5 *1 (-41 *4 *3)) + (-4 *3 + (-13 (-363) (-302) + (-10 -8 (-15 -1625 ((-1119 *4 (-610 $)) $)) + (-15 -1634 ((-1119 *4 (-610 $)) $)) + (-15 -3742 ($ (-1119 *4 (-610 $)))))))))) +(((*1 *1) (-5 *1 (-291)))) +(((*1 *1) (-5 *1 (-1058)))) +(((*1 *2 *1 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-1152)) (-5 *2 (-1264)) (-5 *1 (-1260))))) +(((*1 *2 *2 *2 *3) + (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-564)) (-5 *1 (-1104)))) + ((*1 *2 *3 *2 *4) + (-12 (-5 *2 (-1259 (-564))) (-5 *3 (-641 (-564))) (-5 *4 (-564)) + (-5 *1 (-1104))))) +(((*1 *2 *1) (-12 (-4 *1 (-389)) (-5 *2 (-112))))) +(((*1 *2 *1 *3 *3 *4) + (-12 (-5 *3 (-1 (-859) (-859) (-859))) (-5 *4 (-564)) (-5 *2 (-859)) + (-5 *1 (-645 *5 *6 *7)) (-4 *5 (-1094)) (-4 *6 (-23)) (-14 *7 *6))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-859)) (-5 *1 (-851 *3 *4 *5)) (-4 *3 (-1046)) + (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-225)) (-5 *1 (-859)))) + ((*1 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-859)))) + ((*1 *1 *2) (-12 (-5 *2 (-1170)) (-5 *1 (-859)))) + ((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-859)))) + ((*1 *2 *1 *2) + (-12 (-5 *2 (-859)) (-5 *1 (-1166 *3)) (-4 *3 (-1046))))) +(((*1 *1 *2) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) +(((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1067 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7)))) + ((*1 *2 *3 *3 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)) (-5 *2 (-1264)) + (-5 *1 (-1102 *4 *5 *6 *7 *8)) (-4 *8 (-1066 *4 *5 *6 *7))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-1044))))) +(((*1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1262))))) +(((*1 *2 *1 *3) + (-12 (-5 *3 (-641 *1)) (-4 *1 (-1060 *4 *5 *6)) (-4 *4 (-1046)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-112)))) + ((*1 *2 *1 *1) + (-12 (-4 *1 (-1060 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *2 (-112)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1202 *3 *4 *5 *6)) (-4 *3 (-556)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1060 *3 *4 *5)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-4 *1 (-1202 *4 *5 *6 *3)) (-4 *4 (-556)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-4 *1 (-794 *2)) (-4 *2 (-172))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1170)) (-5 *6 (-641 (-610 *3))) + (-5 *5 (-610 *3)) (-4 *3 (-13 (-27) (-1194) (-430 *7))) + (-4 *7 (-13 (-452) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-2 (|:| -2118 *3) (|:| |coeff| *3))) + (-5 *1 (-557 *7 *3))))) +(((*1 *2 *3 *3 *3 *3 *4 *5) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) + (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -3510)))) + (-5 *2 (-1032)) (-5 *1 (-743))))) (((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-452)) - (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-973 *3 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) - (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *1 (-973 *4 *5 *6 *7))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2665 *6) (|:| |sol?| (-112))) (-563) - *6)) - (-4 *6 (-363)) (-4 *7 (-1233 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) - (-2 (|:| -3971 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) - (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) + (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) + (-5 *1 (-1118 *3 *4 *5 *2)) (-4 *2 (-683 *3 *4 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-768)) (-4 *4 (-363)) (-5 *1 (-893 *2 *4)) + (-4 *2 (-1235 *4))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-999)))))) +(((*1 *2 *1 *1) + (-12 (-4 *1 (-1007 *3)) (-4 *3 (-1209)) (-4 *3 (-1094)) + (-5 *2 (-112))))) (((*1 *2 *3) (-12 (-4 *4 (-452)) (-5 *2 - (-640 - (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) - (|:| |eigmult| (-767)) - (|:| |eigvec| (-640 (-684 (-407 (-948 *4)))))))) - (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4))))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) - (-4 *4 (-172)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *1 (-158 *4 *2)) - (-4 *2 (-430 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1085 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-846) (-555))) - (-5 *1 (-158 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1085 *1)) (-4 *1 (-160)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1169)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-465 *2 *3)) (-4 *2 (-172)) (-4 *3 (-23)))) - ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-1277 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-172))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-609 *1))) (-4 *1 (-302))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) (-5 *3 (-225)) - (-5 *2 (-1031)) (-5 *1 (-744))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-888 *4)) (-4 *4 (-1093)) (-4 *2 (-1093)) - (-5 *1 (-885 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-434)) (|:| -3986 "void"))) - (-5 *1 (-437))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-846) (-555)))))) -(((*1 *1 *1) - (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) - (-4 *2 (-1093))))) + (-641 + (-2 (|:| |eigval| (-3 (-407 (-949 *4)) (-1159 (-1170) (-949 *4)))) + (|:| |geneigvec| (-641 (-685 (-407 (-949 *4)))))))) + (-5 *1 (-292 *4)) (-5 *3 (-685 (-407 (-949 *4))))))) (((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *1) (-5 *1 (-819)))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *2 (-640 *3)) (-5 *1 (-973 *4 *5 *6 *3)) - (-4 *3 (-1059 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *3) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3971 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-363)) (-4 *7 (-1233 *6)) - (-5 *2 - (-3 (-2 (|:| |answer| (-407 *7)) (|:| |a0| *6)) - (-2 (|:| -3971 (-407 *7)) (|:| |coeff| (-407 *7))) "failed")) - (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-768)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-768))))) +(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-749))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-847)) (-5 *4 (-641 *6)) + (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-641 *4)))) + (-5 *1 (-1180 *6)) (-5 *5 (-641 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-452)) - (-5 *2 - (-640 - (-2 (|:| |eigval| (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4)))) - (|:| |geneigvec| (-640 (-684 (-407 (-948 *4)))))))) - (-5 *1 (-292 *4)) (-5 *3 (-684 (-407 (-948 *4))))))) + (-12 (-4 *4 (-13 (-363) (-845))) + (-5 *2 (-2 (|:| |start| *3) (|:| -2267 (-418 *3)))) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) +(((*1 *1 *2 *3 *3 *3) + (-12 (-5 *2 (-1170)) (-5 *3 (-112)) (-5 *1 (-889 *4)) + (-4 *4 (-1094))))) (((*1 *2 *1) - (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *2 (-2 (|:| |k| (-815 *3)) (|:| |c| *4)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-1152)) (-4 *6 (-452)) (-4 *7 (-790)) (-4 *8 (-847)) + (-4 *4 (-1060 *6 *7 *8)) (-5 *2 (-1264)) + (-5 *1 (-773 *6 *7 *8 *4 *5)) (-4 *5 (-1066 *6 *7 *8 *4))))) +(((*1 *2 *3 *3 *1) + (-12 (-5 *3 (-1170)) (-5 *2 (-687 (-1098))) (-5 *1 (-291))))) +(((*1 *2 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-752))))) +(((*1 *1 *1 *1) + (-12 (|has| *1 (-6 -4412)) (-4 *1 (-119 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1046))))) +(((*1 *1 *1 *1 *2) + (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *3 (-789)) (-4 *4 (-846)) - (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-945 *2 *3 *4)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) - ((*1 *2 *3 *2) - (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-1065 *4 *5 *6 *7)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) - (-4 *1 (-1065 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) - (-5 *2 (-1031)) (-5 *1 (-744))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) - (-4 *3 (-1093))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-642 *2)) (-4 *2 (-1093))))) -(((*1 *1 *1) (-4 *1 (-656)))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-437))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3)) - (-4 *3 (-1208)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1201 *4 *5 *3 *2)) (-4 *4 (-555)) - (-4 *5 (-789)) (-4 *3 (-846)) (-4 *2 (-1059 *4 *5 *3)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-5 *1 (-1205 *2)) (-4 *2 (-1208))))) + (-12 (-4 *1 (-1060 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-790)) + (-4 *4 (-847))))) +(((*1 *2 *1 *1) + (-12 (-4 *3 (-556)) (-4 *3 (-1046)) + (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-849 *3)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-556)) (-4 *5 (-1046)) + (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) (-5 *1 (-850 *5 *3)) + (-4 *3 (-849 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-822))))) +(((*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094))))) +(((*1 *2 *1) (-12 (-4 *1 (-527)) (-5 *2 (-687 (-547)))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1 *1) (-4 *1 (-1133)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-649 *4)) (-4 *4 (-342 *5 *6 *7)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))) + (-4 *6 (-1235 *5)) (-4 *7 (-1235 (-407 *6))) + (-5 *2 + (-2 (|:| |particular| (-3 *4 "failed")) (|:| -4265 (-641 *4)))) + (-5 *1 (-803 *5 *6 *7 *4))))) +(((*1 *2 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-744))))) (((*1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1140 *3))))) -(((*1 *2) - (-12 (-5 *2 (-112)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *1) (-5 *1 (-819)))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) - (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-973 *5 *6 *7 *8))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-640 *6) "failed") (-563) *6 *6)) (-4 *6 (-363)) - (-4 *7 (-1233 *6)) - (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) -(((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-407 (-948 *6)) (-1158 (-1169) (-948 *6)))) - (-5 *5 (-767)) (-4 *6 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *6))))) - (-5 *1 (-292 *6)) (-5 *4 (-684 (-407 (-948 *6)))))) - ((*1 *2 *3 *4) (-12 - (-5 *3 - (-2 (|:| |eigval| (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) - (|:| |eigmult| (-767)) (|:| |eigvec| (-640 *4)))) - (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) - (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5))))))) + (-5 *2 + (-2 (|:| |mval| (-685 *3)) (|:| |invmval| (-685 *3)) + (|:| |genIdeal| (-504 *3 *4 *5 *6)))) + (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-564)) (-5 *1 (-157)))) + ((*1 *2 *3) (-12 (-5 *3 (-940 *2)) (-5 *1 (-979 *2)) (-4 *2 (-1046))))) +(((*1 *1 *1) (-5 *1 (-536)))) +(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) + ((*1 *1 *1) (-5 *1 (-1114)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-430 *4)) (-5 *1 (-158 *4 *2)) - (-4 *4 (-13 (-846) (-555)))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-1151))) (-5 *1 (-330)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-330))))) -(((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) (-12 (-5 *1 (-889 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) - (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) - (-4 *3 (-1093))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) - (-5 *2 (-1031)) (-5 *1 (-744))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) -(((*1 *2) - (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818))))) -(((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-640 *9)) (-5 *3 (-1 (-112) *9)) - (-5 *4 (-1 (-112) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) (-4 *7 (-789)) - (-4 *8 (-846)) (-5 *1 (-973 *6 *7 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -2665 *6) (|:| |sol?| (-112))) (-563) - *6)) - (-4 *6 (-363)) (-4 *7 (-1233 *6)) - (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) + (-12 + (-5 *3 + (-641 (-2 (|:| -2413 (-407 (-564))) (|:| -2427 (-407 (-564)))))) + (-5 *2 (-641 (-407 (-564)))) (-5 *1 (-1017 *4)) + (-4 *4 (-1235 (-564)))))) +(((*1 *2) (-12 (-5 *2 (-840 (-564))) (-5 *1 (-534)))) + ((*1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-1094))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-1032))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-407 (-948 *5)) (-1158 (-1169) (-948 *5)))) - (-4 *5 (-452)) (-5 *2 (-640 (-684 (-407 (-948 *5))))) - (-5 *1 (-292 *5)) (-5 *4 (-684 (-407 (-948 *5))))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-1281 *3 *4)) (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-172)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-386 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-815 *3)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) -(((*1 *2 *1) - (-12 (-4 *1 (-601 *3 *2)) (-4 *3 (-1093)) (-4 *3 (-846)) - (-4 *2 (-1208)))) - ((*1 *2 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) - ((*1 *2 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1208)) (-5 *1 (-869 *2 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-667 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1091 *2)) (-4 *2 (-1093))))) -(((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-888 *4)) (-4 *4 (-1093)) (-5 *1 (-885 *4 *3)) - (-4 *3 (-1093))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-743))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *1) (-5 *1 (-157)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) + (-12 (-5 *4 (-641 *3)) (-4 *3 (-1235 *5)) (-4 *5 (-307)) + (-5 *2 (-768)) (-5 *1 (-455 *5 *3))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) - (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) - (-4 *4 (-682 *2 *5 *6))))) -(((*1 *2) - (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |cd| (-1151)) (|:| -3359 (-1151)))) - (-5 *1 (-818))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -3971 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-363)) (-4 *7 (-1233 *6)) - (-5 *2 (-2 (|:| |answer| (-584 (-407 *7))) (|:| |a0| *6))) - (-5 *1 (-573 *6 *7)) (-5 *3 (-407 *7))))) + (-12 (-4 *4 (-1046)) (-4 *5 (-1235 *4)) (-5 *2 (-1 *6 (-641 *6))) + (-5 *1 (-1253 *4 *5 *3 *6)) (-4 *3 (-652 *5)) (-4 *6 (-1250 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-684 (-407 (-948 *4)))) (-4 *4 (-452)) - (-5 *2 (-640 (-3 (-407 (-948 *4)) (-1158 (-1169) (-948 *4))))) - (-5 *1 (-292 *4))))) + (-12 (-5 *3 (-1259 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) + (-5 *2 (-641 (-949 *4))))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-641 (-949 *4))) (-5 *1 (-416 *3 *4)) + (-4 *3 (-417 *4)))) + ((*1 *2) + (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-641 (-949 *3))))) + ((*1 *2) + (-12 (-5 *2 (-641 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 (-453 *4 *5 *6 *7))) (-5 *2 (-641 (-949 *4))) + (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-556)) (-4 *4 (-172)) + (-14 *5 (-918)) (-14 *6 (-641 (-1170))) (-14 *7 (-1259 (-685 *4)))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) + ((*1 *1 *1 *1) (-5 *1 (-1114)))) +(((*1 *2 *3 *4 *5 *6 *7) + (-12 (-5 *3 (-1150 (-2 (|:| |k| (-564)) (|:| |c| *6)))) + (-5 *4 (-1023 (-840 (-564)))) (-5 *5 (-1170)) (-5 *7 (-407 (-564))) + (-4 *6 (-1046)) (-5 *2 (-859)) (-5 *1 (-594 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-980 *2)) (-4 *2 (-1194))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-564)) (-5 *1 (-418 *2)) (-4 *2 (-556))))) +(((*1 *1 *1 *1 *2 *3) + (-12 (-5 *2 (-940 *5)) (-5 *3 (-768)) (-4 *5 (-1046)) + (-5 *1 (-1158 *4 *5)) (-14 *4 (-918))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) - (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) - (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *3 (-555)) (-5 *2 (-112)) (-5 *1 (-620 *3 *4)) - (-4 *4 (-1233 *3)))) - ((*1 *2 *1) - (-12 (-5 *2 (-112)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-722)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *2 (-112))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-1091 *3)) (-4 *3 (-1093)) (-5 *2 (-112))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-743))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-4 *6 (-882 *5)) (-5 *2 (-881 *5 *6 (-640 *6))) - (-5 *1 (-883 *5 *6 *4)) (-5 *3 (-640 *6)) (-4 *4 (-611 (-888 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 *3))) (-5 *1 (-883 *5 *3 *4)) - (-4 *3 (-1034 (-1169))) (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) + (-12 (-5 *2 (-768)) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-564)) + (-14 *4 *2) (-4 *5 (-172)))) + ((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-918)) (-5 *1 (-165 *3 *4)) + (-4 *3 (-166 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-918)))) + ((*1 *2) + (-12 (-4 *1 (-370 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1235 *3)) + (-5 *2 (-918)))) + ((*1 *2 *3) + (-12 (-4 *4 (-363)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) + (-5 *2 (-768)) (-5 *1 (-521 *4 *5 *6 *3)) (-4 *3 (-683 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-5 *2 (-640 (-294 (-948 *3)))) - (-5 *1 (-883 *5 *3 *4)) (-4 *3 (-1045)) - (-3730 (-4 *3 (-1034 (-1169)))) (-4 *3 (-882 *5)) - (-4 *4 (-611 (-888 *5))))) + (-12 (-5 *3 (-685 *5)) (-5 *4 (-1259 *5)) (-4 *5 (-363)) + (-5 *2 (-768)) (-5 *1 (-663 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-5 *2 (-885 *5 *3)) (-5 *1 (-883 *5 *3 *4)) - (-3730 (-4 *3 (-1034 (-1169)))) (-3730 (-4 *3 (-1045))) - (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5)))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208)))) - ((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1208))))) -(((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-157))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-917)) (-4 *6 (-13 (-555) (-846))) - (-5 *2 (-640 (-316 *6))) (-5 *1 (-221 *5 *6)) (-5 *3 (-316 *6)) - (-4 *5 (-1045)))) - ((*1 *2 *1) (-12 (-5 *1 (-418 *2)) (-4 *2 (-555)))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 *5)) (-4 *5 (-13 (-29 *4) (-1193))) - (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) - (-5 *2 (-640 *5)) (-5 *1 (-582 *4 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-584 (-407 (-948 *4)))) - (-4 *4 (-13 (-452) (-1034 (-563)) (-846) (-636 (-563)))) - (-5 *2 (-640 (-316 *4))) (-5 *1 (-587 *4)))) + (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4412)))) + (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4412)))) (-5 *2 (-768)) + (-5 *1 (-664 *5 *6 *4 *3)) (-4 *3 (-683 *5 *6 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-844)) (-4 *2 (-1142 *3)))) + (-12 (-4 *1 (-683 *3 *4 *5)) (-4 *3 (-1046)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-4 *3 (-556)) (-5 *2 (-768)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 *1)) (-4 *1 (-1088 *4 *2)) (-4 *4 (-844)) - (-4 *2 (-1142 *4)))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-452))) (-5 *1 (-1199 *3 *2)) - (-4 *2 (-13 (-430 *3) (-1193))))) + (-12 (-4 *4 (-556)) (-4 *4 (-172)) (-4 *5 (-373 *4)) + (-4 *6 (-373 *4)) (-5 *2 (-768)) (-5 *1 (-684 *4 *5 *6 *3)) + (-4 *3 (-683 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-1272 (-1169) *3)) (-5 *1 (-1279 *3)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1272 *3 *4)) (-5 *1 (-1281 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-1045))))) -(((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4410 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) - (-4 *2 (-1045)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1233 *2)) - (-4 *4 (-682 *2 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) - (-4 *4 (-1093)) (-4 *5 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-818))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-476 *4 *5 *6 *7)) (|:| -3796 (-640 *7)))) - (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) -(((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-584 *3) *3 (-1169))) - (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 - (-1169))) - (-4 *3 (-284)) (-4 *3 (-626)) (-4 *3 (-1034 *4)) (-4 *3 (-430 *7)) - (-5 *4 (-1169)) (-4 *7 (-611 (-888 (-563)))) (-4 *7 (-452)) - (-4 *7 (-882 (-563))) (-4 *7 (-846)) (-5 *2 (-584 *3)) - (-5 *1 (-572 *7 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1078))) (-5 *1 (-291))))) -(((*1 *1 *1) (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) - ((*1 *1 *1) - (-12 (-5 *1 (-624 *2 *3 *4)) (-4 *2 (-846)) - (-4 *3 (-13 (-172) (-713 (-407 (-563))))) (-14 *4 (-917)))) - ((*1 *1 *1) (-12 (-5 *1 (-672 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) (-12 (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045))))) -(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-743))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-1169)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-302)) (-5 *3 (-114)) (-5 *2 (-112)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-114)) (-5 *2 (-112)) (-5 *1 (-609 *4)) (-4 *4 (-846)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-1093)) (-5 *2 (-112)) (-5 *1 (-883 *5 *3 *4)) - (-4 *3 (-882 *5)) (-4 *4 (-611 (-888 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *6)) (-4 *6 (-882 *5)) (-4 *5 (-1093)) - (-5 *2 (-112)) (-5 *1 (-883 *5 *6 *4)) (-4 *4 (-611 (-888 *5)))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *4 (-225)) - (-5 *2 - (-2 (|:| |brans| (-640 (-640 (-939 *4)))) - (|:| |xValues| (-1087 *4)) (|:| |yValues| (-1087 *4)))) - (-5 *1 (-153)) (-5 *3 (-640 (-640 (-939 *4))))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-530 *3)) (-4 *3 (-13 (-722) (-25)))))) -(((*1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563))))) - ((*1 *2 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-120 *3)) (-4 *3 (-1233 (-563)))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1185 *4 *5)) - (-4 *4 (-1093)) (-4 *5 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-1169)) (-5 *1 (-818))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-452)) (-4 *4 (-846)) - (-5 *1 (-572 *4 *2)) (-4 *2 (-284)) (-4 *2 (-430 *4))))) -(((*1 *2 *3 *3 *1) - (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-1097)) (-5 *1 (-291))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) - (-4 *4 (-1045)) (-4 *4 (-172)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1274 *2 *3)) (-4 *2 (-846)) (-4 *3 (-1045)) - (-4 *3 (-172))))) -(((*1 *2 *1) (-12 (-4 *1 (-1086 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-743))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-885 *4 *5)) (-5 *3 (-885 *4 *6)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-661 *5)) (-5 *1 (-881 *4 *5 *6))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3) - (-12 (-5 *3 (-923)) - (-5 *2 - (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) - (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) - (-5 *1 (-153)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-923)) (-5 *4 (-407 (-563))) - (-5 *2 - (-2 (|:| |brans| (-640 (-640 (-939 (-225))))) - (|:| |xValues| (-1087 (-225))) (|:| |yValues| (-1087 (-225))))) - (-5 *1 (-153))))) -(((*1 *2) - (-12 (-5 *2 (-1262)) (-5 *1 (-1185 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-225)) (-5 *1 (-818))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-1059 *4 *5 *6)) (-4 *4 (-555)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-555)) (-4 *4 (-846)) - (-5 *1 (-572 *4 *2)) (-4 *2 (-430 *4))))) -(((*1 *1 *2 *2 *3 *1) - (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-291))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1201 *4 *5 *3 *6)) (-4 *4 (-555)) (-4 *5 (-789)) - (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-1128))) (-5 *1 (-1083))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-743))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1093)) (-5 *2 (-885 *3 *4)) (-5 *1 (-881 *3 *4 *5)) - (-4 *3 (-1093)) (-4 *5 (-661 *4))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-112) *2)) (-4 *1 (-151 *2)) - (-4 *2 (-1208))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1257 (-640 (-563)))) (-5 *1 (-480)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-598 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1208)) (-5 *1 (-1149 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-536)) (-5 *1 (-535 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-52)) (-5 *1 (-536))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-1182 *2)) (-4 *2 (-363))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-818))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-640 *7)) (-5 *3 (-112)) (-4 *7 (-1059 *4 *5 *6)) - (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *1 (-973 *4 *5 *6 *7))))) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-4 *5 (-556)) + (-5 *2 (-768))))) +(((*1 *1) (-4 *1 (-349)))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *6)) (-5 *4 (-1169)) (-4 *6 (-430 *5)) - (-4 *5 (-846)) (-5 *2 (-640 (-609 *6))) (-5 *1 (-572 *5 *6))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-640 (-961))) (-5 *1 (-291))))) -(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-280))))) -(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) -(((*1 *1 *2) - (-12 (-5 *2 (-1 (-939 (-225)) (-939 (-225)))) (-5 *1 (-263)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-329 *4)) (-4 *4 (-363)) - (-5 *2 (-684 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-1257 *3)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-684 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-1257 *4)))) - ((*1 *2 *3 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-370 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1233 *4)) (-5 *2 (-1257 *4)))) + (-12 (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-4 *3 (-1060 *5 *6 *7)) + (-5 *2 (-641 (-2 (|:| |val| *3) (|:| -2084 *4)))) + (-5 *1 (-1067 *5 *6 *7 *3 *4)) (-4 *4 (-1066 *5 *6 *7 *3))))) +(((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-142 *4 *5 *3)) + (-4 *3 (-373 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-409 *4 *5)) (-4 *4 (-172)) - (-4 *5 (-1233 *4)) (-5 *2 (-684 *4)))) - ((*1 *2 *1) - (-12 (-4 *1 (-409 *3 *4)) (-4 *3 (-172)) (-4 *4 (-1233 *3)) - (-5 *2 (-1257 *3)))) + (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) + (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) + (-5 *1 (-503 *4 *5 *6 *3)) (-4 *6 (-373 *4)) (-4 *3 (-373 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-417 *4)) (-4 *4 (-172)) - (-5 *2 (-684 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 *3)))) + (-12 (-5 *3 (-685 *5)) (-4 *5 (-989 *4)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |num| (-685 *4)) (|:| |den| *4))) + (-5 *1 (-689 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-684 *5))) (-5 *3 (-684 *5)) (-4 *5 (-363)) - (-5 *2 (-1257 *5)) (-5 *1 (-1079 *5))))) -(((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-743))))) + (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-4 *6 (-1235 *5)) + (-5 *2 (-2 (|:| -4032 *7) (|:| |rh| (-641 (-407 *6))))) + (-5 *1 (-804 *5 *6 *7 *3)) (-5 *4 (-641 (-407 *6))) + (-4 *7 (-652 *6)) (-4 *3 (-652 (-407 *6))))) + ((*1 *2 *3) + (-12 (-4 *4 (-556)) (-4 *5 (-989 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1228 *4 *5 *3)) + (-4 *3 (-1235 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563))))) -(((*1 *1) (-5 *1 (-437)))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) - (-5 *2 - (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-407 *5)) - (|:| |c2| (-407 *5)) (|:| |deg| (-767)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5)))))) + (-12 (-5 *3 (-1170)) (-5 *2 (-536)) (-5 *1 (-535 *4)) + (-4 *4 (-1209))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-641 *3)) (|:| |image| (-641 *3)))) + (-5 *1 (-902 *3)) (-4 *3 (-1094))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-564)))) + ((*1 *1 *1 *1) (-5 *1 (-1114)))) +(((*1 *1) (-5 *1 (-157)))) +(((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-641 *11)) + (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2084 *11)))))) + (-5 *6 (-768)) + (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2084 *11)))) + (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) + (-4 *11 (-1066 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) + (-4 *9 (-847)) (-5 *1 (-1064 *7 *8 *9 *10 *11)))) + ((*1 *2 *3 *4 *2 *5 *6) + (-12 + (-5 *5 + (-2 (|:| |done| (-641 *11)) + (|:| |todo| (-641 (-2 (|:| |val| *3) (|:| -2084 *11)))))) + (-5 *6 (-768)) + (-5 *2 (-641 (-2 (|:| |val| (-641 *10)) (|:| -2084 *11)))) + (-5 *3 (-641 *10)) (-5 *4 (-641 *11)) (-4 *10 (-1060 *7 *8 *9)) + (-4 *11 (-1103 *7 *8 *9 *10)) (-4 *7 (-452)) (-4 *8 (-790)) + (-4 *9 (-847)) (-5 *1 (-1139 *7 *8 *9 *10 *11))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-917)) (-5 *2 (-1165 *3)) (-5 *1 (-1182 *3)) - (-4 *3 (-363))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) - (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-640 (-609 *6))) (-5 *4 (-1169)) (-5 *2 (-609 *6)) - (-4 *6 (-430 *5)) (-4 *5 (-846)) (-5 *1 (-572 *5 *6))))) -(((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-961))) (-5 *1 (-291))))) -(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-1257 (-684 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-1257 (-684 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-1257 (-684 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) - (-5 *2 (-1257 (-684 (-407 (-948 *5))))) (-5 *1 (-1079 *5)) - (-5 *4 (-684 (-407 (-948 *5)))))) + (-12 (-5 *3 (-491)) (-5 *4 (-951)) (-5 *2 (-687 (-533))) + (-5 *1 (-533)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-1169))) (-4 *5 (-363)) - (-5 *2 (-1257 (-684 (-948 *5)))) (-5 *1 (-1079 *5)) - (-5 *4 (-684 (-948 *5))))) + (-12 (-5 *4 (-951)) (-4 *3 (-1094)) (-5 *2 (-687 *1)) + (-4 *1 (-764 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-109))) (-5 *1 (-175))))) +(((*1 *2) + (-12 (-4 *4 (-1213)) (-4 *5 (-1235 *4)) (-4 *6 (-1235 (-407 *5))) + (-5 *2 (-112)) (-5 *1 (-341 *3 *4 *5 *6)) (-4 *3 (-342 *4 *5 *6)))) + ((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-564)) (-5 *5 (-685 (-225))) (-5 *4 (-225)) + (-5 *2 (-1032)) (-5 *1 (-750))))) +(((*1 *2 *1) + (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-4 *3 (-368)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-684 *4))) (-4 *4 (-363)) - (-5 *2 (-1257 (-684 *4))) (-5 *1 (-1079 *4))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-743))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) - (-5 *3 (-640 (-563))))) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-357 *4)))) ((*1 *2 *3) - (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) - (-5 *3 (-640 (-563)))))) + (-12 (-5 *3 (-1259 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-528 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *2 *2 *3 *3 *4 *2 *5) + (|partial| -12 (-5 *3 (-610 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) (-5 *5 (-1166 *2)) + (-4 *2 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094)))) + ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) + (|partial| -12 (-5 *3 (-610 *2)) + (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1170))) + (-5 *5 (-407 (-1166 *2))) (-4 *2 (-13 (-430 *6) (-27) (-1194))) + (-4 *6 (-13 (-452) (-1035 (-564)) (-847) (-147) (-637 (-564)))) + (-5 *1 (-560 *6 *2 *7)) (-4 *7 (-1094))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1128 *3)) (-4 *3 (-1046)))) + ((*1 *2 *2 *1) + (|partial| -12 (-5 *2 (-407 *1)) (-4 *1 (-1235 *3)) (-4 *3 (-1046)) + (-4 *3 (-556)))) + ((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-1235 *2)) (-4 *2 (-1046)) (-4 *2 (-556))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-59 *6)) (-4 *6 (-1209)) + (-4 *5 (-1209)) (-5 *2 (-59 *5)) (-5 *1 (-58 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-240 *6 *7)) (-14 *6 (-768)) + (-4 *7 (-1209)) (-4 *5 (-1209)) (-5 *2 (-240 *6 *5)) + (-5 *1 (-239 *6 *7 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1209)) (-4 *5 (-1209)) + (-4 *2 (-373 *5)) (-5 *1 (-371 *6 *4 *5 *2)) (-4 *4 (-373 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1094)) (-4 *5 (-1094)) + (-4 *2 (-425 *5)) (-5 *1 (-423 *6 *4 *5 *2)) (-4 *4 (-425 *6)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-641 *6)) (-4 *6 (-1209)) + (-4 *5 (-1209)) (-5 *2 (-641 *5)) (-5 *1 (-639 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-955 *6)) (-4 *6 (-1209)) + (-4 *5 (-1209)) (-5 *2 (-955 *5)) (-5 *1 (-954 *6 *5)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1150 *6)) (-4 *6 (-1209)) + (-4 *3 (-1209)) (-5 *2 (-1150 *3)) (-5 *1 (-1148 *6 *3)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1259 *6)) (-4 *6 (-1209)) + (-4 *5 (-1209)) (-5 *2 (-1259 *5)) (-5 *1 (-1258 *6 *5))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-974 *3 *4 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *1)) (-4 *1 (-302)))) + ((*1 *1 *1) (-4 *1 (-302))) ((*1 *1 *1) (-5 *1 (-859)))) +(((*1 *1) (-12 (-5 *1 (-687 *2)) (-4 *2 (-611 (-859)))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1023 *2)) (-4 *2 (-1209))))) +(((*1 *1 *2) (-12 (-5 *2 (-641 *3)) (-4 *3 (-1094)) (-5 *1 (-734 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094)))) + ((*1 *1) (-12 (-5 *1 (-734 *2)) (-4 *2 (-1094))))) +(((*1 *2) + (-12 (-4 *4 (-172)) (-5 *2 (-112)) (-5 *1 (-366 *3 *4)) + (-4 *3 (-367 *4)))) + ((*1 *2) (-12 (-4 *1 (-367 *3)) (-4 *3 (-172)) (-5 *2 (-112))))) +(((*1 *2) + (-12 (-4 *3 (-556)) (-5 *2 (-641 *4)) (-5 *1 (-43 *3 *4)) + (-4 *4 (-417 *3))))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-1034 (-48))) - (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) - (-5 *2 (-418 (-1165 (-48)))) (-5 *1 (-435 *4 *5 *3)) - (-4 *3 (-1233 *5))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-1233 *2)) (-4 *2 (-1212)) (-5 *1 (-148 *2 *4 *3)) - (-4 *3 (-1233 (-407 *4)))))) -(((*1 *2 *3) (-12 (-5 *3 (-640 *2)) (-5 *1 (-1182 *2)) (-4 *2 (-363))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) + (-12 (-5 *2 (-1 (-940 *3) (-940 *3))) (-5 *1 (-176 *3)) + (-4 *3 (-13 (-363) (-1194) (-999)))))) +(((*1 *1 *2 *2) + (-12 (-5 *2 (-768)) (-4 *3 (-1046)) (-4 *1 (-683 *3 *4 *5)) + (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-1257 *3)) (-4 *3 (-23)) (-4 *3 (-1209))))) (((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-609 *5))) (-4 *4 (-846)) (-5 *2 (-609 *5)) - (-5 *1 (-572 *4 *5)) (-4 *5 (-430 *4))))) -(((*1 *1) (-5 *1 (-291)))) + (|partial| -12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 + (-2 (|:| |stiffness| (-379)) (|:| |stability| (-379)) + (|:| |expense| (-379)) (|:| |accuracy| (-379)) + (|:| |intermediateResults| (-379)))) + (-5 *1 (-800))))) +(((*1 *1 *1 *2) + (-12 (-5 *1 (-1134 *3 *2)) (-4 *3 (-13 (-1094) (-34))) + (-4 *2 (-13 (-1094) (-34)))))) +(((*1 *2 *3 *3 *2) + (-12 (-5 *2 (-1150 *4)) (-5 *3 (-564)) (-4 *4 (-1046)) + (-5 *1 (-1154 *4)))) + ((*1 *1 *2 *2 *1) + (-12 (-5 *2 (-564)) (-5 *1 (-1251 *3 *4 *5)) (-4 *3 (-1046)) + (-14 *4 (-1170)) (-14 *5 *3)))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-449 *4 *5 *6 *2))))) +(((*1 *2 *2) + (-12 + (-5 *2 + (-641 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-768)) (|:| |poli| *6) + (|:| |polj| *6)))) + (-4 *4 (-790)) (-4 *6 (-946 *3 *4 *5)) (-4 *3 (-452)) (-4 *5 (-847)) + (-5 *1 (-449 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-5 *2 (-183)) (-5 *1 (-248))))) (((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-917)) (-5 *1 (-328 *3 *4)) + (-12 (-4 *4 (-363)) (-5 *2 (-918)) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-829 (-917))) (-5 *1 (-328 *3 *4)) + (-12 (-4 *4 (-363)) (-5 *2 (-830 (-918))) (-5 *1 (-328 *3 *4)) (-4 *3 (-329 *4)))) - ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-917)))) + ((*1 *2) (-12 (-4 *1 (-329 *3)) (-4 *3 (-363)) (-5 *2 (-918)))) ((*1 *2) - (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-829 (-917)))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-175))) (-5 *1 (-1078))))) -(((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-1151)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-743))))) + (-12 (-4 *1 (-1278 *3)) (-4 *3 (-363)) (-5 *2 (-830 (-918)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-1094)) (-4 *2 (-897 *5)) (-5 *1 (-688 *5 *2 *3 *4)) + (-4 *3 (-373 *2)) (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4411))))))) +(((*1 *1) (-5 *1 (-330)))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *3 (-640 (-563))) - (-5 *1 (-879))))) + (-12 (-5 *2 (-641 (-641 (-641 *4)))) (-5 *3 (-641 *4)) (-4 *4 (-847)) + (-5 *1 (-1180 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) - (-5 *2 - (-3 (|:| |overq| (-1165 (-407 (-563)))) - (|:| |overan| (-1165 (-48))) (|:| -2744 (-112)))) - (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-407 *6)) (-4 *5 (-1212)) (-4 *6 (-1233 *5)) - (-5 *2 (-2 (|:| -2631 (-767)) (|:| -2765 *3) (|:| |radicand| *6))) - (-5 *1 (-148 *5 *6 *7)) (-5 *4 (-767)) (-4 *7 (-1233 *3))))) + (-12 (-5 *3 (-889 *4)) (-4 *4 (-1094)) (-5 *2 (-641 *5)) + (-5 *1 (-887 *4 *5)) (-4 *5 (-1209))))) +(((*1 *2 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-768)) (-5 *1 (-43 *4 *3)) + (-4 *3 (-417 *4))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-768)) (-5 *2 (-112)))) + ((*1 *2 *3 *3) + (|partial| -12 (-5 *2 (-112)) (-5 *1 (-1210 *3)) (-4 *3 (-1094)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *3 (-1094)) (-5 *2 (-112)) + (-5 *1 (-1210 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *2 (-640 (-640 *3))))) - ((*1 *2 *1) - (-12 (-4 *1 (-1048 *3 *4 *5 *6 *7)) (-4 *5 (-1045)) - (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-640 (-640 *5))))) + (-12 (-5 *2 (-2 (|:| |var| (-641 (-1170))) (|:| |pred| (-52)))) + (-5 *1 (-889 *3)) (-4 *3 (-1094))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-1060 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1035 (-564))) (-4 *1 (-302)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-4 *1 (-545)) (-5 *2 (-112)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-902 *3)) (-4 *3 (-1094))))) +(((*1 *2 *2) (-12 (-5 *2 (-225)) (-5 *1 (-226)))) + ((*1 *2 *2) (-12 (-5 *2 (-169 (-225))) (-5 *1 (-226)))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-431 *3 *2)) + (-4 *2 (-430 *3)))) + ((*1 *1 *1) (-4 *1 (-1133)))) +(((*1 *1 *2) (-12 (-5 *2 (-918)) (-4 *1 (-368)))) + ((*1 *2 *3 *3) + (-12 (-5 *3 (-918)) (-5 *2 (-1259 *4)) (-5 *1 (-528 *4)) + (-4 *4 (-349)))) ((*1 *2 *1) - (-12 (-5 *2 (-640 (-640 *3))) (-5 *1 (-1180 *3)) (-4 *3 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) - (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-640 (-609 *5))) (-5 *3 (-1169)) (-4 *5 (-430 *4)) - (-4 *4 (-846)) (-5 *1 (-572 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-363)) (-5 *2 (-640 (-1149 *4))) (-5 *1 (-285 *4 *5)) - (-5 *3 (-1149 *4)) (-4 *5 (-1248 *4))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172))))) -(((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-767)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-5 *2 (-767))))) -(((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-175)))) - ((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1169)) (-5 *2 (-109)) (-5 *1 (-1078))))) -(((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-743))))) -(((*1 *2 *3 *3) - (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) - (-5 *3 (-640 (-563)))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) - (-4 *5 (-430 *4)) (-5 *2 (-418 (-1165 (-407 (-563))))) - (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) - (-5 *2 (-2 (|:| |radicand| (-407 *5)) (|:| |deg| (-767)))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-1093)) (-5 *1 (-1180 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-316 (-225)))) (-5 *2 (-112)) (-5 *1 (-267)))) - ((*1 *2 *3) (-12 (-5 *3 (-316 (-225))) (-5 *2 (-112)) (-5 *1 (-267)))) + (-12 (-4 *2 (-847)) (-5 *1 (-710 *2 *3 *4)) (-4 *3 (-1094)) + (-14 *4 + (-1 (-112) (-2 (|:| -1495 *2) (|:| -2515 *3)) + (-2 (|:| -1495 *2) (|:| -2515 *3))))))) +(((*1 *1 *1) (-4 *1 (-545)))) +(((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1260)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1260)))) + ((*1 *2 *1 *2 *3) + (-12 (-5 *3 (-641 (-1152))) (-5 *2 (-1152)) (-5 *1 (-1261)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1152)) (-5 *1 (-1261))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3)))) + ((*1 *2 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-686 *3))))) +(((*1 *1 *1) (-5 *1 (-1058)))) +(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-112)) + (-5 *2 (-1032)) (-5 *1 (-750))))) +(((*1 *2 *1) (-12 (-5 *2 (-768)) (-5 *1 (-418 *3)) (-4 *3 (-556)))) ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) -(((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1169)) - (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) - (-5 *2 - (-2 (|:| -3971 (-407 (-948 *5))) (|:| |coeff| (-407 (-948 *5))))) - (-5 *1 (-569 *5)) (-5 *3 (-407 (-948 *5)))))) -(((*1 *2 *1 *3) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-117 *4)) (-14 *4 *3) - (-5 *3 (-563)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563)))) - ((*1 *2 *1 *3) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-867 *4)) (-14 *4 *3) - (-5 *3 (-563)))) - ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-407 (-563))) (-5 *1 (-868 *4 *5)) - (-5 *3 (-563)) (-4 *5 (-865 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1008)) (-5 *2 (-407 (-563))))) - ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1062 *2 *3)) (-4 *2 (-13 (-844) (-363))) - (-4 *3 (-1233 *2)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1235 *2 *3)) (-4 *3 (-788)) - (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2062 (*2 (-1169)))) - (-4 *2 (-1045))))) -(((*1 *2 *2) - (-12 (-4 *3 (-846)) (-5 *1 (-925 *3 *2)) (-4 *2 (-430 *3)))) + (-12 (-5 *3 (-641 (-2 (|:| -4127 *4) (|:| -2266 (-564))))) + (-4 *4 (-1235 (-564))) (-5 *2 (-768)) (-5 *1 (-442 *4))))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-564)) (-4 *1 (-1087 *3)) (-4 *3 (-1209))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-641 (-1170))) (-4 *5 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-949 *5)))))) (-5 *1 (-767 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-316 (-563))) (-5 *1 (-926))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-329 *3)) (-4 *5 (-1233 *4)) - (-5 *1 (-773 *3 *4 *5 *2 *6)) (-4 *2 (-1233 *5)) (-14 *6 (-917)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1276 *3)) (-4 *3 (-363)) (-4 *3 (-368)))) - ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-363)) (-4 *2 (-368))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1078))))) -(((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-743))))) -(((*1 *2 *2) (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846) (-1034 (-563)))) (-4 *5 (-430 *4)) - (-5 *2 (-418 *3)) (-5 *1 (-435 *4 *5 *3)) (-4 *3 (-1233 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1212)) (-4 *5 (-1233 *4)) - (-5 *2 (-2 (|:| -2765 (-407 *5)) (|:| |poly| *3))) - (-5 *1 (-148 *4 *5 *3)) (-4 *3 (-1233 (-407 *5)))))) -(((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-846)) (-5 *3 (-640 *6)) (-5 *5 (-640 *3)) + (-12 (-5 *3 (-641 (-949 *4))) (-4 *4 (-556)) + (-5 *2 (-641 (-641 (-294 (-407 (-949 *4)))))) (-5 *1 (-767 *4)))) + ((*1 *2 *3 *4 *5) + (-12 (-5 *3 (-685 *7)) + (-5 *5 + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -4265 (-641 *6))) + *7 *6)) + (-4 *6 (-363)) (-4 *7 (-652 *6)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-640 *5)) (|:| |f3| *5) - (|:| |f4| (-640 *5)))) - (-5 *1 (-1179 *6)) (-5 *4 (-640 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) - (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) -(((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 (-407 (-948 *6)))) - (-5 *3 (-407 (-948 *6))) - (-4 *6 (-13 (-555) (-1034 (-563)) (-147))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-569 *6))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3))))) -(((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-13 (-1045) (-713 (-407 (-563))))) - (-4 *5 (-846)) (-5 *1 (-1273 *4 *5 *2)) (-4 *2 (-1278 *5 *4))))) -(((*1 *1) (-5 *1 (-1078)))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-743))))) -(((*1 *2 *3 *3 *3) - (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) - ((*1 *2 *3) - (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563)))) + (-2 (|:| |particular| (-3 (-1259 *6) "failed")) + (|:| -4265 (-641 (-1259 *6))))) + (-5 *1 (-810 *6 *7)) (-5 *4 (-1259 *6))))) +(((*1 *2 *2 *3 *3) + (-12 (-5 *3 (-1170)) + (-4 *4 (-13 (-307) (-847) (-147) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-620 *4 *2)) (-4 *2 (-13 (-1194) (-956) (-29 *4)))))) +(((*1 *1) (-5 *1 (-559)))) +(((*1 *2 *3 *3 *4 *5) + (-12 (-5 *3 (-641 (-685 *6))) (-5 *4 (-112)) (-5 *5 (-564)) + (-5 *2 (-685 *6)) (-5 *1 (-1026 *6)) (-4 *6 (-363)) (-4 *6 (-1046)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-1149 (-640 (-563)))) (-5 *1 (-879)) (-5 *3 (-563))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-144))))) -(((*1 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-521 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-555)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-4 *7 (-988 *4)) (-4 *2 (-682 *7 *8 *9)) - (-5 *1 (-522 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-682 *4 *5 *6)) - (-4 *8 (-373 *7)) (-4 *9 (-373 *7)))) - ((*1 *1 *1) - (|partial| -12 (-4 *1 (-682 *2 *3 *4)) (-4 *2 (-1045)) - (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-363)))) - ((*1 *2 *2) - (|partial| -12 (-4 *3 (-363)) (-4 *3 (-172)) (-4 *4 (-373 *3)) - (-4 *5 (-373 *3)) (-5 *1 (-683 *3 *4 *5 *2)) - (-4 *2 (-682 *3 *4 *5)))) + (-12 (-5 *3 (-641 (-685 *4))) (-5 *2 (-685 *4)) (-5 *1 (-1026 *4)) + (-4 *4 (-363)) (-4 *4 (-1046)))) + ((*1 *2 *3 *3 *4) + (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-564)) (-5 *2 (-685 *5)) + (-5 *1 (-1026 *5)) (-4 *5 (-363)) (-4 *5 (-1046))))) +(((*1 *1 *2 *3 *3 *4 *5) + (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) + (-5 *4 (-641 (-918))) (-5 *5 (-641 (-263))) (-5 *1 (-468)))) + ((*1 *1 *2 *3 *3 *4) + (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *3 (-641 (-871))) + (-5 *4 (-641 (-918))) (-5 *1 (-468)))) + ((*1 *1 *2) (-12 (-5 *2 (-641 (-641 (-940 (-225))))) (-5 *1 (-468)))) + ((*1 *1 *1) (-5 *1 (-468)))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-859))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1096 (-1096 *3))) (-5 *1 (-901 *3)) (-4 *3 (-1094))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-117 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-117 *2)) (-14 *2 (-564)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-868 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-868 *2)) (-14 *2 (-564)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-564)) (-14 *3 *2) (-5 *1 (-869 *3 *4)) + (-4 *4 (-866 *3)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-684 *2)) (-4 *2 (-363)) (-4 *2 (-1045)))) + (-12 (-14 *2 (-564)) (-5 *1 (-869 *2 *3)) (-4 *3 (-866 *2)))) + ((*1 *1 *2 *1) + (-12 (-5 *2 (-564)) (-4 *1 (-1221 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-1250 *3)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1116 *2 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-238 *2 *3)) (-4 *5 (-238 *2 *3)) (-4 *3 (-363)))) - ((*1 *2 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-1179 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) - (-4 *4 (-13 (-555) (-1034 (-563)) (-147))) (-5 *1 (-569 *4))))) + (-12 (-4 *1 (-1221 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1250 *2))))) +(((*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307))))) +(((*1 *1) (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1194)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1224 (-563))) (-4 *1 (-282 *3)) (-4 *3 (-1208)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-4 *1 (-282 *3)) (-4 *3 (-1208))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) - (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-1270 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) - (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8))))) -(((*1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) - ((*1 *1 *1) (-5 *1 (-1113)))) -(((*1 *1) (-5 *1 (-1078)))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-873 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-875 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-5 *1 (-878 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-743))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *1) (-5 *1 (-144)))) -(((*1 *1 *2 *2 *2) - (-12 (-5 *1 (-227 *2)) (-4 *2 (-13 (-363) (-1193))))) - ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-379)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-379)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *2 *3) - (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4)) - (-5 *3 (-640 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-640 *7)) (|:| |badPols| (-640 *7)))) - (-5 *1 (-973 *4 *5 *6 *7)) (-5 *3 (-640 *7))))) -(((*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093))))) -(((*1 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1045)) - (-14 *4 (-640 (-1169))))) - ((*1 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-223 *3 *4)) (-4 *3 (-13 (-1045) (-846))) - (-14 *4 (-640 (-1169))))) - ((*1 *1) (-12 (-4 *1 (-329 *2)) (-4 *2 (-368)) (-4 *2 (-363)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-335 *3 *4 *5 *2)) (-4 *3 (-363)) - (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) - (-4 *2 (-342 *3 *4 *5)))) - ((*1 *1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *1) (-12 (-4 *2 (-172)) (-4 *1 (-720 *2 *3)) (-4 *3 (-1233 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) - (-4 *3 (-13 (-1193) (-29 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-4 *5 (-13 (-555) (-1034 (-563)) (-147))) - (-5 *2 (-584 (-407 (-948 *5)))) (-5 *1 (-569 *5)) - (-5 *3 (-407 (-948 *5)))))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-235 *3)) - (-4 *3 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-282 *3)) (-4 *3 (-1208))))) -(((*1 *1 *2) - (|partial| -12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) - (-4 *3 (-555)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-1270 *3 *4 *5 *6)))) - ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-640 *8)) (-5 *3 (-1 (-112) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) - (-4 *6 (-789)) (-4 *7 (-846)) (-5 *1 (-1270 *5 *6 *7 *8))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) - ((*1 *1 *1 *1) (-5 *1 (-1113)))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-112) *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-563) *2 *2)) (-4 *2 (-132)) (-5 *1 (-1077 *2))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-878 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1031)) - (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) + (-12 (-5 *2 (-768)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) + (-4 *4 (-1046)) (-4 *4 (-172)))) + ((*1 *1 *1 *1) + (-12 (-4 *1 (-1276 *2 *3)) (-4 *2 (-847)) (-4 *3 (-1046)) + (-4 *3 (-172))))) +(((*1 *2 *3) (-12 (-5 *2 (-407 (-564))) (-5 *1 (-561)) (-5 *3 (-564)))) + ((*1 *2 *3) + (-12 (-5 *2 (-1166 (-407 (-564)))) (-5 *1 (-939)) (-5 *3 (-564))))) +(((*1 *2 *1) + (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-847)) (-4 *4 (-1046)) + (-5 *2 (-2 (|:| |k| (-816 *3)) (|:| |c| *4)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-114)) (-5 *1 (-113 *3)) (-4 *3 (-847)) (-4 *3 (-1094))))) +(((*1 *2 *1) (-12 (-5 *1 (-174 *2)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-5 *1 (-911 *2)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-556)) (-4 *2 (-307)))) + ((*1 *2 *1) (-12 (-4 *1 (-1055)) (-5 *2 (-564))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-1261))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-4 *4 (-13 (-307) (-147))) + (-4 *5 (-13 (-847) (-612 (-1170)))) (-4 *6 (-790)) + (-5 *2 + (-641 + (-2 (|:| |eqzro| (-641 *7)) (|:| |neqzro| (-641 *7)) + (|:| |wcond| (-641 (-949 *4))) + (|:| |bsoln| + (-2 (|:| |partsol| (-1259 (-407 (-949 *4)))) + (|:| -4265 (-641 (-1259 (-407 (-949 *4)))))))))) + (-5 *1 (-921 *4 *5 *6 *7)) (-4 *7 (-946 *4 *6 *5))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-1264)) (-5 *1 (-819))))) (((*1 *2 *2) - (-12 (-5 *2 (-640 (-640 *3))) (-4 *3 (-846)) (-5 *1 (-1179 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) + (-12 (-4 *3 (-13 (-847) (-556))) (-5 *1 (-276 *3 *2)) + (-4 *2 (-13 (-430 *3) (-999)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-1170))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-506))) (-5 *1 (-483))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) - (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8))))) -(((*1 *2) (-12 (-5 *2 (-839 (-563))) (-5 *1 (-534)))) - ((*1 *1) (-12 (-5 *1 (-839 *2)) (-4 *2 (-1093))))) -(((*1 *2 *3) - (|partial| -12 (-5 *2 (-563)) (-5 *1 (-568 *3)) (-4 *3 (-1034 *2))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1097)) (-5 *1 (-280))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-961))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1151) (-770))) (-5 *1 (-114))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 (-1270 *4 *5 *6 *7))) - (-5 *1 (-1270 *4 *5 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 *9)) (-5 *4 (-1 (-112) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1059 *6 *7 *8)) (-4 *6 (-555)) - (-4 *7 (-789)) (-4 *8 (-846)) (-5 *2 (-640 (-1270 *6 *7 *8 *9))) - (-5 *1 (-1270 *6 *7 *8 *9))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-500 *2)) (-14 *2 (-563)))) - ((*1 *1 *1 *1) (-5 *1 (-1113)))) -(((*1 *1) (-5 *1 (-1075)))) -(((*1 *2 *3) - (-12 (-5 *3 (-1151)) (-5 *2 (-640 (-1174))) (-5 *1 (-876))))) -(((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *5 (-225)) - (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1031)) - (-5 *1 (-742))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *3 *2) + (|partial| -12 (-5 *3 (-918)) (-5 *1 (-442 *2)) + (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-918)) (-5 *4 (-768)) (-5 *1 (-442 *2)) + (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *2 *4) + (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *1 (-442 *2)) + (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *2 *4 *5) + (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) + (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *2 *4 *5 *6) + (|partial| -12 (-5 *3 (-918)) (-5 *4 (-641 (-768))) (-5 *5 (-768)) + (-5 *6 (-112)) (-5 *1 (-442 *2)) (-4 *2 (-1235 (-564))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-918)) (-5 *4 (-418 *2)) (-4 *2 (-1235 *5)) + (-5 *1 (-444 *5 *2)) (-4 *5 (-1046))))) +(((*1 *1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-671 *3)) (-4 *3 (-1046)) + (-4 *3 (-1094))))) (((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3) - (-12 (-4 *4 (-846)) (-5 *2 (-1180 (-640 *4))) (-5 *1 (-1179 *4)) - (-5 *3 (-640 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-1 (-112) *8))) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) - (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-640 (-407 *6))) (-5 *3 (-407 *6)) - (-4 *6 (-1233 *5)) (-4 *5 (-13 (-363) (-147) (-1034 (-563)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-567 *5 *6))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1169)) (-5 *1 (-280))))) +(((*1 *2 *1) + (-12 (-5 *2 (-641 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-5 *1 (-585 *3)) (-4 *3 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1262)) (-5 *1 (-862 *4 *5 *6 *7)) - (-4 *4 (-1045)) (-14 *5 (-640 (-1169))) (-14 *6 (-640 *3)) - (-14 *7 *3))) + (-12 (-5 *3 (-649 (-407 *2))) (-4 *2 (-1235 *4)) (-5 *1 (-807 *4 *2)) + (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564))))))) ((*1 *2 *3) - (-12 (-5 *3 (-767)) (-4 *4 (-1045)) (-4 *5 (-846)) (-4 *6 (-789)) - (-14 *8 (-640 *5)) (-5 *2 (-1262)) - (-5 *1 (-1269 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-945 *4 *6 *5)) - (-14 *9 (-640 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4408)) (-4 *1 (-34)) (-5 *2 (-767)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1096 *3 *4 *5 *6 *7)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-4 *5 (-1093)) (-4 *6 (-1093)) (-4 *7 (-1093)) (-5 *2 (-563)))) - ((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-1280 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-842))))) + (-12 (-5 *3 (-650 *2 (-407 *2))) (-4 *2 (-1235 *4)) + (-5 *1 (-807 *4 *2)) + (-4 *4 (-13 (-363) (-147) (-1035 (-564)) (-1035 (-407 (-564)))))))) +(((*1 *2 *3) (-12 (-5 *3 (-859)) (-5 *2 (-1152)) (-5 *1 (-707))))) +(((*1 *1 *1) (-12 (-4 *1 (-1247 *2)) (-4 *2 (-1209))))) +(((*1 *2 *1) + (-12 (-4 *2 (-946 *3 *5 *4)) (-5 *1 (-984 *3 *4 *5 *2)) + (-4 *3 (-452)) (-4 *4 (-847)) (-4 *5 (-790))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-282 *2)) (-4 *2 (-1209)) (-4 *2 (-847)))) + ((*1 *1 *2 *1 *1) + (-12 (-5 *2 (-1 (-112) *3 *3)) (-4 *1 (-282 *3)) (-4 *3 (-1209)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-965 *2)) (-4 *2 (-847))))) +(((*1 *1 *1 *1) (-4 *1 (-964)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-4 *1 (-652 *3)) (-4 *3 (-1046)) (-4 *3 (-363)))) + ((*1 *2 *2 *3 *4) + (-12 (-5 *3 (-768)) (-5 *4 (-1 *5 *5)) (-4 *5 (-363)) + (-5 *1 (-655 *5 *2)) (-4 *2 (-652 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) (-4 *6 (-789)) - (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7)) (-5 *2 (-640 *3)) - (-5 *1 (-589 *5 *6 *7 *8 *3)) (-4 *3 (-1102 *5 *6 *7 *8)))) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *10)) + (-5 *1 (-622 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1066 *5 *6 *7 *8)) + (-4 *10 (-1103 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) - (-5 *2 - (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) - (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) - (-14 *6 (-640 (-1169))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-307) (-147))) + (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) + (-5 *1 (-626 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) (-5 *2 - (-640 (-2 (|:| -2303 (-1165 *4)) (|:| -1818 (-640 (-948 *4)))))) - (-5 *1 (-1071 *4 *5)) (-5 *3 (-640 (-948 *4))) - (-14 *5 (-640 (-1169))))) + (-641 (-1140 *5 (-531 (-861 *6)) (-861 *6) (-777 *5 (-861 *6))))) + (-5 *1 (-626 *5 *6)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-112)) (-4 *5 (-13 (-307) (-147))) - (-5 *2 - (-640 (-2 (|:| -2303 (-1165 *5)) (|:| -1818 (-640 (-948 *5)))))) - (-5 *1 (-1071 *5 *6)) (-5 *3 (-640 (-948 *5))) - (-14 *6 (-640 (-1169)))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) -(((*1 *2 *3 *3 *3 *3 *4 *5) - (-12 (-5 *3 (-225)) (-5 *4 (-563)) - (-5 *5 (-3 (|:| |fn| (-388)) (|:| |fp| (-64 -2036)))) - (-5 *2 (-1031)) (-5 *1 (-742))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-434))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3) - (-12 (-4 *4 (-846)) (-5 *2 (-640 (-640 (-640 *4)))) - (-5 *1 (-1179 *4)) (-5 *3 (-640 (-640 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-112) *8)) (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) - (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-2 (|:| |goodPols| (-640 *8)) (|:| |badPols| (-640 *8)))) - (-5 *1 (-973 *5 *6 *7 *8)) (-5 *4 (-640 *8))))) -(((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-363) (-147) (-1034 (-563)))) - (-4 *5 (-1233 *4)) - (-5 *2 (-2 (|:| -3971 (-407 *5)) (|:| |coeff| (-407 *5)))) - (-5 *1 (-567 *4 *5)) (-5 *3 (-407 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267))))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1255 *3)) (-4 *3 (-23)) (-4 *3 (-1208))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1093)) - (-4 *4 (-13 (-1045) (-882 *3) (-846) (-611 (-888 *3)))) - (-5 *2 (-640 (-1169))) (-5 *1 (-1069 *3 *4 *5)) - (-4 *5 (-13 (-430 *4) (-882 *3) (-611 (-888 *3))))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) - (-5 *2 (-1031)) (-5 *1 (-741))))) -(((*1 *2) - (-12 (-4 *3 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-1262)) - (-5 *1 (-433 *3 *4)) (-4 *4 (-430 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1180 (-640 *4))) (-4 *4 (-846)) - (-5 *2 (-640 (-640 *4))) (-5 *1 (-1179 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-973 *4 *5 *6 *7))))) -(((*1 *2 *2) - (|partial| -12 (-5 *2 (-407 *4)) (-4 *4 (-1233 *3)) - (-4 *3 (-13 (-363) (-147) (-1034 (-563)))) (-5 *1 (-567 *3 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-553 *2)) (-4 *2 (-13 (-404) (-1193))))) - ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) -(((*1 *2 *3 *2) - (-12 (-5 *3 (-407 (-563))) - (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1267))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *5 (-112)) - (-5 *2 (-1031)) (-5 *1 (-741))))) -(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-870))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-407 (-563))) - (-5 *1 (-433 *4 *3)) (-4 *3 (-430 *4)))) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-641 (-1024 *5 *6 *7 *8))) (-5 *1 (-1024 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 (-777 *5 (-861 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) + (-14 *6 (-641 (-1170))) (-5 *2 (-641 (-1043 *5 *6))) + (-5 *1 (-1043 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-609 *3)) (-4 *3 (-430 *5)) - (-4 *5 (-13 (-846) (-555) (-1034 (-563)))) - (-5 *2 (-1165 (-407 (-563)))) (-5 *1 (-433 *5 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) -(((*1 *1 *2) (-12 (-5 *1 (-1194 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-1194 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *3 (-640 (-1194 *2))) (-5 *1 (-1194 *2)) (-4 *2 (-1093))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) - (-5 *1 (-1179 *4)) (-4 *4 (-846))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-640 *8))) (-5 *3 (-640 *8)) - (-4 *8 (-1059 *5 *6 *7)) (-4 *5 (-555)) (-4 *6 (-789)) - (-4 *7 (-846)) (-5 *2 (-112)) (-5 *1 (-973 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) - (-4 *5 (-882 (-563))) - (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) - (-4 *3 (-13 (-27) (-1193) (-430 *5))))) - ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1169)) (-5 *4 (-839 *2)) (-4 *2 (-1132)) - (-4 *2 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-611 (-888 (-563)))) (-4 *5 (-882 (-563))) - (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) - (-5 *1 (-566 *5 *2))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-609 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4))) - (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-277 *4 *2))))) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-1066 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) + ((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 *8)) (-5 *4 (-112)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-452)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-641 (-1140 *5 *6 *7 *8))) (-5 *1 (-1140 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-556)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-1202 *4 *5 *6 *7))))) +(((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1166 *1)) (-5 *3 (-1170)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1166 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-949 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) + (-12 (-5 *2 (-1170)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-847) (-556))))) + ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-847) (-556)))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *4 (-1233 *3)) - (-5 *2 - (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-684 *3)))) - (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-563)) (-4 *4 (-1233 *3)) - (-5 *2 - (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-684 *3)))) - (-5 *1 (-764 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) - (-5 *2 - (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-684 *3)))) - (-5 *1 (-981 *4 *3 *5 *6)) (-4 *6 (-720 *3 *5)))) - ((*1 *2 *3) - (-12 (-4 *4 (-349)) (-4 *3 (-1233 *4)) (-4 *5 (-1233 *3)) - (-5 *2 - (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-684 *3)))) - (-5 *1 (-1266 *4 *3 *5 *6)) (-4 *6 (-409 *3 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-640 *4)) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-917)) (-4 *1 (-740 *3)) (-4 *3 (-172))))) + (|partial| -12 + (-5 *3 + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-2 + (|:| |endPointContinuity| + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| + "There are singularities at both end points") + (|:| |notEvaluated| + "End point continuity not yet evaluated"))) + (|:| |singularitiesStream| + (-3 (|:| |str| (-1150 (-225))) + (|:| |notEvaluated| + "Internal singularities not yet evaluated"))) + (|:| -3089 + (-3 (|:| |finite| "The range is finite") + (|:| |lowerInfinite| "The bottom of range is infinite") + (|:| |upperInfinite| "The top of range is infinite") + (|:| |bothInfinite| + "Both top and bottom points are infinite") + (|:| |notEvaluated| "Range not yet evaluated"))))) + (-5 *1 (-559))))) (((*1 *2 *1) - (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-117 *3)) (-14 *3 (-563)))) - ((*1 *1 *2 *3 *3) - (-12 (-5 *3 (-1149 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2)))) - ((*1 *1 *2) (-12 (-5 *2 (-407 *3)) (-4 *3 (-307)) (-5 *1 (-174 *3)))) - ((*1 *2 *3) - (-12 (-5 *2 (-174 (-563))) (-5 *1 (-761 *3)) (-4 *3 (-404)))) - ((*1 *2 *1) - (-12 (-5 *2 (-174 (-407 (-563)))) (-5 *1 (-867 *3)) (-14 *3 (-563)))) - ((*1 *2 *1) - (-12 (-14 *3 (-563)) (-5 *2 (-174 (-407 (-563)))) - (-5 *1 (-868 *3 *4)) (-4 *4 (-865 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-144))) (-5 *1 (-141)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-141))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-640 (-640 (-640 *4)))) (-5 *2 (-640 (-640 *4))) - (-4 *4 (-846)) (-5 *1 (-1179 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)) - (-5 *1 (-973 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1169)) (-4 *5 (-611 (-888 (-563)))) - (-4 *5 (-882 (-563))) - (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) - (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) - (-5 *1 (-566 *5 *3)) (-4 *3 (-626)) - (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) -(((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-1169)) - (-4 *2 (-13 (-27) (-1193) (-430 *5))) - (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-277 *5 *2))))) -(((*1 *2) - (-12 (-4 *3 (-1212)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))) - (-5 *2 (-1257 *1)) (-4 *1 (-342 *3 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-4 *4 (-1233 *3)) - (-5 *2 - (-2 (|:| -3288 (-684 *3)) (|:| |basisDen| *3) - (|:| |basisInv| (-684 *3)))) - (-5 *1 (-350 *3 *4 *5)) (-4 *5 (-409 *3 *4)))) - ((*1 *2) - (-12 (-4 *3 (-1233 (-563))) - (-5 *2 - (-2 (|:| -3288 (-684 (-563))) (|:| |basisDen| (-563)) - (|:| |basisInv| (-684 (-563))))) - (-5 *1 (-764 *3 *4)) (-4 *4 (-409 (-563) *3)))) - ((*1 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) - (-5 *2 - (-2 (|:| -3288 (-684 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-684 *4)))) - (-5 *1 (-981 *3 *4 *5 *6)) (-4 *6 (-720 *4 *5)))) - ((*1 *2) - (-12 (-4 *3 (-349)) (-4 *4 (-1233 *3)) (-4 *5 (-1233 *4)) - (-5 *2 - (-2 (|:| -3288 (-684 *4)) (|:| |basisDen| *4) - (|:| |basisInv| (-684 *4)))) - (-5 *1 (-1266 *3 *4 *5 *6)) (-4 *6 (-409 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112)) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *4)))) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) + (-12 (-4 *1 (-335 *3 *4 *5 *6)) (-4 *3 (-363)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-4 *6 (-342 *3 *4 *5)) (-5 *2 (-112))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1170)) + (-5 *2 (-3 (|:| |fst| (-434)) (|:| -2966 "void"))) (-5 *1 (-1173))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-452)) + (-4 *3 (-556)) (-4 *4 (-790)) (-4 *5 (-847)) + (-5 *1 (-974 *3 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1166 *7)) (-4 *7 (-946 *6 *4 *5)) (-4 *4 (-790)) + (-4 *5 (-847)) (-4 *6 (-1046)) (-5 *2 (-1166 *6)) + (-5 *1 (-321 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1165 *6)) (-5 *3 (-563)) (-4 *6 (-307)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5))))) -(((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) - ((*1 *2) (-12 (-5 *2 (-917)) (-5 *1 (-403 *3)) (-4 *3 (-404)))) - ((*1 *2 *2) (-12 (-5 *2 (-917)) (|has| *1 (-6 -4399)) (-4 *1 (-404)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) - ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-1149 (-563)))))) -(((*1 *1) (-5 *1 (-112))) ((*1 *1) (-5 *1 (-614)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-431 *3 *2)) - (-4 *2 (-430 *3))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-640 (-640 (-640 *4)))) (-5 *3 (-640 *4)) (-4 *4 (-846)) - (-5 *1 (-1179 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) - ((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) - (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6)))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-640 *7) (-640 *7))) (-5 *2 (-640 *7)) - (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) (-4 *5 (-789)) - (-4 *6 (-846)) (-5 *1 (-973 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) - (-4 *5 (-13 (-846) (-1034 (-563)) (-452) (-636 (-563)))) - (-5 *2 (-2 (|:| -3081 *3) (|:| |nconst| *3))) (-5 *1 (-566 *5 *3)) - (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-277 *3 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *3))))) + (-12 (-5 *2 (-114)) (-5 *3 (-641 (-1 *4 (-641 *4)))) (-4 *4 (-1094)) + (-5 *1 (-113 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1169)) - (-4 *4 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-277 *4 *2)) (-4 *2 (-13 (-27) (-1193) (-430 *4)))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-767)) (-4 *6 (-363)) (-5 *4 (-1202 *6)) - (-5 *2 (-1 (-1149 *4) (-1149 *4))) (-5 *1 (-1265 *6)) - (-5 *5 (-1149 *4))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) - ((*1 *1 *1 *1) (-4 *1 (-452))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-5 *1 (-486 *2)) (-4 *2 (-1233 (-563))))) - ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-563)) (-5 *1 (-691 *2)) (-4 *2 (-1233 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-767))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-789)) (-4 *4 (-846)) (-4 *5 (-307)) - (-5 *1 (-912 *3 *4 *5 *2)) (-4 *2 (-945 *5 *3 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 *2)) (-4 *2 (-945 *6 *4 *5)) - (-5 *1 (-912 *4 *5 *6 *2)) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-307)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *5 (-307)) (-5 *1 (-912 *3 *4 *5 *6)))) + (-12 (-5 *2 (-114)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1094)) + (-5 *1 (-113 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-640 (-1165 *7))) (-4 *4 (-789)) (-4 *5 (-846)) - (-4 *6 (-307)) (-5 *2 (-1165 *7)) (-5 *1 (-912 *4 *5 *6 *7)) - (-4 *7 (-945 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-917))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-452)) (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) - (-4 *2 (-1233 *3)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-452))))) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-1 *4 (-641 *4)))) + (-5 *1 (-113 *4)) (-4 *4 (-1094))))) (((*1 *2 *1) - (-12 (-4 *3 (-172)) (-4 *2 (-23)) (-5 *1 (-289 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1233 *3)) (-14 *5 (-1 *4 *4 *2)) - (-14 *6 (-1 (-3 *2 "failed") *2 *2)) - (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-707 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) - (-12 (-4 *2 (-1233 *3)) (-5 *1 (-708 *3 *2)) (-4 *3 (-1045)))) - ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-711 *3 *2 *4 *5 *6)) (-4 *3 (-172)) - (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) - (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-4 *7 (-846)) - (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) (-4 *8 (-307)) - (-5 *2 (-640 (-767))) (-5 *1 (-738 *6 *7 *8 *9)) (-5 *5 (-767))))) -(((*1 *1 *2 *3) - (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) - (-4 *2 (-13 (-846) (-21)))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-640 (-640 (-640 *5)))) (-5 *3 (-1 (-112) *5 *5)) - (-5 *4 (-640 *5)) (-4 *5 (-846)) (-5 *1 (-1179 *5))))) -(((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *3)) - (-5 *1 (-973 *4 *5 *6 *3)) (-4 *3 (-1059 *4 *5 *6))))) -(((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-609 *4)) (-5 *6 (-1169)) - (-4 *4 (-13 (-430 *7) (-27) (-1193))) - (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) - (-5 *1 (-565 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) - (-4 *5 (-13 (-555) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-640 (-609 *3))) - (|:| |vals| (-640 *3)))) - (-5 *1 (-277 *5 *3)) (-4 *3 (-13 (-27) (-1193) (-430 *5)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-640 (-1202 *5))) - (-5 *1 (-1265 *5)) (-5 *4 (-1202 *5))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-563)) (-5 *4 (-418 *2)) (-4 *2 (-945 *7 *5 *6)) - (-5 *1 (-738 *5 *6 *7 *2)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-307))))) -(((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-5 *2 (-563))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-640 *2)) (-4 *2 (-1208))))) + (-12 (-4 *1 (-373 *3)) (-4 *3 (-1209)) (-4 *3 (-847)) (-5 *2 (-112)))) + ((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *1 (-373 *4)) (-4 *4 (-1209)) + (-5 *2 (-112))))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-427 *3 *2)) (-4 *3 (-13 (-172) (-38 (-407 (-563))))) - (-4 *2 (-13 (-846) (-21)))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-112) *6 *6)) (-4 *6 (-846)) (-5 *4 (-640 *6)) - (-5 *2 (-2 (|:| |fs| (-112)) (|:| |sd| *4) (|:| |td| (-640 *4)))) - (-5 *1 (-1179 *6)) (-5 *5 (-640 *4))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *2) - (-12 (-5 *2 (-640 *6)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-5 *1 (-973 *3 *4 *5 *6))))) -(((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-609 *2)) - (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1169))) - (-4 *2 (-13 (-430 *5) (-27) (-1193))) - (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *1 (-565 *5 *2 *6)) (-4 *6 (-1093))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-846) (-555))) (-5 *2 (-112)) (-5 *1 (-276 *4 *3)) - (-4 *3 (-13 (-430 *4) (-998)))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) + (-12 (-5 *3 (-1150 *2)) (-4 *2 (-307)) (-5 *1 (-174 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1169)) (-5 *2 (-1 (-1165 (-948 *4)) (-948 *4))) - (-5 *1 (-1265 *4)) (-4 *4 (-363))))) -(((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-112)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-4 *3 (-1059 *6 *7 *8)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *4)))) - (-5 *1 (-1066 *6 *7 *8 *3 *4)) (-4 *4 (-1065 *6 *7 *8 *3)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 (-2 (|:| |val| (-640 *8)) (|:| -1926 *9)))) - (-5 *5 (-112)) (-4 *8 (-1059 *6 *7 *4)) (-4 *9 (-1065 *6 *7 *4 *8)) - (-4 *6 (-452)) (-4 *7 (-789)) (-4 *4 (-846)) - (-5 *2 (-640 (-2 (|:| |val| *8) (|:| -1926 *9)))) - (-5 *1 (-1066 *6 *7 *4 *8 *9))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) - (-4 *7 (-846)) (-4 *8 (-307)) (-4 *9 (-945 *8 *6 *7)) (-4 *6 (-789)) - (-5 *2 - (-2 (|:| |upol| (-1165 *8)) (|:| |Lval| (-640 *8)) - (|:| |Lfact| - (-640 (-2 (|:| -2055 (-1165 *8)) (|:| -2631 (-563))))) - (|:| |ctpol| *8))) - (-5 *1 (-738 *6 *7 *8 *9))))) -(((*1 *1 *1) (-4 *1 (-865 *2)))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) - (-4 *5 (-13 (-307) (-846) (-147) (-1034 (-563)) (-636 (-563)))) - (-5 *2 (-584 *3)) (-5 *1 (-426 *5 *3)) - (-4 *3 (-13 (-1193) (-29 *5)))))) -(((*1 *1) (-5 *1 (-141)))) -(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1169)) (-5 *2 (-1262)) (-5 *1 (-818))))) + (-12 (-5 *3 (-685 (-407 (-949 (-564))))) (-5 *2 (-641 (-316 (-564)))) + (-5 *1 (-1028))))) (((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5))))) -(((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-609 *3)) (-5 *5 (-640 *3)) - (-4 *3 (-13 (-430 *6) (-27) (-1193))) - (-4 *6 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 - (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| - (-640 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-565 *6 *3 *7)) (-4 *7 (-1093))))) -(((*1 *2 *2 *3) (|partial| -12 - (-5 *3 (-640 (-2 (|:| |func| *2) (|:| |pole| (-112))))) - (-4 *2 (-13 (-430 *4) (-998))) (-4 *4 (-13 (-846) (-555))) - (-5 *1 (-276 *4 *2))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-112) (-114) (-114))) (-5 *1 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1169)) (-4 *5 (-363)) (-5 *2 (-1149 (-1149 (-948 *5)))) - (-5 *1 (-1265 *5)) (-5 *4 (-1149 (-948 *5)))))) -(((*1 *1 *2 *3) - (-12 (-5 *3 (-640 (-1169))) (-5 *2 (-1169)) (-5 *1 (-330))))) -(((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) - (-5 *2 (-640 (-2 (|:| |val| (-640 *3)) (|:| -1926 *4)))) - (-5 *1 (-1066 *5 *6 *7 *3 *4)) (-4 *4 (-1065 *5 *6 *7 *3))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-640 *7)) (-5 *5 (-640 (-640 *8))) (-4 *7 (-846)) - (-4 *8 (-307)) (-4 *6 (-789)) (-4 *9 (-945 *8 *6 *7)) - (-5 *2 - (-2 (|:| |unitPart| *9) - (|:| |suPart| - (-640 (-2 (|:| -2055 (-1165 *9)) (|:| -2631 (-563))))))) - (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9))))) -(((*1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1165 (-563))) (-5 *3 (-563)) (-4 *1 (-865 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-452)))) - ((*1 *1 *1 *1) (-4 *1 (-452)))) -(((*1 *2 *1) (-12 (-4 *1 (-425 *3)) (-4 *3 (-1093)) (-5 *2 (-767))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-834))) (-5 *1 (-140))))) -(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-225)) (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-972 *4 *5 *3 *6)) (-4 *4 (-1045)) (-4 *5 (-789)) - (-4 *3 (-846)) (-4 *6 (-1059 *4 *5 *3)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-609 *3)) - (-4 *3 (-13 (-430 *5) (-27) (-1193))) - (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 (-2 (|:| -3971 *3) (|:| |coeff| *3))) - (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) + (-5 *2 (-2 (|:| -3440 (-114)) (|:| |arg| (-641 (-889 *3))))) + (-5 *1 (-889 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *3) + (|partial| -12 (-5 *3 (-114)) (-5 *2 (-641 (-889 *4))) + (-5 *1 (-889 *4)) (-4 *4 (-1094))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-641 *2)) (-4 *2 (-946 *4 *5 *6)) (-4 *4 (-307)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *1 (-447 *4 *5 *6 *2))))) +(((*1 *2 *3 *3 *4 *4 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *2 (-1032)) + (-5 *1 (-744))))) (((*1 *2 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) - (-5 *1 (-1265 *4)) (-4 *4 (-363))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1065 *3 *4 *5 *6)) (-4 *3 (-452)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-563)) (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-307)) - (-4 *9 (-945 *8 *6 *7)) - (-5 *2 (-2 (|:| -3206 (-1165 *9)) (|:| |polval| (-1165 *8)))) - (-5 *1 (-738 *6 *7 *8 *9)) (-5 *3 (-1165 *9)) (-5 *4 (-1165 *8))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-407 *6)) - (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5)))) - ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) - (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) - (-5 *1 (-864 *5 *6 *7)))) - ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-767)) (-5 *4 (-1249 *5 *6 *7)) (-4 *5 (-363)) - (-14 *6 (-1169)) (-14 *7 *5) (-5 *2 (-407 (-1230 *6 *5))) - (-5 *1 (-864 *5 *6 *7))))) -(((*1 *1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-1093)) (-4 *2 (-368))))) -(((*1 *2 *1) (-12 (-5 *2 (-640 (-183))) (-5 *1 (-140))))) -(((*1 *2) (-12 (-5 *2 (-130)) (-5 *1 (-1178))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-563)) (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) -(((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-609 *3)) (-4 *3 (-13 (-430 *5) (-27) (-1193))) - (-4 *5 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) - (-5 *2 (-584 *3)) (-5 *1 (-565 *5 *3 *6)) (-4 *6 (-1093))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) - ((*1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)))) - ((*1 *1 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) + (-12 (|has| *2 (-6 (-4413 "*"))) (-4 *5 (-373 *2)) (-4 *6 (-373 *2)) + (-4 *2 (-1046)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1235 *2)) + (-4 *4 (-683 *2 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-1 (-1149 (-948 *4)) (-1149 (-948 *4)))) - (-5 *1 (-1265 *4)) (-4 *4 (-363))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-5 *3 (-1 (-112) *6)) (-4 *6 (-13 (-1094) (-1035 *5))) + (-4 *5 (-883 *4)) (-4 *4 (-1094)) (-5 *2 (-1 (-112) *5)) + (-5 *1 (-928 *4 *5 *6))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 (-481 *4 *5))) (-14 *4 (-641 (-1170))) + (-4 *5 (-452)) (-5 *2 (-641 (-247 *4 *5))) (-5 *1 (-629 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-144))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-859))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *5 (-112)) + (-5 *2 (-1032)) (-5 *1 (-742))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-789)) (-4 *4 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-738 *5 *4 *6 *3)) (-4 *3 (-945 *6 *5 *4))))) -(((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-767)) (-4 *5 (-363)) (-5 *2 (-174 *6)) - (-5 *1 (-863 *5 *4 *6)) (-4 *4 (-1248 *5)) (-4 *6 (-1233 *5))))) -(((*1 *1) (-12 (-4 *1 (-425 *2)) (-4 *2 (-368)) (-4 *2 (-1093))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-136 *3 *4 *5)) (-14 *3 (-563)) - (-14 *4 (-767)) (-4 *5 (-172))))) -(((*1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-1178))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) + (-12 (-5 *3 (-641 (-263))) (-5 *4 (-1170)) (-5 *2 (-112)) + (-5 *1 (-263))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-641 (-564))) (-5 *2 (-1172 (-407 (-564)))) + (-5 *1 (-190))))) +(((*1 *2 *3) + (-12 (-4 *4 (-349)) (-5 *2 (-418 (-1166 (-1166 *4)))) + (-5 *1 (-1207 *4)) (-5 *3 (-1166 (-1166 *4)))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) + (|partial| -12 (-5 *2 (-768)) (-4 *1 (-1235 *3)) (-4 *3 (-1046))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) + (-4 *3 (-13 (-307) (-10 -8 (-15 -3048 ((-418 $) $))))) + (-4 *4 (-1235 *3)) (-5 *1 (-499 *3 *4 *5)) (-4 *5 (-409 *3 *4))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -2448 *3) (|:| |coef2| (-779 *3)))) + (-5 *1 (-779 *3)) (-4 *3 (-556)) (-4 *3 (-1046))))) +(((*1 *2 *2) (|partial| -12 (-5 *1 (-586 *2)) (-4 *2 (-545))))) +(((*1 *2 *2 *2) + (-12 (-4 *3 (-1046)) (-5 *1 (-1231 *3 *2)) (-4 *2 (-1235 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-248))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) - (-4 *7 (-1233 (-407 *6))) - (-5 *2 (-2 (|:| |answer| *3) (|:| -3960 *3))) - (-5 *1 (-561 *5 *6 *7 *3)) (-4 *3 (-342 *5 *6 *7)))) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-847)) (-4 *5 (-906)) (-4 *6 (-790)) + (-4 *8 (-946 *5 *6 *7)) (-5 *2 (-418 (-1166 *8))) + (-5 *1 (-903 *5 *6 *7 *8)) (-5 *4 (-1166 *8)))) + ((*1 *2 *3) + (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) + (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5))))) +(((*1 *2 *2 *3) + (-12 (-5 *3 (-1170)) (-4 *4 (-13 (-847) (-556))) (-5 *1 (-158 *4 *2)) + (-4 *2 (-430 *4)))) + ((*1 *2 *2 *3) + (-12 (-5 *3 (-1086 *2)) (-4 *2 (-430 *4)) (-4 *4 (-13 (-847) (-556))) + (-5 *1 (-158 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1086 *1)) (-4 *1 (-160)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-160)) (-5 *2 (-1170))))) +(((*1 *2 *3 *4 *4) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1233 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |answer| (-407 *6)) (|:| -3960 (-407 *6)) - (|:| |specpart| (-407 *6)) (|:| |polypart| *6))) - (-5 *1 (-562 *5 *6)) (-5 *3 (-407 *6))))) + (-12 (-5 *3 (-641 (-949 *5))) (-5 *4 (-112)) + (-4 *5 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-1043 *5 *6))) (-5 *1 (-1285 *5 *6 *7)) + (-14 *6 (-641 (-1170))) (-14 *7 (-641 (-1170))))) + ((*1 *2 *3) + (-12 (-5 *3 (-641 (-949 *4))) + (-4 *4 (-13 (-845) (-307) (-147) (-1019))) + (-5 *2 (-641 (-1043 *4 *5))) (-5 *1 (-1285 *4 *5 *6)) + (-14 *5 (-641 (-1170))) (-14 *6 (-641 (-1170)))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| |xinit| (-225)) (|:| |xend| (-225)) + (|:| |fn| (-1259 (-316 (-225)))) (|:| |yinit| (-641 (-225))) + (|:| |intvals| (-641 (-225))) (|:| |g| (-316 (-225))) + (|:| |abserr| (-225)) (|:| |relerr| (-225)))) + (-5 *2 (-379)) (-5 *1 (-205))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-97))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-685 *5))) (-5 *4 (-1259 *5)) (-4 *5 (-307)) + (-4 *5 (-1046)) (-5 *2 (-685 *5)) (-5 *1 (-1026 *5))))) +(((*1 *2 *3 *1) + (-12 (-5 *3 (-1 (-112) *4)) (|has| *1 (-6 -4411)) (-4 *1 (-489 *4)) + (-4 *4 (-1209)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-280)))) + ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) +(((*1 *2 *3 *4 *5 *6) + (|partial| -12 (-5 *4 (-1 *8 *8)) + (-5 *5 + (-1 (-3 (-2 (|:| -2118 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-641 (-407 *8))) (-4 *7 (-363)) (-4 *8 (-1235 *7)) + (-5 *3 (-407 *8)) + (-5 *2 + (-2 + (|:| |answer| + (-2 (|:| |mainpart| *3) + (|:| |limitedlogs| + (-641 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |a0| *7))) + (-5 *1 (-574 *7 *8))))) +(((*1 *2 *3 *3 *3 *4) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261)))) + ((*1 *2) (-12 (-5 *2 (-379)) (-5 *1 (-1261))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *2 *3) - (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1045)) (-4 *2 (-1093)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-563)) (-5 *2 (-1149 *3)) (-5 *1 (-1153 *3)) - (-4 *3 (-1045)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-815 *4)) (-4 *4 (-846)) (-4 *1 (-1274 *4 *3)) - (-4 *3 (-1045))))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) (((*1 *2) - (-12 (-14 *4 (-767)) (-4 *5 (-1208)) (-5 *2 (-134)) - (-5 *1 (-237 *3 *4 *5)) (-4 *3 (-238 *4 *5)))) - ((*1 *2) - (-12 (-4 *4 (-363)) (-5 *2 (-134)) (-5 *1 (-328 *3 *4)) - (-4 *3 (-329 *4)))) - ((*1 *2) - (-12 (-5 *2 (-767)) (-5 *1 (-390 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) - (-4 *5 (-172)))) - ((*1 *2 *1) - (-12 (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *6)) (-4 *6 (-846)) (-4 *4 (-363)) (-4 *5 (-789)) - (-5 *2 (-563)) (-5 *1 (-504 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-976 *3)) (-4 *3 (-1045)) (-5 *2 (-917)))) - ((*1 *2) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-363)) (-5 *2 (-134))))) + (-12 (-5 *2 (-112)) (-5 *1 (-1150 *3)) (-4 *3 (-1094)) + (-4 *3 (-1209))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) + (-12 (-4 *1 (-973 *4 *5 *3 *6)) (-4 *4 (-1046)) (-4 *5 (-790)) + (-4 *3 (-847)) (-4 *6 (-1060 *4 *5 *3)) (-5 *2 (-112))))) +(((*1 *2 *1) (-12 (-5 *2 (-641 (-175))) (-5 *1 (-1079))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 (-2 (|:| -2055 (-1165 *6)) (|:| -2631 (-563))))) - (-4 *6 (-307)) (-4 *4 (-789)) (-4 *5 (-846)) (-5 *2 (-563)) - (-5 *1 (-738 *4 *5 *6 *7)) (-4 *7 (-945 *6 *4 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4408)) (-4 *1 (-489 *3)) (-4 *3 (-1208)) - (-5 *2 (-640 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-733 *3)) (-4 *3 (-1093)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-439))) (-5 *1 (-861))))) + (|partial| -12 (-5 *3 (-1152)) (-5 *2 (-379)) (-5 *1 (-783))))) +(((*1 *2 *3 *2) + (-12 (-5 *3 (-1 (-112) *4 *4)) (-4 *4 (-1209)) (-5 *1 (-375 *4 *2)) + (-4 *2 (-13 (-373 *4) (-10 -7 (-6 -4412))))))) +(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *1) (-12 (-5 *2 (-1150 *3)) (-5 *1 (-174 *3)) (-4 *3 (-307))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *1 (-420 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1193) (-430 *3))) - (-14 *4 (-1169)) (-14 *5 *2))) - ((*1 *2 *2) - (-12 (-4 *3 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-4 *2 (-13 (-27) (-1193) (-430 *3) (-10 -8 (-15 -2062 ($ *4))))) - (-4 *4 (-844)) - (-4 *5 - (-13 (-1235 *2 *4) (-363) (-1193) - (-10 -8 (-15 -1361 ($ $)) (-15 -3204 ($ $))))) - (-5 *1 (-422 *3 *2 *4 *5 *6 *7)) (-4 *6 (-979 *5)) (-14 *7 (-1169))))) -(((*1 *1 *2) - (-12 (-5 *2 (-917)) (-5 *1 (-152 *3 *4 *5)) (-14 *3 *2) - (-4 *4 (-363)) (-14 *5 (-989 *3 *4))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) - (-4 *4 (-172))))) + (-12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1251 *2 *3 *4)) (-4 *2 (-1046)) (-14 *3 (-1170)) + (-14 *4 *2)))) +(((*1 *2 *3 *3 *4) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) + (-4 *5 (-13 (-363) (-147) (-1035 (-564)))) + (-5 *2 + (-2 (|:| |a| *6) (|:| |b| (-407 *6)) (|:| |c| (-407 *6)) + (|:| -1335 *6))) + (-5 *1 (-1012 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *3 *2 *2) + (-12 (-5 *2 (-641 (-481 *4 *5))) (-5 *3 (-861 *4)) + (-14 *4 (-641 (-1170))) (-4 *5 (-452)) (-5 *1 (-629 *4 *5))))) +(((*1 *2 *3 *4 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-685 (-225))) (-5 *5 (-225)) + (-5 *2 (-1032)) (-5 *1 (-749))))) +(((*1 *2 *3) + (-12 (-5 *3 (-641 *5)) (-4 *5 (-430 *4)) (-4 *4 (-13 (-847) (-556))) + (-5 *2 (-859)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) - (-4 *5 (-555)) (-5 *2 (-640 (-640 (-948 *5)))) (-5 *1 (-1177 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *1 *1 *2) - (-12 (-4 *1 (-972 *3 *4 *2 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *2 (-846)) (-4 *5 (-1059 *3 *4 *2))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-563)) (-5 *3 (-767)) (-5 *1 (-560))))) + (-12 (-5 *3 (-225)) (-5 *4 (-564)) (-5 *2 (-1032)) (-5 *1 (-755))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1138)) (-5 *2 (-112))))) +(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) + (-12 (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *6 (-3 (|:| |fn| (-388)) (|:| |fp| (-84 FCNF)))) + (-5 *7 (-3 (|:| |fn| (-388)) (|:| |fp| (-85 FCNG)))) (-5 *3 (-225)) + (-5 *2 (-1032)) (-5 *1 (-746))))) +(((*1 *1 *2 *1) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-326 *3 *4)) (-4 *3 (-1046)) + (-4 *4 (-789))))) +(((*1 *2 *1) (-12 (-5 *2 (-1264)) (-5 *1 (-819))))) +(((*1 *2 *3) + (-12 (-5 *3 (-816 *4)) (-4 *4 (-847)) (-5 *2 (-112)) + (-5 *1 (-668 *4))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-394)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-641 (-1152))) (-5 *1 (-1189))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2577 *3))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-379)) (-5 *2 (-1264)) (-5 *1 (-1261))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *2 *3) - (-12 (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-307)) (-5 *2 (-418 *3)) - (-5 *1 (-738 *4 *5 *6 *3)) (-4 *3 (-945 *6 *4 *5))))) -(((*1 *2 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-858))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -2062 ($ *7))))) - (-4 *7 (-844)) - (-4 *8 - (-13 (-1235 *3 *7) (-363) (-1193) - (-10 -8 (-15 -1361 ($ $)) (-15 -3204 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) - (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) - (-14 *10 (-1169))))) -(((*1 *1) - (-12 (-5 *1 (-136 *2 *3 *4)) (-14 *2 (-563)) (-14 *3 (-767)) - (-4 *4 (-172))))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *1 *1 *1) + (-12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-373 *2)) + (-4 *4 (-373 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-407 (-948 (-563))))) - (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-844) (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-294 (-407 (-948 (-563)))))) - (-5 *2 (-640 (-640 (-294 (-948 *4))))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-844) (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-407 (-948 (-563)))) (-5 *2 (-640 (-294 (-948 *4)))) - (-5 *1 (-380 *4)) (-4 *4 (-13 (-844) (-363))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-294 (-407 (-948 (-563))))) - (-5 *2 (-640 (-294 (-948 *4)))) (-5 *1 (-380 *4)) - (-4 *4 (-13 (-844) (-363))))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1169)) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-4 *4 (-13 (-29 *6) (-1193) (-955))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -3288 (-640 *4)))) - (-5 *1 (-647 *6 *4 *3)) (-4 *3 (-651 *4)))) - ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1169)) (-5 *5 (-640 *2)) - (-4 *2 (-13 (-29 *6) (-1193) (-955))) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *1 (-647 *6 *2 *3)) (-4 *3 (-651 *2)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1257 *5) "failed")) - (|:| -3288 (-640 (-1257 *5))))) - (-5 *1 (-662 *5)) (-5 *4 (-1257 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) - (-5 *2 - (-2 (|:| |particular| (-3 (-1257 *5) "failed")) - (|:| -3288 (-640 (-1257 *5))))) - (-5 *1 (-662 *5)) (-5 *4 (-1257 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-684 *5)) (-4 *5 (-363)) - (-5 *2 - (-640 - (-2 (|:| |particular| (-3 (-1257 *5) "failed")) - (|:| -3288 (-640 (-1257 *5)))))) - (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-640 *5))) (-4 *5 (-363)) - (-5 *2 - (-640 - (-2 (|:| |particular| (-3 (-1257 *5) "failed")) - (|:| -3288 (-640 (-1257 *5)))))) - (-5 *1 (-662 *5)) (-5 *4 (-640 (-1257 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) - (-4 *4 (-13 (-373 *5) (-10 -7 (-6 -4409)))) - (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) - (-5 *1 (-663 *5 *6 *4 *3)) (-4 *3 (-682 *5 *6 *4)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-363)) (-4 *6 (-13 (-373 *5) (-10 -7 (-6 -4409)))) - (-4 *7 (-13 (-373 *5) (-10 -7 (-6 -4409)))) - (-5 *2 - (-640 - (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3288 (-640 *7))))) - (-5 *1 (-663 *5 *6 *7 *3)) (-5 *4 (-640 *7)) - (-4 *3 (-682 *5 *6 *7)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-948 *5))) (-5 *4 (-640 (-1169))) (-4 *5 (-555)) - (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-766 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-948 *4))) (-4 *4 (-555)) - (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-766 *4)))) - ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-1169)) - (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *1 (-768 *5 *2)) (-4 *2 (-13 (-29 *5) (-1193) (-955))))) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) (-4 *5 (-1094)) + (-4 *6 (-1209)) (-5 *2 (-1 *6 *5)) (-5 *1 (-638 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-684 *7)) (-5 *5 (-1169)) - (-4 *7 (-13 (-29 *6) (-1193) (-955))) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1257 *7)) (|:| -3288 (-640 (-1257 *7))))) - (-5 *1 (-798 *6 *7)) (-5 *4 (-1257 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-684 *6)) (-5 *4 (-1169)) - (-4 *6 (-13 (-29 *5) (-1193) (-955))) - (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 (-640 (-1257 *6))) (-5 *1 (-798 *5 *6)))) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) + (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-640 (-294 *7))) (-5 *4 (-640 (-114))) - (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1257 *7)) (|:| -3288 (-640 (-1257 *7))))) - (-5 *1 (-798 *6 *7)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-640 *7)) (-5 *4 (-640 (-114))) - (-5 *5 (-1169)) (-4 *7 (-13 (-29 *6) (-1193) (-955))) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 - (-2 (|:| |particular| (-1257 *7)) (|:| -3288 (-640 (-1257 *7))))) - (-5 *1 (-798 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-294 *7)) (-5 *4 (-114)) (-5 *5 (-1169)) - (-4 *7 (-13 (-29 *6) (-1193) (-955))) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 - (-3 (-2 (|:| |particular| *7) (|:| -3288 (-640 *7))) *7 "failed")) - (-5 *1 (-798 *6 *7)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-5 *5 (-1169)) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 - (-3 (-2 (|:| |particular| *3) (|:| -3288 (-640 *3))) *3 "failed")) - (-5 *1 (-798 *6 *3)) (-4 *3 (-13 (-29 *6) (-1193) (-955))))) - ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-294 *2)) (-5 *4 (-114)) (-5 *5 (-640 *2)) - (-4 *2 (-13 (-29 *6) (-1193) (-955))) (-5 *1 (-798 *6 *2)) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))))) - ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-114)) (-5 *4 (-294 *2)) (-5 *5 (-640 *2)) - (-4 *2 (-13 (-29 *6) (-1193) (-955))) - (-4 *6 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *1 (-798 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1031)) (-5 *1 (-801)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-804)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-801)))) - ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) - (-5 *2 (-1031)) (-5 *1 (-801)))) - ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) - (-5 *2 (-1031)) (-5 *1 (-801)))) - ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) - ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1257 (-316 (-379)))) (-5 *4 (-379)) (-5 *5 (-640 *4)) - (-5 *2 (-1031)) (-5 *1 (-801)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) - ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1257 (-316 *4))) (-5 *5 (-640 (-379))) - (-5 *6 (-316 (-379))) (-5 *4 (-379)) (-5 *2 (-1031)) (-5 *1 (-801)))) - ((*1 *2 *3 *4 *5) - (|partial| -12 - (-5 *5 - (-1 - (-3 (-2 (|:| |particular| *6) (|:| -3288 (-640 *6))) "failed") - *7 *6)) - (-4 *6 (-363)) (-4 *7 (-651 *6)) - (-5 *2 (-2 (|:| |particular| (-1257 *6)) (|:| -3288 (-684 *6)))) - (-5 *1 (-809 *6 *7)) (-5 *3 (-684 *6)) (-5 *4 (-1257 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-894)) (-5 *2 (-1031)) (-5 *1 (-893)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-894)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-893)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) - (-5 *8 (-225)) (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) - (-5 *2 (-1031)) (-5 *1 (-893)))) - ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-767)) (-5 *6 (-640 (-640 (-316 *3)))) (-5 *7 (-1151)) - (-5 *5 (-640 (-316 (-379)))) (-5 *3 (-379)) (-5 *2 (-1031)) - (-5 *1 (-893)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-948 (-407 (-563)))) (-5 *2 (-640 (-379))) - (-5 *1 (-1019)) (-5 *4 (-379)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-948 (-563))) (-5 *2 (-640 (-379))) (-5 *1 (-1019)) - (-5 *4 (-379)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-363) (-10 -8 (-15 ** ($ $ (-407 (-563))))))) - (-5 *2 (-640 *4)) (-5 *1 (-1121 *3 *4)) (-4 *3 (-1233 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) - (-5 *3 (-316 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 (-640 (-294 (-316 *4)))) (-5 *1 (-1124 *4)) - (-5 *3 (-294 (-316 *4))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) - (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) - (-5 *3 (-294 (-316 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) - (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 (-640 (-294 (-316 *5)))) (-5 *1 (-1124 *5)) - (-5 *3 (-316 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-1169))) - (-4 *5 (-13 (-846) (-307) (-1034 (-563)) (-636 (-563)) (-147))) - (-5 *2 (-640 (-640 (-294 (-316 *5))))) (-5 *1 (-1124 *5)) - (-5 *3 (-640 (-294 (-316 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-407 (-948 *5)))) (-5 *4 (-640 (-1169))) - (-4 *5 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) - (-5 *1 (-1177 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-640 (-1169))) (-4 *5 (-555)) - (-5 *2 (-640 (-640 (-294 (-407 (-948 *5)))))) (-5 *1 (-1177 *5)) - (-5 *3 (-640 (-294 (-407 (-948 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 (-407 (-948 *4)))) (-4 *4 (-555)) - (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) (-5 *1 (-1177 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-640 (-640 (-294 (-407 (-948 *4)))))) - (-5 *1 (-1177 *4)) (-5 *3 (-640 (-294 (-407 (-948 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-4 *5 (-555)) - (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) - (-5 *3 (-407 (-948 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1169)) (-4 *5 (-555)) - (-5 *2 (-640 (-294 (-407 (-948 *5))))) (-5 *1 (-1177 *5)) - (-5 *3 (-294 (-407 (-948 *5)))))) + (-12 (-5 *3 (-641 *6)) (-5 *4 (-641 *5)) (-4 *6 (-1094)) + (-4 *5 (-1209)) (-5 *2 (-1 *5 *6)) (-5 *1 (-638 *6 *5)))) + ((*1 *2 *3 *4 *5 *2) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-4 *5 (-1094)) + (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) + ((*1 *2 *3 *4 *2) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-641 *5)) (-5 *4 (-641 *6)) + (-4 *5 (-1094)) (-4 *6 (-1209)) (-5 *1 (-638 *5 *6)))) + ((*1 *2 *3 *4 *5 *6) + (-12 (-5 *3 (-641 *5)) (-5 *4 (-641 *2)) (-5 *6 (-1 *2 *5)) + (-4 *5 (-1094)) (-4 *2 (-1209)) (-5 *1 (-638 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-144)) (-5 *2 (-768))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4411)) (-4 *1 (-489 *3)) (-4 *3 (-1209)) + (-5 *2 (-641 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 *3)) (-5 *1 (-734 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1) (-12 (-5 *2 (-641 (-439))) (-5 *1 (-862))))) +(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) + (-12 (-5 *3 (-685 (-225))) (-5 *4 (-564)) (-5 *2 (-1032)) + (-5 *1 (-752))))) +(((*1 *2 *3) + (-12 (-4 *4 (-906)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-946 *4 *5 *6)) (-5 *2 (-418 (-1166 *7))) + (-5 *1 (-903 *4 *5 *6 *7)) (-5 *3 (-1166 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) - (-5 *1 (-1177 *4)) (-5 *3 (-407 (-948 *4))))) + (-12 (-4 *4 (-906)) (-4 *5 (-1235 *4)) (-5 *2 (-418 (-1166 *5))) + (-5 *1 (-904 *4 *5)) (-5 *3 (-1166 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1046)) + (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))))) + (-5 *2 (-1032)) (-5 *1 (-305)))) ((*1 *2 *3) - (-12 (-4 *4 (-555)) (-5 *2 (-640 (-294 (-407 (-948 *4))))) - (-5 *1 (-1177 *4)) (-5 *3 (-294 (-407 (-948 *4))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) + (-12 + (-5 *3 + (-2 (|:| -3406 (-379)) (|:| -4324 (-1152)) + (|:| |explanations| (-641 (-1152))) (|:| |extra| (-1032)))) + (-5 *2 (-1032)) (-5 *1 (-305))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1152)) (-5 *2 (-641 (-1175))) (-5 *1 (-1130))))) +(((*1 *2 *1) (-12 (-4 *1 (-1087 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1) + (-12 (-4 *2 (-349)) (-4 *2 (-1046)) (-5 *1 (-709 *2 *3)) + (-4 *3 (-1235 *2))))) +(((*1 *2) + (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564))))) + ((*1 *2 *2) + (-12 (-5 *2 (-918)) (-5 *1 (-442 *3)) (-4 *3 (-1235 (-564)))))) +(((*1 *1 *2 *3) + (-12 (-5 *1 (-645 *2 *3 *4)) (-4 *2 (-1094)) (-4 *3 (-23)) + (-14 *4 *3)))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1170)) (-5 *4 (-949 (-564))) (-5 *2 (-330)) + (-5 *1 (-332))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1138)) (-5 *3 (-564)) (-5 *2 (-112))))) (((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 (-112) (-640 *1))) - (-4 *1 (-1065 *4 *5 *6 *3))))) -(((*1 *2 *2 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-735 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-858))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-112)) - (-4 *6 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-4 *3 (-13 (-27) (-1193) (-430 *6) (-10 -8 (-15 -2062 ($ *7))))) - (-4 *7 (-844)) - (-4 *8 - (-13 (-1235 *3 *7) (-363) (-1193) - (-10 -8 (-15 -1361 ($ $)) (-15 -3204 ($ $))))) - (-5 *2 - (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) - (-5 *1 (-422 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1151)) (-4 *9 (-979 *8)) - (-14 *10 (-1169))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 *5)) (-4 *5 (-172)) (-5 *1 (-136 *3 *4 *5)) - (-14 *3 (-563)) (-14 *4 (-767))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-1174))) (-5 *1 (-1174)))) + (-12 (-5 *2 (-641 *4)) (-5 *1 (-1135 *3 *4)) + (-4 *3 (-13 (-1094) (-34))) (-4 *4 (-13 (-1094) (-34)))))) +(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-768))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-751))))) +(((*1 *1 *2 *3) + (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-641 (-263))) (-5 *1 (-1261)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-1174))) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) + (-12 (-5 *2 (-1127 (-225))) (-5 *3 (-1152)) (-5 *1 (-1261)))) + ((*1 *1 *1) (-5 *1 (-1261)))) (((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) + (-12 (-4 *1 (-691 *3)) (-4 *3 (-1094)) + (-5 *2 (-641 (-2 (|:| -2423 *3) (|:| -3873 (-768)))))))) +(((*1 *2 *1) (-12 (-5 *1 (-1204 *2)) (-4 *2 (-971))))) +(((*1 *2 *3 *3) + (-12 (-4 *4 (-452)) (-4 *3 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-449 *4 *3 *5 *6)) (-4 *6 (-946 *4 *3 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-963 *3)) (-4 *3 (-964))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) + (-12 (-4 *3 (-13 (-556) (-847) (-1035 (-564)))) (-5 *1 (-188 *3 *2)) + (-4 *2 (-13 (-27) (-1194) (-430 (-169 *3)))))) + ((*1 *2 *2) + (-12 (-4 *3 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *1 (-1198 *3 *2)) (-4 *2 (-13 (-27) (-1194) (-430 *3)))))) +(((*1 *2 *2) (-12 (-5 *2 (-564)) (-5 *1 (-924))))) +(((*1 *2 *3 *4 *5) + (-12 (-5 *5 (-112)) (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4))))) + ((*1 *2 *3 *4) + (-12 (-4 *4 (-13 (-363) (-845))) (-5 *2 (-418 *3)) + (-5 *1 (-181 *4 *3)) (-4 *3 (-1235 (-169 *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) - (-5 *2 (-640 (-2 (|:| |val| (-112)) (|:| -1926 *1)))) - (-4 *1 (-1065 *4 *5 *6 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-733 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093)))) - ((*1 *1) (-12 (-5 *1 (-733 *2)) (-4 *2 (-1093))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) + (-12 (-4 *1 (-973 *4 *5 *6 *3)) (-4 *4 (-1046)) (-4 *5 (-790)) + (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)) (-4 *4 (-556)) + (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) +(((*1 *1) (-5 *1 (-144)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-112)) - (-4 *5 (-13 (-452) (-846) (-1034 (-563)) (-636 (-563)))) - (-5 *2 - (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1151)) (|:| |prob| (-1151)))))) - (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1193) (-430 *5))) - (-14 *6 (-1169)) (-14 *7 *3)))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-1151)) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-263)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1259))))) -(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-134))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1262)) (-5 *1 (-818))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-5 *2 (-112))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) -(((*1 *2 *2 *3) - (-12 (-4 *3 (-363)) (-5 *1 (-285 *3 *2)) (-4 *2 (-1248 *3))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1045)) - (-5 *1 (-849 *5 *2)) (-4 *2 (-848 *5))))) -(((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) - (-4 *1 (-1065 *4 *5 *6 *3))))) + (-12 (-5 *3 (-407 (-949 *5))) (-5 *4 (-1170)) + (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-316 *5))) + (-5 *1 (-1123 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-641 (-407 (-949 *5)))) (-5 *4 (-641 (-1170))) + (-4 *5 (-13 (-307) (-847) (-147))) (-5 *2 (-641 (-641 (-316 *5)))) + (-5 *1 (-1123 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *3 (-1232 *5 *4)) (-4 *4 (-817)) (-14 *5 (-1170)) + (-5 *2 (-641 *4)) (-5 *1 (-1108 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-326 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) - (-5 *2 (-767)))) - ((*1 *2 *1) - (-12 (-4 *1 (-382 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-1093)) - (-5 *2 (-767)))) - ((*1 *2 *1) - (-12 (-5 *2 (-767)) (-5 *1 (-731 *3 *4)) (-4 *3 (-1045)) - (-4 *4 (-722))))) -(((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) + (|partial| -12 (-5 *2 (-1056 (-1021 *3) (-1166 (-1021 *3)))) + (-5 *1 (-1021 *3)) (-4 *3 (-13 (-845) (-363) (-1019)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-846)) - (-5 *2 (-2 (|:| -2765 (-563)) (|:| |var| (-609 *1)))) - (-4 *1 (-430 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *1) (-12 (-4 *1 (-254 *3)) (-4 *3 (-1208)) (-5 *2 (-767)))) - ((*1 *2 *1) (-12 (-4 *1 (-302)) (-5 *2 (-767)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1045)) - (-4 *2 (-13 (-404) (-1034 *4) (-363) (-1193) (-284))) - (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1233 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-609 *3)) (-4 *3 (-846)))) - ((*1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858)))) - ((*1 *2 *1) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) -(((*1 *2 *1 *1) - (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-5 *2 (-112))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-3 *3 (-640 *1))) - (-4 *1 (-1065 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *6 (-555)) (-4 *2 (-945 *3 *5 *4)) - (-5 *1 (-728 *5 *4 *6 *2)) (-5 *3 (-407 (-948 *6))) (-4 *5 (-789)) - (-4 *4 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) + (-12 (-5 *2 (-407 (-949 *3))) (-5 *1 (-453 *3 *4 *5 *6)) + (-4 *3 (-556)) (-4 *3 (-172)) (-14 *4 (-918)) + (-14 *5 (-641 (-1170))) (-14 *6 (-1259 (-685 *3)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2212 *5) (|:| -2372 *5)))) + (-5 *1 (-804 *4 *5 *3 *6)) (-4 *3 (-652 *5)) + (-4 *6 (-652 (-407 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2212 *4) (|:| -2372 *4)))) + (-5 *1 (-804 *5 *4 *3 *6)) (-4 *3 (-652 *4)) + (-4 *6 (-652 (-407 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-4 *5 (-1235 *4)) (-5 *2 (-641 (-2 (|:| -2212 *5) (|:| -2372 *5)))) + (-5 *1 (-804 *4 *5 *6 *3)) (-4 *6 (-652 *5)) + (-4 *3 (-652 (-407 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-363) (-147) (-1035 (-407 (-564))))) + (-4 *4 (-1235 *5)) (-5 *2 (-641 (-2 (|:| -2212 *4) (|:| -2372 *4)))) + (-5 *1 (-804 *5 *4 *6 *3)) (-4 *6 (-652 *4)) + (-4 *3 (-652 (-407 *4)))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-418 *3)) (-4 *3 (-555)) (-5 *1 (-419 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1113)) (-5 *1 (-330))))) -(((*1 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *6))))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) - (-5 *4 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) - (-5 *4 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) - (-5 *4 (-316 (-563))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-169 (-379))))) - (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-563)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-169 (-379))))) - (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-563)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-169 (-379)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-379))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-563))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) - (-5 *4 (-316 (-689))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) - (-5 *4 (-316 (-694))) (-5 *1 (-330)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-948 (-563)))) - (-5 *4 (-316 (-696))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-689)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-694)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-316 (-696)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-689)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-694)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-316 (-696)))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-689))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-694))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1257 (-696))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-689))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-694))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-684 (-696))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-689))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-694))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-316 (-696))) (-5 *1 (-330)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1151)) (-5 *1 (-330)))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-5 *2 (-112))))) -(((*1 *2 *3) (-12 (-5 *2 (-407 (-563))) (-5 *1 (-560)) (-5 *3 (-563))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1168)) (-5 *1 (-330))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-778 *2)) (-4 *2 (-555)) (-4 *2 (-1045)))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-555)) (-5 *1 (-965 *3 *2)) (-4 *2 (-1233 *3)))) - ((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *2 (-555)))) - ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) - (-5 *2 (-640 (-2 (|:| |val| *3) (|:| -1926 *1)))) - (-4 *1 (-1065 *4 *5 *6 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1165 (-948 *6))) (-4 *6 (-555)) - (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) (-5 *1 (-728 *5 *4 *6 *2)) - (-4 *5 (-789)) - (-4 *4 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $)))))))) -(((*1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) -(((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-363)) (-4 *1 (-329 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1233 *4)) (-4 *4 (-1212)) - (-4 *1 (-342 *4 *3 *5)) (-4 *5 (-1233 (-407 *3))))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) - (-4 *1 (-367 *4)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-1257 *4)) (-5 *3 (-1257 *1)) (-4 *4 (-172)) - (-4 *1 (-370 *4 *5)) (-4 *5 (-1233 *4)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-409 *3 *4)) - (-4 *4 (-1233 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1257 *3)) (-4 *3 (-172)) (-4 *1 (-417 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-134))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1165 *1)) (-5 *4 (-1169)) (-4 *1 (-27)) - (-5 *2 (-640 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1165 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-948 *1)) (-4 *1 (-27)) (-5 *2 (-640 *1)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1169)) (-4 *4 (-13 (-846) (-555))) (-5 *2 (-640 *1)) - (-4 *1 (-29 *4)))) - ((*1 *2 *1) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *2 (-640 *1)) (-4 *1 (-29 *3))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) - (-5 *2 (-2 (|:| -3028 (-640 *6)) (|:| -1934 (-640 *6))))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-407 *5)) (-4 *4 (-1212)) (-4 *5 (-1233 *4)) - (-5 *1 (-148 *4 *5 *2)) (-4 *2 (-1233 *3)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1171 (-407 (-563)))) (-5 *2 (-407 (-563))) - (-5 *1 (-190)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-684 (-316 (-225)))) (-5 *3 (-640 (-1169))) - (-5 *4 (-1257 (-316 (-225)))) (-5 *1 (-205)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-294 *3))) (-4 *3 (-309 *3)) (-4 *3 (-1093)) - (-4 *3 (-1208)) (-5 *1 (-294 *3)))) + (-12 (-4 *3 (-38 (-407 (-564)))) (-5 *1 (-1252 *3 *2)) + (-4 *2 (-1250 *3))))) +(((*1 *2 *3) + (-12 + (-5 *3 + (-504 (-407 (-564)) (-240 *5 (-768)) (-861 *4) + (-247 *4 (-407 (-564))))) + (-14 *4 (-641 (-1170))) (-14 *5 (-768)) (-5 *2 (-112)) + (-5 *1 (-505 *4 *5))))) +(((*1 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262)))) + ((*1 *2 *2) (-12 (-5 *2 (-871)) (-5 *1 (-1262))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-504 *3 *4 *5 *6))) (-4 *3 (-363)) (-4 *4 (-790)) + (-4 *5 (-847)) (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-309 *2)) (-4 *2 (-1093)) (-4 *2 (-1208)) - (-5 *1 (-294 *2)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 (-640 *1)))) - (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 *1)) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-1 *1 (-640 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 (-640 *1)))) - (-4 *1 (-302)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-1 *1 *1))) (-4 *1 (-302)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-294 *3))) (-4 *1 (-309 *3)) (-4 *3 (-1093)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-294 *3)) (-4 *1 (-309 *3)) (-4 *3 (-1093)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-563))) (-5 *4 (-1171 (-407 (-563)))) - (-5 *1 (-310 *2)) (-4 *2 (-38 (-407 (-563)))))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *1)) (-4 *1 (-374 *4 *5)) - (-4 *4 (-846)) (-4 *5 (-172)))) - ((*1 *1 *1 *2 *1) - (-12 (-4 *1 (-374 *2 *3)) (-4 *2 (-846)) (-4 *3 (-172)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 *1)) - (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1169)) (-5 *3 (-767)) (-5 *4 (-1 *1 (-640 *1))) - (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-1045)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) - (-5 *4 (-640 (-1 *1 (-640 *1)))) (-4 *1 (-430 *5)) (-4 *5 (-846)) - (-4 *5 (-1045)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-640 (-1169))) (-5 *3 (-640 (-767))) - (-5 *4 (-640 (-1 *1 *1))) (-4 *1 (-430 *5)) (-4 *5 (-846)) - (-4 *5 (-1045)))) - ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-640 (-114))) (-5 *3 (-640 *1)) (-5 *4 (-1169)) - (-4 *1 (-430 *5)) (-4 *5 (-846)) (-4 *5 (-611 (-536))))) - ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-1169)) (-4 *1 (-430 *4)) (-4 *4 (-846)) - (-4 *4 (-611 (-536))))) - ((*1 *1 *1) - (-12 (-4 *1 (-430 *2)) (-4 *2 (-846)) (-4 *2 (-611 (-536))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 (-1169))) (-4 *1 (-430 *3)) (-4 *3 (-846)) - (-4 *3 (-611 (-536))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1169)) (-4 *1 (-430 *3)) (-4 *3 (-846)) - (-4 *3 (-611 (-536))))) - ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-514 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-1208)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 *5)) (-4 *1 (-514 *4 *5)) - (-4 *4 (-1093)) (-4 *5 (-1208)))) - ((*1 *2 *1 *2) - (-12 (-5 *2 (-829 *3)) (-4 *3 (-363)) (-5 *1 (-714 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-899 *2)) (-4 *2 (-1093)))) - ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-407 (-948 *4))) (-5 *3 (-1169)) (-4 *4 (-555)) - (-5 *1 (-1039 *4)))) - ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-640 (-1169))) (-5 *4 (-640 (-407 (-948 *5)))) - (-5 *2 (-407 (-948 *5))) (-4 *5 (-555)) (-5 *1 (-1039 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-294 (-407 (-948 *4)))) (-5 *2 (-407 (-948 *4))) - (-4 *4 (-555)) (-5 *1 (-1039 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-640 (-294 (-407 (-948 *4))))) (-5 *2 (-407 (-948 *4))) - (-4 *4 (-555)) (-5 *1 (-1039 *4)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-1045)) (-5 *1 (-1153 *3)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-1235 *3 *4)) (-4 *3 (-1045)) (-4 *4 (-788)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1149 *3))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-640 *1)) (-5 *3 (-640 *7)) (-4 *1 (-1065 *4 *5 *6 *7)) - (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)))) - ((*1 *2 *3 *1) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-1065 *4 *5 *6 *7)))) + (-12 (-4 *2 (-363)) (-4 *3 (-790)) (-4 *4 (-847)) + (-5 *1 (-504 *2 *3 *4 *5)) (-4 *5 (-946 *2 *3 *4)))) + ((*1 *2 *3 *2) + (-12 (-5 *2 (-641 *1)) (-4 *1 (-1066 *4 *5 *6 *3)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-4 *3 (-1060 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-640 *1)) (-4 *1 (-1065 *4 *5 *6 *3)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)))) + (-12 (-5 *2 (-641 *1)) (-5 *3 (-641 *7)) (-4 *1 (-1066 *4 *5 *6 *7)) + (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *7 (-1060 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-640 *1)) - (-4 *1 (-1065 *4 *5 *6 *3))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-858))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1165 *2)) (-4 *2 (-945 (-407 (-948 *6)) *5 *4)) - (-5 *1 (-728 *5 *4 *6 *2)) (-4 *5 (-789)) - (-4 *4 (-13 (-846) (-10 -8 (-15 -2802 ((-1169) $))))) - (-4 *6 (-555))))) -(((*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) - ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-132)) (-5 *3 (-767)) (-5 *2 (-1262))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) + (-12 (-5 *3 (-641 *7)) (-4 *7 (-1060 *4 *5 *6)) (-4 *4 (-452)) + (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-1066 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1165 *1)) (-5 *3 (-1169)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-948 *1)) (-4 *1 (-27)))) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) + (-4 *3 (-1060 *4 *5 *6)) (-5 *2 (-641 *1)) + (-4 *1 (-1066 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1092 *2)) (-4 *2 (-1094))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1152)) (-4 *1 (-389))))) +(((*1 *2 *1) (-12 (-4 *1 (-254 *2)) (-4 *2 (-1209))))) +(((*1 *1 *1 *1) (-4 *1 (-307))) ((*1 *1 *1 *1) (-5 *1 (-768))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *3 *2) + (-12 (-5 *1 (-675 *3 *2)) (-4 *3 (-1094)) (-4 *2 (-1094))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) + ((*1 *1 *1) + (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1046)) (-14 *3 (-641 (-1170))))) + ((*1 *1 *1) + (-12 (-5 *1 (-223 *2 *3)) (-4 *2 (-13 (-1046) (-847))) + (-14 *3 (-641 (-1170))))) + ((*1 *1 *1) + (-12 (-4 *1 (-382 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-1094)))) + ((*1 *1 *1) + (-12 (-14 *2 (-641 (-1170))) (-4 *3 (-172)) + (-4 *5 (-238 (-2641 *2) (-768))) + (-14 *6 + (-1 (-112) (-2 (|:| -1495 *4) (|:| -2515 *5)) + (-2 (|:| -1495 *4) (|:| -2515 *5)))) + (-5 *1 (-461 *2 *3 *4 *5 *6 *7)) (-4 *4 (-847)) + (-4 *7 (-946 *3 *5 (-861 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-847)))) + ((*1 *1 *1) + (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) + ((*1 *1 *1) + (-12 (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1046)) + (-4 *3 (-723)))) + ((*1 *1 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1169)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-846) (-555))))) - ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-846) (-555)))))) -(((*1 *2 *3 *1) - (-12 (-4 *1 (-972 *4 *5 *6 *3)) (-4 *4 (-1045)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-4 *4 (-555)) - (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) -(((*1 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *1 *1) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-1093)) (-4 *3 (-23)) - (-14 *4 *3))) - ((*1 *1 *1 *1) - (-12 (-5 *1 (-670 *2)) (-4 *2 (-1045)) (-4 *2 (-1093))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *3) (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *2)) (-4 *2 (-172)))) - ((*1 *2) (-12 (-4 *2 (-172)) (-5 *1 (-416 *3 *2)) (-4 *3 (-417 *2)))) - ((*1 *2) (-12 (-4 *1 (-417 *2)) (-4 *2 (-172))))) -(((*1 *1 *1 *1) (|partial| -4 *1 (-131)))) -(((*1 *2 *1) (-12 (-5 *2 (-1097)) (-5 *1 (-52))))) + (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)))) + ((*1 *1 *1) + (-12 (-5 *1 (-1282 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-843))))) +(((*1 *2) + (-12 (-5 *2 (-1264)) (-5 *1 (-1186 *3 *4)) (-4 *3 (-1094)) + (-4 *4 (-1094))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-112)))) - ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-112) *3 *3)) (-4 *1 (-1201 *5 *6 *7 *3)) - (-4 *5 (-555)) (-4 *6 (-789)) (-4 *7 (-846)) - (-4 *3 (-1059 *5 *6 *7)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *1) - (-12 (-4 *1 (-253 *2 *3 *4 *5)) (-4 *2 (-1045)) (-4 *3 (-846)) - (-4 *4 (-266 *3)) (-4 *5 (-789))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) - (-4 *3 (-555))))) -(((*1 *2 *3) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-560)) (-5 *3 (-563))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) + (-12 (-5 *3 (-564)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1209)) + (-4 *5 (-373 *4)) (-4 *2 (-373 *4)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-564)) (-4 *1 (-1049 *4 *5 *6 *7 *2)) (-4 *6 (-1046)) + (-4 *7 (-238 *5 *6)) (-4 *2 (-238 *4 *6))))) (((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) -(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) - ((*1 *1 *1 *1) (-5 *1 (-858)))) + (-12 (-5 *2 (-641 *6)) (-4 *6 (-1060 *3 *4 *5)) (-4 *3 (-556)) + (-4 *4 (-790)) (-4 *5 (-847)) (-5 *1 (-974 *3 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-684 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3))))) -(((*1 *1) (-5 *1 (-130)))) + (-12 (-4 *4 (-847)) (-5 *2 (-641 (-641 (-641 *4)))) + (-5 *1 (-1180 *4)) (-5 *3 (-641 (-641 *4)))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-1 (-112) *9)) (-5 *5 (-1 (-112) *9 *9)) + (-4 *9 (-1060 *6 *7 *8)) (-4 *6 (-556)) (-4 *7 (-790)) + (-4 *8 (-847)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2519 (-641 *9)))) + (-5 *3 (-641 *9)) (-4 *1 (-1202 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-1 (-112) *8 *8)) (-4 *8 (-1060 *5 *6 *7)) + (-4 *5 (-556)) (-4 *6 (-790)) (-4 *7 (-847)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -2519 (-641 *8)))) + (-5 *3 (-641 *8)) (-4 *1 (-1202 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *2) (|partial| -12 (-5 *2 (-316 (-225))) (-5 *1 (-305)))) - ((*1 *2 *1) - (|partial| -12 - (-5 *2 (-2 (|:| |num| (-888 *3)) (|:| |den| (-888 *3)))) - (-5 *1 (-888 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2 *1) - (-12 (-5 *2 (-640 *6)) (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) - (-4 *3 (-555))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-640 *2)) (-5 *1 (-179 *2)) (-4 *2 (-307)))) - ((*1 *2 *3 *2) - (-12 (-5 *3 (-640 (-640 *4))) (-5 *2 (-640 *4)) (-4 *4 (-307)) - (-5 *1 (-179 *4)))) - ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-640 *8)) - (-5 *4 - (-640 - (-2 (|:| -3288 (-684 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-684 *7))))) - (-5 *5 (-767)) (-4 *8 (-1233 *7)) (-4 *7 (-1233 *6)) (-4 *6 (-349)) + (-12 (-5 *2 (-641 (-1195 *3))) (-5 *1 (-1195 *3)) (-4 *3 (-1094))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-840 *3))) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 - (-2 (|:| -3288 (-684 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-684 *7)))) - (-5 *1 (-498 *6 *7 *8)))) - ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-563)) (-5 *1 (-560))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-307)) (-4 *5 (-373 *4)) (-4 *6 (-373 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) - (-5 *1 (-1117 *4 *5 *6 *3)) (-4 *3 (-682 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-684 *4)))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-684 *4)) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) -(((*1 *2 *1) - (-12 (-4 *1 (-972 *3 *4 *5 *6)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *3 (-555)) - (-5 *2 (-112))))) -(((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-609 *4)) (-5 *6 (-1165 *4)) - (-4 *4 (-13 (-430 *7) (-27) (-1193))) - (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-3 (-840 *3) + (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) + (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) + "failed")) + (-5 *1 (-634 *5 *3)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-294 *3)) (-5 *5 (-1152)) + (-4 *3 (-13 (-27) (-1194) (-430 *6))) + (-4 *6 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) + (-5 *2 (-840 *3)) (-5 *1 (-634 *6 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-840 (-949 *5)))) (-4 *5 (-452)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) - (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093)))) - ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-609 *4)) (-5 *6 (-407 (-1165 *4))) - (-4 *4 (-13 (-430 *7) (-27) (-1193))) - (-4 *7 (-13 (-452) (-1034 (-563)) (-846) (-147) (-636 (-563)))) + (-3 (-840 (-407 (-949 *5))) + (-2 (|:| |leftHandLimit| (-3 (-840 (-407 (-949 *5))) "failed")) + (|:| |rightHandLimit| (-3 (-840 (-407 (-949 *5))) "failed"))) + "failed")) + (-5 *1 (-635 *5)) (-5 *3 (-407 (-949 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-294 (-407 (-949 *5)))) (-5 *3 (-407 (-949 *5))) + (-4 *5 (-452)) (-5 *2 - (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3288 (-640 *4)))) - (-5 *1 (-559 *7 *4 *3)) (-4 *3 (-651 *4)) (-4 *3 (-1093))))) + (-3 (-840 *3) + (-2 (|:| |leftHandLimit| (-3 (-840 *3) "failed")) + (|:| |rightHandLimit| (-3 (-840 *3) "failed"))) + "failed")) + (-5 *1 (-635 *5)))) + ((*1 *2 *3 *4 *5) + (|partial| -12 (-5 *4 (-294 (-407 (-949 *6)))) (-5 *5 (-1152)) + (-5 *3 (-407 (-949 *6))) (-4 *6 (-452)) (-5 *2 (-840 *3)) + (-5 *1 (-635 *6))))) +(((*1 *1 *1) + (-12 (-4 *2 (-307)) (-4 *3 (-989 *2)) (-4 *4 (-1235 *3)) + (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1035 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-1165 (-563))) (-5 *1 (-938)) (-5 *3 (-563)))) + (-12 (-4 *3 (-13 (-847) (-452))) (-5 *1 (-1200 *3 *2)) + (-4 *2 (-13 (-430 *3) (-1194)))))) +(((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-816 *3)) (|:| |rm| (-816 *3)))) + (-5 *1 (-816 *3)) (-4 *3 (-847)))) + ((*1 *1 *1 *1) (-5 *1 (-859)))) +(((*1 *2 *2 *3) + (-12 (-5 *1 (-675 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *2 *3) (-12 (-5 *3 (-768)) (-5 *2 (-1 (-379))) (-5 *1 (-1037))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1046)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-641 *1)) + (-4 *1 (-946 *3 *4 *5))))) +(((*1 *2 *3 *3) + (-12 (-5 *2 (-1150 (-641 (-564)))) (-5 *1 (-880)) + (-5 *3 (-641 (-564)))))) +(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) + (-12 (-5 *3 (-1152)) (-5 *4 (-564)) (-5 *5 (-685 (-169 (-225)))) + (-5 *2 (-1032)) (-5 *1 (-751))))) +(((*1 *2 *2 *2) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) + ((*1 *2 *2 *2) + (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-307)) (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) - (-5 *1 (-1117 *3 *4 *5 *2)) (-4 *2 (-682 *3 *4 *5))))) -(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-684 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3))))) -(((*1 *1) (-5 *1 (-130)))) -(((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1093)) (-4 *4 (-1093)) - (-5 *2 (-2 (|:| -3320 *3) (|:| -3704 *4)))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-640 *1)) (-4 *1 (-1059 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-112)))) - ((*1 *2 *1 *1) - (-12 (-4 *1 (-1059 *3 *4 *5)) (-4 *3 (-1045)) (-4 *4 (-789)) - (-4 *5 (-846)) (-5 *2 (-112)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-112)))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-1201 *4 *5 *6 *3)) (-4 *4 (-555)) (-4 *5 (-789)) - (-4 *6 (-846)) (-4 *3 (-1059 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1) (-5 *1 (-144))) ((*1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-767)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-4 *2 (-1045)) (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *2 *1) (-12 (-4 *1 (-244 *2)) (-4 *2 (-1208)))) - ((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-1089)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-1245 *3)) (-4 *3 (-1208)))) - ((*1 *2 *1) (-12 (-4 *1 (-1245 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-684 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-684 *3))))) + (-12 (-5 *2 (-685 *3)) (-4 *3 (-1046)) (-5 *1 (-1025 *3)))) + ((*1 *2 *2) + (-12 (-5 *2 (-641 (-685 *3))) (-4 *3 (-1046)) (-5 *1 (-1025 *3))))) +(((*1 *1 *1) + (-12 (-5 *1 (-594 *2)) (-4 *2 (-38 (-407 (-564)))) (-4 *2 (-1046))))) +(((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-940 (-225))) (-5 *4 (-871)) (-5 *5 (-918)) + (-5 *2 (-1264)) (-5 *1 (-468)))) + ((*1 *2 *1 *3) + (-12 (-5 *3 (-940 (-225))) (-5 *2 (-1264)) (-5 *1 (-468)))) + ((*1 *2 *1 *3 *4 *4 *5) + (-12 (-5 *3 (-641 (-940 (-225)))) (-5 *4 (-871)) (-5 *5 (-918)) + (-5 *2 (-1264)) (-5 *1 (-468))))) (((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1169)) - (|:| |arrayIndex| (-640 (-948 (-563)))) + (-2 (|:| |var| (-1170)) + (|:| |arrayIndex| (-641 (-949 (-564)))) (|:| |rand| - (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) + (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1169)) (|:| |rand| (-858)) + (-2 (|:| |var| (-1170)) (|:| |rand| (-859)) (|:| |ints2Floats?| (-112)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1168)) (|:| |thenClause| (-330)) + (-2 (|:| |switch| (-1169)) (|:| |thenClause| (-330)) (|:| |elseClause| (-330)))) (|:| |returnBranch| - (-2 (|:| -2820 (-112)) - (|:| -3556 - (-2 (|:| |ints2Floats?| (-112)) (|:| -3999 (-858)))))) - (|:| |blockBranch| (-640 (-330))) - (|:| |commentBranch| (-640 (-1151))) (|:| |callBranch| (-1151)) + (-2 (|:| -4003 (-112)) + (|:| -3426 + (-2 (|:| |ints2Floats?| (-112)) (|:| -3808 (-859)))))) + (|:| |blockBranch| (-641 (-330))) + (|:| |commentBranch| (-641 (-1152))) (|:| |callBranch| (-1152)) (|:| |forBranch| - (-2 (|:| -2244 (-1085 (-948 (-563)))) - (|:| |span| (-948 (-563))) (|:| -3373 (-330)))) - (|:| |labelBranch| (-1113)) - (|:| |loopBranch| (-2 (|:| |switch| (-1168)) (|:| -3373 (-330)))) + (-2 (|:| -3089 (-1086 (-949 (-564)))) + (|:| |span| (-949 (-564))) (|:| -4337 (-330)))) + (|:| |labelBranch| (-1114)) + (|:| |loopBranch| (-2 (|:| |switch| (-1169)) (|:| -4337 (-330)))) (|:| |commonBranch| - (-2 (|:| -3359 (-1169)) (|:| |contents| (-640 (-1169))))) - (|:| |printBranch| (-640 (-858))))) + (-2 (|:| -4324 (-1170)) (|:| |contents| (-641 (-1170))))) + (|:| |printBranch| (-641 (-859))))) (-5 *1 (-330))))) -(((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-112) *7 (-640 *7))) (-4 *1 (-1201 *4 *5 *6 *7)) - (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) (-5 *2 (-112))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) - ((*1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *1) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) -(((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4409)) (-4 *1 (-601 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-1208)) (-5 *2 (-1262))))) -(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) -(((*1 *2 *1) (-12 (-5 *2 (-1128)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-404)) (-5 *2 (-917)))) ((*1 *1) (-4 *1 (-545))) - ((*1 *2 *2) (-12 (-5 *2 (-917)) (-5 *1 (-694)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-900 *3)) (-4 *3 (-1093))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 *1)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1045)) (-4 *1 (-682 *3 *4 *5)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 *3)) (-4 *3 (-1045)) (-5 *1 (-684 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-640 *4)) (-4 *4 (-1045)) (-4 *1 (-1116 *3 *4 *5 *6)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *2) - (-12 (-5 *2 (-413 *3 *4 *5 *6)) (-4 *6 (-1034 *4)) (-4 *3 (-307)) - (-4 *4 (-988 *3)) (-4 *5 (-1233 *4)) (-4 *6 (-409 *4 *5)) - (-14 *7 (-1257 *6)) (-5 *1 (-414 *3 *4 *5 *6 *7)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 *6)) (-4 *6 (-409 *4 *5)) (-4 *4 (-988 *3)) - (-4 *5 (-1233 *4)) (-4 *3 (-307)) (-5 *1 (-414 *3 *4 *5 *6 *7)) - (-14 *7 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) -(((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-640 *8)) (-5 *3 (-1 *8 *8 *8)) - (-5 *4 (-1 (-112) *8 *8)) (-4 *1 (-1201 *5 *6 *7 *8)) (-4 *5 (-555)) - (-4 *6 (-789)) (-4 *7 (-846)) (-4 *8 (-1059 *5 *6 *7))))) -(((*1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) -(((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-640 (-609 *2))) (-5 *4 (-640 (-1169))) - (-4 *2 (-13 (-430 (-169 *5)) (-998) (-1193))) - (-4 *5 (-13 (-555) (-846))) (-5 *1 (-597 *5 *6 *2)) - (-4 *6 (-13 (-430 *5) (-998) (-1193)))))) +(((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-468)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1260)))) + ((*1 *2 *1) (-12 (-5 *2 (-564)) (-5 *1 (-1261))))) +(((*1 *1 *1 *1) (-4 *1 (-545)))) (((*1 *2 *1) - (-12 (-4 *1 (-1127 *3)) (-4 *3 (-1045)) + (-12 (-4 *1 (-1097 *3 *4 *5 *6 *7)) (-4 *3 (-1094)) (-4 *4 (-1094)) + (-4 *5 (-1094)) (-4 *6 (-1094)) (-4 *7 (-1094)) (-5 *2 (-112))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-112)) + (-4 *5 (-13 (-452) (-847) (-1035 (-564)) (-637 (-564)))) (-5 *2 - (-2 (|:| -2276 (-767)) (|:| |curves| (-767)) - (|:| |polygons| (-767)) (|:| |constructs| (-767))))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-563))) (-4 *4 (-1034 (-563))) - (-4 *4 (-13 (-846) (-555))) (-5 *1 (-32 *4 *2)) (-4 *2 (-430 *4)))) - ((*1 *1 *1 *1) (-5 *1 (-134))) - ((*1 *2 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-158 *3 *2)) - (-4 *2 (-430 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-225))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-243)) (-5 *2 (-563)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) - (-4 *5 (-1248 *4)) (-5 *1 (-278 *4 *5 *2)) (-4 *2 (-1219 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *3 (-407 (-563))) (-4 *4 (-363)) (-4 *4 (-38 *3)) - (-4 *5 (-1217 *4)) (-5 *1 (-279 *4 *5 *2 *6)) (-4 *2 (-1240 *4 *5)) - (-4 *6 (-979 *5)))) - ((*1 *1 *1 *1) (-4 *1 (-284))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-563)) (-5 *1 (-361 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *1) (-5 *1 (-379))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-386 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-430 *3)) (-4 *3 (-846)) (-4 *3 (-1105)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-473)) (-5 *2 (-563)))) + (-3 (|:| |%expansion| (-313 *5 *3 *6 *7)) + (|:| |%problem| (-2 (|:| |func| (-1152)) (|:| |prob| (-1152)))))) + (-5 *1 (-420 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1194) (-430 *5))) + (-14 *6 (-1170)) (-14 *7 *3)))) +(((*1 *1 *1 *2) + (-12 (-5 *2 (-768)) (-5 *1 (-1158 *3 *4)) (-14 *3 (-918)) + (-4 *4 (-1046))))) +(((*1 *1 *1) (-4 *1 (-173))) + ((*1 *1 *1) + (-12 (-4 *1 (-364 *2 *3)) (-4 *2 (-1094)) (-4 *3 (-1094))))) +(((*1 *1 *1 *2) + (|partial| -12 (-4 *1 (-166 *2)) (-4 *2 (-172)) (-4 *2 (-556)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *3 (-363)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-945 *3 *4 *5)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1257 *4)) (-5 *3 (-563)) (-4 *4 (-349)) - (-5 *1 (-528 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-536)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-536)))) - ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *4 (-1093)) - (-5 *1 (-677 *4)))) + (|partial| -12 (-4 *1 (-326 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)) + (-4 *2 (-556)))) + ((*1 *1 *1 *1) (|partial| -4 *1 (-556))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)) (-4 *3 (-363)))) + (|partial| -12 (-4 *1 (-683 *2 *3 *4)) (-4 *2 (-1046)) + (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) (-4 *2 (-556)))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-768))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *1 (-682 *3 *4 *5)) (-4 *3 (-1045)) - (-4 *4 (-373 *3)) (-4 *5 (-373 *3)))) + (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-556)))) + ((*1 *1 *1 *1) (-5 *1 (-859))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-684 *4)) (-5 *3 (-767)) (-4 *4 (-1045)) - (-5 *1 (-685 *4)))) + (-12 (-5 *2 (-1259 *4)) (-4 *4 (-1235 *3)) (-4 *3 (-556)) + (-5 *1 (-966 *3 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-4 *3 (-1045)) (-5 *1 (-710 *3 *4)) - (-4 *4 (-643 *3)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-4 *4 (-1045)) - (-5 *1 (-710 *4 *5)) (-4 *5 (-643 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-716)) (-5 *2 (-917)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-718)) (-5 *2 (-767)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-722)) (-5 *2 (-767)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-767)) (-5 *1 (-815 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-832 *3)) (-4 *3 (-1045)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *3 (-563)) (-5 *1 (-832 *4)) (-4 *4 (-1045)))) - ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-888 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-888 *3)) (-4 *3 (-1093)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-407 (-563))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1105)) (-5 *2 (-917)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-563)) (-4 *1 (-1116 *3 *4 *5 *6)) (-4 *4 (-1045)) - (-4 *5 (-238 *3 *4)) (-4 *6 (-238 *3 *4)) (-4 *4 (-363)))) + (|partial| -12 (-4 *1 (-1049 *3 *4 *2 *5 *6)) (-4 *2 (-1046)) + (-4 *5 (-238 *4 *2)) (-4 *6 (-238 *3 *2)) (-4 *2 (-556)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1154 *3)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1149 *3)) (-4 *3 (-38 (-407 (-563)))) - (-5 *1 (-1155 *3)))) - ((*1 *1 *1 *2) - (-12 (-4 *1 (-1248 *2)) (-4 *2 (-1045)) (-4 *2 (-363))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *4 *2 *5)) (-4 *4 (-1045)) (-4 *5 (-238 *3 *4)) - (-4 *2 (-238 *3 *4))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4408)) (-4 *1 (-151 *2)) (-4 *2 (-1208)) - (-4 *2 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (|has| *1 (-6 -4408)) (-4 *1 (-151 *3)) - (-4 *3 (-1208)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-112) *3)) (-4 *1 (-669 *3)) (-4 *3 (-1208)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-112) *4)) (-5 *3 (-563)) (-4 *4 (-1093)) - (-5 *1 (-733 *4)))) - ((*1 *1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-5 *1 (-733 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2 *1) - (-12 (-5 *2 (-1133 *3 *4)) (-4 *3 (-13 (-1093) (-34))) - (-4 *4 (-13 (-1093) (-34))) (-5 *1 (-1134 *3 *4))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *1) - (-12 (-4 *2 (-307)) (-4 *3 (-988 *2)) (-4 *4 (-1233 *3)) - (-5 *1 (-413 *2 *3 *4 *5)) (-4 *5 (-13 (-409 *3 *4) (-1034 *3)))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-128))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) -(((*1 *1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *2 *2) - (-12 (-5 *2 (-640 (-563))) (-5 *1 (-1000 *3)) (-14 *3 (-563))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846))) (-5 *2 (-169 *5)) - (-5 *1 (-597 *4 *5 *3)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) - (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-684 *2)) (-4 *4 (-1233 *2)) - (-4 *2 (-13 (-307) (-10 -8 (-15 -2102 ((-418 $) $))))) - (-5 *1 (-499 *2 *4 *5)) (-4 *5 (-409 *2 *4)))) + (|partial| -12 (-5 *2 (-1150 *3)) (-4 *3 (-1046)) (-5 *1 (-1154 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-129))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-858))) ((*1 *1 *1 *1) (-5 *1 (-858))) - ((*1 *1 *1) (-5 *1 (-858)))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-418 *5)) (-4 *5 (-555)) - (-5 *2 - (-2 (|:| -2631 (-767)) (|:| -2765 *5) (|:| |radicand| (-640 *5)))) - (-5 *1 (-320 *5)) (-5 *4 (-767)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-998)) (-5 *2 (-563))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846))) - (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) - (-5 *1 (-597 *4 *3 *2)) (-4 *3 (-13 (-430 *4) (-998) (-1193)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-363)) - (-5 *1 (-521 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) + (-12 (-4 *2 (-1046)) (-5 *1 (-50 *2 *3)) (-14 *3 (-641 (-1170))))) ((*1 *2 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) - (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) - ((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) - (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) + (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) + (-4 *3 (-13 (-1046) (-847))) (-14 *4 (-641 (-1170))))) ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045))))) -(((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) - (-4 *3 (-1233 (-407 *4)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093)))) - ((*1 *1 *2) (-12 (-5 *1 (-127 *2)) (-4 *2 (-1093))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-1059 *2 *3 *4)) (-4 *2 (-1045)) (-4 *3 (-789)) - (-4 *4 (-846)))) - ((*1 *2 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) - ((*1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-1093)) (-5 *1 (-996 *3))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-555) (-846))) - (-4 *2 (-13 (-430 *4) (-998) (-1193))) (-5 *1 (-597 *4 *2 *3)) - (-4 *3 (-13 (-430 (-169 *4)) (-998) (-1193)))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *1) - (-12 (-4 *1 (-682 *2 *3 *4)) (-4 *3 (-373 *2)) (-4 *4 (-373 *2)) - (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045)))) - ((*1 *2 *3) - (-12 (-4 *4 (-373 *2)) (-4 *5 (-373 *2)) (-4 *2 (-172)) - (-5 *1 (-683 *2 *4 *5 *3)) (-4 *3 (-682 *2 *4 *5)))) + (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1094)) (-4 *2 (-1046)))) ((*1 *2 *1) - (-12 (-4 *1 (-1116 *3 *2 *4 *5)) (-4 *4 (-238 *3 *2)) - (-4 *5 (-238 *3 *2)) (|has| *2 (-6 (-4410 "*"))) (-4 *2 (-1045))))) -(((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-684 (-225))) (-5 *4 (-563)) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563))))) - (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *5)) - (-4 *5 (-1233 (-407 *4)))))) -(((*1 *2) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *3 *2) - (-12 (-5 *2 (-640 (-379))) (-5 *3 (-640 (-263))) (-5 *1 (-261)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 (-379))) (-5 *1 (-468)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-870)) (-5 *2 (-1262)) (-5 *1 (-1258)))) - ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-917)) (-5 *4 (-1151)) (-5 *2 (-1262)) (-5 *1 (-1258))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *3)) (-4 *3 (-846)) (-5 *1 (-126 *3))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 *1)) (-4 *1 (-302)))) - ((*1 *1 *1) (-4 *1 (-302))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858)))) - ((*1 *1 *1) (-5 *1 (-858)))) -(((*1 *1 *1) (-12 (-4 *1 (-166 *2)) (-4 *2 (-172)))) - ((*1 *1 *1 *1) (-4 *1 (-473))) - ((*1 *1 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) - ((*1 *2 *2) (-12 (-5 *2 (-640 (-563))) (-5 *1 (-879)))) - ((*1 *1 *1) (-5 *1 (-967))) - ((*1 *1 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) -(((*1 *2 *3) - (-12 (-5 *3 (-169 *5)) (-4 *5 (-13 (-430 *4) (-998) (-1193))) - (-4 *4 (-13 (-555) (-846))) - (-4 *2 (-13 (-430 (-169 *4)) (-998) (-1193))) - (-5 *1 (-597 *4 *5 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-218)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-439)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-834)))) - ((*1 *2 *1) (-12 (-5 *2 (-1111)) (-5 *1 (-1108)))) - ((*1 *1 *2 *3) - (-12 (-5 *2 (-640 (-1174))) (-5 *3 (-1174)) (-5 *1 (-1111))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-846) (-555))) (-5 *1 (-276 *3 *2)) - (-4 *2 (-13 (-430 *3) (-998)))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-751))))) -(((*1 *2 *3) - (-12 (-4 *3 (-1233 (-407 (-563)))) - (-5 *2 (-2 (|:| |den| (-563)) (|:| |gcdnum| (-563)))) - (-5 *1 (-909 *3 *4)) (-4 *4 (-1233 (-407 *3))))) - ((*1 *2 *3) - (-12 (-4 *4 (-1233 (-407 *2))) (-5 *2 (-563)) (-5 *1 (-909 *4 *3)) - (-4 *3 (-1233 (-407 *4)))))) -(((*1 *2 *1 *1) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *1 *1 *1) (-5 *1 (-112))) ((*1 *1 *1 *1) (-4 *1 (-123)))) -(((*1 *1 *1) - (-12 (-4 *1 (-1201 *2 *3 *4 *5)) (-4 *2 (-555)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *5 (-1059 *2 *3 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) -(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) -(((*1 *1 *2 *3) - (-12 (-5 *2 (-1022 (-839 (-563)))) - (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *4)))) (-4 *4 (-1045)) - (-5 *1 (-593 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) - (-5 *2 (-1031)) (-5 *1 (-750))))) -(((*1 *2 *3) - (-12 (-5 *3 (-563)) (-4 *4 (-1233 (-407 *3))) (-5 *2 (-917)) - (-5 *1 (-909 *4 *5)) (-4 *5 (-1233 (-407 *4)))))) -(((*1 *2) - (-12 (-5 *2 (-407 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3)))))) -(((*1 *2 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) -(((*1 *2 *3) - (-12 (-5 *3 (-640 (-1151))) (-5 *2 (-1151)) (-5 *1 (-192)))) - ((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) -(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1022 (-839 (-563)))) (-5 *1 (-593 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-767)) (-4 *1 (-231 *4)) - (-4 *4 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-231 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-233)) (-5 *2 (-767)))) - ((*1 *1 *1) (-4 *1 (-233))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-4 *1 (-266 *3)) (-4 *3 (-846)))) - ((*1 *1 *1) (-12 (-4 *1 (-266 *2)) (-4 *2 (-846)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1212)) - (-4 *4 (-1233 *3)) (-4 *5 (-1233 (-407 *4))))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-767)) (-4 *3 (-13 (-363) (-147))) (-5 *1 (-399 *3 *4)) - (-4 *4 (-1233 *3)))) - ((*1 *1 *1) - (-12 (-4 *2 (-13 (-363) (-147))) (-5 *1 (-399 *2 *3)) - (-4 *3 (-1233 *2)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-474 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-363)) (-4 *2 (-896 *3)) (-5 *1 (-584 *2)) - (-5 *3 (-1169)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-584 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-767)) (-5 *1 (-858)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *4)) (-5 *3 (-640 (-767))) (-4 *1 (-896 *4)) - (-4 *4 (-1093)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-896 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *1 (-896 *3)) (-4 *3 (-1093)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-896 *2)) (-4 *2 (-1093)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1160 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1166 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1167 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1221 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) - ((*1 *1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1233 *3)) (-4 *3 (-1045)))) - ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1242 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3))) + (-12 (-14 *3 (-641 (-1170))) (-4 *5 (-238 (-2641 *3) (-768))) + (-14 *6 + (-1 (-112) (-2 (|:| -1495 *4) (|:| -2515 *5)) + (-2 (|:| -1495 *4) (|:| -2515 *5)))) + (-4 *2 (-172)) (-5 *1 (-461 *3 *2 *4 *5 *6 *7)) (-4 *4 (-847)) + (-4 *7 (-946 *2 *5 (-861 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-509 *2 *3)) (-4 *3 (-847)) (-4 *2 (-1094)))) + ((*1 *2 *1) + (-12 (-4 *2 (-556)) (-5 *1 (-621 *2 *3)) (-4 *3 (-1235 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-705 *2)) (-4 *2 (-1046)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1046)) (-5 *1 (-732 *2 *3)) (-4 *3 (-847)) + (-4 *3 (-723)))) + ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1046)))) + ((*1 *2 *1) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *3 (-789)) (-4 *4 (-847)) + (-4 *2 (-1046)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1253 *4)) (-14 *4 (-1169)) (-5 *1 (-1249 *3 *4 *5)) - (-4 *3 (-1045)) (-14 *5 *3)))) -(((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4)) (-4 *3 (-1093)) - (-4 *4 (-131))))) + (-12 (-4 *1 (-1060 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-837)) (-5 *4 (-1057)) (-5 *2 (-1031)) (-5 *1 (-836)))) - ((*1 *2 *3) (-12 (-5 *3 (-837)) (-5 *2 (-1031)) (-5 *1 (-836)))) - ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-640 (-379))) (-5 *5 (-640 (-839 (-379)))) - (-5 *6 (-640 (-316 (-379)))) (-5 *3 (-316 (-379))) (-5 *2 (-1031)) - (-5 *1 (-836)))) - ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) - (-5 *5 (-640 (-839 (-379)))) (-5 *2 (-1031)) (-5 *1 (-836)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-379))) (-5 *4 (-640 (-379))) (-5 *2 (-1031)) - (-5 *1 (-836)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-316 (-379)))) (-5 *4 (-640 (-379))) - (-5 *2 (-1031)) (-5 *1 (-836))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-506)) (-5 *3 (-1111)) (-5 *1 (-1108))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-169 (-225)))) - (-5 *2 (-1031)) (-5 *1 (-750))))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1235 *6)) + (-4 *6 (-13 (-27) (-430 *5))) + (-4 *5 (-13 (-847) (-556) (-1035 (-564)))) (-4 *8 (-1235 (-407 *7))) + (-5 *2 (-585 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) + (-4 *3 (-342 *6 *7 *8))))) +(((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1935 *1) (|:| -1363 *1))) (-4 *1 (-307)))) + ((*1 *2 *1 *1) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-386 *3)) (|:| |rm| (-386 *3)))) + (-5 *1 (-386 *3)) (-4 *3 (-1094)))) + ((*1 *2 *1 *1) + (-12 (-5 *2 (-2 (|:| -1935 (-768)) (|:| -1363 (-768)))) + (-5 *1 (-768)))) + ((*1 *2 *3 *3) + (-12 (-4 *4 (-556)) (-5 *2 (-2 (|:| -1935 *3) (|:| -1363 *3))) + (-5 *1 (-966 *4 *3)) (-4 *3 (-1235 *4))))) +(((*1 *2 *3 *4 *3) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1235 *5)) (-4 *5 (-363)) + (-5 *2 (-2 (|:| -2118 (-407 *6)) (|:| |coeff| (-407 *6)))) + (-5 *1 (-574 *5 *6)) (-5 *3 (-407 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-923))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) - (-4 *6 (-1233 *5)) (-4 *7 (-1233 (-407 *6))) - (-4 *8 (-342 *5 *6 *7)) - (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) - (-5 *2 (-2 (|:| -2903 (-767)) (|:| -2729 *8))) - (-5 *1 (-907 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (|partial| -12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) - (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) - (-4 *6 (-342 (-407 (-563)) *4 *5)) - (-5 *2 (-2 (|:| -2903 (-767)) (|:| -2729 *6))) - (-5 *1 (-908 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 *1)) (-4 *1 (-367 *4)) (-4 *4 (-172)) - (-5 *2 (-640 (-948 *4))))) - ((*1 *2) - (-12 (-4 *4 (-172)) (-5 *2 (-640 (-948 *4))) (-5 *1 (-416 *3 *4)) - (-4 *3 (-417 *4)))) - ((*1 *2) - (-12 (-4 *1 (-417 *3)) (-4 *3 (-172)) (-5 *2 (-640 (-948 *3))))) - ((*1 *2) - (-12 (-5 *2 (-640 (-948 *3))) (-5 *1 (-453 *3 *4 *5 *6)) - (-4 *3 (-555)) (-4 *3 (-172)) (-14 *4 (-917)) - (-14 *5 (-640 (-1169))) (-14 *6 (-1257 (-684 *3))))) + (-12 (-5 *3 (-564)) (|has| *1 (-6 -4402)) (-4 *1 (-404)) + (-5 *2 (-918))))) +(((*1 *1 *2) (-12 (-5 *2 (-157)) (-5 *1 (-871))))) +(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-112)))) ((*1 *2 *3) - (-12 (-5 *3 (-1257 (-453 *4 *5 *6 *7))) (-5 *2 (-640 (-948 *4))) - (-5 *1 (-453 *4 *5 *6 *7)) (-4 *4 (-555)) (-4 *4 (-172)) - (-14 *5 (-917)) (-14 *6 (-640 (-1169))) (-14 *7 (-1257 (-684 *4)))))) + (-12 (-5 *3 (-1166 *4)) (-4 *4 (-349)) (-5 *2 (-112)) + (-5 *1 (-357 *4))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1151)) (-5 *2 (-770)) (-5 *1 (-114)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1169)) (-5 *3 (-1097)) (-5 *1 (-961))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *10)) - (-5 *1 (-621 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1065 *5 *6 *7 *8)) - (-4 *10 (-1102 *5 *6 *7 *8)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) - (-5 *1 (-625 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-640 (-1169))) - (-5 *2 - (-640 (-1139 *5 (-531 (-860 *6)) (-860 *6) (-776 *5 (-860 *6))))) - (-5 *1 (-625 *5 *6)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-640 (-1023 *5 *6 *7 *8))) (-5 *1 (-1023 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-640 (-776 *5 (-860 *6)))) (-5 *4 (-112)) (-4 *5 (-452)) - (-14 *6 (-640 (-1169))) (-5 *2 (-640 (-1042 *5 *6))) - (-5 *1 (-1042 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-1065 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) - ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-640 *8)) (-5 *4 (-112)) (-4 *8 (-1059 *5 *6 *7)) - (-4 *5 (-452)) (-4 *6 (-789)) (-4 *7 (-846)) - (-5 *2 (-640 (-1139 *5 *6 *7 *8))) (-5 *1 (-1139 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-1059 *4 *5 *6)) (-4 *4 (-555)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-640 *1)) - (-4 *1 (-1201 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) -(((*1 *2 *1) (-12 (-4 *1 (-793 *2)) (-4 *2 (-172)))) - ((*1 *2 *1) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *3)))) - (-5 *1 (-593 *3)) (-4 *3 (-1045))))) -(((*1 *1 *1 *1) - (-12 (-4 *1 (-323 *2 *3)) (-4 *2 (-1093)) (-4 *3 (-131)) - (-4 *3 (-788))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) - (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-767)) (-5 *2 (-640 (-1169))) (-5 *1 (-210)) - (-5 *3 (-1169)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-316 (-225))) (-5 *4 (-767)) (-5 *2 (-640 (-1169))) - (-5 *1 (-267)))) + (-12 (-5 *3 (-768)) (-4 *1 (-1235 *4)) (-4 *4 (-1046)) + (-5 *2 (-1259 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-1152)) (-5 *2 (-918)) (-5 *1 (-783))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1166 *1)) (-4 *1 (-1009))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1046)) (-4 *3 (-789)))) ((*1 *2 *1) - (-12 (-4 *1 (-374 *3 *4)) (-4 *3 (-846)) (-4 *4 (-172)) - (-5 *2 (-640 *3)))) + (-12 (-4 *1 (-382 *3 *2)) (-4 *3 (-1046)) (-4 *2 (-1094)))) ((*1 *2 *1) - (-12 (-5 *2 (-640 *3)) (-5 *1 (-624 *3 *4 *5)) (-4 *3 (-846)) - (-4 *4 (-13 (-172) (-713 (-407 (-563))))) (-14 *5 (-917)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-667 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-672 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-815 *3)) (-4 *3 (-846)))) - ((*1 *2 *1) (-12 (-5 *2 (-640 *3)) (-5 *1 (-889 *3)) (-4 *3 (-846)))) + (-12 (-14 *3 (-641 (-1170))) (-4 *4 (-172)) + (-4 *6 (-238 (-2641 *3) (-768))) + (-14 *7 + (-1 (-112) (-2 (|:| -1495 *5) (|:| -2515 *6)) + (-2 (|:| -1495 *5) (|:| -2515 *6)))) + (-5 *2 (-710 *5 *6 *7)) (-5 *1 (-461 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-847)) (-4 *8 (-946 *4 *6 (-861 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1274 *3 *4)) (-4 *3 (-846)) (-4 *4 (-1045)) - (-5 *2 (-640 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-336 *5 *6 *7 *8)) (-4 *5 (-430 *4)) (-4 *6 (-1233 *5)) - (-4 *7 (-1233 (-407 *6))) (-4 *8 (-342 *5 *6 *7)) - (-4 *4 (-13 (-846) (-555) (-1034 (-563)))) (-5 *2 (-112)) - (-5 *1 (-907 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-336 (-407 (-563)) *4 *5 *6)) - (-4 *4 (-1233 (-407 (-563)))) (-4 *5 (-1233 (-407 *4))) - (-4 *6 (-342 (-407 (-563)) *4 *5)) (-5 *2 (-112)) - (-5 *1 (-908 *4 *5 *6))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-169 (-225)))) (-5 *2 (-1031)) - (-5 *1 (-750))))) -(((*1 *2 *3) - (-12 (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-767)) - (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-945 *4 *5 *6))))) -(((*1 *2 *3) - (-12 (-4 *4 (-555)) (-4 *5 (-789)) (-4 *6 (-846)) - (-4 *7 (-1059 *4 *5 *6)) - (-5 *2 (-640 (-2 (|:| -3028 *1) (|:| -1934 (-640 *7))))) - (-5 *3 (-640 *7)) (-4 *1 (-1201 *4 *5 *6 *7))))) -(((*1 *1 *2) (-12 (-5 *2 (-640 (-858))) (-5 *1 (-858))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-993 *2)) (-4 *2 (-172))))) -(((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-112)) (-5 *1 (-593 *3)) (-4 *3 (-1045))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1169)) (-5 *3 (-640 (-536))) (-5 *1 (-536))))) + (-12 (-4 *2 (-723)) (-4 *2 (-847)) (-5 *1 (-732 *3 *2)) + (-4 *3 (-1046)))) + ((*1 *1 *1) + (-12 (-4 *1 (-970 *2 *3 *4)) (-4 *2 (-1046)) (-4 *3 (-789)) + (-4 *4 (-847))))) +(((*1 *1 *2) (-12 (-5 *2 (-1114)) (-5 *1 (-951))))) (((*1 *2 *3) - (-12 (-5 *3 (-563)) (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1045)) - (-5 *1 (-321 *4 *5 *2 *6)) (-4 *6 (-945 *2 *4 *5))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-452)) (-4 *4 (-816)) - (-14 *5 (-1169)) (-5 *2 (-563)) (-5 *1 (-1107 *4 *5))))) -(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-750))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-452)))) - ((*1 *2 *2 *2) - (-12 (-5 *2 (-1165 *6)) (-4 *6 (-945 *5 *3 *4)) (-4 *3 (-789)) - (-4 *4 (-846)) (-4 *5 (-905)) (-5 *1 (-457 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1165 *1)) (-4 *1 (-905))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-767)) (|:| -3206 *4))) (-5 *5 (-767)) - (-4 *4 (-945 *6 *7 *8)) (-4 *6 (-452)) (-4 *7 (-789)) (-4 *8 (-846)) - (-5 *2 - (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) - (|:| |polj| *4))) - (-5 *1 (-449 *6 *7 *8 *4))))) + (-12 (-5 *3 (-247 *4 *5)) (-14 *4 (-641 (-1170))) (-4 *5 (-1046)) + (-5 *2 (-481 *4 *5)) (-5 *1 (-941 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-5 *2 (-640 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-857)))) - ((*1 *1 *2) (-12 (-5 *2 (-388)) (-5 *1 (-857))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045))))) -(((*1 *1 *2) - (-12 (-5 *2 (-640 *3)) (-4 *3 (-1208)) (-5 *1 (-1257 *3))))) -(((*1 *2 *2 *3) - (-12 (-5 *2 (-1165 *7)) (-5 *3 (-563)) (-4 *7 (-945 *6 *4 *5)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *6 (-1045)) - (-5 *1 (-321 *4 *5 *6 *7))))) + (|partial| -12 (-4 *1 (-946 *3 *4 *2)) (-4 *3 (-1046)) (-4 *4 (-790)) + (-4 *2 (-847)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-790)) (-4 *5 (-1046)) (-4 *6 (-946 *5 *4 *2)) + (-4 *2 (-847)) (-5 *1 (-947 *4 *2 *5 *6 *3)) + (-4 *3 + (-13 (-363) + (-10 -8 (-15 -3742 ($ *6)) (-15 -1625 (*6 $)) + (-15 -1634 (*6 $))))))) + ((*1 *2 *3) + (|partial| -12 (-5 *3 (-407 (-949 *4))) (-4 *4 (-556)) + (-5 *2 (-1170)) (-5 *1 (-1040 *4))))) +(((*1 *2 *1) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1209)) (-4 *4 (-373 *3)) + (-4 *5 (-373 *3)) (-5 *2 (-564)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1049 *3 *4 *5 *6 *7)) (-4 *5 (-1046)) + (-4 *6 (-238 *4 *5)) (-4 *7 (-238 *3 *5)) (-5 *2 (-564))))) (((*1 *2 *3) - (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) - (-5 *2 (-563)) (-5 *1 (-1107 *4 *5))))) -(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1151)) (-5 *4 (-563)) (-5 *5 (-684 (-225))) - (-5 *2 (-1031)) (-5 *1 (-750))))) + (-12 (-5 *3 (-225)) (-5 *2 (-112)) (-5 *1 (-299 *4 *5)) (-14 *4 *3) + (-14 *5 *3))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1088 (-840 (-225)))) (-5 *3 (-225)) (-5 *2 (-112)) + (-5 *1 (-305)))) + ((*1 *2 *1 *1) + (-12 (-4 *3 (-363)) (-4 *4 (-790)) (-4 *5 (-847)) (-5 *2 (-112)) + (-5 *1 (-504 *3 *4 *5 *6)) (-4 *6 (-946 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) - (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846)))) - ((*1 *2 *3) - (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1))))) -(((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-767)) (|:| |poli| *7) - (|:| |polj| *7))) - (-4 *5 (-789)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) (-4 *6 (-846)) - (-5 *2 (-112)) (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1201 *3 *4 *5 *2)) (-4 *3 (-555)) - (-4 *4 (-789)) (-4 *5 (-846)) (-4 *2 (-1059 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-529)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-576)))) - ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-857))))) -(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-593 *2)) (-4 *2 (-1045))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1165 *6)) (-4 *6 (-1045)) (-4 *4 (-789)) (-4 *5 (-846)) - (-5 *2 (-1165 *7)) (-5 *1 (-321 *4 *5 *6 *7)) - (-4 *7 (-945 *6 *4 *5))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-379)))) - ((*1 *1 *1 *1) (-4 *1 (-545))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) - ((*1 *1 *2) (-12 (-5 *1 (-714 *2)) (-4 *2 (-363)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-563)) (-5 *1 (-767))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) - (-5 *2 (-563)) (-5 *1 (-1107 *4 *5))))) -(((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-563)) (-5 *4 (-684 (-225))) (-5 *2 (-1031)) - (-5 *1 (-750))))) -(((*1 *2 *3) - (-12 (-5 *2 (-418 (-1165 *1))) (-5 *1 (-316 *4)) (-5 *3 (-1165 *1)) - (-4 *4 (-452)) (-4 *4 (-555)) (-4 *4 (-846)))) - ((*1 *2 *3) - (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1))))) -(((*1 *2 *3) - (-12 (-5 *3 (-563)) (-4 *4 (-452)) (-4 *5 (-789)) (-4 *6 (-846)) - (-5 *2 (-1262)) (-5 *1 (-449 *4 *5 *6 *7)) (-4 *7 (-945 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *1 (-1201 *3 *4 *5 *6)) (-4 *3 (-555)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1059 *3 *4 *5)) (-4 *5 (-368)) - (-5 *2 (-767))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-856)) (-5 *2 (-686 (-129))) (-5 *3 (-129))))) -(((*1 *1 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) -(((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1149 (-2 (|:| |k| (-563)) (|:| |c| *6)))) - (-5 *4 (-1022 (-839 (-563)))) (-5 *5 (-1169)) (-5 *7 (-407 (-563))) - (-4 *6 (-1045)) (-5 *2 (-858)) (-5 *1 (-593 *6))))) + (-2 (|:| |var| (-1170)) (|:| |fn| (-316 (-225))) + (|:| -3089 (-1088 (-840 (-225)))) (|:| |abserr| (-225)) + (|:| |relerr| (-225)))) + (-5 *2 + (-3 (|:| |continuous| "Continuous at the end points") + (|:| |lowerSingular| + "There is a singularity at the lower end point") + (|:| |upperSingular| + "There is a singularity at the upper end point") + (|:| |bothSingular| "There are singularities at both end points") + (|:| |notEvaluated| "End point continuity not yet evaluated"))) + (-5 *1 (-192))))) +(((*1 *1 *1 *1) + (|partial| -12 (-4 *1 (-849 *2)) (-4 *2 (-1046)) (-4 *2 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-1165 *7)) (-4 *7 (-945 *6 *4 *5)) (-4 *4 (-789)) - (-4 *5 (-846)) (-4 *6 (-1045)) (-5 *2 (-1165 *6)) - (-5 *1 (-321 *4 *5 *6 *7))))) -(((*1 *2 *3 *3) - (-12 (-5 *3 (-1230 *5 *4)) (-4 *4 (-816)) (-14 *5 (-1169)) - (-5 *2 (-640 *4)) (-5 *1 (-1107 *4 *5))))) -(((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-684 (-225))) (-5 *5 (-684 (-563))) (-5 *3 (-563)) - (-5 *2 (-1031)) (-5 *1 (-750))))) + (-12 (-4 *4 (-452)) (-4 *5 (-790)) (-4 *6 (-847)) (-5 *2 (-564)) + (-5 *1 (-449 *4 *5 *6 *3)) (-4 *3 (-946 *4 *5 *6))))) +(((*1 *2) (-12 (-5 *2 (-1264)) (-5 *1 (-445 *3)) (-4 *3 (-1046))))) (((*1 *2 *3) - (-12 (-4 *1 (-905)) (-5 *2 (-418 (-1165 *1))) (-5 *3 (-1165 *1))))) + (-12 (-4 *4 (-1046)) + (-4 *2 (-13 (-404) (-1035 *4) (-363) (-1194) (-284))) + (-5 *1 (-443 *4 *3 *2)) (-4 *3 (-1235 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-918)) (-4 *5 (-1046)) + (-4 *2 (-13 (-404) (-1035 *5) (-363) (-1194) (-284))) + (-5 *1 (-443 *5 *3 *2)) (-4 *3 (-1235 *5))))) +(((*1 *2 *3 *3 *4 *5 *5 *3) + (-12 (-5 *3 (-564)) (-5 *4 (-1152)) (-5 *5 (-685 (-225))) + (-5 *2 (-1032)) (-5 *1 (-744))))) +(((*1 *1 *2) + (-12 (-5 *2 (-641 (-2 (|:| |gen| *3) (|:| -4118 *4)))) + (-4 *3 (-1094)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-645 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-326 *2 *3)) (-4 *3 (-789)) (-4 *2 (-1046)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *2)) (-4 *2 (-847))))) +(((*1 *2) + (-12 (-4 *1 (-342 *3 *4 *5)) (-4 *3 (-1213)) (-4 *4 (-1235 *3)) + (-4 *5 (-1235 (-407 *4))) (-5 *2 (-685 (-407 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-640 *7)) (-4 *7 (-945 *4 *5 *6)) (-4 *4 (-452)) - (-4 *5 (-789)) (-4 *6 (-846)) (-5 *2 (-1262)) - (-5 *1 (-449 *4 *5 *6 *7))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-788)) (-4 *2 (-1045)))) - ((*1 *2 *1 *1) - (-12 (-4 *2 (-1045)) (-5 *1 (-50 *2 *3)) (-14 *3 (-640 (-1169))))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-640 (-917))) (-4 *2 (-363)) (-5 *1 (-152 *4 *2 *5)) - (-14 *4 (-917)) (-14 *5 (-989 *4 *2)))) - ((*1 *2 *1 *1) - (-12 (-5 *2 (-316 *3)) (-5 *1 (-223 *3 *4)) - (-4 *3 (-13 (-1045) (-846))) (-14 *4 (-640 (-1169))))) - ((*1 *2 *3 *1) - (-12 (-4 *1 (-323 *3 *2)) (-4 *3 (-1093)) (-4 *2 (-131)))) - ((*1 *2 *1 *3) - (-12 (-4 *1 (-382 *2 *3)) (-4 *3 (-1093)) (-4 *2 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-563)) (-4 *2 (-555)) (-5 *1 (-620 *2 *4)) - (-4 *4 (-1233 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-704 *2)) (-4 *2 (-1045)))) - ((*1 *2 *1 *3) - (-12 (-4 *2 (-1045)) (-5 *1 (-731 *2 *3)) (-4 *3 (-722)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *5)) (-5 *3 (-640 (-767))) (-4 *1 (-736 *4 *5)) - (-4 *4 (-1045)) (-4 *5 (-846)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-736 *4 *2)) (-4 *4 (-1045)) - (-4 *2 (-846)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-767)) (-4 *1 (-848 *2)) (-4 *2 (-1045)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-640 *6)) (-5 *3 (-640 (-767))) (-4 *1 (-945 *4 *5 *6)) - (-4 *4 (-1045)) (-4 *5 (-789)) (-4 *6 (-846)))) - ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-767)) (-4 *1 (-945 *4 *5 *2)) (-4 *4 (-1045)) - (-4 *5 (-789)) (-4 *2 (-846)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-4 *2 (-945 *4 (-531 *5) *5)) - (-5 *1 (-1119 *4 *5 *2)) (-4 *4 (-1045)) (-4 *5 (-846)))) - ((*1 *2 *1 *3) - (-12 (-5 *3 (-767)) (-5 *2 (-948 *4)) (-5 *1 (-1202 *4)) - (-4 *4 (-1045))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-856)) (-5 *2 (-686 (-548))) (-5 *3 (-548))))) -(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1 *2) - (-12 (-5 *1 (-593 *2)) (-4 *2 (-38 (-407 (-563)))) (-4 *2 (-1045))))) -(((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1165 *9)) (-5 *4 (-640 *7)) (-5 *5 (-640 *8)) - (-4 *7 (-846)) (-4 *8 (-1045)) (-4 *9 (-945 *8 *6 *7)) - (-4 *6 (-789)) (-5 *2 (-1165 *8)) (-5 *1 (-321 *6 *7 *8 *9))))) -(((*1 *2 *3 *3) - (-12 (-4 *4 (-816)) (-14 *5 (-1169)) (-5 *2 (-640 (-1230 *5 *4))) - (-5 *1 (-1107 *4 *5)) (-5 *3 (-1230 *5 *4))))) -(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-640 (-112))) (-5 *5 (-684 (-225))) - (-5 *6 (-684 (-563))) (-5 *7 (-225)) (-5 *3 (-563)) (-5 *2 (-1031)) - (-5 *1 (-750))))) -(((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 (-1165 *5))) (-5 *3 (-1165 *5)) - (-4 *5 (-166 *4)) (-4 *4 (-545)) (-5 *1 (-149 *4 *5)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 *3)) (-4 *3 (-1233 *5)) - (-4 *5 (-1233 *4)) (-4 *4 (-349)) (-5 *1 (-358 *4 *5 *3)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 (-1165 (-563)))) (-5 *3 (-1165 (-563))) - (-5 *1 (-571)))) - ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 (-1165 *1))) (-5 *3 (-1165 *1)) - (-4 *1 (-905))))) -(((*1 *2 *3 *4 *4 *2 *2 *2 *2) - (-12 (-5 *2 (-563)) + (-12 (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-767)) (|:| |poli| *4) - (|:| |polj| *4))) - (-4 *6 (-789)) (-4 *4 (-945 *5 *6 *7)) (-4 *5 (-452)) (-4 *7 (-846)) - (-5 *1 (-449 *5 *6 *7 *4))))) -(((*1 *1) (-5 *1 (-330)))) -(((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1119 *4 *3 *5))) (-4 *4 (-38 (-407 (-563)))) - (-4 *4 (-1045)) (-4 *3 (-846)) (-5 *1 (-1119 *4 *3 *5)) - (-4 *5 (-945 *4 (-531 *3) *3)))) - ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1202 *4))) (-5 *3 (-1169)) (-5 *1 (-1202 *4)) - (-4 *4 (-38 (-407 (-563)))) (-4 *4 (-1045))))) -(((*1 *2 *1 *3) - (-12 (-4 *1 (-856)) (-5 *2 (-686 (-1215))) (-5 *3 (-1215))))) -(((*1 *2 *1) (-12 (-4 *1 (-991 *2)) (-4 *2 (-1208))))) -(((*1 *1 *1 *2) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-593 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1045))))) -(((*1 *2 *1) - (-12 (-5 *2 (-407 (-563))) (-5 *1 (-319 *3 *4 *5)) - (-4 *3 (-13 (-363) (-846))) (-14 *4 (-1169)) (-14 *5 *3)))) -((-1290 . 735719) (-1291 . 735616) (-1292 . 735560) (-1293 . 735479) - (-1294 . 735164) (-1295 . 735136) (-1296 . 734880) (-1297 . 734392) - (-1298 . 734205) (-1299 . 734070) (-1300 . 733863) (-1301 . 733774) - (-1302 . 733718) (-1303 . 733639) (-1304 . 732051) (-1305 . 731891) - (-1306 . 731807) (-1307 . 731678) (-1308 . 731554) (-1309 . 731389) - (-1310 . 731179) (-1311 . 731123) (-1312 . 731044) (-1313 . 730886) - (-1314 . 730732) (-1315 . 730515) (-1316 . 730408) (-1317 . 730287) - (-1318 . 730038) (-1319 . 729873) (-1320 . 729814) (-1321 . 729758) - (-1322 . 729606) (-1323 . 729465) (-1324 . 729224) (-1325 . 729007) - (-1326 . 728866) (-1327 . 728748) (-1328 . 728584) (-1329 . 728507) - (-1330 . 728451) (-1331 . 728392) (-1332 . 728289) (-1333 . 728146) - (-1334 . 727856) (-1335 . 727597) (-1336 . 727465) (-1337 . 727329) - (-1338 . 727190) (-1339 . 727110) (-1340 . 727021) (-1341 . 726957) - (-1342 . 726898) (-1343 . 726692) (-1344 . 726554) (-1345 . 726440) - (-1346 . 726006) (-1347 . 725190) (-1348 . 725057) (-1349 . 724960) - (-1350 . 724848) (-1351 . 724740) (-1352 . 724681) (-1353 . 722713) - (-1354 . 722560) (-1355 . 721892) (-1356 . 721338) (-1357 . 721190) - (-1358 . 721118) (-1359 . 720439) (-1360 . 720338) (-1361 . 718176) - (-1362 . 718088) (-1363 . 717980) (-1364 . 717845) (-1365 . 717717) - (-1366 . 717541) (-1367 . 717411) (-1368 . 717272) (-1369 . 717215) - (-1370 . 717067) (-1371 . 716959) (-1372 . 716900) (-1373 . 716775) - (-1374 . 716710) (-1375 . 716528) (-1376 . 716254) (-1377 . 716150) - (-1378 . 716090) (-1379 . 715983) (-1380 . 715696) (-1381 . 715508) - (-1382 . 715229) (-1383 . 715059) (-1384 . 714931) (-1385 . 714858) - (-1386 . 714474) (-1387 . 714298) (-1388 . 714119) (-1389 . 714012) - (-1390 . 713615) (-1391 . 713508) (-1392 . 713341) (-1393 . 713267) - (-1394 . 713179) (-1395 . 712952) (-1396 . 712836) (-1397 . 712654) - (-1398 . 712539) (-1399 . 712429) (-1400 . 711905) (-1401 . 711798) - (-1402 . 711631) (-1403 . 711401) (-1404 . 711304) (-1405 . 711077) - (-1406 . 711025) (-1407 . 710912) (-1408 . 710634) (-1409 . 710527) - (-1410 . 710342) (-1411 . 710258) (-1412 . 710224) (-1413 . 710096) - (-1414 . 710041) (-1415 . 709897) (-1416 . 709863) (-1417 . 709264) - (-1418 . 709160) (-1419 . 709047) (** . 705958) (-1421 . 705851) - (-1422 . 705676) (-1423 . 705452) (-1424 . 705371) (-1425 . 705340) - (-1426 . 705137) (-1427 . 705085) (-1428 . 704724) (-1429 . 704690) - (-1430 . 704580) (-1431 . 704136) (-1432 . 704029) (-1433 . 703783) - (-1434 . 703731) (-1435 . 703607) (-1436 . 703526) (-1437 . 703442) - (-1438 . 703263) (-1439 . 702082) (-1440 . 701911) (-1441 . 701877) - (-1442 . 701503) (-1443 . 701393) (-1444 . 701161) (-1445 . 701054) - (-1446 . 700998) (-1447 . 700471) (-1448 . 700333) (-1449 . 700305) - (-1450 . 700134) (-1451 . 700100) (-1452 . 699984) (-1453 . 699779) - (-1454 . 699672) (-1455 . 699018) (-1456 . 698860) (-1457 . 698798) - (-1458 . 698271) (-1459 . 698243) (-1460 . 697984) (-1461 . 697887) - (-1462 . 697777) (-1463 . 697595) (-1464 . 697488) (-1465 . 696902) - (-1466 . 696738) (-1467 . 696534) (-1468 . 696500) (-1469 . 696219) - (-1470 . 696191) (-1471 . 695932) (-1472 . 695841) (-1473 . 695725) - (-1474 . 695595) (-1475 . 695488) (-1476 . 695414) (-1477 . 695250) - (-1478 . 695132) (-1479 . 695098) (-1480 . 694677) (-1481 . 694625) - (-1482 . 694581) (-1483 . 694386) (-1484 . 694295) (-1485 . 694027) - (-1486 . 693920) (-1487 . 693868) (-1488 . 693660) (-1489 . 693330) - (-1490 . 693296) (-1491 . 692769) (-1492 . 692698) (-1493 . 692503) - (-1494 . 692299) (-1495 . 692244) (-1496 . 691621) (-1497 . 687623) - (-1498 . 687516) (-1499 . 687464) (-1500 . 687275) (-1501 . 687241) - (-1502 . 687056) (-1503 . 686626) (-1504 . 686574) (-1505 . 685977) - (-1506 . 685925) (-1507 . 685714) (-1508 . 685261) (-1509 . 685154) - (-1510 . 685041) (-1511 . 684967) (-1512 . 684809) (-1513 . 682028) - (-1514 . 681885) (-1515 . 681836) (-1516 . 681783) (-1517 . 681705) - (-1518 . 681653) (-1519 . 681460) (-1520 . 681300) (-1521 . 681193) - (-1522 . 681138) (-1523 . 680977) (-1524 . 680550) (-1525 . 680498) - (-1526 . 680351) (-1527 . 680299) (-1528 . 680020) (-1529 . 679871) - (-1530 . 679744) (-1531 . 679637) (-1532 . 679555) (-1533 . 679503) - (-1534 . 679342) (-1535 . 679289) (-1536 . 679236) (-1537 . 679184) - (-1538 . 678911) (-1539 . 678582) (-1540 . 678530) (-1541 . 678351) - (-1542 . 678022) (-1543 . 677915) (-1544 . 677863) (-1545 . 677705) - (-1546 . 677652) (-1547 . 677508) (-1548 . 677392) (-1549 . 676900) - (-1550 . 676847) (-1551 . 676769) (-1552 . 676608) (-1553 . 676552) - (-1554 . 676445) (-1555 . 676393) (-1556 . 676253) (-1557 . 676200) - (-1558 . 666638) (-1559 . 666543) (-1560 . 666051) (-1561 . 665982) - (-1562 . 665841) (-1563 . 665698) (-1564 . 665591) (-1565 . 665521) - (-1566 . 665393) (-1567 . 665340) (-1568 . 665189) (-1569 . 665094) - (-1570 . 664979) (-1571 . 664461) (-1572 . 664231) (-1573 . 664028) - (-1574 . 663885) (-1575 . 663150) (-1576 . 662874) (-1577 . 662767) - (-1578 . 662316) (-1579 . 662188) (-1580 . 662135) (-1581 . 662084) - (-1582 . 661961) (-1583 . 661893) (-1584 . 661734) (-1585 . 661590) - (-1586 . 661447) (-1587 . 661322) (-1588 . 661115) (-1589 . 661008) - (-1590 . 660794) (-1591 . 660666) (-1592 . 660595) (-1593 . 660545) - (-1594 . 660486) (-1595 . 660415) (-1596 . 659879) (-1597 . 659629) - (-1598 . 659348) (-1599 . 659223) (-1600 . 659116) (-1601 . 658844) - (-1602 . 658701) (-1603 . 658630) (-1604 . 658579) (-1605 . 658520) - (-1606 . 658449) (-1607 . 658362) (-1608 . 658219) (-1609 . 657901) - (-1610 . 657676) (-1611 . 657595) (-1612 . 657455) (-1613 . 657381) - (-1614 . 657190) (-1615 . 656817) (-1616 . 656674) (-1617 . 656602) - (-1618 . 656551) (-1619 . 656523) (-1620 . 656337) (-1621 . 656303) - (-1622 . 655937) (-1623 . 655407) (-1624 . 655289) (-1625 . 655215) - (-1626 . 655093) (-1627 . 654816) (-1628 . 654674) (-1629 . 654602) - (-1630 . 654404) (-1631 . 654376) (-1632 . 654257) (-1633 . 654198) - (-1634 . 654143) (-1635 . 653981) (-1636 . 653763) (-1637 . 653638) - (-1638 . 653379) (-1639 . 653062) (-1640 . 652917) (-1641 . 652840) - (-1642 . 652697) (-1643 . 652669) (-1644 . 652550) (-1645 . 652344) - (-1646 . 651631) (-1647 . 650529) (-1648 . 650311) (-1649 . 650153) - (-1650 . 649847) (-1651 . 649633) (-1652 . 648880) (-1653 . 648827) - (-1654 . 648713) (-1655 . 648685) (-1656 . 648591) (-1657 . 648538) - (-1658 . 648223) (-1659 . 648063) (-1660 . 647669) (-1661 . 646671) - (-1662 . 646456) (-1663 . 646138) (-1664 . 645975) (-1665 . 645922) - (-1666 . 645801) (-1667 . 645691) (-1668 . 645597) (-1669 . 645088) - (-1670 . 645015) (-1671 . 644835) (-1672 . 643956) (-1673 . 643789) - (-1674 . 643189) (-1675 . 643001) (-1676 . 642948) (-1677 . 642830) - (-1678 . 642612) (-1679 . 642560) (-1680 . 642268) (-1681 . 642216) - (-1682 . 642097) (-1683 . 641882) (-1684 . 641828) (-1685 . 641657) - (-1686 . 641491) (-1687 . 641350) (-1688 . 641190) (-1689 . 641137) - (-1690 . 641025) (-1691 . 640973) (-1692 . 640851) (-1693 . 640732) - (-1694 . 640680) (-1695 . 640476) (-1696 . 640269) (-1697 . 640215) - (-1698 . 640163) (-1699 . 639948) (-1700 . 639708) (-1701 . 639655) - (-1702 . 639537) (-1703 . 639485) (-1704 . 639433) (-1705 . 639273) - (-1706 . 639221) (-1707 . 638357) (-1708 . 638040) (-1709 . 637660) - (-1710 . 637597) (-1711 . 637288) (-1712 . 637041) (-1713 . 636988) - (-1714 . 636883) (-1715 . 636831) (-1716 . 636779) (-1717 . 636599) - (-1718 . 636521) (-1719 . 636492) (-1720 . 636400) (-1721 . 635983) - (-1722 . 635860) (-1723 . 635797) (-1724 . 635711) (-1725 . 635604) - (-1726 . 635357) (-1727 . 635304) (-1728 . 635221) (-1729 . 635169) - (-1730 . 635117) (-1731 . 634934) (-1732 . 634872) (-1733 . 634703) - (-1734 . 634611) (-1735 . 634235) (-1736 . 634044) (-1737 . 633693) - (-1738 . 633082) (-1739 . 632975) (-1740 . 632761) (-1741 . 632708) - (-1742 . 632604) (-1743 . 632359) (-1744 . 632331) (-1745 . 632279) - (-1746 . 632178) (-1747 . 631960) (-1748 . 631931) (-1749 . 631845) - (-1750 . 631469) (-1751 . 631313) (-1752 . 631168) (-1753 . 631029) - (-1754 . 630976) (-1755 . 630010) (-1756 . 629958) (-1757 . 629906) - (-1758 . 629649) (-1759 . 629548) (-1760 . 629519) (-1761 . 629366) - (-1762 . 629284) (-1763 . 628958) (-1764 . 628744) (-1765 . 628691) - (-1766 . 628466) (-1767 . 628300) (-1768 . 628151) (-1769 . 628084) - (-1770 . 627980) (-1771 . 627924) (-1772 . 627622) (-1773 . 627540) - (-1774 . 627387) (-1775 . 626711) (-1776 . 626471) (-1777 . 626179) - (-1778 . 626126) (-1779 . 626042) (-1780 . 625852) (-1781 . 625665) - (-1782 . 625568) (-1783 . 625461) (-1784 . 625296) (-1785 . 625137) - (-1786 . 625079) (-1787 . 624949) (-1788 . 624824) (-1789 . 624610) - (-1790 . 624557) (-1791 . 624208) (-1792 . 623997) (-1793 . 623757) - (-1794 . 623660) (-1795 . 623534) (-1796 . 623474) (-1797 . 623143) - (-1798 . 623115) (-1799 . 622991) (-1800 . 622852) (-1801 . 622799) - (-1802 . 622725) (-1803 . 622610) (-1804 . 622403) (-1805 . 622214) - (-1806 . 622088) (-1807 . 621387) (-1808 . 621316) (-1809 . 621233) - (-1810 . 621087) (-1811 . 620873) (-1812 . 620820) (-1813 . 620722) - (-1814 . 620489) (-1815 . 620461) (-1816 . 620377) (-1817 . 620248) - (-1818 . 619056) (-1819 . 618985) (-1820 . 618933) (-1821 . 618843) - (-1822 . 618700) (-1823 . 618391) (-1824 . 618339) (-1825 . 618265) - (-1826 . 618145) (-1827 . 617830) (-1828 . 617730) (-1829 . 617702) - (-1830 . 617580) (-1831 . 617448) (-1832 . 617387) (-1833 . 617175) - (-1834 . 617095) (-1835 . 616980) (-1836 . 616835) (-1837 . 616783) - (-1838 . 616689) (-1839 . 616291) (-1840 . 616263) (-1841 . 616117) - (-1842 . 616016) (-1843 . 615959) (-1844 . 615750) (-1845 . 615663) - (-1846 . 615533) (-1847 . 615391) (-1848 . 615338) (-1849 . 615222) - (-1850 . 615067) (-1851 . 614979) (-1852 . 614761) (-1853 . 614733) - (-1854 . 614078) (-1855 . 613977) (-1856 . 613920) (-1857 . 613544) - (-1858 . 613484) (-1859 . 613107) (-1860 . 612874) (-1861 . 612821) - (-1862 . 612708) (-1863 . 612522) (-1864 . 611512) (-1865 . 611463) - (-1866 . 611288) (-1867 . 611260) (-1868 . 610550) (-1869 . 610446) - (-1870 . 610369) (-1871 . 609834) (-1872 . 609676) (-1873 . 609416) - (-1874 . 609274) (-1875 . 609180) (-1876 . 609086) (-1877 . 608903) - (-1878 . 608736) (-1879 . 608708) (-1880 . 608680) (-1881 . 608576) - (-1882 . 608469) (-1883 . 608409) (-1884 . 607796) (-1885 . 607239) - (-1886 . 607046) (-1887 . 606766) (-1888 . 606538) (-1889 . 606485) - (-1890 . 606391) (-1891 . 606224) (-1892 . 606130) (-1893 . 606102) - (-1894 . 605936) (-1895 . 605832) (-1896 . 605714) (-1897 . 605287) - (-1898 . 605176) (-1899 . 604619) (-1900 . 604507) (-1901 . 604022) - (-1902 . 603779) (-1903 . 603580) (-1904 . 603552) (-1905 . 603459) - (-1906 . 603382) (-1907 . 602895) (-1908 . 602843) (-1909 . 602812) - (-1910 . 602750) (-1911 . 602646) (-1912 . 602480) (-1913 . 601520) - (-1914 . 601394) (-1915 . 601152) (-1916 . 600822) (-1917 . 600662) - (-1918 . 600634) (-1919 . 600541) (-1920 . 600442) (-1921 . 600330) - (-1922 . 600237) (-1923 . 600123) (-1924 . 599929) (-1925 . 599852) - (-1926 . 599790) (-1927 . 599180) (-1928 . 598912) (-1929 . 598562) - (-1930 . 598226) (-1931 . 598198) (-1932 . 598105) (-1933 . 597993) - (-1934 . 597819) (-1935 . 597769) (-1936 . 597560) (-1937 . 597394) - (-1938 . 597340) (-1939 . 597116) (-1940 . 597015) (-1941 . 596548) - (-1942 . 596385) (-1943 . 596357) (-1944 . 596269) (-1945 . 596157) - (-1946 . 596088) (-1947 . 595989) (-1948 . 595821) (-1949 . 595505) - (-1950 . 595313) (-1951 . 594683) (-1952 . 594600) (-1953 . 594114) - (-1954 . 593951) (-1955 . 593871) (-1956 . 591456) (-1957 . 591344) - (-1958 . 591275) (-1959 . 591196) (-1960 . 591025) (-1961 . 590917) - (-1962 . 588803) (-1963 . 588720) (-1964 . 588517) (-1965 . 588354) - (-1966 . 588294) (-1967 . 588226) (-1968 . 588114) (-1969 . 588009) - (-1970 . 587953) (-1971 . 587788) (-1972 . 587685) (-1973 . 587533) - (-1974 . 587463) (-1975 . 587160) (-1976 . 586985) (-1977 . 586933) - (-1978 . 586879) (-1979 . 586703) (-1980 . 586644) (-1981 . 586273) - (-1982 . 586202) (-1983 . 586037) (-1984 . 585876) (-1985 . 583744) - (-1986 . 583556) (-1987 . 583486) (-1988 . 583305) (-1989 . 582947) - (-1990 . 582772) (-1991 . 582720) (-1992 . 582595) (-1993 . 582517) - (-1994 . 582362) (-1995 . 582242) (-1996 . 582142) (-1997 . 582035) - (-1998 . 581728) (-1999 . 581569) (-2000 . 581351) (-2001 . 581173) - (-2002 . 581121) (-2003 . 581057) (-2004 . 580820) (-2005 . 580665) - (-2006 . 580561) (-2007 . 580369) (-2008 . 580265) (-2009 . 580203) - (-2010 . 580030) (-2011 . 579784) (-2012 . 579562) (-2013 . 579203) - (-2014 . 579151) (-2015 . 579026) (-2016 . 578917) (-2017 . 578712) - (-2018 . 578611) (-2019 . 578507) (-2020 . 578354) (-2021 . 576946) - (-2022 . 576773) (-2023 . 576649) (-2024 . 576491) (-2025 . 576297) - (-2026 . 576245) (-2027 . 576126) (-2028 . 576004) (-2029 . 575922) - (-2030 . 575727) (-2031 . 575446) (-2032 . 575327) (-2033 . 575071) - (-2034 . 575012) (-2035 . 574807) (-2036 . 574729) (-2037 . 574567) - (-2038 . 573754) (-2039 . 573635) (-2040 . 573558) (-2041 . 573476) - (-2042 . 573226) (-2043 . 573004) (-2044 . 572818) (-2045 . 572715) - (-2046 . 572641) (-2047 . 572562) (-2048 . 572509) (-2049 . 572422) - (-2050 . 572342) (-2051 . 572311) (-2052 . 572232) (-2053 . 571987) - (-2054 . 571834) (-2055 . 566320) (-2056 . 565676) (-2057 . 565624) - (-2058 . 565596) (-2059 . 565522) (-2060 . 565456) (-2061 . 565328) - (-2062 . 546614) (-2063 . 546537) (-2064 . 546466) (-2065 . 546144) - (-2066 . 545991) (-2067 . 545599) (-2068 . 544297) (-2069 . 544179) - (-2070 . 544118) (-2071 . 544044) (-2072 . 543977) (-2073 . 543913) - (-2074 . 541092) (-2075 . 541012) (-2076 . 540941) (-2077 . 540553) - (-2078 . 540400) (-2079 . 539945) (-2080 . 538683) (-2081 . 538550) - (-2082 . 538516) (-2083 . 538463) (-2084 . 538389) (-2085 . 538322) - (-2086 . 538268) (-2087 . 538067) (-2088 . 537914) (-2089 . 537655) - (-2090 . 537306) (-2091 . 536423) (-2092 . 536142) (-2093 . 536073) - (-2094 . 535999) (-2095 . 535942) (-2096 . 535833) (-2097 . 535778) - (-2098 . 535715) (-2099 . 535451) (-2100 . 535298) (-2101 . 535218) - (-2102 . 533945) (-2103 . 533809) (-2104 . 533739) (-2105 . 533665) - (-2106 . 533587) (-2107 . 532211) (-2108 . 532156) (-2109 . 531613) - (-2110 . 531222) (-2111 . 531120) (-2112 . 531064) (-2113 . 530945) - (-2114 . 530821) (-2115 . 530753) (-2116 . 530669) (-2117 . 530614) - (-2118 . 530493) (-2119 . 530199) (-2120 . 529858) (-2121 . 529643) - (-2122 . 529520) (-2123 . 529464) (-2124 . 529393) (-2125 . 529300) - (-2126 . 529128) (-2127 . 529073) (-2128 . 528958) (-2129 . 528821) - (-2130 . 528470) (-2131 . 528181) (-2132 . 528048) (-2133 . 527989) - (-2134 . 527614) (-2135 . 526449) (-2136 . 526378) (-2137 . 526320) - (-2138 . 526249) (-2139 . 526003) (-2140 . 525652) (-2141 . 525593) - (-2142 . 525537) (-2143 . 525482) (-2144 . 525416) (-2145 . 525331) - (-2146 . 525123) (-2147 . 524916) (-2148 . 524565) (-2149 . 524449) - (-2150 . 524393) (-2151 . 524341) (-2152 . 524286) (-2153 . 524199) - (-2154 . 524122) (-2155 . 524018) (-2156 . 523962) (-2157 . 523561) - (-2158 . 523458) (-2159 . 523380) (-2160 . 523308) (-2161 . 523223) - (-2162 . 523032) (-2163 . 522950) (-2164 . 522878) (-2165 . 521249) - (-2166 . 521052) (-2167 . 520967) (-2168 . 520890) (-2169 . 520702) - (-2170 . 520645) (-2171 . 520549) (-2172 . 520443) (-2173 . 520366) - (-2174 . 520314) (-2175 . 519448) (-2176 . 519386) (-2177 . 519259) - (-2178 . 519113) (-2179 . 519036) (-2180 . 518864) (-2181 . 518722) - (-2182 . 518585) (-2183 . 518523) (-2184 . 518446) (-2185 . 517072) - (-2186 . 516926) (-2187 . 516777) (-2188 . 516697) (-2189 . 515393) - (-2190 . 515256) (-2191 . 515081) (-2192 . 515049) (-2193 . 514921) - (-2194 . 514631) (-2195 . 514536) (-2196 . 514481) (-2197 . 514326) - (-2198 . 514189) (-2199 . 514036) (-2200 . 514004) (-9 . 513976) - (-2202 . 513924) (-2203 . 513832) (-2204 . 513779) (-2205 . 513709) - (-2206 . 513654) (-2207 . 513499) (-2208 . 513172) (-2209 . 513104) - (-2210 . 512951) (-2211 . 512919) (-8 . 512891) (-2213 . 512839) - (-2214 . 512786) (-2215 . 512691) (-2216 . 512636) (-2217 . 512532) - (-2218 . 512416) (-2219 . 512242) (-2220 . 512210) (-7 . 512182) - (-2222 . 512130) (-2223 . 511957) (-2224 . 511838) (-2225 . 511768) - (-2226 . 511614) (-2227 . 511019) (-2228 . 510903) (-2229 . 510711) - (-2230 . 510679) (-2231 . 510104) (-2232 . 509824) (-2233 . 509726) - (-2234 . 509634) (-2235 . 509539) (-2236 . 509246) (-2237 . 509140) - (-2238 . 507282) (-2239 . 507166) (-2240 . 506867) (-2241 . 506835) - (-2242 . 506260) (-2243 . 505981) (-2244 . 505842) (-2245 . 505547) - (-2246 . 505477) (-2247 . 505218) (-2248 . 505140) (-2249 . 505087) - (-2250 . 504892) (-2251 . 504860) (-2252 . 504285) (-2253 . 504192) - (-2254 . 504118) (-2255 . 503907) (-2256 . 503386) (-2257 . 503192) - (-2258 . 503097) (-2259 . 503069) (-2260 . 502973) (-2261 . 502888) - (-2262 . 502773) (-2263 . 502741) (-2264 . 502167) (-2265 . 502074) - (-2266 . 501972) (-2267 . 501784) (-2268 . 501714) (-2269 . 501664) - (-2270 . 501568) (-2271 . 501512) (-2272 . 501196) (-2273 . 501070) - (-2274 . 501041) (-2275 . 500467) (-2276 . 500374) (-2277 . 500272) - (-2278 . 500127) (-2279 . 500072) (-2280 . 499526) (-2281 . 499430) - (-2282 . 499375) (-2283 . 499296) (-2284 . 499183) (-2285 . 498609) - (-2286 . 498538) (-2287 . 497622) (-2288 . 497477) (-2289 . 497357) - (-2290 . 496878) (-2291 . 496779) (-2292 . 496127) (-2293 . 495984) - (-2294 . 495852) (-2295 . 495739) (-2296 . 495165) (-2297 . 495073) - (-2298 . 494994) (-2299 . 494704) (-2300 . 494649) (-2301 . 494477) - (-2302 . 494371) (-2303 . 494056) (-2304 . 493744) (-2305 . 493631) - (-2306 . 493057) (-2307 . 492895) (-2308 . 492764) (-2309 . 492648) - (-2310 . 492187) (-2311 . 492117) (-2312 . 491926) (-2313 . 491802) - (-2314 . 491515) (-2315 . 491329) (-2316 . 491216) (-2317 . 490856) - (-2318 . 490782) (-2319 . 490653) (-2320 . 490426) (-2321 . 490392) - (-2322 . 490358) (-2323 . 490065) (-2324 . 489941) (-2325 . 489822) - (-2326 . 489277) (-2327 . 489155) (-2328 . 489002) (-2329 . 488844) - (-2330 . 488765) (-2331 . 488728) (-2332 . 488325) (-2333 . 488291) - (-2334 . 487924) (-2335 . 487809) (-2336 . 486888) (-2337 . 486836) - (-2338 . 486616) (-2339 . 486479) (-2340 . 486070) (-2341 . 485960) - (-2342 . 485904) (-2343 . 485825) (-2344 . 485788) (-2345 . 484900) - (-2346 . 484682) (-2347 . 484559) (-2348 . 484421) (-2349 . 484348) - (-2350 . 484168) (-2351 . 484116) (-2352 . 483939) (-2353 . 483805) - (-2354 . 483776) (-2355 . 483647) (-2356 . 483610) (-2357 . 483268) - (-2358 . 483118) (-2359 . 483016) (-2360 . 482878) (-2361 . 482826) - (-2362 . 482656) (-2363 . 482522) (-2364 . 482455) (-2365 . 482399) - (-2366 . 482270) (-2367 . 482233) (-2368 . 482156) (-2369 . 482026) - (-2370 . 481857) (-2371 . 481493) (-2372 . 481440) (-2373 . 481341) - (-2374 . 481041) (-2375 . 480828) (-2376 . 480751) (-2377 . 480668) - (-2378 . 480500) (-2379 . 480466) (-2380 . 480389) (-2381 . 480259) - (-2382 . 480030) (-2383 . 479492) (-2384 . 479412) (-2385 . 479299) - (-2386 . 479200) (-2387 . 478900) (-2388 . 478828) (-2389 . 478740) - (-2390 . 478657) (-2391 . 478528) (-2392 . 478494) (-2393 . 478417) - (-2394 . 478314) (-2395 . 478060) (-2396 . 477982) (-2397 . 477902) - (-2398 . 477829) (-2399 . 477716) (-2400 . 477643) (-2401 . 477290) - (-2402 . 477210) (-2403 . 477081) (-2404 . 477026) (-2405 . 476673) - (-2406 . 476492) (-2407 . 476414) (-2408 . 476023) (-2409 . 475958) - (-2410 . 475855) (-2411 . 475797) (-2412 . 475719) (-2413 . 475489) - (-2414 . 474332) (-2415 . 474259) (-2416 . 474155) (-2417 . 473717) - (-2418 . 473528) (-2419 . 473368) (-2420 . 472340) (-2421 . 472244) - (-2422 . 472121) (-2423 . 472063) (-2424 . 471982) (-2425 . 471752) - (-2426 . 471679) (-2427 . 471558) (-2428 . 471192) (-2429 . 470944) - (-2430 . 470626) (-2431 . 470523) (-2432 . 470338) (-2433 . 469334) - (-2434 . 468461) (-2435 . 468411) (-2436 . 468114) (-2437 . 468001) - (-2438 . 467928) (-2439 . 467876) (-2440 . 467769) (-2441 . 467521) - (-2442 . 467340) (-2443 . 467128) (-2444 . 467029) (-2445 . 466894) - (-2446 . 466831) (-2447 . 466732) (-2448 . 466619) (-2449 . 466547) - (-2450 . 466516) (-2451 . 466297) (-2452 . 466045) (-2453 . 465885) - (-2454 . 465311) (-2455 . 465233) (-2456 . 465098) (-2457 . 464495) - (-2458 . 464330) (-2459 . 464014) (-2460 . 463942) (-2461 . 463873) - (-2462 . 463821) (-2463 . 463658) (-2464 . 463139) (-2465 . 463043) - (-2466 . 462983) (-2467 . 462749) (-2468 . 462591) (-2469 . 462329) - (-2470 . 462256) (-2471 . 462197) (-2472 . 462142) (-2473 . 462000) - (-2474 . 460222) (-2475 . 460126) (-2476 . 459959) (-2477 . 459819) - (-2478 . 459273) (-2479 . 458931) (-2480 . 458848) (-2481 . 458778) - (-2482 . 458628) (-2483 . 458156) (-2484 . 457990) (-2485 . 457937) - (-2486 . 457842) (-2487 . 457530) (-2488 . 457197) (-2489 . 457045) - (-2490 . 456934) (-2491 . 456845) (-2492 . 456715) (-2493 . 456111) - (-2494 . 455547) (-2495 . 455131) (-2496 . 455018) (-2497 . 453780) - (-2498 . 453435) (-2499 . 453232) (-2500 . 453159) (-2501 . 453093) - (-2502 . 453024) (-2503 . 452894) (-2504 . 452644) (-2505 . 452581) - (-2506 . 452497) (-2507 . 452166) (-2508 . 451963) (-2509 . 451890) - (-2510 . 451824) (-2511 . 451752) (-2512 . 451605) (-2513 . 451468) - (-2514 . 451405) (-2515 . 451290) (-2516 . 450869) (-2517 . 450666) - (-2518 . 450593) (-2519 . 450537) (-2520 . 450463) (-2521 . 449614) - (-2522 . 449381) (-2523 . 449254) (-2524 . 448802) (-2525 . 448739) - (-2526 . 448645) (-2527 . 448577) (-2528 . 448374) (-2529 . 448120) - (-2530 . 447964) (-2531 . 447892) (-2532 . 444271) (-2533 . 444219) - (-2534 . 444116) (-2535 . 443624) (-2536 . 443571) (-2537 . 443477) - (-2538 . 443409) (-2539 . 443293) (-2540 . 443149) (-2541 . 442947) - (-2542 . 442548) (-2543 . 442493) (-2544 . 442386) (-2545 . 442026) - (-2546 . 441975) (-2547 . 441786) (-2548 . 441718) (-2549 . 441589) - (-2550 . 441417) (-2551 . 440077) (-2552 . 439307) (-2553 . 439255) - (-2554 . 439224) (-2555 . 439124) (-2556 . 438833) (-2557 . 438637) - (-2558 . 438586) (-2559 . 438531) (-2560 . 438433) (-2561 . 438317) - (-2562 . 438145) (-2563 . 437951) (-2564 . 437892) (-2565 . 437786) - (-2566 . 437621) (-2567 . 437506) (-2568 . 437433) (-2569 . 437362) - (-2570 . 437173) (-2571 . 437065) (-2572 . 436949) (-2573 . 436777) - (-2574 . 436625) (-2575 . 436521) (-2576 . 436279) (-2577 . 436131) - (-2578 . 436016) (-2579 . 435934) (-2580 . 435811) (-2581 . 435703) - (-2582 . 435605) (-2583 . 435433) (-2584 . 435281) (-2585 . 435177) - (-2586 . 434828) (-2587 . 434613) (-2588 . 434178) (-2589 . 428840) - (-2590 . 428727) (-2591 . 428654) (-2592 . 428552) (-2593 . 428454) - (-2594 . 428253) (-2595 . 428146) (-2596 . 427958) (-2597 . 427855) - (-2598 . 427802) (-2599 . 427612) (-2600 . 427337) (-2601 . 427264) - (-2602 . 427162) (-2603 . 427049) (-2604 . 426777) (-2605 . 426670) - (-2606 . 426477) (-2607 . 426371) (-2608 . 426318) (-2609 . 425945) - (-2610 . 425825) (-2611 . 425723) (-2612 . 425514) (-2613 . 425316) - (-2614 . 425209) (-2615 . 424915) (-2616 . 424827) (-2617 . 424775) - (-2618 . 424495) (-2619 . 424422) (-2620 . 424342) (-2621 . 424244) - (-2622 . 424215) (-2623 . 424108) (-2624 . 423829) (-2625 . 423756) - (-2626 . 423055) (-2627 . 422973) (-2628 . 422921) (-2629 . 422870) - (-2630 . 422797) (-2631 . 422316) (-2632 . 422200) (-2633 . 422099) - (-2634 . 421992) (-2635 . 421927) (-2636 . 421249) (-2637 . 421099) - (-2638 . 421007) (-2639 . 420956) (-2640 . 420883) (-2641 . 420223) - (-2642 . 420125) (-2643 . 420024) (-2644 . 419911) (-2645 . 419883) - (-2646 . 419753) (-2647 . 419682) (-2648 . 419612) (-2649 . 419392) - (-2650 . 419328) (-2651 . 419076) (-2652 . 418975) (-2653 . 418891) - (-2654 . 418553) (-2655 . 418503) (-2656 . 418238) (-2657 . 418186) - (-2658 . 418112) (-2659 . 417993) (-2660 . 417660) (-2661 . 417539) - (-2662 . 417426) (-2663 . 417325) (-2664 . 417228) (-2665 . 416890) - (-2666 . 415444) (-2667 . 415337) (-2668 . 415244) (-2669 . 415173) - (-2670 . 415144) (-2671 . 410602) (-2672 . 410418) (-2673 . 410297) - (-2674 . 410076) (-2675 . 409975) (-2676 . 409905) (-2677 . 409413) - (-2678 . 409301) (-2679 . 409248) (-2680 . 409126) (-2681 . 409018) - (-2682 . 408711) (-2683 . 408610) (-2684 . 408540) (-2685 . 407938) - (-2686 . 407620) (-2687 . 407549) (-2688 . 407495) (-2689 . 407393) - (-2690 . 407285) (-2691 . 406507) (-2692 . 406406) (-2693 . 406312) - (-2694 . 405508) (-2695 . 405268) (-2696 . 404961) (-2697 . 404780) - (-2698 . 404727) (-2699 . 404550) (-2700 . 404405) (-2701 . 404246) - (-2702 . 403657) (-2703 . 403556) (-2704 . 403459) (-2705 . 399396) - (-2706 . 398801) (-2707 . 398195) (-2708 . 398051) (-2709 . 397998) - (-2710 . 397937) (-2711 . 397796) (-2712 . 397558) (-2713 . 397061) - (-2714 . 396960) (-2715 . 396876) (-2716 . 396823) (-2717 . 396642) - (-2718 . 396485) (-2719 . 396317) (-2720 . 396069) (-2721 . 395968) - (-2722 . 395884) (-2723 . 395717) (-2724 . 395571) (-2725 . 395301) - (-2726 . 395248) (-2727 . 395187) (-2728 . 395021) (-2729 . 394575) - (-2730 . 394453) (-2731 . 394205) (-2732 . 394128) (-2733 . 394013) - (-2734 . 393522) (-2735 . 393181) (-2736 . 393129) (-2737 . 393076) - (-2738 . 393004) (-2739 . 392913) (-2740 . 392674) (-2741 . 392375) - (-2742 . 392260) (-2743 . 391687) (-2744 . 391519) (-2745 . 391349) - (-2746 . 391203) (-2747 . 388858) (-2748 . 388805) (-2749 . 388429) - (-2750 . 388401) (-2751 . 374287) (-2752 . 374236) (-2753 . 374026) - (-2754 . 373780) (-2755 . 373728) (-2756 . 373675) (-2757 . 373622) - (-2758 . 373538) (-2759 . 373442) (-2760 . 373023) (-2761 . 372906) - (-2762 . 372829) (-2763 . 372495) (-2764 . 372114) (-2765 . 371756) - (-2766 . 371703) (-2767 . 371575) (-2768 . 371478) (-2769 . 371335) - (-2770 . 371085) (-2771 . 371057) (-2772 . 370999) (-2773 . 370730) - (-2774 . 370592) (-2775 . 370394) (-2776 . 370342) (-2777 . 370289) - (-2778 . 370134) (-2779 . 369655) (-2780 . 369584) (-2781 . 368907) - (-2782 . 368806) (-2783 . 368564) (-2784 . 368254) (-2785 . 368025) - (-2786 . 367976) (-2787 . 367897) (-2788 . 367538) (-2789 . 367329) - (-2790 . 367174) (-2791 . 366670) (-2792 . 366569) (-2793 . 366359) - (-2794 . 366149) (-2795 . 365973) (-2796 . 365921) (-2797 . 365827) - (-2798 . 365719) (-2799 . 365520) (-2800 . 365446) (-2801 . 365006) - (-2802 . 361340) (-2803 . 361162) (-2804 . 361051) (-2805 . 360950) - (-2806 . 360818) (-2807 . 360396) (-2808 . 360347) (-2809 . 360250) - (-2810 . 360142) (-2811 . 359970) (-2812 . 359826) (-2813 . 359616) - (-2814 . 359563) (-2815 . 359447) (-2816 . 359364) (-2817 . 359137) - (-2818 . 359085) (-2819 . 359035) (-2820 . 358730) (-12 . 358558) - (-2822 . 358381) (-2823 . 358311) (-2824 . 358133) (-2825 . 358080) - (-2826 . 357927) (-2827 . 357656) (-2828 . 357607) (-2829 . 357557) - (-2830 . 357247) (-2831 . 357213) (-2832 . 357156) (-2833 . 357086) - (-2834 . 356965) (-2835 . 356769) (-2836 . 356517) (-2837 . 356158) - (-2838 . 356020) (-2839 . 355968) (-2840 . 355915) (-2841 . 355172) - (-2842 . 355070) (-2843 . 355000) (-2844 . 354685) (-2845 . 354207) - (-2846 . 354120) (-2847 . 353828) (-2848 . 353687) (-2849 . 353610) - (-2850 . 353561) (-2851 . 353301) (-2852 . 353124) (-2853 . 353030) - (-2854 . 352752) (-2855 . 352702) (-2856 . 352624) (-2857 . 352332) - (-2858 . 351854) (-2859 . 351802) (-2860 . 351752) (-2861 . 351607) - (-2862 . 351513) (-2863 . 351460) (-2864 . 351339) (-2865 . 351289) - (-2866 . 351211) (-2867 . 350919) (-2868 . 350796) (-2869 . 350747) - (-2870 . 350713) (-2871 . 350608) (-2872 . 350514) (-2873 . 350387) - (-2874 . 350337) (-2875 . 350238) (-2876 . 349946) (-2877 . 349710) - (-2878 . 349644) (-2879 . 349579) (-2880 . 349461) (-2881 . 349367) - (-2882 . 349282) (-2883 . 349214) (-2884 . 348016) (-2885 . 347957) - (-2886 . 347703) (-2887 . 347585) (-2888 . 347548) (-2889 . 347449) - (-2890 . 347355) (-2891 . 347282) (-2892 . 347078) (-2893 . 346887) - (-2894 . 346735) (-2895 . 346628) (-2896 . 346378) (-2897 . 345198) - (-2898 . 345061) (-2899 . 344572) (-2900 . 344486) (-2901 . 344393) - (-2902 . 344320) (-2903 . 342051) (-2904 . 341623) (-2905 . 341328) - (-2906 . 340911) (-2907 . 340673) (-2908 . 340563) (-2909 . 340340) - (* . 335794) (-2911 . 335708) (-2912 . 335637) (-2913 . 335519) - (-2914 . 335138) (-2915 . 334975) (-2916 . 334834) (-2917 . 334726) - (-2918 . 334655) (-2919 . 333546) (-2920 . 333031) (-2921 . 332945) - (-2922 . 332889) (-2923 . 332837) (-2924 . 332390) (-2925 . 332331) - (-2926 . 332132) (-2927 . 331788) (-2928 . 331621) (-2929 . 331429) - (-2930 . 331362) (-2931 . 331276) (-2932 . 331220) (-2933 . 331139) - (-2934 . 330904) (-2935 . 330691) (-2936 . 330552) (-2937 . 330411) - (-2938 . 328148) (-2939 . 327987) (-2940 . 327955) (-2941 . 327927) - (-2942 . 327783) (-2943 . 327511) (-2944 . 327425) (-2945 . 327369) - (-2946 . 327288) (-2947 . 327033) (-2948 . 326930) (-2949 . 326732) - (-2950 . 326452) (-2951 . 325905) (-2952 . 325819) (-2953 . 325745) - (-2954 . 325674) (-2955 . 325593) (-2956 . 325468) (-2957 . 325371) - (-2958 . 325268) (-2959 . 325070) (-2960 . 325017) (-2961 . 324799) - (-2962 . 324643) (-2963 . 324528) (-2964 . 324329) (-2965 . 324297) - (-2966 . 324066) (-2967 . 323961) (-2968 . 323890) (-2969 . 323838) - (-2970 . 323757) (-2971 . 323660) (-2972 . 323550) (-2973 . 323265) - (-2974 . 323117) (-2975 . 322899) (-2976 . 322813) (-2977 . 322726) - (-2978 . 322500) (-2979 . 322429) (-2980 . 322175) (-2981 . 322069) - (-2982 . 322010) (-2983 . 321900) (-2984 . 321460) (-2985 . 321312) - (-2986 . 321147) (-2987 . 320723) (-2988 . 320564) (-2989 . 320484) - (-2990 . 320403) (-2991 . 320082) (-2992 . 319606) (-2993 . 319264) - (-2994 . 319190) (-2995 . 318967) (-2996 . 318558) (-2997 . 318134) - (-2998 . 318047) (-2999 . 317970) (-3000 . 317890) (-3001 . 317805) - (-3002 . 317352) (-3003 . 317251) (-3004 . 317087) (-3005 . 316953) - (-3006 . 316783) (-3007 . 316223) (-3008 . 316127) (-3009 . 316042) - (-3010 . 315957) (-3011 . 315855) (-3012 . 315736) (-3013 . 315573) - (-3014 . 315496) (-3015 . 314411) (-3016 . 313293) (-3017 . 313234) - (-3018 . 313128) (-3019 . 313036) (-3020 . 312974) (-3021 . 312890) - (-3022 . 312674) (-3023 . 312510) (-3024 . 312433) (-3025 . 312310) - (-3026 . 310580) (-3027 . 309394) (-3028 . 309235) (-3029 . 309136) - (-3030 . 308832) (-3031 . 308442) (-3032 . 308280) (-3033 . 308097) - (-3034 . 307927) (-3035 . 307790) (-3036 . 307304) (-3037 . 307087) - (-3038 . 305510) (-3039 . 304328) (-3040 . 304249) (-3041 . 304168) - (-3042 . 303281) (-3043 . 303197) (-3044 . 303027) (-3045 . 302974) - (-3046 . 302844) (-3047 . 302713) (-3048 . 301911) (-3049 . 301729) - (-3050 . 299523) (-3051 . 298769) (-3052 . 298690) (-3053 . 298618) - (-3054 . 298036) (-3055 . 297955) (-3056 . 297731) (-3057 . 297678) - (-3058 . 297548) (-3059 . 297417) (-3060 . 296907) (-3061 . 296813) - (-3062 . 296608) (-3063 . 295790) (-3064 . 295759) (-3065 . 295398) - (-3066 . 294938) (-3067 . 294809) (-3068 . 294682) (-3069 . 294520) - (-3070 . 294112) (-3071 . 294018) (-3072 . 293828) (-3073 . 293576) - (-3074 . 293519) (-3075 . 293410) (-3076 . 293350) (-3077 . 293223) - (-3078 . 293119) (-3079 . 292459) (-3080 . 292259) (-3081 . 292160) - (-3082 . 291908) (-3083 . 291836) (-3084 . 291721) (-3085 . 291668) - (-3086 . 291541) (-3087 . 291385) (-3088 . 291326) (-3089 . 291254) - (-3090 . 291192) (-3091 . 291139) (-3092 . 290981) (-3093 . 290863) - (-3094 . 290617) (-3095 . 290560) (-3096 . 290491) (-3097 . 290438) - (-3098 . 290337) (-3099 . 290210) (-3100 . 290151) (-3101 . 290079) - (-3102 . 289898) (-3103 . 289740) (-3104 . 289619) (-3105 . 289373) - (-3106 . 287535) (-3107 . 287317) (-3108 . 287248) (-3109 . 287178) - (-3110 . 287075) (-3111 . 286884) (-3112 . 286778) (-3113 . 286736) - (-3114 . 286684) (-3115 . 286526) (-3116 . 286383) (-3117 . 286137) - (-3118 . 284627) (-3119 . 284409) (-3120 . 284340) (-3121 . 284280) - (-3122 . 284180) (-3123 . 284074) (-3124 . 283628) (-3125 . 283470) - (-3126 . 283327) (-3127 . 283081) (-3128 . 281533) (-3129 . 281360) - (-3130 . 281294) (-3131 . 281235) (-3132 . 281138) (-3133 . 280298) - (-3134 . 279852) (-3135 . 279694) (-3136 . 279554) (-3137 . 279307) - (-3138 . 279089) (-3139 . 278964) (-3140 . 278904) (-3141 . 278774) - (-3142 . 276918) (-3143 . 276472) (-3144 . 276402) (-3145 . 276244) - (-3146 . 276086) (-3147 . 275946) (-3148 . 275699) (-3149 . 274963) - (-3150 . 274790) (-3151 . 274673) (-3152 . 274456) (-3153 . 274397) - (-3154 . 274246) (-3155 . 274178) (-3156 . 273653) (-3157 . 273495) - (-3158 . 273366) (-3159 . 273299) (-3160 . 273137) (-3161 . 272994) - (-3162 . 272747) (-3163 . 272574) (-3164 . 272524) (-3165 . 272464) - (-3166 . 272082) (-3167 . 272014) (-3168 . 271924) (-3169 . 271766) - (-3170 . 271639) (-3171 . 271512) (-3172 . 271265) (-3173 . 271092) - (-3174 . 271021) (-3175 . 270962) (-3176 . 270719) (-3177 . 269507) - (-3178 . 269439) (-3179 . 269346) (-3180 . 269188) (-3181 . 269058) - (-3182 . 268940) (-3183 . 268296) (-3184 . 268123) (-3185 . 267980) - (-3186 . 267921) (-3187 . 267458) (-3188 . 267390) (-3189 . 267307) - (-3190 . 267149) (-3191 . 267025) (-3192 . 266164) (-3193 . 264992) - (-3194 . 264720) (-3195 . 264637) (-3196 . 264495) (-3197 . 264179) - (-3198 . 264111) (-3199 . 263948) (-3200 . 263790) (-3201 . 263666) - (-3202 . 263634) (-3203 . 263519) (-3204 . 256520) (-3205 . 256437) - (-3206 . 256339) (-3207 . 255732) (-3208 . 255652) (-3209 . 255538) - (-3210 . 255380) (-3211 . 255274) (-3212 . 254924) (-3213 . 253787) - (-3214 . 253537) (-3215 . 253391) (-3216 . 253297) (-3217 . 252890) - (-3218 . 252281) (-3219 . 251950) (-3220 . 251873) (-3221 . 251715) - (-3222 . 251609) (-3223 . 251382) (-3224 . 251238) (-3225 . 251181) - (-3226 . 251129) (-3227 . 251013) (-3228 . 249938) (-3229 . 249576) - (-3230 . 248360) (-3231 . 248202) (-3232 . 248099) (-3233 . 247999) - (-3234 . 247488) (-3235 . 247391) (-3236 . 246806) (-3237 . 246621) - (-3238 . 246521) (-3239 . 246363) (-3240 . 246210) (-3241 . 246110) - (-3242 . 245957) (-3243 . 245772) (-3244 . 245671) (-3245 . 245355) - (-3246 . 244812) (-3247 . 244712) (-3248 . 244638) (-3249 . 244519) - (-3250 . 244363) (-3251 . 242580) (-3252 . 242436) (-3253 . 242269) - (-3254 . 242211) (-3255 . 242114) (-3256 . 241776) (-3257 . 241597) - (-3258 . 241254) (-3259 . 241161) (-3260 . 241087) (-3261 . 240848) - (-3262 . 240692) (-3263 . 240578) (-3264 . 239837) (-3265 . 239670) - (-3266 . 239612) (-3267 . 239468) (-3268 . 239137) (-3269 . 238915) - (-3270 . 238834) (-3271 . 238687) (-3272 . 237617) (-3273 . 236876) - (-3274 . 236777) (-3275 . 236439) (-3276 . 236382) (-3277 . 236111) - (-3278 . 235784) (-3279 . 235562) (-3280 . 235484) (-3281 . 235387) - (-3282 . 234961) (-3283 . 234798) (-3284 . 234702) (-3285 . 234014) - (-3286 . 233896) (-3287 . 233608) (-3288 . 232742) (-3289 . 232612) - (-3290 . 232390) (-3291 . 232283) (-3292 . 232168) (-3293 . 232089) - (-3294 . 231984) (-3295 . 231408) (-3296 . 231284) (-3297 . 231200) - (-3298 . 231041) (-3299 . 230509) (-3300 . 230290) (-3301 . 230128) - (-3302 . 230043) (-3303 . 229961) (-3304 . 229874) (-3305 . 229298) - (-3306 . 229152) (-3307 . 229019) (-3308 . 228800) (-3309 . 228692) - (-3310 . 228591) (-3311 . 228432) (-3312 . 228403) (-3313 . 227827) - (-3314 . 227656) (-3315 . 227604) (-3316 . 227425) (-3317 . 227321) - (-3318 . 227102) (-3319 . 226966) (-3320 . 226812) (-3321 . 226610) - (-3322 . 225936) (-3323 . 225854) (-3324 . 225797) (-3325 . 225111) - (-3326 . 224984) (-3327 . 224929) (-3328 . 224750) (-3329 . 224695) - (-3330 . 224476) (-3331 . 224340) (-3332 . 224246) (-3333 . 223979) - (-3334 . 223897) (-3335 . 223815) (-3336 . 223129) (-3337 . 222984) - (-3338 . 222932) (-3339 . 222745) (-3340 . 222666) (-3341 . 222447) - (-3342 . 222324) (-3343 . 222265) (-3344 . 222168) (-3345 . 222042) - (-3346 . 221973) (-3347 . 221224) (-3348 . 221071) (-3349 . 221019) - (-3350 . 220945) (-3351 . 220563) (-3352 . 220493) (-3353 . 220274) - (-3354 . 220175) (-3355 . 220105) (-3356 . 220038) (-3357 . 219830) - (-3358 . 219749) (-3359 . 218981) (-3360 . 218851) (-3361 . 218277) - (-3362 . 218114) (-3363 . 218062) (-3364 . 217988) (-3365 . 217809) - (-3366 . 217736) (-3367 . 217635) (-3368 . 217486) (-3369 . 217407) - (-3370 . 217354) (-3371 . 217259) (-3372 . 217177) (-3373 . 216585) - (-3374 . 216011) (-3375 . 215918) (-3376 . 215835) (-3377 . 215656) - (-3378 . 215526) (-3379 . 215471) (-3380 . 215416) (-3381 . 215317) - (-3382 . 215264) (-3383 . 215169) (-3384 . 215088) (-3385 . 215010) - (-3386 . 214436) (-3387 . 214240) (-3388 . 214157) (-3389 . 213970) - (-3390 . 213897) (-3391 . 213844) (-3392 . 213708) (-3393 . 213611) - (-3394 . 213580) (-3395 . 212893) (-3396 . 212577) (-3397 . 212522) - (-3398 . 212450) (-3399 . 212068) (-3400 . 212013) (-3401 . 211882) - (-3402 . 211672) (-3403 . 211613) (-3404 . 211515) (-3405 . 211414) - (-3406 . 210164) (-3407 . 210090) (-3408 . 209403) (-3409 . 208222) - (-3410 . 207226) (-3411 . 207169) (-3412 . 207020) (-3413 . 206663) - (-3414 . 206452) (-3415 . 205814) (-3416 . 205755) (-3417 . 205657) - (-3418 . 205588) (-3419 . 204901) (-3420 . 204534) (-3421 . 204460) - (-3422 . 204052) (-3423 . 203641) (-3424 . 203103) (-3425 . 202912) - (-3426 . 202535) (-3427 . 200993) (-3428 . 200943) (-3429 . 200869) - (-3430 . 200461) (-3431 . 200306) (-3432 . 200163) (-3433 . 199580) - (-3434 . 199527) (-3435 . 199429) (-3436 . 199376) (-3437 . 198663) - (-3438 . 198145) (-3439 . 198066) (-3440 . 197948) (-3441 . 197798) - (-3442 . 197643) (-3443 . 197387) (-3444 . 194460) (-3445 . 194404) - (-3446 . 194321) (-3447 . 193671) (-3448 . 192810) (-3449 . 192168) - (-3450 . 192116) (-3451 . 192061) (-3452 . 191752) (-3453 . 191592) - (-3454 . 191509) (-3455 . 191386) (-3456 . 191092) (-3457 . 191036) - (-3458 . 190841) (-3459 . 190024) (-3460 . 189951) (-3461 . 189788) - (-3462 . 189732) (-3463 . 189404) (-3464 . 189345) (-3465 . 189200) - (-3466 . 189093) (-3467 . 188938) (-3468 . 188687) (-3469 . 188390) - (-3470 . 188222) (-3471 . 188126) (-3472 . 188042) (-3473 . 187945) - (-3474 . 187848) (-3475 . 187749) (-3476 . 187631) (-3477 . 187476) - (-3478 . 187369) (-3479 . 187069) (-3480 . 186999) (-3481 . 186890) - (-3482 . 186785) (-3483 . 186663) (-3484 . 186542) (-3485 . 186443) - (-3486 . 186261) (-3487 . 186151) (-3488 . 186014) (-3489 . 185736) - (-3490 . 185606) (-3491 . 185279) (-3492 . 185181) (-3493 . 184748) - (-3494 . 184652) (-3495 . 184555) (-3496 . 184484) (-3497 . 184385) - (-3498 . 184261) (-3499 . 184124) (-3500 . 183986) (-3501 . 183853) - (-3502 . 183755) (-3503 . 183580) (-3504 . 183484) (-3505 . 183410) - (-3506 . 183311) (-3507 . 183018) (-3508 . 182908) (-3509 . 182771) - (-3510 . 182379) (-3511 . 182243) (-3512 . 182145) (-3513 . 182066) - (-3514 . 181989) (-3515 . 181758) (-3516 . 181659) (-3517 . 181366) - (-3518 . 181229) (-3519 . 181098) (-3520 . 180959) (-3521 . 180879) - (-3522 . 180719) (-3523 . 180530) (-3524 . 180453) (-3525 . 180015) - (-3526 . 179916) (-3527 . 179629) (-3528 . 179492) (-3529 . 179336) - (-3530 . 178051) (-3531 . 177891) (-3532 . 177711) (-3533 . 177655) - (-3534 . 177571) (-3535 . 177426) (-3536 . 177327) (-3537 . 177043) - (-3538 . 176906) (-3539 . 176633) (-3540 . 176308) (-3541 . 176155) - (-3542 . 175704) (-3543 . 175648) (-3544 . 175506) (-3545 . 175392) - (-3546 . 175086) (-3547 . 175030) (-3548 . 174918) (-3549 . 174771) - (-3550 . 174390) (-3551 . 173632) (-3552 . 173480) (-3553 . 173413) - (-3554 . 173291) (-3555 . 173177) (-3556 . 172865) (-3557 . 172777) - (-3558 . 172622) (-3559 . 172419) (-3560 . 172306) (-3561 . 172053) - (-3562 . 171873) (-3563 . 171806) (-3564 . 171684) (-3565 . 171570) - (-3566 . 171485) (-3567 . 171374) (-3568 . 171270) (-3569 . 171016) - (-3570 . 170705) (-3571 . 170532) (-3572 . 170469) (-3573 . 170329) - (-3574 . 170215) (-3575 . 170116) (-3576 . 170005) (-3577 . 169851) - (-3578 . 169555) (-3579 . 169203) (-3580 . 168941) (-3581 . 168420) - (-3582 . 168262) (-3583 . 168069) (-3584 . 167955) (-3585 . 167856) - (-3586 . 167788) (-3587 . 167668) (-3588 . 167372) (-3589 . 167146) - (-3590 . 166888) (-3591 . 166366) (-3592 . 166250) (-3593 . 166144) - (-3594 . 166025) (-3595 . 165911) (-3596 . 165685) (-3597 . 165575) - (-3598 . 165446) (-3599 . 165185) (-3600 . 164910) (-3601 . 164093) - (-3602 . 164044) (-3603 . 163769) (-3604 . 163508) (-3605 . 163391) - (-3606 . 163291) (-3607 . 163188) (-3608 . 163090) (-3609 . 163009) - (-3610 . 162622) (-3611 . 162450) (-3612 . 162259) (-3613 . 162190) - (-3614 . 161796) (-3615 . 161718) (-3616 . 161615) (-3617 . 157455) - (-3618 . 157367) (-3619 . 157279) (-3620 . 157095) (-3621 . 156872) - (-3622 . 156528) (-3623 . 156500) (-3624 . 156298) (-3625 . 156220) - (-3626 . 156140) (-3627 . 155692) (-3628 . 155604) (-3629 . 155503) - (-3630 . 155369) (-3631 . 154465) (-3632 . 154152) (-3633 . 153990) - (-3634 . 153603) (-3635 . 153276) (-3636 . 152849) (-3637 . 152761) - (-3638 . 152663) (-3639 . 152497) (-3640 . 152353) (-3641 . 152174) - (-3642 . 152015) (-3643 . 151669) (-3644 . 151374) (-3645 . 150754) - (-3646 . 150666) (-3647 . 150594) (-3648 . 150428) (-3649 . 150284) - (-3650 . 150152) (-3651 . 150042) (-3652 . 149993) (-3653 . 149891) - (-3654 . 149818) (-3655 . 149211) (-3656 . 149123) (-3657 . 148316) - (-3658 . 148282) (-3659 . 148179) (-3660 . 148045) (-3661 . 147901) - (-3662 . 147760) (-3663 . 147709) (-3664 . 147639) (-3665 . 147377) - (-3666 . 146992) (-3667 . 146774) (-3668 . 146680) (-3669 . 146608) - (-3670 . 146574) (-3671 . 146440) (-3672 . 146233) (-3673 . 146154) - (-3674 . 145066) (-3675 . 144677) (-3676 . 144575) (-3677 . 144547) - (-3678 . 144369) (-3679 . 144281) (-3680 . 143945) (-3681 . 143811) - (-3682 . 143613) (-3683 . 143457) (-3684 . 142974) (-3685 . 142769) - (-3686 . 142570) (-3687 . 142306) (-3688 . 142218) (-3689 . 142146) - (-3690 . 141963) (-3691 . 141829) (-3692 . 141686) (-3693 . 141506) - (-3694 . 141265) (-3695 . 141152) (-3696 . 141121) (-3697 . 140941) - (-3698 . 140527) (-3699 . 140439) (-3700 . 140103) (-3701 . 139930) - (-3702 . 139861) (-3703 . 139730) (-3704 . 138528) (-3705 . 138207) - (-3706 . 136775) (-3707 . 136678) (-3708 . 136576) (-3709 . 136326) - (-3710 . 136032) (-3711 . 135944) (-3712 . 135872) (-3713 . 135798) - (-3714 . 135667) (-3715 . 135552) (-3716 . 135411) (-3717 . 134815) - (-3718 . 134537) (-3719 . 134380) (-3720 . 134309) (-3721 . 134254) - (-3722 . 133806) (-3723 . 133718) (-3724 . 133265) (-3725 . 133134) - (-3726 . 132789) (-3727 . 132643) (-3728 . 132562) (-3729 . 132467) - (-3730 . 132350) (-3731 . 132272) (-3732 . 132094) (-3733 . 132006) - (-3734 . 131934) (-3735 . 131551) (-3736 . 131391) (-3737 . 131158) - (-3738 . 130797) (-3739 . 129999) (-3740 . 129930) (-3741 . 129833) - (-3742 . 129743) (-3743 . 129646) (-3744 . 129272) (-3745 . 128879) - (-3746 . 128791) (-3747 . 128686) (-3748 . 128559) (-3749 . 128420) - (-3750 . 128360) (-3751 . 127981) (-3752 . 127927) (-3753 . 127866) - (-3754 . 127784) (-3755 . 127687) (-3756 . 127608) (-3757 . 127215) - (-3758 . 127127) (-3759 . 127050) (-3760 . 126922) (-3761 . 126783) - (-3762 . 126726) (-3763 . 126654) (-3764 . 126576) (-3765 . 126499) - (-3766 . 126401) (-3767 . 126328) (-3768 . 126143) (-3769 . 126055) - (-3770 . 125978) (-3771 . 125922) (-3772 . 125670) (-3773 . 125541) - (-3774 . 125484) (-3775 . 124987) (-3776 . 124831) (-3777 . 124772) - (-3778 . 121436) (-3779 . 121353) (-3780 . 121146) (-3781 . 121058) - (-3782 . 120986) (-3783 . 120915) (-3784 . 120791) (-3785 . 120706) - (-3786 . 120493) (-3787 . 120071) (-3788 . 119843) (-3789 . 119724) - (-3790 . 119553) (-3791 . 119470) (-3792 . 119246) (-3793 . 119108) - (-3794 . 118765) (-3795 . 118513) (-3796 . 118456) (-3797 . 117953) - (-3798 . 117810) (-3799 . 116846) (-3800 . 116406) (-3801 . 116322) - (-3802 . 116239) (-3803 . 115992) (-3804 . 115893) (-3805 . 115755) - (-3806 . 115449) (-3807 . 115397) (-3808 . 115265) (-3809 . 115141) - (-3810 . 113829) (-3811 . 113721) (-3812 . 112851) (-3813 . 112604) - (-3814 . 112520) (-3815 . 112419) (-3816 . 112220) (-3817 . 112100) - (-3818 . 111955) (-3819 . 111703) (-3820 . 111643) (-3821 . 111528) - (-3822 . 111407) (-3823 . 111280) (-3824 . 110978) (-3825 . 110894) - (-3826 . 110835) (-3827 . 110201) (-3828 . 110081) (-3829 . 109936) - (-3830 . 109812) (-3831 . 109680) (-3832 . 109613) (-3833 . 109483) - (-3834 . 109181) (-3835 . 109125) (-3836 . 109041) (-3837 . 108917) - (-3838 . 108776) (-3839 . 108619) (-3840 . 108186) (-3841 . 107685) - (-3842 . 107400) (-3843 . 107081) (-3844 . 107007) (-3845 . 106895) - (-3846 . 106593) (-3847 . 106537) (-3848 . 106413) (-3849 . 106022) - (-3850 . 105934) (-3851 . 105583) (-3852 . 105310) (-3853 . 105053) - (-3854 . 104938) (-3855 . 104780) (-3856 . 104439) (-3857 . 104298) - (-3858 . 99185) (-3859 . 99132) (-3860 . 99083) (-3861 . 98995) - (-3862 . 98764) (-3863 . 98491) (-3864 . 98420) (-3865 . 98163) - (-3866 . 98049) (-3867 . 97954) (-3868 . 97903) (-3869 . 97848) - (-3870 . 97760) (-3871 . 97708) (-3872 . 97417) (-3873 . 97142) - (-3874 . 96844) (-3875 . 96784) (-3876 . 96414) (-3877 . 96312) - (-3878 . 96164) (-3879 . 96069) (-3880 . 95734) (-3881 . 95685) - (-3882 . 95597) (-3883 . 95210) (-3884 . 95133) (-3885 . 94846) - (-3886 . 94645) (-3887 . 93175) (-3888 . 93091) (-3889 . 92996) - (-3890 . 92667) (-3891 . 92529) (-3892 . 92477) (-3893 . 92234) - (-3894 . 91808) (-3895 . 91743) (-3896 . 91632) (-3897 . 91310) - (-3898 . 91226) (-3899 . 91131) (-3900 . 90943) (-3901 . 90797) - (-3902 . 90659) (-3903 . 90416) (-3904 . 90354) (-3905 . 90258) - (-3906 . 89784) (-3907 . 89676) (-3908 . 89581) (-3909 . 89390) - (-3910 . 89338) (-3911 . 89250) (-3912 . 89007) (-3913 . 88797) - (-3914 . 88701) (-3915 . 88594) (-3916 . 88171) (-3917 . 88076) - (-3918 . 87988) (-3919 . 87856) (-3920 . 87613) (-3921 . 87452) - (-3922 . 87368) (-3923 . 87094) (-3924 . 87004) (-3925 . 86896) - (-3926 . 86469) (-3927 . 86389) (-3928 . 86318) (-3929 . 86220) - (-3930 . 86132) (-3931 . 86075) (-3932 . 85844) (-3933 . 85270) - (-3934 . 85045) (-3935 . 84894) (-3936 . 84817) (-3937 . 84740) - (-3938 . 84669) (-3939 . 84571) (-3940 . 84483) (-3941 . 84252) - (-3942 . 83738) (-3943 . 83595) (-3944 . 83453) (-3945 . 83182) - (-3946 . 83102) (-3947 . 83031) (-3948 . 82936) (-3949 . 82848) - (-3950 . 82696) (-3951 . 82551) (-3952 . 82280) (-3953 . 82046) - (-3954 . 81975) (-3955 . 81729) (-3956 . 81634) (-3957 . 81546) - (-3958 . 81362) (-3959 . 81295) (-3960 . 81117) (-3961 . 80943) - (-3962 . 80556) (-3963 . 80398) (-3964 . 80299) (-3965 . 80053) - (-3966 . 79958) (-3967 . 79867) (-3968 . 79762) (-3969 . 79627) - (-3970 . 79544) (-3971 . 79489) (-3972 . 79303) (-3973 . 79179) - (-3974 . 78476) (-3975 . 78416) (-3976 . 78114) (-3977 . 77858) - (-3978 . 77763) (-3979 . 77669) (-3980 . 77546) (-3981 . 77496) - (-3982 . 77413) (-3983 . 77167) (-3984 . 77081) (-3985 . 77021) - (-3986 . 76992) (-3987 . 76834) (-3988 . 76459) (-3989 . 76364) - (-3990 . 76262) (-3991 . 76172) (-3992 . 76106) (-3993 . 76029) - (-3994 . 75697) (-3995 . 75525) (-3996 . 75415) (-3997 . 75064) - (-3998 . 74962) (-3999 . 74824) (-4000 . 74273) (-4001 . 74199) - (-4002 . 74009) (-4003 . 73943) (-4004 . 73866) (-4005 . 73813) - (-4006 . 73670) (-4007 . 73554) (-4008 . 73450) (-4009 . 73063) - (-4010 . 72961) (-4011 . 72878) (-4012 . 72805) (-4013 . 72739) - (-4014 . 72616) (-4015 . 72473) (-4016 . 71969) (-4017 . 71856) - (-4018 . 71469) (-4019 . 71367) (-4020 . 71293) (-4021 . 71223) - (-4022 . 71157) (-4023 . 71074) (-4024 . 69778) (-4025 . 69394) - (-4026 . 69281) (-4027 . 68894) (-4028 . 68799) (-4029 . 68581) - (-4030 . 68516) (-4031 . 68450) (-4032 . 68268) (-4033 . 67673) - (-4034 . 67599) (-4035 . 67516) (-4036 . 67087) (-4037 . 66959) - (-4038 . 66576) (-4039 . 66509) (-4040 . 66020) (-4041 . 65807) - (-4042 . 65752) (-4043 . 65686) (-4044 . 65084) (-4045 . 64489) - (-4046 . 64409) (-4047 . 64144) (-4048 . 64046) (-4049 . 63936) - (-4050 . 63200) (-4051 . 63149) (-4052 . 62917) (-4053 . 62798) - (-4054 . 62705) (-4055 . 62611) (-4056 . 62545) (-4057 . 62379) - (-4058 . 62101) (-4059 . 61350) (-4060 . 61250) (-4061 . 61143) - (-4062 . 60792) (-4063 . 60741) (-4064 . 60493) (-4065 . 60426) - (-4066 . 60116) (-4067 . 60042) (-4068 . 59976) (-4069 . 59392) - (-4070 . 59031) (-4071 . 58894) (-4072 . 55595) (-4073 . 55439) - (-4074 . 54982) (-4075 . 54538) (-4076 . 54395) (-4077 . 54050) - (-4078 . 53984) (-4079 . 53854) (-4080 . 53527) (-4081 . 53436) - (-4082 . 53302) (-4083 . 53228) (-4084 . 52799) (-4085 . 52367) - (-4086 . 52162) (-4087 . 52095) (-4088 . 52021) (-4089 . 51955) - (-4090 . 51878) (-4091 . 51745) (-4092 . 51644) (-4093 . 51507) - (-4094 . 51412) (-4095 . 51278) (-4096 . 50645) (-4097 . 50618) - (-4098 . 50534) (-4099 . 50209) (-4100 . 50143) (-4101 . 49773) - (-4102 . 49640) (-4103 . 49522) (-4104 . 49454) (-4105 . 49176) - (-4106 . 49063) (-4107 . 48867) (-4108 . 48228) (-4109 . 48110) - (-4110 . 47987) (-4111 . 47904) (-4112 . 47694) (-4113 . 47628) - (-4114 . 47450) (-4115 . 47118) (-4116 . 47049) (-4117 . 46930) - (-4118 . 46734) (-4119 . 46342) (-4120 . 46224) (-4121 . 46101) - (-4122 . 45999) (-4123 . 45913) (-4124 . 45847) (-4125 . 45775) - (-4126 . 45666) (-4127 . 45578) (-4128 . 45401) (-4129 . 45330) - (-4130 . 44988) (-4131 . 44928) (-4132 . 44784) (-4133 . 44584) - (-4134 . 44498) (-4135 . 44432) (-4136 . 44292) (-4137 . 44183) - (-4138 . 44095) (-4139 . 43868) (-4140 . 43797) (-4141 . 43663) - (-4142 . 43271) (-4143 . 43101) (-4144 . 42535) (-4145 . 42467) - (-4146 . 42381) (-4147 . 42315) (-4148 . 42125) (-4149 . 42016) - (-4150 . 41784) (-4151 . 41613) (-4152 . 41530) (-4153 . 41393) - (-4154 . 41051) (-4155 . 40927) (-4156 . 40361) (-4157 . 40113) - (-4158 . 40027) (-4159 . 39871) (-4160 . 39805) (-4161 . 39689) - (-4162 . 39580) (-4163 . 39506) (-4164 . 39423) (-4165 . 39292) - (-4166 . 39067) (-4167 . 38816) (-4168 . 38730) (-4169 . 38664) - (-4170 . 38548) (-4171 . 38439) (-4172 . 38295) (-4173 . 38170) - (-4174 . 38057) (-4175 . 37527) (-4176 . 37279) (-4177 . 37193) - (-4178 . 37127) (-4179 . 37011) (-4180 . 36902) (-4181 . 36850) - (-4182 . 36384) (-4183 . 36247) (-4184 . 36125) (-4185 . 35907) - (-4186 . 35659) (-4187 . 35573) (-4188 . 35507) (-4189 . 35354) - (-4190 . 35245) (-4191 . 34413) (-4192 . 34033) (-4193 . 33950) - (-4194 . 33825) (-4195 . 33607) (-4196 . 33539) (-4197 . 33453) - (-4198 . 33387) (-4199 . 33243) (-4200 . 33134) (-4201 . 32370) - (-4202 . 32266) (-4203 . 32192) (-4204 . 31973) (-4205 . 31399) - (-4206 . 31063) (-4207 . 30977) (-4208 . 30908) (-4209 . 30842) - (-4210 . 30768) (-4211 . 30659) (-4212 . 30515) (-4213 . 30347) - (-4214 . 30163) (-4215 . 29983) (-4216 . 28918) (-4217 . 28832) - (-4218 . 28766) (-4219 . 28680) (-4220 . 28571) (-4221 . 28427) - (-4222 . 28275) (-4223 . 28101) (-4224 . 27882) (-4225 . 27662) - (-4226 . 27576) (-4227 . 27510) (-4228 . 27436) (-4229 . 27327) - (-4230 . 27162) (-4231 . 26963) (-4232 . 26859) (-4233 . 26679) - (-4234 . 26609) (-4235 . 26370) (-4236 . 26151) (-4237 . 26068) - (-4238 . 25982) (-4239 . 25916) (-4240 . 25842) (-4241 . 25733) - (-4242 . 25495) (-4243 . 25391) (-4244 . 25217) (-4245 . 24823) - (-4246 . 24750) (-4247 . 24676) (-4248 . 24590) (-4249 . 24524) - (-4250 . 24450) (-4251 . 24341) (-4252 . 24200) (-4253 . 24115) - (-4254 . 23996) (-4255 . 23816) (-4256 . 23742) (-4257 . 23311) - (-4258 . 23225) (-4259 . 23159) (-4260 . 23015) (-4261 . 22906) - (-4262 . 22826) (-4263 . 22679) (-4264 . 22307) (-4265 . 22179) - (-4266 . 21964) (-4267 . 21890) (-4268 . 21804) (-4269 . 21147) - (-4270 . 20994) (-4271 . 20885) (-4272 . 20827) (-4273 . 20588) - (-4274 . 20505) (-4275 . 20377) (-4276 . 20287) (-4277 . 20183) - (-4278 . 20097) (-4279 . 19440) (-4280 . 19265) (-4281 . 19156) - (-4282 . 19037) (-4283 . 18801) (-4284 . 18714) (-4285 . 18592) - (-4286 . 18502) (-4287 . 18429) (-4288 . 18232) (-4289 . 18146) - (-4290 . 18018) (-4291 . 17865) (-4292 . 17756) (-4293 . 17682) - (-4294 . 17457) (-4295 . 17218) (-4296 . 17135) (-4297 . 16910) - (-4298 . 16816) (-4299 . 16748) (-4300 . 16662) (-4301 . 16012) - (-4302 . 15859) (-4303 . 15736) (-4304 . 15546) (-4305 . 15437) - (-4306 . 15229) (-4307 . 15034) (-4308 . 14812) (-4309 . 14641) - (-4310 . 14554) (-4311 . 14341) (-4312 . 14255) (-4313 . 14132) - (-4314 . 13942) (-4315 . 13656) (-4316 . 13547) (-4317 . 13401) - (-4318 . 13278) (-4319 . 13085) (-4320 . 12914) (-4321 . 12824) - (-4322 . 12772) (-4323 . 12686) (-4324 . 12545) (-4325 . 12259) - (-4326 . 12150) (-4327 . 11946) (-4328 . 11615) (-4329 . 11438) - (-4330 . 11355) (-4331 . 11302) (-4332 . 11247) (-4333 . 11161) - (-4334 . 11006) (-4335 . 10595) (-4336 . 10486) (-4337 . 10263) - (-4338 . 9967) (-4339 . 9815) (-4340 . 9624) (-4341 . 9534) - (-4342 . 9448) (-4343 . 9304) (-4344 . 9018) (-4345 . 8909) - (-4346 . 8670) (-4347 . 8374) (-4348 . 8094) (-4349 . 8038) - (-4350 . 7951) (-4351 . 7865) (-4352 . 7685) (-4353 . 7612) - (-4354 . 7503) (-4355 . 7362) (-4356 . 6958) (-4357 . 6648) - (-4358 . 6565) (-4359 . 6424) (-4360 . 4573) (-4361 . 4487) - (-4362 . 4364) (-4363 . 4215) (-4364 . 4106) (-4365 . 3968) - (-4366 . 3651) (-4367 . 3382) (-4368 . 3251) (-4369 . 3168) - (-4370 . 3087) (-4371 . 3001) (-4372 . 2877) (-4373 . 2771) - (-4374 . 2662) (-4375 . 2523) (-4376 . 2394) (-4377 . 2189) - (-4378 . 2106) (-4379 . 1352) (-4380 . 1266) (-4381 . 1165) - (-4382 . 1095) (-4383 . 894) (-4384 . 641) (-4385 . 539) (-4386 . 348) - (-4387 . 165) (-4388 . 30))
\ No newline at end of file + (-2 (|:| |lfn| (-641 (-316 (-225)))) (|:| -3258 (-641 (-225))))) + (-5 *2 (-379)) (-5 *1 (-267)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1259 (-316 (-225)))) (-5 *2 (-379)) (-5 *1 (-305))))) +(((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-821))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1209))))) +((-1292 . 735917) (-1293 . 735865) (-1294 . 735647) (-1295 . 735513) + (-1296 . 735386) (-1297 . 735243) (-1298 . 735117) (-1299 . 734815) + (-1300 . 734746) (-1301 . 734608) (-1302 . 734522) (-1303 . 733949) + (-1304 . 733605) (-1305 . 733359) (-1306 . 732881) (-1307 . 732751) + (-1308 . 732698) (-1309 . 732054) (-1310 . 731987) (-1311 . 731919) + (-1312 . 731820) (-1313 . 731676) (-1314 . 731624) (-1315 . 731530) + (-1316 . 731478) (-1317 . 731275) (-1318 . 730840) (-1319 . 730592) + (-1320 . 729420) (-1321 . 728559) (-1322 . 728453) (-1323 . 728354) + (-1324 . 728025) (-1325 . 727872) (-1326 . 727838) (-1327 . 727684) + (-1328 . 726503) (-1329 . 726176) (-1330 . 726090) (-1331 . 725768) + (-1332 . 725620) (-1333 . 725523) (-1334 . 725408) (-1335 . 725335) + (-1336 . 725255) (-1337 . 725092) (-1338 . 724983) (-1339 . 724839) + (-1340 . 723527) (-1341 . 723442) (-1342 . 722924) (-1343 . 722838) + (-1344 . 722720) (-1345 . 722578) (-1346 . 722326) (-1347 . 722232) + (-1348 . 721095) (-1349 . 721015) (-1350 . 720918) (-1351 . 720862) + (-1352 . 720803) (-1353 . 719843) (-1354 . 719742) (-1355 . 719544) + (-1356 . 719445) (-1357 . 718557) (-1358 . 718378) (-1359 . 718237) + (-1360 . 718113) (-1361 . 717788) (-1362 . 717760) (-1363 . 717552) + (-1364 . 717290) (-1365 . 717238) (-1366 . 716960) (-1367 . 716890) + (-1368 . 716749) (-1369 . 716693) (-1370 . 716578) (-1371 . 716380) + (-1372 . 716248) (-1373 . 716151) (-1374 . 716028) (-1375 . 715954) + (-1376 . 715856) (-1377 . 715760) (-1378 . 715605) (-1379 . 715507) + (-1380 . 715450) (-1381 . 715371) (-1382 . 715035) (-1383 . 714892) + (-1384 . 714596) (-1385 . 714480) (-1386 . 714250) (-1387 . 713377) + (-1388 . 713271) (-1389 . 713162) (-1390 . 713090) (-1391 . 712960) + (-1392 . 712714) (-1393 . 712589) (-1394 . 712496) (-1395 . 712443) + (-1396 . 712342) (-1397 . 712078) (-1398 . 712022) (-1399 . 711934) + (-1400 . 711808) (-1401 . 711689) (-1402 . 711550) (-1403 . 711275) + (-1404 . 711102) (-1405 . 711028) (-1406 . 710972) (-1407 . 710835) + (-1408 . 710755) (-1409 . 710695) (-1410 . 710552) (-1411 . 710462) + (-1412 . 710353) (-1413 . 710252) (-1414 . 710158) (-1415 . 709691) + (-1416 . 709571) (-1417 . 709447) (-1418 . 709305) (-1419 . 709249) + (-1420 . 709114) (-1421 . 708822) (-1422 . 708178) (-1423 . 707840) + (-1424 . 707523) (-1425 . 707470) (-1426 . 707386) (-1427 . 707321) + (-1428 . 707190) (-1429 . 707020) (-1430 . 706933) (-1431 . 706811) + (-1432 . 706714) (-1433 . 706616) (-1434 . 706497) (-1435 . 706445) + (-1436 . 706393) (-1437 . 706250) (-1438 . 706083) (-1439 . 705900) + (-1440 . 705793) (-1441 . 705649) (-1442 . 705393) (-1443 . 705285) + (-1444 . 705206) (-1445 . 705015) (-1446 . 704687) (-1447 . 704522) + (-1448 . 704359) (-1449 . 704246) (-1450 . 704093) (-1451 . 702797) + (-1452 . 702467) (-1453 . 702433) (-1454 . 700465) (-1455 . 700255) + (-1456 . 700221) (-1457 . 700003) (-1458 . 699880) (-1459 . 699823) + (-1460 . 699755) (-1461 . 699437) (-1462 . 699318) (-1463 . 699266) + (-1464 . 699174) (-1465 . 698423) (-1466 . 698335) (-1467 . 698219) + (-1468 . 698133) (-1469 . 698026) (-1470 . 697954) (-1471 . 697527) + (-1472 . 697421) (-1473 . 697194) (-1474 . 697106) (-1475 . 696980) + (-1476 . 696824) (-1477 . 696615) (-1478 . 696549) (-1479 . 696494) + (-1480 . 695898) (-1481 . 695813) (-1482 . 695761) (-1483 . 695376) + (-1484 . 694957) (-1485 . 694929) (-1486 . 694754) (-1487 . 694150) + (-1488 . 694073) (-1489 . 693868) (-1490 . 693716) (-1491 . 693684) + (-1492 . 693525) (-1493 . 693131) (-1494 . 693100) (-1495 . 692773) + (-1496 . 692542) (-1497 . 692346) (-1498 . 692230) (-1499 . 692110) + (-1500 . 691849) (-1501 . 691754) (-1502 . 691638) (-1503 . 691524) + (-1504 . 691496) (-1505 . 691343) (-1506 . 691012) (-1507 . 690960) + (-1508 . 690724) (-1509 . 690580) (-1510 . 690362) (-1511 . 690254) + (-1512 . 689775) (-1513 . 689702) (-1514 . 689410) (-1515 . 689203) + (-1516 . 689089) (-1517 . 688994) (-1518 . 688836) (-1519 . 688657) + (-1520 . 688597) (-1521 . 688545) (-1522 . 688486) (-1523 . 688374) + (-1524 . 688211) (-1525 . 687030) (-1526 . 686759) (-1527 . 686696) + (-1528 . 686090) (-1529 . 686019) (-1530 . 685748) (-1531 . 685617) + (-1532 . 685344) (-1533 . 685285) (-1534 . 685093) (-1535 . 684291) + (-1536 . 684263) (-1537 . 684171) (-1538 . 684046) (-1539 . 683954) + (-1540 . 683084) (-1541 . 683002) (-1542 . 682787) (-1543 . 682759) + (-1544 . 681509) (-1545 . 681386) (-1546 . 681313) (-1547 . 681247) + (-1548 . 681037) (-1549 . 680945) (-1550 . 680911) (-1551 . 680243) + (-1552 . 680090) (-1553 . 679972) (-1554 . 679919) (-1555 . 679810) + (-1556 . 679744) (-1557 . 679637) (-1558 . 679457) (-1559 . 679369) + (-1560 . 679283) (-1561 . 679252) (-1562 . 679128) (-1563 . 678892) + (-1564 . 678791) (-1565 . 678498) (-1566 . 678255) (-1567 . 678196) + (-1568 . 678089) (-1569 . 678029) (-1570 . 677743) (-1571 . 677540) + (-1572 . 677483) (-1573 . 677400) (-1574 . 677296) (-1575 . 677212) + (-1576 . 677013) (-1577 . 676860) (-1578 . 676759) (-1579 . 676602) + (-1580 . 676404) (-1581 . 676285) (-1582 . 676012) (-1583 . 675770) + (-1584 . 675674) (-1585 . 675557) (-1586 . 675457) (-1587 . 675327) + (-1588 . 675167) (-1589 . 674873) (-1590 . 674818) (-1591 . 674291) + (-1592 . 674174) (-1593 . 674112) (-1594 . 673720) (-1595 . 673651) + (-1596 . 673087) (-1597 . 673035) (-1598 . 672844) (-1599 . 672751) + (-1600 . 672722) (-1601 . 672694) (-1602 . 672447) (-1603 . 672229) + (-1604 . 672129) (-1605 . 671977) (-1606 . 671832) (-1607 . 671804) + (-1608 . 671700) (-1609 . 671668) (-1610 . 671580) (-1611 . 671552) + (-1612 . 671358) (-1613 . 671228) (-1614 . 670899) (-1615 . 670777) + (-1616 . 670725) (-1617 . 670651) (-1618 . 669655) (-1619 . 667386) + (-1620 . 667306) (-1621 . 667179) (-1622 . 667080) (-1623 . 666993) + (-1624 . 666666) (-1625 . 665965) (-1626 . 665586) (-1627 . 665482) + (-1628 . 665403) (-1629 . 665304) (-1630 . 665163) (-1631 . 665050) + (-1632 . 664906) (-1633 . 664855) (-1634 . 664177) (-1635 . 664105) + (-1636 . 664022) (-1637 . 663925) (-1638 . 663897) (-1639 . 663715) + (-1640 . 663687) (-1641 . 663160) (-1642 . 663108) (-1643 . 662890) + (-1644 . 662680) (-1645 . 662626) (-1646 . 662569) (-1647 . 662467) + (-1648 . 662400) (-1649 . 662344) (-1650 . 662292) (-1651 . 662163) + (-1652 . 662013) (-1653 . 661914) (-1654 . 661819) (-1655 . 661554) + (-1656 . 661438) (-1657 . 661285) (-1658 . 661256) (-1659 . 661196) + (-1660 . 660955) (-1661 . 660857) (-1662 . 660727) (-1663 . 660659) + (-1664 . 660565) (-1665 . 660491) (-1666 . 660384) (-1667 . 660260) + (-1668 . 660208) (-1669 . 660140) (-1670 . 660031) (-1671 . 659777) + (-1672 . 659700) (-1673 . 659577) (-1674 . 659511) (-1675 . 659398) + (-1676 . 659291) (-1677 . 659263) (-1678 . 659086) (-1679 . 659031) + (-1680 . 659000) (-1681 . 658820) (-1682 . 658749) (-1683 . 658690) + (-1684 . 658616) (-1685 . 658516) (-1686 . 658484) (-1687 . 657635) + (-1688 . 657575) (-1689 . 657468) (-1690 . 657366) (-1691 . 657278) + (-1692 . 657250) (-1693 . 656639) (-1694 . 656569) (-1695 . 656322) + (-1696 . 656209) (-1697 . 655902) (-1698 . 655728) (-1699 . 652107) + (-1700 . 652017) (-1701 . 651908) (-1702 . 651734) (-1703 . 651635) + (-1704 . 651583) (-1705 . 651311) (-1706 . 651227) (-1707 . 651144) + (-1708 . 650814) (-1709 . 646751) (-1710 . 646644) (-1711 . 645804) + (-1712 . 645376) (-1713 . 645282) (-1714 . 645111) (-1715 . 645058) + (-1716 . 644974) (-1717 . 644920) (-1718 . 644723) (-1719 . 644570) + (-1720 . 643918) (-1721 . 643531) (-1722 . 643460) (-1723 . 643229) + (-1724 . 643135) (-1725 . 643106) (-1726 . 642999) (-1727 . 642928) + (-1728 . 642856) (-1729 . 642707) (-1730 . 642658) (-1731 . 642571) + (-1732 . 642472) (-1733 . 642350) (-1734 . 642269) (-1735 . 642047) + (-1736 . 641829) (-1737 . 641770) (-1738 . 641684) (-1739 . 641596) + (-1740 . 641524) (-1741 . 641365) (-1742 . 641306) (-1743 . 638961) + (-1744 . 638927) (-1745 . 638756) (-1746 . 638660) (-1747 . 638344) + (-1748 . 638231) (-1749 . 637636) (-1750 . 637470) (-1751 . 637383) + (-1752 . 637309) (-1753 . 637207) (-1754 . 637088) (-1755 . 636946) + (-1756 . 636888) (-1757 . 636829) (-1758 . 636731) (-1759 . 636627) + (-1760 . 636282) (-1761 . 636127) (-1762 . 635769) (-1763 . 635540) + (-1764 . 635243) (-1765 . 635131) (-1766 . 635008) (-1767 . 634980) + (-1768 . 634901) (-1769 . 634718) (-1770 . 634573) (-1771 . 634468) + (-1772 . 634365) (-1773 . 634296) (-1774 . 634095) (-1775 . 633993) + (-1776 . 633910) (-1777 . 633706) (-1778 . 633579) (-1779 . 633505) + (-1780 . 632319) (-1781 . 632236) (-1782 . 632145) (-1783 . 631794) + (-1784 . 631575) (-1785 . 630383) (-1786 . 630324) (-1787 . 630271) + (-1788 . 630219) (-1789 . 630048) (-1790 . 628866) (-1791 . 628768) + (-1792 . 628719) (-1793 . 628667) (-1794 . 628564) (-1795 . 628512) + (-1796 . 628358) (-1797 . 628324) (-1798 . 628272) (-1799 . 626066) + (-1800 . 625959) (-1801 . 625763) (-1802 . 625133) (-1803 . 625048) + (-1804 . 624741) (-1805 . 624583) (-1806 . 624372) (-1807 . 624011) + (-1808 . 623958) (-1809 . 623800) (-1810 . 623601) (-1811 . 623519) + (-1812 . 623441) (-1813 . 623373) (-1814 . 623254) (-1815 . 623105) + (-1816 . 623010) (-1817 . 622908) (-1818 . 622722) (-1819 . 622495) + (-1820 . 622425) (-1821 . 622354) (-1822 . 622011) (-1823 . 621416) + (-1824 . 621361) (-1825 . 621254) (-1826 . 620994) (-1827 . 620030) + (-1828 . 619978) (-1829 . 619435) (-1830 . 618889) (-1831 . 618538) + (-1832 . 618486) (-1833 . 618392) (-1834 . 617585) (-1835 . 617498) + (-1836 . 617374) (-1837 . 617325) (-1838 . 617218) (-1839 . 617039) + (-1840 . 616853) (-1841 . 616709) (-1842 . 616581) (-1843 . 616519) + (-1844 . 616468) (-1845 . 616357) (-1846 . 616273) (-1847 . 616223) + (-1848 . 616157) (-1849 . 615999) (-1850 . 615947) (-1851 . 615779) + (-1852 . 615536) (-1853 . 615450) (-1854 . 615338) (-1855 . 615042) + (-1856 . 614817) (-1857 . 614736) (-1858 . 614621) (-1859 . 614188) + (-1860 . 613652) (-1861 . 613582) (-1862 . 613437) (-1863 . 613364) + (-1864 . 612904) (-1865 . 612705) (-1866 . 612620) (-1867 . 612482) + (-1868 . 612328) (-1869 . 611689) (-1870 . 611575) (-1871 . 611522) + (-1872 . 611436) (-1873 . 611186) (-1874 . 611088) (-1875 . 610913) + (-1876 . 610816) (-1877 . 610678) (-1878 . 610611) (-1879 . 610577) + (-1880 . 610185) (-1881 . 610019) (-1882 . 609773) (-1883 . 609578) + (-1884 . 609385) (-1885 . 609308) (-1886 . 609231) (-1887 . 609154) + (-1888 . 609051) (-1889 . 608946) (-1890 . 608778) (-1891 . 608628) + (-1892 . 608528) (-1893 . 608426) (-1894 . 608220) (-1895 . 608082) + (-1896 . 608005) (-1897 . 607886) (-1898 . 607082) (-1899 . 606975) + (-1900 . 605124) (-1901 . 605093) (-1902 . 604998) (-1903 . 604616) + (-1904 . 604086) (-1905 . 604009) (-1906 . 603865) (-1907 . 603788) + (-1908 . 603603) (-1909 . 603163) (-1910 . 602999) (-1911 . 602811) + (-1912 . 602502) (-1913 . 602423) (-1914 . 602370) (-1915 . 601937) + (-1916 . 601841) (-1917 . 601740) (-1918 . 601349) (-1919 . 601201) + (-1920 . 601032) (-1921 . 600745) (-1922 . 600668) (-1923 . 600417) + (-1924 . 600365) (-1925 . 600171) (-1926 . 599981) (-1927 . 599908) + (-1928 . 599846) (-1929 . 599812) (-1930 . 599784) (-1931 . 599714) + (-1932 . 599571) (-1933 . 599512) (-1934 . 599443) (-1935 . 599193) + (-1936 . 599120) (-1937 . 598888) (-1938 . 597884) (-1939 . 597750) + (-1940 . 597654) (-1941 . 597304) (-1942 . 597203) (-1943 . 596851) + (-1944 . 596722) (-1945 . 596666) (-1946 . 596596) (-1947 . 596473) + (-1948 . 596442) (-1949 . 596368) (-1950 . 596316) (-1951 . 596250) + (-1952 . 596079) (-1953 . 595785) (-1954 . 595703) (-1955 . 595560) + (-1956 . 595470) (-1957 . 595367) (-1958 . 595272) (-1959 . 595091) + (-1960 . 594968) (-1961 . 594894) (-1962 . 594685) (-1963 . 594579) + (-1964 . 594547) (-1965 . 594297) (-1966 . 593684) (-1967 . 593610) + (-1968 . 593329) (-1969 . 593103) (-1970 . 592976) (-1971 . 592921) + (-1972 . 592570) (-1973 . 591683) (-1974 . 591438) (-1975 . 591367) + (-1976 . 591222) (-1977 . 590795) (-1978 . 590711) (-1979 . 590524) + (-1980 . 590150) (-1981 . 589966) (-1982 . 589607) (-1983 . 588894) + (-1984 . 588630) (-1985 . 588578) (-1986 . 588410) (-1987 . 588348) + (-1988 . 588167) (-1989 . 587572) (-1990 . 587520) (-1991 . 587428) + (-1992 . 587099) (-1993 . 587044) (-1994 . 586892) (-1995 . 586818) + (-1996 . 586719) (-1997 . 586636) (-1998 . 586260) (-1999 . 586156) + (-2000 . 586070) (-2001 . 585866) (-2002 . 585762) (-2003 . 585540) + (-2004 . 585384) (-2005 . 584849) (-2006 . 584756) (-2007 . 584626) + (-2008 . 584521) (-2009 . 584471) (-2010 . 584140) (-2011 . 584085) + (-2012 . 584011) (-2013 . 583902) (-2014 . 583768) (-2015 . 583636) + (-2016 . 583473) (-2017 . 583402) (-2018 . 583349) (-2019 . 583207) + (-2020 . 582945) (-2021 . 582866) (-2022 . 582748) (-2023 . 582674) + (-2024 . 582591) (-2025 . 582507) (-2026 . 582411) (-2027 . 582225) + (-2028 . 582081) (-2029 . 581986) (-2030 . 581859) (-2031 . 581731) + (-2032 . 581652) (-2033 . 581559) (-2034 . 580976) (-2035 . 580882) + (-2036 . 580823) (-2037 . 580735) (-2038 . 580640) (-2039 . 580512) + (-2040 . 580404) (-2041 . 580157) (-2042 . 580086) (-2043 . 579774) + (-2044 . 579618) (-2045 . 579503) (-2046 . 579450) (-2047 . 579371) + (-2048 . 579284) (-2049 . 579201) (-2050 . 579057) (-2051 . 578998) + (-2052 . 578888) (-2053 . 578815) (-2054 . 578680) (-2055 . 578471) + (-2056 . 578392) (-2057 . 577212) (-2058 . 577114) (-2059 . 577061) + (-2060 . 576961) (-2061 . 576786) (-2062 . 576606) (-2063 . 576556) + (-2064 . 576418) (-2065 . 576314) (-2066 . 576096) (-2067 . 576043) + (-2068 . 575852) (-2069 . 575748) (-2070 . 575674) (-2071 . 575281) + (-2072 . 575120) (-2073 . 575066) (-2074 . 574935) (-2075 . 574901) + (-2076 . 574743) (-2077 . 574644) (-2078 . 574363) (-2079 . 574307) + (-2080 . 574256) (-2081 . 574114) (-2082 . 573948) (-2083 . 573777) + (-2084 . 573715) (-2085 . 573482) (-2086 . 573366) (-2087 . 573292) + (-2088 . 573063) (-2089 . 572841) (-2090 . 572718) (-2091 . 572302) + (-2092 . 571781) (-2093 . 571619) (-2094 . 571535) (-2095 . 570631) + (-2096 . 570209) (-2097 . 569999) (-2098 . 569920) (-2099 . 569856) + (-2100 . 569738) (-2101 . 569520) (-2102 . 569411) (-2103 . 569272) + (-2104 . 569200) (-2105 . 569114) (-2106 . 569020) (-2107 . 568967) + (-2108 . 568914) (-2109 . 568440) (-2110 . 568352) (-2111 . 563810) + (-2112 . 563324) (-2113 . 563272) (-2114 . 563220) (-2115 . 562847) + (-2116 . 562794) (-2117 . 562648) (-2118 . 562593) (-2119 . 562420) + (-2120 . 562022) (-2121 . 561909) (-2122 . 561738) (-2123 . 561583) + (-2124 . 560751) (-2125 . 560593) (-2126 . 560303) (-2127 . 560165) + (-2128 . 560131) (-2129 . 560037) (-2130 . 559908) (-2131 . 559794) + (-2132 . 559742) (-2133 . 559668) (-2134 . 559555) (-2135 . 559409) + (-2136 . 559357) (-2137 . 559276) (-2138 . 559099) (-2139 . 558766) + (-2140 . 558504) (-2141 . 558113) (-2142 . 558039) (-2143 . 558011) + (-2144 . 557801) (-2145 . 557713) (-2146 . 556648) (-2147 . 556297) + (-2148 . 556220) (-2149 . 556053) (-2150 . 555502) (-2151 . 553724) + (-2152 . 553611) (-2153 . 553529) (-2154 . 552786) (-2155 . 552662) + (-2156 . 552371) (-2157 . 552318) (-2158 . 552193) (-2159 . 552000) + (-2160 . 551810) (-2161 . 551758) (-2162 . 551498) (-2163 . 551357) + (-2164 . 550819) (-2165 . 550716) (-2166 . 550664) (-2167 . 550590) + (-2168 . 549826) (-2169 . 549689) (-2170 . 549331) (-2171 . 549204) + (-2172 . 549118) (-2173 . 549052) (-2174 . 548980) (-2175 . 548899) + (-2176 . 548653) (-2177 . 548462) (-2178 . 548292) (-2179 . 548172) + (-2180 . 547859) (-2181 . 547809) (-2182 . 547684) (-2183 . 547611) + (-2184 . 547562) (-2185 . 547213) (-2186 . 546767) (-2187 . 532653) + (-2188 . 532545) (-2189 . 532479) (-2190 . 532334) (-2191 . 532142) + (-2192 . 530904) (-2193 . 530816) (-2194 . 530708) (-2195 . 530465) + (-2196 . 530355) (-2197 . 529947) (-2198 . 529796) (-2199 . 529716) + (-2200 . 529497) (-2201 . 529469) (-2202 . 529320) (-2203 . 529014) + (-2204 . 528913) (-2205 . 528794) (-2206 . 528722) (-2207 . 528589) + (-2208 . 528537) (-2209 . 528410) (-2210 . 528149) (-2211 . 527979) + (-2212 . 527648) (-2213 . 527476) (-2214 . 527417) (-2215 . 527202) + (-2216 . 527128) (-2217 . 527074) (-2218 . 526979) (-2219 . 526881) + (-2220 . 526575) (-2221 . 526451) (-2222 . 526299) (-2223 . 526127) + (-2224 . 526057) (-2225 . 525943) (-2226 . 525886) (-2227 . 525815) + (-2228 . 525745) (-2229 . 525659) (-2230 . 524574) (-2231 . 524360) + (-2232 . 524000) (-2233 . 523828) (-2234 . 523766) (-2235 . 520100) + (-2236 . 519713) (-2237 . 519625) (-2238 . 519538) (-2239 . 514200) + (-2240 . 513925) (-2241 . 513694) (-2242 . 513599) (-2243 . 513486) + (-2244 . 513358) (-2245 . 513292) (-2246 . 513120) (-2247 . 513024) + (-2248 . 512902) (-2249 . 512455) (-2250 . 512353) (-2251 . 512211) + (-2252 . 512107) (-2253 . 511970) (-2254 . 511917) (-2255 . 511820) + (-2256 . 511716) (-2257 . 511622) (-2258 . 511526) (-2259 . 511442) + (-2260 . 511377) (-2261 . 511199) (-2262 . 511003) (-2263 . 510859) + (-2264 . 510712) (-2265 . 510619) (-2266 . 508505) (-2267 . 508053) + (-2268 . 507993) (-2269 . 507942) (-2270 . 507784) (-2271 . 507706) + (-2272 . 507558) (-2273 . 507427) (-2274 . 507361) (-2275 . 507199) + (-2276 . 507146) (-2277 . 506987) (-2278 . 506330) (-2279 . 505670) + (-2280 . 505573) (-2281 . 505460) (-2282 . 505246) (-2283 . 505144) + (-2284 . 504655) (-2285 . 504581) (-2286 . 504474) (-2287 . 504330) + (-2288 . 504251) (-2289 . 504105) (-2290 . 503980) (-2291 . 503911) + (-2292 . 503845) (-2293 . 503631) (-2294 . 503399) (-2295 . 503304) + (-2296 . 503193) (-2297 . 502452) (-2298 . 502380) (-2299 . 502069) + (-2300 . 501933) (-2301 . 501017) (-2302 . 500964) (-2303 . 500745) + (-2304 . 500629) (-2305 . 499953) (-2306 . 499848) (-2307 . 499573) + (-2308 . 499417) (-2309 . 498676) (-2310 . 498571) (-2311 . 498505) + (-2312 . 498407) (-2313 . 498183) (-2314 . 498128) (-2315 . 498070) + (-2316 . 497986) (-2317 . 497767) (-2318 . 497560) (-2319 . 496872) + (-2320 . 496763) (-2321 . 496668) (-2322 . 496573) (-2323 . 496390) + (-2324 . 495876) (-2325 . 495755) (-2326 . 495593) (-2327 . 495301) + (-2328 . 494725) (-2329 . 494659) (-2330 . 494501) (-2331 . 494365) + (-2332 . 494050) (-2333 . 493973) (-2334 . 493799) (-2335 . 493552) + (-2336 . 493500) (-2337 . 493371) (-2338 . 493122) (-2339 . 492546) + (-2340 . 491949) (-2341 . 491915) (-2342 . 491791) (-2343 . 491692) + (-2344 . 491305) (-2345 . 491199) (-2346 . 491116) (-2347 . 490886) + (-2348 . 490310) (-2349 . 490238) (-2350 . 489525) (-2351 . 489174) + (-2352 . 489067) (-2353 . 488921) (-2354 . 488792) (-2355 . 488622) + (-2356 . 488304) (-2357 . 488201) (-2358 . 487515) (-2359 . 486445) + (-2360 . 486290) (-2361 . 486202) (-2362 . 486077) (-2363 . 485983) + (-2364 . 485897) (-2365 . 485779) (-2366 . 485180) (-2367 . 484494) + (-2368 . 484441) (-2369 . 484271) (-2370 . 484159) (-2371 . 484034) + (-2372 . 483807) (-2373 . 483744) (-2374 . 483695) (-2375 . 483613) + (-2376 . 483444) (-2377 . 483389) (-2378 . 483317) (-2379 . 482568) + (-2380 . 482498) (-2381 . 482446) (-2382 . 482388) (-2383 . 482038) + (-2384 . 481929) (-2385 . 481856) (-2386 . 481805) (-2387 . 481684) + (-2388 . 481629) (-2389 . 481255) (-2390 . 480809) (-2391 . 480235) + (-2392 . 480101) (-2393 . 479928) (-2394 . 479739) (-2395 . 479065) + (-2396 . 478547) (-2397 . 478196) (-2398 . 478058) (-2399 . 477915) + (-2400 . 477590) (-2401 . 477462) (-2402 . 477254) (-2403 . 477182) + (-2404 . 476608) (-2405 . 476520) (-2406 . 476367) (-2407 . 476219) + (-2408 . 475952) (-2409 . 475778) (-2410 . 475705) (-2411 . 475367) + (-2412 . 474554) (-2413 . 474216) (-2414 . 473940) (-2415 . 473366) + (-2416 . 469368) (-2417 . 468889) (-2418 . 468821) (-2419 . 468691) + (-2420 . 468625) (-2421 . 468519) (-2422 . 468433) (-2423 . 467231) + (-2424 . 467095) (-2425 . 466922) (-2426 . 466413) (-2427 . 466075) + (-2428 . 465388) (-2429 . 465336) (-2430 . 465262) (-2431 . 464946) + (-2432 . 464889) (-2433 . 464547) (-2434 . 464476) (-2435 . 464426) + (-2436 . 464049) (-2437 . 463966) (-2438 . 463279) (-2439 . 463126) + (-2440 . 462994) (-2441 . 462943) (-2442 . 462836) (-2443 . 453274) + (-2444 . 453193) (-2445 . 453071) (-2446 . 452392) (-2447 . 452168) + (-2448 . 451781) (-2449 . 451635) (-2450 . 451473) (-2451 . 450786) + (-2452 . 450653) (-2453 . 450600) (-2454 . 450547) (-2455 . 450485) + (-2456 . 450300) (-2457 . 450220) (-2458 . 450123) (-2459 . 449876) + (-2460 . 449737) (-2461 . 449617) (-2462 . 449042) (-2463 . 448986) + (-2464 . 448651) (-2465 . 448392) (-2466 . 448298) (-2467 . 448185) + (-2468 . 448061) (-2469 . 447962) (-2470 . 447402) (-2471 . 446856) + (-2472 . 446601) (-2473 . 446026) (-2474 . 445866) (-2475 . 445768) + (-2476 . 445690) (-2477 . 445613) (-2478 . 445525) (-2479 . 445324) + (-2480 . 444960) (-2481 . 444403) (-2482 . 444245) (-2483 . 444159) + (-2484 . 443584) (-2485 . 442299) (-2486 . 442136) (-2487 . 442084) + (-2488 . 442007) (-2489 . 441556) (-2490 . 441443) (-2491 . 441341) + (-2492 . 441275) (-2493 . 440904) (-2494 . 440743) (-2495 . 440169) + (-2496 . 440016) (-2497 . 439953) (-2498 . 439882) (-2499 . 439774) + (-2500 . 439715) (-2501 . 439568) (-2502 . 439479) (-2503 . 439262) + (-2504 . 439073) (-2505 . 438690) (-2506 . 438483) (-2507 . 437909) + (-2508 . 437727) (-2509 . 437618) (-2510 . 437445) (-2511 . 437314) + (-2512 . 437177) (-2513 . 437098) (-2514 . 436754) (-2515 . 436273) + (-2516 . 436202) (-2517 . 436083) (-2518 . 435904) (-2519 . 435847) + (-2520 . 435646) (-2521 . 435072) (-2522 . 434973) (-2523 . 434762) + (-2524 . 434426) (-2525 . 434234) (-2526 . 434039) (-2527 . 433965) + (-2528 . 433871) (-2529 . 433784) (-2530 . 433646) (-2531 . 433590) + (-2532 . 433481) (-2533 . 433413) (-2534 . 432839) (-2535 . 432787) + (-2536 . 432728) (-2537 . 432530) (-2538 . 432463) (-2539 . 432410) + (-2540 . 431978) (-2541 . 431883) (-2542 . 431740) (-2543 . 431708) + (-2544 . 431654) (-2545 . 431581) (-2546 . 431197) (-2547 . 430856) + (-2548 . 430282) (-2549 . 430181) (-2550 . 430063) (-2551 . 429963) + (-2552 . 429848) (-2553 . 429787) (-2554 . 429557) (-2555 . 429473) + (-2556 . 429399) (-2557 . 429268) (-2558 . 429110) (-2559 . 429057) + (-2560 . 428925) (-2561 . 428787) (-2562 . 428728) (-2563 . 428587) + (-2564 . 428270) (-2565 . 428184) (-2566 . 428113) (-2567 . 427976) + (-2568 . 427858) (-2569 . 427781) (-2570 . 427721) (-2571 . 427668) + (-2572 . 426126) (-2573 . 425973) (-2574 . 425895) (-2575 . 425585) + (-2576 . 425289) (-2577 . 424187) (-2578 . 423885) (-2579 . 423857) + (-2580 . 423808) (-2581 . 423578) (-2582 . 423460) (-2583 . 423390) + (-2584 . 423302) (-2585 . 423190) (-2586 . 423087) (-2587 . 422927) + (-2588 . 422745) (-2589 . 422535) (-2590 . 422193) (-2591 . 421784) + (-2592 . 421731) (-2593 . 421498) (-2594 . 421319) (-2595 . 420881) + (-2596 . 420821) (-2597 . 420590) (-2598 . 420489) (-2599 . 420271) + (-2600 . 419901) (-2601 . 419674) (-2602 . 419409) (-2603 . 419254) + (-2604 . 418226) (-2605 . 418040) (-2606 . 417813) (-2607 . 417618) + (-2608 . 417099) (-2609 . 416965) (-2610 . 416807) (-2611 . 416554) + (-2612 . 416281) (-2613 . 416221) (-2614 . 416119) (-2615 . 416023) + (-2616 . 415971) (-2617 . 415853) (-2618 . 415735) (-2619 . 415503) + (-2620 . 415363) (-2621 . 415280) (-2622 . 414948) (-2623 . 414811) + (-2624 . 414683) (-2625 . 414606) (-2626 . 414533) (-2627 . 414459) + (-2628 . 414388) (-2629 . 414279) (-2630 . 414066) (-2631 . 413686) + (-2632 . 413613) (-2633 . 413103) (-2634 . 413066) (-2635 . 412864) + (-2636 . 412805) (-2637 . 412737) (-2638 . 412577) (-2639 . 412226) + (-2640 . 412119) (-2641 . 411802) (-2642 . 411687) (-2643 . 411234) + (-2644 . 411068) (-2645 . 410944) (-2646 . 410127) (-2647 . 410018) + (-2648 . 409960) (-2649 . 409772) (-2650 . 409689) (-2651 . 409573) + (-2652 . 409420) (-2653 . 409045) (-2654 . 409011) (-2655 . 408794) + (-2656 . 408664) (-2657 . 408172) (-2658 . 407732) (-2659 . 407486) + (-2660 . 407143) (-2661 . 407093) (-2662 . 406952) (-2663 . 406891) + (-2664 . 406728) (-2665 . 405571) (-2666 . 405418) (-2667 . 405390) + (-2668 . 405245) (-2669 . 405099) (-2670 . 404754) (-2671 . 404508) + (-2672 . 404456) (-2673 . 404373) (-2674 . 404147) (-2675 . 403967) + (-2676 . 403810) (-2677 . 403722) (-2678 . 403540) (-2679 . 403384) + (-2680 . 403225) (-2681 . 403002) (-2682 . 402920) (-2683 . 402821) + (-2684 . 402747) (-2685 . 402286) (-2686 . 402234) (-2687 . 401557) + (-2688 . 401165) (-2689 . 401083) (-2690 . 400509) (-2691 . 399952) + (-2692 . 399892) (-2693 . 399600) (-2694 . 399490) (-2695 . 399079) + (-2696 . 399029) (-2697 . 398947) (-2698 . 398919) (-2699 . 398825) + (-2700 . 398672) (-2701 . 398575) (-2702 . 398454) (-2703 . 398355) + (-2704 . 398222) (-2705 . 398075) (-2706 . 397877) (-2707 . 397697) + (-2708 . 397583) (-2709 . 397397) (-2710 . 396911) (-2711 . 396862) + (-2712 . 396785) (-2713 . 396147) (-2714 . 395895) (-2715 . 395708) + (-2716 . 395652) (-2717 . 395554) (-2718 . 395458) (-2719 . 395362) + (-2720 . 395060) (-2721 . 394987) (-2722 . 394909) (-2723 . 394718) + (-2724 . 394566) (-2725 . 394453) (-2726 . 394371) (-2727 . 394215) + (-2728 . 394050) (-2729 . 393886) (-2730 . 393648) (-2731 . 393565) + (-2732 . 393443) (-2733 . 393411) (-2734 . 393358) (-2735 . 393281) + (-2736 . 392796) (-2737 . 392645) (-2738 . 392457) (-2739 . 392211) + (-2740 . 391625) (-2741 . 391459) (-2742 . 391274) (-2743 . 391051) + (-2744 . 390974) (-2745 . 390802) (-2746 . 390654) (-2747 . 390591) + (-2748 . 390477) (-2749 . 390368) (-2750 . 390283) (-2751 . 387356) + (-2752 . 387248) (-2753 . 387035) (-2754 . 386802) (-2755 . 386590) + (-2756 . 386432) (-2757 . 385267) (-2758 . 385165) (-2759 . 384961) + (-2760 . 384892) (-2761 . 384826) (-2762 . 384752) (-2763 . 384721) + (-2764 . 384651) (-2765 . 384044) (-2766 . 383765) (-2767 . 383606) + (-2768 . 383505) (-2769 . 382622) (-2770 . 382235) (-2771 . 382112) + (-2772 . 381976) (-2773 . 381783) (-2774 . 381634) (-2775 . 381582) + (-2776 . 381131) (-2777 . 380700) (-2778 . 380442) (-2779 . 380313) + (-2780 . 379909) (-2781 . 379857) (-2782 . 379804) (-2783 . 379703) + (-2784 . 379533) (-2785 . 379452) (-2786 . 379043) (-2787 . 378511) + (-2788 . 378272) (-2789 . 378135) (-2790 . 378026) (-2791 . 377147) + (-2792 . 376646) (-2793 . 376562) (-2794 . 376288) (-2795 . 374711) + (-2796 . 374655) (-2797 . 374430) (-2798 . 374371) (-2799 . 374093) + (-2800 . 374019) (-2801 . 373719) (-2802 . 373279) (-2803 . 373169) + (-2804 . 373111) (-2805 . 373051) (-2806 . 372846) (-2807 . 372753) + (-2808 . 371307) (-2809 . 371111) (-2810 . 371043) (-2811 . 370924) + (-2812 . 370814) (-2813 . 370762) (-2814 . 370692) (-2815 . 370557) + (-2816 . 370458) (-2817 . 370295) (-2818 . 369761) (-2819 . 369646) + (-2820 . 369463) (-2821 . 368813) (-2822 . 368563) (-2823 . 368481) + (-2824 . 368429) (-2825 . 368319) (-2826 . 368148) (-2827 . 368023) + (-2828 . 367967) (-2829 . 367844) (-2830 . 367816) (-2831 . 367765) + (-2832 . 367670) (-2833 . 367602) (-2834 . 367322) (-2835 . 367208) + (-2836 . 366968) (-2837 . 366726) (-2838 . 366616) (-2839 . 366368) + (-2840 . 366300) (-2841 . 366220) (-2842 . 366097) (-2843 . 365594) + (-2844 . 365448) (-2845 . 365287) (-2846 . 365231) (-2847 . 365170) + (-2848 . 364892) (-2849 . 364791) (-2850 . 364690) (-2851 . 364547) + (-2852 . 364443) (-2853 . 364307) (-2854 . 363529) (-2855 . 363394) + (-2856 . 361806) (-2857 . 361749) (-2858 . 361693) (-2859 . 361622) + (-2860 . 361477) (-2861 . 361443) (-2862 . 361302) (-2863 . 361137) + (-2864 . 361085) (-2865 . 360807) (-2866 . 360700) (-2867 . 360620) + (-2868 . 360456) (-2869 . 360169) (-2870 . 360072) (-2871 . 359979) + (-2872 . 359760) (-2873 . 359630) (-2874 . 359387) (-2875 . 359257) + (-2876 . 359107) (-2877 . 358309) (-2878 . 358028) (-2879 . 357899) + (-2880 . 357831) (-2881 . 357771) (-2882 . 357491) (-2883 . 357411) + (-2884 . 357326) (-2885 . 357249) (-2886 . 356939) (-2887 . 356417) + (-2888 . 356293) (-2889 . 356059) (-2890 . 355877) (-2891 . 355797) + (-2892 . 355606) (-2893 . 355455) (-2894 . 355031) (-2895 . 354864) + (-2896 . 354751) (-2897 . 354663) (-2898 . 354440) (-2899 . 354308) + (-2900 . 354023) (-2901 . 353912) (-2902 . 353800) (-2903 . 352982) + (-2904 . 352730) (-2905 . 352478) (-2906 . 352070) (-2907 . 351848) + (-2908 . 350508) (-2909 . 350330) (-2910 . 350273) (-2911 . 350201) + (-2912 . 350117) (-2913 . 350033) (-2914 . 349612) (-2915 . 349519) + (-2916 . 349436) (-2917 . 348911) (-2918 . 348632) (-2919 . 348441) + (-2920 . 348313) (-2921 . 348170) (-2922 . 347965) (-2923 . 347850) + (-2924 . 347140) (-2925 . 347005) (-2926 . 346934) (-2927 . 346791) + (-2928 . 346244) (-2929 . 346189) (-2930 . 345897) (-2931 . 345809) + (-2932 . 345756) (-2933 . 345728) (-2934 . 345649) (-2935 . 345526) + (-2936 . 345078) (-2937 . 345008) (-2938 . 344907) (-2939 . 344171) + (-2940 . 344004) (-2941 . 343923) (-2942 . 343864) (-2943 . 343756) + (-2944 . 343701) (-2945 . 343499) (-2946 . 343325) (-2947 . 343256) + (-2948 . 343118) (-2949 . 343034) (-2950 . 342845) (-2951 . 342736) + (-2952 . 342420) (-2953 . 342267) (-2954 . 342124) (-2955 . 342051) + (-2956 . 341971) (-2957 . 341811) (-2958 . 340341) (-2959 . 340153) + (-2960 . 340070) (-2961 . 339992) (-2962 . 339885) (-2963 . 339748) + (-2964 . 339662) (-2965 . 339238) (-2966 . 339209) (-2967 . 339118) + (-2968 . 339065) (-2969 . 338996) (-2970 . 338881) (-2971 . 338822) + (-2972 . 338700) (-2973 . 338334) (-2974 . 335919) (-2975 . 335757) + (-2976 . 335430) (-2977 . 335378) (-2978 . 335196) (-2979 . 335131) + (-2980 . 334659) (-2981 . 334625) (-2982 . 334159) (-2983 . 333800) + (-2984 . 333723) (-2985 . 333671) (-2986 . 333591) (-2987 . 333474) + (-2988 . 333391) (-2989 . 333275) (-2990 . 333206) (-2991 . 333154) + (-2992 . 333036) (-2993 . 332878) (-2994 . 332650) (-2995 . 332573) + (-2996 . 332455) (-2997 . 332402) (-2998 . 331802) (-2999 . 331653) + (-3000 . 331621) (-3001 . 331565) (-3002 . 331050) (-3003 . 330920) + (-3004 . 329722) (-3005 . 329593) (-3006 . 329489) (-3007 . 329405) + (-3008 . 329168) (-3009 . 329009) (-3010 . 328876) (-3011 . 328818) + (-3012 . 328663) (-3013 . 328572) (-3014 . 328472) (-3015 . 328420) + (-3016 . 328239) (-3017 . 328151) (-3018 . 328080) (-3019 . 328006) + (-3020 . 327954) (-3021 . 327872) (-3022 . 327553) (-3023 . 327501) + (-3024 . 327402) (-3025 . 327275) (-3026 . 327207) (-3027 . 327004) + (-3028 . 326754) (-3029 . 326624) (-3030 . 326567) (-3031 . 326249) + (-3032 . 326220) (-3033 . 325970) (-3034 . 325918) (-3035 . 325804) + (-3036 . 325722) (-3037 . 325634) (-3038 . 325240) (-3039 . 324983) + (-3040 . 324859) (-3041 . 324778) (-3042 . 324274) (-3043 . 324219) + (-3044 . 324093) (-3045 . 323991) (-3046 . 323760) (-3047 . 323653) + (-3048 . 322380) (-3049 . 322348) (-3050 . 322214) (-3051 . 322163) + (-3052 . 322044) (-3053 . 321922) (-3054 . 321804) (-3055 . 321437) + (-3056 . 321368) (-3057 . 321233) (-3058 . 321125) (-3059 . 321045) + (-3060 . 320978) (-3061 . 320764) (-3062 . 320712) (-3063 . 320597) + (-3064 . 320517) (-3065 . 319951) (-3066 . 319837) (-3067 . 319495) + (-3068 . 319386) (-3069 . 319308) (-3070 . 319153) (-3071 . 319022) + (-3072 . 318716) (-3073 . 318546) (-3074 . 318461) (-3075 . 316198) + (-3076 . 315632) (-3077 . 315495) (-3078 . 315193) (-3079 . 315119) + (-3080 . 315069) (-3081 . 315006) (-3082 . 314893) (-3083 . 314738) + (-3084 . 314644) (-3085 . 314537) (-3086 . 314464) (-3087 . 314386) + (-3088 . 314197) (-3089 . 314058) (-3090 . 313997) (-3091 . 313798) + (-3092 . 313580) (-3093 . 313449) (-3094 . 313312) (-3095 . 313240) + (-3096 . 313170) (-3097 . 312884) (-3098 . 312813) (-3099 . 312605) + (-3100 . 312487) (-3101 . 312348) (-3102 . 312270) (-3103 . 312221) + (-3104 . 312015) (-3105 . 311839) (-3106 . 311695) (-3107 . 311436) + (-3108 . 311364) (-3109 . 311276) (-3110 . 310765) (-3111 . 310706) + (-3112 . 310549) (-3113 . 310422) (-3114 . 310217) (-3115 . 310143) + (-3116 . 309722) (-3117 . 309578) (-3118 . 309383) (-3119 . 309330) + (-3120 . 309249) (-3121 . 309133) (-3122 . 308858) (-3123 . 308601) + (-3124 . 308226) (-3125 . 308107) (-3126 . 307977) (-3127 . 307831) + (-3128 . 300832) (-3129 . 300779) (-3130 . 298923) (-3131 . 298643) + (-3132 . 298550) (-3133 . 298178) (-3134 . 298120) (-3135 . 298021) + (-3136 . 297660) (-3137 . 297605) (-3138 . 297515) (-3139 . 297437) + (-3140 . 297352) (-3141 . 297225) (-3142 . 297151) (-3143 . 297038) + (-3144 . 296976) (-3145 . 296847) (-3146 . 296819) (-3147 . 296118) + (-3148 . 295839) (-3149 . 295535) (-3150 . 295501) (-3151 . 295448) + (-3152 . 295238) (-3153 . 295062) (-3154 . 294954) (-3155 . 294898) + (-3156 . 294735) (-3157 . 294354) (-3158 . 294230) (-3159 . 293627) + (-3160 . 293483) (-3161 . 293289) (-3162 . 293071) (-3163 . 293014) + (-3164 . 292834) (-3165 . 292719) (-3166 . 292645) (-3167 . 292460) + (-3168 . 292317) (-3169 . 292145) (-3170 . 292029) (-3171 . 290767) + (-3172 . 290654) (-3173 . 290569) (-3174 . 290541) (-3175 . 290467) + (-3176 . 290383) (-3177 . 290022) (-3178 . 289913) (-3179 . 289860) + (-3180 . 289753) (-3181 . 289432) (-3182 . 289219) (-3183 . 288898) + (-3184 . 288803) (-3185 . 288402) (-3186 . 288280) (-3187 . 288164) + (-3188 . 287991) (-3189 . 287922) (-3190 . 287819) (-3191 . 287709) + (-3192 . 287653) (-3193 . 287519) (-3194 . 287228) (-3195 . 287126) + (-3196 . 286965) (-3197 . 286487) (-3198 . 286453) (-3199 . 286369) + (-3200 . 286130) (-3201 . 286026) (-3202 . 285922) (-3203 . 285849) + (-3204 . 285755) (-3205 . 285660) (-3206 . 285545) (-3207 . 285436) + (-3208 . 285211) (-3209 . 285114) (-3210 . 284923) (-3211 . 284755) + (-3212 . 284703) (-3213 . 284542) (-3214 . 284404) (-3215 . 284123) + (-3216 . 283670) (-3217 . 283244) (-3218 . 283166) (-3219 . 282863) + (-3220 . 282807) (-3221 . 282661) (-3222 . 282568) (-3223 . 282273) + (-3224 . 282172) (-3225 . 282115) (-3226 . 281940) (-3227 . 281715) + (-3228 . 281316) (-3229 . 280870) (-3230 . 280775) (-3231 . 280612) + (-3232 . 280484) (-3233 . 280215) (-3234 . 279922) (-3235 . 279841) + (-3236 . 279619) (-3237 . 279373) (-3238 . 279290) (-3239 . 279246) + (-3240 . 279080) (-3241 . 278901) (-3242 . 278828) (-3243 . 278441) + (-3244 . 277914) (-3245 . 277822) (-3246 . 277524) (-3247 . 277429) + (-3248 . 277374) (-3249 . 277221) (-3250 . 277061) (-3251 . 277008) + (-3252 . 276914) (-3253 . 276701) (-3254 . 276558) (-3255 . 276249) + (-3256 . 276193) (-3257 . 276060) (-3258 . 275935) (-3259 . 275864) + (-3260 . 275664) (-3261 . 275410) (-3262 . 275302) (-3263 . 274935) + (-3264 . 274872) (-3265 . 273496) (-3266 . 273441) (-3267 . 273134) + (-3268 . 272726) (-3269 . 271294) (-3270 . 270433) (-3271 . 270268) + (-3272 . 270125) (-3273 . 270091) (-3274 . 269954) (-3275 . 269578) + (-3276 . 269332) (-3277 . 269254) (-3278 . 269159) (-3279 . 269104) + (-3280 . 268991) (-3281 . 268903) (-3282 . 268844) (-3283 . 268733) + (-3284 . 268402) (-3285 . 268012) (-3286 . 267926) (** . 264837) + (-3288 . 264679) (-3289 . 264549) (-3290 . 264249) (-3291 . 264045) + (-3292 . 263992) (-3293 . 263940) (-3294 . 263722) (-3295 . 263655) + (-3296 . 263578) (-3297 . 263518) (-3298 . 259358) (-3299 . 259009) + (-3300 . 258580) (-3301 . 258513) (-3302 . 258461) (-3303 . 258355) + (-3304 . 258189) (-3305 . 257668) (-3306 . 257613) (-3307 . 257435) + (-3308 . 257187) (-3309 . 256995) (-3310 . 256815) (-3311 . 256708) + (-3312 . 256574) (-3313 . 256098) (-3314 . 256042) (-3315 . 256010) + (-3316 . 255911) (-3317 . 255739) (-3318 . 255554) (-3319 . 255201) + (-3320 . 255049) (-3321 . 254942) (-3322 . 254868) (-3323 . 254766) + (-3324 . 254619) (-3325 . 254461) (-3326 . 254360) (-3327 . 254307) + (-3328 . 252524) (-3329 . 252451) (-3330 . 252253) (-3331 . 252170) + (-3332 . 252033) (-3333 . 251956) (-3334 . 251884) (-3335 . 251633) + (-3336 . 251584) (-3337 . 251060) (-3338 . 250804) (-3339 . 250702) + (-3340 . 250527) (-3341 . 250424) (-3342 . 250272) (-3343 . 249687) + (-3344 . 249314) (-3345 . 249228) (-3346 . 248474) (-3347 . 248367) + (-3348 . 248253) (-3349 . 248225) (-3350 . 247803) (-3351 . 247725) + (-3352 . 247584) (-3353 . 247369) (-3354 . 246999) (-3355 . 246869) + (-3356 . 246810) (-3357 . 246539) (-3358 . 246336) (-3359 . 246141) + (-3360 . 246086) (-3361 . 245985) (-3362 . 245933) (-3363 . 245851) + (-3364 . 245823) (-3365 . 245767) (-3366 . 245684) (-3367 . 245614) + (-3368 . 245550) (-3369 . 245498) (-3370 . 245071) (-3371 . 245016) + (-3372 . 244872) (-3373 . 244843) (-3374 . 244756) (-3375 . 244659) + (-3376 . 244606) (-3377 . 244502) (-3378 . 244400) (-3379 . 243766) + (-3380 . 243706) (-3381 . 243623) (-3382 . 243503) (-3383 . 243096) + (-3384 . 242993) (-3385 . 242864) (-3386 . 242739) (-3387 . 242618) + (-3388 . 242346) (-3389 . 242074) (-3390 . 241994) (-3391 . 241678) + (-3392 . 241560) (-3393 . 241459) (-3394 . 241233) (-3395 . 241145) + (-3396 . 240804) (-3397 . 240688) (-3398 . 240618) (-3399 . 240439) + (-3400 . 240124) (-3401 . 239793) (-3402 . 239743) (-3403 . 239495) + (-3404 . 239385) (-3405 . 239330) (-3406 . 236031) (-3407 . 235828) + (-3408 . 235776) (-3409 . 235721) (-3410 . 235088) (-3411 . 234895) + (-3412 . 234484) (-3413 . 234300) (-3414 . 233870) (-3415 . 233631) + (-3416 . 233500) (-3417 . 233338) (-3418 . 233238) (-3419 . 233181) + (-3420 . 232970) (-3421 . 232867) (-3422 . 232760) (-3423 . 232701) + (-3424 . 232615) (-3425 . 232560) (-3426 . 232248) (-3427 . 232099) + (-3428 . 231984) (-3429 . 231932) (-3430 . 231751) (-3431 . 231141) + (-3432 . 231069) (-3433 . 230965) (-3434 . 230589) (-3435 . 230431) + (-3436 . 230183) (-3437 . 230019) (-3438 . 229953) (-3439 . 229786) + (-3440 . 229707) (-3441 . 229603) (-3442 . 229525) (-3443 . 229340) + (-3444 . 229236) (-3445 . 229170) (-3446 . 229040) (-3447 . 228925) + (-3448 . 228544) (-3449 . 228288) (-3450 . 228122) (-3451 . 228048) + (-3452 . 227996) (-3453 . 227709) (-3454 . 227629) (-3455 . 227577) + (-3456 . 227293) (-3457 . 227205) (-3458 . 227033) (-3459 . 226914) + (-3460 . 226828) (-3461 . 226600) (-3462 . 226493) (-3463 . 226385) + (-3464 . 226258) (-3465 . 226117) (-3466 . 226037) (-3467 . 225935) + (-3468 . 225710) (-3469 . 225247) (-3470 . 225161) (-3471 . 225077) + (-3472 . 224762) (-3473 . 224692) (-3474 . 224258) (-3475 . 224206) + (-3476 . 224074) (-3477 . 224000) (-3478 . 223947) (-3479 . 223873) + (-3480 . 223789) (-3481 . 223643) (-3482 . 223532) (-3483 . 223389) + (-3484 . 223340) (-3485 . 223197) (-3486 . 223095) (-3487 . 222988) + (-3488 . 222897) (-3489 . 222719) (-3490 . 222302) (-3491 . 221486) + (-3492 . 221327) (-3493 . 221068) (-3494 . 220814) (-3495 . 220694) + (-3496 . 220435) (-3497 . 220058) (-3498 . 219838) (-3499 . 219750) + (-3500 . 219207) (-3501 . 219170) (-3502 . 219115) (-3503 . 219008) + (-3504 . 218922) (-3505 . 218839) (-3506 . 218677) (-3507 . 218605) + (-3508 . 218482) (-3509 . 218319) (-3510 . 218241) (-3511 . 218153) + (-3512 . 217143) (-3513 . 217033) (-3514 . 216424) (-3515 . 216315) + (-3516 . 216211) (-3517 . 216034) (-3518 . 215673) (-3519 . 215599) + (-3520 . 215513) (-3521 . 215423) (-3522 . 215284) (-3523 . 215213) + (-3524 . 215140) (-3525 . 214973) (-3526 . 214832) (-3527 . 214805) + (-3528 . 214711) (-3529 . 214399) (-3530 . 214239) (-3531 . 214172) + (-3532 . 214120) (-3533 . 214083) (-3534 . 214005) (-3535 . 213922) + (-3536 . 213766) (-3537 . 213599) (-3538 . 213394) (-3539 . 213216) + (-3540 . 213158) (-3541 . 212620) (-3542 . 212475) (-3543 . 212338) + (-3544 . 212198) (-3545 . 211754) (-3546 . 211648) (-3547 . 211508) + (-3548 . 211021) (-3549 . 210854) (-3550 . 210714) (-3551 . 210658) + (-3552 . 210592) (-3553 . 210525) (-3554 . 210342) (-3555 . 210242) + (-3556 . 210075) (-3557 . 209154) (-3558 . 209075) (-3559 . 208902) + (-3560 . 208798) (-3561 . 208310) (-3562 . 208240) (-3563 . 207638) + (-3564 . 207200) (-3565 . 207123) (-3566 . 206964) (-3567 . 206696) + (-3568 . 206643) (-3569 . 206463) (-3570 . 206395) (-3571 . 206338) + (-3572 . 206196) (-3573 . 206077) (-3574 . 205943) (-3575 . 205872) + (-3576 . 205813) (-3577 . 205676) (-3578 . 205434) (-3579 . 205363) + (-3580 . 205030) (-3581 . 204980) (-3582 . 204880) (-3583 . 204278) + (-3584 . 203918) (-3585 . 203862) (-3586 . 203808) (-3587 . 203567) + (-3588 . 203443) (-3589 . 202689) (-3590 . 202353) (-3591 . 202208) + (-3592 . 202137) (-3593 . 202036) (-3594 . 201973) (-3595 . 201863) + (-3596 . 201775) (-3597 . 201692) (-3598 . 201606) (-3599 . 201451) + (-3600 . 201233) (-3601 . 201139) (-3602 . 200906) (-3603 . 200171) + (-3604 . 200064) (-3605 . 199850) (-3606 . 199720) (-3607 . 199669) + (-3608 . 199467) (-3609 . 199370) (-3610 . 199257) (-3611 . 199160) + (-3612 . 199088) (-3613 . 199022) (-3614 . 198885) (-3615 . 198755) + (-3616 . 198536) (-3617 . 198439) (-3618 . 198259) (-3619 . 197489) + (-3620 . 197347) (-3621 . 196817) (-3622 . 196766) (-3623 . 196714) + (-3624 . 196649) (-3625 . 196465) (-3626 . 196171) (-3627 . 195987) + (-3628 . 195893) (-3629 . 195808) (-3630 . 195741) (-3631 . 195670) + (-3632 . 195510) (-3633 . 195424) (-3634 . 195346) (-3635 . 195092) + (-3636 . 195021) (-3637 . 194524) (-3638 . 194434) (-3639 . 194166) + (-3640 . 194100) (-3641 . 193987) (-3642 . 193857) (-3643 . 193741) + (-3644 . 193560) (-3645 . 193494) (-3646 . 193385) (-3647 . 193332) + (-3648 . 192875) (-3649 . 192011) (-3650 . 191820) (-3651 . 190711) + (-3652 . 190522) (-3653 . 190470) (-3654 . 190386) (-3655 . 190249) + (-3656 . 190176) (-3657 . 190021) (-3658 . 189993) (-3659 . 189912) + (-3660 . 189808) (-3661 . 189474) (-3662 . 189181) (-3663 . 189115) + (-3664 . 188994) (-3665 . 188889) (-3666 . 188755) (-3667 . 188615) + (-3668 . 188020) (-3669 . 187864) (-3670 . 187607) (-3671 . 187542) + (-3672 . 187369) (-3673 . 187271) (-3674 . 187201) (-3675 . 187057) + (-3676 . 186881) (-3677 . 186754) (-3678 . 186686) (-3679 . 186469) + (-3680 . 186362) (-3681 . 186261) (-3682 . 186138) (-3683 . 186031) + (-3684 . 185721) (-3685 . 185275) (-3686 . 184618) (-3687 . 184590) + (-3688 . 184461) (-3689 . 184354) (-3690 . 184293) (-9 . 184265) + (-3692 . 184209) (-3693 . 184156) (-3694 . 183983) (-3695 . 183864) + (-3696 . 183416) (-3697 . 183306) (-3698 . 183167) (-3699 . 182951) + (-3700 . 182658) (-8 . 182630) (-3702 . 182558) (-3703 . 182448) + (-3704 . 182292) (-3705 . 182104) (-3706 . 182018) (-3707 . 181702) + (-3708 . 181499) (-3709 . 181339) (-3710 . 180963) (-3711 . 180519) + (-7 . 180491) (-3713 . 180268) (-3714 . 180147) (-3715 . 179852) + (-3716 . 179537) (-3717 . 179483) (-3718 . 179411) (-3719 . 179305) + (-3720 . 179202) (-3721 . 179090) (-3722 . 178710) (-3723 . 178578) + (-3724 . 178151) (-3725 . 177660) (-3726 . 177412) (-3727 . 177326) + (-3728 . 177185) (-3729 . 177099) (-3730 . 177027) (-3731 . 176920) + (-3732 . 176833) (-3733 . 176536) (-3734 . 176179) (-3735 . 175597) + (-3736 . 175473) (-3737 . 175402) (-3738 . 175207) (-3739 . 175066) + (-3740 . 174976) (-3741 . 174923) (-3742 . 156209) (-3743 . 155867) + (-3744 . 155838) (-3745 . 155764) (-3746 . 155584) (-3747 . 155443) + (-3748 . 155388) (-3749 . 155317) (-3750 . 154772) (-3751 . 154644) + (-3752 . 154546) (-3753 . 151725) (-3754 . 151652) (-3755 . 151528) + (-3756 . 151472) (-3757 . 151271) (-3758 . 150196) (-3759 . 150055) + (-3760 . 149673) (-3761 . 149470) (-3762 . 149214) (-3763 . 149162) + (-3764 . 149004) (-3765 . 148899) (-3766 . 148706) (-3767 . 148620) + (-3768 . 148239) (-3769 . 148040) (-3770 . 147934) (-3771 . 147883) + (-3772 . 147663) (-3773 . 147604) (-3774 . 147509) (-3775 . 147421) + (-3776 . 147387) (-3777 . 147273) (-3778 . 147117) (-3779 . 147034) + (-3780 . 146937) (-3781 . 146866) (-3782 . 146645) (-3783 . 146541) + (-3784 . 146471) (-3785 . 146292) (-3786 . 145895) (-3787 . 145802) + (-3788 . 145692) (-3789 . 145574) (-3790 . 145415) (-3791 . 145257) + (-3792 . 145194) (-3793 . 145111) (-3794 . 144831) (-3795 . 144761) + (-3796 . 144708) (-3797 . 144484) (-3798 . 144230) (-3799 . 144124) + (-3800 . 144072) (-3801 . 143568) (-3802 . 143439) (-3803 . 143022) + (-3804 . 142878) (-3805 . 142790) (-3806 . 142571) (-3807 . 142351) + (-3808 . 142213) (-3809 . 141787) (-3810 . 141623) (-3811 . 141557) + (-3812 . 141480) (-3813 . 141273) (-3814 . 141105) (-3815 . 140998) + (-3816 . 140895) (-3817 . 140656) (-3818 . 140479) (-3819 . 140366) + (-3820 . 140289) (-3821 . 140261) (-3822 . 140182) (-3823 . 139759) + (-3824 . 139554) (-3825 . 139485) (-3826 . 139432) (-3827 . 139272) + (-3828 . 139198) (-3829 . 139169) (-3830 . 139035) (-3831 . 138949) + (-3832 . 138890) (-3833 . 138862) (-3834 . 138738) (-3835 . 138622) + (-3836 . 138464) (-3837 . 138351) (-3838 . 138270) (-3839 . 138116) + (-3840 . 137878) (-3841 . 137674) (-3842 . 137600) (-3843 . 137435) + (-3844 . 137275) (-3845 . 137194) (-3846 . 137054) (-3847 . 136640) + (-3848 . 136429) (-3849 . 136326) (-3850 . 136205) (-3851 . 135716) + (-3852 . 135643) (-3853 . 135523) (-3854 . 135467) (-3855 . 135394) + (-3856 . 135311) (-3857 . 135228) (-3858 . 135057) (-3859 . 134878) + (-3860 . 134784) (-3861 . 134422) (-3862 . 134303) (-3863 . 134158) + (-3864 . 134039) (-3865 . 133953) (-3866 . 133831) (-3867 . 133730) + (-3868 . 133623) (-3869 . 133542) (-3870 . 133476) (-3871 . 133381) + (-3872 . 133133) (-3873 . 132894) (-3874 . 132751) (-3875 . 132614) + (-3876 . 132561) (-3877 . 131257) (-3878 . 130948) (-3879 . 130875) + (-3880 . 130825) (-3881 . 130709) (-3882 . 130656) (-3883 . 130540) + (-3884 . 130462) (-3885 . 130299) (-3886 . 130247) (-3887 . 130210) + (-3888 . 130154) (-3889 . 130073) (-3890 . 130018) (-3891 . 129765) + (-3892 . 129547) (-3893 . 129475) (-3894 . 129405) (-3895 . 129217) + (-3896 . 128890) (-3897 . 128746) (-3898 . 128627) (-3899 . 128531) + (-3900 . 128458) (-3901 . 127798) (-3902 . 127694) (-3903 . 127620) + (-3904 . 127374) (-3905 . 127303) (-3906 . 127208) (-3907 . 127166) + (-3908 . 127099) (-3909 . 126861) (-3910 . 126408) (-3911 . 126314) + (-3912 . 126062) (-3913 . 125819) (-3914 . 125738) (-3915 . 125674) + (-3916 . 125624) (-3917 . 125554) (-3918 . 125330) (-3919 . 125274) + (-3920 . 124988) (-3921 . 124836) (-3922 . 124681) (-3923 . 124615) + (-3924 . 124538) (-3925 . 124041) (-3926 . 123648) (-3927 . 121790) + (-3928 . 121596) (-3929 . 121537) (-3930 . 121438) (-3931 . 121285) + (-3932 . 121230) (-3933 . 120990) (-3934 . 120845) (-3935 . 120752) + (-3936 . 120686) (-3937 . 120580) (-3938 . 120333) (-3939 . 120145) + (-3940 . 119751) (-3941 . 119534) (-3942 . 119240) (-3943 . 119033) + (-3944 . 118894) (-3945 . 118507) (-3946 . 118454) (-3947 . 118247) + (-3948 . 118159) (-3949 . 118067) (-3950 . 117575) (-3951 . 116359) + (-3952 . 116286) (-3953 . 116171) (-3954 . 116088) (-3955 . 116022) + (-3956 . 115775) (-3957 . 115719) (-3958 . 115629) (-3959 . 115470) + (-3960 . 115419) (-3961 . 115149) (-3962 . 115063) (-3963 . 114927) + (-3964 . 114783) (-3965 . 114625) (-3966 . 114283) (-3967 . 114209) + (-3968 . 113780) (-3969 . 113636) (-3970 . 113559) (-3971 . 113431) + (-3972 . 113113) (-3973 . 113004) (-3974 . 112937) (-3975 . 112841) + (-3976 . 112757) (-3977 . 112661) (-3978 . 112426) (-3979 . 112221) + (-3980 . 112106) (-3981 . 111807) (-3982 . 111485) (-3983 . 111428) + (-3984 . 111347) (-3985 . 111273) (-3986 . 111073) (-3987 . 110877) + (-3988 . 110658) (-3989 . 110478) (-3990 . 110410) (-3991 . 110191) + (-3992 . 110033) (-3993 . 109945) (-3994 . 109893) (-3995 . 109728) + (-3996 . 109662) (-3997 . 109603) (-3998 . 109448) (-3999 . 109288) + (-4000 . 109036) (-4001 . 108951) (-4002 . 108773) (-4003 . 108468) + (-4004 . 108250) (-4005 . 108119) (-4006 . 108009) (-4007 . 107864) + (-4008 . 107646) (-4009 . 107530) (-4010 . 107444) (-4011 . 107343) + (-4012 . 107290) (-4013 . 107202) (-4014 . 106924) (-4015 . 106432) + (-4016 . 106379) (-4017 . 106299) (-4018 . 106021) (-4019 . 105822) + (-4020 . 105199) (-4021 . 105101) (-4022 . 105070) (-4023 . 105001) + (-4024 . 104749) (-4025 . 104667) (-4026 . 104579) (-4027 . 104411) + (-4028 . 104302) (-4029 . 104268) (-4030 . 104096) (-4031 . 103938) + (-4032 . 103782) (-4033 . 103670) (-4034 . 103617) (-4035 . 103445) + (-4036 . 103336) (-4037 . 103274) (-4038 . 102928) (-4039 . 102875) + (-4040 . 102796) (-4041 . 102693) (-4042 . 102659) (-12 . 102487) + (-4044 . 102386) (-4045 . 102045) (-4046 . 101932) (-4047 . 101809) + (-4048 . 101735) (-4049 . 101623) (-4050 . 101426) (-4051 . 101276) + (-4052 . 101068) (-4053 . 100732) (-4054 . 99734) (-4055 . 99627) + (-4056 . 99530) (-4057 . 99442) (-4058 . 98354) (-4059 . 98177) + (-4060 . 98098) (-4061 . 98046) (-4062 . 97948) (-4063 . 95816) + (-4064 . 95719) (-4065 . 95145) (-4066 . 94923) (-4067 . 94870) + (-4068 . 94815) (-4069 . 94731) (-4070 . 94658) (-4071 . 94542) + (-4072 . 93892) (-4073 . 93826) (-4074 . 93604) (-4075 . 93523) + (-4076 . 93365) (-4077 . 93256) (-4078 . 93148) (-4079 . 93033) + (-4080 . 92905) (-4081 . 92808) (-4082 . 92712) (-4083 . 92659) + (-4084 . 92576) (-4085 . 92451) (-4086 . 92312) (-4087 . 92250) + (-4088 . 92143) (-4089 . 91936) (-4090 . 91711) (-4091 . 91558) + (-4092 . 91248) (-4093 . 91130) (-4094 . 90814) (-4095 . 90695) + (-4096 . 90567) (-4097 . 89159) (-4098 . 89109) (-4099 . 88535) + (-4100 . 88503) (-4101 . 88410) (-4102 . 88267) (-4103 . 88024) + (-4104 . 87912) (-4105 . 87826) (-4106 . 87481) (-4107 . 87210) + (-4108 . 87143) (-4109 . 87044) (-4110 . 86078) (-4111 . 86050) + (-4112 . 85998) (-4113 . 85926) (-4114 . 85827) (-4115 . 85704) + (-4116 . 85378) (-4117 . 83216) (-4118 . 82004) (-4119 . 81895) + (-4120 . 81816) (-4121 . 81748) (-4122 . 81618) (-4123 . 81541) + (-4124 . 81368) (-4125 . 81263) (-4126 . 81120) (-4127 . 75606) + (-4128 . 75503) (-4129 . 75409) (-4130 . 75302) (-4131 . 75229) + (-4132 . 75169) (-4133 . 74978) (-4134 . 74877) (-4135 . 74849) + (-4136 . 74750) (-4137 . 74358) (-4138 . 74305) (-4139 . 74207) + (-4140 . 73912) (* . 69366) (-4142 . 69263) (-4143 . 69086) + (-4144 . 68883) (-4145 . 68744) (-4146 . 68635) (-4147 . 68552) + (-4148 . 68313) (-4149 . 68211) (-4150 . 68125) (-4151 . 67670) + (-4152 . 67549) (-4153 . 67426) (-4154 . 67268) (-4155 . 67175) + (-4156 . 67123) (-4157 . 66631) (-4158 . 66416) (-4159 . 66339) + (-4160 . 66282) (-4161 . 65933) (-4162 . 63152) (-4163 . 63072) + (-4164 . 63019) (-4165 . 61289) (-4166 . 61001) (-4167 . 60964) + (-4168 . 60893) (-4169 . 60813) (-4170 . 60626) (-4171 . 60595) + (-4172 . 60305) (-4173 . 60006) (-4174 . 59352) (-4175 . 59299) + (-4176 . 59110) (-4177 . 57808) (-4178 . 57702) (-4179 . 57060) + (-4180 . 56938) (-4181 . 56812) (-4182 . 56700) (-4183 . 56631) + (-4184 . 56243) (-4185 . 56003) (-4186 . 55734) (-4187 . 55613) + (-4188 . 55224) (-4189 . 55063) (-4190 . 54778) (-4191 . 54654) + (-4192 . 54511) (-4193 . 54451) (-4194 . 54236) (-4195 . 53921) + (-4196 . 53838) (-4197 . 53080) (-4198 . 53028) (-4199 . 52875) + (-4200 . 52805) (-4201 . 52739) (-4202 . 52549) (-4203 . 52408) + (-4204 . 52328) (-4205 . 52257) (-4206 . 51968) (-4207 . 51734) + (-4208 . 51553) (-4209 . 51476) (-4210 . 51336) (-4211 . 50681) + (-4212 . 50435) (-4213 . 50277) (-4214 . 50156) (-4215 . 49981) + (-4216 . 49598) (-4217 . 49527) (-4218 . 49449) (-4219 . 49383) + (-4220 . 49316) (-4221 . 48963) (-4222 . 48713) (-4223 . 48649) + (-4224 . 48427) (-4225 . 48358) (-4226 . 48221) (-4227 . 48075) + (-4228 . 47861) (-4229 . 47728) (-4230 . 47657) (-4231 . 47378) + (-4232 . 47294) (-4233 . 47225) (-4234 . 47015) (-4235 . 46725) + (-4236 . 46473) (-4237 . 46283) (-4238 . 46118) (-4239 . 46011) + (-4240 . 45883) (-4241 . 45718) (-4242 . 45653) (-4243 . 45582) + (-4244 . 45280) (-4245 . 43651) (-4246 . 43510) (-4247 . 43358) + (-4248 . 43290) (-4249 . 42899) (-4250 . 42867) (-4251 . 42735) + (-4252 . 42682) (-4253 . 42553) (-4254 . 42313) (-4255 . 42196) + (-4256 . 41937) (-4257 . 41071) (-4258 . 40928) (-4259 . 40899) + (-4260 . 40279) (-4261 . 40202) (-4262 . 40079) (-4263 . 39951) + (-4264 . 39829) (-4265 . 38963) (-4266 . 38736) (-4267 . 38639) + (-4268 . 38541) (-4269 . 37167) (-4270 . 36871) (-4271 . 36798) + (-4272 . 36651) (-4273 . 36598) (-4274 . 36545) (-4275 . 36495) + (-4276 . 36443) (-4277 . 36366) (-4278 . 36199) (-4279 . 36102) + (-4280 . 35993) (-4281 . 35835) (-4282 . 35782) (-4283 . 35683) + (-4284 . 34980) (-4285 . 34706) (-4286 . 34303) (-4287 . 34016) + (-4288 . 33917) (-4289 . 33819) (-4290 . 33620) (-4291 . 33405) + (-4292 . 33290) (-4293 . 33132) (-4294 . 33035) (-4295 . 32980) + (-4296 . 32842) (-4297 . 32664) (-4298 . 32080) (-4299 . 32006) + (-4300 . 28670) (-4301 . 28587) (-4302 . 28374) (-4303 . 28008) + (-4304 . 27855) (-4305 . 27703) (-4306 . 27537) (-4307 . 27205) + (-4308 . 27104) (-4309 . 26956) (-4310 . 26813) (-4311 . 26642) + (-4312 . 26559) (-4313 . 26444) (-4314 . 26196) (-4315 . 25904) + (-4316 . 25692) (-4317 . 25447) (-4318 . 24329) (-4319 . 24142) + (-4320 . 23783) (-4321 . 23536) (-4322 . 23259) (-4323 . 23069) + (-4324 . 22301) (-4325 . 20463) (-4326 . 20392) (-4327 . 20276) + (-4328 . 20206) (-4329 . 19824) (-4330 . 19633) (-4331 . 19467) + (-4332 . 19381) (-4333 . 19205) (-4334 . 18932) (-4335 . 18378) + (-4336 . 18225) (-4337 . 17633) (-4338 . 16123) (-4339 . 16070) + (-4340 . 16018) (-4341 . 15894) (-4342 . 15839) (-4343 . 15761) + (-4344 . 15653) (-4345 . 15535) (-4346 . 15424) (-4347 . 15339) + (-4348 . 15130) (-4349 . 14871) (-4350 . 13323) (-4351 . 13264) + (-4352 . 13106) (-4353 . 12931) (-4354 . 12342) (-4355 . 12241) + (-4356 . 12152) (-4357 . 12099) (-4358 . 11346) (-4359 . 11269) + (-4360 . 11178) (-4361 . 11076) (-4362 . 10804) (-4363 . 10700) + (-4364 . 10573) (-4365 . 10472) (-4366 . 10356) (-4367 . 10249) + (-4368 . 10142) (-4369 . 10087) (-4370 . 9942) (-4371 . 9558) + (-4372 . 9450) (-4373 . 8714) (-4374 . 8630) (-4375 . 8533) + (-4376 . 8233) (-4377 . 8144) (-4378 . 8023) (-4379 . 7922) + (-4380 . 7764) (-4381 . 7545) (-4382 . 2432) (-4383 . 2270) + (-4384 . 2169) (-4385 . 2014) (-4386 . 1407) (-4387 . 1358) + (-4388 . 1225) (-4389 . 945) (-4390 . 128) (-4391 . 30))
\ No newline at end of file |